WO2023019677A1 - 编码器及其轴向跳动的位置补偿方法、装置和存储介质 - Google Patents

编码器及其轴向跳动的位置补偿方法、装置和存储介质 Download PDF

Info

Publication number
WO2023019677A1
WO2023019677A1 PCT/CN2021/119408 CN2021119408W WO2023019677A1 WO 2023019677 A1 WO2023019677 A1 WO 2023019677A1 CN 2021119408 W CN2021119408 W CN 2021119408W WO 2023019677 A1 WO2023019677 A1 WO 2023019677A1
Authority
WO
WIPO (PCT)
Prior art keywords
encoder
position information
rotor disk
disk
decoding
Prior art date
Application number
PCT/CN2021/119408
Other languages
English (en)
French (fr)
Inventor
程云峰
赵小安
肖力凡
Original Assignee
美的威灵电机技术(上海)有限公司
广东美的智能科技有限公司
高创传动科技开发(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美的威灵电机技术(上海)有限公司, 广东美的智能科技有限公司, 高创传动科技开发(深圳)有限公司 filed Critical 美的威灵电机技术(上海)有限公司
Publication of WO2023019677A1 publication Critical patent/WO2023019677A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D18/00Testing or calibrating apparatus or arrangements provided for in groups G01D1/00 - G01D15/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains

Definitions

  • the present application relates to the technical field of encoders, in particular to an encoder and its axial runout position compensation method, device and storage medium.
  • An encoder is a device that compiles and converts signals or data into signal forms that can be used for communication, transmission and storage.
  • the rotary encoder can directly convert the measured angular displacement into a digital signal, and is widely used in automatic measurement and control systems.
  • higher and higher requirements are put forward for the monitoring of parameters including rotation speed and rotation direction.
  • some products have this function, their structure is generally complicated, assembly is difficult, and production costs are high. , low resolution.
  • an encoder which includes a stator disk and a rotor disk.
  • the encoder needs to be magnetized in the axial direction, and installation will occur during the assembly process of the encoder. Errors and vibrations during use will cause changes in the axial distance between the stator disk and the rotor disk. Therefore, how to optimize the encoder to reduce the impact of the above changes on measurement accuracy is an urgent problem to be solved.
  • the present application proposes a position compensation method for encoder axial runout, the encoder includes a stator disk and a rotor disk that rotates relative to the stator disk, the rotor disk and the stator disk define multiple a plurality of decoding areas, the rotor disk generates a magnetic field during its rotation, so that the stator disk can detect each of the decoding areas in turn, and the plurality of decoding areas include the first decoding area;
  • the position compensation method for the axial runout of the encoder comprises the following steps:
  • the target position information of the rotor disk is estimated.
  • the step of obtaining two first actual position information of the rotor disk on the first decoding area includes:
  • two first actual position information of the rotor disk on the first decoding area are respectively calculated.
  • the first preset Algorithms include weighted average algorithms.
  • the multiple decoding areas further include a second decoding area, and the second decoding area is a different decoding area from the first decoding area or the second decoding area is different from the first decoding area.
  • the area is the same decoding area on different detection periods;
  • the step of estimating the target position information of the rotor disk according to the two first actual position information includes:
  • the target position information of the rotor disk is obtained according to the two first actual position information and the corresponding weight coefficients.
  • the step of estimating the predicted position information of the rotor disk in the first decoding area according to the second position information includes:
  • the predicted position information of the rotor disk in the first decoding area is estimated.
  • a second preset algorithm is used to determine the rotational speed of the rotor disk relative to the stator disk, and the second preset algorithm includes a differential algorithm or a phase-locked loop algorithm.
  • the detection information of the two sets of corresponding stator disks of the encoder on the first decoding area and the position information of the rotor disk are obtained;
  • the present application also proposes a position compensation device for axial runout of an encoder, which includes a memory, a processor, and a position compensation program for axial runout of an encoder that is stored on the memory and can run on the processor.
  • the position compensation program for the axial runout of the encoder is configured as a step for realizing the position compensation method for the axial runout of the encoder, wherein the position compensation method for the axial runout of the encoder includes the following steps:
  • the target position information of the rotor disk is estimated.
  • the present application also proposes an encoder, including:
  • the main body includes a stator disk and a rotor disk that rotates relative to the stator disk, the rotor disk and the stator disk define a plurality of decoding areas, and the rotor disk generates a magnetic field during its rotation stroke for the
  • the stator disk detects each of the decoding areas in sequence, and the multiple decoding areas include the first decoding area;
  • a position compensation device for the axial runout of the encoder includes a memory, a processor, and the position of the axial runout of the encoder stored in the memory and operable on the processor
  • the compensation program, the position compensation program for the axial runout of the encoder is configured as a step for realizing the position compensation method for the axial runout of the encoder, wherein the position compensation method for the axial runout of the encoder includes the following steps:
  • the target position information of the rotor disk is estimated.
  • the rotor disk is provided with a plurality of magnetic pole parts distributed along the circumferential direction;
  • At least some of the magnetic pole portions have different sizes.
  • the magnetic sensor is a Hall sensor, and a plurality of the Hall sensors are evenly distributed along the circumferential direction.
  • the present application also proposes a storage medium, on which the position compensation program for the axial runout of the encoder is stored, and when the position compensation program for the axial runout of the encoder is executed by the processor, the position of the axial runout of the encoder is realized.
  • the steps of the compensation method, wherein the position compensation method for the axial runout of the encoder includes the following steps:
  • the target position information of the rotor disk is estimated.
  • the two first actual position information of the rotor disk on the first decoding area are obtained, and the target position information of the rotor disk is estimated according to the two first actual position information, which compensates the There will be installation errors during the assembly process and detection errors caused by the vibration generated during use, and the obtained target position information of the rotor disk is more accurate, thereby improving the measurement accuracy of the encoder.
  • FIG. 1 is a schematic diagram of an embodiment of an encoder provided by the present application.
  • Fig. 2 is a schematic bottom view of the rotor disk in Fig. 1;
  • Fig. 3 is a schematic top view of the stator disk in Fig. 1;
  • FIG. 4 is a schematic diagram of the hardware operating environment of the encoder axial runout position compensation device provided by the present application.
  • Fig. 5 is a schematic diagram of the first embodiment of the position compensation method for encoder axial runout provided by the present application
  • FIG. 6 is a schematic diagram of a second embodiment of the position compensation method for encoder axial runout provided by the present application.
  • FIG. 7 is a schematic diagram of a third embodiment of the position compensation method for encoder axial runout provided by the present application.
  • FIG. 8 is a schematic diagram of a fourth embodiment of the position compensation method for encoder axial runout provided by the present application.
  • FIG. 9 is a schematic diagram of a fifth embodiment of the position compensation method for encoder axial runout provided by the present application.
  • FIG. 10 is a schematic flowchart of an embodiment of a position compensation method for encoder axial runout provided by the present application.
  • FIG. 11 is a schematic diagram of the weight mapping relationship between two positions on a single decoding area provided by the present application.
  • Fig. 12 is a schematic diagram of a first embodiment of the present application in which the target position information of the rotor disk is estimated according to the two first actual position information;
  • FIG. 13 is a schematic diagram of a second embodiment of the present application in which the target position information of the rotor disk is estimated according to the two first actual position information.
  • label name label name 100 Encoder 211 Hall sensor 1 rotor disk 3 Position Compensation Device for Encoder Axial Runout 11 Magnetic pole 31 processor 11a first pole part 32 communication bus 11b second pole part 33 user interface 2 Stator plate 34 Network Interface twenty one magnetic sensor 35 memory
  • the directional indications are only used to explain the position in a certain posture (as shown in the attached figure). If the specific posture changes, the directional indication will also change accordingly.
  • An encoder is a device that compiles and converts signals or data into signal forms that can be used for communication, transmission and storage.
  • the rotary encoder can directly convert the measured angular displacement into a digital signal, and is widely used in automatic measurement and control systems.
  • higher and higher requirements are put forward for the monitoring of parameters including rotation speed and rotation direction.
  • some products have this function, their structure is generally complicated, assembly is difficult, and production costs are high. , low resolution.
  • an encoder which includes a stator disk and a rotor disk.
  • the encoder needs to be magnetized in the axial direction, and installation will occur during the assembly process of the encoder. Errors and vibrations generated during use will lead to changes in the axial distance between the stator disk and the rotor disk.
  • this application proposes an encoder.
  • the structure of the existing encoder is optimized. Improved measurement accuracy.
  • the encoder 100 includes a rotor disk 1 and a stator disk 2 .
  • the stator disk 2 is arranged coaxially with the rotor disk 1, and is located on the side of the rotor disk 1 where the magnetic pole part 11 is provided in the axial direction, and the rotor disk 1 can be opposite to the stator disk 2 Rotation, the stator disk 2 is provided with a plurality of magnetic sensors 21 distributed along the circumferential direction, and the plurality of magnetic sensors 21 are used to generate sensing signals by sensing changes in the magnetic field.
  • the magnetic sensor 21 has high sensitivity and good stability, is convenient for miniaturization and integration, and can improve measurement accuracy.
  • a plurality of magnetic pole parts 11 with different sizes are arranged on the rotor disk 1, and the coverage areas of the magnetic pole parts 11 on the circumference relative to the stator disk 2 are different.
  • the magnetic sensor 21 measures the magnitude and direction of the magnetic field generated during the process of cutting the magnetic induction lines and converts it into an electrical signal, so as to calculate the distance between the stator disk 2 and the rotor disk 1.
  • the relative rotation angle such a setting has compact structure and high efficiency, and can realize the encoding of the position angle.
  • the magnetic sensor 21 is a Hall sensor 211, and a plurality of the Hall sensors 211 are evenly distributed along the circumferential direction.
  • the Hall sensor 211 is a magnetic field sensor made according to the Hall effect, and is widely used It is widely used in industrial automation technology, detection technology and information processing.
  • the Hall coefficient measured by the Hall effect experiment can determine important parameters such as the conductivity type, carrier concentration, and carrier mobility of semiconductor materials.
  • the specific distribution form of the magnetic pole parts 11 is not limited.
  • the plurality of magnetic pole parts 11 include a plurality of first magnetic pole parts 11a and a plurality of second magnetic pole parts 11b arranged alternately Each of the first magnetic pole portions 11a and each of the second magnetic pole portions 11b have opposite polarities.
  • one of the first magnetic pole portion 11a and the second magnetic pole portion 11b is an N pole, and the other is an S pole, and the rotor disk 1 is distributed with alternately arranged N poles and S poles on the circumference.
  • the first magnetic pole portion 11a and the plurality of second magnetic pole portions 11b some of the first magnetic pole portions 11a have different sizes, or some of the second magnetic pole portions 11b have different sizes, or some of them have different sizes.
  • the sizes of the first magnetic pole part 11a and part of the second magnetic pole part 11b are different, or all of the above conditions exist, so the N poles and S poles are unevenly distributed on the circumference of the rotor disk 1, specifically, the The magnetic sensor 21 outputs an approximate rectangular wave signal, which can accurately sense the state.
  • magnetization may be performed in the form of a magnetic ring, or in the form of a magnetic block.
  • the rotor disk 1 has a magnetic ring
  • the magnetic ring is formed with a plurality of magnetic regions distributed along the circumferential direction of the rotor disk 1 to form a plurality of the first magnetic pole parts 11a and a plurality of the second magnetic pole parts 11b, so that only It is necessary to manufacture a single magnetic ring, and it is enough to charge the magnet on the magnetic ring.
  • the rotor disk 1 has a plurality of magnetic blocks arranged at intervals in the circumferential direction, and each of the magnetic blocks respectively forms a plurality of the first magnetic pole parts 11a and a plurality of the second magnetic pole parts 11b .
  • a plurality of the magnetic blocks are respectively processed and formed, and then installed on the rotor disk 1 to form a plurality of the first magnetic pole parts 11a and a plurality of the second magnetic pole parts 11b, so that the magnetization process is simplified , and the magnetic field boundary at the junction between the adjacent first magnetic pole portion 11a and the second magnetic pole portion 11b is obvious, reducing magnetic field distortion and making the magnetic density distribution in the circumferential direction of the rotor disk 1 better.
  • a spacer is provided between the adjacent first magnetic pole parts 11a and the second magnetic pole parts 11b, and the distance between the two magnetic blocks is not limited, for example, the two magnetic blocks
  • the distance between the magnetic blocks is relatively large, which is a large cut; the relative distance between the two magnetic blocks is small, which is a splicing seam, that is, the two magnetic blocks are laterally abutted together,
  • the distance between the two magnetic blocks can be adjusted according to actual needs.
  • the magnetism of the plurality of magnetic pole portions 11 is the same, the plurality of magnetic pole portions 11 are arranged at intervals, and the distances between at least some of the magnetic pole portions 11 are different. That is, the magnetic pole distribution on the entire circumference is a single magnetic pole, and the polarity of each magnetic pole portion 11 is N pole or S pole. Compared with the way of setting two magnetic poles, it can be understood that the corresponding S pole or N pole is left blank, and the length of the blank position is the corresponding length of the magnetic pole part 11. Such setting does not affect the magnetic sensor 21. The overall principle of position decoding, and the material saved.
  • the setting quantity of the magnetic pole parts 11 and the setting data of the magnetic sensor 21 are not limited, and can be set according to actual needs; for example, in this embodiment, the magnetic pole parts 11 are provided with 4 pairs, and the magnetic sensor 21 Can be set to 6.
  • the set quantity of the magnetic pole parts 11 and the set quantity of the magnetic sensors 21 can determine the set quantity of the decoding area of the encoder 100; Once the arrangement positions of the plurality of magnetic sensors 21 on the stator disk 2 are determined, the positions of the plurality of decoding regions can also be uniquely and accurately determined.
  • each decoding area is arranged in the order of decoding.
  • two decoding areas are defined, namely, the first decoding area and the second decoding area.
  • the first decoding area is the decoding area before the second decoding area. area, that is, the decoding information of the second decoding area is obtained first, and then the decoding information of the second decoding area is obtained.
  • the first decoding area and the second decoding area can be two adjacent decoding areas, and can also be set to be separated by several other decoding areas in the middle of the first decoding area and the second decoding area; it can also be set in In the previous decoding cycle, it is the same area as the first decoding area, and the two decoding cycles can be two adjacent decoding cycles, or other decoding cycles can be separated between the two decoding cycles.
  • FIG. 4 is a schematic structural diagram of a position compensation device 3 for axial runout of an encoder in a hardware operating environment according to an embodiment of the present application.
  • the position compensation device 3 for the axial runout of the encoder may include: a processor 31, such as a central processing unit 31 (Central Processing Unit, CPU), a communication bus 32, a user interface 33, a network interface 34, a memory 35.
  • the processor 31 includes a required position calculation unit, for example, the position calculation unit can measure the magnitude and direction of the magnetic field generated by the rotor disk 1 through the Hall sensor 211, and calculate the relative rotation angle between the stator disk 2 and the rotor disk 1 .
  • the communication bus 32 is used to realize connection communication between these components.
  • the user interface 33 may include a display screen (Display), an input unit such as a keyboard (Keyboard), and the optional user interface 33 may also include a standard wired interface and a wireless interface.
  • the network interface 34 may optionally include a standard wired interface and a wireless interface (such as a wireless fidelity (WIreless-FIdelity, WI-FI) interface).
  • the memory 35 may be a high-speed random access memory 35 (Random Access Memory, RAM) memory 35 , or a stable non-volatile memory 35 (Non-Volatile Memory, NVM), such as a disk memory 35 .
  • the memory 35 may also be a storage device independent of the aforementioned processor 31 .
  • FIG. 4 does not constitute a limitation on the position compensation device 3 for the axial runout of the encoder, and may include more or less components than those shown in the figure, or combine certain components, or different component arrangements.
  • the memory 35 as a storage medium may include an operating system, a network communication module, a user interface 33 module and a position compensation program for the axial runout of the encoder.
  • the network interface 34 is mainly used for data communication with the network server; the user interface 33 is mainly used for data interaction with the user; in this application, the encoder shaft
  • the processor 31 and memory 35 of the position compensation device 3 for runout can be set in the encoder 100, and the position compensation device 3 for the axial runout of the encoder calls the axial runout of the encoder stored in the memory 35 through the processor 31.
  • the encoder 100 includes a main body and a position compensating device 3 for axial runout of the encoder, the main body includes a stator disk 2 and a rotor disk 1 that rotates relative to the stator disk 2,
  • the rotor disk 1 and the stator disk 2 define a plurality of decoding areas, and the rotor disk 1 generates a magnetic field during its rotation, so that the stator disk 2 can sequentially detect each of the decoding areas.
  • FIG. 5 is a schematic diagram of the first embodiment of the encoder axial runout position compensation method provided by the present application.
  • the position compensation method for the axial runout of the encoder includes the following steps:
  • the stator disk 2 obtains detection information in the first decoding area, and the stator disk 2 is provided with a plurality of magnetic sensors 21, each of which is The sensors 21 can obtain detection information, corresponding to each of the decoding areas, there will be two detection information with better linearity, which can be used as sampling information, that is, two detection channels are used to obtain the detection information on the first decoding area.
  • the two first actual position information are distributed at intervals due to the axial runout of the stator and the rotor.
  • the target position information of the rotor disk 1 is between the two first actual position information, and any position between the two first actual position information may be directly selected as the rotor disk 1 position information.
  • the target position information of the disk 1, for example, the middle position of the two first actual position information.
  • a weighted average algorithm can also be used.
  • the target position information of the rotor disk 1 is calculated using a first preset algorithm, and the first preset algorithm includes a weighted average algorithm, that is, a weighted average algorithm is used Weight coefficients are assigned to the two pieces of first position information to finally obtain accurate rotor target position information.
  • a fixed weight coefficient such as 0.4 and 0.6
  • take 0.4 for the first actual position that has a smaller influence on the position so that the target position information of the rotor disk 1 It is biased towards the first actual position with a higher weight coefficient
  • other fixed weight coefficients may also be used.
  • the weight coefficient may also be queried according to the two first actual positions, that is, to obtain a dynamic weight coefficient, so that the target position information of the rotor disk 1 can be obtained more accurately.
  • the two first actual position information of the rotor disk 1 on the first decoding area are obtained, and the target position information of the rotor disk 1 is estimated according to the two first actual position information, and the coding is compensated.
  • the assembly process of the encoder 100 there will be installation errors and detection errors caused by the vibration generated during use, and the obtained target position information of the rotor disk 1 is more accurate, thereby improving the measurement accuracy of the encoder 100 .
  • FIG. 6 is a schematic diagram of a second embodiment of the encoder axial runout position compensation method provided by the present application.
  • step S10 obtaining the two first actual position information of the rotor disk 1 on the first decoding area specifically includes the following steps:
  • the two first detection information can be directly obtained by reading the sensing data of the two magnetic sensors 21, and the processor 31 in the axial runout position compensation device of the encoder 100 includes
  • the position calculation unit is provided with a decoding program, which can solve each detection signal obtained by sensing to obtain the corresponding position information. Therefore, when the position calculation unit receives the stator disk 2 in the first decoding When the two first detection information of the region are obtained, the first detection signal is solved to obtain the two first actual position information of the rotor disk 1 in the first decoding region.
  • FIG. 7 is a schematic diagram of a third embodiment of the encoder axial runout position compensation method provided by the present application.
  • step S20 calculating the target position information of the rotor disk 1 according to the two first actual position information, specifically includes the following steps:
  • the second position information of the rotor disk 1 in the second decoding area is acquired, and the predicted position information of the rotor disk 1 in the first decoding area is estimated according to the second position information, and according to The predicted position information and the two position weight mapping relationships corresponding to the first decoding area respectively obtain the weight coefficients corresponding to the two first actual position information, and according to the two first actual position information and the corresponding
  • the target position information of the rotor disk 1 is obtained by the weight coefficient, that is, according to the predicted position information, a dynamic weight coefficient is obtained, and the weight coefficient is allocated more accurately, which compensates for the occurrence of installation during the assembly process of the encoder 100. Due to errors and errors caused by vibrations generated during use, the obtained target position information of the rotor disk 1 is more accurate, thereby improving the measurement accuracy of the encoder 100 .
  • FIG. 8 is a schematic diagram of a fourth embodiment of the encoder axial runout position compensation method provided by the present application.
  • step S202 according to the second position information, the predicted position information of the rotor disk 1 in the first decoding area is estimated, which specifically includes the following steps:
  • the rotation speed of the rotor disk 1 relative to the stator disk 2 can be estimated; and through the rotation speed, it can be further estimated Predicted position information of the rotor disk 1 in the first decoding area.
  • the second preset algorithm is used to determine the rotational speed of the rotor disk 1 relative to the stator disk 2, and the second preset algorithm includes a differential algorithm or a phase-locked loop algorithm, and the differential algorithm and the The phase-locked loop algorithm is a mature technology and will not be described here.
  • the second preset algorithm includes a differential algorithm or a phase-locked loop algorithm, and the differential algorithm and the The phase-locked loop algorithm is a mature technology and will not be described here.
  • other technologies can also be used to calculate the rotation angle of the rotor disk 1 relative to the stator disk 2 through position information, which will not be described in detail here.
  • the position compensation device for axial runout of the encoder 100 has pre-compiled the differential algorithm and/or phase-locked loop algorithm, and after the position compensation device for axial runout of the encoder 100 receives the second position information, it can directly The rotational speed of the rotor disk 1 relative to the stator disk 2 is obtained.
  • FIG. 9 is a schematic diagram of a fifth embodiment of the encoder axial runout position compensation method provided by the present application.
  • step S10 the step of obtaining the two first actual position information of the rotor disk 1 on the first decoding area, specifically include the following steps:
  • the detection information of the two sets of corresponding stator disks 2 and the position information of the rotor disk 1 of the encoder 100 on the first decoding area are acquired, and according to the two sets of corresponding stator disks 2 detection information and the distribution law of the position information of the rotor disk 1, assign weight coefficients to the rotor disk 1 on different position information respectively, so as to respectively obtain two position weight mapping relationships corresponding to the first decoding area, when obtained
  • the corresponding weight coefficients can be correspondingly obtained in the two position weight mapping relationships, and the weight coefficients can be allocated more accurately, which compensates for the occurrence of The installation error and the vibration generated during use can cause detection errors, and the obtained target position information of the rotor disk 1 is more accurate, thereby improving the measurement accuracy of the encoder 100 .
  • stator disk 2 and the rotor disk 1 rotate relatively, and the rotor disk 1 generates a magnetic field during its rotation stroke for the stator disk 2 to sequentially detect each of the decoding areas;
  • the detection information of the two sets of corresponding stator disks 2 and the position information of the rotor disk 1 of the encoder 100 on the first decoding area are acquired, for example, by Obtain continuous data, and fit the above continuous data into two solid lines in the figure.
  • the implementation of the above two fittings may have different slope directions, for example, in Figure 12 , the slopes of the solid lines fitted by the continuous data of the two channels are opposite, for example, in Figure 13, the slopes of the solid lines fitted by the continuous data of the two channels are the same;
  • the weight coefficients of the different position information of the rotor disk 1 are respectively assigned to obtain two corresponding to the first decoding area.
  • the position weight mapping relationship as shown in the two curves q1 and q2 in Figure 11, the above-mentioned curves q1 and q2 can be a stepped linear relationship or a high-order relationship, and the above-mentioned relationships are all stored in the axial runout of the encoder In the position compensation device 3;
  • the predicted position information and the two position weight mapping relationships corresponding to the first decoding area respectively obtain the weight coefficients corresponding to the two first actual position information; that is, refer to FIG. 11 to obtain the predicted After the position information, the two intersection points of the vertical line perpendicular to the abscissa and the curves q1 and q2 respectively in said Figure 11 are two weight coefficients;

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

一种编码器及其轴向跳动的位置补偿方法、装置和存储介质,所述编码器(100)包括定子盘(2)和相对所述定子盘(2)转动的转子盘(1),所述转子盘(1)和所述定子盘(2)限定出多个解码区域,所述转子盘(1)在其转动行程中产生磁场,以供所述定子盘(2)依次对每一所述解码区域进行检测,多个所述解码区域包括第一解码区域;所述编码器(100)轴向跳动的位置补偿方法包括如下步骤:获取转子盘(1)在第一解码区域上两个第一实际位置信息;根据所述两个第一实际位置信息,推算转子盘(1)的目标位置信息。

Description

编码器及其轴向跳动的位置补偿方法、装置和存储介质
本申请要求于2021年8月20日申请的、申请号为202110964944.0的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及编码器技术领域,特别涉及一种编码器及其轴向跳动的位置补偿方法、装置和存储介质。
背景技术
编码器是将信号或数据进行编制、转换为可用以通讯、传输和存储的信号形式的设备。其中,旋转编码器可将被测的角位移直接转换成数字信号,在自动测控系统中有广泛的应用。但是随着工业自动化程度的不断提高,对包括旋转速度、旋转方向等参数的监测提出了越来越高的要求,部分产品虽然具备该功能,但结构一般也较为复杂,装配困难,制作成本高,分辨率低。
技术问题
针对传统的编码器的缺陷,发明人提出一种编码器,所述编码器包括定子盘和转子盘,对于该编码器需要在轴向上进行充磁,在编码器的组装过程中会出现安装误差以及在使用过程中产生的震动,均会导致定子盘和转子盘在轴向上的间距产生变化,因此,如何优化编码器,来减少上述变化对测量精度的影响是一个亟待解决的问题。
技术解决方案
为实现上述目的,本申请提出一种编码器轴向跳动的位置补偿方法,所述编码器包括定子盘和相对所述定子盘转动的转子盘,所述转子盘和所述定子盘限定出多个解码区域,所述转子盘在其转动行程中产生磁场,以供所述定子盘依次对每一所述解码区域进行检测,多个所述解码区域包括第一解码区域;
所述编码器轴向跳动的位置补偿方法包括如下步骤:
获取转子盘在第一解码区域上两个第一实际位置信息;
根据所述两个第一实际位置信息,推算转子盘的目标位置信息。
在一实施例中,所述获取转子盘在第一解码区域上两个第一实际位置信息的步骤包括:
获取定子盘在第一解码区域上的两个第一检测信息;
根据所述两个第一检测信息,分别解算转子盘在所述第一解码区域上的两个第一实际位置信息。
在一实施例中,所述根据所述两个第一实际位置信息,推算转子盘的目标位置信息的步骤中:采用第一预设算法推算转子盘的目标位置信息,所述第一预设算法包括加权平均算法。
在一实施例中,多个所述解码区域还包括第二解码区域,所述第二解码区域与所述第一解码区域为不同的解码区域或者所述第二解码区域与所述第一解码区域为处于不同检测周期上的同一解码区域;
所述根据所述两个第一实际位置信息,推算转子盘的目标位置信息的步骤包括:
获取所述转子盘在所述第二解码区域的第二位置信息;
根据所述第二位置信息,推算转子盘在所述第一解码区域的预测位置信息;
根据所述预测位置信息以及与所述第一解码区域对应的两个位置权重映射关系,分别获取所述两个第一实际位置信息对应的权重系数;
根据所述两个第一实际位置信息以及对应的所述权重系数获得转子盘的目标位置信息。
在一实施例中,所述根据所述第二位置信息,推算转子盘在所述第一解码区域的预测位置信息的步骤包括:
根据所述第二位置信息,确定所述转子盘相对所述定子盘的旋转速度;
根据所述旋转速度,推算所述转子盘在第一解码区域的预测位置信息。
在一实施例中,所述根据所述第二位置信息,确定所述转子盘相对所述定子盘的旋转速度的步骤中:
采用第二预设算法确定所述转子盘相对所述定子盘的旋转速度,所述第二预设算法包括微分算法或者锁相环算法。
在一实施例中,在所述获取转子盘在第一解码区域上两个第一实际位置信息的步骤之前还包括如下步骤:
在编码器调零时,获取编码器在第一解码区域上的两组对应的定子盘的检测信息以及转子盘的位置信息;
根据两组对应的定子盘的检测信息以及转子盘的位置信息的分布规律,分别赋予转子盘在不同位置信息上的权重系数,以分别获得与所述第一解码区域对应的两个位置权重映射关系。
本申请还提出一种编码器轴向跳动的位置补偿装置,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的编码器轴向跳动的位置补偿程序,所述编码器轴向跳动的位置补偿程序配置为实现编码器轴向跳动的位置补偿方法的步骤,其中,所述编码器轴向跳动的位置补偿方法包括如下步骤:
获取转子盘在第一解码区域上两个第一实际位置信息;
根据所述两个第一实际位置信息,推算转子盘的目标位置信息。
本申请还提出一种编码器,包括:
主体,所述主体包括定子盘和相对所述定子盘转动的转子盘,所述转子盘和所述定子盘限定出多个解码区域,所述转子盘在其转动行程中产生磁场,以供所述定子盘依次对每一所述解码区域进行检测,多个所述解码区域包括第一解码区域;以及,
编码器轴向跳动的位置补偿装置,所述编码器轴向跳动的位置补偿装置包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的编码器轴向跳动的位置补偿程序,所述编码器轴向跳动的位置补偿程序配置为实现编码器轴向跳动的位置补偿方法的步骤,其中,所述编码器轴向跳动的位置补偿方法包括如下步骤:
获取转子盘在第一解码区域上两个第一实际位置信息;
根据所述两个第一实际位置信息,推算转子盘的目标位置信息。
在一实施例中,所述转子盘设置有沿周向分布的多个磁极部;
其中,至少部分所述磁极部的尺寸不相同。
在一实施例中,所述磁传感器为霍尔传感器,多个所述霍尔传感器沿周向均匀分布。
本申请还提出一种存储介质,所述存储介质上存储有编码器轴向跳动的位置补偿程序,所述编码器轴向跳动的位置补偿程序被处理器执行时实现编码器轴向跳动的位置补偿方法的步骤,其中,所述编码器轴向跳动的位置补偿方法包括如下步骤:
获取转子盘在第一解码区域上两个第一实际位置信息;
根据所述两个第一实际位置信息,推算转子盘的目标位置信息。
有益效果
本申请的技术方案中,获取转子盘在第一解码区域上两个第一实际位置信息,根据所述两个第一实际位置信息,推算转子盘的目标位置信息,补偿了所述编码器的组装过程中会出现安装误差以及在使用过程中产生的震动对检测产生的误差,获得的所述转子盘的目标位置信息更精确,进而提高了所述编码器的测量精度。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来将,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。
图1为本申请提供的编码器的一实施例的示意图;
图2为图1中转子盘的仰视示意图;
图3为图1中定子盘的俯视示意图;
图4为本申请提供的编码器轴向跳动的位置补偿装置的硬件运行环境示意图;
图5为本申请提供的编码器轴向跳动的位置补偿方法的第一实施例的示意图;
图6为本申请提供的编码器轴向跳动的位置补偿方法的第二实施例的示意图;
图7为本申请提供的编码器轴向跳动的位置补偿方法的第三实施例的示意图;
图8为本申请提供的编码器轴向跳动的位置补偿方法的第四实施例的示意图;
图9为本申请提供的编码器轴向跳动的位置补偿方法的第五实施例的示意图;
图10为本申请提供的编码器轴向跳动的位置补偿方法的一实施例的流程示意图;
图11为本申请提供的单个解码区上的两个位置权重映射关系的示意图;
图12为本申请根据所述两个第一实际位置信息推算转子盘的目标位置信息的第一实施例的示意图;
图13为本申请根据所述两个第一实际位置信息推算转子盘的目标位置信息的第二实施例的示意图。
附图标号说明:
标号 名称 标号 名称
100 编码器 211 霍尔传感器
1 转子盘 3 编码器轴向跳动的位置补偿装置
11 磁极部 31 处理器
11a 第一磁极部 32 通信总线
11b 第二磁极部 33 用户接口
2 定子盘 34 网络接口
21 磁传感器 35 存储器
本申请目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
本发明的实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
需要说明,若本申请实施例中有涉及方向性指示(诸如上、下、左、右、前、后……),则该方向性指示仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。
另外,若本申请实施例中有涉及“第一”、“第二”等的描述,则该“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。另外,各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本申请要求的保护范围之内。
编码器是将信号或数据进行编制、转换为可用以通讯、传输和存储的信号形式的设备。其中,旋转编码器可将被测的角位移直接转换成数字信号,在自动测控系统中有广泛的应用。但是随着工业自动化程度的不断提高,对包括旋转速度、旋转方向等参数的监测提出了越来越高的要求,部分产品虽然具备该功能,但结构一般也较为复杂,装配困难,制作成本高,分辨率低。
针对传统的编码器的缺陷,发明人提出一种编码器,所述编码器包括定子盘和转子盘,对于该编码器需要在轴向上进行充磁,在编码器的组装过程中会出现安装误差以及在使用过程中产生的震动,均会导致定子盘和转子盘在轴向上的间距产生变化,鉴于此,本申请提出一种编码器,本申请中优化了现有编码器的结构,提高了测量的精度。
请参阅图1至图3,所述编码器100包括转子盘1和定子盘2。
所述定子盘2与所述转子盘1同轴设置,且处于所述转子盘1沿轴向上设有所述磁极部11的一侧,所述转子盘1可相对于所述定子盘2转动,所述定子盘2设有沿周向分布的多个磁传感器21,多个所述磁传感器21用于通过感测磁场变化产生感测信号。
即所述转子盘1转动时,所述转子盘1的磁场会发生变化,进而使得所述磁传感器21所处的磁场发生变化,通过所述磁传感器21的测量即可获得转动的角度。
所述磁传感器21的灵敏度较高、稳定性较好,且便于小型化、集成化,能够提高测量的精度。
进一步而言,在所述转子盘1上设置多个尺寸大小不同的磁极部11,所述磁极部11在圆周上相对所述定子盘2的覆盖面积不相同,在所述转子盘1相对于所述定子盘2转动时,通过所述磁传感器21在切割磁感线的过程中测量产生的磁场大小和方向并转换成电信号,解算出所述定子盘2与所述转子盘1之间的相对转角,如此设置结构紧凑,效率高,能够实现对位置角的编码。
一个实施例中,所述磁传感器21为霍尔传感器211,多个所述霍尔传感器211沿周向均匀分布,所述霍尔传感器211是根据霍尔效应制作的一种磁场传感器,被广泛地应用于工业自动化技术、检测技术及信息处理等方面。通过霍尔效应实验测定的霍尔系数,能够判断半导体材料的导电类型、载流子浓度及载流子迁移率等重要参数。
本申请的实施例中,不限制所述磁极部11的具体分布形式,一个实施例中,多个所述磁极部11包括交错设置的多个第一磁极部11a和多个第二磁极部11b,各所述第一磁极部11a和各所述第二磁极部11b的极性相反。
即所述第一磁极部11a和所述第二磁极部11b一者为N极,另一为S极,所述转子盘1在圆周上分布着交错设置的N极和S极,由于多个所述第一磁极部11a和多个所述第二磁极部11b中,存在部分所述第一磁极部11a的尺寸不同,或者存在部分所述第二磁极部11b的尺寸不相同,或者存在部分所述第一磁极部11a和部分所述第二磁极部11b的尺寸不同,或者以上情况均存在,因此N极和S极呈不均匀分布在所述转子盘1的圆周上,具体的,所述磁传感器21输出近似矩形波信号,能够精确的感测状态。
在上述的实施例中,可以是采用磁环的形式进行充磁,也可以是采用磁块的形式,具体而言,采用磁环充磁的实施例中,所述转子盘1具有一磁环,所述磁环上形成有多个沿着所述转子盘1的周向分布的磁区,以形成多个所述第一磁极部11a和多个所述第二磁极部11b,如此设置,只需要制造单一的磁环,在磁环上充磁即可。
在另一个实施例中,所述转子盘1具有多个沿周向间隔设置的磁块,各所述磁块分别形成多个所述第一磁极部11a和多个所述第二磁极部11b。
即分别加工成型多个所述磁块,然后安装至所述转子盘1上,以分别形成多个所述第一磁极部11a和多个所述第二磁极部11b,使得充磁工艺简单化,且相邻的所述第一磁极部11a和所述第二磁极部11b之间的交界处的磁场分界明显,减少磁场畸变,使得所述转子盘1的周向上的磁密度分布较好。
一个实施例中,相邻的所述第一磁极部11a和所述第二磁极部11b之间设有间隔区,两个所述磁块之间的间距不受限制,如,两个所述磁块之间的间距相对较大,为一个大的切口;两个所述磁块之间的相对间距较小,为一个拼接缝,即将两个所述磁块侧向抵接在一起,上述的两个实施例中,均可以根据实际需要调整两个所述磁块之间的间距大小。
在其他实施例中,多个所述磁极部11的磁性相同,多个所述磁极部11间隔设置,且至少部分所述磁极部11之间的间距不相同。即整个圆周上的磁极分布均为单磁极,各所述磁极部11的极性为N极或者S极。相对于设置两种磁极的方式,可以理解为对应的S极或者N极进行留空处理,留空位置的长度即对应的所述磁极部11的长度,如此设置不影响所述磁传感器21进行位置解码的整体原理,并且节省的材料。
所述磁极部11的设置数量和所述磁传感器21的设置数据均不做限制,可以根据实际需要进行设置;例如本实施例中,所述磁极部11设有4对,所述磁传感器21可以设置为6个。
所述磁极部11的设置数量以及所述磁传感器21的设置数量,可确定出所述编码器100的解码区域的设置数量;而多个所述磁极部11在转子盘1上的布设位置和多个所述磁传感器21在定子盘2上的布设位置一经确定,多个所述解码区域的位置也可唯一且准确地确定出。
所述转子盘1相对所述定子盘2转动时,所述转子盘1产生磁场,所述定子盘2上的各传感器依次对各解码区域进行感测。为便于理解,定义各解码区域按照先后解码顺序进行排列,在本申请中定义了两个解码区域,即第一解码区域和第二解码区域,第一解码区域为位于第二解码区域之前的解码区域,即先获得第二解码区的解码信息,然后再获得第二解码区的解码信息。
具体而言,所述第一解码区域和第二解码区域可以是相邻的两个解码区域,也可以设置为第一解码区域与第二解码区域的中间间隔若干其他解码区域;也可以设置在前一个解码周期内与所述第一解码区域为相同的区域,两个解码周期可以是邻近的两个解码周期,也可以在两个所述解码周期内间隔其他的解码周期,以上均是本申请的实施例。
参照图4,图4为本申请实施例方案涉及的硬件运行环境的编码器轴向跳动的位置补偿装置3的结构示意图。
如图4所示,该编码器轴向跳动的位置补偿装置3可以包括:处理器31,例如中央处理器31(Central Processing Unit,CPU),通信总线32、用户接口33,网络接口34,存储器35。其中,处理器31包括所需的例如位置解算单元,位子解算单元可通过霍尔传感器211测量转子盘1产生的磁场大小和方向,解算出定子盘2与转子盘1之间的相对转角。通信总线32用于实现这些组件之间的连接通信。用户接口33可以包括显示屏(Display)、输入单元比如键盘(Keyboard),可选用户接口33还可以包括标准的有线接口、无线接口。网络接口34可选的可以包括标准的有线接口、无线接口(如无线保真(WIreless-FIdelity,WI-FI)接口)。存储器35可以是高速的随机存取存储器35(Random Access Memory,RAM)存储器35,也可以是稳定的非易失性存储器35(Non-Volatile Memory,NVM),例如磁盘存储器35。存储器35可选的还可以是独立于前述处理器31的存储装置。
本领域技术人员可以理解,图4中示出的结构并不构成对编码器轴向跳动的位置补偿装置3的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
如图4所示,作为一种存储介质的存储器35中可以包括操作系统、网络通信模块、用户接口33模块以及编码器轴向跳动的位置补偿程序。
在图4所示的编码器轴向跳动的位置补偿装置3中,网络接口34主要用于与网络服务器进行数据通信;用户接口33主要用于与用户进行数据交互;本申请中,编码器轴向跳动的位置补偿装置3的处理器31、存储器35可以设置在编码器100中,所述编码器轴向跳动的位置补偿装置3通过处理器31调用存储器35中存储的编码器轴向跳动的位置补偿程序,并执行本申请实施例提供的编码器轴向跳动的位置补偿方法。
基于上述编码器100的结构,具体例如,所述编码器100包括主体和编码器轴向跳动的位置补偿装置3,所述主体包括定子盘2和相对所述定子盘2转动的转子盘1,所述转子盘1和所述定子盘2限定出多个解码区域,所述转子盘1在其转动行程中产生磁场,以供所述定子盘2依次对每一所述解码区域进行检测。
参照图5,图5为本申请提供的编码器轴向跳动的位置补偿方法的第一实施例的示意图;
请同时结合图10,本实施例中,所述编码器轴向跳动的位置补偿方法包括如下步骤:
S10、获取转子盘1在第一解码区域上两个第一实际位置信息;
可以理解的是,当所述编码器100开始工作时,所述定子盘2在所述第一解码区获得检测信息,所述定子盘2上设有多个磁传感器21,每个所述磁传感器21均可获得检测信息,对应每一所述解码区上,会有两个线性度较好的检测信息,可以作为采样信息,即为采用两个检测通道获取所述第一解码区域上的两个第一实际位置信息,由于所述定子和所述转子存在轴向上的跳动,所述两个第一实际位置信息是间隔分布的。
S20、根据所述两个第一实际位置信息,推算转子盘1的目标位置信息。
可以理解的是,所述转子盘1的目标位置信息处于所述两个第一实际位置信息之间,可以是直接选取所述两个第一实际位置信息之间的任意一个位置为所述转子盘1的目标位置信息,如,所述两个第一实际位置信息的中间位置。
在其他的实施例中,还可以采用加权平均算法,具体而言,采用第一预设算法推算转子盘1的目标位置信息,所述第一预设算法包括加权平均算法,即采用加权平均算法对所述两个第一位置信息分配权重系数,最终来获取精确的转子目标位置信息。
如取一个固定的权重系数,如,0.4和0.6,对位置影响较大的第一实际位置取0.6,对位置影响较小的第一实际位置取0.4,使得所述转子盘1的目标位置信息偏向于权重系数较高的第一实际位置,当然,还可以是其他的固定的权重系数。
在其他的实施例中,还可以是根据所述两个第一实际位置查询权重系数,即为取动态的权重系数,可以更精确地获得所述转子盘1的目标位置信息。
本申请的技术方案中,获取转子盘1在第一解码区域上两个第一实际位置信息,根据所述两个第一实际位置信息,推算转子盘1的目标位置信息,补偿了所述编码器100的组装过程中会出现安装误差以及在使用过程中产生的震动对检测产生的误差,获得的所述转子盘1的目标位置信息更精确,进而提高了所述编码器100的测量精度。
参照图6,图6为本申请提供的编码器轴向跳动的位置补偿方法的第二实施例的示意图;
请同时结合图10,本实施例中,在步骤S10、获取转子盘1在第一解码区域上两个第一实际位置信息中,具体包括如下步骤:
S101、获取定子盘2在第一解码区域上的两个第一检测信息;
S102、根据所述两个第一检测信息,分别解算转子盘1在所述第一解码区域上的两个第一实际位置信息;
在本实施例中,所述两个第一检测信息可直接通过读取两个所述磁传感器21的感测数据获得,所述编码器100的轴向跳动位置补偿装置中的处理器31包括位置解算单元,位置解算单元设有解码程序,能够对感测获得的每一检测信号进行解算,获得对应的位置信息,因此,当位置解算单元接收到定子盘2在第一解码区域的两个第一检测信息时,对第一检测信号进行解算,可获得转子盘1在所述第一解码区域的两个第一实际位置信息。
参照图7,图7为本申请提供的编码器轴向跳动的位置补偿方法的第三实施例的示意图;
请同时结合图10,本实施例中,在步骤S20、根据所述两个第一实际位置信息,推算转子盘1的目标位置信息中,具体包括如下步骤:
S201、获取所述转子盘1在所述第二解码区域的第二位置信息;
S202、根据所述第二位置信息,推算转子盘1在所述第一解码区域的预测位置信息;
S203、根据所述预测位置信息以及与所述第一解码区域对应的两个位置权重映射关系,分别获取所述两个第一实际位置信息对应的权重系数;
S204、根据所述两个第一实际位置信息以及对应的所述权重系数获得转子盘1的目标位置信息;
在本实施例中,获取所述转子盘1在所述第二解码区域的第二位置信息,根据所述第二位置信息,推算转子盘1在所述第一解码区域的预测位置信息,根据所述预测位置信息以及与所述第一解码区域对应的两个位置权重映射关系,分别获取所述两个第一实际位置信息对应的权重系数,根据所述两个第一实际位置信息以及对应的所述权重系数获得转子盘1的目标位置信息,即根据所述预测位置信息,获得了动态的权重系数,更精确地分配权重系数,补偿了所述编码器100的组装过程中会出现安装误差以及在使用过程中产生的震动对检测产生的误差,获得的所述转子盘1的目标位置信息更精确,进而提高了所述编码器100的测量精度。
参照图8,图8为本申请提供的编码器轴向跳动的位置补偿方法的第四实施例的示意图;
请同时结合图10,本实施例中,在步骤S202、根据所述第二位置信息,推算转子盘1在所述第一解码区域的预测位置信息中,具体包括如下步骤:
S2021、根据所述第二位置信息,确定所述转子盘1相对所述定子盘2的旋转速度;
S2022、根据所述旋转速度,推算所述转子盘1在第一解码区域的预测位置信息;
在本实施例中,由于各解码区域的相对位置关系确定,根据所述第二位置信息,可以估算出转子盘1相对定子盘2的旋转速度;而通过所所述旋转速度,即可进一步推算所述转子盘1在第一解码区域的预测位置信息。
可以理解的是,采用第二预设算法确定所述转子盘1相对所述定子盘2的旋转速度,所述第二预设算法包括微分算法或者锁相环算法,所述微分算法和所述锁相环算法均为成熟技术,此处不做赘述。当然,还可以应用其他技术来通过位置信息计算转子盘1相对定子盘2的旋转角度,此处同样不做一一详述。所述编码器100的轴向跳动的位置补偿装置预先编译好所述微分算法和/或锁相环算法,在编码器100的轴向跳动的位置补偿装置接收到第二位置信息后,可直接获得所述转子盘1相对所述定子盘2的旋转速度。
参照图9,图9为本申请提供的编码器轴向跳动的位置补偿方法的第五实施例的示意图;
请同时结合图10以及图11,本实施例中,在步骤S10、获取转子盘1在第一解码区域上两个第一实际位置信息的步骤之前,具体包括如下步骤:
S301、在编码器100调零时,获取编码器100在第一解码区域上的两组对应的定子盘2的检测信息以及转子盘1的位置信息;
S302、根据两组对应的定子盘2的检测信息以及转子盘1的位置信息的分布规律,分别赋予转子盘1在不同位置信息上的权重系数,以分别获得与所述第一解码区域对应的两个位置权重映射关系;
在本实施例中,在编码器100调零时,获取编码器100在第一解码区域上的两组对应的定子盘2的检测信息以及转子盘1的位置信息,根据两组对应的定子盘2的检测信息以及转子盘1的位置信息的分布规律,分别赋予转子盘1在不同位置信息上的权重系数,以分别获得与所述第一解码区域对应的两个位置权重映射关系,当获得所述第一解码区对应的预测位置信息时,即可对应在两个位置权重映射关系中获得对应的权重系数,更精确地分配权重系数,补偿了所述编码器100的组装过程中会出现安装误差以及在使用过程中产生的震动对检测产生的误差,获得的所述转子盘1的目标位置信息更精确,进而提高了所述编码器100的测量精度。
以下结合图10至图13详细阐述本申请提供的编码器轴向跳动的位置补偿方法的检测过程:
所述定子盘2和所述转子盘1相对转动,所述转子盘1在其转动行程中产生磁场,以供所述定子盘2依次对每一所述解码区域进行检测;
1、请参阅图12以及图13,在编码器100调零时,获取编码器100在第一解码区域上的两组对应的定子盘2的检测信息以及转子盘1的位置信息,如,通过获取连续的数据,将上述的连续数据拟合成如图中的两条实线,针对不同的解码区域,上述的两条拟合的实现会存在斜率方向不同的场合,如,在图12中,两个通道的连续数据拟合的实线的斜率相反,如,图13中,两个通道的连续数据拟合的实线的斜率相同;
根据两组对应的定子盘2的检测信息以及转子盘1的位置信息的分布规律,分别赋予转子盘1在不同位置信息上的权重系数,以分别获得与所述第一解码区域对应的两个位置权重映射关系,如图11中的两个曲线q1和q2,上述的曲线q1和q2可以是阶梯线性关系也可以是高阶关系,且上述的关系均存储于所述编码器轴向跳动的位置补偿装置3中;
2、获取所述转子盘1在所述第二解码区域的第二位置信息;
3、根据所述第二位置信息,确定所述转子盘1相对所述定子盘2的旋转速度;
4、根据所述旋转速度,推算所述转子盘1在第一解码区域的预测位置信息;
5、根据所述预测位置信息以及与所述第一解码区域对应的两个位置权重映射关系,分别获取所述两个第一实际位置信息对应的权重系数;即参阅图11,获得所述预测位置信息后,在所述图11中做垂直于横坐标的铅垂线分别与曲线q1和q2的两个交点即为两个权重系数;
6、根据所述两个第一实际位置信息以及对应的所述权重系数获得转子盘1的目标位置信息,即对应分别为图12以及图13中的两个目标位置。
以上所述仅为本申请的可选实施例,并非因此限制本申请的专利范围,凡是在本申请的发明构思下,利用本申请说明书及附图内容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本申请的专利保护范围内。

Claims (12)

  1. 一种编码器轴向跳动的位置补偿方法,其中,所述编码器包括定子盘和相对所述定子盘转动的转子盘,所述转子盘和所述定子盘限定出多个解码区域,所述转子盘在其转动行程中产生磁场,以供所述定子盘依次对每一所述解码区域进行检测,多个所述解码区域包括第一解码区域;
    所述编码器轴向跳动的位置补偿方法包括如下步骤:
    获取转子盘在第一解码区域上两个第一实际位置信息;
    根据所述两个第一实际位置信息,推算转子盘的目标位置信息。
  2. 如权利要求1所述的编码器轴向跳动的位置补偿方法,其中,所述获取转子盘在第一解码区域上两个第一实际位置信息的步骤包括:
    获取定子盘在第一解码区域上的两个第一检测信息;
    根据所述两个第一检测信息,分别解算转子盘在所述第一解码区域上的两个第一实际位置信息。
  3. 如权利要求1所述的编码器轴向跳动的位置补偿方法,其中,所述根据所述两个第一实际位置信息,推算转子盘的目标位置信息的步骤中:
    采用第一预设算法推算转子盘的目标位置信息,所述第一预设算法包括加权平均算法。
  4. 如权利要求3所述的编码器轴向跳动的位置补偿方法,其中,多个所述解码区域还包括第二解码区域,所述第二解码区域与所述第一解码区域为不同的解码区域或者所述第二解码区域与所述第一解码区域为处于不同检测周期上的同一解码区域;
    所述根据所述两个第一实际位置信息,推算转子盘的目标位置信息的步骤包括:
    获取所述转子盘在所述第二解码区域的第二位置信息;
    根据所述第二位置信息,推算转子盘在所述第一解码区域的预测位置信息;
    根据所述预测位置信息以及与所述第一解码区域对应的两个位置权重映射关系,分别获取所述两个第一实际位置信息对应的权重系数;
    根据所述两个第一实际位置信息以及对应的所述权重系数获得转子盘的目标位置信息。
  5. 如权利要求4所述的编码器轴向跳动的位置补偿方法,其中,所述根据所述第二位置信息,推算转子盘在所述第一解码区域的预测位置信息的步骤包括:
    根据所述第二位置信息,确定所述转子盘相对所述定子盘的旋转速度;
    根据所述旋转速度,推算所述转子盘在第一解码区域的预测位置信息。
  6. 如权利要求5所述的编码器轴向跳动的位置补偿方法,其中,所述根据所述第二位置信息,确定所述转子盘相对所述定子盘的旋转速度的步骤中:
    采用第二预设算法确定所述转子盘相对所述定子盘的旋转速度,所述第二预设算法包括微分算法或者锁相环算法。
  7. 如权利要求4所述的编码器轴向跳动的位置补偿方法,其中,在所述获取转子盘在第一解码区域上两个第一实际位置信息的步骤之前还包括如下步骤:
    在编码器调零时,获取编码器在第一解码区域上的两组对应的定子盘的检测信息以及转子盘的位置信息;
    根据两组对应的定子盘的检测信息以及转子盘的位置信息的分布规律,分别赋予转子盘在不同位置信息上的权重系数,以分别获得与所述第一解码区域对应的两个位置权重映射关系。
  8. 一种编码器轴向跳动的位置补偿装置,其中,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的编码器轴向跳动的位置补偿程序,所述编码器轴向跳动的位置补偿程序配置为实现如权利要求1至7中任一项所述的编码器轴向跳动的位置补偿方法的步骤。
  9. 一种编码器,其中,所述编码器包括:
    主体,所述主体包括定子盘和相对所述定子盘转动的转子盘,所述转子盘和所述定子盘限定出多个解码区域,所述转子盘在其转动行程中产生磁场,以供所述定子盘依次对每一所述解码区域进行检测,多个所述解码区域包括第一解码区域;以及,
    如权利要求8所述的编码器轴向跳动的位置补偿装置。
  10. 如权利要求9所述的编码器,其中,所述转子盘设置有沿周向分布的多个磁极部;
    其中,至少部分所述磁极部的尺寸不相同。
  11. 如权利要求10所述的编码器,其中,所述磁传感器为霍尔传感器,多个所述霍尔传感器沿周向均匀分布。
  12. 一种存储介质,其中,所述存储介质上存储有编码器轴向跳动的位置补偿程序,所述编码器轴向跳动的位置补偿程序被处理器执行时实现如权利要求1至7任一项所述的编码器轴向跳动的位置补偿方法的步骤。
PCT/CN2021/119408 2021-08-20 2021-09-18 编码器及其轴向跳动的位置补偿方法、装置和存储介质 WO2023019677A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110964944.0 2021-08-20
CN202110964944.0A CN115900776A (zh) 2021-08-20 2021-08-20 编码器及其轴向跳动的位置补偿方法、装置和存储介质

Publications (1)

Publication Number Publication Date
WO2023019677A1 true WO2023019677A1 (zh) 2023-02-23

Family

ID=85239777

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/119408 WO2023019677A1 (zh) 2021-08-20 2021-09-18 编码器及其轴向跳动的位置补偿方法、装置和存储介质

Country Status (2)

Country Link
CN (1) CN115900776A (zh)
WO (1) WO2023019677A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070113682A1 (en) * 2005-10-04 2007-05-24 Stefan Ehrlich Device for determining the actual reversal of the direction of rotation of a reversing rotational drive
CN101576397A (zh) * 2008-12-11 2009-11-11 联合汽车电子有限公司 非接触式数字信号档位传感器及其使用方法
CN104160248A (zh) * 2012-03-08 2014-11-19 瑞尼斯豪公司 磁性编码器设备
CN105318897A (zh) * 2014-05-29 2016-02-10 日本电产三协株式会社 编码器
CN105492869A (zh) * 2013-07-12 2016-04-13 Trw有限公司 旋转编码器
US20170254666A1 (en) * 2016-03-03 2017-09-07 Hitachi Metals, Ltd. Rotation angle sensor and correction method for the same
WO2019159311A1 (ja) * 2018-02-16 2019-08-22 株式会社五十嵐電機製作所 Dcモータの制御装置
CN113124910A (zh) * 2020-01-14 2021-07-16 株式会社三丰 旋转编码器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070113682A1 (en) * 2005-10-04 2007-05-24 Stefan Ehrlich Device for determining the actual reversal of the direction of rotation of a reversing rotational drive
CN101576397A (zh) * 2008-12-11 2009-11-11 联合汽车电子有限公司 非接触式数字信号档位传感器及其使用方法
CN104160248A (zh) * 2012-03-08 2014-11-19 瑞尼斯豪公司 磁性编码器设备
CN105492869A (zh) * 2013-07-12 2016-04-13 Trw有限公司 旋转编码器
CN105318897A (zh) * 2014-05-29 2016-02-10 日本电产三协株式会社 编码器
US20170254666A1 (en) * 2016-03-03 2017-09-07 Hitachi Metals, Ltd. Rotation angle sensor and correction method for the same
WO2019159311A1 (ja) * 2018-02-16 2019-08-22 株式会社五十嵐電機製作所 Dcモータの制御装置
CN113124910A (zh) * 2020-01-14 2021-07-16 株式会社三丰 旋转编码器

Also Published As

Publication number Publication date
CN115900776A (zh) 2023-04-04

Similar Documents

Publication Publication Date Title
US10041780B2 (en) Position sensor
US8884611B2 (en) Angle sensor and method for determining an angle between a sensor system and a magnetic field
CN110793430B (zh) 绝对电角度检测方法、系统及计算机可读存储介质
CN108871181B (zh) 一种多对极磁电编码器动态多窗口区间预测角度细分方法
JP2003075108A (ja) 回転角度センサ
US6384405B1 (en) Incremental rotary encoder
US20220404171A1 (en) Linear displacement absolute position encoder
WO2008053581A1 (fr) Capteur de rotation et palier équipé dudit capteur de rotation
JP6352540B2 (ja) 検出装置、回転角度検出装置、検出方法、およびプログラム
JP5176208B2 (ja) 回転角度検出方法および回転角度センサ
WO2021128419A1 (zh) 磁编码器、绝对电角度检测方法、系统及可读存储介质
Jia et al. Small-sized visual angular displacement measurement technology
JP2007155516A (ja) 回転角度検出装置の温度特性補正方法および回転角度検出装置
WO2023019677A1 (zh) 编码器及其轴向跳动的位置补偿方法、装置和存储介质
CN103591874B (zh) 用标准块实现极坐标齿轮测量中心零点标定的方法
US5596189A (en) Measuring system for determining transverse deflection of a rotary shaft
CN114938164A (zh) 一种基于线性霍尔传感器的编码器装置及容错控制方法
US20080218159A1 (en) Sensor System For Determining a Position or a Rotational Speed of an Object
WO2019200659A1 (zh) 一种无刷直流电机测角测速装置及方法
CN110044252A (zh) 一种用于检测轴转动角度的测量装置及测量方法
CN111982164B (zh) 多磁道扇区定位离轴绝对值编码器
CN113093068A (zh) 磁场方向探测方法及系统
CN107064540B (zh) 旋转检测设备
WO2023019679A1 (zh) 编码器及其位置补偿方法、装置和存储介质
KR20180114743A (ko) 앱솔루트 엔코더, 앱솔루트 엔코더의 직교 정현파의 룩업테이블 생성 방법 및 이를 이용한 절대각도 검출방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21953913

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE