WO2023019597A1 - 一种触觉传感设备、检测方法以及装置 - Google Patents

一种触觉传感设备、检测方法以及装置 Download PDF

Info

Publication number
WO2023019597A1
WO2023019597A1 PCT/CN2021/113908 CN2021113908W WO2023019597A1 WO 2023019597 A1 WO2023019597 A1 WO 2023019597A1 CN 2021113908 W CN2021113908 W CN 2021113908W WO 2023019597 A1 WO2023019597 A1 WO 2023019597A1
Authority
WO
WIPO (PCT)
Prior art keywords
contact
optical waveguides
optical
sensing device
force
Prior art date
Application number
PCT/CN2021/113908
Other languages
English (en)
French (fr)
Inventor
王史蒂文
刘宏斌
胡健
曹丹倩
倪刚
黄韬
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN202180100436.6A priority Critical patent/CN117693670A/zh
Priority to PCT/CN2021/113908 priority patent/WO2023019597A1/zh
Publication of WO2023019597A1 publication Critical patent/WO2023019597A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/24Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet

Definitions

  • the present application relates to the field of sensor design, in particular to a tactile sensing device, detection method and device.
  • Tactile sensors can restore tactile information to a large extent, improve the decision-making efficiency of the entire system, and ensure the orderly and safe interaction process.
  • tactile sensors generally include capacitive tactile sensors, inductive tactile sensors, piezoresistive tactile sensors, piezoelectric tactile sensors, and the like.
  • a single contact point of these tactile sensors can usually only detect forces acting in the normal direction on that contact point. How to realize the decoupling detection of the force acting on the contact in different directions through a single contact and provide a reliable data basis for the completion of precise control needs to be solved urgently.
  • Embodiments of the present application provide a tactile sensing device, detection method, and device, which can decouple and detect the force acting on the contact in different directions through a single contact, and provide a reliable data basis for the completion of precise control .
  • an embodiment of the present application provides a tactile sensing device, including: a light source, a plurality of optical waveguides, a photoelectric sensing device, and contacts.
  • the optical waveguide may include a waveguide layer and a cladding layer.
  • the cladding layer wraps the waveguide layer.
  • the refractive index of the waveguide layer is greater than that of the cladding layer. This is to ensure that the transmission of the optical signal emitted by the light source in the optical waveguide meets the conditions of total reflection.
  • a light source is arranged at the input end of each optical waveguide, and a photoelectric sensing device is arranged at the output end of each optical waveguide.
  • the light source may be a light emitting diode or infrared light, which is not limited in this embodiment of the present application.
  • the multiple optical waveguides described here may be part or all of the optical waveguides of the tactile sensing device, which is not limited in this embodiment of the present application.
  • a plurality of optical waveguides surrounds a contact, and a contact contacts each optical waveguide.
  • the contacts may be in contact with most areas of each optical waveguide, or contact with a small area of each optical waveguide.
  • the multiple optical waveguides deform.
  • each optical waveguide in the multiple optical waveguides deforms.
  • the photoelectric sensing device acquires the optical signal transmitted by each optical waveguide, and the change amount of the optical signal transmitted by each optical waveguide is used to detect the contact force.
  • the multiple optical waveguides surrounding the contact and in contact with the contact produce different deformations.
  • the total reflection condition of the optical waveguide will be destroyed, and the optical signal transmitted in the optical waveguide will be lost.
  • the tactile sensing device provided in the first aspect can be based on the amount of change in light flux of the multiple optical waveguides and This mapping relationship realizes the decoupling detection of the force acting on a single contact in the normal direction and tangential direction, and provides a reliable data basis for the completion of precise control.
  • the contact is polygonal, and each side of the contact contacts an optical waveguide.
  • a contact with a specific shape is provided, which can make each side of the contact fully contact with each optical waveguide, the optical waveguide around the contact fully surrounds the contact, and the The optical waveguide can fully feel the force acting on the contact point and improve the sensitivity of the tactile sensor.
  • the contacts are quadrangular or triangular.
  • a contact with a specific shape is provided, which can make each side of the contact fully contact with each optical waveguide, the optical waveguide around the contact fully surrounds the contact, and the The optical waveguide can fully feel the force acting on the contact point and improve the sensitivity of the tactile sensor.
  • the contour of the contacts is arc-shaped.
  • a contact with a specific shape is provided, which increases the diversity of structures.
  • the outline of the contacts is circular or elliptical.
  • a contact with a specific shape is provided, which increases the diversity of structures.
  • the area between the optical waveguide from the input end to the contact position is an arc structure
  • the contact position is a position where the optical waveguide is in contact with the contact.
  • the optical waveguide is designed to be a gentle light guiding structure from the input end to the contact position, so as to ensure that the optical signal emitted by the light source reaches the contact position with sufficient intensity to improve the sensitivity of the touch sensor.
  • the curvature of the arc is smaller than a first preset threshold.
  • the area between the optical waveguide from the input end to the contact position is a straight line structure, and the contact position is a position where the optical waveguide is in contact with the contact.
  • the optical waveguide is designed to be another gentle light guiding structure from the input end to the contact position, so as to ensure that the optical signal emitted by the light source has sufficient intensity when it reaches the contact position.
  • any at least two optical waveguides among the plurality of optical waveguides intersect.
  • the deviation between the included angle between the two intersecting optical waveguides and 90° is smaller than the second preset threshold.
  • the interference between optical signals transmitted by different optical waveguides is reduced as much as possible.
  • multiple optical waveguides are deployed on the same reference plane.
  • multiple optical waveguides are deployed on the same reference surface, which can further reduce the size of the touch sensor, specifically, the thickness of the touch sensor can be reduced. It should be noted that, in this implementation manner, all the optical waveguides may be deployed on the same reference plane, and some optical waveguides may also be deployed on the same reference plane.
  • the contact and the plurality of optical waveguides are disposed on the same reference plane.
  • multiple optical waveguides and contacts are deployed on the same reference plane, which can further reduce the size of the touch sensor, specifically, the thickness of the touch sensor can be reduced. It should be noted that, in this implementation manner, all the optical waveguides and contacts may be deployed on the same reference plane, or part of the optical waveguides and contacts may be deployed on the same reference plane.
  • the reference plane is a horizontal plane or an arc-shaped plane.
  • the multiple optical waveguides have a multiple-input multiple-output structure, wherein each optical waveguide may exclusively use a light source, or some optical waveguides may share one light source.
  • the multiple optical waveguides have a single-input multi-output (SIMO) structure, for example, one light source is provided at the input ends of all the optical waveguides.
  • SIMO single-input multi-output
  • all the optical waveguides can be single-input multiple-output SIMO structures.
  • This single-input-multiple-output structure requires only one light source, saving components. And the structure is more compact, saving space.
  • the contacts are flexible structures.
  • the tactile sensing device further includes a housing in which the light source, multiple optical waveguides, and photoelectric sensor devices are accommodated.
  • the target position of the housing is hollowed out, and the target position corresponds to where the contacts are located. Location.
  • the deviation of the macrobending losses of any two optical waveguides is within a preset range.
  • the number of contacts is not less than two.
  • the tactile sensor may include multiple contacts.
  • the embodiment of the present application provides a detection method, which is applied to the tactile sensor described in the first aspect or any possible implementation manner of the first aspect, and the method includes: through each photoelectric sensor device, Obtain the intensity of the optical signal transmitted by each optical waveguide. According to the change amount of the intensity of the optical signal transmitted by each optical waveguide and the first mapping relationship, the magnitude and direction of the contact force are obtained.
  • the first mapping relationship includes the magnitude of the force of the contact force along the direction of each coordinate axis, which is related to each optical waveguide. The mapping between the amount of change in the intensity of the transmitted optical signal.
  • the magnitude and direction of the contact force are obtained according to the variation of the intensity of the optical signal transmitted by each optical waveguide and the first mapping relationship, including: the first variation and the second variation
  • the deviation between the quantities is within the preset range
  • the direction of obtaining the contact force is perpendicular to the plane where the contact is located
  • the first variation and the second variation are the changes in the intensity of the optical signal transmitted by any two optical waveguides amount; according to the absolute value of the first change amount, the absolute value of the second change amount, and the first mapping relationship, the magnitude of the contact force is obtained.
  • each optical waveguide If the difference between each optical waveguide is very small, it can be considered that when there is a contact force on the contact, under the action of the contact force, the contact squeezes each optical waveguide to a similar degree, which in turn leads to a similar change in the luminous flux of each optical waveguide .
  • This situation usually occurs when the contact force acting on the contacts is only the force in the normal direction, and there is no force in the tangential direction. Therefore, if the difference between the individual optical waveguides is small, the contact force can be considered as a force in the normal direction.
  • the force along the z-axis direction can be obtained according to the variation of the luminous flux of each optical waveguide and the pre-acquired mapping relationship, and the force along the x-axis and y-axis directions can no longer be obtained, so as to reduce calculation Quantitative purpose.
  • the magnitude and direction of the contact force are obtained according to the variation of the intensity of the optical signal transmitted by each optical waveguide and the first mapping relationship, including: the first variation and the second variation The deviation between the quantities is not within the preset range.
  • the first mapping relationship the first variation and the second variation, the magnitude of the force of the contact force along the direction of each coordinate axis is obtained.
  • the first variation and the second variation are The change amount of the intensity of the optical signal transmitted by any two optical waveguides; the magnitude and direction of the contact force are obtained according to the magnitude of the force of the contact force along the direction of each coordinate axis.
  • each optical waveguide If the difference between each optical waveguide is very large, it can be considered that when there is a contact force on the contact, under the action of the contact force, the degree of extrusion of each optical waveguide by the contact is very different, which leads to the change of the luminous flux of each optical waveguide The degree varies widely. This usually occurs when the contact force acting on the contacts has a tangential force. Therefore, if the difference between the various optical waveguides is very large, it can be considered that there must be a force in the tangential direction in the contact force, and there may also be a force in the normal direction. Further, the magnitude of the force in the normal direction, and the magnitude and direction of the force in the tangential direction may be further obtained according to the amount of change in the luminous flux of each optical waveguide and the previously acquired mapping relationship.
  • a third aspect of the present application provides an electronic device, the electronic device has a tactile sensing device, and the tactile sensing device is the tactile sensor described in the first aspect or any possible implementation manner of the first aspect.
  • the electronic device is a surgical instrument
  • the electronic device may further include surgical forceps
  • the tactile sensing device may be deployed at the end of the surgical forceps
  • the contact force sensed by the tactile sensing device is used for Instruct the forceps to perform assigned tasks.
  • the electronic device may further include a display screen for displaying the magnitude of the contact force along the normal direction and the magnitude of the force along the tangential direction, so as to facilitate the user to make better use of the surgical instrument.
  • the electronic device may further include a processor, and the processor uses the contact force sensed by the tactile sensing device to perform specified tasks.
  • the electronic device is a manipulator, and the electronic device further includes a processor, and the processor uses the contact force sensed by the tactile sensing device to perform a specified task.
  • the electronic device is a worm robot, and the electronic device further includes a processor, and the processor uses the contact force sensed by the tactile sensing device to perform a designated task.
  • the electronic device is a steering wheel
  • the electronic device further includes a handle structure
  • the tactile sensing device is deployed on the surface of the handle structure
  • the processor uses the contact force sensed by the tactile sensing device to perform a specified task .
  • the fourth aspect of the present application provides a detection device, including one or more processors, one or more processors coupled with a memory, the memory stores a program, and when the program instructions stored in the memory are executed by the one or more processors, the The method described in the second aspect or any possible implementation manner of the second aspect.
  • a fifth aspect of the present application provides a computer-readable storage medium, including a program, which, when executed by a processing unit, executes the method described in the second aspect or any possible implementation manner of the second aspect.
  • FIG. 1 is a schematic diagram of an application scenario of a tactile sensing device provided by an embodiment of the present application
  • FIG. 2a is a schematic diagram of the principle of a tactile sensor provided in an embodiment of the present application.
  • Fig. 2b is a schematic diagram of the principle of a tactile sensor provided by the embodiment of the present application.
  • Fig. 2c is a schematic diagram of the principle of a tactile sensor provided in the embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of a tactile sensor provided in an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of another tactile sensor provided in an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of another tactile sensor provided in an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of another tactile sensor provided in an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of another tactile sensor provided in an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of another tactile sensor provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of another tactile sensor provided in the embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of another tactile sensor provided in the embodiment of the present application.
  • Fig. 11 is a schematic structural diagram of another tactile sensor provided by the embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of another tactile sensor provided in the embodiment of the present application.
  • Figure 13 is a schematic flow chart of the detection method provided by the embodiment of the present application.
  • Fig. 14 is a schematic diagram of the principle of a tactile sensor provided by the embodiment of the present application.
  • FIG. 15 is a schematic structural diagram of another tactile sensor provided in the embodiment of the present application.
  • Fig. 16 is a schematic structural diagram of another tactile sensor provided by the embodiment of the present application.
  • Fig. 17 is a schematic structural diagram of another tactile sensor provided by the embodiment of the present application.
  • FIG. 18 is a schematic diagram of a hardware structure of an electronic device provided by an embodiment of the present application.
  • the embodiment of the present application provides a tactile sensing device.
  • the contact is surrounded by a plurality of optical waveguides, and the change value of the luminous flux of the plurality of optical waveguides is used to realize the force acting on the contact, in the tangential direction and in the normal direction. Decoupling detection in the line direction.
  • a tactile sensor can also be called a tactile sensing device, and can be composed of a single or multiple tactile sensing units. Wherein, the tactile sensing unit is used for sensing the contact force acting on a single point. According to the number of tactile sensing units, tactile sensors can be divided into two categories: single-point tactile sensors and dot-matrix tactile sensors. Due to the integration of multiple tactile sensing units, the dot-matrix tactile sensor can detect contact force in more scenarios. Specifically, it can include a single touch that can act on the dot-matrix tactile sensor. Decouple detection on orientation and normal direction.
  • the force applied to the contact is called the force in the normal direction
  • the component of the force parallel to the direction of the contact surface is called the force in the tangential direction or tangential forces.
  • the embodiment of the present application provides a tactile sensor.
  • Each contact on the tactile sensor can achieve a single force acting on the contact, in the tangential direction and in the normal direction. Decoupling detection.
  • the solution provided by the embodiment of the present application integrates the ability to perceive the normal force and tangential force of the outside world into a single touch point, which greatly expands the information dimension provided by the single touch point.
  • the solutions provided by the embodiments of the present application may be applicable to various application scenarios, especially applicable to scenarios where sensors are deployed in a limited area and require simultaneous acquisition of normal force information and tangential force information. Exemplarily, the following describes several typical application scenarios.
  • the tactile sensor provided by the embodiment of the present application can be deployed on a manipulator.
  • a manipulator is an automatic operating device that can imitate certain movement functions of the human hand and arm to grab, carry objects or operate tools according to a fixed program. During the grasping process, the manipulator needs to sense the contact point between the manipulator and the grasped object, as well as the force acting on the contact point.
  • the tactile sensor provided in the embodiment of the present application integrates the normal force and tangential force sensing ability to the outside world into a single contact point, so that the manipulator deployed with the tactile sensor provided in the embodiment of the present application can sense the magnitude of the force at the contact point. At the same time, the direction of force can also be perceived.
  • the force in the normal direction and the force in the tangential direction can be sensed.
  • a typical application scenario is that when the manipulator grabs an object, it needs to consider the normal force and the tangential force at the same time, so as to ensure the stable grasp of the object and prevent the object from slipping.
  • the tactile sensor provided in the embodiment of the present application can be deployed on a worm robot.
  • the worm robot is a crawling robot, which is widely used in the medical field, strong electromagnetic interference field, coal mine field and so on.
  • the tactile sensor provided in the embodiment of the present application can be deployed on a worm robot, especially a miniature worm robot.
  • the worm robot deployed with the tactile sensor provided by the embodiment of the present application can obtain the normal force and the tangential force at the same time during the crawling process, and then can obtain the friction coefficient of the current crawling environment of the worm robot, and better adjust the crawling speed. Variable adjustment of the output power of the worm robot.
  • the tactile sensor provided in the embodiment of the present application may be deployed on a surgical instrument.
  • minimally invasive technology as an emerging medical technology, can effectively reduce surgical trauma, shorten postoperative time, and improve the success rate of surgery.
  • minimally invasive technology is favored by the industry and is considered to be one of the most promising development directions of medical technology.
  • smaller surgical wounds also bring higher operational technical challenges to doctors.
  • robots such as surgical instruments are being used, and the ends of surgical instruments are required to be flexible and able to perform precise operations.
  • the surgical instrument is a surgical forceps, it needs to rely on tangential force to implement an effective pulling operation.
  • the solution provided in the embodiment of the present application may also be deployed on a steering wheel or a seat of a vehicle. How to avoid the driver's driving error, reduce the occurrence of traffic accidents, and improve the transportation efficiency of the highway has always been a problem of continuous concern in the vehicle field.
  • a force in the tangential direction and a force in the normal direction are simultaneously generated. Deploying the tactile sensing device provided by the embodiment of the present application on the steering wheel can better sense the force exerted by the driver on the steering wheel, so as to judge whether the driver is in a fatigue driving state.
  • the change of the sitting posture may simultaneously generate the force in the tangential direction and the force in the normal direction.
  • Deploying the tactile sensor device provided by the embodiment of the present application on the seat can better perceive the driver's physiological indicators, and provide sensory data support for judging whether the driver is in fatigue driving.
  • the tactile sensing device provided in the embodiments of the present application can be applied to any device that needs to sense tactile information.
  • the tactile sensing device provided by the embodiment of the present application can also be deployed on the smart insole, because the tangential force is the guarantee for human beings to walk normally on the ground. By analyzing the force on the smart insole, it can detect whether the movement posture is correct, It can be used in rehabilitation treatment, daily training of athletes, design of shoes, etc.
  • An optical waveguide is a dielectric device that guides optical signals to propagate in it, also known as a dielectric optical waveguide.
  • the principle that an optical waveguide enables optical signals to propagate therein lies in the phenomenon of total reflection of optical signals.
  • the medium with the greater speed of light (the speed of light in the medium) is called the optically thinner medium, and the medium with the lower light speed is called the optically denser medium.
  • optically rarer media have a higher speed of light and a smaller absolute refractive index.
  • the optical waveguide includes a waveguide layer and a cladding layer
  • the cladding layer wraps the waveguide layer
  • the refractive index of the waveguide layer is greater than that of the cladding layer.
  • the cladding layer can directly wrap the waveguide layer, and the cladding layer can also indirectly wrap the waveguide layer, that is, other materials or media can be included between the cladding layer and the waveguide layer.
  • the cladding layer corresponds to the optically sparse medium
  • the waveguide layer corresponds to the optically dense medium.
  • the optical waveguide satisfies the condition of total reflection, but when a force is applied to the optical waveguide, or when the optical waveguide is deformed, the total reflection condition of the optical waveguide will be destroyed, and the optical signal transmitted in the optical waveguide will be lost. Therefore, in the embodiment of the present application, it is first conceived that by establishing a relationship between the contact and the optical waveguide, when a force is applied to the contact, the optical waveguide is subjected to force and deforms accordingly. By setting a photoelectric sensor at the output end of the optical waveguide, the force on the contact can be sensed, and by comparing the change in light flux obtained by the photoelectric sensor, the magnitude of the force on the contact can be obtained.
  • this solution can only obtain the force in one direction, and there is no way to obtain the force in the tangential direction and the force on the normal line at the same time, that is, this solution cannot achieve normal force and tangential force through a single contact decoupling detection.
  • the embodiment of the present application further conceives that a plurality of optical waveguides may be coordinated to achieve this purpose.
  • the embodiment of the present application finds that when multiple optical waveguides surround a contact, the contact is in contact with every optical waveguide. When the force of different directions and different magnitudes is used to act on the contact point, the multiple optical waveguides in contact with the contact point will produce different deformations.
  • the surrounding contacts of the 4 optical waveguides are arranged inside the quadrilateral, and when no force is applied to the contacts, the contacts and the 4 optical waveguides are in contact with each other.
  • the magnitude of the force along the positive direction of the y-axis is 1N
  • the magnitude of the force along the normal direction is 1N.
  • the deformation of the four optical waveguides is shown in Figure 2a.
  • the magnitude of the force along the positive direction of the y-axis is 1N
  • the magnitude of the force along the normal direction is 0N.
  • the deformation of the four optical waveguides is shown in Figure 2b.
  • the magnitude of the force along the positive direction of the y-axis is 0N
  • the magnitude of the force along the normal direction is 1N.
  • the deformation of the four optical waveguides is shown in Figure 2c.
  • the plane where the force-bearing surface of the contact is located is regarded as a plane composed of the x-axis and the y-axis, and the z-axis is perpendicular to this plane, which will not be repeated below.
  • the embodiment of the present application may also use other methods to establish the coordinate system.
  • the embodiment of the present application conceives that the force can be decomposed, for example, the force can be decomposed along each coordinate axis of the coordinate system. If the component of the force along the direction of each coordinate axis can be reflected by the variation of the luminous flux of multiple optical waveguides, the decoupling detection of the force in the tangential direction and the normal direction can be realized.
  • the embodiment of the present application does not limit which coordinate system is used. For example, the following uses a three-dimensional Cartesian coordinate system as an example for explanation.
  • the three-dimensional Cartesian coordinate system includes three coordinate axes of x-axis, y-axis and z-axis, it is necessary to obtain the components of the force along the directions of the three coordinate axes.
  • one optical waveguide is used to provide information in one dimension, and at least three optical waveguides need to change the luminous flux to accurately reflect the force along the three coordinates. Components in the axis direction.
  • mapping relationship between the variation of the luminous flux of the at least three optical waveguides and the components of the force along the directions of the three coordinate axes, and the variation of the luminous flux of the at least three optical waveguides can be With this mapping relationship, the decoupling detection of force in the normal direction and tangent direction is realized.
  • the mapping relationship can be obtained in various ways, such as through experiments, specifically simulation experiments or real experiments.
  • the visual sensing device in the embodiment of the present application can be constructed by mechanical simulation software (such as solidworks), including constructing the structural relationship between the at least three optical waveguides and the contacts.
  • the components of a force on each coordinate axis are set, and the simulation result can indicate the displacement generated by the stress position of each optical waveguide under the action of the force.
  • the displacement model after mechanical simulation is imported into optical simulation software (such as zemax) for optical simulation, and the simulation result indicates the amount of change in luminous flux after the displacement of the at least three optical waveguides at different stress positions.
  • the tactile sensing device provided in the embodiment of the present application will be specifically introduced in combination with specific implementation methods:
  • FIG. 3 it is a schematic structural diagram of a tactile sensing device provided by an embodiment of the present application.
  • a tactile sensing device provided by an embodiment of the present application may include a light source, an optical waveguide, a photoelectric sensing device, and contacts.
  • the light source can be shared or exclusive among multiple optical waveguides.
  • all optical waveguides may share one light source, as in the structure shown in FIG. 3 .
  • the tactile sensor only needs to include one light source, and the structure is simple, which is conducive to making a smaller-sized tactile sensor and can also save costs.
  • each optical waveguide may exclusively use the light source, as shown in the structure shown in FIG. 4 .
  • a light source may be provided at the input end of each optical waveguide, and each optical waveguide exclusively has one light source, and does not share the light source with other optical waveguides.
  • the optical signal emitted by the light source can be fully absorbed into the optical waveguide, ensuring the intensity of the optical signal transmitted in the optical waveguide, and then ensuring that the optical signal emitted by the light source reaches each optical waveguide.
  • the waveguide interaction still has high strength, which is beneficial to improve the accuracy of detection.
  • some optical waveguides may share one light source, and some optical waveguides may exclusively use the light source, as shown in the structure shown in FIG. 5 .
  • the photoelectric sensing device may be any device that converts optical signals into electrical signals, for example, in a possible implementation manner, the photoelectric sensing device may be a photodiode.
  • the touch sensor provided in the embodiment of the present application may have a multiple-input multiple-output structure.
  • the tactile sensor provided in the embodiment of the present application may also have a single-input multi-output (SIMO) structure.
  • a contact is in contact with each optical waveguide, and multiple optical waveguides surround the contact.
  • a contact is in contact with each optical waveguide so that each optical waveguide feels the force acting on the contact. Specifically, in a state where there is no contact force on the contacts, the contacts are enabled to be in contact with each optical waveguide.
  • the contact is surrounded by a plurality of optical waveguides, so that when there is a contact force on the contact, the optical waveguides around the contact can be deformed accordingly, and then the light flux of the optical waveguides around the contact can be changed.
  • Quantitative decoupling detection of contact force in normal and tangential directions there may be various structural manners in which multiple optical waveguides surround the contact.
  • the number of optical waveguides in the embodiments of the present application is related to the number of coordinate axes in the coordinate system used to obtain the mapping relationship. Specifically, the number of optical waveguides cannot be lower than the number of coordinate axes. This will be introduced below in conjunction with several preferred structural modes.
  • the shape of the contacts may be quadrilateral. Referring to the shapes of the contacts in the structures shown in FIGS. 3 to 5 , each side of the contacts contacts an optical waveguide. When a force is applied to the contacts, the contacts squeeze the surrounding optical waveguides, causing the surrounding optical waveguides to deform. In the structures shown in Figures 3 to 5, the contacts are fully in contact with each optical waveguide. Specifically, in terms of structure, each position of each side of the contact is closely attached to the optical waveguide, or each of the contacts Most of the edge area closely fits the optical waveguide. The advantage of this design is that the optical waveguide around the contact fully surrounds the contact, and the optical waveguide around the contact can fully feel the force acting on the contact.
  • multiple optical waveguides and contacts are deployed on the same plane or on the same arc surface.
  • the size of the touch sensor can be further reduced, specifically, the thickness of the touch sensor can be reduced.
  • a construction method is given below:
  • the base of the optical waveguide channel can be built first, refer to FIG. 6 for understanding.
  • the base of the optical waveguide channel can be built according to the structure shown in Figure 6 through the materials used in the cladding layer, wherein a hard button can be placed at the position of the contact to occupy the position.
  • the material used for the waveguide layer is filled into the constructed optical waveguide channel base.
  • a layer of cladding material can be wrapped on the outer surface of the optical waveguide.
  • the hard key is taken out, and the material of the contact is filled, such as filling with a flexible material.
  • the contact is surrounded by multiple optical waveguides and the contact is in contact with each optical waveguide. And in this way, it is ensured that the contacts and multiple optical waveguides are deployed on the same plane or on the same curved surface, reducing the thickness of the tactile sensor.
  • multiple optical waveguides and contacts may not be deployed on the same plane or on the same arc surface.
  • the waveguide layers of multiple optical waveguides are shared.
  • each optical waveguide is independent and does not share a waveguide layer with other optical waveguides.
  • FIG. 7 for understanding: each optical waveguide is independent, and at the intersection of two optical waveguides, one optical waveguide spans the other optical waveguide. In this implementation manner, the crosstalk among the various optical waveguides can be effectively reduced.
  • the contacts can also be designed in other shapes.
  • the contact is designed as a polygon to try to ensure that each side of the contact can contact an optical waveguide to the greatest extent.
  • the shape of the contacts can also be designed as a circle.
  • the shape of the contacts may also be a triangle.
  • any at least two optical waveguides among the plurality of optical waveguides intersect.
  • the advantage of this design is that it can achieve the effect of reducing light loss by increasing the bending radius of the optical waveguide in the plane without increasing the area of the sensor. It should be noted that, in some possible implementation manners, it is only necessary for the multiple optical waveguides to surround the contacts, and it is not required that any at least two optical waveguides intersect. Referring to Fig. 10, any two optical waveguides do not intersect.
  • the contacts are in contact with a small portion of the optical waveguide
  • the area contacts, or the contacts are tangent to the optical waveguide.
  • the embodiment of the present application does not limit the size of the contact area between the contact and the optical waveguide.
  • the larger the contact area between the contact and the optical waveguide the more favorable it is for each optical waveguide to sense the force acting on the contact, and the more effective it is. It is beneficial to improve the sensitivity of the touch sensor.
  • the two intersecting optical waveguides may also be designed to be as orthogonal as possible. In other words, make the deviation between the included angle between the two intersecting optical waveguides and 90° less than a preset threshold, where the preset threshold can be designed to be smaller.
  • the preset threshold can be designed to be smaller.
  • any two optical waveguides do not intersect. Referring to Figure 10, the solution provided by the embodiment of the present application does not require any two optical waveguides to intersect, but only needs to ensure that the multiple optical waveguides surround the contacts. . In a possible implementation manner, it can also be ensured that the extension lines of the line segments where any two optical waveguides intersect are perpendicular.
  • the curvature radius of each optical waveguide should be before a critical value, and the critical value is determined according to the macro bending loss.
  • Macro bending loss means that when the waveguide layer is bent, the additional optical loss caused by bending is so small that the curvature radius is before a critical value, so that it can be ignored. After the critical value, the additional optical loss rapidly increases exponentially.
  • the present application considers the macro-bending loss when designing the curvature of each optical waveguide to ensure that the curvature radius of each optical waveguide should be before a critical value.
  • the curvature of each optical waveguide can be made the same by design, that is, the macro bending loss of each optical waveguide is the same.
  • the optical waveguide in order to ensure that the optical signal emitted by the light source has sufficient intensity when reaching the target area, can also be designed as a gentle light guiding structure from the input end to the target area.
  • the optical waveguide can be designed as an arc structure from the input end to the target area, and the deviations between the curvatures of the points on the arc curve are very close to ensure that the optical signal emitted by the light source, from After entering the input end of the optical waveguide, it can be transmitted to the target area with little loss.
  • the range of the target area can be determined according to the range of the deformable area of each optical waveguide when there is a contact force on the contact point.
  • the optical waveguide can be designed as a straight line structure from the input end to the target area, refer to the structure shown in FIG. 12 .
  • the optical waveguide since the optical waveguide adopts a linear structure, the optical waveguide basically has no macro bending loss, which can ensure that the optical signal emitted by the light source can be transmitted to the target area with a small loss after entering from the input end of the optical waveguide.
  • the target area of each optical waveguide may be set to be different.
  • the target area is not an absolute location area. The purpose of introducing the description of the target area in the embodiment of the present application is to better reflect that the optical waveguide is designed as a gentle light guide shape, so as to ensure that the optical signal emitted by the light source is within The area close to the contact point can also have sufficient strength.
  • the thickness of each path in the multiple optical waveguides is adjustable. For example, in some implementations, it is required that the intensity of the optical signal at the output end of one or several paths Stronger requires that the intensity of the optical signal at the output end of one or several paths be weaker, and different requirements can be met by adjusting the thickness of the paths.
  • the tactile sensing device further includes a housing in which the light source, optical waveguide and photoelectric sensor are housed.
  • the target position of the housing is hollowed out, and the target position corresponds to the position of the contact.
  • the casing is the cladding of the optical waveguide.
  • the tactile sensor may include a light source, an optical waveguide, photoelectric sensing devices and contacts, and the orientation relationship and connection relationship between these devices are introduced.
  • the working principle of the tactile sensor provided in the embodiment of the present application will be specifically introduced below.
  • the tactile sensor can be set on any small three-dimensional surface.
  • the microbending loss it can be used as the operating principle of the tactile sensor in the present invention, that is, the pressure applied to the contact point will cause the microbending of the optical waveguide, which also destroys the total reflection condition of the light. Therefore, at the output end of the optical waveguide will be The loss of light intensity due to micro-bending is observed.
  • the pressure applied to the contact corresponding to the path will cause the micro-bending of the path, which can be observed by the photoelectric sensor at the output end of the path to the loss of light intensity due to microbending.
  • the characteristics of microbending loss determine the range, sensitivity, and dynamic response capability of the tactile sensor.
  • the microbend is where the elastic contact with the outside world occurs, that is, where the contacts are located.
  • the degree of microbending will determine the measuring range of the sensor, the degree of light loss caused by microbending will determine the sensitivity of the sensor, and the recovery speed of the microbending after the pressure is removed will determine the dynamic response capability of the sensor.
  • FIG. 13 it is a schematic flowchart of a detection method provided in the embodiment of the present application.
  • a detection method provided in the embodiment of the present application may include the following steps:
  • a detection method provided in the present application is applied to the tactile sensor as described in FIG. 1 to FIG. 12 , and the structure of the tactile sensor will not be repeated here.
  • the photoelectric sensing device arranged at the output end of each optical waveguide is used for the intensity of the optical signal transmitted by the optical waveguide in the past.
  • the embodiment of the present application has learned through a large number of experiments that in the tactile sensor described in Figures 1 to 12, when the contact force is not greater than a certain threshold, the components of the contact force along each coordinate axis and the optical signals transmitted by each optical waveguide The amount of change is linearly related. Therefore, in the embodiment of the present application, through a large number of experiments, the mapping relationship between the force magnitude of the contact force along the directions of each coordinate axis and the variation of the intensity of the optical signal transmitted by each optical waveguide is obtained. When the intensity of the optical signal transmitted by each optical waveguide is obtained at any time, it can be compared with the intensity of the optical signal transmitted by each optical waveguide in the initial state, so as to obtain the variation of the light intensity.
  • decoupling detection can be performed on the contact force at any moment in the tangential direction and the normal direction.
  • the intensity of the optical signal transmitted by each optical waveguide at any two moments is obtained, according to the change of the intensity of the optical signal transmitted by each optical waveguide at the arbitrary two moments and the mapping relationship, the intensity between the two moments can be obtained.
  • the change trend of the magnitude of the force and the change trend of the direction of the force is obtained.
  • each optical waveguide in the initial state (there is no contact force on the contacts) is given below.
  • the distribution of the light intensity signals detected by the photoelectric sensor devices installed at the output end of each optical waveguide can be set in advance, or can be preset according to actual needs.
  • the distribution of the light intensity signal detected by the photoelectric sensing device at the output end of each optical waveguide is inconsistent.
  • the distribution of the light intensity signals detected by the photoelectric sensor installed at the output end of each optical waveguide is consistent as an example for illustration.
  • the macrobend loss can be expressed by the following formula:
  • n 1 represents the refractive index of the waveguide layer
  • n 2 is the refractive index of the cladding (it should be noted that when the shell replaces the structure of the cladding, n 2 is the refractive index of the shell), is the macro-bending spatial frequency
  • R is the radius of curvature of the optical waveguide
  • is the radius of the optical waveguide
  • is the transmission constant
  • k v is the modified Bessel function
  • represents the wavelength of light.
  • FIG. 14 it is a schematic diagram of the principle of a tactile sensor provided by the embodiment of the present application.
  • the energy I 0 emitted from the light source is the injection loss energy I in , the macro-bending loss energy I loss (i) of each branch, and the micro-bending loss energy of each elastic contact
  • ABS loss refers to the fiber loss caused by impurities introduced due to impure materials and imperfect processes
  • scattering loss refers to the loss caused by the scattering of light caused by some inhomogeneities far smaller than the wavelength. Therefore, the light source emits The energy of can be expressed by the following formula:
  • I loss (1) ⁇ c (R1)+ ⁇ c (R3)
  • ⁇ c (R1) represents the macro bending loss at R1
  • ⁇ c (R3) represents the macro bending loss at R3
  • ⁇ c (R2) represents the macro bending loss at R2
  • ⁇ c (R4) represents the macro bending loss at R4 loss.
  • I loss (i) I loss (j), i ⁇ j
  • the embodiment of the present application has been known through a large number of experiments.
  • the amount of change of the optical signal is linearly related.
  • the derivation process of the mapping relationship is explained below:
  • the variation of the optical signal transmitted by each optical waveguide The mapping relationship between the magnitude of the contact force and the magnitude of the force along each coordinate axis can be obtained by the formula
  • [O] 4 ⁇ n [C] 4 ⁇ 3 ⁇ [F] 3 ⁇ n is represented.
  • [O]4 ⁇ n is used for the amount of variation of the optical signals of the four optical waveguides in a total of n experiments.
  • the intensity of the optical signal acquired in real time by the photoelectric sensor device disposed at the output end of each optical waveguide is the variation of the optical signal.
  • [F]3 ⁇ n is used to represent the components of the force along the x-axis, y-axis and z-axis in a total of n experiments.
  • the components of the force along the x-axis, y-axis and z-axis can be obtained according to the intensity of the light signal obtained by each photoelectric sensor device and the pre-acquired [C]4 ⁇ 3, that is,
  • the magnitude and direction of the force in the tangential direction can be obtained according to Fx and Fy, and the magnitude of the force along the normal direction can be obtained according to Fz.
  • the core structure of a tactile sensor provided in the embodiment of the present application and the working principle of the tactile sensor are introduced above.
  • the tactile sensor provided by the embodiment of the present application can realize the decoupling detection of the force in the normal direction and the tangential direction through a single contact.
  • more contacts can be deployed on the tactile sensor, which is not limited in the embodiment of the present application, and each of the multiple contacts can realize force in the normal direction and decoupled detection in the tangential direction.
  • the structure of the touch sensor provided by the embodiment of the present application can also be simplified. These scenarios are described below in conjunction with some specific embodiments.
  • FIG. 15 it is a schematic structural diagram of another tactile sensor provided by an embodiment of the present application.
  • more contacts are deployed on the tactile sensor, and each contact can realize decoupling detection of the contact force applied on it in the tangential direction and the normal direction.
  • the structure of each contact on the tactile sensor can be understood with reference to the structure of a single contact described in FIGS. 3 to 12 .
  • the following takes the tactile sensor shown in FIG. 15 including four contacts as an example, and introduces a tactile sensor deployed with more contacts.
  • the touch sensor shown in FIG. 15 includes a contact 1 , a contact 2 , a contact 3 , and a contact 4 . In the touch sensor shown in FIG.
  • the structure of each contact adopts the structure described in FIG. 3 .
  • the contact 1 is surrounded by the optical waveguide 8 , the optical waveguide 7 , the optical waveguide 2 and the optical waveguide 1 .
  • Contact 2 is surrounded by optical waveguide 6 , optical waveguide 5 , optical waveguide 2 and optical waveguide 1 .
  • Contact 3 is surrounded by optical waveguide 6 , optical waveguide 5 , optical waveguide 4 and optical waveguide 3 .
  • the contact 4 is surrounded by the optical waveguide 8 , the optical waveguide 7 , the optical waveguide 4 and the optical waveguide 3 .
  • the optical waveguides surrounding the two contacts are not exactly the same, when four of the eight photoelectric sensor devices arranged at the output end of the optical waveguide obtain a change in the intensity of the optical signal, It can be determined that there is a contact force on the contact surrounded by the four optical waveguides, and then the force on the contact can be decoupled and detected according to the intensity of the optical signal transmitted by the four optical waveguides and the pre-acquired mapping relationship. For example, it is assumed that the intensity of the light signal transmitted in the photoelectric sensor device 8 , the photoelectric sensor device 7 , the photoelectric sensor device 2 and the photoelectric sensor device 1 among the eight photoelectric sensor devices changes.
  • the photoelectric sensor device 8 is arranged at the output end of the optical waveguide 8
  • the photoelectric sensor device 7 is arranged at the output end of the optical waveguide 7
  • the photoelectric sensor device 2 is arranged at the output end of the optical waveguide 2
  • the photoelectric sensor device 1 set at the output end of the optical waveguide 1. Therefore, it can be determined that the optical waveguide 8, the optical waveguide 7, the optical waveguide 2, and the optical waveguide 1 are deformed, and it is further determined that there is a contact 1 surrounded by the optical waveguide 8, the optical waveguide 7, the optical waveguide 2, and the optical waveguide 1. contact force.
  • the contact force on the contact 1 can be decoupled and detected in the tangential and normal directions according to the intensity variation and mapping relationship of the optical signals of the optical waveguide 8 , the optical waveguide 7 , the optical waveguide 2 , and the optical waveguide 1 .
  • the contact force on the contact point 1 is solved in the tangential direction and the normal direction. coupling detection.
  • FIG. 15 is only used to illustrate that a greater number of contacts can be deployed on the tactile sensor. As for the structure of each contact, it can still be understood with reference to the structure of a single contact described in FIGS. 3 to 12 . In order to better understand the structure with a greater number of contacts, the embodiment of the present application also provides a possible structure of a touch sensor with a greater number of contacts as shown in FIG. 16 . In addition, it should be noted that in the structure of the multi-contact tactile sensor shown in Figure 15 and Figure 16, there is repetition between the optical waveguides surrounding each contact, which does not represent the multi-contact structure provided by the embodiment of the present application. In the structure of the tactile sensor, there must be repetition between the optical waveguides of each contact.
  • a multi-contact tactile sensor there may be no overlap between the optical waveguides surrounding each contact.
  • the advantage of this design is that multiple contacts on the tactile sensor can be pressed simultaneously. , to realize the decoupling detection of the contact force on multiple contacts at the same time.
  • the advantage of this design that the optical waveguides surrounding each contact point are repeated is that it may simplify the structure of the tactile sensor and help reduce the size of the tactile sensor.
  • the structure of the touch sensor provided in the embodiment of the present application may also be simplified.
  • multiple optical waveguides fully surround the contacts. Furthermore, when the contact is pressed with force in different directions, the optical waveguides surrounding the contact will undergo different deformations, causing different changes in the intensity of the optical signals transmitted by the multiple optical waveguides, and then the tactile sensor can respond to the force in the normal direction. and tangent direction decoupled detection.
  • one optical waveguide is used to provide information in one dimension, and at least three optical waveguides need the change of luminous flux to accurately reflect the force along the three dimensions. components in the direction of the coordinate axes. Based on these considerations, if the force is only detected in the tangential direction by the photoelectric sensor, the variation of the luminous flux passing through the two optical waveguides can reflect the components of the force along the two coordinate axes.
  • FIG. 17 it is a schematic structural diagram of another tactile sensor provided by an embodiment of the present application. Similar to the working principle of the touch sensor described in FIGS. 3 to 12 , in the structure shown in FIG. 17 , the contacts are also in contact with each of the two optical waveguides.
  • the working principle of the tactile sensor in the embodiment of the present application is based on applying forces of different directions and magnitudes on the contacts
  • the optical waveguide surrounding the contacts produces different deformations.
  • the borders between the two optical waveguides and the contacts can be arranged not to be parallel to each other.
  • the two optical waveguides may also be arranged to cross.
  • the test results may be inaccurate.
  • the contacts may fully squeeze the two optical waveguides under the force.
  • the tangential force in the negative direction is applied to the contacts, which may cause the two optical waveguides to be unable to be squeezed sufficiently, so that the change of the luminous flux of the two optical waveguides is not obvious, thereby affecting the test results.
  • the embodiment of the present application detects the force through the change of the light flux of the optical waveguide, since the contacts are not completely surrounded, the components of the force along certain directions do not have feedback corresponding to the light flux of the light waveguide, which may As a result, two tangential forces are finally obtained according to the pre-acquired mapping relationship and the amount of change in the luminous flux of the two optical waveguides, and it is impossible to accurately determine which tangential force is caused. Therefore, in order to solve this problem, it is also possible to pre-set that the contact is bound to a coordinate axis direction, for example, the contact is bound to the positive direction of the y-axis.
  • the component of the force on the y-axis can only be a component along the positive direction of the y-axis, not a component along the negative direction of the y-axis.
  • the solution provided by the embodiment of this application can also be based on each optical waveguide To judge the difference in luminous flux between.
  • the difference between the various optical waveguides is very small, it can be considered that when there is a contact force on the contact, under the action of the contact force, the degree of extrusion of the contact to each optical waveguide is similar, As a result, the varying degrees of light flux of each optical waveguide are similar. This situation usually occurs when the contact force acting on the contacts is only the force in the normal direction, and there is no force in the tangential direction.
  • the contact force can be considered as a force in the normal direction.
  • the force along the z-axis direction can be obtained according to the variation of the luminous flux of each optical waveguide and the pre-acquired mapping relationship, and the force along the x-axis and y-axis directions can no longer be obtained, so as to reduce calculation Quantitative purpose.
  • the difference between the various optical waveguides is very large, it can be considered that when there is a contact force on the contact, under the action of the contact force, the degree of extrusion of the contact to each optical waveguide is very different.
  • the present application also provides an electronic device, which includes a processor and a tactile sensor, where the tactile sensor is the tactile sensor described in FIG. 3 to FIG. 17 .
  • the electronic devices provided in this application can be mobile phones, watches, earphones, computers, manipulators, worm robots, steering wheels, smart homes and any other devices that need to be equipped with tactile sensors.
  • FIG. 18 is a schematic diagram of a hardware structure of an electronic device provided by an embodiment of the present application. It includes: a communication interface 1501 and a processor 1502 , and may also include a memory 1503 . It should be noted that the structures included in the electronic devices listed here are only illustrative, and in actual application scenarios, may include more or less devices, for example, may also include a display screen and the like.
  • the communication interface 1501 may use any device such as a transceiver for communicating with other devices or a communication network.
  • the processor 1502 includes but is not limited to a central processing unit (central processing unit, CPU), a network processor (network processor, NP), an application-specific integrated circuit (application-specific integrated circuit, ASIC) or a programmable logic device (programmable logic device, PLD) one or more.
  • the aforementioned PLD may be a complex programmable logic device (complex programmable logic device, CPLD), a field-programmable gate array (field-programmable gate array, FPGA), a general array logic (generic array logic, GAL) or any combination thereof.
  • Processor 1502 is responsible for communication lines 1504 and general processing, and may also provide various functions including timing, peripheral interfacing, voltage regulation, power management, and other control functions.
  • the memory 1503 may be used to store data used by the processor 1502 when performing operations.
  • the memory 1503 may be a read-only memory (read-only memory, ROM) or other types of static storage devices that can store static information and instructions, a random access memory (random access memory, RAM) or other types that can store information and instructions
  • the dynamic storage device can also be an electrically erasable programmable read-only memory (electrically er server programmable read-only memory, EEPROM), a compact disc read-only memory (CD-ROM) or other optical disc storage, Optical disc storage (including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or can be used to carry or store desired program code in the form of instructions or data structures and can Any other medium accessed by a computer, but not limited to.
  • the memory may exist independently and be connected to the processor 1502 through the communication line 1504 .
  • the memory 1503 can also be integrated with the processor 1502 . If the memory 1503 and the processor 1502 are independent devices, the memory 1503 and the processor 1502 are connected, for example, the memory 1503 and the processor 1502 may communicate through a communication line.
  • the communication interface 1501 and the processor 1502 may communicate through a communication line, and the communication interface 1501 may also be directly connected to the processor 1502 .
  • Communication lines 1504 which may include any number of interconnected buses and bridges, link together various circuits including one or more processors 1502 represented by processor 1502 and memory represented by memory 1503 .
  • the communication line 1504 may also link together various other circuits such as peripherals, voltage regulators, and power management circuits, etc., which are well known in the art and thus will not be further described in this application.
  • the electronic device further includes a memory and a processor, the memory and the processor are coupled, and the memory includes instructions, and the processor uses the contact force sensed by the tactile sensing device and the instructions to perform specified tasks.
  • the electronic device is a surgical instrument, and can adjust the strength of pulling the surgical wire according to the tangential force and normal force sensed by the tactile sensing device and instructions stored in the memory.
  • the electronic device is a worm robot, which can adjust the crawling speed according to the tangential force and normal force sensed by the tactile sensing device and the instructions stored in the memory, so as to adjust the worm in a flexible and variable manner. output power of the robot.
  • the electronic device is the steering wheel of the vehicle, which can determine whether the driver is in a fatigue driving state according to the tangential force and normal force sensed by the tactile sensing device and the instructions stored in the memory.
  • the detection method provided in the embodiment of the present application can understand that all or part of the steps of the above detection method can be implemented by hardware, or by a program to instruct the relevant hardware to complete.
  • the program can be stored in In a computer-readable storage medium, the above-mentioned storage medium may be a read-only memory, a magnetic disk or an optical disk, and the like.
  • the present application can implement the detection method provided by the embodiment of the present application by means of software plus necessary general-purpose hardware.
  • special hardware including application-specific integrated circuits, dedicated CPUs, dedicated memories,
  • the detection method provided by the embodiment of the present application is realized by using special components and devices.
  • the essence of the technical solution of this application or the part that contributes to the prior art can be embodied in the form of a software product, and the computer software product is stored in a readable storage medium, such as a floppy disk of a computer , U disk, mobile hard disk, read-only memory ROM, random access memory RAM, magnetic disk or optical disk, etc., including several instructions to make a computer device (which can be a personal computer, server, or network device, etc.) execute the application
  • a computer device which can be a personal computer, server, or network device, etc.
  • the detection method provided in the embodiment of the present application may be implemented in whole or in part by software, hardware, firmware or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transmitted from a website, computer, server, or data center Transmission to another website site, computer, server, or data center by wired (eg, coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (eg, infrared, wireless, microwave, etc.).
  • wired eg, coaxial cable, optical fiber, digital subscriber line (DSL)
  • wireless eg, infrared, wireless, microwave, etc.
  • the computer-readable storage medium may be any available medium that can be stored by a computer, or a data storage device such as a server or a data center integrated with one or more available media.
  • the available medium may be a magnetic medium (such as a floppy disk, a hard disk, or a magnetic tape), an optical medium (such as a DVD), or a semiconductor medium (such as a solid state disk (solid state disk, SSD)), etc.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

一种触觉传感设备,包括:光源,多条光波导、光电传感器件以及触点;每条光波导的输入端处设置有光源,每条光波导的输出端处设置有光电传感器件,多条光波导包围触点,触点与每一条光波导接触,触点上有接触力时,多条光波导产生形变,光波导产生形变导致光波导中传输的光信号有损耗;光电传感器件获取每条光波导传输的光信号,根据每条光波导传输的光信号的变化量可以检测接触力的大小以及方向。通过单个触点实现对作用在该触点上的力在不同方向上的解耦检测,为精准操控的完成提供可靠的数据基础。

Description

一种触觉传感设备、检测方法以及装置 技术领域
本申请涉及传感器设计领域,尤其涉及一种触觉传感设备、检测方法以及装置。
背景技术
随着科技的发展,智能机械已经在多个领域逐步代替人工进行精准操控。精准的触觉信息,对于智能机械的整体功能的实现有着至关重要的作用。触觉传感器能在很大程度上还原触觉信息,提高整个系统的决策效率,确保交互过程有序、安全进行。
目前,触觉传感器一般可以包括电容式触觉传感器,电感式触觉传感器,压阻式触觉传感器以及压电式触觉传感器等等。但是,这些触觉传感器的单一触点通常只能检测作用在该触点上的法线方向上的力。如何通过单一触点,实现对作用在该触点上的力在不同方向上解耦检测,为精准操控的完成提供可靠的数据基础,亟待解决。
发明内容
本申请实施例提供一种触觉传感设备、检测方法以及装置,可以通过单个触点实现对作用在该触点上的力在不同方向上解耦检测,为精准操控的完成提供可靠的数据基础。
第一方面,本申请实施例提供一种触觉传感设备,包括:光源,多条光波导、光电传感器件以及触点。光波导可以包括波导层和包层,包层包裹波导层,波导层的折射率大于包层的折射率,这是为了保证光源发出的光信号在光波导的传输满足全反射的条件。每条光波导的输入端处设置有光源,每条光波导的输出端处设置有光电传感器件。其中,光源可以为发光二极管或者红外光,本申请实施例对此并不进行限定。需要注意的是,这里所述的多条光波导可以是该触觉传感设备的部分或者全部光波导,本申请实施例对此并不进行限定。多条光波导包围触点,触点与每一条光波导接触。其中,触点可以与每一条光波导的大部分区域接触,或者每一条光波导的小部分区域接触。触点上有接触力时,多条光波导产生形变,具体的,触点上有接触力时,多条光波导中的每一条光波导产生形变。光电传感器件获取每条光波导传输的光信号,每条光波导传输的光信号的变化量用于检测接触力。本申请实施例发现当采用不同方向、不同大小的力作用于触点时,包围该触点、且与该触点接触的多条光波导产生不同的形变。此外,当光波导产生形变时,光波导的全反射条件会被破坏,则光波导中传输的光信号会有损耗。所以,预先获取多条光波导的光通量的变化量和触点上的接触力之间的映射关系后,通过第一方面提供的触觉传感设备,可以根据多条光波导的光通量的变化量以及该映射关系,实现对作用在单触点上的力在法线方向和切线方向上的解耦检测,为精准操控的完成提供可靠的数据基础。
在第一方面的一种可能实现方式中,触点是多边形的,触点的每一条边接触一条光波导。在这种实施方式中,给出了一种具体形状的触点,可以使触点的每一条边与每一条光波导充分接触,触点周围的光波导充分的包围触点,触点周围的光波导能够充分的感受作用在触点上的力,提升触觉传感器的灵敏度。
在第一方面的一种可能实现方式中,触点是四边形或者三角形的。在这种实施方式中,给出了一种具体形状的触点,可以使触点的每一条边与每一条光波导充分接触,触点周围的光波导充分的包围触点,触点周围的光波导能够充分的感受作用在触点上的力,提升触 觉传感器的灵敏度。
在第一方面的一种可能实现方式中,触点的轮廓是弧形的。在这种实施方式中,给出了一种具体形状的触点,增加了结构的多样性。
在第一方面的一种可能实现方式中,触点的轮廓是圆形或者椭圆形的。在这种实施方式中,给出了一种具体形状的触点,增加了结构的多样性。
在第一方面的一种可能实现方式中,光波导从输入端到接触位置之间的区域是弧形结构,接触位置是光波导与触点接触的位置。在这种实施方式中,设计光波导从输入端到接触位置为平缓导光结构,尽量保证光源发出的光信号到达接触位置时,还能够具有足够的强度,提升触觉传感器的灵敏度。
在第一方面的一种可能实现方式中,弧形的曲率小于第一预设阈值。
在第一方面的一种可能实现方式中,光波导从输入端到接触位置之间的区域是直线结构,接触位置是光波导与触点接触的位置。在这种实施方式中,设计光波导从输入端到接触位置为另一种平缓导光结构,尽量保证光源发出的光信号到达接触位置时,还能够具有足够的强度。
在第一方面的一种可能实现方式中,多条光波导中的任意至少两条光波导是交会的。
在第一方面的一种可能实现方式中,交会的两条光波导之间的夹角度数与90°之间的偏差小于第二预设阈值。尽可能的降低不同的光波导传输的光信号之间的干扰。
在第一方面的一种可能实现方式中,多条光波导部署在同一参考面上。在这种实施方式中,多条光波导部署在同一参考面上,可以进一步的降低触觉传感器的尺寸,具体的,可以降低触觉传感器的厚度。需要说明的是,在这种实施方式中,可以全部光波导都部署在同一参考面上,也可以部分光波导部署在同一参考面上。
在第一方面的一种可能实现方式中,触点和多条光波导部署在同一参考面上。在这种实施方式中,多条光波导和触点部署在同一参考面上,可以进一步的降低触觉传感器的尺寸,具体的,可以降低触觉传感器的厚度。需要说明的是,在这种实施方式中,可以全部光波导和触点都部署在同一参考面上,也可以部分光波导和触点部署在同一参考面上。
在第一方面的一种可能实现方式中,参考面是水平面或者弧形面。
在第一方面的一种可能实现方式中,多条光波导为多输入多输出结构,其中,每个光波导可以独享光源,或者使部分光波导共享一个光源。
在第一方面的一种可能实现方式中,多条光波导为单输入多输出(single-input multi-output,SIMO)结构,比如,全部光波导的输入端处设置有一个光源。在这种实施方式中,可以全部光波导为单输入多输出SIMO结构。这种单输入多输出的结构,仅需要设置一个光源,节省器件。并且结构更为紧凑,节省空间。
在第一方面的一种可能实现方式中,触点是柔性结构。
在第一方面的一种可能实现方式中,触觉传感设备还包括壳体,光源、多条光波导以及光电传感器件收容于壳体内,壳体的目标位置镂空,目标位置对应触点所在的位置。
在第一方面的一种可能实现方式中,触点上没有接触力时,任意两条光波导的宏弯曲损耗的偏差在预设范围内。
在第一方面的一种可能实现方式中,触点的数目不少于2个。在这种实施方式中,触 觉传感器可以包括多个触点。
第二方面,本申请实施例提供一种检测方法,该检测方法应用于第一方面或第一方面任意一种可能的实施方式中所描述的触觉传感器,方法包括:通过每个光电传感器件,获取每条光波导传输的光信号的强度。根据每条光波导传输的光信号的强度的变化量和第一映射关系,获取接触力的大小和方向,第一映射关系包括接触力沿各个坐标轴方向的力的大小,与每条光波导传输的光信号的强度的变化量之间的映射。
在第二方面的一种可能实现方式中,根据每条光波导传输的光信号的强度的变化量和第一映射关系,获取接触力的大小和方向,包括:第一变化量和第二变化量之间的偏差在预设范围内,获取接触力的方向为垂直于触点所在的平面向下,第一变化量和第二变化量是任意两条光波导传输的光信号的强度的变化量;根据第一变化量的绝对值和第二变化量的绝对值,以及第一映射关系,获取接触力的大小。如果各个光波导之间的差异很小,可以认为触点上有接触力时,在接触力的作用下,触点对各个光波导的挤压程度相似,进而导致各个光波导的光通量变化程度相似。这种情况通常发生于作用在触点上的接触力只有法线方向的力,没有切向方向的力。所以,如果各个光波导之间的差异很小,可以认为接触力是法线方向上的力。此外,在这种情况下,可以根据各个光波导的光通量的变化量以及预先获取的映射关系,获取沿z轴方向的力,不再获取沿x轴和y轴方向的力,以达到降低计算量的目的。
在第二方面的一种可能实现方式中,根据每条光波导传输的光信号的强度的变化量和第一映射关系,获取接触力的大小和方向,包括:第一变化量和第二变化量之间的偏差不在预设范围内,根据第一映射关系、第一变化量和第二变化量,获取接触力沿各个坐标轴方向的力的大小,第一变化量和第二变化量是任意两条光波导传输的光信号的强度的变化量;根据接触力沿各个坐标轴方向的力的大小,获取接触力的大小和方向。如果各个光波导之间的差异很大,可以认为触点上有接触力时,在接触力的作用下,触点对各个光波导的挤压程度差异很大,进而导致各个光波导的光通量变化程度差异很大。这种情况通常发生于作用在触点上的接触力有切线方向的力。所以,如果各个光波导之间的差异很大,可以认为接触力中一定存在切线方向上的力,也可能存在法线方向上的力。还可以进一步的根据各个光波导的光通量的变化量以及预先获取的映射关系,获取法线方向上的力的大小,以及切线方向上力的大小以及方向。
本申请第三方面提供一种电子设备,该电子设备触觉传感设备,该触觉传感设备为第一方面或第一方面任意一种可能的实施方式中所描述的触觉传感器。
在第三方面的一种可能实现方式中,该电子设备是手术器械,该电子设备还可以包括手术钳,触觉传感设备可以部署在手术钳的末端,触觉传感设备感知的接触力用于指示手术钳执行指定任务。在这种实施方式中,该电子设备还可以包括显示屏,用于显示接触力沿法线方向的力的大小以及沿切线方向的力的大小,方便使用人员更好的利用该手术器械。在这种实施方式中,该电子设备还可以包括处理器,处理器利用该触觉传感设备感知的接触力执行指定任务。
在第三方面的一种可能实现方式中,该电子设备是机械手,该电子设备还包括处理器,处理器利用触觉传感设备感知的接触力执行指定任务。
在第三方面的一种可能实现方式中,电子设备是蠕虫机器人,该电子设备还包括处理器,处理器利用触觉传感设备感知的接触力执行指定任务。
在第三方面的一种可能实现方式中,电子设备是方向盘,该电子设备还包括把手结构,触觉传感设备部署在把手结构的表面,处理器利用触觉传感设备感知的接触力执行指定任务。
本申请第四方面提供一种检测装置,包括一个或多个处理器,一个或多个处理器和存储器耦合,存储器存储有程序,当存储器存储的程序指令被一个或多个处理器执行时实现第二方面或第二方面任意一种可能的实施方式中所描述的方法。
本申请第五方面提供一种计算机可读存储介质,包括程序,当其被处理单元所执行时,执行如第二方面或第二方面任意一种可能的实施方式中所描述的方法。
其中,本申请实施例实施例第二方面至第九方面的有益效果可以参照第一方面所描述的有益效果进行理解,对此不再重复赘述。
附图说明
图1为本申请实施例提供的一种触觉传感设备的应用场景的示意图;
图2a为本申请实施例提供的一种触觉传感器的原理示意图;
图2b为本申请实施例提供的一种触觉传感器的原理示意图;
图2c为本申请实施例提供的一种触觉传感器的原理示意图;
图3为本申请实施例提供的一种触觉传感器的结构示意图;
图4为本申请实施例提供的另一种触觉传感器的结构示意图;
图5为本申请实施例提供的另一种触觉传感器的结构示意图;
图6为本申请实施例提供的另一种触觉传感器的结构示意图;
图7为本申请实施例提供的另一种触觉传感器的结构示意图;
图8为本申请实施例提供的另一种触觉传感器的结构示意图;
图9为本申请实施例提供的另一种触觉传感器的结构示意图;
图10为本申请实施例提供的另一种触觉传感器的结构示意图;
图11为本申请实施例提供的另一种触觉传感器的结构示意图;
图12为本申请实施例提供的另一种触觉传感器的结构示意图;
图13为本申请实施例提供的检测方法的流程示意图;
图14为本申请实施例提供的一种触觉传感器的原理的示意图;
图15为本申请实施例提供的另一种触觉传感器的结构示意图;
图16为本申请实施例提供的另一种触觉传感器的结构示意图;
图17为本申请实施例提供的另一种触觉传感器的结构示意图;
图18为本申请实施例提供的电子设备的硬件结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例提供一种触感传感设备,通过多条光波导包围触点,利用该多条光波导的光通量的变化值,实现对作用在该触点上的力,在切向方向和法线方向上的解耦检测。
触觉传感器又可以称为触觉传感设备,可以由单个或者多个触觉传感单元构成。其中,触觉传感单元用于感知作用在单点上的接触力。按照触觉传感单元的数量,触觉传感器可分为单点式触觉传感器和点阵式触觉传感器两大类。点阵式触觉传感器由于集成了多个触觉传感单元,可以在更多场景中检测接触力,具体的,可以包括单次接触可对作用在该点阵式触觉传感器上的力,在切向方向和法线方向上解耦检测。本申请实施例将施加在触点的力,沿垂直于触点表面方向的力的分量,称为法线方向的力,将平行于触点表面方向的力的分量,称为切线方向的力或者切向方向的力。
但是,由于点阵式触觉传感器需要依赖多个触觉传感单元,才能实现对接触力在切向方向和法线方向上的解耦检测,导致难以降低触觉传感器的尺寸。而随着计算机技术、材料科学、互联网技术、微加工手段的飞速发展,在越来越多的应用场景中,需要在有限区域内部署触觉传感器,并且还需要触觉传感器能够提供可靠的数据。为了解决这一问题,本申请实施例提供一种触觉传感器,该触觉传感器上的每一个触点,可以实现对单次作用在该触点上的力,在切向方向和法线方向上的解耦检测。本申请实施例提供的方案,将对外界的法向力和切向力感知能力整合到单一触点,极大拓展了单一触点所提供的信息维度。
本申请实施例提供的方案可以适用于多种应用场景中,尤其适用于部署传感器的区域有限,并且需要同时获取法向力信息和切向力信息的场景。示例性的,下面结合几个典型的应用场景进行说明。
如图1所示,在一个可能的应用场景中,本申请实施例提供的触觉传感器可以部署在机械手上。机械手是一种能模仿人手和臂的某些动作功能,用以按固定程序抓取、搬运物件或操作工具的自动操作装置。机械手在抓取过程中,需要感知机械手与被抓取物体之间的接触点,以及作用在接触点的力的大小。本申请实施例提供的触觉传感器,将对外界的法向力和切向力感知能力整合到单一触点,使部署了本申请实施例提供的触觉传感器的机械手在感知接触点的力的大小的同时,还可以感知力的方向。具体的,可以感知法线方向上的力以及切向方向上的力。一个典型的应用场景在于,机械手在抓取物体时,需要同时考虑法向力和切向力,以保证稳定抓取物体,不会使物体滑落。通过本申请实施例提供的方案,可以使机械手更容易判断以最适合的力抓取物体,保证物体不会滑落,还可以提升机械手的抓取精度。
在一个可能的应用场景中,本申请实施例提供的触觉传感器可以部署在蠕虫机器人上。蠕虫机器人是一种可以爬行的机器人,广泛应用于医疗领域、强电磁干扰领域、煤矿领域等等。本申请实施例提供的触觉传感器可以部署在蠕虫机器人上,尤其可以部署于微型的蠕虫机器人上。部署了本申请实施例提供的触觉传感器的蠕虫机器人可以在爬行过程中,同时获取法向力和切向力,进而可以获取蠕虫机器人当前爬行环境的摩擦系数,更好的调整爬行速度,零活多变的调整蠕虫机器人的输出功率。
在一个可能的实施方式中,本申请实施例提供的触觉传感器可以部署在手术器械上。近年来随着医疗技术的不断发展,微创技术作为一种新兴的医疗技术可以有效地减少手术创伤、缩短术后时间、提高手术成功率。凭借上述优点,微创技术获得业界青睐,被认为 是最有前景的医疗技术发展方向之一。然而,更小的手术创口也给医生带来了更高的操作技术挑战。为了开展手术任务,手术器械类的机器人正在被应用,手术器械的末端要求灵活且能够执行精准操作。比如,该手术器械是手术钳时,需要依靠切向力实施有效的拉扯操作。通过部署了本申请实施例提供的触觉传感器的手术器械,可以更好的感知末端施加的力,精准的完成手术任务。
在一个可能的实施方式中,本申请实施例提供的方案还可以部署在车辆的方向盘上或者座椅上。如何避免驾驶员的驾驶失误,减少交通事故的发生,提高公路的运输效率一直是车辆领域持续关注的问题。驾驶员转动方向盘时,同时产生切线方向上的力以及法线方向上的力。将本申请实施例提供的触觉传感设备部署在方向盘上,可以更好的感知驾驶员施加在方向盘上的力,以便据此判断驾驶员是否处于疲劳驾驶状态。同理,驾驶员坐在座椅上时,坐姿的变化可能同时产生切线方向上的力以及法线方向上的力。将本申请实施例提供的触觉传感器设备部署在座椅上,可以更好的感知驾驶员的生理指标,为判断驾驶员是否处于疲劳驾驶提供感知数据支持。
需要说明的是,上面列举的几种应用场景并非对本申请实施例可能的应用场景的穷举,本申请实施例提供的触觉传感设备可以应用于任意一种需要感知触觉信息的设备上。比如,本申请实施例提供的触觉传感设备还可以部署在智能鞋垫上,因为切向力是人类能够在地面上正常行走的保障,通过分析智能鞋垫上的受力,检测运动姿势是否正确,可用于康复治疗、运动员日常训练、鞋子的设计等等。
为了更好的理解本申请实施例提供的方案,下面对本申请实施例的研究思路进行介绍:
光波导是引导光信号在其中传播的介质装置,又称介质光波导。光波导能够使光信号在其中传播的原理在于光信号的全反射现象。当满足光从光密介质进入光疏介质以及入射角等于或大于临界角的条件时,当折射角增至90°,折射光线沿界面方向传播,再稍微增大入射角,入射光线将全部按反射定律反射回光密介质,这种现象称为全反射现象。两种介质相比,把光速(在该介质中光的速度)大的介质叫做光疏介质,光速小的介质叫光密介质。光疏介质与光密介质相比,它的光速大,绝对折射率小。临界角的计算方法C=arcsin(m/n),m是光密介质的折射率,n是光疏介质的折射率。
光波导包括波导层和包层,包层包裹波导层,波导层的折射率大于包层的折射率。包层可以直接包裹波导层,包层也可以间接包裹波导层,即包层和波导层之间还可以包括其他材料或者介质。其中,包层相当于光疏介质,波导层相当于光密介质。
光波导是满足全反射的条件的,但是当光波导上被施加力时,或者说光波导产生形变时,光波导的全反射条件会被破坏,则光波导中传输的光信号会有损耗。所以本申请实施例首先想到可以通过在触点和光波导之间建立关系,当在触点上施加力时,光波导随之受力,产生形变。通过在光波导的输出端设置光电传感器件,可以感知到触点上有力,并且通过对比光电传感器获取到的光通量的变化量,可以获取触点上力的大小。
但是,这种方案只能获取一个方向上的力,没有办法同时获取到切线方向上的力和法线法线上的力,即这种方案无法通过单一触点实现法向力和切向力的解耦检测。本申请实施例进一步想到可以通过多条光波导进行配合,以实现这一目的。本申请实施例发现,当使多个光波导包围一个触点,使该触点与每一条光波导都有接触。当采用不同方向、不同 大小的力作用于该触点时,与该触点接触的多条光波导产生不同的形变。假设采用了4条光波导,组成一个四边形,该4条光波导的包围触点,即设置在四边形的内部,并且该触点上没有被施加任何力时,该触点与该4条光波导都分别有接触。当在触点上施加力,对该力进行分解后,沿y轴正方向的力的大小为1N,法线方向的力的大小为1N,该4条光波导的形变如图2a所示。当在触点上施加力,对该力进行分解后,沿y轴正方向的力的大小为1N,法线方向的力的大小为0N,该4条光波导的形变如图2b所示。当在触点上施加力,对该力进行分解后,沿y轴正方向的力的大小为0N,法线方向的力的大小为1N,该4条光波导的形变如图2c所示。本申请实施例将触点受力面所在的平面看做由x轴和y轴组成的平面,z轴垂直于这一平面,以下对此不再重复赘述。但是,需要说明的是,其他设置参考系的方案不影响方案的实现,本申请实施例也可以采用其他方式建立坐标系。
基于这一发现:当采用不同方向、不同大小的力作用于触点时,包围该触点、与该触点接触的多条光波导产生不同的形变。结合上述提到的当在光波导上被施加力时,或者说光波导产生形变时,光波导的全反射条件会被破坏,则光波导中传输的光信号会有损耗。本申请实施例进一步的想到,可以建立多条光波导的光通量的变化量和触点上的接触力之间的映射关系。根据多条光波导的光通量的变化量,实现对作用在单触点上的力在法线方向和切线方向上的解耦检测。本申请有时也将光波导的光通量的变化量描述为光波导传输的光信号的强度的变化量,二者用于表示相同的意思,以下对此不再重复赘述。
具体如何通过多条光波导的变化量反应力的大小和方向,实现力在法线方向和切线方向上的解耦检测,还需要进一步的思考。本申请实施例想到可以对力进行分解,比如可以将力沿坐标系的各个坐标轴进行分解。如果可以通过多条光波导的光通量的变化量反应力沿每个坐标轴方向上的分量,就可以实现对力在切线方向以及法线方向上解耦检测。本申请实施例对采用何种坐标系并不进行限定,示例性的,下面均以三维笛卡尔坐标系为例进行讲解。由于三维笛卡尔坐标系包括x轴、y轴以及z轴三个坐标轴,需要获取力沿该三个坐标轴方向上的分量。那么理论上,用一条光波导反应两个维度的信息不太现实,所以一条光波导用于提供一个维度的信息,至少需要3条光波导的光通量的变化量,才能准确反应力沿三个坐标轴方向上的分量。
接下来,只需要寻找该至少3条光波导的光通量的变化量,和力沿该三个坐标轴方向上的分量之间的映射关系,就可以根据该至少3条光波导的光通量的变化量和该映射关系,实现力在法线方向和切线方向上的解耦检测。对此,可以通过多种方式来获取映射关系,比如可以通过实验的方式,具体的可以是仿真实验或者真实的实验。比如,在一次仿真实验中,首先,可以通过力学仿真软件(比如solidworks)构建本申请实施例中的视觉传感设备,包括构建该至少3条光波导和触点之间的结构关系。然后,设定一个力在各个坐标轴上的分量,仿真结果可以指示在该力的作用下,各个光波导的应力位置产生的位移。之后,将力学仿真后的位移模型导入光学仿真软件(比如zemax)中进行光学仿真,仿真结果指示,该至少3条光波导在不同应力位置产生的位移后,光通量的变化量。通过大量实验,就可以越来越精准的获取该至少3条光波导的光通量的变化量,和力沿该三个坐标轴方向上的分量之间的映射关系。
下面基于上述研究思路,结合具体的实施方式,对本申请实施例提供的触觉传感设备 进行具体的介绍:
如图3所示,为本申请实施例提供的一种触觉传感设备的结构示意图。如图3所示,本申请实施例提供的一种触觉传感设备可以包括光源、光波导、光电传感器件以及触点。
下面分别从以下几个方面对本申请实施例提供的触觉传感设备中包括的这几个部分展开介绍。
1.多个光波导之间可以共享光源也可以独享光源。
在一个可能的实施方式中,可以全部光波导共享一个光源,如图3中所示的结构。在这种实施方式中,触觉传感器只需要包括一个光源,结构简单,有利于制作更小尺寸的触觉传感器,还可以节约成本。
在一个可能的实施方式中,每个光波导可以独享光源,如图4中所示的结构。在这种实施方式中,可以在每个光波导的输入端处设置一个光源,每个光波导独享一个光源,不与其他光波导共享光源。在这种实施方式中,由于每一个光波导独享光源,光源发出的光信号可以充分摄入光波导中,保证光波导中传输的光信号的强度,进而保证光源发出的光信号到达各个光波导交互处时也依然有高强度,有利于提升检测的准确率。
在一个可能的实施方式中,还可以根据实际情况,使部分光波导共享一个光源,部分光波导独享光源,如图5中所示的结构。
为了能够精准的获取每一条光波导的光通量的变化量,需要在每条光波导的输出端分别设置光电传感器件。换言之,光波导和光电传感器件是一一对应的关系,一个光电传感器件用于获取一个光波导传输的光信号的强度。光电传感器件可以任意一种将光信号转化为电信号的器件,比如在一个可能的实施方式中,光电传感器件可以是光电二极管。
基于上述介绍,在一个可能的实施方式中,本申请实施例中提供的触觉传感器可以是一个多输入多输出的结构。在一个可能的是实施方式中,本申请实施例中提供的触觉传感器还可以是单输入多输出(single-input multi-output,SIMO)结构。
2.触点与每一条光波导接触,多条光波导包围该触点。
触点要与每一条光波导接触,以便使每一条光波导都能感受到作用在触点上的作用力。具体的,在触点上没有接触力的状态下,使触点能够与每一条光波导接触。
需要说明的是,多条光波导包围该触点,是为了使触点上有接触力时,触点周围的光波导能够随之产生形变,进而可以通过触点周围的光波导的光通量的变化量对接触力在法线方向以及切线方向进行解耦检测。本申请实施例提供的方案,多条光波导包围触点的结构方式可以有多种。此外,上文研究思路中介绍到,本申请实施例中的光波导的数目,和获取映射关系时采用的坐标系中坐标轴的数目是相关的。具体的,光波导的数目不能低于坐标轴的数目。下面结合几种优选的结构方式对此进行介绍。
在一种可能的实施方式中,触点的形状可以是四边形。可以参阅图3至图5所示的结构中触点的形状,触点的每一条边接触一条光波导。当在触点上施加力时,触点挤压周围的光波导,使周围的光波导产生形变。如图3至图5所示的结构,触点与每一条光波导充分接触,具体在结构上表现为触点的每一条边的各个位置都紧密贴合光波导,或者说触点的每一条边的大部分区域都紧密贴合光波导。这种设计的好处在于,触点周围的光波导充分的包围触点,触点周围的光波导能够充分的感受作用在触点上的力。
在一种可能的实施方式中,多条光波导和触点部署在同一个平面或者同一个弧面上。通过这种方式,可以进一步的降低触觉传感器的尺寸,具体的,可以降低触觉传感器的厚度。示例性的,下面给出一种构建方式:
在这种实施方式中,可以先搭建光波导通道基座,参阅图6进行理解。假设需要构建如图6所示结构的触觉传感器。可以先通过包层采用的材料,按照图6所示的结构搭建光波导通道基座,其中,触点所在的位置可以先放置一个硬质按键占据位置。然后向搭建的光波导通道基座中填充波导层采用的材料。之后,待填充的光波导材料凝固后,可以再光波导的外表面包裹一层包层的材料。最后,将硬质按键取出,填充触点的材料,比如填充柔性材料。待柔性材料凝固后,既完成了通过多条光波导包围触点,触点与每一条光波导接触这一结构。并且通过这种方式,保证了触点和多条光波导部署在同一个平面或者同一个弧面上,降低了触觉传感器的厚度。
在一个可能的实施方式中,多条光波导和触点也可以不部署在同一个平面或者同一个弧面上。不同于结合图6所描述的方案,多条光波导的波导层是共享的。在这种实施方式中,每个光波导是独立的,不与其他光波导共享波导层。示例性的,参阅图7进行理解:每一条光波导都是独立的,两条光波导的交会处,一条光波导跨域另一条光波导。在这种实施方式,可以有效降低各个光波导之间串扰。
此外,除了将触点设计为四边形之外,还可以将触点设计为其他形状,比如,在图7所示的结构中,为了使触点的轮廓紧密贴合各条光波导,还可以将触点设计为多边形,以尽量保证触点的每一条边都能最大程度的接触一条光波导。再比如,参阅图8,还可以将触点的形状设计为圆形。再比如,参阅图9,触点的形状还可以是三角形。
上述图3至图9所展示的结构中,多条光波导中的任意至少两条光波导是交会的。这种设计的好处在于能够在不增大传感器面积的基础上,通过增加光波导在平面内的弯曲半径,达到减少光损失的效果。需要说明的是,在一些可能的实施方式中,多条光波导只要包围触点即可,并不需要满足任意至少两条光波导是交会的。参阅图10,任意两条光波导是不交会的。此外,如图10所示的结构,不同于图3至图9所示的结构中,触点与每一条光波导充分接触,在图10所示的结构中,触点与光波导的小部分区域接触,或者触点与光波导相切。本申请实施例对触点与光波导的接触区域的大小并不进行限定,当然,触点与光波导的接触区域越大,越有利于各个光波导感知作用在触点上的力,越有利于提升触觉传感器的灵敏度。
在一个可能的实施方式中,为了尽可能的降低不同的光波导传输的光信号之间的干扰,还可以设计交会的两条光波导尽可能是正交的。换言之,使交会的两条光波导之间的夹角度数与90°之间的偏差小于预设阈值,其中预设阈值可以设计的小一些。此外,还可以设计任意两条光波导不交会,参阅图10,本申请实施例提供的方案,并不需要任意两条光波导是交会的,只需要保证该多条光波导包围触点即可。在一个可能的实施方式中,还可以保证任意两条光波导所在线段的延长线相交后是垂直的。
在一个可能的实施方式中,每条光波导的曲率半径应当在一个临界值之前,该临界值根据宏弯曲损耗确定。宏弯曲损耗是波导层弯曲时,曲率半径在一个临界值之前,因弯曲引起的附加光损耗很小,以致可以忽略不计。在临界值以后,附加光损耗按指数规律迅速 增加。本申请在设计每条光波导的曲率时考虑宏弯曲损耗,保证每个光波导的曲率半径应当在一个临界值之前。在一个具体的实施方式中,可以通过设计使每条光波导的曲率相同,即每条光波导的宏弯曲损耗相同。
在一个可能的实施方式中,为了保证光源发出的光信号到达目标区域时,还能够具有足够的强度,还可以设计光波导从输入端到目标区域为平缓导光结构。比如,在一个可能的实施方式中,可以设计光波导从输入端到目标区域为弧形结构,并且弧形曲线上各个点的曲率之间的偏差很接近,以保证光源发出的光信号,从光波导的输入端进入后,能够以很小的损失传输到目标区域。之所以能够以很小的损失传输到目标区域,是因为弧形上各个点的曲率很大,使光波导的宏弯曲损耗很小或者可以忽略不计。参阅图11,其中目标区域的范围可以根据触点上有接触力时,各个光波导能够随之产生形变的区域的范围确定。在一个可能的实施方式中,可以设计光波导从输入端到目标区域为直线结构,参阅图12所示的结构。由于光波导采用直线结构,光波导基本不会有宏弯曲损耗,可以最大程度保证光源发出的光信号,从光波导的输入端进入后,能够以很小的损失传输到目标区域。需要说明的是,针对不同的光波导,可以设定每一个光波导的目标区域是不同的。此外,需要说明的是,目标区域并不是一个绝对的位置区域,本申请实施例引入目标区域描述,是为了更好的体现将光波导设计为平缓导光造型,以保证光源发出的光信号在靠近触点的区域,还能够具有足够的强度。
需要说明的是,在不同的应用场景中,多条光波导中的每一条路径的粗细均是可调的,比如,在一些实施方式中,要求一条或者几条路径的输出端的光信号的强度强一些,要求一条或者几条路径的输出端的光信号的强度弱一些,可以通过调整路径的粗细程度满足不同的需求。
在一个具体的实施方式中,触觉传感设备还包括壳体,光源、光波导以及光电传感器件收容于壳体内,壳体的目标位置镂空,目标位置对应触点所在的位置。在一个可能的实施方式中,壳体就是光波导的包层。在这种实施方式中,进一步简化制造工艺,减小触觉传感器壳体厚度,将光波导的包层功能融入到触觉传感器的外壳中,简化结构,节省空间。
基于以上对本申请提供的一种触觉传感器的结构进行了介绍,具体的介绍了触觉传感器可以包括光源,光波导,光电传感器件以及触点,并介绍了这些器件之间的方位关系以及连接关系。下面对本申请实施例提供的触觉传感器的工作原理进行具体的介绍。
上文介绍到,当光波导的弯曲半径变得足够小时,光线的传播角不在适用于全反射条件,就会产生宏弯曲损耗,本申请可以利用宏弯曲损耗和路径的直径,使本申请提供的触觉传感器可以设置在任意的三维小曲面上。至于微弯曲损耗,可作为本发明中触觉传感器的工作原理,即施加在触点的压力会导致光波导的微弯曲,同样破坏了光线的全反射条件,因此,在该光波导的输出端会观测到由于微弯曲而产成的光强度损耗,具体的,在本方案中,施加在路径对应的触点的压力会导致该路径的微弯曲,在该路径的输出端通过光电传感器件可以观测到由于微弯曲而产生的光强度损耗。微弯曲损耗的特性决定了该触觉传感器的量程、灵敏度,以及动态响应能力等。微弯曲处是与外界发生弹性接触的地方,也即触点所在位置。微弯曲程度的大小将决定传感器量程,微弯曲引起光损耗的程度将决定传感器的灵敏度,微弯曲在撤去压力后的恢复速度将决定传感器的动态响应能力。
如图13所示,为本申请实施例提供的一种检测方法的流程示意图。
如图13所示,本申请实施例提供的一种检测方法,可以包括如下步骤:
1301、通过每个光电传感器件,获取每条光波导传输的光信号的强度。
本申请提供的一种检测方法应用于如图1至图12所描述的触觉传感器,关于触觉传感器的结构,这里不再重复赘述。
每条光波导的输出端设置的光电传感器件用于过去该条光波导传输的光信号的强度。
1302、根据每条光波导传输的光信号的强度的变化量和第一映射关系,获取接触力的大小和方向。
本申请实施例通过大量实验获知,在图1至图12所描述的触觉传感器中,当接触力不大于某个阈值时,接触力沿各个坐标轴的分量,和各个光波导传输的光信号的变化量是线性相关的。所以本申请实施例通过大量实验,获取接触力沿各个坐标轴方向的力的大小,与每条光波导传输的光信号的强度的变化量之间的映射关系。当获取了任意时刻各个光波导传输的光信号的强度,就可以将其与初始状态下各个光波导传输的光信号的强度进行比较,以获取光强的变化量。根据获取的光强的变化量和预先获取的映射关系,就可以对该任意时刻的接触力在切向方向和法线方向进行解耦检测。此外,当获取了任意两个时刻各个光波导传输的光信号的强度,根据该任意两个时刻各个光波导传输的光信号的强度的变化以及映射关系,就可以获取在该两个时刻之间力的大小变化趋势以及力的方向变化趋势。
示例性的,下面给出一种可以预先确定每一条光波导在初始状态下(触点上没有接触力)的光强分布的方式。需要说明的是,可以预先设置各条光波导包围的触点未被按压时,每一条光波导的输出端设置的光电传感器件检测到的光强信号分布一致,也可以根据实际需求,预先设置各条光波导包围的触点未被按压时,每一条光波导的输出端的设置的光电传感器件检测到的光强信号分布不一致。下面以预先设置各条光波导包围的触点未被按压时,每一条光波导的输出端设置的光电传感器件检测到的光强信号分布一致为例进行说明。
宏弯曲损耗可以通过以下公式表示:
Figure PCTCN2021113908-appb-000001
其中,
Figure PCTCN2021113908-appb-000002
其中,n 1代表波导层的折射率,n 2为包层的折射率(需要说明的是,当壳体替代包层的结构是,n 2为壳体的折射率),
Figure PCTCN2021113908-appb-000003
为宏弯曲空间频率,R为光波导弯曲的曲率半径,α是光波导半径,β是传输常数,e v=2对应基模,e v=1对应高阶模,k v为修正贝塞尔函数,λ代表光的波长。
如图14所示,为本申请实施例提供的一种触觉传感器的原理的示意图。如图14所示,根据能量守恒原理,理想情况下,从光源发出的能量I 0是注入损耗能量I in、各支路宏弯曲损耗能量I loss(i)、各弹性触点微弯曲损耗能量α m(i)与各光电二极管接受能量I r(i)之和,其中,注入损耗能量I in是“吸收损耗”和“散射损耗”的总称。“吸收损耗”是指由于材料不纯净及工艺不完善而引入的杂志造成的光纤损耗,散射损耗”是指某些远小于波长的不均匀性引起的光的散射构成的损耗。因此,光源发出的能量可以通过以下公式表示:
Figure PCTCN2021113908-appb-000004
其中,
I loss(1)=α c(R1)+α c(R3)
I loss(2)=α c(R2)+α c(R4)
α c(R1)代表R1处的宏弯曲损耗,α c(R3)代表R3处的宏弯曲损耗,α c(R2)代表R2处的宏弯曲损耗,α c(R4)代表R4处的宏弯曲损耗。
若实现各分支在无接触力时光强等分,需使:
I loss(i)=I loss(j),i≠j
如图14所示,以两条光波导为例对如何使各条光波导包围的触点未被按压时,每一条光波导的输出端设置的光电传感器件检测到的光强信号分布一致,需要说明的是,该原理可拓展至触感设备中存在更多光波导的情况。
上文提到本申请实施例通过大量实验获知,在图1至图12所描述的触觉传感器中,当接触力不大于某个阈值时,接触力沿各个坐标轴的分量,和各个光波导传输的光信号的变化量是线性相关的。下面以采用4条光波导包围触点这一结构为例,对映射关系的推导过程进行解释说明:当采用4条光波导包围触点这一结构时,各个光波导传输的光信号的变化量和接触力沿各个坐标轴方向的力的大小之间的映射关系可以通过公式
[O] 4×n=[C] 4×3·[F] 3×n进行表示。其中,[O]4×n用来共n次实验中,该4条光波导的光信号的变化量。在一个可能的实施方式中,可以认为各个光波导输出端设置的光电传感器件实时获取到的光信号的强度即为光信号的变化量。其中,[F]3×n用来表示共n次实验中,力沿x轴、y轴以及z轴的分量。比如当n为1时,有
Figure PCTCN2021113908-appb-000005
[C]4×3用于该4条光波导的光信号的变化量或者说概4条光波导传输的光信号的强度和力沿各个坐标轴方向的力的大小之间的映射关系。那么[C] 4×3=[O] 4×n·[F] -1 n×3,或者可以表示为[C] 4×3=[O] 4×n·([F] T n×3·[F] 3×n) -1·[F] T n×3。示例性的,参见表1,给出一组真实的实验数据。实验过程在仿真软件solidworks构建图3所示的结构。然后,设定一个力在各个坐标轴上的分量(具体的实验过程中设定的力在各个坐标轴的分量参照表1),仿真结果可以指示在该力的作用下,各个光波导的应力位置产生的位移。之后,将力学仿真后的位移模型导入光学仿真软件zemax中进行光学仿真,仿真结果指示,该4条光波导在不同应力位置产生的位移后,光通量的变化量,实验过程中得到的各个光波导传输的光信号的强度参照表1。本次实验一共进行了12组测试,通过将该12组测试中设定的[F]3×n,以及对应获取的[O]4×n代入上述公式[C] 4×3=[O] 4×n·[F] -1 n×3既可以获取[C]4×3,或者该12组测试中设定的[F]3×n,以及对应获取的[O]4×n代入上述公式[C] 4×3=[O] 4×n·([F] T n×3·[F] 3×n) -1·[F] T n×3既可以获取[C]4×3。至此,完成了获取映射关系的计算。当再次获取到任意一个接触力时,可以根据各个光电传感器件获取到的光信号的强度以及预先获取的[C]4×3,得到力沿x轴、y轴以及z轴的分量,即得到
Figure PCTCN2021113908-appb-000006
可以根据Fx和Fy获取力在切线方向上的大小以及方向,根据Fz获取力沿法线方向上的大小。
表1:
Figure PCTCN2021113908-appb-000007
以上对本申请实施例提供的一种触觉传感器的核心结构以及触觉传感器的工作原理进行了介绍。通过本申请实施例提供的一种触觉传感器可以通过单个触点实现力在法线方向以及切线方向上的解耦检测。在实际应用本方案的场景中,触觉传感器上可以部署更多的触点,本申请实施例对此并不进行限定,该多个触点中的每个触点都可以实现力在法线方向以及切线方向上的解耦检测。此外,在一些场景中,可能只需要对力在切线方向上进行检测,针对这些场景,还可以对本申请实施例提供的触觉传感器在结构上进行简化。下面结合一些具体的实施例对这些场景进行说明。
参阅图15,本申请实施例提供的另一种触觉传感器的结构示意图。在这种实施方式中,触觉传感器上部署了更多的触点,每一个触点都可以对施加在其上的接触力实现在切线方向以及法线方向上的解耦检测。当触觉传感器上部署了更多的触点时,该触觉传感器上的每一个触点的结构可以参照图3至图12中描述的单个触点的结构进行理解。示例性的,下面以图15所示的触觉传感器包括的4个触点为例,对部署了更多的触点的触觉传感器进行介绍。图15中所示的触觉传感器包括触点1、触点2、触点3以及触点4。在图15所示的触觉传感器中,各个触点的结构均采用了图3所描述的结构。具体的,触点1通过光波导8、光波导7、光波导2以及光波导1包围。触点2通过光波导6、光波导5、光波导2以及光波导1包围。触点3通过光波导6、光波导5、光波导4以及光波导3包围。触点4通过光波导8、光波导7、光波导4以及光波导3包围。在这种实施方式中,由于包围两个触点的光波导并不完全相同,当设置在光波导的输出端的8个光电传感器件中的其中4个光电传感器件获取到光信号强度发生变化,既可以确定该4个光波导包围的触点上有接触力,进而可以根据该4条光波导传输的光信号的强度以及预先获取的映射关系,对该触点上的力进行解耦检测。举例说明,假设该8个光电传感器件中的光电传感器件8、光电传感器件7、光电传感器件2以及光电传感器件1中传输的光信号强度发生变化。由于其中,光电传感器件8设置在光波导8的输出端处,光电传感器件7设置在光波导7的输出端处,光电传感器件2设置在光波导2的输出端处,以及光电传感器件1设置在光波导1的输出端处。所以,可以确定是光波导8、光波导7、光波导2以及光波导1产生了形变,进一步 确定是通过光波导8、光波导7、光波导2以及光波导1包围的触点1上有接触力。所以,可以根据光波导8、光波导7、光波导2以及光波导1的光信号的强度变化量和映射关系对触点1上的接触力在切线方向以及法线方向解耦检测。具体的,就是根据光电传感器件8、光电传感器件7、光电传感器件2以及光电传感器件1获取的光信号的轻度以及映射关系对触点1上的接触力在切线方向以及法线方向解耦检测。
需要说明的是,图15所示的结构仅用于示例性的说明触觉传感器上可以部署更多数目的触点。至于每一种触点的结构还是可以参照图3至图12中描述的单个触点的结构进行理解。为了更好的理解部署了更多数目触点的结构,本申请实施例还给出了图16所示的部署了更多数目触点的可能的触觉传感器的结构。此外,需要说明的是,图15和图16所展示的多触点的触觉传感器的结构中,包围各个触点的光波导之间存在重复,这并不代表本申请实施例提供的多触点的触觉传感器的结构中,各个触点的光波导之间一定要存在重复。在一些可能的实施方式中,多触点的触觉传感器中,包围各个触点的光波导之间可能是没有重复的,这种设计的好处在于,可以同时按压该触觉传感器上的多个触点,同时实现对多个触点上的接触力进行解耦检测。而包围各个触点的光波导之间有重复的这种设计的好处在于,可能精简触觉传感器的结构,有助于缩小触觉传感器的尺寸。
在一些可能的实施方式中,可能只需要对力在切线方向上进行检测,针对这些场景,还可以对本申请实施例提供的触觉传感器在结构上进行简化。上面图3至图12中描述的触觉传感器,多条光波导全包围触点。进而采用不同方向的力按压触点,包围该触点的光波导产生不同的形变,使该多条光波导传输的光信号的强度发生不同的变化,进而触觉传感器可以对该力在法线方向和切线方向解耦检测。此外,上述还提到用一条光波导反应两个维度的信息不太现实,所以一条光波导用于提供一个维度的信息,至少需要3条光波导的光通量的变化量,才能准确反应力沿三个坐标轴方向上的分量。基于这些考虑,如果只通过光电传感器件对力在切线方向上进行检测,则通过2条光波导的光通量的变化量就可以反应力沿两个坐标轴方向上的分量。如果z轴用于指示法线方向,那么通过2条光波导的光通量的变化量反应力沿x轴和y轴方向上的分量,就可以实现切向力的检测,包括获取切向力的大小以及方向。下面结合一个具体的实施例对此进行介绍。参阅图17,为本申请实施例提供的另一种触觉传感器的结构示意图。与图3至图12中描述的触觉传感器的工作原理相似,在图17所展示的结构中,触点也要和该两条光波导中的每一条光波导接触。因为本申请实施例中触觉传感器的工作原理,是基于触点上施加不同方向不同大小的力,包围触点的光波导产生不同的形变。当采用两条光波导,并且该两条光波导与触点接触的边界是平行的,难以保证施加不同方向不同大小的力,该两条光波导能产生不同的形变。所以,为了使触觉传感器采用了两条光波导,也能充分满足触觉传感器的工作原理,可以将该两条光波导与触点接壤的边界部署为不相互平行。在一个可能的实施方式中,还可以将该两条光波导的部署为交叉的。此外,由于采用两条光波导无法像图3至图12中所描述的结构那样,光波导充分包围触点,可能导致测试结果的不准确。比如,在图17所展示的结构中,当采用沿y轴正方向的切向力施加在触点上,触点可能在力的作用下,充分挤压两条光波导,如果采用沿y轴负方向的切向力施加在触点上,可能会导致无法充分挤压两条光波导,使两条光波导的光通量的变化不明显,进而影响测试结果。换个角度解释,由于 本申请实施例是通过光波导的光通量的变化量来检测力,由于没有对触点全包围,导致力沿某些方向的分量是没有对应光波导的光通量进行反馈的,可能会导致根据预先获取的映射关系,以及该两条光波导的光通量的变化量最终获取了两个切向力,而无法准确确定是哪一个切向力导致。所以,为了解决这一问题,还可以预先设置该触点绑定一个坐标轴方向,比如该触点绑定y轴的正方向。当获取了光波导的光通量的变化量时,确定该力在y轴的分量只可能是沿y轴正方向的分量,不会是沿y轴负方向的分量。
在一些可能的实施方式中,可能只需要获取触觉传感器上是存在切向方向上的力还是法线方向上的力,针对于这些场景,本申请实施例提供的方案还可以根据各个光波导之间的光通量的差异来判断。比如,在一个可能的实施方式中,如果各个光波导之间的差异很小,可以认为触点上有接触力时,在接触力的作用下,触点对各个光波导的挤压程度相似,进而导致各个光波导的光通量变化程度相似。这种情况通常发生于作用在触点上的接触力只有法线方向的力,没有切向方向的力。所以,如果各个光波导之间的差异很小,可以认为接触力是法线方向上的力。此外,在这种情况下,可以根据各个光波导的光通量的变化量以及预先获取的映射关系,获取沿z轴方向的力,不再获取沿x轴和y轴方向的力,以达到降低计算量的目的。反之,在一个可能的实施方式中,如果各个光波导之间的差异很大,可以认为触点上有接触力时,在接触力的作用下,触点对各个光波导的挤压程度差异很大,进而导致各个光波导的光通量变化程度差异很大。这种情况通常发生于作用在触点上的接触力有切向方向的力。所以,如果各个光波导之间的差异很小,可以认为接触力中一定存在切线方向上的力,也可能存在法线方向上的力。还可以进一步的根据各个光波导的光通量的变化量以及预先获取的映射关系,获取法线方向上的力的大小,以及切线方向上力的大小以及方向。
本申请还提供一种电子设备,该电子设备包括处理器和触觉传感器,触觉传感器为图3至图17中所描述的触觉传感器。本申请提供的电子设备可以是手机,手表,耳机,电脑,机械手,蠕虫机器人,方向盘,智能家居等任何需要配置触觉传感器的设备。
例如,本申请提供的电子设备可以通过图18中的展示的结构来实现。图18所示为本申请实施例提供的电子设备的硬件结构示意图。包括:通信接口1501和处理器1502,还可以包括存储器1503。需要说明的是,这里列举的电子设备包括的结构仅为示例性的说明,在实际应用场景中,可能包括更多或者更少的器件,比如还可能包括显示屏等等。
通信接口1501可以使用任何收发器一类的装置,用于与其他设备或通信网络通信。
处理器1502包括但不限于中央处理器(central processing unit,CPU),网络处理器(network processor,NP),专用集成电路(application-specific integrated circuit,ASIC)或者可编程逻辑器件(programmable logic device,PLD)中的一个或多个。上述PLD可以是复杂可编程逻辑器件(complex programmable logic device,CPLD),现场可编程逻辑门阵列(field-programmable gate array,FPGA),通用阵列逻辑(generic array logic,GAL)或其任意组合。处理器1502负责通信线路1504和通常的处理,还可以提供各种功能,包括定时,外围接口,电压调节,电源管理以及其他控制功能。存储器1503可以用于存储处理器1502在执行操作时所使用的数据。
存储器1503可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令 的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically er服务器able programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器可以是独立存在,通过通信线路1504与处理器1502相连接。存储器1503也可以和处理器1502集成在一起。如果存储器1503和处理器1502是相互独立的器件,存储器1503和处理器1502相连,例如存储器1503和处理器1502可以通过通信线路通信。通信接口1501和处理器1502可以通过通信线路通信,通信接口1501也可以与处理器1502直连。
通信线路1504可以包括任意数量的互联的总线和桥,通信线路1504将包括由处理器1502代表的一个或多个处理器1502和存储器1503代表的存储器的各种电路链接在一起。通信线路1504还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本申请不再对其进行进一步描述。
在一个具体的实施方式中,该电子设备还包括存储器和处理器,存储器和处理器耦合,存储器中包括指令,处理器利用触觉传感设备感知的接触力以及该指令执行指定任务。比如,在一个可能的实施方式中,该电子设备是手术器械,可以根据触觉传感设备感知的切向力、法向力以及存储器中存储的指令,调整拉扯手术用线的力度。再比如,在一个可能的实施方式中,该电子设备是蠕虫机器人,可以根据触觉传感设备感知的切向力、法向力以及存储器中存储的指令,调整爬行速度,零活多变的调整蠕虫机器人的输出功率。再比如,在一个可能的实施方式中,该电子设备是车辆的方向盘,可以根据触觉传感设备感知的切向力、法向力以及存储器中存储的指令,判断驾驶员是否处于疲劳驾驶状态。
针对于本申请实施例提供的检测方法,本领域普通技术人员可以理解实现上述检测方法全部或部分步骤可以通过硬件来完成,也可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘或光盘等。所属领域的技术人员可以清楚地了解到本申请可借助软件加必需的通用硬件的方式来实现本申请实施例提供的检测方法,当然也可以通过专用硬件包括专用集成电路、专用CPU、专用存储器、专用元器件等来实现本申请实施例提供的检测方法。一般情况下,凡由计算机程序完成的功能都可以很容易地用相应的硬件来实现,而且,用来实现同一功能的具体硬件结构也可以是多种多样的,例如模拟电路、数字电路或专用电路等。但是,对本申请而言更多情况下软件程序实现是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在可读取的存储介质中,如计算机的软盘、U盘、移动硬盘、只读存储器ROM、随机存取存储器RAM、磁碟或者光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请实施例提供的检测方法。
本申请实施例提供的检测方法可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。
所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例提供的检测方法所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程设备。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存储的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”、“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
最后应说明的是:以上,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,本申请的保护范围应以权利要求的保护范围为准。

Claims (23)

  1. 一种触觉传感设备,包括:光源,多条光波导、光电传感器件以及触点,
    每条所述光波导的输入端处设置有所述光源,每条所述光波导的输出端处设置有所述光电传感器件,多条所述光波导包围所述触点,所述触点与每一条所述光波导接触,所述触点上有接触力时,所述多条光波导产生形变,所述光电传感器件获取每条所述光波导传输的光信号,每条所述光波导传输的光信号的变化量用于检测所述接触力。
  2. 根据权利要求1所述的触觉传感设备,所述触点是多边形的,所述触点的每一条边接触一条所述光波导。
  3. 根据权利要求1所述的触觉传感设备,所述触点的轮廓是弧形的。
  4. 根据权利要求1至3任一项所述的触觉传感设备,所述光波导从输入端到接触位置之间的区域是弧形结构,所述接触位置是所述光波导与所述触点接触的位置。
  5. 根据权利要求4所述的触觉传感设备,所述弧形的曲率小于第一预设阈值。
  6. 根据权利要求1至3任一项所述的触觉传感设备,所述光波导从输入端到接触位置之间的区域是直线结构,所述接触位置是所述光波导与所述触点接触的位置。
  7. 根据权利要求1至6任一项所述的触觉传感设备,多条所述光波导中的任意至少两条光波导是交会的。
  8. 根据权利要求7所述的触觉传感设备,交会的两条所述光波导之间的夹角度数与90°之间的偏差小于第二预设阈值。
  9. 根据权利要求1至8任一项所述的触觉传感设备,所述多条光波导部署在同一参考面上。
  10. 根据权利要求9所述的触觉传感设备,所述触点和所述多条光波导部署在同一参考面上。
  11. 根据权利要求1至10任一项所述的触觉传感设备,所述多条光波导为多输入多输出结构。
  12. 根据权利要求1至10任一项所述的触觉传感设备,所述多条光波导中的至少两条光波导为单输入多输出SIMO结构,输入端相同的所述至少两条光波导的输入端处设置有一个所述光源。
  13. 根据权利要求1至12任一项所述的触觉传感设备,所述触觉传感设备还包括壳体,所述光源、所述多条光波导以及所述光电传感器件收容于所述壳体内,所述壳体的目标位置镂空,所述目标位置对应所述触点所在的位置。
  14. 根据权利要求1至13任一项所述的触觉传感设备,所述触点上没有接触力时,任意两条所述光波导的宏弯曲损耗的偏差在预设范围内。
  15. 根据权利要求1至14任一项所述的触觉传感设备,所述触点的数目不少于2个。
  16. 一种电子设备,所述电子设备包括触觉传感设备,所述触觉传感设备为权利要求1至15中任一项所描述的触觉传感设备。
  17. 根据权利要求16所述的电子设备,所述电子设备是手术器械,所述电子设备还包括手术钳,所述触觉传感设备部署在所述手术钳的末端,所述触觉传感设备感知的接触力 用于指示所述手术钳执行指定任务。
  18. 根据权利要求16所述的电子设备,所述电子设备是机械手,所述电子设备还包括处理器,所述处理器利用所述触觉传感设备感知的接触力执行指定任务。
  19. 根据权利要求16所述的电子设备,所述电子设备是蠕虫机器人,所述电子设备还包括处理器,所述处理器利用所述触觉传感设备感知的接触力执行指定任务。
  20. 根据权利要求16所述的电子设备,所述电子设备是方向盘,所述电子设备还包括把手结构,所述触觉传感设备部署在所述把手结构的表面,所述处理器利用所述触觉传感设备感知的接触力执行指定任务。
  21. 一种检测方法,所述检测方法应用于触觉传感器,所述触觉传感器是权利要求1至15中任一项所描述的触觉传感设备,所述方法,包括:
    通过光电传感器件获取每条光波导传输的光信号的强度;
    根据每条所述光波导传输的光信号的强度的变化量和第一映射关系,获取所述接触力的大小和方向,所述第一映射关系包括所述接触力沿各个坐标轴方向的力的大小,与每条所述光波导传输的光信号的强度的变化量之间的映射。
  22. 根据权利要求21所述的检测方法,所述根据每条所述光波导传输的光信号的强度的变化量和第一映射关系,获取所述接触力的大小和方向,包括:
    第一变化量和第二变化量之间的偏差在预设范围内,获取所述接触力的方向为垂直于所述触点所在的平面向下,所述第一变化量和所述第二变化量是任意两条所述光波导传输的光信号的强度的变化量;
    根据所述第一变化量的绝对值和所述第二变化量的绝对值,以及所述第一映射关系,获取所述接触力的大小。
  23. 根据权利要求21所述的检测方法,所述根据每条所述光波导传输的光信号的强度的变化量和第一映射关系,获取所述接触力的大小和方向,包括:
    第一变化量和第二变化量之间的偏差不在预设范围内,根据所述第一映射关系、所述第一变化量和所述第二变化量,获取所述接触力沿各个所述坐标轴方向的力的大小,所述第一变化量和所述第二变化量是任意两条所述光波导传输的光信号的强度的变化量;
    根据所述接触力沿各个所述坐标轴方向的力的大小,获取所述接触力的大小和方向。
PCT/CN2021/113908 2021-08-20 2021-08-20 一种触觉传感设备、检测方法以及装置 WO2023019597A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180100436.6A CN117693670A (zh) 2021-08-20 2021-08-20 一种触觉传感设备、检测方法以及装置
PCT/CN2021/113908 WO2023019597A1 (zh) 2021-08-20 2021-08-20 一种触觉传感设备、检测方法以及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/113908 WO2023019597A1 (zh) 2021-08-20 2021-08-20 一种触觉传感设备、检测方法以及装置

Publications (1)

Publication Number Publication Date
WO2023019597A1 true WO2023019597A1 (zh) 2023-02-23

Family

ID=85239381

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/113908 WO2023019597A1 (zh) 2021-08-20 2021-08-20 一种触觉传感设备、检测方法以及装置

Country Status (2)

Country Link
CN (1) CN117693670A (zh)
WO (1) WO2023019597A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4982611A (en) * 1988-05-24 1991-01-08 Wisconsin Alumni Research Foundation Multiple-degree-of-freedom sensor tip for a robotic gripper
CN104034459A (zh) * 2014-06-27 2014-09-10 大连理工大学 光学柔性二维切向力触觉传感器
CN104244808A (zh) * 2012-04-04 2014-12-24 布鲁塞尔大学 光学力传感器
CN109029805A (zh) * 2018-07-02 2018-12-18 上海交通大学 基于柔性聚合物波导的压力传感器
US20190064012A1 (en) * 2016-02-26 2019-02-28 Technische Universiteit Eindhoven Optical waveguide system for 2-dimensional location sensing
CN110779639A (zh) * 2019-11-19 2020-02-11 重庆交通大学 一种基于光纤光栅的机械手触滑觉传感器
CN111505764A (zh) * 2020-06-17 2020-08-07 清华大学 阵列化光波导柔性触觉传感器及其制备方法和应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4982611A (en) * 1988-05-24 1991-01-08 Wisconsin Alumni Research Foundation Multiple-degree-of-freedom sensor tip for a robotic gripper
CN104244808A (zh) * 2012-04-04 2014-12-24 布鲁塞尔大学 光学力传感器
CN104034459A (zh) * 2014-06-27 2014-09-10 大连理工大学 光学柔性二维切向力触觉传感器
US20190064012A1 (en) * 2016-02-26 2019-02-28 Technische Universiteit Eindhoven Optical waveguide system for 2-dimensional location sensing
CN109029805A (zh) * 2018-07-02 2018-12-18 上海交通大学 基于柔性聚合物波导的压力传感器
CN110779639A (zh) * 2019-11-19 2020-02-11 重庆交通大学 一种基于光纤光栅的机械手触滑觉传感器
CN111505764A (zh) * 2020-06-17 2020-08-07 清华大学 阵列化光波导柔性触觉传感器及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JAMIL BABAR; KIM JAEHYUN; CHOI YOUNGJIN: "Force sensing fingertip with soft optical waveguides for robotic hands and grippers", 2018 IEEE INTERNATIONAL CONFERENCE ON SOFT ROBOTICS (ROBOSOFT), IEEE, 24 April 2018 (2018-04-24), pages 146 - 151, XP033371419, DOI: 10.1109/ROBOSOFT.2018.8404911 *

Also Published As

Publication number Publication date
CN117693670A (zh) 2024-03-12

Similar Documents

Publication Publication Date Title
Ma et al. Dense tactile force estimation using GelSlim and inverse FEM
US11662228B2 (en) Real-time surface shape sensing for flexible structures
US8116601B2 (en) Fiber optic shape sensing
US11500152B2 (en) Elastomeric lightguide coupling for continuous position localization in 1,2, and 3D
Bai et al. Elastomeric haptic devices for virtual and augmented reality
Liu et al. Bending recognition based on the analysis of fiber specklegrams using deep learning
TW201419095A (zh) 利用光學及電容系統的感壓觸控系統
US20230124841A1 (en) Haptic sensing device, electronic device, earphone, and watch
JPH08234895A (ja) 座標入力方法及びその装置
Pirozzi Multi-point force sensor based on crossed optical fibers
US20220299387A1 (en) Intelligent optical fiber tactile sounding system and method thereof
US20230221800A1 (en) Virtual reality glove
WO2023019597A1 (zh) 一种触觉传感设备、检测方法以及装置
EP3989816A1 (en) Sensing bending of multiple joints
Li et al. Optical fiber data glove for hand posture capture
US20160015271A1 (en) Palpation diagnostic device
CN114486020A (zh) 一种基于光波导的柔性表面压力传感器
Wang et al. Large‐Scale Surface Shape Sensing with Learning‐Based Computational Mechanics
Ma et al. Dense tactile force distribution estimation using gelslim and inverse fem
He et al. Stretchable optical fibre sensor for soft surgical robot shape reconstruction
Zhou et al. Helical optical fiber sensing configuration for hyper-elastic soft surgical manipulators
Pan et al. Knot-inspired optical sensors for slip detection and friction measurement in dexterous robotic manipulation
CN205655947U (zh) 一种光纤光栅力觉传感器及机器人
Park et al. Parametric analysis of multi-material soft sensor structures for enhanced strain sensitivity
Yussof et al. Determination of object stiffness control parameters in robot manipulation using a prototype optical three-axis tactile sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21953838

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180100436.6

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2021953838

Country of ref document: EP

Effective date: 20240301

NENP Non-entry into the national phase

Ref country code: DE