WO2023019700A1 - Co targeted delivery system, and construction method therefor and application thereof - Google Patents

Co targeted delivery system, and construction method therefor and application thereof Download PDF

Info

Publication number
WO2023019700A1
WO2023019700A1 PCT/CN2021/122605 CN2021122605W WO2023019700A1 WO 2023019700 A1 WO2023019700 A1 WO 2023019700A1 CN 2021122605 W CN2021122605 W CN 2021122605W WO 2023019700 A1 WO2023019700 A1 WO 2023019700A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon monoxide
prodrug
oxalate
targeted delivery
nanoparticles
Prior art date
Application number
PCT/CN2021/122605
Other languages
French (fr)
Chinese (zh)
Inventor
季兴跃
柯亨特
闵庆强
倪子惠
Original Assignee
苏州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州大学 filed Critical 苏州大学
Publication of WO2023019700A1 publication Critical patent/WO2023019700A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1605Excipients; Inactive ingredients
    • A61K9/1629Organic macromolecular compounds
    • A61K9/1641Organic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyethylene glycol, poloxamers
    • A61K9/1647Polyesters, e.g. poly(lactide-co-glycolide)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/35Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom
    • A61K31/352Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom condensed with carbocyclic rings, e.g. methantheline 
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1605Excipients; Inactive ingredients
    • A61K9/1629Organic macromolecular compounds
    • A61K9/1641Organic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyethylene glycol, poloxamers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/06Immunosuppressants, e.g. drugs for graft rejection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Immunology (AREA)
  • Epidemiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Cardiology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Oncology (AREA)
  • Pain & Pain Management (AREA)
  • Rheumatology (AREA)
  • Biophysics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Urology & Nephrology (AREA)
  • Vascular Medicine (AREA)
  • Communicable Diseases (AREA)
  • Transplantation (AREA)
  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)

Abstract

A CO targeted delivery system, and a construction method therefor and an application thereof, relating to the technical field of nanomaterial CO targeted delivery. Nanoparticles comprise a carbon monoxide prodrug and an oxalate ester or a polymer thereof, and are prepared by means of the following method: dissolving the oxalate ester or the polymer thereof and the carbon monoxide prodrug in dichloromethane, then adding an emulsifying agent and performing ultrasonic treatment, and performing distillation under reduced pressure to obtain the nanoparticles. In order to avoid the defect of poor transmittance of light to a body tissue, the chemical energy is used to excite Photo-CORM to release CO, H2O2 reacts with differently substituted oxalate esters to generate a high-energy intermediate peroxide oxalate ester in an excited state, and the high-energy intermediate is transferred to Photo-CORM by means of the chemical energy to excite Photo-CORM to enter the excited state so as to release CO, thereby finally achieving the purpose of targeted delivery.

Description

一种CO靶向递送系统及其构建方法与应用A CO targeted delivery system and its construction method and application 技术领域technical field
本发明涉及CO靶向递送的技术领域,尤其是指一种CO靶向递送系统及其构建方法与应用。The present invention relates to the technical field of CO targeted delivery, in particular to a CO targeted delivery system and its construction method and application.
背景技术Background technique
长期以来,一氧化碳(CO)被公认为是一个有毒气体,该气体能与血红蛋白结构中的血红素结合,且亲和力是氧气的200倍,从而阻断血红蛋白的供氧功能。内源性的一氧化碳(CO)是由血红素通过血红素加氧酶催化生成的。在过去二三十年的时间里,一氧化碳(CO)已经证实是体内非常重要的气体信使小分子之一。如同一氧化氮(NO)和硫化氢(H 2S)一样,CO在哺乳动物体内发挥着重要的生理调节作用。据报道,一氧化碳(CO)在抗菌、抗炎、抗肿瘤、心脑血管疾病以及器官移植和保存等都表现出很好的治疗效果,这些发现都使一氧化碳(CO)具有广阔的临床应用前景。美国FDA已批准CO气体的临床实验研究(ClinicalTrials.gov:NCT03799874,NCT01214187等)。但是以气体作为临床输送CO的方式存在很大缺陷:(1)以吸入形式的给药只能在医院才能进行,病人携带较为不便。(2)CO气体剂量很难控制,且给药方式严重依赖病人是否具有健全的肺部功能。(3)CO气体释放不可控,由此带来的脱靶效应也不容小觑。因此,CO药物的安全可控递送是CO临床转化亟待解决的瓶颈问题。 For a long time, carbon monoxide (CO) has been recognized as a toxic gas, which can bind to heme in the hemoglobin structure with an affinity 200 times that of oxygen, thereby blocking the oxygen supply function of hemoglobin. Endogenous carbon monoxide (CO) is produced from heme through the catalysis of heme oxygenase. Over the past two to three decades, carbon monoxide (CO) has proven to be one of the most important gas messenger small molecules in the body. Like nitric oxide (NO) and hydrogen sulfide (H 2 S), CO plays an important physiological regulatory role in mammals. According to reports, carbon monoxide (CO) has shown good therapeutic effects in antibacterial, anti-inflammatory, anti-tumor, cardiovascular and cerebrovascular diseases, organ transplantation and preservation, etc. These findings make carbon monoxide (CO) have broad clinical application prospects. The US FDA has approved the clinical experimental research of CO gas (ClinicalTrials.gov: NCT03799874, NCT01214187, etc.). However, there are great drawbacks in using gas as a clinical delivery method of CO: (1) administration in the form of inhalation can only be carried out in a hospital, and it is inconvenient for patients to carry it. (2) The dose of CO gas is difficult to control, and the way of administration depends heavily on whether the patient has sound lung function. (3) The release of CO gas is uncontrollable, and the resulting off-target effects cannot be underestimated. Therefore, the safe and controllable delivery of CO drugs is an urgent bottleneck for the clinical transformation of CO.
前药策略是解决药物安全递送一个十分有效的方法。然而,与传统小分子前药研发不同,CO前药的研发是一项非常具有挑战性的课题。首先,CO是一个气体分子,在化学上非常的惰性。其次,CO结构非常简单,缺乏相应的官能团进行化学衍生化。因此,传统的前药策略很难适用于CO前药的研发。已报道的CO前药主要包括重金属CO络合物及有机CO前药(图13)。The prodrug strategy is a very effective way to solve the problem of safe drug delivery. However, unlike the development of traditional small molecule prodrugs, the development of CO prodrugs is a very challenging subject. First, CO is a gas molecule and is chemically very inert. Second, CO has a very simple structure and lacks corresponding functional groups for chemical derivatization. Therefore, traditional prodrug strategies are difficult to apply to the development of CO prodrugs. The reported CO prodrugs mainly include heavy metal CO complexes and organic CO prodrugs (Figure 13).
基于重金属-CO络合物(CORM-S1~3)虽然在研究CO生理作用方面做出重要贡献,但是由于重金属固有的毒性问题,这类CO前药很难用于临床开发。另外一类CO前药是无重金属的有机小分子CO前药,这类前药又可分为需要光激活(Photo-CORM,图13)和非光激活(Org-CORM,图13)两类。由于光对机体组织穿透性差等固有缺陷,使得Photo-CORM类CO前药也很难应用于临床。无重金属、无需光激活的CO前药Org-CORM利用分子内的DielsAlder环加成反应在生理条件下释放CO,这类前药虽然规避了重金属毒性和需要光激活的缺陷,但是这类CO前药也存在一些固有问题:如CO释放不具有靶向性(不需要任何的刺激激活,一旦溶于水溶液中便开始释放CO),以及前药结构中存在一个迈克尔加成受体(环戊二烯酮骨架),存在毒性的风险。因此,急需开发具有全新释放机理的CO前药来解决这些瓶颈问题。Although heavy metal-CO complexes (CORM-S1~3) have made important contributions to the study of the physiological effects of CO, such CO prodrugs are difficult to be used in clinical development due to the inherent toxicity of heavy metals. Another type of CO prodrug is a heavy metal-free organic small molecule CO prodrug, which can be divided into two types that require photoactivation (Photo-CORM, Figure 13) and non-photoactivation (Org-CORM, Figure 13). . Due to inherent defects such as poor light penetration into body tissues, Photo-CORM CO prodrugs are also difficult to be applied clinically. The heavy metal-free and light-activated CO prodrug Org-CORM utilizes the intramolecular DielsAlder cycloaddition reaction to release CO under physiological conditions. There are also some inherent problems in the drug: as the CO release is not targeted (it does not require any stimulus activation, once it is dissolved in aqueous solution, it will start to release CO), and there is a Michael addition receptor (cyclopentadiene) in the prodrug structure. enone skeleton), there is a risk of toxicity. Therefore, there is an urgent need to develop CO prodrugs with novel release mechanisms to address these bottlenecks.
发明内容Contents of the invention
为解决上述技术问题,本发明提供了一种CO靶向递送系统及其构建方法与应用。本发明为了规避光对机体组织穿透性差的缺陷,利用化学能来激发Photo-CORM释放CO,H 2O 2与不同取代的草酸酯反应,会生成一个处于激发态的高能中间体过氧化草酸酯,这个高能中间体通过化学能量转移给Photo-CORM,激发后者到激发态而释放CO,最终实现靶向递送的目的。 In order to solve the above technical problems, the present invention provides a CO targeted delivery system and its construction method and application. In order to avoid the defect of poor penetration of light to body tissues, the present invention uses chemical energy to stimulate Photo-CORM to release CO, H 2 O 2 reacts with different substituted oxalate esters, and will generate a high-energy intermediate peroxidation in an excited state Oxalate, the high-energy intermediate, transfers chemical energy to Photo-CORM, which stimulates the latter to an excited state to release CO, and finally achieves the purpose of targeted delivery.
一种CO靶向递送系统,所述靶向递送系统为一氧化碳前药与草酸酯类化合物形成的纳米粒;所述草酸酯类化合物包括草酸酯和/或草酸酯聚合物。A CO targeted delivery system, the targeted delivery system is a nanoparticle formed of a carbon monoxide prodrug and an oxalate compound; the oxalate compound includes oxalate and/or an oxalate polymer.
在本发明的一个实施例中,所述一氧化碳前药的结构如式(1)所示:
Figure PCTCN2021122605-appb-000001
In one embodiment of the present invention, the structure of the carbon monoxide prodrug is shown in formula (1):
Figure PCTCN2021122605-appb-000001
其中,Y=O或S;X=O、S或N;Wherein, Y=O or S; X=O, S or N;
R 1-R 4独立为烷烃基、烷氧基、胺基、卤素、氰基、羧基、烷硫基、烷氧 甲酰基或胺甲酰基; R 1- R 4 are independently alkane, alkoxy, amino, halogen, cyano, carboxyl, alkylthio, alkoxyformyl or carbamoyl;
R 5为芳基、杂芳基或烷基。 R 5 is aryl, heteroaryl or alkyl.
在本发明的一个实施例中,所述草酸酯聚合物的结构如式(2)、(3)所示:In one embodiment of the present invention, the structure of described oxalate polymer is shown in formula (2), (3):
Figure PCTCN2021122605-appb-000002
Figure PCTCN2021122605-appb-000002
其中,n为20-200的整数,m=10-200的整数。Wherein, n is an integer of 20-200, and m=an integer of 10-200.
在本发明的一个实施例中,所述草酸酯的结构如式(4)所示:In one embodiment of the present invention, the structure of the oxalate is shown in formula (4):
Figure PCTCN2021122605-appb-000003
其中R 1为芳基或烷烃基,R 2为芳基或烷烃基。
Figure PCTCN2021122605-appb-000003
Wherein R 1 is aryl or alkane group, R 2 is aryl or alkane group.
在本发明的一个实施例中,所述纳米粒通过以下方法制备得到:在有机溶剂中,将所述草酸酯类化合物与所述一氧化碳前药混合,加入乳化剂混合均匀,减压蒸馏即得所述纳米粒。In one embodiment of the present invention, the nanoparticles are prepared by the following method: in an organic solvent, mix the oxalate compound and the carbon monoxide prodrug, add an emulsifier, mix well, and distill under reduced pressure to obtain The nanoparticles.
在本发明的一个实施例中,所述有机溶剂为乙酸乙酯、乙醚和三氯甲烷中的一种或多种。In one embodiment of the present invention, the organic solvent is one or more of ethyl acetate, diethyl ether and chloroform.
在本发明的一个实施例中,所述草酸酯类化合物与一氧化碳前药的质量比为0.1:1-70:1。In one embodiment of the present invention, the mass ratio of the oxalate compound to the carbon monoxide prodrug is 0.1:1-70:1.
在本发明的一个实施例中,所述乳化剂与草酸酯类化合物的摩尔比为0.1:1-20:1。In one embodiment of the present invention, the molar ratio of the emulsifier to the oxalate compound is 0.1:1-20:1.
在本发明的一个实施例中,所述草酸酯类化合物的浓度为40-1000μM;所述一氧化碳前药的浓度为5-100μM。In one embodiment of the present invention, the concentration of the oxalate compound is 40-1000 μM; the concentration of the carbon monoxide prodrug is 5-100 μM.
在本发明的一个实施例中,所述乳化剂为聚乙烯醇溶液或/和人血清白蛋白溶液。In one embodiment of the present invention, the emulsifier is polyvinyl alcohol solution or/and human serum albumin solution.
在本发明的一个实施例中,所述聚乙烯醇溶液质量浓度为0.5%-5%;所述人血清白蛋白溶液质量浓度为2-10mg/mL。In one embodiment of the present invention, the mass concentration of the polyvinyl alcohol solution is 0.5%-5%; the mass concentration of the human serum albumin solution is 2-10 mg/mL.
本发明的上述技术方案相比现有技术具有以下优点:The above technical solution of the present invention has the following advantages compared with the prior art:
本发明为了规避光对机体组织穿透性差的缺陷,利用化学能来激发Photo-CORM释放CO,H 2O 2与不同取代的草酸酯类化合物反应,会生成一个处于激发态的高能中间体过氧化草酸酯,这个高能中间体通过化学能量转移给Photo-CORM,激发后者到激发态而释放CO。由于高能中间体过氧化草酸酯半衰期非常短,为了保障能量转移的效率,需要借助一些药物载体的手段,如纳米粒等,将二者共递送到靶部位。本发明CO前药一方面规避了重金属毒性的问题,另一方面由于不使用外加光源,克服了光难以穿透皮肤和组织的缺陷,此外通过特应性的响应过氧化氢,能够在过氧化氢高表达的肿瘤或炎症细胞靶向释放一氧化碳。 In order to avoid the defect of poor penetration of light to body tissues, the present invention uses chemical energy to excite Photo-CORM to release CO, and H 2 O 2 reacts with different substituted oxalate compounds to generate a high-energy intermediate in an excited state. Oxidation of oxalate, a high-energy intermediate, transfers chemical energy to Photo-CORM, which excites the latter to an excited state to release CO. Since the half-life of the high-energy intermediate peroxalate is very short, in order to ensure the efficiency of energy transfer, it is necessary to use some means of drug carriers, such as nanoparticles, to co-deliver the two to the target site. On the one hand, the CO prodrug of the present invention avoids the problem of heavy metal toxicity; Tumor or inflammatory cells with high hydrogen expression are targeted to release carbon monoxide.
附图说明Description of drawings
为了使本发明的内容更容易被清楚的理解,下面根据本发明的具体实施例并结合附图,对本发明作进一步详细的说明,其中In order to make the content of the present invention more easily understood, the present invention will be described in further detail below according to specific embodiments of the present invention in conjunction with the accompanying drawings, wherein
图1是本发明原理示意图。Fig. 1 is a schematic diagram of the principle of the present invention.
图2是本发明测试例1中纳米粒A的不同时间点的紫外吸收谱图。Fig. 2 is the ultraviolet absorption spectra of nanoparticles A at different time points in Test Example 1 of the present invention.
图3是本发明测试例1中1-S的降解产物核磁谱图。Fig. 3 is the NMR spectrum of the degradation product of 1-S in Test Example 1 of the present invention.
图4是本发明测试例2中纳米粒B的不同时间点的紫外吸收谱图。Fig. 4 is the ultraviolet absorption spectra of nanoparticles B at different time points in Test Example 2 of the present invention.
图5是本发明测试例2中1-S的降解产物核磁谱图。Fig. 5 is the NMR spectrum of the degradation product of 1-S in Test Example 2 of the present invention.
图6是本发明测试例3中检测实施例1中纳米粒A的肌红蛋白检测一氧化碳结果示意图。Fig. 6 is a schematic diagram of the results of carbon monoxide detected by myoglobin in the nanoparticle A of Example 1 in Test Example 3 of the present invention.
图7是本发明实施例5-实施例7制备得到的纳米粒和对比例1-5中得到 纳米粒的CO释放动力学的研究。Fig. 7 is a study of the CO release kinetics of the nanoparticles prepared in Examples 5-Example 7 of the present invention and the nanoparticles obtained in Comparative Examples 1-5.
图8是本发明实施例1-S、2-S、3-S和对比例1-5中4-S、5-S、6、7、8的分子结构式。Fig. 8 is the molecular structural formulas of 4-S, 5-S, 6, 7, 8 in Examples 1-S, 2-S, 3-S of the present invention and Comparative Examples 1-5.
图9是本发明测试例5中草酸酯聚合物A用量对CO释放的影响结果图。Fig. 9 is a graph showing the effect of the amount of oxalate polymer A on CO release in Test Example 5 of the present invention.
图10是本发明测试例6中CO释放特异性结果图。Fig. 10 is a graph showing specific results of CO release in Test Example 6 of the present invention.
图11是本发明测试例7中pH对CO释放速率影响结果图。Fig. 11 is a graph showing the effect of pH on CO release rate in Test Example 7 of the present invention.
图12是本发明测试例8中H 2O 2含量对CO释放的结果图。 Fig. 12 is a graph showing the results of H 2 O 2 content versus CO release in Test Example 8 of the present invention.
图13是本发明测试例9细胞毒性实验结果。Fig. 13 is the result of the cytotoxicity experiment of Test Example 9 of the present invention.
图14和图15是本发明测试例10细胞内CO成像实验结果。Figure 14 and Figure 15 are the experimental results of intracellular CO imaging in Test Example 10 of the present invention.
图16是本发明测试例11细胞对纳米粒的摄取实验结果。Fig. 16 is the experimental result of the uptake of nanoparticles by cells in Test Example 11 of the present invention.
图17是本领域中重金属CO络合物及有机CO前药分子结构图。Fig. 17 is a molecular structure diagram of heavy metal CO complexes and organic CO prodrugs in the art.
具体实施方式Detailed ways
下面结合附图和具体实施例对本发明作进一步说明,以使本领域的技术人员可以更好地理解本发明并能予以实施,但所举实施例不作为对本发明的限定。The present invention will be further described below in conjunction with the accompanying drawings and specific embodiments, so that those skilled in the art can better understand the present invention and implement it, but the examples given are not intended to limit the present invention.
实施例1Example 1
1.草酸酯聚合物的合成方法:1. The synthetic method of oxalate polymer:
Figure PCTCN2021122605-appb-000004
Figure PCTCN2021122605-appb-000004
氮气氛围下,将4-羟基苯甲醇(16mmol)与1,8-辛二醇(2.4mmol)溶解于无水四氢呋喃(10mL),然后在0℃下向该混合液滴加三乙胺(40mmol),加闭,搅拌5min。在0℃将该上述混合物缓慢滴加到草酰氯(溶解于20mL无水四氢呋喃)中,加闭,将反应恢复至室温,并搅拌反应12h。使用饱和氯化钠溶液淬灭,并用乙酸乙酯(50mL×3)进行萃取,有机相使 用无水硫酸钠干燥并减压蒸发溶剂得到粗品,聚合物通过使用二氯甲烷/正己烷(1:1)进行析出纯化草酸酯聚合物A,其中n=20-50。草酸酯聚合物A的核磁数据为: 1H NMR(400MHz,CDCl 3)δ7.54-7.45(m,2H),7.24-7.16(m,2H),5.40-5.31(m,2H),4.40-4.26(m,4H),1.82-1.66(m,4H),1.47-1.28(m,8H)。 Under nitrogen atmosphere, 4-hydroxybenzyl alcohol (16mmol) and 1,8-octanediol (2.4mmol) were dissolved in anhydrous tetrahydrofuran (10mL), and then triethylamine (40mmol ), add and close, and stir for 5 minutes. The above mixture was slowly added dropwise to oxalyl chloride (dissolved in 20 mL of anhydrous tetrahydrofuran) at 0° C., closed, the reaction was returned to room temperature, and the reaction was stirred for 12 h. Quenched with saturated sodium chloride solution, and extracted with ethyl acetate (50mL×3), the organic phase was dried over anhydrous sodium sulfate and the solvent was evaporated under reduced pressure to obtain a crude product, and the polymer was obtained by using dichloromethane/n-hexane (1: 1) Precipitate and purify oxalate polymer A, wherein n=20-50. The NMR data of oxalate polymer A are: 1 H NMR (400MHz, CDCl 3 ) δ7.54-7.45(m, 2H), 7.24-7.16(m, 2H), 5.40-5.31(m, 2H), 4.40 -4.26(m,4H),1.82-1.66(m,4H),1.47-1.28(m,8H).
2.硫代羰基一氧化碳前药1-S的合成方法2. The synthetic method of thiocarbonyl carbon monoxide prodrug 1-S
Figure PCTCN2021122605-appb-000005
Figure PCTCN2021122605-appb-000005
氮气保护下,将3-羟基-2-苯基-4H-苯并[g]色烯-4-酮(1.0当量)和劳森试剂(0.6当量)一起加入到双颈反应瓶,加入甲苯后加热至120℃回流4h,颜色逐渐加深,通过薄层色谱板监测反应进程,反应完毕旋干甲苯,使用柱层析色谱法(石油醚:乙酸乙酯=10:1)进行分离纯化,得到相应的一氧化碳前药1-S。 1H NMR(400MHz,CDCl 3)δ9.14(s,1H),8.61(s,1H),8.48(d,J=6.8Hz,2H),8.11(d,J=11.3Hz,2H),7.94(d,J=8.3Hz,1H),7.68-7.47(m,5H); 13C NMR(150MHz,CDCl 3)δ189.4,147.3,145.3,141.9,135.6,131.2,131.0,129.7,129.4,129.2,128.9,128.8,127.2,126.5,126.3,114.7. Under nitrogen protection, add 3-hydroxy-2-phenyl-4H-benzo[g]chromen-4-one (1.0 equivalent) and Lawson’s reagent (0.6 equivalent) into a double-necked reaction flask together, after adding toluene Heated to 120°C and refluxed for 4 hours, the color gradually deepened, and the reaction process was monitored by a thin-layer chromatography plate. After the reaction was completed, the toluene was spin-dried, and column chromatography (petroleum ether: ethyl acetate = 10:1) was used for separation and purification to obtain the corresponding The carbon monoxide prodrug 1-S. 1 H NMR (400MHz, CDCl 3 )δ9.14(s,1H),8.61(s,1H),8.48(d,J=6.8Hz,2H),8.11(d,J=11.3Hz,2H),7.94 (d, J=8.3Hz, 1H), 7.68-7.47 (m, 5H); 13 C NMR (150MHz, CDCl 3 ) δ189.4, 147.3, 145.3, 141.9, 135.6, 131.2, 131.0, 129.7, 129.4, 129.2, 128.9 ,128.8,127.2,126.5,126.3,114.7.
3.一氧化碳靶向递送系统即化学能纳米粒的制备方法3. Carbon monoxide targeted delivery system, i.e. preparation method of chemical energy nanoparticles
将草酸酯聚合物A(7mg)和一氧化碳前药1-S(0.5mg)溶于500μL二氯甲烷中,加入3mL聚乙烯醇(PVA)溶液(聚乙烯醇固体溶于pH=7.4的磷酸盐缓冲液中制备成质量浓度为5%的聚乙烯醇溶液),使用超声波细胞破碎仪超声乳化10min,在37℃下减压浓缩除去二氯甲烷,得到均一澄清的液体,纳米粒A。Dissolve oxalate polymer A (7 mg) and carbon monoxide prodrug 1-S (0.5 mg) in 500 μL of dichloromethane, add 3 mL of polyvinyl alcohol (PVA) solution (PVA solid dissolved in phosphoric acid at pH = 7.4 Prepare a polyvinyl alcohol solution with a mass concentration of 5% in salt buffer solution), use an ultrasonic cell disruptor to ultrasonically emulsify for 10 minutes, and concentrate under reduced pressure at 37° C. to remove dichloromethane to obtain a uniform and clear liquid, nanoparticle A.
实施例2Example 2
1.草酸酯聚合物的合成与实施例1中相同。1. The synthesis of oxalate polymer is the same as in Example 1.
2.硫代羰基一氧化碳前药2-S的合成方法2. The synthetic method of thiocarbonyl carbon monoxide prodrug 2-S
Figure PCTCN2021122605-appb-000006
Figure PCTCN2021122605-appb-000006
氮气保护下,将3-羟基黄酮(1.0当量)和劳森试剂(0.6当量)一起加入到双颈反应瓶,加入甲苯后加热至120℃回流4h,颜色逐渐加深,通过薄层色谱板监测反应进程,反应完毕旋干甲苯,使用柱层析色谱法(石油醚:乙酸乙酯=10:1)进行分离纯化,得到相应的一氧化碳前药2-S。 1H NMR(400MHz,CDCl 3)δ8.71(s,1H),8.57(d,J=8.1Hz,1H),8.38(d,J=7.1Hz,2H),7.71(t,J=7.4Hz,1H),7.64(d,J=8.3Hz,1H),7.59-7.51(m,3H),7.46(t,J=7.5Hz,1H); 13C NMR(150MHz,CDCl 3)δ188.2,150.5,146.3,141.4,133.3,131.0,130.9,128.9,128.8,128.1,125.9,118.5。 Under the protection of nitrogen, add 3-hydroxyflavone (1.0 equivalent) and Lawson’s reagent (0.6 equivalent) into a double-neck reaction flask, add toluene and heat to 120 ° C for 4 hours, the color gradually deepens, and the reaction is monitored by thin-layer chromatography. After the reaction, the toluene was spin-dried, and column chromatography (petroleum ether: ethyl acetate = 10:1) was used for separation and purification to obtain the corresponding carbon monoxide prodrug 2-S. 1 H NMR (400MHz, CDCl 3 ) δ8.71(s, 1H), 8.57(d, J=8.1Hz, 1H), 8.38(d, J=7.1Hz, 2H), 7.71(t, J=7.4Hz ,1H),7.64(d,J=8.3Hz,1H),7.59-7.51(m,3H),7.46(t,J=7.5Hz,1H); 13 C NMR(150MHz,CDCl 3 )δ188.2,150.5, 146.3, 141.4, 133.3, 131.0, 130.9, 128.9, 128.8, 128.1, 125.9, 118.5.
3.化学能纳米粒B的制备方法3. Preparation method of chemical energy nanoparticles B
将草酸酯聚合物A(7mg)和一氧化碳前药2-S(0.5mg)溶于500μL二氯甲烷中,加入3mL聚乙烯醇(PVA)溶液(将聚乙烯醇固体溶于pH=7.4的磷酸盐缓冲液中制备成质量浓度为5%的聚乙烯醇(PVA)溶液),使用超声波细胞破碎仪超声乳化10min,在37℃下减压浓缩除去二氯甲烷,得到均一澄清的液体,纳米粒B。Dissolve oxalate polymer A (7 mg) and carbon monoxide prodrug 2-S (0.5 mg) in 500 μL of dichloromethane, add 3 mL of polyvinyl alcohol (PVA) solution (dissolve PVA solid in pH = 7.4 Prepare a polyvinyl alcohol (PVA) solution with a mass concentration of 5% in phosphate buffer solution), use an ultrasonic cell disruptor to ultrasonically emulsify for 10 minutes, and concentrate under reduced pressure at 37°C to remove dichloromethane to obtain a uniform and clear liquid, nano grain B.
实施例3Example 3
1.草酸酯聚合物的合成与实施例1中相同。1. The synthesis of oxalate polymer is the same as in Example 1.
2.硫代羰基一氧化碳前药3-S的合成方法2. The synthetic method of thiocarbonyl carbon monoxide prodrug 3-S
Figure PCTCN2021122605-appb-000007
Figure PCTCN2021122605-appb-000007
氮气保护下,将3-羟基-4H-色烯-4-酮(1.0当量)和劳森试剂(0.6当量)一起加入到双颈反应瓶,加入甲苯后加热至120℃回流4h,颜色逐渐加深,通过薄层色谱板监测反应进程,反应完毕旋干甲苯,使用柱层析色谱法(石油醚:乙酸乙酯=10:1)进行分离纯化,得到相应的一氧化碳前药3-S。 1H NMR(400MHz,CDCl 3)δ8.60(d,J=8.3Hz,1H),8.06(s,1H),7.71(t,J=8.3,7.2Hz,1H),7.67(s,1H),7.57(d,J=8.5Hz,1H),7.48(t,J=7.6Hz,1H); 13C NMR(150MHz,CDCl 3)δ190.0,151.0,149.2,133.4,133.0,129.0,128.5,126.1,119.0。 Under the protection of nitrogen, add 3-hydroxy-4H-chromen-4-one (1.0 equivalent) and Lawson’s reagent (0.6 equivalent) into a double-neck reaction flask, add toluene, heat to 120°C and reflux for 4 hours, the color gradually deepens , monitor the reaction process by thin-layer chromatographic plate, spin dry toluene after the reaction, use column chromatography (petroleum ether: ethyl acetate = 10:1) to separate and purify to obtain the corresponding carbon monoxide prodrug 3-S. 1 H NMR (400MHz, CDCl 3 ) δ8.60(d, J=8.3Hz, 1H), 8.06(s, 1H), 7.71(t, J=8.3, 7.2Hz, 1H), 7.67(s, 1H) ,7.57(d,J=8.5Hz,1H),7.48(t,J=7.6Hz,1H); 13 C NMR(150MHz,CDCl 3 )δ190.0,151.0,149.2,133.4,133.0,129.0,128.5,126.1, 119.0.
3.一氧化碳靶向递送系统即化学能纳米粒C的制备方法3. Carbon monoxide targeted delivery system, i.e. preparation method of chemical energy nanoparticles C
将草酸酯聚合物A(7mg)和一氧化碳前药3-S(0.5mg)溶于500μL二氯甲烷中,加入3mL聚乙烯醇(PVA)溶液(聚乙烯醇固体溶于pH=7.4的磷酸盐缓冲液中制备成质量浓度为5%的聚乙烯醇(PVA)溶液),使用超声波细胞破碎仪超声乳化10min,在37℃下减压浓缩除去二氯甲烷,得到均一澄清的液体,纳米粒C。Dissolve oxalate polymer A (7 mg) and carbon monoxide prodrug 3-S (0.5 mg) in 500 μL of dichloromethane, add 3 mL of polyvinyl alcohol (PVA) solution (PVA solid dissolved in phosphoric acid at pH = 7.4 Prepare a polyvinyl alcohol (PVA) solution with a mass concentration of 5% in salt buffer solution), use an ultrasonic cell disruptor to ultrasonically emulsify for 10 minutes, and concentrate under reduced pressure at 37°C to remove dichloromethane to obtain a uniform and clear liquid, nanoparticles c.
实施例4Example 4
1.草酸酯聚合物的合成与实施例1中相同。1. The synthesis of oxalate polymer is the same as in Example 1.
2.硫代羰基一氧化碳前药2-S的合成与实施例2相同。2. The synthesis of thiocarbonyl carbon monoxide prodrug 2-S is the same as in Example 2.
3.一氧化碳靶向递送系统即化学能纳米粒D的制备方法3. Preparation method of carbon monoxide targeted delivery system, i.e. chemical energy nanoparticles D
将草酸酯聚合物(2.24mg)和一氧化碳前药2-S(0.16mg)溶于250μL的二氯甲烷,加入5mL的4mg/mL的人血清白蛋白,使用超声波细胞破碎仪超声乳化10min,在37℃下减压浓缩除去二氯甲烷,得到均一澄清的液体,纳米粒D。Dissolve oxalate polymer (2.24 mg) and carbon monoxide prodrug 2-S (0.16 mg) in 250 μL of dichloromethane, add 5 mL of 4 mg/mL human serum albumin, and ultrasonically emulsify for 10 min using an ultrasonic cell disruptor. Dichloromethane was removed by concentration under reduced pressure at 37 °C to obtain a homogeneous clear liquid, nanoparticles D.
实施例5-7中一氧化碳靶向递送系统即纳米粒制备同实施例1,区别点在于实施例5-7中的一氧化碳前药分别为1-S、2-S、3-S,其中一氧化碳前药摩尔数均为n=1.97μmol,制备得到的纳米粒分别为E-1,E-2,E-3。The carbon monoxide targeted delivery system in Examples 5-7, that is, the preparation of nanoparticles is the same as in Example 1, the difference is that the carbon monoxide prodrugs in Examples 5-7 are 1-S, 2-S, and 3-S, respectively, and the carbon monoxide prodrugs are The number of drug moles is n=1.97 μmol, and the prepared nanoparticles are respectively E-1, E-2, and E-3.
实施例8-12Example 8-12
实施例8-12中纳米粒制备同实施例1,区别点在于实施例8-12中的一氧化碳前药均为2-S,且一氧化碳前药均为2-S和草酸酯聚合物A用量分别为0.1mg/7.0mg;0.3mg/7.0mg;0.5mg/7.0mg;0.8mg/7.0mg;1.0mg/7.0mg。制备得到纳米材料分别为F-1、F-2、F-3、F-4、F-5。The preparation of nanoparticles in Examples 8-12 is the same as in Example 1, the difference is that the carbon monoxide prodrugs in Examples 8-12 are all 2-S, and the carbon monoxide prodrugs are all 2-S and the amount of oxalate polymer A 0.1mg/7.0mg; 0.3mg/7.0mg; 0.5mg/7.0mg; 0.8mg/7.0mg; 1.0mg/7.0mg. The prepared nanomaterials are respectively F-1, F-2, F-3, F-4 and F-5.
实施例13Example 13
1.其中草酸酯B为:1. Wherein oxalate B is:
Figure PCTCN2021122605-appb-000008
Figure PCTCN2021122605-appb-000008
2.硫代羰基一氧化碳前药2-S的合成与实施例2相同。2. The synthesis of thiocarbonyl carbon monoxide prodrug 2-S is the same as in Example 2.
3.一氧化碳靶向递送系统即化学能纳米粒的制备方法3. Carbon monoxide targeted delivery system, i.e. preparation method of chemical energy nanoparticles
将草酸酯B(1mg)和一氧化碳前药2-S(0.5mg),PLGA(乳酸-羟基乳酸共聚物)(7mg)一起溶于500μL的二氯甲烷,加入3mL聚乙烯醇(PVA)溶液(聚乙烯醇固体溶于pH=7.4的磷酸盐缓冲液中制备成质量浓度为5%的聚乙烯醇(PVA)溶液),使用超声波细胞破碎仪超声乳化10min,在37℃下减压浓缩除去二氯甲烷,得到均一澄清的液体,纳米粒H。Dissolve oxalate B (1 mg), carbon monoxide prodrug 2-S (0.5 mg), PLGA (lactic acid-hydroxylactic acid copolymer) (7 mg) in 500 μL of dichloromethane, and add 3 mL of polyvinyl alcohol (PVA) solution (Polyvinyl alcohol solid was dissolved in phosphate buffer solution with pH=7.4 to prepare a polyvinyl alcohol (PVA) solution with a mass concentration of 5%), ultrasonically emulsified for 10 min using an ultrasonic cell disruptor, and concentrated under reduced pressure at 37°C to remove dichloromethane to give a homogeneous clear liquid, Nanoparticle H.
实施例14Example 14
1.草酸酯1的制备:1. Preparation of oxalate 1:
Figure PCTCN2021122605-appb-000009
Figure PCTCN2021122605-appb-000009
氮气氛围下,将对甲基苯酚(1.05mL,1.0当量)和三乙胺(2.8mL,2.0 当量)溶于二氯甲烷(20mL)置于50mL双颈瓶,在0℃下滴加草酰氯单乙酯(2.1mL,2.0当量),加毕继续反应10分钟,通过薄层色谱监测反应,反应完毕,旋干溶剂,通过柱层析色谱法(PE:EA=20:1)分离纯化得到化合物1(2.04g),收率98%。 1H NMR(300MHz,CDCl 3)δ7.21(d,J=8.6Hz,1H),7.07(d,J=8.4Hz,1H),4.44(q,J=7.1Hz,1H),2.35(s,2H),1.43(t,J=7.1Hz,2H); 13C NMR(125MHz,CDCl 3)δ159.5,158.1,150.1,134.4,129.6,121.3,61.4,21.15(s),14.7。 Under nitrogen atmosphere, dissolve p-cresol (1.05mL, 1.0eq) and triethylamine (2.8mL, 2.0eq) in dichloromethane (20mL) into a 50mL double-necked flask, and add oxalyl chloride dropwise at 0°C Monoethyl ester (2.1mL, 2.0 equivalents), after addition, continue to react for 10 minutes, monitor the reaction by thin-layer chromatography, after the reaction is completed, spin to dry the solvent, and separate and purify by column chromatography (PE:EA=20:1) to obtain Compound 1 (2.04g), yield 98%. 1 H NMR (300MHz, CDCl 3 ) δ7.21(d, J=8.6Hz, 1H), 7.07(d, J=8.4Hz, 1H), 4.44(q, J=7.1Hz, 1H), 2.35(s , 2H), 1.43 (t, J=7.1Hz, 2H); 13 C NMR (125MHz, CDCl 3 ) δ 159.5, 158.1, 150.1, 134.4, 129.6, 121.3, 61.4, 21.15(s), 14.7.
2.硫代羰基一氧化碳前药2-S的合成与实施例2相同。2. The synthesis of thiocarbonyl carbon monoxide prodrug 2-S is the same as in Example 2.
3.一氧化碳靶向递送系统即化学能纳米粒的制备方法:3. Preparation method of carbon monoxide targeted delivery system, i.e. chemical energy nanoparticles:
将草酸酯1(4mg)和一氧化碳前药2-S(0.5mg),PLGA(乳酸-羟基乳酸共聚物)(7mg)一起溶于500μL的二氯甲烷,加入3mL聚乙烯醇(PVA)溶液(聚乙烯醇固体溶于pH=7.4的磷酸盐缓冲液中制备成质量浓度为5%的聚乙烯醇(PVA)溶液),使用超声波细胞破碎仪超声乳化10min,在37℃下减压浓缩除去二氯甲烷,得到均一澄清的液体,纳米粒1。Dissolve oxalate 1 (4 mg), carbon monoxide prodrug 2-S (0.5 mg), PLGA (lactic acid-hydroxylactic acid copolymer) (7 mg) in 500 μL of dichloromethane, and add 3 mL of polyvinyl alcohol (PVA) solution (Polyvinyl alcohol solid was dissolved in phosphate buffer solution with pH=7.4 to prepare a polyvinyl alcohol (PVA) solution with a mass concentration of 5%), ultrasonically emulsified for 10 min using an ultrasonic cell disruptor, and concentrated under reduced pressure at 37°C to remove dichloromethane to give a homogeneous clear liquid, Nanoparticles 1.
实施例15Example 15
1.草酸酯2的制备:1. Preparation of oxalate 2:
Figure PCTCN2021122605-appb-000010
Figure PCTCN2021122605-appb-000010
氮气氛围下,将3,4,5-三甲氧基苯酚(1.83g,1.0当量)和三乙胺(2.8mL,2.0当量)溶于二氯甲烷(20mL)置于50mL双颈瓶,在0℃下滴加草酰氯单乙酯(2.1mL,2.0当量),加毕继续反应10分钟,通过薄层色谱监测反应,反应完毕,旋干溶剂,通过柱层析色谱法(PE:EA=20:1)分离纯化得到化合物2(2.69g),收率95%。 1H NMR(500MHz,CDCl 3)δ6.44(s,2H),4.18(s,2H),3.83(s,6H),3.71(s,3H),1.25(s,3H); 13C NMR(125MHz,CDCl 3)δ159.5,158.1,155.7,148.8,135.7,99.8,61.5,60.7,56.8,14.7. Under nitrogen atmosphere, 3,4,5-trimethoxyphenol (1.83g, 1.0 equivalent) and triethylamine (2.8mL, 2.0 equivalent) were dissolved in dichloromethane (20mL) and placed in a 50mL two-necked flask, at 0 Add monoethyl oxalyl chloride (2.1mL, 2.0 equivalents) dropwise at ℃, continue to react for 10 minutes after the addition, and monitor the reaction by thin-layer chromatography. : 1) separation and purification to obtain compound 2 (2.69g), yield 95%. 1 H NMR (500MHz, CDCl 3 ) δ6.44(s,2H), 4.18(s,2H), 3.83(s,6H), 3.71(s,3H), 1.25(s,3H); 13 C NMR( 125MHz, CDCl 3 ) δ159.5, 158.1, 155.7, 148.8, 135.7, 99.8, 61.5, 60.7, 56.8, 14.7.
2.硫代羰基一氧化碳前药2-S的合成与实施例2相同。2. The synthesis of thiocarbonyl carbon monoxide prodrug 2-S is the same as in Example 2.
3.一氧化碳靶向递送系统即化学能纳米粒的制备方法:3. Preparation method of carbon monoxide targeted delivery system, i.e. chemical energy nanoparticles:
将草酸酯2(4mg)和一氧化碳前药2-S(0.5mg),PLGA(乳酸-羟基乳酸共聚物)(7mg)一起溶于500μL的二氯甲烷,加入3mL聚乙烯醇(PVA)溶液(聚乙烯醇固体溶于pH=7.4的磷酸盐缓冲液中制备成质量浓度为5%的聚乙烯醇(PVA)溶液),使用超声波细胞破碎仪超声乳化10min,在37℃下减压浓缩除去二氯甲烷,得到均一澄清的液体,纳米粒2。Dissolve oxalate 2 (4 mg), carbon monoxide prodrug 2-S (0.5 mg), PLGA (lactic acid-hydroxylactic acid copolymer) (7 mg) in 500 μL of dichloromethane, and add 3 mL of polyvinyl alcohol (PVA) solution (Polyvinyl alcohol solid was dissolved in phosphate buffer solution with pH=7.4 to prepare a polyvinyl alcohol (PVA) solution with a mass concentration of 5%), ultrasonically emulsified for 10 min using an ultrasonic cell disruptor, and concentrated under reduced pressure at 37°C to remove dichloromethane to give a homogeneous clear liquid, Nanoparticles 2.
实施例16Example 16
1.草酸酯3的制备:1. Preparation of oxalate 3:
Figure PCTCN2021122605-appb-000011
Figure PCTCN2021122605-appb-000011
氮气氛围下,将对氰基苯酚(1.18g,1.0当量)和三乙胺(2.8mL,2.0当量)溶于二氯甲烷(20mL)置于50mL双颈瓶,在0℃下滴加草酰氯单乙酯(2.1mL,2.0当量),加毕继续反应10分钟,通过薄层色谱监测反应,反应完毕,旋干溶剂,通过柱层析色谱法(PE:EA=20:1)分离纯化得到化合物3(2.01g),收率92%。 1H NMR(500MHz,CDCl 3)δ7.89(d,J=14.8Hz,2H),7.38(d,J=15.0Hz,2H),4.18(q,J=11.8Hz,2H),1.25(t,J=11.8Hz,3H); 13C NMR(125MHz,CDCl 3)δ159.5,158.1,156.6,133.2,123.8,118.9,109.9,61.4,14.7. Under nitrogen atmosphere, dissolve p-cyanophenol (1.18g, 1.0eq) and triethylamine (2.8mL, 2.0eq) in dichloromethane (20mL) into a 50mL double-necked flask, and add oxalyl chloride dropwise at 0°C Monoethyl ester (2.1mL, 2.0 equivalents), after addition, continue to react for 10 minutes, monitor the reaction by thin-layer chromatography, after the reaction is completed, spin to dry the solvent, and separate and purify by column chromatography (PE:EA=20:1) to obtain Compound 3 (2.01 g), yield 92%. 1 H NMR (500MHz, CDCl 3 ) δ7.89(d, J=14.8Hz, 2H), 7.38(d, J=15.0Hz, 2H), 4.18(q, J=11.8Hz, 2H), 1.25(t , J=11.8Hz, 3H); 13 C NMR (125MHz, CDCl 3 ) δ159.5, 158.1, 156.6, 133.2, 123.8, 118.9, 109.9, 61.4, 14.7.
2.硫代羰基一氧化碳前药2-S的合成与实施例2相同。2. The synthesis of thiocarbonyl carbon monoxide prodrug 2-S is the same as in Example 2.
3.一氧化碳靶向递送系统即化学能纳米粒的制备方法:3. Preparation method of carbon monoxide targeted delivery system, i.e. chemical energy nanoparticles:
将草酸酯3(4mg)和一氧化碳前药2-S(0.5mg),PLGA(乳酸-羟基乳酸共聚物)(7mg)一起溶于500μL的二氯甲烷,加入3mL聚乙烯醇(PVA)溶液(聚乙烯醇固体溶于pH=7.4的磷酸盐缓冲液中制备成质量浓度为5%的聚乙烯醇(PVA)溶液),使用超声波细胞破碎仪超声乳化10min, 在37℃下减压浓缩除去二氯甲烷,得到均一澄清的液体,纳米粒3。Dissolve oxalate 3 (4 mg), carbon monoxide prodrug 2-S (0.5 mg), PLGA (lactic acid-hydroxylactic acid copolymer) (7 mg) in 500 μL of dichloromethane, and add 3 mL of polyvinyl alcohol (PVA) solution (Polyvinyl alcohol solid was dissolved in phosphate buffer solution with pH=7.4 to prepare a polyvinyl alcohol (PVA) solution with a mass concentration of 5%), ultrasonically emulsified with an ultrasonic cell disruptor for 10 min, and concentrated under reduced pressure at 37°C to remove dichloromethane to give a homogeneous clear liquid, nanoparticles 3.
实施例17Example 17
1.草酸酯4的制备:1. Preparation of oxalate 4:
Figure PCTCN2021122605-appb-000012
Figure PCTCN2021122605-appb-000012
氮气氛围下,将对甲氧基苯酚(1.24g,1.0当量)和三乙胺(2.8mL,2.0当量)溶于二氯甲烷(20mL)置于50mL双颈瓶,在0℃下滴加草酰氯单乙酯(2.1mL,2.0当量),加毕继续反应10分钟,通过薄层色谱监测反应,反应完毕,旋干溶剂,通过柱层析色谱法(PE:EA=20:1)分离纯化得到化合物4(2.15g),收率96%。 1H NMR(500MHz,CDCl 3)δ7.21(d,J=15.0Hz,2H),6.99(d,J=15.0Hz,2H),4.18(q,J=11.8Hz,2H),3.79(s,3H),1.25(t,J=11.8Hz,3H); 13C NMR(125MHz,CDCl 3)δ159.5,158.1,156.8,145.1,123.1,114.6,61.4,56.1,14.7。 Under nitrogen atmosphere, dissolve p-methoxyphenol (1.24g, 1.0eq) and triethylamine (2.8mL, 2.0eq) in dichloromethane (20mL) into a 50mL two-necked bottle, and add grass Acyl chloride monoethyl ester (2.1mL, 2.0 equivalents), continue to react for 10 minutes after addition, monitor the reaction by thin-layer chromatography, after the reaction is completed, spin to dry the solvent, and separate and purify by column chromatography (PE:EA=20:1) Compound 4 (2.15 g) was obtained with a yield of 96%. 1 H NMR (500MHz, CDCl 3 ) δ7.21(d, J=15.0Hz, 2H), 6.99(d, J=15.0Hz, 2H), 4.18(q, J=11.8Hz, 2H), 3.79(s ,3H), 1.25 (t, J=11.8Hz, 3H); 13 C NMR (125MHz, CDCl 3 ) δ 159.5, 158.1, 156.8, 145.1, 123.1, 114.6, 61.4, 56.1, 14.7.
2.硫代羰基一氧化碳前药2-S的合成与实施例2相同。2. The synthesis of thiocarbonyl carbon monoxide prodrug 2-S is the same as in Example 2.
3.一氧化碳靶向递送系统即化学能纳米粒的制备方法:3. Preparation method of carbon monoxide targeted delivery system, i.e. chemical energy nanoparticles:
将草酸酯4(4mg)和一氧化碳前药2-S(0.5mg),PLGA(乳酸-羟基乳酸共聚物)(7mg)一起溶于500μL的二氯甲烷,加入3mL聚乙烯醇(PVA)溶液(聚乙烯醇固体溶于pH=7.4的磷酸盐缓冲液中制备成质量浓度为5%的聚乙烯醇(PVA)溶液),使用超声波细胞破碎仪超声乳化10min,在37℃下减压浓缩除去二氯甲烷,得到均一澄清的液体,纳米粒4。Dissolve oxalate 4 (4 mg), carbon monoxide prodrug 2-S (0.5 mg), PLGA (lactic acid-hydroxylactic acid copolymer) (7 mg) in 500 μL of dichloromethane, and add 3 mL of polyvinyl alcohol (PVA) solution (Polyvinyl alcohol solid was dissolved in phosphate buffer solution with pH=7.4 to prepare a polyvinyl alcohol (PVA) solution with a mass concentration of 5%), ultrasonically emulsified for 10 min using an ultrasonic cell disruptor, and concentrated under reduced pressure at 37°C to remove dichloromethane to give a homogeneous clear liquid, nanoparticles 4.
实施例18Example 18
1.草酸酯5的制备:1. Preparation of oxalate 5:
Figure PCTCN2021122605-appb-000013
Figure PCTCN2021122605-appb-000013
氮气氛围下,将对三氟甲基苯酚(1.63g,1.0当量)和三乙胺(2.8mL,2.0当量)溶于二氯甲烷(20mL)置于50mL双颈瓶,在0℃下滴加草酰氯单乙酯(2.1mL,2.0当量),加毕继续反应10分钟,通过薄层色谱监测反应,反应完毕,旋干溶剂,通过柱层析色谱法(PE:EA=20:1)分离纯化得到化合物5(2.38g),收率91%。 1H NMR(500MHz,CDCl 3)δ7.50(d,J=15.0Hz,2H),7.11(d,J=15.0Hz,2H),4.18(q,J=11.8Hz,2H),1.25(t,J=11.8Hz,3H); 13C NMR(125MHz,CDCl 3)δ159.5,158.1,154.3,129.3(q,J C-F=32.4Hz),127.4(q,J C-F=3.7Hz),123.6(q,J C-F=268.1Hz),121.7,61.4,14.7. Under a nitrogen atmosphere, dissolve p-trifluoromethylphenol (1.63g, 1.0eq) and triethylamine (2.8mL, 2.0eq) in dichloromethane (20mL) in a 50mL two-necked flask, and add dropwise at 0°C Oxalyl chloride monoethyl ester (2.1mL, 2.0 equivalents), after addition, continue to react for 10 minutes, monitor the reaction by thin layer chromatography, after the reaction is completed, spin to dry the solvent, and separate by column chromatography (PE:EA=20:1) Compound 5 (2.38 g) was obtained after purification with a yield of 91%. 1 H NMR (500MHz, CDCl 3 ) δ7.50(d, J=15.0Hz, 2H), 7.11(d, J=15.0Hz, 2H), 4.18(q, J=11.8Hz, 2H), 1.25(t , J=11.8Hz, 3H); 13 C NMR (125MHz, CDCl 3 ) δ159.5, 158.1, 154.3, 129.3(q, J CF =32.4Hz), 127.4(q, J CF =3.7Hz), 123.6(q, J CF =268.1Hz), 121.7, 61.4, 14.7.
2.硫代羰基一氧化碳前药2-S的合成与实施例2相同。2. The synthesis of thiocarbonyl carbon monoxide prodrug 2-S is the same as in Example 2.
3.一氧化碳靶向递送系统即化学能纳米粒的制备方法3. Carbon monoxide targeted delivery system, i.e. preparation method of chemical energy nanoparticles
将草酸酯5(4mg)和一氧化碳前药2-S(0.5mg),PLGA(乳酸-羟基乳酸共聚物)(7mg)一起溶于500μL的二氯甲烷,加入3mL聚乙烯醇(PVA)溶液(聚乙烯醇固体溶于pH=7.4的磷酸盐缓冲液中制备成质量浓度为5%的聚乙烯醇(PVA)溶液),使用超声波细胞破碎仪超声乳化10min,在37℃下减压浓缩除去二氯甲烷,得到均一澄清的液体,纳米粒5。Dissolve oxalate 5 (4 mg), carbon monoxide prodrug 2-S (0.5 mg), PLGA (lactic acid-hydroxylactic acid copolymer) (7 mg) in 500 μL of dichloromethane, and add 3 mL of polyvinyl alcohol (PVA) solution (Polyvinyl alcohol solid was dissolved in phosphate buffer solution with pH=7.4 to prepare a polyvinyl alcohol (PVA) solution with a mass concentration of 5%), ultrasonically emulsified for 10 min using an ultrasonic cell disruptor, and concentrated under reduced pressure at 37°C to remove dichloromethane to give a homogeneous clear liquid, nanoparticles 5.
实施例19Example 19
1.草酸酯6的制备:1. Preparation of oxalate 6:
Figure PCTCN2021122605-appb-000014
Figure PCTCN2021122605-appb-000014
氮气氛围下,将对氟苯酚(1.12g,1.0当量)和三乙胺(2.8mL,2.0当量)溶于二氯甲烷(20mL)置于50mL双颈瓶,在0℃下滴加草酰氯单乙酯(2.1mL,2.0当量),加毕继续反应10分钟,通过薄层色谱监测反应,反应完毕,旋干溶剂,通过柱层析色谱法(PE:EA=20:1)分离纯化得到化合物6(1.91g),收率90%。 1H NMR(500MHz,CDCl 3)δ7.18-7.17(m,2H),7.16-7.14(m,2H),4.18(q,J=11.8Hz,2H),1.25(t,J=11.8Hz,3H); 13C NMR(125MHz,CDCl 3)δ161.2,159.5,159.2,158.1,148.6(d,J C-F=3.7Hz),121.48(d,J C-F=7.6 Hz),115.4(d,J C-F=20.0Hz),61.4,14.6. Under nitrogen atmosphere, dissolve p-fluorophenol (1.12g, 1.0eq) and triethylamine (2.8mL, 2.0eq) in dichloromethane (20mL) into a 50mL double-necked flask, and add oxalyl chloride mono Ethyl ester (2.1mL, 2.0 equivalents), after the addition, continue to react for 10 minutes, monitor the reaction by thin layer chromatography, after the reaction is completed, spin to dry the solvent, and separate and purify the compound by column chromatography (PE:EA=20:1) 6 (1.91 g), yield 90%. 1 H NMR (500MHz, CDCl 3 ) δ7.18-7.17(m, 2H), 7.16-7.14(m, 2H), 4.18(q, J=11.8Hz, 2H), 1.25(t, J=11.8Hz, 3H); 13 C NMR (125MHz, CDCl 3 ) δ 161.2, 159.5, 159.2, 158.1, 148.6 (d, J CF = 3.7 Hz), 121.48 (d, J CF = 7.6 Hz), 115.4 (d, J CF = 20.0 Hz), 61.4, 14.6.
2.硫代羰基一氧化碳前药2-S的合成与实施例2相同。2. The synthesis of thiocarbonyl carbon monoxide prodrug 2-S is the same as in Example 2.
3.一氧化碳靶向递送系统即化学能纳米粒的制备方法3. Carbon monoxide targeted delivery system, i.e. preparation method of chemical energy nanoparticles
将草酸酯6(4mg)和一氧化碳前药2-S(0.5mg),PLGA(乳酸-羟基乳酸共聚物)(7mg)一起溶于500μL的二氯甲烷,加入3mL聚乙烯醇(PVA)溶液(聚乙烯醇固体溶于pH=7.4的磷酸盐缓冲液中制备成质量浓度为5%的聚乙烯醇(PVA)溶液),使用超声波细胞破碎仪超声乳化10min,在37℃下减压浓缩除去二氯甲烷,得到均一澄清的液体,纳米粒6。Dissolve oxalate 6 (4 mg), carbon monoxide prodrug 2-S (0.5 mg), PLGA (lactic acid-hydroxylactic acid copolymer) (7 mg) in 500 μL of dichloromethane, and add 3 mL of polyvinyl alcohol (PVA) solution (Polyvinyl alcohol solid was dissolved in phosphate buffer solution with pH=7.4 to prepare a polyvinyl alcohol (PVA) solution with a mass concentration of 5%), ultrasonically emulsified for 10 min using an ultrasonic cell disruptor, and concentrated under reduced pressure at 37°C to remove dichloromethane to give a homogeneous clear liquid, nanoparticles 6.
实施例20Example 20
1.草酸酯7的制备:1. Preparation of oxalate 7:
Figure PCTCN2021122605-appb-000015
Figure PCTCN2021122605-appb-000015
氮气氛围下,将对氯苯酚(1.28g,1.0当量)和三乙胺(2.8mL,2.0当量)溶于二氯甲烷(20mL)置于50mL双颈瓶,在0℃下滴加草酰氯单乙酯(2.1mL,2.0当量),加毕继续反应10分钟,通过薄层色谱监测反应,反应完毕,旋干溶剂,通过柱层析色谱法(PE:EA=20:1)分离纯化得到化合物7(2.05g),收率90%。 1H NMR(500MHz,CDCl 3)δ7.41(d,J=15.2Hz,2H),7.35(d,J=15.2Hz,2H),4.18(q,J=11.8Hz,2H),1.25(t,J=11.8Hz,3H); 13C NMR(125MHz,CDCl 3)δ159.5,158.1,150.2,131.8,129.7,122.2,61.4,14.7. Under nitrogen atmosphere, dissolve p-chlorophenol (1.28g, 1.0eq) and triethylamine (2.8mL, 2.0eq) in dichloromethane (20mL) into a 50mL double-necked flask, and add oxalyl chloride mono Ethyl ester (2.1mL, 2.0 equivalents), after the addition, continue to react for 10 minutes, monitor the reaction by thin layer chromatography, after the reaction is completed, spin to dry the solvent, and separate and purify the compound by column chromatography (PE:EA=20:1) 7 (2.05g), yield 90%. 1 H NMR (500MHz, CDCl 3 ) δ7.41(d, J=15.2Hz, 2H), 7.35(d, J=15.2Hz, 2H), 4.18(q, J=11.8Hz, 2H), 1.25(t , J=11.8Hz, 3H); 13 C NMR (125MHz, CDCl 3 ) δ159.5, 158.1, 150.2, 131.8, 129.7, 122.2, 61.4, 14.7.
2.硫代羰基一氧化碳前药2-S的合成与实施例2相同。2. The synthesis of thiocarbonyl carbon monoxide prodrug 2-S is the same as in Example 2.
3.一氧化碳靶向递送系统即化学能纳米粒的制备方法3. Carbon monoxide targeted delivery system, i.e. preparation method of chemical energy nanoparticles
将草酸酯7(4mg)和一氧化碳前药2-S(0.5mg),PLGA(乳酸-羟基乳酸共聚物)(7mg)一起溶于500μL的二氯甲烷,加入3mL聚乙烯醇(PVA)溶液(聚乙烯醇固体溶于pH=7.4的磷酸盐缓冲液中制备成质量浓度为5%的聚乙烯醇(PVA)溶液),使用超声波细胞破碎仪超声乳化10min, 在37℃下减压浓缩除去二氯甲烷,得到均一澄清的液体,纳米粒7。Dissolve oxalate 7 (4 mg), carbon monoxide prodrug 2-S (0.5 mg), PLGA (lactic acid-hydroxylactic acid copolymer) (7 mg) in 500 μL of dichloromethane, and add 3 mL of polyvinyl alcohol (PVA) solution (Polyvinyl alcohol solid was dissolved in phosphate buffer solution with pH=7.4 to prepare a polyvinyl alcohol (PVA) solution with a mass concentration of 5%), ultrasonically emulsified with an ultrasonic cell disruptor for 10 min, and concentrated under reduced pressure at 37°C to remove dichloromethane to give a homogeneous clear liquid, nanoparticles 7.
实施例21Example 21
1.草酸酯8的制备:1. Preparation of oxalate 8:
Figure PCTCN2021122605-appb-000016
Figure PCTCN2021122605-appb-000016
氮气氛围下,将对庚基苯酚(1.92g,1.0当量)和三乙胺(2.8mL,2.0当量)溶于二氯甲烷(20mL)置于50mL双颈瓶,在0℃下滴加草酰氯单乙酯(2.1mL,2.0当量),加毕继续反应10分钟,通过薄层色谱监测反应,反应完毕,旋干溶剂,通过柱层析色谱法(PE:EA=20:1)分离纯化得到化合物8(2.48g),收率85%。 1H NMR(500MHz,CDCl 3)δ7.16(d,J=15.2Hz,2H),7.12(d,J=15.2Hz,2H),4.16(q,J=11.8Hz,2H),2.63(t,J=15.7Hz,2H),1.63(tt,J=30.7,15.2Hz,2H),1.30-1.21(m,12H),0.95-0.83(m,3H); 13C NMR(125MHz,CDCl 3)δ159.5,158.1,150.4,138.5,128.1,122.2,61.4,36.3,31.7,30.1,28.9,28.9,23.2,14.7,14.0. Under nitrogen atmosphere, dissolve p-heptylphenol (1.92g, 1.0eq) and triethylamine (2.8mL, 2.0eq) in dichloromethane (20mL) into a 50mL double-necked flask, and add oxalyl chloride dropwise at 0°C Monoethyl ester (2.1mL, 2.0 equivalents), after addition, continue to react for 10 minutes, monitor the reaction by thin-layer chromatography, after the reaction is completed, spin to dry the solvent, and separate and purify by column chromatography (PE:EA=20:1) to obtain Compound 8 (2.48g), yield 85%. 1 H NMR (500MHz, CDCl 3 ) δ7.16(d, J=15.2Hz, 2H), 7.12(d, J=15.2Hz, 2H), 4.16(q, J=11.8Hz, 2H), 2.63(t , J=15.7Hz, 2H), 1.63(tt, J=30.7, 15.2Hz, 2H), 1.30-1.21(m, 12H), 0.95-0.83(m, 3H); 13 C NMR(125MHz, CDCl 3 ) δ159.5, 158.1, 150.4, 138.5, 128.1, 122.2, 61.4, 36.3, 31.7, 30.1, 28.9, 28.9, 23.2, 14.7, 14.0.
2.硫代羰基一氧化碳前药2-S的合成与实施例2相同。2. The synthesis of thiocarbonyl carbon monoxide prodrug 2-S is the same as in Example 2.
3.一氧化碳靶向递送系统即化学能纳米粒的制备方法3. Carbon monoxide targeted delivery system, i.e. preparation method of chemical energy nanoparticles
将草酸酯8(4mg)和一氧化碳前药2-S(0.5mg),PLGA(乳酸-羟基乳酸共聚物)(7mg)一起溶于500μL的二氯甲烷,加入3mL聚乙烯醇(PVA)溶液(聚乙烯醇固体溶于pH=7.4的磷酸盐缓冲液中制备成质量浓度为5%的聚乙烯醇(PVA)溶液),使用超声波细胞破碎仪超声乳化10min,在37℃下减压浓缩除去二氯甲烷,得到均一澄清的液体,纳米粒8。Dissolve oxalate 8 (4 mg), carbon monoxide prodrug 2-S (0.5 mg), PLGA (lactic acid-hydroxylactic acid copolymer) (7 mg) in 500 μL of dichloromethane, and add 3 mL of polyvinyl alcohol (PVA) solution (Polyvinyl alcohol solid was dissolved in phosphate buffer solution with pH=7.4 to prepare a polyvinyl alcohol (PVA) solution with a mass concentration of 5%), ultrasonically emulsified for 10 min using an ultrasonic cell disruptor, and concentrated under reduced pressure at 37°C to remove dichloromethane to give a homogeneous clear liquid, nanoparticles 8.
实施例22Example 22
1.草酸酯9的制备:1. Preparation of oxalate 9:
Figure PCTCN2021122605-appb-000017
Figure PCTCN2021122605-appb-000017
氮气氛围下,将3,4,5-三甲氧基苯酚(1.83g,4.0当量)和三乙胺(2.8mL,4.0当量)溶于二氯甲烷(20mL)置于50mL双颈瓶,在0℃下滴加草酰氯(227μL,1.0当量),加毕继续反应10分钟,通过薄层色谱监测反应,反应完毕,旋干溶剂,通过柱层析色谱法(PE:EA=20:1)分离纯化得到化合物9(971mg),收率92%。 1H NMR(500MHz,CDCl 3)δ6.44(s,4H),3.83(s,12H),3.71(s,6H); 13C NMR(125MHz,CDCl 3)δ155.7,155.1,148.8,135.7,99.8,60.7),56.8. Under nitrogen atmosphere, 3,4,5-trimethoxyphenol (1.83g, 4.0 equivalents) and triethylamine (2.8mL, 4.0 equivalents) were dissolved in dichloromethane (20mL) and placed in a 50mL two-necked flask, at 0 Oxalyl chloride (227 μL, 1.0 equivalent) was added dropwise at ℃, and the reaction was continued for 10 minutes after addition, and the reaction was monitored by thin-layer chromatography. After the reaction was completed, the solvent was spin-dried and separated by column chromatography (PE:EA=20:1). Compound 9 (971 mg) was obtained after purification with a yield of 92%. 1 H NMR(500MHz, CDCl 3 )δ6.44(s,4H),3.83(s,12H),3.71(s,6H); 13 C NMR(125MHz,CDCl 3 )δ155.7,155.1,148.8,135.7,99.8 ,60.7),56.8.
2.硫代羰基一氧化碳前药2-S的合成与实施例2相同。2. The synthesis of thiocarbonyl carbon monoxide prodrug 2-S is the same as in Example 2.
3.一氧化碳靶向递送系统即化学能纳米粒的制备方法3. Carbon monoxide targeted delivery system, i.e. preparation method of chemical energy nanoparticles
将草酸酯9(4mg)和一氧化碳前药2-S(0.5mg),PLGA(乳酸-羟基乳酸共聚物)(7mg)一起溶于500μL的二氯甲烷,加入3mL聚乙烯醇(PVA)溶液(聚乙烯醇固体溶于pH=7.4的磷酸盐缓冲液中制备成质量浓度为5%的聚乙烯醇(PVA)溶液),使用超声波细胞破碎仪超声乳化10min,在37℃下减压浓缩除去二氯甲烷,得到均一澄清的液体,纳米粒9。Dissolve oxalate 9 (4 mg), carbon monoxide prodrug 2-S (0.5 mg), PLGA (lactic acid-hydroxylactic acid copolymer) (7 mg) in 500 μL of dichloromethane, and add 3 mL of polyvinyl alcohol (PVA) solution (Polyvinyl alcohol solid was dissolved in phosphate buffer solution with pH=7.4 to prepare a polyvinyl alcohol (PVA) solution with a mass concentration of 5%), ultrasonically emulsified for 10 min using an ultrasonic cell disruptor, and concentrated under reduced pressure at 37°C to remove dichloromethane to give a homogeneous clear liquid, nanoparticles 9.
实施例23Example 23
1.草酸酯10的制备:1. Preparation of oxalate 10:
Figure PCTCN2021122605-appb-000018
Figure PCTCN2021122605-appb-000018
氮气氛围下,将对甲氧基苯酚(1.05mL,4.0当量)和三乙胺(2.8mL,4.0当量)溶于二氯甲烷(20mL)置于50mL双颈瓶,在0℃下滴加草酰氯(227μL,1.0当量),加毕继续反应10分钟,通过薄层色谱监测反应,反应完毕, 旋干溶剂,通过柱层析色谱法(PE:EA=20:1)分离纯化得到化合物10(740mg),收率98%。 1H NMR(500MHz,CDCl 3)δ7.21(d,J=15.0Hz,4H),6.99(d,J=15.0Hz,4H),3.79(s,6H); 13C NMR(125MHz,CDCl 3)δ156.8,155.1,145.1,123.1,114.6,56.1. Under nitrogen atmosphere, dissolve p-methoxyphenol (1.05mL, 4.0eq) and triethylamine (2.8mL, 4.0eq) in dichloromethane (20mL) into a 50mL double-necked bottle, and add grass Acid chloride (227 μ L, 1.0 equivalent), after addition, continue to react for 10 minutes, monitor the reaction by thin layer chromatography, after the reaction is completed, spin to dry the solvent, and separate and purify by column chromatography (PE:EA=20:1) to obtain compound 10 ( 740mg), yield 98%. 1 H NMR (500MHz, CDCl 3 ) δ7.21 (d, J = 15.0Hz, 4H), 6.99 (d, J = 15.0Hz, 4H), 3.79 (s, 6H); 13 C NMR (125MHz, CDCl 3 )δ156.8, 155.1, 145.1, 123.1, 114.6, 56.1.
2.硫代羰基一氧化碳前药2-S的合成与实施例2相同。2. The synthesis of thiocarbonyl carbon monoxide prodrug 2-S is the same as in Example 2.
3.一氧化碳靶向递送系统即化学能纳米粒的制备方法3. Carbon monoxide targeted delivery system, i.e. preparation method of chemical energy nanoparticles
将草酸酯10(4mg)和一氧化碳前药2-S(0.5mg),PLGA(乳酸-羟基乳酸共聚物)(7mg)一起溶于500μL的二氯甲烷,加入3mL聚乙烯醇(PVA)溶液(聚乙烯醇固体溶于pH=7.4的磷酸盐缓冲液中制备成质量浓度为5%的聚乙烯醇(PVA)溶液),使用超声波细胞破碎仪超声乳化10min,在37℃下减压浓缩除去二氯甲烷,得到均一澄清的液体,纳米粒10。Dissolve oxalate 10 (4 mg), carbon monoxide prodrug 2-S (0.5 mg), PLGA (lactic acid-hydroxylactic acid copolymer) (7 mg) in 500 μL of dichloromethane, and add 3 mL of polyvinyl alcohol (PVA) solution (Polyvinyl alcohol solid was dissolved in phosphate buffer solution with pH=7.4 to prepare a polyvinyl alcohol (PVA) solution with a mass concentration of 5%), ultrasonically emulsified for 10 min using an ultrasonic cell disruptor, and concentrated under reduced pressure at 37°C to remove dichloromethane to give a homogeneous clear liquid, nanoparticles 10.
实施例24Example 24
1.草酸酯11的制备:1. Preparation of oxalate 11:
Figure PCTCN2021122605-appb-000019
Figure PCTCN2021122605-appb-000019
氮气氛围下,将对三氟甲基苯酚(1.63g,4.0当量)和三乙胺(2.8mL,4.0当量)溶于二氯甲烷(20mL)置于50mL双颈瓶,在0℃下滴加草酰氯(227μL,1.0当量),加毕继续反应10分钟,通过薄层色谱监测反应,反应完毕,旋干溶剂,通过柱层析色谱法(PE:EA=20:1)分离纯化得到化合物11(832mg),收率88%。 1H NMR(500MHz,CDCl 3)δ7.53-7.45(m,2H),7.14-7.08(m,2H); 13C NMR(125MHz,CDCl 3)δ155.1,154.3,129.3(q,J=32.4Hz),127.4(q,J=3.7Hz),123.6(q,J=268.1Hz),121.7(d,J=1.5Hz). Under nitrogen atmosphere, dissolve p-trifluoromethylphenol (1.63g, 4.0eq) and triethylamine (2.8mL, 4.0eq) in dichloromethane (20mL) in a 50mL double-necked flask, and add dropwise at 0°C Oxalyl chloride (227 μL, 1.0 equiv.) was added and continued to react for 10 minutes. The reaction was monitored by thin-layer chromatography. After the reaction was completed, the solvent was spin-dried and purified by column chromatography (PE:EA=20:1) to obtain compound 11 (832 mg), yield 88%. 1 H NMR (500MHz, CDCl 3 ) δ7.53-7.45 (m, 2H), 7.14-7.08 (m, 2H); 13 C NMR (125 MHz, CDCl 3 ) δ 155.1, 154.3, 129.3 (q, J=32.4Hz ), 127.4(q, J=3.7Hz), 123.6(q, J=268.1Hz), 121.7(d, J=1.5Hz).
2.硫代羰基一氧化碳前药2-S的合成与实施例2相同。2. The synthesis of thiocarbonyl carbon monoxide prodrug 2-S is the same as in Example 2.
3.一氧化碳靶向递送系统即化学能纳米粒的制备方法3. Carbon monoxide targeted delivery system, i.e. preparation method of chemical energy nanoparticles
将草酸酯11(4mg)和一氧化碳前药2-S(0.5mg),PLGA(乳酸-羟基 乳酸共聚物)(7mg)一起溶于500μL的二氯甲烷,加入3mL聚乙烯醇(PVA)溶液(聚乙烯醇固体溶于pH=7.4的磷酸盐缓冲液中制备成质量浓度为5%的聚乙烯醇(PVA)溶液),使用超声波细胞破碎仪超声乳化10min,在37℃下减压浓缩除去二氯甲烷,得到均一澄清的液体,纳米粒11。Dissolve oxalate 11 (4 mg), carbon monoxide prodrug 2-S (0.5 mg), PLGA (lactic acid-hydroxylactic acid copolymer) (7 mg) in 500 μL of dichloromethane, and add 3 mL of polyvinyl alcohol (PVA) solution (Polyvinyl alcohol solid was dissolved in phosphate buffer solution with pH=7.4 to prepare a polyvinyl alcohol (PVA) solution with a mass concentration of 5%), ultrasonically emulsified for 10 min using an ultrasonic cell disruptor, and concentrated under reduced pressure at 37°C to remove dichloromethane to give a homogeneous clear liquid, nanoparticles 11.
实施例25Example 25
1.其中草酸酯为:1. Wherein the oxalate is:
Figure PCTCN2021122605-appb-000020
Figure PCTCN2021122605-appb-000020
2.硫代羰基一氧化碳前药2-S的合成与实施例2相同。2. The synthesis of thiocarbonyl carbon monoxide prodrug 2-S is the same as in Example 2.
3.一氧化碳靶向递送系统即化学能纳米粒的制备方法3. Carbon monoxide targeted delivery system, i.e. preparation method of chemical energy nanoparticles
将草酸酯12(4mg)和一氧化碳前药2-S(0.5mg),PLGA(乳酸-羟基乳酸共聚物)(7mg)一起溶于500μL的二氯甲烷,加入3mL聚乙烯醇(PVA)溶液(聚乙烯醇固体溶于pH=7.4的磷酸盐缓冲液中制备成质量浓度为5%的聚乙烯醇(PVA)溶液),使用超声波细胞破碎仪超声乳化10min,在37℃下减压浓缩除去二氯甲烷,得到均一澄清的液体,纳米粒12。Dissolve oxalate 12 (4 mg), carbon monoxide prodrug 2-S (0.5 mg), PLGA (lactic acid-hydroxylactic acid copolymer) (7 mg) in 500 μL of dichloromethane, and add 3 mL of polyvinyl alcohol (PVA) solution (Polyvinyl alcohol solid was dissolved in phosphate buffer solution with pH=7.4 to prepare a polyvinyl alcohol (PVA) solution with a mass concentration of 5%), ultrasonically emulsified for 10 min using an ultrasonic cell disruptor, and concentrated under reduced pressure at 37°C to remove dichloromethane to give a homogeneous clear liquid, nanoparticles 12.
实施例26Example 26
1.其中草酸酯聚合物的合成方法与实施例1相同。1. wherein the synthetic method of oxalate polymer is identical with embodiment 1.
2.硫代羰基一氧化碳前药21的合成方法2. The synthetic method of thiocarbonyl carbon monoxide prodrug 21
Figure PCTCN2021122605-appb-000021
Figure PCTCN2021122605-appb-000021
氮气保护下,将21-O(1.0当量)和劳森试剂(0.6当量)一起加入到双颈反应瓶,加入甲苯后加热至120℃回流4h,颜色逐渐加深,通过薄层色谱板监测反应进程,反应完毕旋干甲苯,使用柱层析色谱法(石油醚:乙酸乙酯=10:1)进行分离纯化,得到相应的一氧化碳前药21。 1H NMR(500MHz, CDCl 3)δ7.71-7.57(m,2H),7.39(d,J=9.0Hz,4H),7.32-7.17(m,3H); 13C NMR(125MHz,CDCl 3)δ198.9,174.8,137.4,135.8,134.5,131.2,130.8,130.6,130.3,128.7,128.7,127.6,127.1. Under the protection of nitrogen, add 21-O (1.0 equivalent) and Lawson's reagent (0.6 equivalent) into a double-necked reaction flask, add toluene, heat to 120 °C and reflux for 4 hours, the color gradually deepens, and the reaction process is monitored by thin-layer chromatography. After the reaction, the toluene was spin-dried, separated and purified by column chromatography (petroleum ether: ethyl acetate = 10:1), and the corresponding carbon monoxide prodrug 21 was obtained. 1 H NMR(500MHz, CDCl 3 )δ7.71-7.57(m,2H),7.39(d,J=9.0Hz,4H),7.32-7.17(m,3H); 13 C NMR(125MHz,CDCl 3 ) δ198.9, 174.8, 137.4, 135.8, 134.5, 131.2, 130.8, 130.6, 130.3, 128.7, 128.7, 127.6, 127.1.
3.一氧化碳靶向递送系统即化学能纳米粒的制备方法3. Carbon monoxide targeted delivery system, i.e. preparation method of chemical energy nanoparticles
将草酸酯聚合物A(7mg)和一氧化碳前药21(0.5mg),一起溶于500μL的二氯甲烷,加入3mL聚乙烯醇(PVA)溶液(聚乙烯醇固体溶于pH=7.4的磷酸盐缓冲液中制备成质量浓度为5%的聚乙烯醇(PVA)溶液),使用超声波细胞破碎仪超声乳化10min,在37℃下减压浓缩除去二氯甲烷,得到均一澄清的液体,纳米粒21。Dissolve oxalate polymer A (7 mg) and carbon monoxide prodrug 21 (0.5 mg) together in 500 μL of dichloromethane, and add 3 mL of polyvinyl alcohol (PVA) solution (solid polyvinyl alcohol dissolved in phosphoric acid at pH = 7.4 Prepare a polyvinyl alcohol (PVA) solution with a mass concentration of 5% in salt buffer solution), use an ultrasonic cell disruptor to ultrasonically emulsify for 10 minutes, and concentrate under reduced pressure at 37°C to remove dichloromethane to obtain a uniform and clear liquid, nanoparticles twenty one.
实施例27Example 27
1.其中草酸酯聚合物的合成方法与实施例1相同。1. wherein the synthetic method of oxalate polymer is identical with embodiment 1.
2.硫代羰基一氧化碳前药22的合成方法2. The synthetic method of thiocarbonyl carbon monoxide prodrug 22
Figure PCTCN2021122605-appb-000022
Figure PCTCN2021122605-appb-000022
氮气保护下,将22-O(1.0当量)和劳森试剂(0.6当量)一起加入到双颈反应瓶,加入甲苯后加热至120℃回流4h,颜色逐渐加深,通过薄层色谱板监测反应进程,反应完毕旋干甲苯,使用柱层析色谱法(石油醚:乙酸乙酯=10:1)进行分离纯化,得到相应的一氧化碳前药22。 1H NMR(500MHz,CDCl 3)δ7.77-7.67(m,2H),7.57-7.49(m,3H),7.42(td,J=15.0,3.0Hz,1H),7.12(dd,J=14.5,3.0Hz,1H),6.81-6.68(m,2H),3.36(s,3H); 13C NMR(125MHz,CDCl 3)δ178.3,154.2,140.3,138.8,135.7,132.9,129.5,129.3,128.0,127.7,127.0,124.4,117.1,40.3. Under the protection of nitrogen, add 22-O (1.0 equivalent) and Lawson’s reagent (0.6 equivalent) together into a double-necked reaction flask, add toluene and heat to 120°C for 4 hours under reflux, the color gradually deepens, and the reaction progress is monitored by thin-layer chromatography After the reaction, the toluene was spin-dried, separated and purified by column chromatography (petroleum ether: ethyl acetate = 10:1), and the corresponding carbon monoxide prodrug 22 was obtained. 1 H NMR (500MHz, CDCl 3 ) δ7.77-7.67 (m, 2H), 7.57-7.49 (m, 3H), 7.42 (td, J=15.0, 3.0Hz, 1H), 7.12 (dd, J=14.5 ,3.0Hz,1H),6.81-6.68(m,2H),3.36(s,3H); 13 C NMR(125MHz,CDCl 3 )δ178.3,154.2,140.3,138.8,135.7,132.9,129.5,129.3,128.0, 127.7, 127.0, 124.4, 117.1, 40.3.
3.一氧化碳靶向递送系统即化学能纳米粒的制备方法3. Carbon monoxide targeted delivery system, i.e. preparation method of chemical energy nanoparticles
将草酸酯聚合物A(7mg)和一氧化碳前药22(0.5mg),一起溶于500μL的二氯甲烷,加入3mL聚乙烯醇(PVA)溶液(聚乙烯醇固体溶于pH= 7.4的磷酸盐缓冲液中制备成质量浓度为5%的聚乙烯醇(PVA)溶液),使用超声波细胞破碎仪超声乳化10min,在37℃下减压浓缩除去二氯甲烷,得到均一澄清的液体,纳米粒22。Dissolve oxalate polymer A (7 mg) and carbon monoxide prodrug 22 (0.5 mg) together in 500 μL of dichloromethane, add 3 mL of polyvinyl alcohol (PVA) solution (polyvinyl alcohol solid dissolved in phosphoric acid at pH = 7.4 Prepare a polyvinyl alcohol (PVA) solution with a mass concentration of 5% in salt buffer solution), use an ultrasonic cell disruptor to ultrasonically emulsify for 10 minutes, and concentrate under reduced pressure at 37°C to remove dichloromethane to obtain a uniform and clear liquid, nanoparticles twenty two.
实施例28Example 28
1.其中草酸酯聚合物的合成方法与实施例1相同。1. wherein the synthetic method of oxalate polymer is identical with embodiment 1.
2.硫代羰基一氧化碳前药23的合成方法2. The synthetic method of thiocarbonyl carbon monoxide prodrug 23
Figure PCTCN2021122605-appb-000023
Figure PCTCN2021122605-appb-000023
氮气保护下,将23-O(1.0当量)和劳森试剂(0.6当量)一起加入到双颈反应瓶,加入甲苯后加热至120℃回流4h,颜色逐渐加深,通过薄层色谱板监测反应进程,反应完毕旋干甲苯,使用柱层析色谱法(石油醚:乙酸乙酯=10:1)进行分离纯化,得到相应的一氧化碳前药23。 1H NMR(500MHz,CDCl 3)δ7.77(ddd,J=10.2,5.8,2.9Hz,2H),7.51–7.42(m,3H),7.11(dd,J=14.9,3.0Hz,1H),6.63(d,J=3.1Hz,1H),3.77(s,3H); 13C NMR(125MHz,CDCl 3)δ208.3,156.1,147.7,147.6,146.7,132.3,130.5,130.2,129.3,128.6,124.7,119.6,110.8,56.1. Under the protection of nitrogen, add 23-O (1.0 equivalent) and Lawson’s reagent (0.6 equivalent) into a double-neck reaction flask, add toluene, heat to 120 °C and reflux for 4 hours, the color gradually deepens, and the reaction process is monitored by thin-layer chromatography. After the reaction, the toluene was spin-dried, separated and purified by column chromatography (petroleum ether: ethyl acetate = 10:1), and the corresponding carbon monoxide prodrug 23 was obtained. 1 H NMR (500MHz, CDCl 3 ) δ7.77 (ddd, J=10.2,5.8, 2.9Hz, 2H), 7.51–7.42 (m, 3H), 7.11 (dd, J=14.9, 3.0Hz, 1H), 6.63(d,J=3.1Hz,1H),3.77(s,3H); 13 C NMR(125MHz,CDCl 3 )δ208.3,156.1,147.7,147.6,146.7,132.3,130.5,130.2,129.3,128.6,124.7, 119.6, 110.8, 56.1.
3.一氧化碳靶向递送系统即化学能纳米粒的制备方法3. Carbon monoxide targeted delivery system, i.e. preparation method of chemical energy nanoparticles
将草酸酯聚合物A(7mg)和一氧化碳前药23(0.5mg),一起溶于500μL的二氯甲烷,加入3mL聚乙烯醇(PVA)溶液(聚乙烯醇固体溶于pH=7.4的磷酸盐缓冲液中制备成质量浓度为5%的聚乙烯醇(PVA)溶液),使用超声波细胞破碎仪超声乳化10min,在37℃下减压浓缩除去二氯甲烷,得到均一澄清的液体,纳米粒23。Dissolve oxalate polymer A (7 mg) and carbon monoxide prodrug 23 (0.5 mg) together in 500 μL of dichloromethane, and add 3 mL of polyvinyl alcohol (PVA) solution (solid polyvinyl alcohol dissolved in phosphoric acid at pH = 7.4 Prepare a polyvinyl alcohol (PVA) solution with a mass concentration of 5% in salt buffer solution), use an ultrasonic cell disruptor to ultrasonically emulsify for 10 minutes, and concentrate under reduced pressure at 37°C to remove dichloromethane to obtain a uniform and clear liquid, nanoparticles twenty three.
实施例29Example 29
1.其中草酸酯聚合物的合成方法与实施例1相同。1. wherein the synthetic method of oxalate polymer is identical with embodiment 1.
2.硫代羰基一氧化碳前药24的合成方法2. The synthetic method of thiocarbonyl carbon monoxide prodrug 24
Figure PCTCN2021122605-appb-000024
Figure PCTCN2021122605-appb-000024
氮气保护下,将24-O(1.0当量)和劳森试剂(0.6当量)一起加入到双颈反应瓶,加入甲苯后加热至120℃回流4h,颜色逐渐加深,通过薄层色谱板监测反应进程,反应完毕旋干甲苯,使用柱层析色谱法(石油醚:乙酸乙酯=10:1)进行分离纯化,得到相应的一氧化碳前药24。 1H NMR(500MHz,CDCl 3)δ7.83-7.69(m,2H),7.55-7.44(m,3H),7.42-7.40(m,2H),6.95(d,J=2.1Hz,1H),2.42(s,3H); 13C NMR(125MHz,CDCl 3)δ208.3,151.2,147.7,146.7,137.7,135.4,132.3,130.2,129.3,128.6,127.7,125.1,117.0,21.2. Under the protection of nitrogen, add 24-O (1.0 equivalent) and Lawson’s reagent (0.6 equivalent) into a double-neck reaction flask, add toluene, heat to 120°C and reflux for 4 hours, the color gradually deepens, and the reaction progress is monitored by thin-layer chromatography. After the reaction, the toluene was spin-dried and separated and purified by column chromatography (petroleum ether: ethyl acetate = 10:1) to obtain the corresponding carbon monoxide prodrug 24. 1 H NMR (500MHz, CDCl 3 ) δ7.83-7.69 (m, 2H), 7.55-7.44 (m, 3H), 7.42-7.40 (m, 2H), 6.95 (d, J=2.1Hz, 1H), 2.42(s,3H); 13 C NMR(125MHz, CDCl 3 )δ208.3, 151.2, 147.7, 146.7, 137.7, 135.4, 132.3, 130.2, 129.3, 128.6, 127.7, 125.1, 117.0, 21.2.
3.一氧化碳靶向递送系统即化学能纳米粒的制备方法3. Carbon monoxide targeted delivery system, i.e. preparation method of chemical energy nanoparticles
将草酸酯聚合物A(7mg)和一氧化碳前药24(0.5mg),一起溶于500μL的二氯甲烷,加入3mL聚乙烯醇(PVA)溶液(聚乙烯醇固体溶于pH=7.4的磷酸盐缓冲液中制备成质量浓度为5%的聚乙烯醇(PVA)溶液),使用超声波细胞破碎仪超声乳化10min,在37℃下减压浓缩除去二氯甲烷,得到均一澄清的液体,纳米粒24。Dissolve oxalate polymer A (7 mg) and carbon monoxide prodrug 24 (0.5 mg) together in 500 μL of dichloromethane, add 3 mL of polyvinyl alcohol (PVA) solution (PVA solid dissolved in phosphoric acid at pH = 7.4 Prepare a polyvinyl alcohol (PVA) solution with a mass concentration of 5% in salt buffer solution), use an ultrasonic cell disruptor to ultrasonically emulsify for 10 minutes, and concentrate under reduced pressure at 37°C to remove dichloromethane to obtain a uniform and clear liquid, nanoparticles twenty four.
实施例30Example 30
1.其中草酸酯聚合物的合成方法与实施例1相同。1. wherein the synthetic method of oxalate polymer is identical with embodiment 1.
2.硫代羰基一氧化碳前药25的合成方法2. The synthetic method of thiocarbonyl carbon monoxide prodrug 25
Figure PCTCN2021122605-appb-000025
Figure PCTCN2021122605-appb-000025
氮气保护下,将25-O(1.0当量)和劳森试剂(0.6当量)一起加入到双颈反应瓶,加入甲苯后加热至120℃回流4h,颜色逐渐加深,通过薄层色谱板监测反应进程,反应完毕旋干甲苯,使用柱层析色谱法(石油醚:乙酸乙 酯=10:1)进行分离纯化,得到相应的一氧化碳前药25。 1H NMR(500MHz,CDCl 3)δ7.85-7.74(m,3H),7.71(d,J=3.1Hz,1H),7.52-7.43(m,3H),6.96(d,J=15.0Hz,1H); 13C NMR(125MHz,CDCl 3)δ208.3,159.0,147.7,146.7,141.4,132.3,130.2,129.3,128.6,128.6,124.4,120.5,118.8,108.6. Under the protection of nitrogen, add 25-O (1.0 equivalent) and Lawson’s reagent (0.6 equivalent) together into a double-necked reaction flask, add toluene, heat to 120°C and reflux for 4 hours, the color gradually deepens, and the reaction progress is monitored by thin-layer chromatography. After the reaction, the toluene was spin-dried, separated and purified by column chromatography (petroleum ether: ethyl acetate = 10:1), and the corresponding carbon monoxide prodrug 25 was obtained. 1 H NMR (500MHz, CDCl 3 ) δ7.85-7.74(m, 3H), 7.71(d, J=3.1Hz, 1H), 7.52-7.43(m, 3H), 6.96(d, J=15.0Hz, 1H); 13 C NMR (125MHz, CDCl 3 ) δ208.3, 159.0, 147.7, 146.7, 141.4, 132.3, 130.2, 129.3, 128.6, 128.6, 124.4, 120.5, 118.8, 108.6.
3.一氧化碳靶向递送系统即化学能纳米粒的制备方法3. Carbon monoxide targeted delivery system, i.e. preparation method of chemical energy nanoparticles
将草酸酯聚合物A(7mg)和一氧化碳前药25(0.5mg),一起溶于500μL的二氯甲烷,加入3mL聚乙烯醇(PVA)溶液(聚乙烯醇固体溶于pH=7.4的磷酸盐缓冲液中制备成质量浓度为5%的聚乙烯醇(PVA)溶液),使用超声波细胞破碎仪超声乳化10min,在37℃下减压浓缩除去二氯甲烷,得到均一澄清的液体,纳米粒25。Dissolve oxalate polymer A (7 mg) and carbon monoxide prodrug 25 (0.5 mg) together in 500 μL of dichloromethane, add 3 mL of polyvinyl alcohol (PVA) solution (solid polyvinyl alcohol dissolved in phosphoric acid at pH = 7.4 Prepare a polyvinyl alcohol (PVA) solution with a mass concentration of 5% in salt buffer solution), use an ultrasonic cell disruptor to ultrasonically emulsify for 10 minutes, and concentrate under reduced pressure at 37°C to remove dichloromethane to obtain a uniform and clear liquid, nanoparticles 25.
实施例31Example 31
1.其中草酸酯聚合物的合成方法与实施例1相同。1. wherein the synthetic method of oxalate polymer is identical with embodiment 1.
2.硫代羰基一氧化碳前药26的合成方法2. The synthetic method of thiocarbonyl carbon monoxide prodrug 26
Figure PCTCN2021122605-appb-000026
Figure PCTCN2021122605-appb-000026
氮气保护下,将26-O(1.0当量)和劳森试剂(0.6当量)一起加入到双颈反应瓶,加入甲苯后加热至120℃回流4h,颜色逐渐加深,通过薄层色谱板监测反应进程,反应完毕旋干甲苯,使用柱层析色谱法(石油醚:乙酸乙酯=10:1)进行分离纯化,得到相应的一氧化碳前药26。 1H NMR(500MHz,CDCl 3)δ7.93-7.67(m,2H),7.57-7.39(m,3H),7.30-7.08(m,2H),6.88-6.75(m,1H); 13C NMR(125MHz,CDCl 3)δ188.9,154.3,147.6,145.5,134.4,132.3,130.2,130.1,129.3,128.6,126.2,126.0,116.1. Under the protection of nitrogen, add 26-O (1.0 equivalent) and Lawson’s reagent (0.6 equivalent) into a double-neck reaction flask, add toluene and heat to 120 ° C for 4 hours, the color gradually deepens, and the reaction progress is monitored by thin-layer chromatography. After the reaction, the toluene was spin-dried, separated and purified by column chromatography (petroleum ether: ethyl acetate = 10:1), and the corresponding carbon monoxide prodrug 26 was obtained. 1 H NMR (500MHz, CDCl 3 ) δ7.93-7.67 (m, 2H), 7.57-7.39 (m, 3H), 7.30-7.08 (m, 2H), 6.88-6.75 (m, 1H); 13 C NMR (125MHz, CDCl 3 )δ188.9, 154.3, 147.6, 145.5, 134.4, 132.3, 130.2, 130.1, 129.3, 128.6, 126.2, 126.0, 116.1.
3.一氧化碳靶向递送系统即化学能纳米粒的制备方法3. Carbon monoxide targeted delivery system, i.e. preparation method of chemical energy nanoparticles
将草酸酯聚合物A(7mg)和一氧化碳前药26(0.5mg),一起溶于500μL的二氯甲烷,加入3mL聚乙烯醇(PVA)溶液(聚乙烯醇固体溶于pH= 7.4的磷酸盐缓冲液中制备成质量浓度为5%的聚乙烯醇(PVA)溶液),使用超声波细胞破碎仪超声乳化10min,在37℃下减压浓缩除去二氯甲烷,得到均一澄清的液体,纳米粒26。Dissolve oxalate polymer A (7 mg) and carbon monoxide prodrug 26 (0.5 mg) together in 500 μL of dichloromethane, and add 3 mL of polyvinyl alcohol (PVA) solution (solid polyvinyl alcohol dissolved in phosphoric acid at pH = 7.4 Prepare a polyvinyl alcohol (PVA) solution with a mass concentration of 5% in salt buffer solution), use an ultrasonic cell disruptor to ultrasonically emulsify for 10 minutes, and concentrate under reduced pressure at 37°C to remove dichloromethane to obtain a uniform and clear liquid, nanoparticles 26.
实施例32Example 32
1.其中草酸酯聚合物的合成方法与实施例1相同。1. wherein the synthetic method of oxalate polymer is identical with embodiment 1.
2.硫代羰基一氧化碳前药27的合成方法2. The synthetic method of thiocarbonyl carbon monoxide prodrug 27
Figure PCTCN2021122605-appb-000027
Figure PCTCN2021122605-appb-000027
氮气保护下,将27-O(1.0当量)和劳森试剂(0.6当量)一起加入到双颈反应瓶,加入甲苯后加热至120℃回流4h,颜色逐渐加深,通过薄层色谱板监测反应进程,反应完毕旋干甲苯,使用柱层析色谱法(石油醚:乙酸乙酯=10:1)进行分离纯化,得到相应的一氧化碳前药27。 1H NMR(500MHz,CDCl 3)δ7.77-7.6(m,2H),7.53-7.41(m,3H),6.94(d,J=2.0Hz,2H),6.48-6.34(m,1H),2.45(s,3H); 13C NMR(125MHz,CDCl 3)δ205.0,155.5,147.7,146.7,146.4,133.8,132.3,130.2,129.3,128.6,123.8,117.4,116.2,16.7. Under the protection of nitrogen, add 27-O (1.0 equivalent) and Lawson’s reagent (0.6 equivalent) together into a double-neck reaction flask, add toluene, heat to 120°C and reflux for 4 hours, the color gradually deepens, and the reaction progress is monitored by thin-layer chromatography. After the reaction, the toluene was spin-dried, separated and purified by column chromatography (petroleum ether: ethyl acetate = 10:1), and the corresponding carbon monoxide prodrug 27 was obtained. 1 H NMR (500MHz, CDCl 3 ) δ7.77-7.6(m, 2H), 7.53-7.41(m, 3H), 6.94(d, J=2.0Hz, 2H), 6.48-6.34(m, 1H), 2.45(s,3H); 13 C NMR(125MHz,CDCl 3 )δ205.0,155.5,147.7,146.7,146.4,133.8,132.3,130.2,129.3,128.6,123.8,117.4,116.2,16.7.
3.一氧化碳靶向递送系统即化学能纳米粒的制备方法3. Carbon monoxide targeted delivery system, i.e. preparation method of chemical energy nanoparticles
将草酸酯聚合物A(7mg)和一氧化碳前药27(0.5mg),一起溶于500μL的二氯甲烷,加入3mL聚乙烯醇(PVA)溶液(聚乙烯醇固体溶于pH=7.4的磷酸盐缓冲液中制备成质量浓度为5%的聚乙烯醇(PVA)溶液),使用超声波细胞破碎仪超声乳化10min,在37℃下减压浓缩除去二氯甲烷,得到均一澄清的液体,纳米粒27。Dissolve oxalate polymer A (7 mg) and carbon monoxide prodrug 27 (0.5 mg) together in 500 μL of dichloromethane, and add 3 mL of polyvinyl alcohol (PVA) solution (solid polyvinyl alcohol dissolved in phosphoric acid at pH = 7.4 Prepare a polyvinyl alcohol (PVA) solution with a mass concentration of 5% in salt buffer solution), use an ultrasonic cell disruptor to ultrasonically emulsify for 10 minutes, and concentrate under reduced pressure at 37°C to remove dichloromethane to obtain a uniform and clear liquid, nanoparticles 27.
实施例33Example 33
1.其中草酸酯聚合物的合成方法与实施例1相同。1. wherein the synthetic method of oxalate polymer is identical with embodiment 1.
2.硫代羰基一氧化碳前药28的合成方法2. The synthetic method of thiocarbonyl carbon monoxide prodrug 28
Figure PCTCN2021122605-appb-000028
Figure PCTCN2021122605-appb-000028
氮气保护下,将28-O(1.0当量)和劳森试剂(0.6当量)一起加入到双颈反应瓶,加入甲苯后加热至120℃回流4h,颜色逐渐加深,通过薄层色谱板监测反应进程,反应完毕旋干甲苯,使用柱层析色谱法(石油醚:乙酸乙酯=10:1)进行分离纯化,得到相应的一氧化碳前药28。 1H NMR(500MHz,CDCl 3)δ8.23(dd,J=14.7,3.2Hz,1H),8.16(dd,J=15.0,3.1Hz,1H),7.97(t,J=14.9Hz,1H),7.82-7.72(m,2H),7.53-7.42(m,3H); 13C NMR(125MHz,CDCl 3)δ190.3,154.7,153.0,148.6,146.9,145.8,132.3,130.2,130.0,129.3,128.6,124.5. Under the protection of nitrogen, add 28-O (1.0 equivalent) and Lawson’s reagent (0.6 equivalent) together into a double-neck reaction flask, add toluene, heat to 120°C and reflux for 4 hours, the color gradually deepens, and the reaction progress is monitored by thin-layer chromatography. After the reaction, the toluene was spin-dried, separated and purified by column chromatography (petroleum ether: ethyl acetate = 10:1), and the corresponding carbon monoxide prodrug 28 was obtained. 1 H NMR (500MHz, CDCl 3 ) δ8.23(dd, J=14.7,3.2Hz,1H),8.16(dd,J=15.0,3.1Hz,1H),7.97(t,J=14.9Hz,1H) ,7.82-7.72(m,2H),7.53-7.42(m,3H); 13 C NMR(125MHz,CDCl 3 )δ190.3,154.7,153.0,148.6,146.9,145.8,132.3,130.2,130.0,129.3,128.6, 124.5.
3.一氧化碳靶向递送系统即化学能纳米粒的制备方法3. Carbon monoxide targeted delivery system, i.e. preparation method of chemical energy nanoparticles
将草酸酯聚合物A(7mg)和一氧化碳前药28(0.5mg),一起溶于500μL的二氯甲烷,加入3mL聚乙烯醇(PVA)溶液(聚乙烯醇固体溶于pH=7.4的磷酸盐缓冲液中制备成质量浓度为5%的聚乙烯醇(PVA)溶液),使用超声波细胞破碎仪超声乳化10min,在37℃下减压浓缩除去二氯甲烷,得到均一澄清的液体,纳米粒28。Dissolve oxalate polymer A (7 mg) and carbon monoxide prodrug 28 (0.5 mg) together in 500 μL of dichloromethane, add 3 mL of polyvinyl alcohol (PVA) solution (PVA solid dissolved in phosphoric acid at pH = 7.4 Prepare a polyvinyl alcohol (PVA) solution with a mass concentration of 5% in salt buffer solution), use an ultrasonic cell disruptor to ultrasonically emulsify for 10 minutes, and concentrate under reduced pressure at 37°C to remove dichloromethane to obtain a uniform and clear liquid, nanoparticles 28.
实施例34Example 34
1.其中草酸酯聚合物的合成方法与实施例1相同。1. wherein the synthetic method of oxalate polymer is identical with embodiment 1.
2.硫代羰基一氧化碳前药29的合成方法2. The synthetic method of thiocarbonyl carbon monoxide prodrug 29
Figure PCTCN2021122605-appb-000029
Figure PCTCN2021122605-appb-000029
氮气保护下,将29-O(1.0当量)和劳森试剂(0.6当量)一起加入到双颈反应瓶,加入甲苯后加热至120℃回流4h,颜色逐渐加深,通过薄层色谱板监测反应进程,反应完毕旋干甲苯,使用柱层析色谱法(石油醚:乙酸乙 酯=10:1)进行分离纯化,得到相应的一氧化碳前药29。 1H NMR(500MHz,CDCl 3)δ8.52(d,J=15.0Hz,2H),7.55-7.43(m,1H),7.42-7.33(m,3H),7.05(dd,J=15.0,3.1Hz,1H),6.92-6.81(m,1H); 13C NMR(125MHz,CDCl 3)δ205.0,152.9,150.4,147.7,146.7,138.2,131.2,128.1,128.0,125.1,119.9,117.6. Under the protection of nitrogen, add 29-O (1.0 equivalent) and Lawson’s reagent (0.6 equivalent) into a double-neck reaction flask, add toluene and heat to 120 ° C for 4 hours, the color gradually deepens, and the reaction progress is monitored by thin-layer chromatography. After the reaction, the toluene was spin-dried, and the corresponding carbon monoxide prodrug 29 was obtained by column chromatography (petroleum ether: ethyl acetate = 10:1) for separation and purification. 1 H NMR (500MHz, CDCl 3 ) δ8.52 (d, J = 15.0Hz, 2H), 7.55-7.43 (m, 1H), 7.42-7.33 (m, 3H), 7.05 (dd, J = 15.0, 3.1 Hz,1H),6.92-6.81(m,1H); 13 C NMR(125MHz,CDCl 3 )δ205.0,152.9,150.4,147.7,146.7,138.2,131.2,128.1,128.0,125.1,119.9,117.6.
3.一氧化碳靶向递送系统即化学能纳米粒的制备方法3. Carbon monoxide targeted delivery system, i.e. preparation method of chemical energy nanoparticles
将草酸酯聚合物A(7mg)和一氧化碳前药29(0.5mg),一起溶于500μL的二氯甲烷,加入3mL聚乙烯醇(PVA)溶液(聚乙烯醇固体溶于pH=7.4的磷酸盐缓冲液中制备成质量浓度为5%的聚乙烯醇(PVA)溶液),使用超声波细胞破碎仪超声乳化10min,在37℃下减压浓缩除去二氯甲烷,得到均一澄清的液体,纳米粒29。Dissolve oxalate polymer A (7 mg) and carbon monoxide prodrug 29 (0.5 mg) together in 500 μL of dichloromethane, add 3 mL of polyvinyl alcohol (PVA) solution (solid polyvinyl alcohol dissolved in phosphoric acid at pH = 7.4 Prepare a polyvinyl alcohol (PVA) solution with a mass concentration of 5% in salt buffer solution), use an ultrasonic cell disruptor to ultrasonically emulsify for 10 minutes, and concentrate under reduced pressure at 37°C to remove dichloromethane to obtain a uniform and clear liquid, nanoparticles 29.
实施例35Example 35
1.其中草酸酯聚合物的合成方法与实施例1相同。1. wherein the synthetic method of oxalate polymer is identical with embodiment 1.
2.硫代羰基一氧化碳前药30的合成方法2. The synthetic method of thiocarbonyl carbon monoxide prodrug 30
Figure PCTCN2021122605-appb-000030
Figure PCTCN2021122605-appb-000030
氮气保护下,将30-O(1.0当量)和劳森试剂(0.6当量)一起加入到双颈反应瓶,加入甲苯后加热至120℃回流4h,颜色逐渐加深,通过薄层色谱板监测反应进程,反应完毕旋干甲苯,使用柱层析色谱法(石油醚:乙酸乙酯=10:1)进行分离纯化,得到相应的一氧化碳前药30。 1H NMR(500MHz,CDCl 3)δ7.48(t,J=7.5,1.5Hz,1H),7.36(d,J=7.5,1.4Hz,1H),7.05(d,J=7.5,1.4Hz,1H),6.88(t,J=7.5,1.4Hz,1H),4.27-4.04(m,2H),3.53-3.34(m,1H),2.83-2.63(m,2H),1.90-1.75(m,2H),1.65-1.54(m,1H),1.24-1.16(m,2H),1.14-1.04(m,1H); 13C NMR(125MHz,CDCl 3)δ205.7,153.0,146.1,141.3,131.6,128.1,127.8,125.0,117.5,36.6,30.3,25.9,25.2. Under the protection of nitrogen, add 30-O (1.0 equivalent) and Lawson’s reagent (0.6 equivalent) into a double-neck reaction flask, add toluene and heat to 120 ° C for 4 hours, the color gradually deepens, and the reaction progress is monitored by thin-layer chromatography. After the reaction, the toluene was spin-dried, and the corresponding carbon monoxide prodrug 30 was obtained by column chromatography (petroleum ether: ethyl acetate = 10:1) for separation and purification. 1 H NMR (500MHz, CDCl 3 ) δ7.48(t, J=7.5, 1.5Hz, 1H), 7.36(d, J=7.5, 1.4Hz, 1H), 7.05(d, J=7.5, 1.4Hz, 1H),6.88(t,J=7.5,1.4Hz,1H),4.27-4.04(m,2H),3.53-3.34(m,1H),2.83-2.63(m,2H),1.90-1.75(m, 2H),1.65-1.54(m,1H),1.24-1.16(m,2H),1.14-1.04(m,1H); 13 C NMR(125MHz,CDCl 3 )δ205.7,153.0,146.1,141.3,131.6,128.1 ,127.8,125.0,117.5,36.6,30.3,25.9,25.2.
3.一氧化碳靶向递送系统即化学能纳米粒的制备方法3. Carbon monoxide targeted delivery system, i.e. preparation method of chemical energy nanoparticles
将草酸酯聚合物A(7mg)和一氧化碳前药30(0.5mg),一起溶于500μL的二氯甲烷,加入3mL聚乙烯醇(PVA)溶液(聚乙烯醇固体溶于pH=7.4的磷酸盐缓冲液中制备成质量浓度为5%的聚乙烯醇(PVA)溶液),使用超声波细胞破碎仪超声乳化10min,在37℃下减压浓缩除去二氯甲烷,得到均一澄清的液体,纳米粒30。Dissolve oxalate polymer A (7 mg) and carbon monoxide prodrug 30 (0.5 mg) together in 500 μL of dichloromethane, and add 3 mL of polyvinyl alcohol (PVA) solution (solid polyvinyl alcohol dissolved in phosphoric acid at pH = 7.4 Prepare a polyvinyl alcohol (PVA) solution with a mass concentration of 5% in salt buffer solution), use an ultrasonic cell disruptor to ultrasonically emulsify for 10 minutes, and concentrate under reduced pressure at 37°C to remove dichloromethane to obtain a uniform and clear liquid, nanoparticles 30.
实施例36Example 36
1.其中草酸酯聚合物的合成方法与实施例1相同。1. wherein the synthetic method of oxalate polymer is identical with embodiment 1.
2.硫代羰基一氧化碳前药31的合成方法2. The synthetic method of thiocarbonyl carbon monoxide prodrug 31
Figure PCTCN2021122605-appb-000031
Figure PCTCN2021122605-appb-000031
氮气保护下,将31-O(1.0当量)和劳森试剂(0.6当量)一起加入到双颈反应瓶,加入甲苯后加热至120℃回流4h,颜色逐渐加深,通过薄层色谱板监测反应进程,反应完毕旋干甲苯,使用柱层析色谱法(石油醚:乙酸乙酯=10:1)进行分离纯化,得到相应的一氧化碳前药31。 1H NMR(500MHz,CDCl 3)δ7.48(t,J=14.9,3.0Hz,1H),7.36(d,J=15.0,3.1Hz,1H),7.05(d,J=15.0,3.1Hz,1H),6.88(t,J=14.8,3.1Hz,1H),1.79(s,3H); 13C NMR(125MHz,CDCl 3)δ208.1,154.6,153.1,144.3,132.5,128.4,127.4,124.9,117.5,12.8. Under the protection of nitrogen, add 31-O (1.0 equivalent) and Lawson’s reagent (0.6 equivalent) together into a double-necked reaction flask, add toluene and heat to 120°C for 4 hours under reflux, the color gradually deepens, and the reaction progress is monitored by a thin-layer chromatography plate After the reaction, the toluene was spin-dried, separated and purified by column chromatography (petroleum ether: ethyl acetate = 10:1), and the corresponding carbon monoxide prodrug 31 was obtained. 1 H NMR (500MHz, CDCl 3 ) δ7.48(t, J=14.9, 3.0Hz, 1H), 7.36(d, J=15.0, 3.1Hz, 1H), 7.05(d, J=15.0, 3.1Hz, 1H), 6.88(t, J=14.8, 3.1Hz, 1H), 1.79(s, 3H); 13 C NMR (125MHz, CDCl 3 ) δ208.1, 154.6, 153.1, 144.3, 132.5, 128.4, 127.4, 124.9, 117.5 ,12.8.
3.一氧化碳靶向递送系统即化学能纳米粒的制备方法3. Carbon monoxide targeted delivery system, i.e. preparation method of chemical energy nanoparticles
将草酸酯聚合物A(7mg)和一氧化碳前药31(0.5mg),一起溶于500μL的二氯甲烷,加入3mL聚乙烯醇(PVA)溶液(聚乙烯醇固体溶于pH=7.4的磷酸盐缓冲液中制备成质量浓度为5%的聚乙烯醇(PVA)溶液),使用超声波细胞破碎仪超声乳化10min,在37℃下减压浓缩除去二氯甲烷,得到均一澄清的液体,纳米粒31。Dissolve oxalate polymer A (7 mg) and carbon monoxide prodrug 31 (0.5 mg) together in 500 μL of dichloromethane, add 3 mL of polyvinyl alcohol (PVA) solution (PVA solid dissolved in phosphoric acid at pH = 7.4 Prepare a polyvinyl alcohol (PVA) solution with a mass concentration of 5% in salt buffer solution), use an ultrasonic cell disruptor to ultrasonically emulsify for 10 minutes, and concentrate under reduced pressure at 37°C to remove dichloromethane to obtain a uniform and clear liquid, nanoparticles 31.
实施例37Example 37
1.其中草酸酯聚合物的合成方法与实施例1相同。1. wherein the synthetic method of oxalate polymer is identical with embodiment 1.
2.硫代羰基一氧化碳前药32的合成方法2. The synthetic method of thiocarbonyl carbon monoxide prodrug 32
Figure PCTCN2021122605-appb-000032
Figure PCTCN2021122605-appb-000032
氮气保护下,将32-O(1.0当量)和劳森试剂(0.6当量)一起加入到双颈反应瓶,加入甲苯后加热至120℃回流4h,颜色逐渐加深,通过薄层色谱板监测反应进程,反应完毕旋干甲苯,使用柱层析色谱法(石油醚:乙酸乙酯=10:1)进行分离纯化,得到相应的一氧化碳前药32。 1H NMR(500MHz,CDCl 3)δ7.59(d,J=15.0Hz,2H),7.48(t,J=14.9,3.0Hz,1H),7.42-7.28(m,3H),7.05(d,J=15.0,3.1Hz,1H),6.88(t,J=14.8,3.1Hz,1H),1.49(s,9H).; 13C NMR(125MHz,CDCl 3)δ205.0,154.5,152.9,147.7,146.7,142.2,132.2,131.2,130.2,128.1,128.0,125.1,119.2,117.6,80.9,28.3. Under the protection of nitrogen, add 32-O (1.0 equivalent) and Lawson’s reagent (0.6 equivalent) into a double-necked reaction flask, add toluene and heat to 120 ° C for 4 hours, the color gradually deepens, and the reaction progress is monitored by thin-layer chromatography. After the reaction, the toluene was spin-dried, separated and purified by column chromatography (petroleum ether: ethyl acetate = 10:1), and the corresponding carbon monoxide prodrug 32 was obtained. 1 H NMR (500MHz, CDCl 3 ) δ7.59(d, J=15.0Hz, 2H), 7.48(t, J=14.9, 3.0Hz, 1H), 7.42-7.28(m, 3H), 7.05(d, J=15.0, 3.1Hz, 1H), 6.88(t, J=14.8, 3.1Hz, 1H), 1.49(s, 9H).; 13 C NMR (125MHz, CDCl 3 ) δ205.0, 154.5, 152.9, 147.7, 146.7 ,142.2,132.2,131.2,130.2,128.1,128.0,125.1,119.2,117.6,80.9,28.3.
3.一氧化碳靶向递送系统即化学能纳米粒的制备方法3. Carbon monoxide targeted delivery system, i.e. preparation method of chemical energy nanoparticles
将草酸酯聚合物A(7mg)和一氧化碳前药32(0.5mg),一起溶于500μL的二氯甲烷,加入3mL聚乙烯醇(PVA)溶液(聚乙烯醇固体溶于pH=7.4的磷酸盐缓冲液中制备成质量浓度为5%的聚乙烯醇(PVA)溶液),使用超声波细胞破碎仪超声乳化10min,在37℃下减压浓缩除去二氯甲烷,得到均一澄清的液体,纳米粒32。Dissolve oxalate polymer A (7 mg) and carbon monoxide prodrug 32 (0.5 mg) together in 500 μL of dichloromethane, add 3 mL of polyvinyl alcohol (PVA) solution (PVA solid dissolved in phosphoric acid at pH = 7.4 Prepare a polyvinyl alcohol (PVA) solution with a mass concentration of 5% in salt buffer solution), use an ultrasonic cell disruptor to ultrasonically emulsify for 10 minutes, and concentrate under reduced pressure at 37°C to remove dichloromethane to obtain a uniform and clear liquid, nanoparticles 32.
实施例38Example 38
1.其中草酸酯聚合物的合成方法与实施例1相同。1. wherein the synthetic method of oxalate polymer is identical with embodiment 1.
2.硫代羰基一氧化碳前药33的合成方法2. The synthetic method of thiocarbonyl carbon monoxide prodrug 33
Figure PCTCN2021122605-appb-000033
Figure PCTCN2021122605-appb-000033
氮气保护下,将33-O(1.0当量)和劳森试剂(0.6当量)一起加入到双 颈反应瓶,加入甲苯后加热至120℃回流4h,颜色逐渐加深,通过薄层色谱板监测反应进程,反应完毕旋干甲苯,使用柱层析色谱法(石油醚:乙酸乙酯=10:1)进行分离纯化,得到相应的一氧化碳前药33。 1H NMR(500MHz,CDCl 3)δ7.48(t,J=14.9,3.0Hz,1H),7.36(d,J=15.0,3.1Hz,1H),7.12-7.02(m,3H),6.88(t,J=14.8,3.1Hz,1H),6.29-6.16(m,2H); 13C NMR(125MHz,CDCl 3)δ205.0,152.9,151.9,147.7,146.7,131.2,129.7,128.1,128.0,125.1,122.8,117.6,115.6. Under the protection of nitrogen, add 33-O (1.0 equivalent) and Lawson’s reagent (0.6 equivalent) into a double-necked reaction flask, add toluene and heat to 120 ° C for 4 hours, the color gradually deepens, and the reaction process is monitored by thin-layer chromatography. After the reaction, the toluene was spin-dried, separated and purified by column chromatography (petroleum ether: ethyl acetate = 10:1), and the corresponding carbon monoxide prodrug 33 was obtained. 1 H NMR (500MHz, CDCl 3 ) δ7.48(t, J=14.9, 3.0Hz, 1H), 7.36(d, J=15.0, 3.1Hz, 1H), 7.12-7.02(m, 3H), 6.88( t,J=14.8,3.1Hz,1H),6.29-6.16(m,2H); 13 C NMR(125MHz,CDCl 3 )δ205.0,152.9,151.9,147.7,146.7,131.2,129.7,128.1,128.0,125.1, 122.8, 117.6, 115.6.
3.一氧化碳靶向递送系统即化学能纳米粒的制备方法3. Carbon monoxide targeted delivery system, i.e. preparation method of chemical energy nanoparticles
将草酸酯聚合物A(7mg)和一氧化碳前药33(0.5mg),一起溶于500μL的二氯甲烷,加入3mL聚乙烯醇(PVA)溶液(聚乙烯醇固体溶于pH=7.4的磷酸盐缓冲液中制备成质量浓度为5%的聚乙烯醇(PVA)溶液),使用超声波细胞破碎仪超声乳化10min,在37℃下减压浓缩除去二氯甲烷,得到均一澄清的液体,纳米粒33。Dissolve oxalate polymer A (7 mg) and carbon monoxide prodrug 33 (0.5 mg) in 500 μL of dichloromethane, add 3 mL of polyvinyl alcohol (PVA) solution (PVA solid dissolved in phosphoric acid at pH = 7.4 Prepare a polyvinyl alcohol (PVA) solution with a mass concentration of 5% in salt buffer solution), use an ultrasonic cell disruptor to ultrasonically emulsify for 10 minutes, and concentrate under reduced pressure at 37°C to remove dichloromethane to obtain a uniform and clear liquid, nanoparticles 33.
实施例39Example 39
1.其中草酸酯聚合物的合成方法与实施例1相同。1. wherein the synthetic method of oxalate polymer is identical with embodiment 1.
2.硫代羰基一氧化碳前药34的合成方法2. The synthetic method of thiocarbonyl carbon monoxide prodrug 34
Figure PCTCN2021122605-appb-000034
Figure PCTCN2021122605-appb-000034
氮气保护下,将34-O(1.0当量)和劳森试剂(0.6当量)一起加入到双颈反应瓶,加入甲苯后加热至120℃回流4h,颜色逐渐加深,通过薄层色谱板监测反应进程,反应完毕旋干甲苯,使用柱层析色谱法(石油醚:乙酸乙酯=10:1)进行分离纯化,得到相应的一氧化碳前药34。 1H NMR(500MHz,CDCl 3)δ7.71-7.62(m,2H),7.48(t,J=14.9,3.0Hz,1H),7.41-7.32(m,3H),7.05(d,J=15.0,3.1Hz,1H),6.88(t,J=14.8,3.1Hz,1H),3.90(s,3H); 13C NMR(125MHz,CDCl 3)δ205.0,167.3,152.9,147.7,146.7,133.4,132.4,131.5, 131.2,128.1,128.0,127.9,125.1,117.6,52.1. Under the protection of nitrogen, add 34-O (1.0 equivalent) and Lawson’s reagent (0.6 equivalent) into a double-necked reaction flask, add toluene, heat to 120 °C and reflux for 4 hours, the color gradually deepens, and the reaction progress is monitored by thin-layer chromatography. After the reaction, the toluene was spin-dried, separated and purified by column chromatography (petroleum ether: ethyl acetate = 10:1), and the corresponding carbon monoxide prodrug 34 was obtained. 1 H NMR (500MHz, CDCl 3 ) δ7.71-7.62(m, 2H), 7.48(t, J=14.9, 3.0Hz, 1H), 7.41-7.32(m, 3H), 7.05(d, J=15.0 ,3.1Hz,1H),6.88(t,J=14.8,3.1Hz,1H),3.90(s,3H); 13 C NMR(125MHz,CDCl 3 )δ205.0,167.3,152.9,147.7,146.7,133.4,132.4 ,131.5, 131.2,128.1,128.0,127.9,125.1,117.6,52.1.
3.一氧化碳靶向递送系统即化学能纳米粒的制备方法3. Carbon monoxide targeted delivery system, i.e. preparation method of chemical energy nanoparticles
将草酸酯聚合物A(7mg)和一氧化碳前药34(0.5mg),一起溶于500μL的二氯甲烷,加入3mL聚乙烯醇(PVA)溶液(聚乙烯醇固体溶于pH=7.4的磷酸盐缓冲液中制备成质量浓度为5%的聚乙烯醇(PVA)溶液),使用超声波细胞破碎仪超声乳化10min,在37℃下减压浓缩除去二氯甲烷,得到均一澄清的液体,纳米粒34。Dissolve oxalate polymer A (7 mg) and carbon monoxide prodrug 34 (0.5 mg) together in 500 μL of dichloromethane, and add 3 mL of polyvinyl alcohol (PVA) solution (solid polyvinyl alcohol dissolved in phosphoric acid at pH = 7.4 Prepare a polyvinyl alcohol (PVA) solution with a mass concentration of 5% in salt buffer solution), use an ultrasonic cell disruptor to ultrasonically emulsify for 10 minutes, and concentrate under reduced pressure at 37°C to remove dichloromethane to obtain a uniform and clear liquid, nanoparticles 34.
实施例40Example 40
1.其中草酸酯聚合物的合成方法与实施例1相同。1. wherein the synthetic method of oxalate polymer is identical with embodiment 1.
2.硫代羰基一氧化碳前药35的合成方法2. The synthetic method of thiocarbonyl carbon monoxide prodrug 35
Figure PCTCN2021122605-appb-000035
Figure PCTCN2021122605-appb-000035
氮气保护下,将35-O(1.0当量)和氢氧化锂(3.0当量)一起加入到双颈反应瓶,加入四氢呋喃和水的混合溶剂后室温搅拌,通过薄层色谱板监测反应进程,反应完毕使用二氯甲烷和饱和食盐水萃取,有机相用无水硫酸钠干燥并在减压下浓缩,使用柱层析色谱法(石油醚:乙酸乙酯=2:1)进行分离纯化,得到相应的一氧化碳前药35。 1H NMR(500MHz,CDCl 3)δ7.83(d,J=15.0Hz,2H),7.54–7.42(m,3H),7.36(d,J=15.0,3.1Hz,1H),7.05(d,J=15.0,3.1Hz,1H),6.88(t,J=14.8,3.1Hz,1H); 13C NMR(125MHz,CDCl 3)δ205.0,168.8,152.9,147.7,146.7,138.0,131.7,131.2,128.9,128.1,128.0,127.8,125.1,117.6. Under the protection of nitrogen, add 35-O (1.0 equivalent) and lithium hydroxide (3.0 equivalent) together into a double-necked reaction flask, add a mixed solvent of tetrahydrofuran and water, stir at room temperature, monitor the reaction process through a thin-layer chromatography plate, and the reaction is complete Extract with dichloromethane and saturated brine, dry the organic phase with anhydrous sodium sulfate and concentrate under reduced pressure, use column chromatography (petroleum ether:ethyl acetate=2:1) to separate and purify to obtain the corresponding Carbon monoxide prodrugs 35 . 1 H NMR (500MHz, CDCl 3 ) δ7.83(d, J=15.0Hz, 2H), 7.54–7.42(m, 3H), 7.36(d, J=15.0, 3.1Hz, 1H), 7.05(d, J=15.0, 3.1Hz, 1H), 6.88 (t, J=14.8, 3.1Hz, 1H); 13 C NMR (125MHz, CDCl 3 ) δ205.0, 168.8, 152.9, 147.7, 146.7, 138.0, 131.7, 131.2, 128.9 ,128.1,128.0,127.8,125.1,117.6.
3.一氧化碳靶向递送系统即化学能纳米粒的制备方法3. Carbon monoxide targeted delivery system, i.e. preparation method of chemical energy nanoparticles
将草酸酯聚合物A(7mg)和一氧化碳前药35(0.5mg),一起溶于500μL的二氯甲烷,加入3mL聚乙烯醇(PVA)溶液(聚乙烯醇固体溶于pH=7.4的磷酸盐缓冲液中制备成质量浓度为5%的聚乙烯醇(PVA)溶液),使 用超声波细胞破碎仪超声乳化10min,在37℃下减压浓缩除去二氯甲烷,得到均一澄清的液体,纳米粒35。Dissolve oxalate polymer A (7 mg) and carbon monoxide prodrug 35 (0.5 mg) together in 500 μL of dichloromethane, add 3 mL of polyvinyl alcohol (PVA) solution (solid polyvinyl alcohol dissolved in phosphoric acid at pH = 7.4 Prepare a polyvinyl alcohol (PVA) solution with a mass concentration of 5% in salt buffer solution), use an ultrasonic cell disruptor to ultrasonically emulsify for 10 minutes, and concentrate under reduced pressure at 37°C to remove dichloromethane to obtain a uniform and clear liquid, nanoparticles 35.
实施例41Example 41
1.其中草酸酯聚合物的合成方法与实施例1相同。1. wherein the synthetic method of oxalate polymer is identical with embodiment 1.
2.硫代羰基一氧化碳前药36的合成方法2. The synthetic method of thiocarbonyl carbon monoxide prodrug 36
Figure PCTCN2021122605-appb-000036
Figure PCTCN2021122605-appb-000036
氮气保护下,将36-O(1.0当量)和劳森试剂(0.6当量)一起加入到双颈反应瓶,加入甲苯后加热至120℃回流4h,颜色逐渐加深,通过薄层色谱板监测反应进程,反应完毕旋干甲苯,使用柱层析色谱法(石油醚:乙酸乙酯=10:1)进行分离纯化,得到相应的一氧化碳前药36。 1H NMR(500MHz,CDCl 3)δ7.54–7.44(m,3H),7.36(d,J=15.0,3.1Hz,1H),7.05(d,J=15.0,3.1Hz,1H),6.88(t,J=14.8,3.1Hz,1H),6.68–6.62(m,2H); 13C NMR(125MHz,CDCl 3)δ205.0,160.4,152.9,147.7,146.7,131.2,131.0,128.1,128.0,125.1,122.0,117.6,115.8. Under the protection of nitrogen, add 36-O (1.0 equivalent) and Lawson's reagent (0.6 equivalent) into a double-neck reaction flask, add toluene and heat to 120 ° C for 4 hours, the color gradually deepens, and the reaction progress is monitored by thin-layer chromatography. After the reaction, the toluene was spin-dried, separated and purified by column chromatography (petroleum ether: ethyl acetate = 10:1), and the corresponding carbon monoxide prodrug 36 was obtained. 1 H NMR (500MHz, CDCl 3 ) δ7.54–7.44 (m, 3H), 7.36 (d, J=15.0, 3.1Hz, 1H), 7.05 (d, J=15.0, 3.1Hz, 1H), 6.88 ( t,J=14.8,3.1Hz,1H),6.68–6.62(m,2H); 13 C NMR(125MHz,CDCl 3 )δ205.0,160.4,152.9,147.7,146.7,131.2,131.0,128.1,128.0,125.1, 122.0, 117.6, 115.8.
3.一氧化碳靶向递送系统即化学能纳米粒的制备方法3. Carbon monoxide targeted delivery system, i.e. preparation method of chemical energy nanoparticles
将草酸酯聚合物A(7mg)和一氧化碳前药36(0.5mg),一起溶于500μL的二氯甲烷,加入3mL聚乙烯醇(PVA)溶液(聚乙烯醇固体溶于pH=7.4的磷酸盐缓冲液中制备成质量浓度为5%的聚乙烯醇(PVA)溶液),使用超声波细胞破碎仪超声乳化10min,在37℃下减压浓缩除去二氯甲烷,得到均一澄清的液体,纳米粒36。Dissolve oxalate polymer A (7 mg) and carbon monoxide prodrug 36 (0.5 mg) together in 500 μL of dichloromethane, add 3 mL of polyvinyl alcohol (PVA) solution (PVA solid dissolved in phosphoric acid at pH = 7.4 Prepare a polyvinyl alcohol (PVA) solution with a mass concentration of 5% in salt buffer solution), use an ultrasonic cell disruptor to ultrasonically emulsify for 10 minutes, and concentrate under reduced pressure at 37°C to remove dichloromethane to obtain a uniform and clear liquid, nanoparticles 36.
对比例1-5Comparative example 1-5
对比例1-5中纳米粒制备同实施例1,区别点在于对比例1-5的一氧化碳前药分别为4-S、5-S、6、7、8,结构见图8。其中一氧化碳前药摩尔数均为n=1.97μmol,前药浓度:40μΜ,草酸酯聚合物浓度:434μΜ。制备得 到的纳米粒分别为G-4、G-5、G-6、G-7、G-8。The preparation of nanoparticles in Comparative Examples 1-5 is the same as in Example 1, the difference is that the carbon monoxide prodrugs in Comparative Examples 1-5 are 4-S, 5-S, 6, 7, and 8 respectively, and the structures are shown in FIG. 8 . Wherein the carbon monoxide prodrug moles are n=1.97 μmol, the prodrug concentration: 40 μM, and the oxalate polymer concentration: 434 μM. The prepared nanoparticles are respectively G-4, G-5, G-6, G-7, G-8.
测试例test case
测试例1 一氧化碳前药1-S的纳米粒A的紫外吸收实验Test Example 1 UV Absorption Experiment of Nanoparticle A of Carbon Monoxide Prodrug 1-S
将实施例1中制备得到纳米粒A溶解于pH=7.4的磷酸盐缓冲液,之后加入浓度为1mM的H 2O 2,并检测不同时间点的紫外吸收。结果见图2。 Nanoparticles A prepared in Example 1 were dissolved in phosphate buffer at pH=7.4, and then H 2 O 2 at a concentration of 1 mM was added, and the ultraviolet absorption at different time points was detected. The results are shown in Figure 2.
由图2可知,纳米粒A的紫外吸收实验表明,当加入1mM的H 2O 2时,380nm和500nm左右的吸收峰吸光度随时间的增加明显下降,表明1-S的降解和CO的释放在1h基本反应完成,吸光度趋于平稳。此外,本发明还分离得到1-S降解后的产物,核磁数据如图3和图5所示,表明1-S是经过激发态的形式释放CO。 It can be seen from Figure 2 that the UV absorption experiment of nanoparticles A shows that when 1mM H 2 O 2 is added, the absorbance of the absorption peaks around 380nm and 500nm decreases significantly with the increase of time, indicating that the degradation of 1-S and the release of CO in After 1h, the basic reaction was completed, and the absorbance tended to be stable. In addition, the present invention also separates and obtains the degraded product of 1-S, and the NMR data are shown in Figure 3 and Figure 5, indicating that 1-S releases CO in an excited state.
测试例2 一氧化碳前药2-S的纳米粒B的紫外吸收实验Test example 2 Ultraviolet absorption experiment of nanoparticle B of carbon monoxide prodrug 2-S
将实施例2中纳米粒B溶解在pH=7.4的磷酸盐缓冲液中,并加入H 2O 2浓度为1mM时检测不同时间点的紫外吸收。结果见图4。 Nanoparticles B in Example 2 were dissolved in phosphate buffer at pH=7.4, and the ultraviolet absorption at different time points was detected when H 2 O 2 was added at a concentration of 1 mM. The results are shown in Figure 4.
由图4可知,纳米粒B的紫外吸收实验表明,当加入1mM的H 2O 2时,380nm和500nm左右的吸收峰吸光度随时间的增加明显下降,表明2-S的降解和CO的释放在1h基本反应完成,吸光度趋于平稳。 It can be seen from Figure 4 that the UV absorption experiment of nanoparticles B shows that when 1mM H 2 O 2 is added, the absorbance of the absorption peaks around 380nm and 500nm decreases significantly with the increase of time, indicating that the degradation of 2-S and the release of CO in After 1h, the basic reaction was completed, and the absorbance tended to be stable.
测试例3 肌红蛋白检测一氧化碳(CO)生成Test Example 3 Myoglobin Detection of Carbon Monoxide (CO) Generation
将实施例1中制备得到的纳米粒A,溶液体积:120mL,H 2O 2:10mM,肌红蛋白浓度0.5mg/mL,连二亚硫酸钠22mg/mL。具体实验操作为: The nanoparticle A prepared in Example 1, solution volume: 120 mL, H 2 O 2 : 10 mM, myoglobin concentration 0.5 mg/mL, sodium dithionite 22 mg/mL. The specific experimental operation is:
(1)将肌红蛋白溶于PBS(pH=7.4的磷酸盐缓冲液),超声条件下使用氮气吹气进行脱氧气操作制备脱氧的肌红蛋白,并加入22mg/mL的连二亚硫酸钠1mL备用。(1) Dissolve myoglobin in PBS (phosphate buffered saline with pH=7.4), and use nitrogen blowing under ultrasonic conditions to carry out deoxygenation operation to prepare deoxygenated myoglobin, and add 1 mL of 22 mg/mL sodium dithionite for later use .
(2)将制备的纳米粒A用PBS溶液稀释到120mL。(2) Dilute the prepared nanoparticles A to 120 mL with PBS solution.
(3)将10mM的H 2O 2加入到(2)中,并使用双头针将气体导入(1)的溶液中,并将(2)在4℃下搅拌反应4h,然后将其放入4℃冰箱放置过 夜。对照组:以同等体积的PBS(pH=7.4的磷酸盐缓冲液)替代过氧化氢,其他条件相同。结果见图6。由图中可知,与对照组相比,实验组观测到550nm的吸收峰明显变为双峰,进一步确证了CO的释放。 (3) Add 10mM H 2 O 2 into (2), and use a double-ended needle to introduce gas into the solution of (1), and stir the reaction of (2) at 4°C for 4h, then put it into Store overnight in a 4°C refrigerator. Control group: the same volume of PBS (phosphate buffer saline with pH=7.4) was used instead of hydrogen peroxide, and other conditions were the same. The results are shown in Figure 6. It can be seen from the figure that compared with the control group, the absorption peak at 550nm observed in the experimental group has changed into a double peak, which further confirms the release of CO.
测试例4 不同一氧化碳前药中CO释放动力学的研究Test Example 4 Study on CO Release Kinetics in Different Carbon Monoxide Prodrugs
将实施例5-7中制备得到的纳米粒E-1,E-2,E-3和对比例1-5中制备得到的纳米粒G-4、G-5、G-6、G-7、G-8。H 2O 2浓度:1.0mM(5μL),溶液体积:50mL。将纳米粒E-1,E-2,E-3,G-4,G-6,G-7,G-8分别用PBS溶液稀释至50mL反应瓶中,在37℃下,加入浓度为1mM的H 2O 2后检测器开始检测,每组实验重复三次,取平均值。实验结果见图7。 The nanoparticles E-1 prepared in Example 5-7, E-2, E-3 and the nanoparticles G-4, G-5, G-6, G-7 prepared in Comparative Example 1-5 , G-8. H 2 O 2 concentration: 1.0 mM (5 μL), solution volume: 50 mL. Nanoparticles E-1, E-2, E-3, G-4, G-6, G-7, G-8 were diluted with PBS solution into 50mL reaction vials, and added at a concentration of 1mM at 37°C After the detector started to detect H 2 O 2 , each experiment was repeated three times, and the average value was taken. The experimental results are shown in Figure 7.
由图7可知,本发明使用相同摩尔数的不同一氧化碳前药分别通过检测器进行CO释放检测,本发明发现只有纳米粒E-1,E-2,E-3,能够在该条件下释放CO,纳米粒E-2的释放效率是最好的,并且释放速率也是最快的。相应的氧取代衍生物均未见明显CO的释放。本发明发现使用氧取代的衍生物制备的供能纳米粒前药容易在体系中析出,这可能导致产生的化学能难以转移到前药。为了克服氧取代的衍生物前药析出这一缺点,本发明加入了PLGA(乳酸-羟基乳酸共聚物)作为纳米粒的辅助支撑,PLGA与前药质量比为10:1。实验证明,氧取代衍生物加入PLGA后制备的纳米粒没有药物析出,并在1mM H 2O 2条件下,经过1h成功释放出30ppm的CO。增加草酸酯聚合物A的用量提供更多的化学能,以期望提高1-S的释放效率,虽然前药1-S的释放效率略有提高,但是增加并不明显。 It can be seen from Figure 7 that the present invention uses different carbon monoxide prodrugs with the same molar number to detect CO release through the detector respectively. The present invention finds that only nanoparticles E-1, E-2, and E-3 can release CO under this condition. , the release efficiency of nanoparticles E-2 is the best, and the release rate is also the fastest. The corresponding oxygen-substituted derivatives did not release CO significantly. The present invention finds that the energy-donating nanoparticle prodrug prepared by using the oxygen-substituted derivative is easy to precipitate in the system, which may cause the generated chemical energy to be difficult to transfer to the prodrug. In order to overcome the shortcoming of prodrug precipitation of oxygen-substituted derivatives, the present invention adds PLGA (lactic acid-hydroxylactic acid copolymer) as an auxiliary support for nanoparticles, and the mass ratio of PLGA to prodrug is 10:1. Experiments have shown that the nanoparticles prepared by adding the oxygen-substituted derivatives to PLGA have no drug precipitation, and successfully released 30ppm of CO after 1h under the condition of 1mM H 2 O 2 . Increasing the amount of oxalate polymer A provides more chemical energy in order to improve the release efficiency of 1-S, although the release efficiency of prodrug 1-S is slightly improved, but the increase is not obvious.
测试例5 草酸酯聚合物A用量对CO释放的影响Test Example 5 Effect of the amount of oxalate polymer A on CO release
将实施例8-12中制备得到纳米粒F-1、F-2、F-3、F-4、F-5,H 2O 2浓度:1.0mM(5μL),溶液体积:50mL。将F-1、F-2、F-3、F-4、F-5分别用PBS溶液稀释至50mL反应瓶中,在37℃下,加入浓度为1mM的H 2O 2后检测器开始检测,每组实验重复三次,取平均值。实验结果见图9。 Nanoparticles F-1, F-2, F-3, F-4, F-5 prepared in Examples 8-12, H 2 O 2 concentration: 1.0 mM (5 μL), solution volume: 50 mL. Dilute F-1, F-2, F-3, F-4, and F-5 with PBS solution into 50mL reaction bottles respectively, and at 37°C, add 1mM H 2 O 2 and then the detector starts to detect , each experiment was repeated three times, and the average value was taken. The experimental results are shown in Figure 9.
实验结果表明0.5mg/7.0mg的配比具有最好的释放效果,但CO的释放与前药质量的增加并不是线性关系,这表明定量的化学能可能随着前药质 量的增加能量供应有所不足。当我们继续增加前药的用量时,CO的释放量反而有略微下降。The experimental results show that the ratio of 0.5mg/7.0mg has the best release effect, but the release of CO is not linearly related to the increase of the mass of the prodrug, which indicates that the quantitative chemical energy may have an effect on the energy supply with the increase of the mass of the prodrug. Insufficient. When we continued to increase the dosage of the prodrug, the release of CO decreased slightly.
测试例6 CO释放的特异性Test example 6 Specificity of CO release
为了确定化学能纳米粒能够对过氧化氢的响应特异性,筛选了一些活性氧和一些内源性的小分子如t-BuO、HO、H 2O 2、OCl -、GSH、Cys,将实施例10中制备得到纳米粒F3对过氧化氢的响应特异性实验,具体步骤为:将纳米粒B用PBS溶液稀释至50mL反应瓶中,在37℃下分别加入浓度为1mM的t-BuO、HO、H 2O 2、NaOCl、GSH、Cys后检测器开始检测,每组实验重复三次,取平均值。实验结果见图10,由图中可知本发明所得纳米粒对过氧化氢的响应性是其他各种活性氧的30倍左右,具有很好的特异性响应,这为向过氧化氢高表达的肿瘤细胞和炎症细胞的靶向递送CO创造了良好条件。 In order to determine the response specificity of chemical energy nanoparticles to hydrogen peroxide, some reactive oxygen species and some endogenous small molecules such as t-BuO, HO, H 2 O 2 , OCl - , GSH, and Cys were screened. In Example 10, the specificity experiment of the response of nanoparticle F3 to hydrogen peroxide was prepared. The specific steps were as follows: Dilute nanoparticle B into a 50mL reaction bottle with PBS solution, and add t-BuO, t-BuO, and After HO, H 2 O 2 , NaOCl, GSH, Cys, the detector started to detect. Each experiment was repeated three times, and the average value was taken. The experimental results are shown in Fig. 10, and it can be seen from the figure that the nanoparticle of the present invention is about 30 times more responsive to hydrogen peroxide than other active oxygen species, and has a good specific response, which is highly expressed to hydrogen peroxide. The targeted delivery of CO to tumor cells and inflammatory cells creates favorable conditions.
测试例7 pH对CO释放速率的影响Test Example 7 Effect of pH on CO Release Rate
将实施例10中制备得到纳米粒B用PBS溶液稀释至50mL反应瓶中,分别在pH=7.4和pH=6.5,温度为37℃下,加入浓度为1mM的H 2O 2后检测器开始检测,每组实验重复三次,取平均值。并发现pH=6.5时,前药的释放速率变缓,释放率略有降低。实验结果见图11。 Dilute the nanoparticles B prepared in Example 10 into a 50mL reaction bottle with PBS solution, respectively at pH=7.4 and pH=6.5, at a temperature of 37°C, add H2O2 with a concentration of 1mM, and then the detector starts to detect , each experiment was repeated three times, and the average value was taken. It was found that when the pH=6.5, the release rate of the prodrug slowed down, and the release rate decreased slightly. The experimental results are shown in Figure 11.
测试例8 H 2O 2含量对CO释放的影响 Test example 8 Effect of H 2 O 2 content on CO release
为了考察H 2O 2的含量对CO释放的影响,设置了将实施例10中制备得到纳米粒F-3在浓度为1.0mM、500μM、300μM和100μM这几组不同浓度的H 2O 2进行测试,并通过一氧化碳检测器来观测其释放的变化。实验结果见图12,由图可知,发现当H 2O 2浓度降低到500μM甚至300μM时,释放量并没有明显下降,可能是因为此时的H 2O 2浓度与草酸酯聚合物A的浓度接近一个当量,仍然能够充分反应,提供足够的化学能。但是释放时间上会有所不同这可能是因为H 2O 2的浓度越高,反应速率越快导致的。而当H 2O 2浓度下降为100μM时,此时的H 2O 2含量相当于1/4的草酸酯聚合物A含量,因此它们不能充分反应提供足够的化学能,导致释放降低至前几组的 40%左右。 In order to investigate the effect of the content of H 2 O 2 on the release of CO, the nanoparticle F-3 prepared in Example 10 was set to be subjected to different concentrations of H 2 O 2 at concentrations of 1.0 mM, 500 μM, 300 μM and 100 μM. Test and observe changes in its release with a carbon monoxide detector. The experimental results are shown in Figure 12. It can be seen from the figure that when the concentration of H 2 O 2 is reduced to 500 μM or even 300 μM, the release amount does not decrease significantly, which may be because the concentration of H 2 O 2 at this time is different from that of oxalate polymer A. When the concentration is close to one equivalent, it can still fully react and provide enough chemical energy. However, the release time will be different, which may be caused by the higher the concentration of H 2 O 2 , the faster the reaction rate. However, when the concentration of H 2 O 2 drops to 100 μM, the content of H 2 O 2 at this time is equivalent to 1/4 of the content of oxalate polymer A, so they cannot fully react to provide sufficient chemical energy, resulting in a decrease in release to the former About 40% of several groups.
测试例9 细胞毒性实验Test Example 9 Cytotoxicity Experiment
取对数生长期的4T1/B16F10/HEK293细胞(5×10 4个/mL)接种于96孔板,贴壁后,分为2-S/P@PVA组、2-S/PLGA@PVA组、P@PVA组和Free 2-S组,将各组药液用培养基稀释为1.875、3.75、7.5、15、30、60μg/ml(以2-S计,polymer的浓度为其14倍)的溶液,每个浓度设4个复孔。给药后于37℃孵育12h,弃去药液,各孔内加入150μLMTT溶液(0.5mg/mL),37℃孵育4h后,弃去上清液,各孔加入100μL的DMSO,振摇10min使蓝紫色的甲瓒结晶溶解,酶标仪测定490nm波长处的OD值,计算细胞活力(细胞活力%=OD 给药组/OD 对照组×100%)。测试结构如图13所示,2-S/P@PVA纳米粒组具有明显的细胞毒性,两个对照组相对于实验组细胞毒性较小,从三个细胞系比较来看,HEK293属于正常细胞,过氧化氢含量较低,对细胞的毒性也会相应减小,而对肿瘤细胞4T1和B16F10细胞,由于具有较高的过氧化氢,实验组,细胞毒性较大,因此该一氧化碳纳米粒具有很好的靶向性,对正常细胞毒性较小。 4T1/B16F10/HEK293 cells (5× 104 cells/mL) in the logarithmic growth phase were inoculated into 96-well plates, and after adherence, they were divided into 2-S/P@PVA group and 2-S/PLGA@PVA group , P@PVA group and Free 2-S group, each group of medicinal solution was diluted with medium to 1.875, 3.75, 7.5, 15, 30, 60 μg/ml (based on 2-S, the concentration of polymer was 14 times) For each concentration, 4 replicate wells were set up. After administration, incubate at 37°C for 12 hours, discard the drug solution, add 150 μL of MTT solution (0.5 mg/mL) to each well, incubate at 37°C for 4 hours, discard the supernatant, add 100 μL of DMSO to each well, and shake for 10 minutes. The blue-purple formazan crystals were dissolved, and the OD value at the wavelength of 490nm was measured by a microplate reader, and the cell viability was calculated (cell viability%=OD administration group /OD control group ×100%). The test structure is shown in Figure 13. The 2-S/P@PVA nanoparticle group has obvious cytotoxicity, and the two control groups have less cytotoxicity than the experimental group. From the comparison of the three cell lines, HEK293 belongs to normal cells , the content of hydrogen peroxide is lower, and the toxicity to cells will also be reduced accordingly. For tumor cells 4T1 and B16F10 cells, due to the higher hydrogen peroxide, the experimental group has greater cytotoxicity, so the carbon monoxide nanoparticles have Good targeting, less toxic to normal cells.
测试例10 细胞内CO成像实验Test Example 10 Intracellular CO Imaging Experiment
取对数生长期的4T1细胞(1×10 5个/mL)接种于24孔板,分为Control组、2-S/P@PVA组、2-S/PLGA@PVA组、P@PVA组和Free 2-S组,每组设3个复孔。细胞贴壁后,先给予CO探针NR-PdA(2μM)孵育30min,PBS洗2遍,Control组给予培养基,其余各组分别给予浓度为30μg/ml(以2-S计,polymer的浓度为其14倍)的药液,37℃孵育1h,弃去药液,PBS洗2遍后加入Hoechst染料染细胞核5min,再用PBS洗2遍,加入新鲜的PBS溶液,于激光共聚焦显微镜下观察CO的生成。测试结果如图14和15所示。通过使用CO探针进行细胞内的CO成像检测,2-S/P@PVA组出现探针的红色荧光,表明CO确实可以在细胞内进行释放,而对照组相对于实验组的荧光强度可以忽略不计,因此它们都不能释放CO。 4T1 cells (1× 105 cells/mL) in the logarithmic growth phase were inoculated into 24-well plates and divided into Control group, 2-S/P@PVA group, 2-S/PLGA@PVA group, and P@PVA group and Free 2-S group, each group set 3 replicate holes. After the cells adhered to the wall, the CO probe NR-PdA (2μM) was first given to incubate for 30min, and washed twice with PBS. It was 14 times) the drug solution, incubated at 37°C for 1 hour, discarded the drug solution, washed 2 times with PBS, added Hoechst dye to stain the cell nuclei for 5 minutes, washed 2 times with PBS, added fresh PBS solution, and placed under a laser confocal microscope Observe the production of CO. The test results are shown in Figures 14 and 15. By using the CO probe for intracellular CO imaging detection, the red fluorescence of the probe appeared in the 2-S/P@PVA group, indicating that CO can indeed be released in the cell, while the fluorescence intensity of the control group relative to the experimental group can be ignored Negative, so none of them can release CO.
测试例11 细胞对纳米粒的摄取实验Test Example 11 Uptake of Nanoparticles by Cells
取对数生长期的4T1细胞(1×10 5个/mL)接种于6孔板,分为2-S/P@PVA组、2-S/PLGA@PVA组和Free 2-S组,每组设3个复孔。细胞贴壁后,各组分别给予浓度为30μg/ml(以2-S计)的药液,37℃孵育3、6、12h,弃上清,PBS洗2遍,用0.25%的胰酶消化收集细胞,离心后加1ml PBS重悬,用细胞计数板对各孔细胞进行计数。随后,用超声波细胞破碎仪破碎细胞,12000rpm离心5min后取上清,在细胞裂解液中加入DMSO萃取2-S,用酶标仪通过标准曲线法对摄取的2-S进行定量。 4T1 cells (1×10 5 cells/mL) in the logarithmic growth phase were inoculated on 6-well plates, and divided into 2-S/P@PVA group, 2-S/PLGA@PVA group and Free 2-S group. Set up 3 replicate wells. After the cells adhered to the wall, each group was given a drug solution with a concentration of 30 μg/ml (calculated as 2-S), incubated at 37°C for 3, 6, and 12 hours, discarded the supernatant, washed twice with PBS, and digested with 0.25% trypsin Collect the cells, add 1ml PBS to resuspend after centrifugation, and count the cells in each well with a cell counting plate. Subsequently, the cells were disrupted with an ultrasonic cell disruptor, centrifuged at 12,000 rpm for 5 min, and the supernatant was taken. DMSO was added to the cell lysate to extract 2-S, and the ingested 2-S was quantified by the standard curve method with a microplate reader.
以Cypate作为荧光标记物,观察细胞对纳米粒的摄取情况。首先用EDC、NHS活化Cypate分子的羧基,再将其通过酯化反应连接到PVA上,制备Cypate-PVA包裹的2-S/P@Cy-PVA纳米粒。取对数生长期的4T1细胞(1×10 5个/mL)接种于24孔板,细胞贴壁后,给予15μg/ml(以2-S计)的2-S/P@Cy-PVA纳米粒,在给药后的3、6、12h,弃去药液,PBS洗2遍后加入Hoechst染料染细胞核5min,再用PBS洗2遍,加入新鲜的PBS溶液,于荧光显微镜下观察纳米粒与细胞的共定位情况。 Cypate was used as a fluorescent marker to observe the uptake of nanoparticles by cells. First, use EDC and NHS to activate the carboxyl group of Cypate molecule, and then connect it to PVA through esterification reaction to prepare Cypate-PVA-wrapped 2-S/P@Cy-PVA nanoparticles. 4T1 cells (1×10 5 cells/mL) in the logarithmic growth phase were inoculated into 24-well plates, and after the cells adhered to the wall, 15 μg/ml (calculated as 2-S) of 2-S/P@Cy-PVA nano At 3, 6, and 12 hours after administration, discard the drug solution, wash 2 times with PBS, add Hoechst dye to stain the nucleus for 5 minutes, wash 2 times with PBS, add fresh PBS solution, and observe the nanoparticles under a fluorescent microscope Colocalization with cells.
以Cypate作为荧光标记物,观察细胞对纳米粒的摄取情况。首先用EDC、NHS活化Cypate分子的羧基,再将其通过酯化反应连接到PVA上,制备Cypate-PVA包裹的2-S/PLGA@Cy-PVA纳米粒。取对数生长期的4T1细胞(1×10 5个/mL)接种于24孔板,细胞贴壁后,给予15μg/ml(以2-S计)的和2-S/PLGA@Cy-PVA纳米粒,在给药后的3、6、12h,弃去药液,PBS洗2遍后加入Hoechst染料染细胞核5min,再用PBS洗2遍,加入新鲜的PBS溶液,于荧光显微镜下观察纳米粒与细胞的共定位情况。 Cypate was used as a fluorescent marker to observe the uptake of nanoparticles by cells. First, use EDC and NHS to activate the carboxyl group of Cypate molecule, and then connect it to PVA through esterification reaction to prepare Cypate-PVA-wrapped 2-S/PLGA@Cy-PVA nanoparticles. 4T1 cells (1×10 5 cells/mL) in the logarithmic growth phase were seeded in 24-well plates, and after the cells adhered to the wall, 15 μg/ml (calculated as 2-S) and 2-S/PLGA@Cy-PVA For nanoparticles, 3, 6, and 12 hours after administration, discard the drug solution, wash 2 times with PBS, add Hoechst dye to stain the cell nucleus for 5 minutes, wash 2 times with PBS, add fresh PBS solution, and observe the nanoparticles under a fluorescence microscope. Colocalization of granules and cells.
通过细胞摄取实验(如图16所示),可以发现分别在3小时,6小时,12小时,2-S/PLGA@Cy-PVA纳米粒组和Free 2-S组细胞内的含量持续增加,而实验组增加不明显,这是因为实验组纳米粒2-S/P@PVA进入细胞后遇到过氧化氢会发生化学反应,所以尽管纳米粒被细胞不断摄取,但摄取的纳米 粒在进入细胞后也在不断裂解释放CO。Through the cell uptake experiment (as shown in Figure 16), it can be found that the content in the cells of the 2-S/PLGA@Cy-PVA nanoparticle group and the Free 2-S group continued to increase at 3 hours, 6 hours, and 12 hours, respectively. However, the increase in the experimental group was not obvious. This is because the nanoparticles in the experimental group 2-S/P@PVA will undergo a chemical reaction when encountering hydrogen peroxide after entering the cells. The cells then also release CO without breaking down.
显然,上述实施例仅仅是为清楚地说明所作的举例,并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引申出的显而易见的变化或变动仍处于本发明创造的保护范围之中。Apparently, the above-mentioned embodiments are only examples for clear description, and are not intended to limit the implementation. For those of ordinary skill in the art, on the basis of the above description, other changes or changes in various forms can also be made. It is not necessary and impossible to exhaustively list all the implementation manners here. However, the obvious changes or changes derived therefrom are still within the scope of protection of the present invention.

Claims (10)

  1. 一种CO靶向递送系统,其特征在于,所述靶向递送系统为一氧化碳前药与草酸酯类化合物形成的纳米粒;所述草酸酯类化合物包括草酸酯和/或草酸酯聚合物。A CO targeted delivery system, characterized in that the targeted delivery system is a nanoparticle formed by a carbon monoxide prodrug and an oxalate compound; the oxalate compound includes an oxalate and/or an oxalate polymer .
  2. 根据权利要求1所述的CO靶向递送系统,其特征在于,所述一氧化碳前药的结构如式(1)所示:The CO targeted delivery system according to claim 1, wherein the structure of the carbon monoxide prodrug is as shown in formula (1):
    Figure PCTCN2021122605-appb-100001
    Figure PCTCN2021122605-appb-100001
    其中,in,
    Y=O或S;X=O、S或N;Y=O or S; X=O, S or N;
    R 1-R 4独立为烷烃基、烷氧基、胺基、卤素、氰基、羧基、烷硫基、烷氧甲酰基或胺甲酰基; R 1 -R 4 are independently alkane, alkoxy, amino, halogen, cyano, carboxyl, alkylthio, alkoxyformyl or carbamoyl;
    R 5为芳基、杂芳基或烷基。 R 5 is aryl, heteroaryl or alkyl.
  3. 根据权利要求1所述的CO靶向递送系统,其特征在于,所述草酸酯聚合物的结构如式(2)、(3)所示:The CO targeted delivery system according to claim 1, wherein the structure of the oxalate polymer is shown in formulas (2) and (3):
    Figure PCTCN2021122605-appb-100002
    Figure PCTCN2021122605-appb-100002
    其中,n为20-200的整数,m=10-200的整数。Wherein, n is an integer of 20-200, and m=an integer of 10-200.
  4. 根据权利要求1所述的CO靶向递送系统,其特征在于,所述草酸酯的结构如式(4)所示:The CO targeted delivery system according to claim 1, wherein the structure of the oxalate is shown in formula (4):
    Figure PCTCN2021122605-appb-100003
    Figure PCTCN2021122605-appb-100003
    其中,R 1为芳基或烷烃基,R 2为芳基或烷烃基。 Wherein, R 1 is aryl or alkane group, R 2 is aryl or alkane group.
  5. 根据权利要求1所述的CO靶向递送系统,其特征在于,所述纳米粒通过以下方法制备得到:在有机溶剂中,将所述草酸酯类化合物与所述一氧化碳前药混合,加入乳化剂混合均匀,减压蒸馏即得所述纳米粒。The CO targeted delivery system according to claim 1, wherein the nanoparticles are prepared by the following method: in an organic solvent, the oxalate compound is mixed with the carbon monoxide prodrug, and an emulsifier is added Mix evenly, and distill under reduced pressure to obtain the nanoparticles.
  6. 根据权利要求5所述的CO靶向递送系统,其特征在于,所述有机溶剂为乙酸乙酯、乙醚和三氯甲烷中的一种或多种。The CO targeted delivery system according to claim 5, wherein the organic solvent is one or more of ethyl acetate, diethyl ether and chloroform.
  7. 根据权利要求5所述的CO靶向递送系统,其特征在于,所述草酸酯类化合物与一氧化碳前药的质量比为0.1:1-70:1。The CO targeted delivery system according to claim 5, wherein the mass ratio of the oxalate compound to the carbon monoxide prodrug is 0.1:1-70:1.
  8. 根据权利要求5所述的CO靶向递送系统,其特征在于,所述乳化剂与草酸酯类化合物的摩尔比为0.1:1-20:1。The CO targeted delivery system according to claim 5, wherein the molar ratio of the emulsifier to the oxalate compound is 0.1:1-20:1.
  9. 根据权利要求5所述的CO靶向递送系统,其特征在于,所述乳化剂为聚乙烯醇溶液或/和人血清白蛋白溶液。The CO targeted delivery system according to claim 5, wherein the emulsifier is polyvinyl alcohol solution or/and human serum albumin solution.
  10. 根据权利要求9所述的CO靶向递送系统,其特征在于,所述聚乙烯醇溶液的质量浓度为0.5%-5%,所述人血清白蛋白溶液的质量浓度为2-10mg/mL。The CO targeted delivery system according to claim 9, wherein the mass concentration of the polyvinyl alcohol solution is 0.5%-5%, and the mass concentration of the human serum albumin solution is 2-10 mg/mL.
PCT/CN2021/122605 2021-08-18 2021-10-08 Co targeted delivery system, and construction method therefor and application thereof WO2023019700A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110950869.2A CN113559071B (en) 2021-08-18 2021-08-18 CO targeted delivery system and construction method and application thereof
CN202110950869.2 2021-08-18

Publications (1)

Publication Number Publication Date
WO2023019700A1 true WO2023019700A1 (en) 2023-02-23

Family

ID=78172154

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/122605 WO2023019700A1 (en) 2021-08-18 2021-10-08 Co targeted delivery system, and construction method therefor and application thereof

Country Status (2)

Country Link
CN (1) CN113559071B (en)
WO (1) WO2023019700A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114010845A (en) * 2021-11-01 2022-02-08 淮阴工学院 Near-infrared light response antibacterial coating and preparation method thereof
CN114853708B (en) * 2022-05-25 2024-03-19 苏州大学 Process for preparing 4-thioflavone compounds from hydroxy chalcone compounds and xanthates

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5817048A (en) * 1997-03-20 1998-10-06 Brown University Research Foundation Ultrasonic alternative to laser-based photodynamic therapy
US20160214955A1 (en) * 2015-01-26 2016-07-28 Utah State University Carbon Monoxide Releasing Molecules and Associated Methods
CN106794362A (en) * 2014-06-09 2017-05-31 乔治亚州立大学研究基金会股份有限公司 For the carbon monoxide-releasing molecules and its preparation and application for the treatment of use

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5817048A (en) * 1997-03-20 1998-10-06 Brown University Research Foundation Ultrasonic alternative to laser-based photodynamic therapy
CN106794362A (en) * 2014-06-09 2017-05-31 乔治亚州立大学研究基金会股份有限公司 For the carbon monoxide-releasing molecules and its preparation and application for the treatment of use
US20160214955A1 (en) * 2015-01-26 2016-07-28 Utah State University Carbon Monoxide Releasing Molecules and Associated Methods

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
CHRISTOPH STEIGER, JAKOB WOLLBORN, MARCUS GUTMANN, MARKUS ZEHE, CHRISTIAN WUNDER, LORENZ MEINEL: "Controlled therapeutic gas delivery systems for quality-improved transplants", EUROPEAN JOURNAL OF PHARMACEUTICS AND BIOPHARMACEUTICS, ELSEVIER SCIENCE PUBLISHERS B.V., AMSTERDAM., NL, vol. 97, 23 October 2015 (2015-10-23), NL , pages 96 - 106, XP055494167, ISSN: 0939-6411, DOI: 10.1016/j.ejpb.2015.10.009 *
JI XINGYUE, JI KAILI, CHITTAVONG VAYOU, YU BINGCHEN, PAN ZHIXIANG, WANG BINGHE: "An esterase-activated click and release approach to metal-free CO-prodrugs", CHEMICAL COMMUNICATIONS, ROYAL SOCIETY OF CHEMISTRY, UK, vol. 53, no. 59, 1 January 2017 (2017-01-01), UK , pages 8296 - 8299, XP055779058, ISSN: 1359-7345, DOI: 10.1039/C7CC03832A *
PAN ZHIXIANG, ZHANG JUN, JI KAILI, CHITTAVONG VAYOU, JI XINGYUE, WANG BINGHE: "Organic CO Prodrugs Activated by Endogenous ROS", ORGANIC LETTERS, AMERICAN CHEMICAL SOCIETY, US, vol. 20, no. 1, 5 January 2018 (2018-01-05), US , pages 8 - 11, XP093036211, ISSN: 1523-7060, DOI: 10.1021/acs.orglett.7b02775 *
SEE LISA M, BERREAU, ANDERSON STACEY N, LARSON MICHAEL T: "Solution or solid – it doesn't matter: visible light-induced CO release reactivity of zinc flavonolato complexes", JOURNAL OF THE CHEMICAL SOCIETY. DALTON TRANSACTIONS, ROYAL SOCIETY OF CHEMISTRY, GB, vol. 45, no. 45, 7 October 2016 (2016-10-07), GB , pages 14570 - 14580, XP093036210, ISSN: 0300-9246, DOI: 10.1039/C6DT01709F *
ZHIXIANG PAN, VAYOU CHITTAVONG, WEI LI, JUN ZHANG, KAILI JI, MENGYUAN ZHU, XINGYUE JI, BINGHE WANG: "Organic CO Prodrugs: Structure-CO-Release Rate Relationship Studies", CHEMISTRY - A EUROPEAN JOURNAL, JOHN WILEY & SONS, INC, DE, vol. 23, no. 41, 21 July 2017 (2017-07-21), DE, pages 9838 - 9845, XP055436815, ISSN: 0947-6539, DOI: 10.1002/chem.201700936 *

Also Published As

Publication number Publication date
CN113559071B (en) 2022-12-27
CN113559071A (en) 2021-10-29

Similar Documents

Publication Publication Date Title
WO2023019700A1 (en) Co targeted delivery system, and construction method therefor and application thereof
WO2021151265A1 (en) Pharmaceutical use of aldehyde-based compound
CN101200468B (en) Novel compounds and uses thereof
CN101023945B (en) Use of non-periphery substituted phthalocyaniu metal complex
EP2514739A1 (en) Substituted beta-phenyl-alpha-hydroxy propanoic acid, synthesis method and use thereof
CN111481665A (en) Carrier-free nanoparticle with fluorescent molecular switch characteristic and preparation method and application thereof
US20220387590A1 (en) Photolytic compounds and triplet-triplet annihilation mediated photolysis
CN109575061A (en) A kind of water-soluble anticancer photosensitizer and its preparation and application
CN112094263A (en) Quinoxaline-based D-A-pi-A type organic photosensitizer and synthesis method and application thereof
CN113461563B (en) NQO1 activated 6-diazo-5-oxo-L-norleucine prodrug and preparation method and application thereof
CN114751953A (en) Phthalocyanine derivative for targeted photodynamic therapy of postmenopausal breast cancer and preparation method thereof
CN105669461B (en) Adjacent nitro phenethyl caffeate and its preparation method and application
CN114656453A (en) Heptamethine indole cyanine-TEMPO chemical couple chain small molecule, preparation method and application thereof in preparing radioprotection preparation
CN110483531B (en) Water-soluble porphyrin alkene derivative, preparation method, antitumor drug and application
CN107226785B (en) Adamantane styrenic derivatives and its preparation method and application
CN105541732A (en) Beta-lapachone derivative, and preparation method and medicinal application thereof
CN110526955A (en) 18 β-enoxolone class the compound of the segment containing hydroxamic acid structure and its application
CN112500437B (en) Platinum epoxide complex and preparation method and application thereof
CN114031635B (en) Difluoroborocurcumin derivative and preparation method and application thereof
CN117924312A (en) Tumor targeting self-assembled molecule based on methylene blue, preparation method and pharmaceutical application thereof
CN111777643B (en) Conjugated oligomer-ruthenium complex, synthesis method thereof and application thereof in preparation of antitumor drugs
CN117919443A (en) Covalent organic framework combining diagnosis of hypoxia-activated therapy and self-accelerating drug release to coordinate cancer immunotherapy
RU2725876C1 (en) Derivatives of fluorine-containing chlorins exhibiting anti-tumour activity
CN118047745A (en) Carbon monoxide prodrug, preparation method and application thereof
CN102584842A (en) Preparation of substituted indole lactam derivative and application of substituted indole lactam derivative as antimalarial agent

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21953936

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE