WO2023017901A1 - Breast cancer risk assessment system and method - Google Patents

Breast cancer risk assessment system and method Download PDF

Info

Publication number
WO2023017901A1
WO2023017901A1 PCT/KR2021/013806 KR2021013806W WO2023017901A1 WO 2023017901 A1 WO2023017901 A1 WO 2023017901A1 KR 2021013806 W KR2021013806 W KR 2021013806W WO 2023017901 A1 WO2023017901 A1 WO 2023017901A1
Authority
WO
WIPO (PCT)
Prior art keywords
breast
density
breast cancer
risk assessment
cancer risk
Prior art date
Application number
PCT/KR2021/013806
Other languages
French (fr)
Korean (ko)
Inventor
성주헌
차유현
안주영
정여진
이종원
Original Assignee
서울대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울대학교산학협력단 filed Critical 서울대학교산학협력단
Publication of WO2023017901A1 publication Critical patent/WO2023017901A1/en
Priority to US18/437,377 priority Critical patent/US20240186015A1/en

Links

Images

Classifications

    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/30ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for calculating health indices; for individual health risk assessment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0082Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes
    • A61B5/0091Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes for mammography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/43Detecting, measuring or recording for evaluating the reproductive systems
    • A61B5/4306Detecting, measuring or recording for evaluating the reproductive systems for evaluating the female reproductive systems, e.g. gynaecological evaluations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/74Details of notification to user or communication with user or patient ; user input means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/50Depth or shape recovery
    • G06T7/507Depth or shape recovery from shading
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/60Analysis of geometric attributes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/70Arrangements for image or video recognition or understanding using pattern recognition or machine learning
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H10/00ICT specially adapted for the handling or processing of patient-related medical or healthcare data
    • G16H10/60ICT specially adapted for the handling or processing of patient-related medical or healthcare data for patient-specific data, e.g. for electronic patient records
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H30/00ICT specially adapted for the handling or processing of medical images
    • G16H30/20ICT specially adapted for the handling or processing of medical images for handling medical images, e.g. DICOM, HL7 or PACS
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H30/00ICT specially adapted for the handling or processing of medical images
    • G16H30/40ICT specially adapted for the handling or processing of medical images for processing medical images, e.g. editing
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/20ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/70ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for mining of medical data, e.g. analysing previous cases of other patients
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10116X-ray image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20081Training; Learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30068Mammography; Breast

Definitions

  • the present invention relates to a breast cancer risk assessment system and method, and more particularly, to a system and method for evaluating breast cancer risk by measuring breast density and extracting characteristic patterns of breast cancer incidence.
  • Breast density which can be measured through mammograms for breast cancer detection, is known as an indicator that can predict the occurrence of breast cancer. According to the results of a study conducted on Korean women, it has been reported that women in the upper quartile of breast density have a two to four times higher risk of breast cancer compared to women in the lower quartile. Therefore, if a screening method for breast cancer high-risk group considering breast density can be implemented in the breast cancer screening process, a customized prevention strategy for breast cancer high-risk group can be established to contribute to breast cancer prevention through early detection of breast cancer and voluntary environmental improvement.
  • a conventional method known to be able to most accurately evaluate breast density is a semi-automated measurement method by an expert assisted by a computer program.
  • the conventional case although it is possible to accurately evaluate breast density, there is a disadvantage in that it is labor-intensive because an expert visually reads the breast density. Therefore, there is a need for a method for automatically evaluating breast density for cost-effective breast density measurement.
  • a breast density measurement value varies depending on technical conditions such as a radiation dose and an imaging device manufacturer, there is a problem in which reliability is low.
  • the present invention is intended to solve the above problems, and one technical problem is to provide a system and method for automating breast cancer risk assessment through breast density measurement.
  • Another technical task of the present invention is to perform multi-level breast density evaluation and pattern analysis using machine-learning based artificial intelligence technology, and to provide an image-based breast cancer risk evaluation system based thereon. .
  • Another technical task of the present invention is to provide a breast cancer risk assessment system that integrates image-based breast cancer risk assessment results and clinical information-based risk assessment results.
  • a breast cancer risk evaluation method of a breast cancer risk evaluation system using a mammogram image includes: generating evaluation data including breast density information generated by measuring the density of the breast to be evaluated and breast pattern information generated by extracting a characteristic pattern of the breast to be evaluated from the mammography image; and calculating a risk of breast cancer occurrence for the breast to be evaluated by applying a predetermined weight to each piece of information included in the evaluation data.
  • the breast cancer risk evaluation system using mammography images includes a communication module for receiving the mammography images, a memory for storing a breast cancer risk evaluation program, and a breast cancer risk evaluation program stored in the memory.
  • the present invention it is possible to automate breast density evaluation by constructing a highly reliable database based on mammography image data and image analysis information (tagged image database) and applying a machine-learning method to the databased data. It is possible to automatically predict breast density by learning from vast amount of data, and extract a pattern for predicting the occurrence of breast cancer from mammography image data using patient-normal decision result information.
  • multi-level breast density evaluation and pattern analysis can be performed using machine-learning based artificial intelligence technology, and risk evaluation based on image-based breast cancer risk evaluation results and clinical information. Results can be combined to assess breast cancer risk.
  • the present invention it is possible to extract features related to breast cancer risk through weight learning by applying a machine-learning method based on a tagged image database, and thus, a pattern directly related to breast cancer occurrence can be extracted. Therefore, it is possible to more accurately assess the risk of breast cancer.
  • the present invention it is possible to automate the breast density evaluation, which was visually evaluated by trained experts, and to calculate more indicators (multilevel breast density, pattern analysis, etc.) from breast images compared to the prior art.
  • a breast cancer risk assessment method having high efficiency at a relatively low cost compared to the prior art can be implemented.
  • breast cancer risk information including mammography image information can be provided to a examinee in real time during a breast cancer screening process, and the high-risk group and low-risk group can be classified accordingly to contribute to the efficiency of screening resources and the prevention of breast cancer. .
  • FIG. 1 is a block diagram showing the configuration of a breast cancer risk assessment system according to an embodiment of the present invention.
  • FIGS. 2 to 6 are diagrams for explaining a method of analyzing a mammography image according to an embodiment of the present invention.
  • FIG. 7 is a flowchart illustrating steps of a breast cancer risk assessment method according to an embodiment of the present invention.
  • FIG. 8 and 9 are flowcharts illustrating detailed procedures for some steps of the breast cancer risk assessment method shown in FIG. 7 .
  • first and second used in this specification are used only for the purpose of distinguishing one element from another, and do not limit the order or relationship of elements.
  • a first element of the present invention may be termed a second element, and similarly, the second element may also be termed a first element.
  • the breast cancer risk assessment system 100 may be implemented as a server or a computing device, and may operate in a cloud computing service model such as Software as a Service (SaaS), Platform as a Service (PaaS) or Infrastructure as a Service (IaaS).
  • SaaS Software as a Service
  • PaaS Platform as a Service
  • IaaS Infrastructure as a Service
  • the breast cancer risk assessment system 100 may be constructed in the form of a private cloud, public cloud, or hybrid cloud system, but the scope of the present invention is not limited thereto.
  • the breast cancer risk assessment system 100 may transmit/receive information with a medical imaging device and a database in which mammography images are stored.
  • the breast cancer risk evaluation system 100 may calculate the risk of breast cancer using a mammogram image captured by a medical imaging device and a database in which mammogram images are converted into big data and stored.
  • a breast cancer risk assessment system 100 includes a communication module 110 that transmits and receives information with an external device and receives a mammography image, a memory 120 storing a breast cancer risk assessment program, and a memory 120. ) and a processor 130 that executes a breast cancer risk assessment program stored in.
  • the name of the breast cancer risk assessment program is set for convenience of explanation, and the name itself does not limit the function of the program, and may be set to various program names.
  • the processor 130 executes a program to receive mammography images, evaluate and calculate breast density from the images, analyze breast patterns, set density areas based on image pixel brightness values, and based on personal information of a person with breasts to be evaluated. Based on clinical information settings, breast density information, breast pattern information, and clinical information, the risk of the breast to be evaluated can be calculated.
  • the above-described communication module 110 may include a device including hardware and software necessary for transmitting and receiving signals such as control signals or data signals with other network devices through wired or wireless connections.
  • the memory 120 should be interpreted as collectively referring to a non-volatile storage device that continuously maintains stored information even when power is not supplied and a volatile storage device that requires power to maintain stored information.
  • the memory 120 may perform a function of temporarily or permanently storing data, and may be a magnetic storage medium or flash storage medium in addition to a volatile storage device that requires power to maintain stored information. media), but the scope of the present invention is not limited thereto.
  • the processor 130 may include various types of devices that control and process data.
  • the processor 130 may refer to a data processing device embedded in hardware having a physically structured circuit to perform functions expressed by codes or instructions included in a program.
  • the processor 130 may include a microprocessor, a central processing unit (CPU), a processor core, a multiprocessor, an application-specific integrated circuit (ASIC), an FPGA ( field programmable gate array), etc., but the scope of the present invention is not limited thereto.
  • the terminal is, for example, a laptop, desktop, and laptop equipped with a web browser, and all types of handhelds such as smartphones and tablet PCs as wireless communication devices that ensure portability and mobility. handheld)-based wireless communication device.
  • the network may include a wired network such as a Local Area Network (LAN), a Wide Area Network (WAN) or a Value Added Network (VAN), a mobile radio communication network, a satellite communication network, and the like. It can be implemented in all kinds of wireless networks such as
  • the processor 130 may execute the breast cancer risk assessment program stored in the memory 120 to perform the following functions and procedures.
  • the processor 130 measures the density of the breast to be evaluated from a mammography image of the breast to be evaluated and generates breast density information.
  • the processor 130 generates evaluation data including breast pattern information generated by extracting a characteristic pattern of a breast to be evaluated from a breast imaging image.
  • the processor 130 calculates the risk of breast cancer occurrence for the breast to be evaluated by applying a predetermined weight to each piece of information included in the evaluation data.
  • the mammography image may be a DICOM (Digital Imaging and Communications in Medicine) type image.
  • the feature pattern may include an abnormal breast feature pattern of the breast to be evaluated.
  • the processor 130 may execute a breast cancer risk assessment program to generate clinical information based on at least one or more of age information, genome information, and breast cancer family history information of a specific person corresponding to the breast to be evaluated.
  • Clinical information may include physical information, female history, lifestyle, family history, and the like of a person having a breast to be evaluated.
  • the processor 130 may perform preprocessing to adjust the mammography image to have a preset contrast and size structure.
  • the processor 130 may calculate the size of the breast to be evaluated by segmenting the breast from the preprocessed mammography image.
  • the processor 130 may calculate the breast density using the pixel density of the breast area.
  • the processor 130 executes a breast cancer risk assessment program to first density, second density, and third density in descending order of brightness values according to a predetermined criterion of brightness values for each pixel in the mammography image. can be divided into areas.
  • the processor 130 may calculate the sizes of the first to third density regions of the breast.
  • the size of the breast may be an area occupied by the breast in the image or an area of the breast.
  • the processor 130 may calculate the breast density for each region using pixel densities in the first to third density regions.
  • the size of the breast region for each of the first to third density regions is determined by an absolute breast size value corresponding to an area value of the breast region for each region of the first to third density regions and the first to third densities of the breast region.
  • a breast size relative value corresponding to a value obtained by dividing the area value of a region by the total area value of the breast may be included.
  • the processor 130 may perform breast cancer risk assessment using an artificial intelligence model using deep learning technology.
  • the processor 130 executes a breast cancer risk evaluation program, performs vector transformation to which a weight is applied based on a plurality of mammography images to be learned, calculates a breast density of an image breast region, and calculates a breast density and A trained artificial intelligence model may be created to minimize a difference in breast density derived by an expert targeting mammography images to be learned.
  • the processor 130 may measure the density of the breast to be evaluated by receiving a medical imaging image of the breast to be evaluated using the artificial intelligence model.
  • the processor 130 executes a breast cancer risk assessment program, performs machine learning based on mammogram images of a normal person and a breast cancer patient, and extracts a feature pattern of an abnormal breast from an input image.
  • Intelligence models can be created.
  • the processor 130 may extract an abnormal breast feature pattern of the breast to be evaluated from the mammography image using the artificial intelligence model.
  • the processor 130 may evaluate the subject's breast density in pixel units through three stages. This method can be referred to as a multi-level breast density evaluation method.
  • breast density may be classified into three levels of normal density, high density, and ultra-high density by the processor 130 .
  • the processor 130 may express the multilevel breast density as an absolute amount (cm ⁇ 2) and a relative amount (%).
  • the absolute amount is a value obtained by converting the absolute amount of breast parenchymal tissue into cm ⁇ 2
  • the relative amount is a value expressed as a percentage (%) by dividing the absolute amount by the total breast area.
  • the processor 130 may set a portion 21 that is regarded as parenchymal tissue on a mammogram image, and in the case of a high density, a gray portion included in the existing normal density may be excluded. It can be set to the bright area 22, and in the case of ultra-high density, it can be set to the brightest area 23 on the image.
  • a standard of brightness may be preset.
  • the higher the density the higher the predictive power of breast cancer. Therefore, although the overall ratio is low, ultra-high density best reflects the risk of breast cancer, and it is not related to general density, so it can be used as an independent indicator. Accordingly, the processor 130 may highly evaluate the risk of the breast to be evaluated corresponding to a mammography image having many ultra-high density regions.
  • part 21 may be set to the first density
  • part 22 may be set to the second density
  • part 23 may be set to the third density.
  • Values of the first to third densities may be values derived by measuring density values for each density area.
  • the preprocessing image database 32 and the segmented image database 33 may be obtained through the preprocessing process and the image segmentation process, respectively.
  • the processor 130 may perform image-based risk assessment that evaluates risk from mammography images based on a machine-learning method and clinical information-based risk assessment that evaluates risk by applying a statistical method to clinical and genomic information.
  • Image-based risk assessment consists of a breast density evaluation process that automatically evaluates the breast density of an input image through a weighted variable, and a pattern analysis process that extracts patterns related to breast cancer risk from the input image through a weighted variable and evaluates the risk through this process. can include
  • the processor 130 may calculate an integrated breast cancer risk by integrating the risk evaluation results of the image-based risk evaluation and the clinical information-based risk evaluation.
  • the breast density evaluation process is a process of automatically evaluating breast density from an input image, and includes a breast segmentation process of segmenting a breast region, a preprocessing process of resizing an input image and enhancing local contrast, and and a dense region prediction process of predicting a dense region by performing vector transformation on the breast region, and a breast density prediction process of calculating a breast density by synthesizing the results of the breast segmentation process and the dense region prediction process.
  • a weight variable in the breast density evaluation process may be learned through a tagged image database representing images and image analysis information.
  • an image preprocessed by a preprocessing process is used as an input image.
  • the processor 130 divides the input image into training data and verification data, and repeats the process of adjusting the transform weight to minimize the cost function for the training data until the cost function for the verification data is minimized. Transformation weights can be adjusted in the region prediction process.
  • the processor 130 may output a breast density measurement value based on output results of the breast segmentation process and the dense region prediction process in the breast density prediction process.
  • Breast density can be calculated for each density category by breast absolute density (dense area, DA) and density percentage (percent density, PD).
  • the pattern analysis process performed by the processor 130 may be learned through a tagged image database representing images and normal/patient determination information.
  • the process of adjusting the transform weight to minimize the cost function by the learning process may include a process of repeating the process until the point at which the cost function for the verification data is minimized.
  • the image-based risk evaluation process performed by the processor 130 is a process of calculating the risk level by applying a conversion function that converts outputs of the breast density evaluation process and the pattern analysis process into a risk level.
  • the risk evaluation process based on clinical information performed by the processor 130 is a process of calculating a risk level according to clinical information and genetic information of a person having breasts subject to risk evaluation. This process involves dividing the subject into several phenotypes through genetic/family history information, and then squaring the relative risk estimated through the risk of breast cancer according to the age of each phenotype and clinical information. .
  • the integrated breast cancer risk assessment process performed by the processor 130 is a process of integrating the results of the image-based risk assessment process and the clinical information-based risk assessment process to calculate the final breast cancer risk.
  • This process includes a process of calculating the risk level by applying a weighted average based on the normal/patient discrimination performance of each risk evaluation process for the tagged image database.
  • the breast density evaluation process performed by the processor 130 is a method of performing more accurate prediction by directly learning expert image analysis information.
  • a segmented image database can be built and learned from the expert's breast density measurement. . Therefore, since density evaluation for each pixel of an image is possible, accurate and multi-level evaluation of breast density is possible.
  • a method of calculating a breast cancer risk by calculating a predefined feature value from an image has been the main method.
  • features related to breast cancer risk can be extracted through weight learning by applying a machine-learning method based on a tagged image database. Through this method, it is possible to more accurately evaluate the risk of breast cancer because it is possible to extract patterns directly related to the occurrence of breast cancer.
  • breast density evaluation which has been visually evaluated by a trained expert, can be automated.
  • the breast map risk evaluation system 100 performs breast cancer risk evaluation through a breast density evaluation process, a pattern analysis process, a standard density conversion process, an image-based risk evaluation process, a clinical information-based risk evaluation process, and an integrated breast cancer risk evaluation process.
  • the breast density evaluation process is a process of converting an input image into an output vector through a conversion vector, and then calculating and outputting the breast density (multilevel breast density) for each density category.
  • the standard density conversion process is a process of receiving multi-level breast density, which is an output of the breast density evaluation process, as an input, converting the breast density for each category into a standard density standardized by age and body mass index, and then outputting the result.
  • the pattern analysis process is a process of extracting a feature pattern related to breast cancer risk from an input image, performing risk analysis, and finally outputting the pattern risk.
  • the image-based risk assessment process is the process of applying a specific coefficient to the standard density, which is the output of the standard density conversion process, and the pattern risk, which is the output of the pattern analysis process, converting it into an image-based risk and then outputting it.
  • the breast density evaluation process includes a breast segmentation process, a preprocessing process, a dense region prediction process, and a breast density prediction process.
  • an input image may be converted into a standard image size using bilinear interpolation, and then image normalization may be performed by applying contrast limited adaptive histogram equalization (CLAHE).
  • CLAHE contrast limited adaptive histogram equalization
  • I(x,y) represents the pixel intensity of the image at the x, y coordinates of the image, and when the size of the standard image is w-by-h, it can be expressed as in Equation 1 below .
  • a prediction segmented image 43 is output by applying a conversion function 42 to an input image 41 .
  • An example of the transform function 42 in the dense region prediction process is a linear combination of an input image and a transform weight.
  • Equation (2) When the input image I(x,y) is composed of w-by-h pixels, the input image is expressed as a 2-dimensional vector (ranks of each dimension are w and h) as shown in Equation (2) below.
  • xij means the (i,j)th pixel value.
  • the output vector T(X) obtained from the input image by the conversion function F(x, y) is a w-by-h vector and has the result of element-by-element multiplication of I(x,y) and F(x,y) as elements. . This can be expressed as Equation (4) below.
  • the final output vector O(X) is obtained by creating a total of k T(x, y) through a total of k F(x, y), concatenating them, and applying the softmax function.
  • k is defined as the number of density categories
  • the output vector O_c of category c which is one of the k density categories, can be expressed as Equation (5) below.
  • convolutional operation is an operation used in deep-learning implementation, considering complexity, and can use a combination of pooling operation, deconvolution, and nonlinear function. You will be able to.
  • the transform weight F used in the process of predicting the dense region performed by the processor 130 may be derived through a learning process as described above with reference to FIGS. 2 and 3, and this learning process is divided into the preprocessed image database 32.
  • a process for learning a breast density evaluation process based on the image database 33 may be included.
  • the learning process may be performed by receiving batch data generated from the batch generator.
  • the batch generator generates batch data from the pre-processing image database and the segmented image database, and transmits the batch data to the learning process so that the breast density evaluation process can be learned.
  • This learning process is a process for finding a transform weight set F having the smallest loss function. This process is performed by obtaining F that minimizes the cost function for the validation set by monitoring in the process of updating W using the change in weight (W) that minimizes the cost (loss) for the training set.
  • the learning process includes a first process of predicting the density of each pixel by applying the current transform weight to the input image, a second process of calculating a cost meaning a difference from the expert measurement value using a cost function, and a process of minimizing the cost.
  • the transform weight is adjusted by repeating the third process of updating the transform weight by calculating the amount of change in the transform weight.
  • the learning process has a cost function, which can be expressed as cost(true_label, predicted label).
  • a cross entropy function may be used as the cost function of the learning process, but is not limited thereto, and other cost functions may be set in various ways.
  • the cost function for the verification data is monitored by the monitoring process.
  • the update process is repeatedly performed until the point where the cost function for the verification data is minimized to determine the final weight.
  • the transform function learned by the learning process image Apply the calculated vector to the output vector , and the output vector can have a value between 0 and 1.
  • a gaussian mixture model is applied to estimate the parameter, the value obtained by averaging ( ) as a threshold, and is divided into a second process of segmenting a breast part from an input image.
  • the input image is converted into a binary breast segmentation image output S_breast, and the breast area (BA), which is the final output of the breast segmentation process, is converted to a breast segmentation image output S_breast.
  • BA the breast area
  • the breast area which is the output of the breast segmentation unit for the input image X, is calculated as shown in Equation (8) below.
  • a final breast density prediction result is output by synthesizing results of the breast region and the dense region predicted from the breast segmentation process and the dense region prediction process.
  • the breast density output value according to the breast density prediction process is divided into absolute breast density (dense area, DA) and relative breast density (percent density, PD) for the density category.
  • the absolute breast density output from the input image by the breast density prediction process is the value obtained by multiplying the total number of pixels classified as dense regions by the conversion factor K for converting the unit to cm ⁇ 2, and is the jth density for the input image X. degree of absolute breast density can be obtained through Equation (9) below.
  • the relative breast density (PD) output from the input image by the breast density prediction process is a value obtained by converting the ratio of the absolute breast density area (DA) to the breast area (BA) output by the breast segmentation process into a percentage (%) am.
  • Relative breast density of density category c for image X is calculated through Equation (10) below.
  • Standard density conversion process performed by the processor 130 This is a process of converting an output according to a breast density evaluation process into a standardized residual density.
  • the implementation of the standard density transformation process is the first process of performing Box-cox transformation on the output (absolute breast density and relative breast density by density category) according to the breast density evaluation process, and the residual
  • the second process of estimating the density, the third process of calculating the standardized residual density using ⁇ and s, which mean the sample mean and standard deviation of the residual density obtained from expert measurements of the control data of the tagged image database in the results of the previous step include the process
  • Equation (11) When one of the outputs of the breast density evaluation process is x, the first to third processes of the standard density conversion process can be expressed as Equation (11) below.
  • the transformation constant is estimated through the maximum likelihood estimation method for the normal distribution with respect to the value predicted by the calibration variable while repeatedly performing conversion on the expert measurement values for the image of the control group in the tagged image database.
  • equation (11) uses the coefficients estimated after fitting a linear regression model using a correction variable for the transformed ⁇ for the expert measurements of the control image in the tagged image database. for the control image After calculating , it is a value calculated as the mean and standard deviation.
  • the pattern analysis process performed by the processor 130 is a process of extracting a feature pattern related to breast cancer risk from an input image, performing a risk analysis, and finally outputting a pattern risk.
  • Preprocessing, pattern extraction, and pattern risk prediction process includes
  • CLAHE contrast limited adaptive histogram equalization
  • An example of implementation of the pattern extraction process performed by the processor 130 may include a convolutional neural network. Since the implementation of the convolutional neural network is a technique widely used in image processing techniques, a detailed description thereof will be omitted. It can be represented as a one-dimensional vector.
  • the pattern risk prediction process performed by the processor 130 is a process of receiving an output according to the pattern extraction process as an input and calculating a breast cancer risk using a conversion vector.
  • a neural network model (multi-layer perceptron) can be applied.
  • a neural network model having one hidden layer will be described as an implementation example.
  • the output result from the pattern extraction process be a vector X with n elements, and when there is an n-by-m weight vector w(1) and a vector b(1) with m elements, the output vector h of the hidden layer is represented by the following equation (12).
  • the pattern risk which is an output result from the pattern extraction process, can be calculated by performing sigmoid transformation on the values obtained by applying the m-by-1 weight vectors w(2) and b(2) to the hidden layer output h.
  • the formula for calculating the final pattern risk is Equation (13) below.
  • Weights used in the pattern extraction process of the pattern analysis process performed by the processor 130 and the pattern risk prediction process may be learned through a learning process using a tagged image database. As described above, the learning process is performed by obtaining F that minimizes the cost function for the validation set in the process of finding the transform weight set F having the smallest value of the loss function.
  • the image-based risk assessment process performed by the processor 130 is a process of outputting an image-based risk rating by receiving outputs according to a breast density prediction process and a pattern analysis process as inputs.
  • the output of the breast density prediction process for a total of k density categories When the output of the pattern analysis process is P, the following equation (14) can be exemplified as an implementation of the image-based risk assessment process.
  • the clinical information-based risk assessment process performed by the processor 130 is a process that is separate from the process applied to mammography images, and is a process of outputting a risk level considering clinical information and genome information of a subject.
  • the Tyrer-Cuzick model which is one widely used clinical model, will be described as an example.
  • the risk calculation formula of the Tyrer-Cuzick model is shown in Equation (15) below.
  • BRCA gene absent/low penetrance gene absent (BRCA gene absent/low penetrance gene present), (BRCA gene absent/low penetrance gene present), (BRCA1 gene present/low penetrance gene absent), (BRCA1 gene present/low penetrance gene present), (BRCA2 gene present/ It is the probability of having the ith phenotype among 6 phenotypes.
  • the coefficients used in the above formula and the probability of breast cancer occurrence at a specific age are values calculated in advance based on the results of previous studies. In the case of the Tyrer-Cuzick model used in the clinical information-based risk assessment process, it is widely used to calculate the risk of breast cancer, so a detailed description is omitted.
  • the integrated breast cancer risk assessment process performed by the processor 130 is a process of calculating a breast cancer risk by combining an output according to an image-based risk assessment process and an output according to a clinical information-based risk assessment process.
  • An example of implementing an integrated breast cancer risk assessment process is a weighted average using the performance of two predictive models.
  • the weighted average can be expressed as Equation (16) below.
  • the weights w_1 and w_2 of the integrated breast cancer evaluation process can be estimated from the above-described tagged image database.
  • the processor 130 may perform breast cancer risk calculation based on a mammogram-based risk calculation automation algorithm.
  • the corresponding algorithm includes breast density evaluation and pattern extraction as two major categories, and based on this, mammogram-based breast cancer risk can be output.
  • the processor 130 first performs preprocessing on a DICOM image as an input image.
  • the processor 130 divides the breast area to calculate the total area of the subject's breast.
  • the processor 130 calculates an absolute value (cm ⁇ 2) for each multilevel breast density area and a relative value (%) for the total area.
  • the processor 130 may present evaluation information 61 including the final breast cancer risk by integrating the risk and clinical information calculated through the pattern analysis process in addition to the breast density.
  • FIG. 7 is a flow chart showing steps of a breast cancer risk assessment method according to an embodiment of the present invention
  • FIGS. 8 and 9 are flowcharts showing detailed procedures for some steps of the breast cancer risk assessment method shown in FIG. 7 .
  • the breast cancer risk evaluation method according to this embodiment is a method using the breast cancer risk evaluation system 100 described above with reference to FIGS. 1 to 6 .
  • Each step and detailed process of the breast cancer risk assessment method described below may be implemented through the above-described breast cancer risk assessment system 100 and may be performed by the processor 130 executing a program. Therefore, the contents of the embodiments described above with reference to FIGS. 1 to 6 may be equally applied to the following embodiments, and the contents overlapping with the above description will be omitted below.
  • the breast cancer risk evaluation method using mammography images includes a step of generating evaluation data including breast density information and breast pattern information (S110) and based on the evaluation data and calculating the risk of breast cancer (S120).
  • the breast cancer risk assessment system 100 measures the density of the breast to be evaluated from the mammography image of the breast to be evaluated, and generates breast density information and A step of generating evaluation data including breast pattern information generated by extracting a characteristic pattern of a breast to be evaluated from a mammography image.
  • the breast cancer risk evaluation system 100 calculates the risk of breast cancer occurrence for the breast to be evaluated by applying a predetermined weight to each piece of information included in the evaluation data. It is a step to Here, the mammography image may be a DICOM (Digital Imaging and Communications in Medicine) type image.
  • DICOM Digital Imaging and Communications in Medicine
  • generating evaluation data including breast density information and breast pattern information may include a density measurement step using artificial intelligence technology.
  • a vector transformation to which a weight is applied is performed based on a plurality of mammography images to be learned, to calculate the breast density of the breast part in the image, and the calculated breast density and the plurality of mammography images to be learned are targeted.
  • It may be a step of measuring the density of the breast to be evaluated using an artificial intelligence model trained to minimize the difference in breast density of the breast region in the image drawn by the expert.
  • the step of generating evaluation data including breast density information and breast pattern information includes a pattern extraction step using artificial intelligence technology, and the feature pattern may include an abnormal breast feature pattern of the breast to be evaluated.
  • the pattern extraction step an abnormal breast pattern extraction artificial intelligence model configured to perform machine learning based on mammogram images of normal persons and breast cancer patients to extract feature patterns of abnormal breasts from the input images is used, and the mammogram images It may be a step of extracting an abnormal breast feature pattern of the breast to be evaluated from the breast.
  • the breast cancer risk assessment system 100 provides information on at least one of age information, genetic information, and breast cancer family history information of a specific person corresponding to the breast to be evaluated.
  • a step of generating clinical information generated based on may be further included.
  • the evaluation data may include clinical information.
  • generating evaluation data including breast density information and breast pattern information includes pre-processing a mammogram image according to preset contrast and size standards (S111), and preprocessing the mammogram image. It may include calculating the size of the breast to be evaluated by dividing the breast region from (S112) and calculating the breast density using the pixel density of the breast region (S113). These steps may be density measurement steps. Calculating the breast density using the pixel density of the breast region ( S113 ) may include calculating the breast density for each region using pixel densities in the first to third density regions.
  • step S112 of calculating the size of the breast to be evaluated by segmenting a breast region from a preprocessed mammography image (S112), according to a predetermined criterion of brightness values for each pixel in the mammography image the brightness value is low.
  • the size of the breast region for each of the first to third density regions is the absolute value of the breast size corresponding to the area value of the first to third density regions of the breast region and the area value of the first to third density regions of the breast region.
  • the breast cancer risk assessment method described above may be implemented in the form of a recording medium containing instructions executable by a computer, such as a program executed by a computer.
  • Computer readable media can be any available media that can be accessed by a computer and includes both volatile and nonvolatile media, removable and non-removable media. Also, computer readable media may include both computer storage media and communication media. Computer storage media includes both volatile and nonvolatile, removable and non-removable media implemented in any method or technology for storage of information such as computer readable instructions, data structures, programs or other data.
  • the present invention can be used in the medical industry related to disease diagnosis as a breast cancer diagnosis and evaluation technology, it has industrial applicability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Primary Health Care (AREA)
  • Epidemiology (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • Databases & Information Systems (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biophysics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Surgery (AREA)
  • Molecular Biology (AREA)
  • Reproductive Health (AREA)
  • Gynecology & Obstetrics (AREA)
  • Artificial Intelligence (AREA)
  • Computing Systems (AREA)
  • Evolutionary Computation (AREA)
  • Software Systems (AREA)
  • Multimedia (AREA)
  • Quality & Reliability (AREA)
  • Geometry (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

A breast cancer risk assessment method of a breast cancer risk assessment system using a mammography image, according to one embodiment of the present invention, comprises steps in which the system: generates assessment data including breast density information, which is generated by measuring, from a mammography image of a breast to be assessed, the density of the breast to be assessed, and the breast pattern information, which is generated by extracting, from the mammography image, a feature pattern of the breast to be assessed; and calculates the risk of breast cancer for the breast to be assessed by applying a preset weight to respective pieces of information included in the assessment data.

Description

유방암 위험도 평가 시스템 및 방법Breast cancer risk assessment system and method
본 발명은 유방암 위험도 평가 시스템 및 방법에 관한 것으로, 더욱 상세하게는, 유방 밀도 측정 및 유방암 발병의 특징 패턴을 추출하여 유방암 위험도를 평가하는 시스템 및 방법에 관한 것이다. The present invention relates to a breast cancer risk assessment system and method, and more particularly, to a system and method for evaluating breast cancer risk by measuring breast density and extracting characteristic patterns of breast cancer incidence.
유방암은 한국에서 갑상선암과 함께 여성에게서 가장 많이 발생하는 암 중 하나로 알려져 있다. 2017년 발표된 중앙암등록본부의 자료에 의하면 유방암은 2017년 한 해 19,219건 발생하였으며 이는 남녀 통틀어 전체 암 발생의 9.0 %를 차지한다. Breast cancer is known to be one of the most common cancers in women along with thyroid cancer in Korea. According to the data of the Central Cancer Registry published in 2017, breast cancer occurred in 19,219 cases in 2017 alone, accounting for 9.0% of all cancers in both men and women.
유방암 발견을 위한 유방촬영영상(mammogram)을 통해 측정할 수 있는 유방 밀도 (mammographic density) 는 유방암 발생을 예측할 수 있는 지표로 알려져 있다. 한국 여성을 대상으로 진행된 연구의 결과에 따르면 유방 밀도가 상위 1/4분위에 속한 여성이 하위 1/4분위 여성에 비해 2배 내지 4배의 유방암 발생 위험도를 가진 것으로 보고된 바 있다. 따라서, 유방암 검진 과정에서 유방 밀도를 고려한 유방암 고위험군 선별 방법을 구현할 수 있다면, 유방암 고위험군에 대한 맞춤형 예방 전략을 수립하여 유방암 조기 발견 및 자발적 환경 개선을 통한 유방암 예방에 기여할 수 있을 것이다. Breast density, which can be measured through mammograms for breast cancer detection, is known as an indicator that can predict the occurrence of breast cancer. According to the results of a study conducted on Korean women, it has been reported that women in the upper quartile of breast density have a two to four times higher risk of breast cancer compared to women in the lower quartile. Therefore, if a screening method for breast cancer high-risk group considering breast density can be implemented in the breast cancer screening process, a customized prevention strategy for breast cancer high-risk group can be established to contribute to breast cancer prevention through early detection of breast cancer and voluntary environmental improvement.
현재 유방 밀도를 가장 정확하게 평가할 수 있는 것으로 알려진 종래 방법은 컴퓨터 프로그램의 도움을 받은 전문가의 반자동(semi-automated) 측정 방식이다. 종래의 경우, 정확하게 유방 밀도를 평가할 수 있지만 전문가가 육안으로 판독하기 때문에 노동 집약적이라는 단점이 있다. 따라서 비용-효율적인 유방 밀도 측정을 위한 유방 밀도 자동 평가 방법이 필요한 실정이다. 또한, 종래의 경우, 방사선량, 촬영기기 제조사 등의 기술적인 조건에 따라 유방 밀도 측정값이 달라지므로 신뢰성이 떨어지는 문제가 있다. Currently, a conventional method known to be able to most accurately evaluate breast density is a semi-automated measurement method by an expert assisted by a computer program. In the conventional case, although it is possible to accurately evaluate breast density, there is a disadvantage in that it is labor-intensive because an expert visually reads the breast density. Therefore, there is a need for a method for automatically evaluating breast density for cost-effective breast density measurement. In addition, in the prior art, since a breast density measurement value varies depending on technical conditions such as a radiation dose and an imaging device manufacturer, there is a problem in which reliability is low.
본 발명은 전술한 문제점을 해결하기 위한 것으로, 유방 밀도 측정을 통한 유방암 위험도 평가를 자동화한 시스템 및 방법을 제공하는 것을 일 기술적 과제로 한다.SUMMARY OF THE INVENTION The present invention is intended to solve the above problems, and one technical problem is to provide a system and method for automating breast cancer risk assessment through breast density measurement.
또한, 본 발명은 머신-러닝(machine-learning) 기반 인공지능 기술을 이용하여 다수준 유방 밀도 평가 및 패턴 분석을 수행하고, 이를 토대로 이미지 기반의 유방암 위험도 평가 시스템을 제공하는 것을 다른 기술적 과제로 한다.In addition, another technical task of the present invention is to perform multi-level breast density evaluation and pattern analysis using machine-learning based artificial intelligence technology, and to provide an image-based breast cancer risk evaluation system based thereon. .
또한, 본 발명은 이미지 기반의 유방암 위험도 평가 결과와 임상 정보 기반의 위험도 평가 결과를 통합한 유방암 위험도 평가 시스템을 제공하는 것을 또 다른 기술적 과제로 한다.In addition, another technical task of the present invention is to provide a breast cancer risk assessment system that integrates image-based breast cancer risk assessment results and clinical information-based risk assessment results.
본 발명이 이루고자 하는 기술적 과제들은 상기한 기술적 과제로 제한되지 않으며, 이하의 설명으로부터 본 발명의 또 다른 기술적 과제들이 도출될 수 있다.The technical problems to be achieved by the present invention are not limited to the above technical problems, and other technical problems of the present invention can be derived from the following description.
상술한 기술적 과제를 해결하기 위한 기술적 수단으로서, 본 발명의 제1 측면에 따른 유방 촬영 이미지를 이용한 유방암 위험도 평가 시스템의 유방암 위험도 평가 방법은, 상기 시스템이, 평가 대상 유방에 대한 유방 촬영 이미지로부터 상기 평가 대상 유방의 밀도를 측정하여 생성한 유방 밀도 정보 및 상기 유방 촬영 이미지로부터 상기 평가 대상 유방의 특징 패턴을 추출하여 생성한 유방 패턴 정보를 포함하는 평가 데이터를 생성하는 단계, 그리고, 상기 시스템이, 상기 평가 데이터에 포함된 정보들 각각에 기설정된 가중치를 적용하여 상기 평가 대상 유방에 대한 유방암 발생 위험도를 산출하는 단계를 포함한다. As a technical means for solving the above-described technical problem, a breast cancer risk evaluation method of a breast cancer risk evaluation system using a mammogram image according to a first aspect of the present invention includes: generating evaluation data including breast density information generated by measuring the density of the breast to be evaluated and breast pattern information generated by extracting a characteristic pattern of the breast to be evaluated from the mammography image; and calculating a risk of breast cancer occurrence for the breast to be evaluated by applying a predetermined weight to each piece of information included in the evaluation data.
또한, 본 발명의 제2 측면에 따른 유방 촬영 이미지를 이용한 유방암 위험도 평가 시스템은, 상기 유방 촬영 이미지를 수신하는 통신 모듈, 유방암 위험도 평가 프로그램을 저장하는 메모리, 그리고, 상기 메모리에 저장된 유방암 위험도 평가 프로그램을 실행하는 프로세서를 포함한다. 상기 프로세서는 상기 유방암 위험도 평가 프로그램을 실행하여, 평가 대상 유방에 대한 유방 촬영 이미지로부터 상기 평가 대상 유방의 밀도를 측정하여 생성한 유방 밀도 정보 및 상기 유방 촬영 이미지로부터 상기 평가 대상 유방의 특징 패턴을 추출하여 생성한 유방 패턴 정보를 포함하는 평가 데이터를 생성하고, 그리고, 상기 평가 데이터에 포함된 정보들 각각에 기설정된 가중치를 적용하여 상기 평가 대상 유방에 대한 유방암 발생 위험도를 산출하는 것을 수행하도록 구성된다.In addition, the breast cancer risk evaluation system using mammography images according to the second aspect of the present invention includes a communication module for receiving the mammography images, a memory for storing a breast cancer risk evaluation program, and a breast cancer risk evaluation program stored in the memory. includes a processor that executes The processor executes the breast cancer risk evaluation program to extract breast density information generated by measuring the density of the breast to be evaluated from a mammogram image of the breast to be evaluated, and a characteristic pattern of the breast to be evaluated from the mammogram image. generating evaluation data including breast pattern information generated by doing so, and calculating a risk of breast cancer for the breast to be evaluated by applying a predetermined weight to each piece of information included in the evaluation data. .
본 발명에 따르면, 유방 촬영 이미지 자료 및 영상 분석 정보 (tagged image database)를 토대로 신뢰성 높은 데이터베이스를 구축하고, 데이터베이스화된 데이터에 머신 러닝(machine-learning) 방법을 적용하여 유방 밀도 평가를 자동화할 수 있고, 방대한 데이터로부터 학습을 수행하여 유방 밀도 자동 예측을 수행할 수 있고, 그리고, 환자-정상 판정결과 정보를 이용하여 유방 촬영 이미지 자료로부터 유방암 발생을 예측할 수 있는 패턴을 추출할 수 있다. According to the present invention, it is possible to automate breast density evaluation by constructing a highly reliable database based on mammography image data and image analysis information (tagged image database) and applying a machine-learning method to the databased data. It is possible to automatically predict breast density by learning from vast amount of data, and extract a pattern for predicting the occurrence of breast cancer from mammography image data using patient-normal decision result information.
또한, 본 발명에 따르면, 머신-러닝(machine-learning) 기반 인공지능 기술을 이용하여 다수준 유방 밀도 평가 및 패턴 분석을 수행할 수 있고, 이미지 기반의 유방암 위험도 평가 결과와 임상 정보 기반의 위험도 평가 결과를 통합하여 유방암 위험도를 평가할 수 있다. In addition, according to the present invention, multi-level breast density evaluation and pattern analysis can be performed using machine-learning based artificial intelligence technology, and risk evaluation based on image-based breast cancer risk evaluation results and clinical information. Results can be combined to assess breast cancer risk.
또한, 본 발명에 따르면, 태그드 영상 데이터베이스를 기반으로 머신-러닝 방법을 적용하여 가중치 학습을 통해 유방암 위험과 관련된 특징을 추출할 수 있고, 이에 따라, 유방암 발생과 직접적으로 관련 있는 패턴을 추출할 수 있어 유방암 위험도를 보다 정확하게 평가할 수 있다.In addition, according to the present invention, it is possible to extract features related to breast cancer risk through weight learning by applying a machine-learning method based on a tagged image database, and thus, a pattern directly related to breast cancer occurrence can be extracted. Therefore, it is possible to more accurately assess the risk of breast cancer.
또한, 본 발명에 따르면, 훈련된 전문가에 의해 육안으로 평가되던 유방 밀도 평가를 자동화할 수 있고, 종래 기술에 비해 유방 영상으로부터 더 많은 지표 (다수준 유방 밀도, 패턴 분석 등) 를 산출할 수 있어 종래 기술 대비 상대적으로 저비용으로 고효율을 갖는 유방암 위험도 평가 방법을 구현할 수 있다.In addition, according to the present invention, it is possible to automate the breast density evaluation, which was visually evaluated by trained experts, and to calculate more indicators (multilevel breast density, pattern analysis, etc.) from breast images compared to the prior art. A breast cancer risk assessment method having high efficiency at a relatively low cost compared to the prior art can be implemented.
또한, 본 발명에 따르면, 유방암 검진 과정에서 유방 촬영 이미지 정보를 포함한 유방암 위험도 정보를 실시간으로 검진자에게 제공할 수 있고, 이에 따른 고위험군과 저위험군의 구분을 통해 검진 자원 효율화 및 유방암 예방에 기여할 수 있다.In addition, according to the present invention, breast cancer risk information including mammography image information can be provided to a examinee in real time during a breast cancer screening process, and the high-risk group and low-risk group can be classified accordingly to contribute to the efficiency of screening resources and the prevention of breast cancer. .
본 발명의 효과들은 상술한 효과들로 제한되지 않으며, 이하의 기재로부터 이해되는 모든 효과들을 포함한다. The effects of the present invention are not limited to the effects described above, and include all effects understood from the following description.
도 1은 본 발명의 실시예에 따른 유방암 위험도 평가 시스템의 구성을 도시한 블록도이다.1 is a block diagram showing the configuration of a breast cancer risk assessment system according to an embodiment of the present invention.
도 2 내지 도 6은 본 발명의 실시예에 따라 유방 촬영 이미지를 분석하는 방법을 설명하기 위해 도시한 도면들이다.2 to 6 are diagrams for explaining a method of analyzing a mammography image according to an embodiment of the present invention.
도 7은 본 발명의 실시예에 따른 유방암 위험도 평가 방법의 단계들을 도시한 흐름도이다.7 is a flowchart illustrating steps of a breast cancer risk assessment method according to an embodiment of the present invention.
도 8 및 도 9는 도 7에 도시된 유방암 위험도 평가 방법의 일부 단계에 대한 세부 절차를 도시한 흐름도이다.8 and 9 are flowcharts illustrating detailed procedures for some steps of the breast cancer risk assessment method shown in FIG. 7 .
이하에서는 첨부한 도면을 참조하여 본 발명을 상세히 설명하기로 한다. 다만, 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며, 여기에서 설명하는 실시예들로 한정되는 것은 아니다. 또한, 첨부된 도면은 본 명세서에 개시된 실시예를 쉽게 이해할 수 있도록 하기 위한 것일 뿐, 첨부된 도면에 의해 본 명세서에 개시된 기술적 사상이 제한되지 않는다. 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 도면에 나타난 각 구성요소의 크기, 형태, 형상은 다양하게 변형될 수 있다. 명세서 전체에 대하여 동일/유사한 부분에 대해서는 동일/유사한 도면 부호를 붙였다. Hereinafter, the present invention will be described in detail with reference to the accompanying drawings. However, the present invention may be implemented in many different forms, and is not limited to the embodiments described herein. In addition, the accompanying drawings are only for easy understanding of the embodiments disclosed in this specification, and the technical ideas disclosed in this specification are not limited by the accompanying drawings. In order to clearly explain the present invention in the drawings, parts irrelevant to the description are omitted, and the size, shape, and shape of each component shown in the drawings may be variously modified. Same/similar reference numerals are assigned to the same/similar parts throughout the specification.
이하의 설명에서 사용되는 구성요소에 대한 접미사 "모듈" 및 "부" 등은 명세서 작성의 용이함만이 고려되어 부여 되거나 혼용되는 것으로서, 그 자체로 서로 구별되는 의미 또는 역할을 갖는 것은 아니다. 또한, 본 명세서에 개시된 실시예를 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 명세서에 개시된 실시 예의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략하였다. The suffixes "module" and "unit" for components used in the following description are given or used interchangeably in consideration of ease of writing the specification, and do not have meanings or roles that are distinct from each other by themselves. In addition, in describing the embodiments disclosed in this specification, if it is determined that a detailed description of related known technologies may obscure the gist of the embodiments disclosed in this specification, the detailed description is omitted.
명세서 전체에서, 어떤 부분이 다른 부분과 "연결(접속, 접촉 또는 결합)"되어 있다고 할 때, 이는 "직접적으로 연결(접속, 접촉 또는 결합)"되어 있는 경우뿐만 아니라, 그 중간에 다른 부재를 사이에 두고 "간접적으로 연결 (접속, 접촉 또는 결합)"되어 있는 경우도 포함한다. 또한 어떤 부분이 어떤 구성요소를 "포함(구비 또는 마련)"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 "포함(구비 또는 마련)"할 수 있다는 것을 의미한다. Throughout the specification, when a part is said to be “connected (connected, contacted, or combined)” with another part, this is not only the case where it is “directly connected (connected, contacted, or coupled)”, but also has other members in the middle. It also includes the case of being "indirectly connected (connected, contacted, or coupled)" between them. In addition, when a part "includes (provides or provides)" a certain component, it does not exclude other components, but "includes (provides or provides)" other components unless otherwise specified. means you can
본 명세서에서 사용되는 제1, 제2 등과 같이 서수를 나타내는 용어들은 하나의 구성 요소를 다른 구성요소로부터 구별하는 목적으로만 사용되며, 구성 요소들의 순서나 관계를 제한하지 않는다. 예를 들어, 본 발명의 제1구성요소는 제2구성요소로 명명될 수 있고, 유사하게 제2구성요소도 제1구성 요소로 명명될 수 있다. Terms indicating ordinal numbers such as first and second used in this specification are used only for the purpose of distinguishing one element from another, and do not limit the order or relationship of elements. For example, a first element of the present invention may be termed a second element, and similarly, the second element may also be termed a first element.
도 1은 본 발명의 실시예에 따른 유방암 위험도 평가 시스템(100)의 구성을 도시한 블록도이다. 유방암 위험도 평가 시스템(100)은 서버 또는 컴퓨팅 장치로 구현될 수 있고, SaaS (Software as a Service), PaaS (Platform as a Service) 또는 IaaS (Infrastructure as a Service)와 같은 클라우드 컴퓨팅 서비스 모델에서 동작 할 수 있다. 또한, 유방암 위험도 평가 시스템(100)은 사설(private) 클라우드, 공용(public) 클라우드 또는 하이브리드(hybrid) 클라우드 시스템과 같은 형태로 구축될 수도 있으나, 본 발명의 범위가 이에 제한되는 것은 아니다. 도면에 도시되지 않았으나, 유방암 위험도 평가 시스템(100)은 의료용 촬영기기, 유방 촬영 이미지가 저장된 데이터베이스와의 정보 송수신을 수행할 수 있다. 유방암 위험도 평가 시스템(100)은 의료용 촬영기기를 통해 촬영된 유방 촬영 이미지, 유방 촬영 이미지들이 빅데이터화되어 저장된 데이터베이스를 이용하여 유방암 위험도를 산출할 수 있다. 1 is a block diagram showing the configuration of a breast cancer risk assessment system 100 according to an embodiment of the present invention. The breast cancer risk assessment system 100 may be implemented as a server or a computing device, and may operate in a cloud computing service model such as Software as a Service (SaaS), Platform as a Service (PaaS) or Infrastructure as a Service (IaaS). can In addition, the breast cancer risk assessment system 100 may be constructed in the form of a private cloud, public cloud, or hybrid cloud system, but the scope of the present invention is not limited thereto. Although not shown in the drawing, the breast cancer risk assessment system 100 may transmit/receive information with a medical imaging device and a database in which mammography images are stored. The breast cancer risk evaluation system 100 may calculate the risk of breast cancer using a mammogram image captured by a medical imaging device and a database in which mammogram images are converted into big data and stored.
도 1을 참조하면, 유방암 위험도 평가 시스템(100)은 외부 기기와의 정보 송수신을 수행하고 유방 촬영 이미지를 수신하는 통신 모듈(110), 유방암 위험도 평가 프로그램을 저장하는 메모리(120) 및 메모리(120)에 저장된 유방암 위험도 평가 프로그램을 실행하는 프로세서(130)를 포함한다. 유방암 위험도 평가 프로그램의 명칭은 설명의 편의를 위해 설정된 것으로서, 명칭 그 자체가 프로그램의 기능을 제한하는 것은 아니며, 다양한 프로그램의 명칭으로 설정될 수 있다. 프로세서(130)는 프로그램을 실행하여 유방 촬영 이미지를 입력 받아 이미지로부터 유방 밀도 평가 및 산출, 유방 패턴 분석, 이미지 픽셀 밝기값을 기준으로 밀도 영역들 설정, 평가 대상 유방을 가진 사람의 개인 정보를 토대로 임상 정보 설정, 유방 밀도 정보, 유방 패턴 정보, 임상 정보를 토대로 평가 대상 유방의 위험도 산출 등을 수행할 수 있다. Referring to FIG. 1 , a breast cancer risk assessment system 100 includes a communication module 110 that transmits and receives information with an external device and receives a mammography image, a memory 120 storing a breast cancer risk assessment program, and a memory 120. ) and a processor 130 that executes a breast cancer risk assessment program stored in. The name of the breast cancer risk assessment program is set for convenience of explanation, and the name itself does not limit the function of the program, and may be set to various program names. The processor 130 executes a program to receive mammography images, evaluate and calculate breast density from the images, analyze breast patterns, set density areas based on image pixel brightness values, and based on personal information of a person with breasts to be evaluated. Based on clinical information settings, breast density information, breast pattern information, and clinical information, the risk of the breast to be evaluated can be calculated.
상술한 통신 모듈(110)은 다른 네트워크 장치와 유무선 연결을 통해 제어 신호 또는 데이터 신호와 같은 신호를 송수신하기 위해 필요한 하드웨어 및 소프트웨어를 포함하는 장치를 포함할 수 있다. 메모리(120)는 전원이 공급되지 않아도 저장된 정보를 계속 유지하는 비휘발성 저장장치 및 저장된 정보를 유지하기 위하여 전력을 필요로 하는 휘발성 저장장치를 통칭하는 것으로 해석되어야 한다. 또한, 메모리(120)는 데이터를 일시적 또는 영구적으로 저장하는 기능을 수행할 수 있고, 저장된 정보를 유지하기 위하여 전력이 필요한 휘발성 저장장치 외에 자기 저장 매체(magnetic storage media) 또는 플래시 저장 매체(flash storage media)를 포함할 수 있으나, 본 발명의 범위가 이에 한정되는 것은 아니다. 프로세서(130)는 데이터를 제어 및 처리하는 다양한 종류의 장치들을 포함할 수 있다. 또한, 프로세서(130)는 프로그램 내에 포함된 코드 또는 명령으로 표현된 기능을 수행하기 위해 물리적으로 구조화된 회로를 갖는, 하드웨어에 내장된 데이터 처리 장치를 의미할 수 있다. 일 예에서, 프로세서(130)는 마이크로프로세서(microprocessor), 중앙처리장치(central processing unit: CPU), 프로세서 코어(processor core), 멀티프로세서(multiprocessor), ASIC(application-specific integrated circuit), FPGA(field programmable gate array) 등의 형태로 구현될 수 있으나, 본 발명의 범위가 이에 한정되는 것은 아니다. 단말은 예를 들어, 웹 브라우저(WEB Browser)가 탑재된 노트북, 데스크톱(desktop), 랩톱(laptop), 휴대성과 이동성이 보장되는 무선 통신 장치로서 스마트폰, 태블릿 PC 등과 같은 모든 종류의 핸드헬드(Handheld) 기반의 무선 통신 장치를 의미할 수 있다. 또한, 네트워크는 근거리 통신망(Local Area Network; LAN), 광역 통신망(Wide Area Network; WAN) 또는 부가가치 통신망(Value Added Network; VAN) 등과 같은 유선 네트워크나 이동 통신망(mobile radio communication network) 또는 위성 통신망 등과 같은 모든 종류의 무선 네트워크로 구현될 수 있다.The above-described communication module 110 may include a device including hardware and software necessary for transmitting and receiving signals such as control signals or data signals with other network devices through wired or wireless connections. The memory 120 should be interpreted as collectively referring to a non-volatile storage device that continuously maintains stored information even when power is not supplied and a volatile storage device that requires power to maintain stored information. In addition, the memory 120 may perform a function of temporarily or permanently storing data, and may be a magnetic storage medium or flash storage medium in addition to a volatile storage device that requires power to maintain stored information. media), but the scope of the present invention is not limited thereto. The processor 130 may include various types of devices that control and process data. Also, the processor 130 may refer to a data processing device embedded in hardware having a physically structured circuit to perform functions expressed by codes or instructions included in a program. In one example, the processor 130 may include a microprocessor, a central processing unit (CPU), a processor core, a multiprocessor, an application-specific integrated circuit (ASIC), an FPGA ( field programmable gate array), etc., but the scope of the present invention is not limited thereto. The terminal is, for example, a laptop, desktop, and laptop equipped with a web browser, and all types of handhelds such as smartphones and tablet PCs as wireless communication devices that ensure portability and mobility. handheld)-based wireless communication device. In addition, the network may include a wired network such as a Local Area Network (LAN), a Wide Area Network (WAN) or a Value Added Network (VAN), a mobile radio communication network, a satellite communication network, and the like. It can be implemented in all kinds of wireless networks such as
보다 상세하게, 프로세서(130)는 메모리(120)에 저장된 유방암 위험도 평가 프로그램을 실행하여 다음과 같은 기능 및 절차들을 수행할 수 있다. 프로세서(130)는 평가 대상 유방에 대한 유방 촬영 이미지로부터 평가 대상 유방의 밀도를 측정하여 유방 밀도 정보를 생성한다. 프로세서(130)는 유방 촬영 이미지로부터 평가 대상 유방의 특징 패턴을 추출하여 생성한 유방 패턴 정보를 포함하는 평가 데이터를 생성한다. 프로세서(130)는 평가 데이터에 포함된 정보들 각각에 기설정된 가중치를 적용하여 평가 대상 유방에 대한 유방암 발생 위험도를 산출한다. 여기서, 유방 촬영 이미지는 DICOM(Digital Imaging and Communications in Medicine) 형태의 이미지일 수 있다. 특징 패턴은 평가 대상 유방의 비정상 유방 특징 패턴을 포함할 수 있다. In more detail, the processor 130 may execute the breast cancer risk assessment program stored in the memory 120 to perform the following functions and procedures. The processor 130 measures the density of the breast to be evaluated from a mammography image of the breast to be evaluated and generates breast density information. The processor 130 generates evaluation data including breast pattern information generated by extracting a characteristic pattern of a breast to be evaluated from a breast imaging image. The processor 130 calculates the risk of breast cancer occurrence for the breast to be evaluated by applying a predetermined weight to each piece of information included in the evaluation data. Here, the mammography image may be a DICOM (Digital Imaging and Communications in Medicine) type image. The feature pattern may include an abnormal breast feature pattern of the breast to be evaluated.
또한, 프로세서(130)는 유방암 위험도 평가 프로그램을 실행하여, 평가 대상 유방에 대응되는 특정인의 나이 정보, 유전체 정보 및 유방암 가족력 정보 중 적어도 어느 하나 이상의 정보를 토대로 생성한 임상 정보를 생성할 수 있다. 임상 정보는 평가 대상 유방을 가진 사람의 신체 정보, 여성력, 생활습관, 가족력 등을 포함할 수 있다. 프로세서(130)는 유방 촬영 이미지를 기설정된 명암 및 크기 구조를 갖도록 조절하는 전처리를 수행할 수 있다. 프로세서(130)는 전처리된 유방 촬영 이미지로부터 유방 부위를 분할하여 평가 대상 유방의 크기를 산출할 수 있다. 프로세서(130)는 유방 부위의 픽셀 밀도를 이용하여 유방 밀도를 산출할 수 있다.In addition, the processor 130 may execute a breast cancer risk assessment program to generate clinical information based on at least one or more of age information, genome information, and breast cancer family history information of a specific person corresponding to the breast to be evaluated. Clinical information may include physical information, female history, lifestyle, family history, and the like of a person having a breast to be evaluated. The processor 130 may perform preprocessing to adjust the mammography image to have a preset contrast and size structure. The processor 130 may calculate the size of the breast to be evaluated by segmenting the breast from the preprocessed mammography image. The processor 130 may calculate the breast density using the pixel density of the breast area.
나아가, 프로세서(130)는 유방암 위험도 평가 프로그램을 실행하여, 유방 촬영 이미지 내에서 픽셀별 밝기값의 기설정된 기준에 따라, 밝기값이 낮은 순서대로 제1 밀도 영역, 제2 밀도 영역 및 제3 밀도 영역으로 구분할 수 있다. 이 때, 프로세서(130)는 유방 부위의 제1 내지 제3 밀도 영역의 크기를 산출할 수 있다. 유방의 크기는 이미지 내 유방이 차지하는 면적 또는 유방의 면적일 수 있다. 또한, 프로세서(130)는 제1 내지 제3 밀도 영역 내 픽셀 밀도를 이용하여 영역별 유방 밀도를 산출할 수 있다. Furthermore, the processor 130 executes a breast cancer risk assessment program to first density, second density, and third density in descending order of brightness values according to a predetermined criterion of brightness values for each pixel in the mammography image. can be divided into areas. At this time, the processor 130 may calculate the sizes of the first to third density regions of the breast. The size of the breast may be an area occupied by the breast in the image or an area of the breast. Also, the processor 130 may calculate the breast density for each region using pixel densities in the first to third density regions.
일 예에서, 제1 내지 제3 밀도 영역별 유방 부위의 크기는, 제1 내지 제3 밀도 영역의 영역별 유방 부위의 면적값에 해당하는 유방 크기 절대치와, 유방 부위의 제1 내지 제3 밀도 영역의 면적값을 유방의 전체 면적값으로 나눈 값에 해당하는 유방 크기 상대치를 포함할 수 있다. In one example, the size of the breast region for each of the first to third density regions is determined by an absolute breast size value corresponding to an area value of the breast region for each region of the first to third density regions and the first to third densities of the breast region. A breast size relative value corresponding to a value obtained by dividing the area value of a region by the total area value of the breast may be included.
프로세서(130)는 딥러닝 기술을 이용한 인공지능 모델을 이용하여 유방암 위험도 평가를 수행할 수 있다. 일 예에서, 프로세서(130)는 유방암 위험도 평가 프로그램을 실행하여, 복수개의 학습 대상 유방 촬영 이미지들을 토대로 가중치를 적용한 벡터 변환을 수행하여 이미지 유방 부위의 유방 밀도를 산출하고 산출된 유방 밀도와 복수개의 학습 대상 유방 촬영 이미지들을 대상으로 전문가가 도출한 유방 밀도의 차이가 최소화되도록 학습된 인공지능 모델을 생성할 수 있다. 프로세서(130)는 이러한 인공지능 모델을 이용하여 평가 대상 유방의 의료용 영상 촬영 이미지를 입력으로 받아 평가 대상 유방의 밀도를 측정할 수 있다. 다른 예에서, 프로세서(130)는 유방암 위험도 평가 프로그램을 실행하여, 정상인과 유방암 환자의 유방 촬영 이미지를 토대로 기계 학습을 수행하여 입력된 영상에서 비정상 유방의 특징 패턴을 추출하도록 구성된 비정상 유방 패턴 추출 인공지능 모델을 생성할 수 있다. 이 때, 프로세서(130)는 이러한 인공지능 모델을 이용하여 유방 촬영 이미지로부터 평가 대상 유방의 비정상 유방 특징 패턴을 추출할 수 있다. The processor 130 may perform breast cancer risk assessment using an artificial intelligence model using deep learning technology. In one example, the processor 130 executes a breast cancer risk evaluation program, performs vector transformation to which a weight is applied based on a plurality of mammography images to be learned, calculates a breast density of an image breast region, and calculates a breast density and A trained artificial intelligence model may be created to minimize a difference in breast density derived by an expert targeting mammography images to be learned. The processor 130 may measure the density of the breast to be evaluated by receiving a medical imaging image of the breast to be evaluated using the artificial intelligence model. In another example, the processor 130 executes a breast cancer risk assessment program, performs machine learning based on mammogram images of a normal person and a breast cancer patient, and extracts a feature pattern of an abnormal breast from an input image. Intelligence models can be created. In this case, the processor 130 may extract an abnormal breast feature pattern of the breast to be evaluated from the mammography image using the artificial intelligence model.
도 1과 함께 도 2 및 도 3을 참조하면, 평가 대상 유방의 촬영 이미지에서 제1 내지 제3 밀도 영역을 나누는 기준 및 근거, 설정하는 방법은 다음과 같다. 프로세서(130)는 유방 밀도를 3단계에 걸쳐 대상자의 유방 치밀도를 픽셀단위로 평가할 수 있다. 이러한 방식을 다수준 유방 치밀도 평가 방식이라고 할 수 있다. Referring to FIGS. 2 and 3 together with FIG. 1 , the criterion, basis, and setting method for dividing the first to third density regions in the captured image of the breast to be evaluated are as follows. The processor 130 may evaluate the subject's breast density in pixel units through three stages. This method can be referred to as a multi-level breast density evaluation method.
예컨대, 유방 밀도는 프로세서(130)에 의해 일반 밀도, 고밀도, 초고밀도의 세 단계로 분류될 수 있다. 프로세서(130)는 다수준 유방 치밀도를 절대량(cm^2) 과 상대량(%)으로 나타낼 수 있다. 절대량은 유방 실질조직의 절대적인 양을 cm^2으로 변환한 값이며, 상대량은 절대량을 총 유방 면적으로 나눈 값을 백분율(%)로 나타낸 값이다.For example, breast density may be classified into three levels of normal density, high density, and ultra-high density by the processor 130 . The processor 130 may express the multilevel breast density as an absolute amount (cm^2) and a relative amount (%). The absolute amount is a value obtained by converting the absolute amount of breast parenchymal tissue into cm^2, and the relative amount is a value expressed as a percentage (%) by dividing the absolute amount by the total breast area.
도 2에 도시된 바와 같이, 프로세서(130)는 일반 밀도의 경우 유방 촬영 이미지 상에서 실질 조직으로 여겨지는 부분(21)으로 설정할 수 있고, 고밀도의 경우 기존의 일반 밀도에 포함되는 회색 부분을 제외된 밝은 영역(22)으로 설정할 수 있고, 초고밀도의 경우, 이미지 상에서 가장 밝은 영역(23)으로 설정할 수 있다. 밝기의 기준은 기 설정되어 있을 수 있다. 특히 밀도가 높은 부위일수록 유방암의 예측력이 높으므로, 초고밀도는 전체 비율은 낮으나 유방암의 위험도를 가장 잘 반영하며, 일반적인 치밀도와 연관성이 낮아 독립적인 지표로 활용이 가능할 수 있다. 이에 따라, 프로세서(130)는 초고밀도 영역이 많은 유방 촬영 이미지에 대응되는 평가 대상 유방의 위험도를 높게 평가할 수 있다. As shown in FIG. 2 , in the case of a normal density, the processor 130 may set a portion 21 that is regarded as parenchymal tissue on a mammogram image, and in the case of a high density, a gray portion included in the existing normal density may be excluded. It can be set to the bright area 22, and in the case of ultra-high density, it can be set to the brightest area 23 on the image. A standard of brightness may be preset. In particular, the higher the density, the higher the predictive power of breast cancer. Therefore, although the overall ratio is low, ultra-high density best reflects the risk of breast cancer, and it is not related to general density, so it can be used as an independent indicator. Accordingly, the processor 130 may highly evaluate the risk of the breast to be evaluated corresponding to a mammography image having many ultra-high density regions.
도 3에서 유방 촬영 이미지를 저장한 태그드 영상 데이터베이스(31)에서 21 부분은 제1 치밀도로 설정될 수 있고, 22 부분은 제2 치밀도로 설정될 수 있으며, 23 부분은 제3 치밀도로 설정될 수 있다. 제1 내지 제3 치밀도의 값은 각 밀도 영역별 밀도값을 측정하여 도출된 값일 수 있다. 태그드 영상 데이터베이스(31)에서 전처리 과정 및 영상 분할 과정을 통해 각각 전처리 영상 데이터베이스(32) 및 분할 영상 데이터베이스(33)를 획득할 수 있다.In the tagged image database 31 storing mammography images in FIG. 3 , part 21 may be set to the first density, part 22 may be set to the second density, and part 23 may be set to the third density. can Values of the first to third densities may be values derived by measuring density values for each density area. In the tagged image database 31, the preprocessing image database 32 and the segmented image database 33 may be obtained through the preprocessing process and the image segmentation process, respectively.
이상 설명한 본 발명의 실시예에 따른 프로세서(130)가 수행하는 주요 절차들의 예시를 설명하면 다음과 같다. Examples of main procedures performed by the processor 130 according to the above-described embodiment of the present invention are as follows.
프로세서(130)는 머신-러닝 방법에 기반해 유방 촬영 영상으로부터 위험도를 평가하는 영상 기반 위험도 평가와 임상 정보 및 유전체 정보에 통계적 방법을 적용해 위험도를 평가하는 임상 정보 기반 위험도 평가를 수행할 수 있다. 영상 기반 위험도 평가는 입력 영상의 유방 밀도를 가중치 변수를 통해 자동으로 평가하는 유방 밀도 평가 과정과, 입력 영상으로부터 유방암 위험과 관련된 패턴을 가중치 변수를 통해 추출하고 이를 통해 위험도를 평가하는 패턴 분석 과정을 포함할 수 있다. The processor 130 may perform image-based risk assessment that evaluates risk from mammography images based on a machine-learning method and clinical information-based risk assessment that evaluates risk by applying a statistical method to clinical and genomic information. . Image-based risk assessment consists of a breast density evaluation process that automatically evaluates the breast density of an input image through a weighted variable, and a pattern analysis process that extracts patterns related to breast cancer risk from the input image through a weighted variable and evaluates the risk through this process. can include
프로세서(130)는 영상 기반 위험도 평가와 임상 정보 기반 위험도 평가의 위험도 평가 결과를 종합하여 통합 유방암 위험도를 산출할 수 있다. 유방 밀도 평가 과정은 입력 영상으로부터 유방 밀도를 자동 평가하는 과정이며, 유방 부위를 분할하는 작업을 수행하는 유방 분할 과정, 입력 영상의 크기 조절 및 지역 명암 강조를 수행하는 전처리 과정, 상기 전처리된 영상에 대한 벡터 변환을 수행하여 치밀 부위를 예측하는 치밀 부위 예측 과정, 상기 유방 분할 과정 및 치밀 부위 예측 과정의 결과를 종합하여 유방 밀도를 계산하는 유방 밀도 예측 과정을 포함한다.The processor 130 may calculate an integrated breast cancer risk by integrating the risk evaluation results of the image-based risk evaluation and the clinical information-based risk evaluation. The breast density evaluation process is a process of automatically evaluating breast density from an input image, and includes a breast segmentation process of segmenting a breast region, a preprocessing process of resizing an input image and enhancing local contrast, and and a dense region prediction process of predicting a dense region by performing vector transformation on the breast region, and a breast density prediction process of calculating a breast density by synthesizing the results of the breast segmentation process and the dense region prediction process.
유방 밀도 평가 과정에서의 가중치 변수는 영상과 영상 분석 정보를 의미하는 태그드 영상 데이터베이스를 통해 학습될 수 있다. 이러한 학습 과정은 전처리 과정에 의해 전처리된 영상을 입력 영상으로 하여 학습된다. 프로세서(130)는 입력 영상을 학습용 데이터와 검증용 데이터로 분리하고, 학습용 데이터에 대해 비용 함수를 최소화하도록 변환 가중치를 조절하는 과정을 검증용 데이터에 대한 비용 함수가 최소화되는 시점까지 반복 수행함으로써 치밀 부위 예측 과정에서의 변환 가중치를 조절할 수 있다.A weight variable in the breast density evaluation process may be learned through a tagged image database representing images and image analysis information. In this learning process, an image preprocessed by a preprocessing process is used as an input image. The processor 130 divides the input image into training data and verification data, and repeats the process of adjusting the transform weight to minimize the cost function for the training data until the cost function for the verification data is minimized. Transformation weights can be adjusted in the region prediction process.
프로세서(130)는 유방 밀도 예측 과정에서 유방 분할 과정과 치밀 부위 예측 과정의 출력결과에 기초해 유방 밀도 측정값을 출력할 수 있다. 유방 밀도는 유방 절대 밀도 (dense area, DA) 와 치밀도 백분율 (percent density, PD) 를 각 치밀도 범주 별로 산출될 수 있다.The processor 130 may output a breast density measurement value based on output results of the breast segmentation process and the dense region prediction process in the breast density prediction process. Breast density can be calculated for each density category by breast absolute density (dense area, DA) and density percentage (percent density, PD).
프로세서(130)가 수행하는 패턴 분석 과정은 영상과 정상/환자 판정 정보를 의미하는 태그드 영상 데이터베이스를 통해 학습될 수 있다. 패턴 분석 과정의 경우 유방 밀도 평가 과정과 마찬가지로 학습 과정에 의한 비용 함수를 최소화하도록 변환 가중치를 조절하는 과정을 검증용 데이터에 대한 비용 함수가 최소화되는 시점까지 반복 수행하는 과정을 포함할 수 있다. The pattern analysis process performed by the processor 130 may be learned through a tagged image database representing images and normal/patient determination information. In the case of the pattern analysis process, similar to the breast density evaluation process, the process of adjusting the transform weight to minimize the cost function by the learning process may include a process of repeating the process until the point at which the cost function for the verification data is minimized.
프로세서(130)가 수행하는 영상 기반 위험도 평가 과정은 유방 밀도 평가 과정과 패턴 분석 과정의 출력을 위험도로 변환하는 변환 함수를 적용해 위험도를 산출하는 과정이다.The image-based risk evaluation process performed by the processor 130 is a process of calculating the risk level by applying a conversion function that converts outputs of the breast density evaluation process and the pattern analysis process into a risk level.
프로세서(130)가 수행하는 임상 정보 기반 위험도 평가 과정은 위험도 평가 대상 유방을 가진 사람의 임상 정보와 유전체 정보에 따른 위험도를 산출하는 과정이다. 본 과정은 유전체/가족력 정보를 통해 대상자를 몇 가지 표현형 (phenotype) 으로 나눈 후, 각 표현형의 나이에 따른 유방암 발생 위험도와 임상 정보를 통해 추정한 상대 위험도 (relative risk)를 제곱하는 과정을 포함한다. The risk evaluation process based on clinical information performed by the processor 130 is a process of calculating a risk level according to clinical information and genetic information of a person having breasts subject to risk evaluation. This process involves dividing the subject into several phenotypes through genetic/family history information, and then squaring the relative risk estimated through the risk of breast cancer according to the age of each phenotype and clinical information. .
프로세서(130)가 수행하는 통합 유방암 위험도 평가 과정은 영상 기반 위험도 평가 과정과 임상정보 기반 위험도 평가 과정의 결과를 통합해 최종 유방암 위험도를 산출하는 과정이다. 본 과정은 태그드 영상 데이터베이스에 대한 각 위험도 평가 과정의 정상/환자 구분 성능 (discrimination performance) 에 기초한 가중 평균 (weighted average)을 적용함으로써 위험도를 산출하는 과정을 포함한다. The integrated breast cancer risk assessment process performed by the processor 130 is a process of integrating the results of the image-based risk assessment process and the clinical information-based risk assessment process to calculate the final breast cancer risk. This process includes a process of calculating the risk level by applying a weighted average based on the normal/patient discrimination performance of each risk evaluation process for the tagged image database.
프로세서(130)가 수행하는 유방 밀도 평가 과정은 전문가의 영상 분석 정보를 직접적으로 학습하여 보다 정확한 예측을 수행할 수 있는 방법이다. 종래 기술의 경우 전문가가 영상을 분석해서 얻은 유방 밀도를 통계적인 방법을 이용해 예측하는 분석을 수행하였다면, 본 발명에서는 전문가의 유방 밀도 측정치를 통해 분할 영상 데이터베이스를 구축하고, 해당 데이터베이스를 학습할 수 있다. 따라서, 영상의 픽셀 별 치밀도 평가가 가능하기 때문에 정확하고 다수준의 유방 밀도 평가가 가능하다. The breast density evaluation process performed by the processor 130 is a method of performing more accurate prediction by directly learning expert image analysis information. In the case of the prior art, if an expert performed an analysis of predicting breast density obtained by analyzing an image using a statistical method, in the present invention, a segmented image database can be built and learned from the expert's breast density measurement. . Therefore, since density evaluation for each pixel of an image is possible, accurate and multi-level evaluation of breast density is possible.
종래 기술에서는 이미지로부터 미리 정의된 특징 값을 계산하여 유방암 위험도를 계산하는 방법이 주를 이루었다. 반면, 프로세서(130)가 수행하는 패턴 분석 과정은 본 연구에서는 태그드 영상 데이터베이스를 기반으로 머신-러닝 방법을 적용하여 가중치 학습을 통해 유방암 위험과 관련된 특징을 추출할 수 있다. 이러한 방법을 통해 유방암 발생과 직접적으로 관련 있는 패턴을 추출할 수 있기 때문에 유방암 위험도를 보다 정확히 평가할 수 있다. 또한, 본 발명의 실시예에 따르면 훈련된 전문가에 의해 육안으로 평가되던 유방 밀도 평가를 자동화할 수 있다.In the prior art, a method of calculating a breast cancer risk by calculating a predefined feature value from an image has been the main method. On the other hand, in the pattern analysis process performed by the processor 130, in this study, features related to breast cancer risk can be extracted through weight learning by applying a machine-learning method based on a tagged image database. Through this method, it is possible to more accurately evaluate the risk of breast cancer because it is possible to extract patterns directly related to the occurrence of breast cancer. In addition, according to an embodiment of the present invention, breast density evaluation, which has been visually evaluated by a trained expert, can be automated.
이하에서 도 1과 함께 도 4 및 도 5를 참조하여 유방도 위험 평가 시스템(100)의 구체적인 실시예를 설명하도록 한다. Hereinafter, a specific embodiment of the mammography risk assessment system 100 will be described with reference to FIGS. 4 and 5 together with FIG. 1 .
유방도 위험 평가 시스템(100)은 유방 밀도 평가 과정, 패턴 분석 과정, 표준 치밀도 변환 과정, 영상 기반 위험도 평가 과정, 임상 정보 기반 위험도 평가 과정, 통합 유방암 위험도 평가 과정을 통해 유방암 위험도 평가를 수행할 수 있다. The breast map risk evaluation system 100 performs breast cancer risk evaluation through a breast density evaluation process, a pattern analysis process, a standard density conversion process, an image-based risk evaluation process, a clinical information-based risk evaluation process, and an integrated breast cancer risk evaluation process. can
유방 밀도 평가 과정은 입력 영상을 변환벡터를 통해 출력벡터로 변환 후, 치밀도 범주별 유방 밀도(다수준 유방 밀도)를 계산하여 출력하는 과정이다. 표준 치밀도 변환 과정은 유방 밀도 평가 과정의 출력인 다수준 유방 밀도를 입력으로 받아 각 범주별 유방 밀도를 나이와 체질량 지수를 표준화한 표준 치밀도로 변환 후 출력하는 과정이다. 패턴 분석 과정은 입력 영상으로부터 유방암 위험도와 관련 있는 특징 패턴을 추출한 후, 위험도 분석을 수행하여 최종적으로 패턴 위험도를 출력하는 과정이다. The breast density evaluation process is a process of converting an input image into an output vector through a conversion vector, and then calculating and outputting the breast density (multilevel breast density) for each density category. The standard density conversion process is a process of receiving multi-level breast density, which is an output of the breast density evaluation process, as an input, converting the breast density for each category into a standard density standardized by age and body mass index, and then outputting the result. The pattern analysis process is a process of extracting a feature pattern related to breast cancer risk from an input image, performing risk analysis, and finally outputting the pattern risk.
영상 기반 위험도 평가 과정은 표준 치밀도 변환 과정의 출력인 표준 치밀도와 패턴 분석 과정의 출력인 패턴 위험도에 특정 계수를 적용하여 영상 기반 위험도로 변환 후 출력하는 과정이다.The image-based risk assessment process is the process of applying a specific coefficient to the standard density, which is the output of the standard density conversion process, and the pattern risk, which is the output of the pattern analysis process, converting it into an image-based risk and then outputting it.
유방 밀도 평가 과정은, 유방 분할 과정, 전처리 과정, 치밀 부위 예측 과정, 유방 밀도 예측 과정을 포함한다. The breast density evaluation process includes a breast segmentation process, a preprocessing process, a dense region prediction process, and a breast density prediction process.
전처리 과정에서 입력 영상에 선형 보간법 (bilinear interpolation) 을 이용해 표준 영상 사이즈로 변환한 후, CLAHE (contrast limited adaptive histogram equalization) 을 적용해 영상에 대한 정규화를 수행할 수 있다.In the preprocessing process, an input image may be converted into a standard image size using bilinear interpolation, and then image normalization may be performed by applying contrast limited adaptive histogram equalization (CLAHE).
이 때, 전처리 과정에 의해 출력된 영상을 I(x,y)라고 표시한다. I(x,y)는 해당 영상의 x, y 좌표에서 영상이 갖는 픽셀 밝기의 크기 (pixel intensity)를 나타내며, 표준 영상의 크기가 w-by-h 일 때, 아래 식 1과 같이 나타낼 수 있다.At this time, the image output by the preprocessing process is denoted as I(x,y). I(x,y) represents the pixel intensity of the image at the x, y coordinates of the image, and when the size of the standard image is w-by-h, it can be expressed as in Equation 1 below .
Figure PCTKR2021013806-appb-img-000001
Figure PCTKR2021013806-appb-img-000001
-식(1)--Equation (1)-
도 4를 참조하면, 치밀 부위 예측 과정은 입력 영상(41)에 변환 함수(42)를 적용해 예측 분할 영상(43)을 출력한다. 치밀 부위 예측 과정에서 변환 함수(42)의 예시로는 입력 영상과 변환 가중치의 선형 결합이 있다. Referring to FIG. 4 , in the dense region prediction process, a prediction segmented image 43 is output by applying a conversion function 42 to an input image 41 . An example of the transform function 42 in the dense region prediction process is a linear combination of an input image and a transform weight.
입력 영상 I(x,y) 가 w-by-h 픽셀(pixel)로 구성될 경우, 입력 영상은 다음 식 (2)와 같은 2 차원의 벡터(각 차원의 rank 가 w, h인)로 표현할 수 있다. 식 (2)에서 xij 는 (i,j) 번째의 픽셀값을 의미한다.When the input image I(x,y) is composed of w-by-h pixels, the input image is expressed as a 2-dimensional vector (ranks of each dimension are w and h) as shown in Equation (2) below. can In Equation (2), xij means the (i,j)th pixel value.
Figure PCTKR2021013806-appb-img-000002
Figure PCTKR2021013806-appb-img-000002
-식 (2)--Equation (2)-
변환함수
Figure PCTKR2021013806-appb-img-000003
의 구체적인 예로 다음 식 (3)과 같은 변환 함수 F(x,y) 를 들수 있다.
conversion function
Figure PCTKR2021013806-appb-img-000003
As a specific example of , a conversion function F(x,y) as shown in Equation (3) below may be cited.
Figure PCTKR2021013806-appb-img-000004
Figure PCTKR2021013806-appb-img-000004
-식 (3)--Formula (3)-
변환함수 F(x, y) 에 의한 입력 영상으로부터 구한 출력 벡터 T(X) 는 w-by-h 벡터 이며 I(x,y) 와 F(x,y) 의 원소별 곱셈 결과를 원소로 갖는다. 이는 다음 식 (4)와 같이 표현할 수 있다. The output vector T(X) obtained from the input image by the conversion function F(x, y) is a w-by-h vector and has the result of element-by-element multiplication of I(x,y) and F(x,y) as elements. . This can be expressed as Equation (4) below.
Figure PCTKR2021013806-appb-img-000005
Figure PCTKR2021013806-appb-img-000005
-식 (4)--Formula (4)-
최종 출력 벡터 O(X) 는 총 k개의 F(x, y)를 통해 총 k개의 T(x, y)를 만든 후, 이들을 결합 (concatenate) 하고, 소프트 맥스 함수(softmax function)를 적용시켜 구할 수 있다. 이 때, k는 치밀도 범주의 개수로 정의되며, k개의 치밀도 범주 중 하나인 c범주의 출력벡터 O_c 는 다음 식 (5)와 같이 나타낼 수 있다. The final output vector O(X) is obtained by creating a total of k T(x, y) through a total of k F(x, y), concatenating them, and applying the softmax function. can In this case, k is defined as the number of density categories, and the output vector O_c of category c, which is one of the k density categories, can be expressed as Equation (5) below.
Figure PCTKR2021013806-appb-img-000006
Figure PCTKR2021013806-appb-img-000006
-식 (5)--Equation (5)-
Figure PCTKR2021013806-appb-img-000007
는 위와 같은 변환과정을 통해 입력 영상으로부터 최종 출력벡터
Figure PCTKR2021013806-appb-img-000008
를 얻는 함수라고 할 수 있다. 변환함수
Figure PCTKR2021013806-appb-img-000009
는 복잡도를 고려하여 심층 신경망 (deep-learning) 구현에 사용되는 연산인 컨볼루션 연산 (convolutional operation) 을 사용할 수 있으며, 풀링 (pooling) 연산과 디컨볼루션 연산 (deconvolution) 및 비선형 함수를 결합하여 사용할 수 있을 것이다.
Figure PCTKR2021013806-appb-img-000007
is the final output vector from the input image through the above conversion process
Figure PCTKR2021013806-appb-img-000008
can be said to be a function that obtains conversion function
Figure PCTKR2021013806-appb-img-000009
can use convolutional operation, which is an operation used in deep-learning implementation, considering complexity, and can use a combination of pooling operation, deconvolution, and nonlinear function. You will be able to.
프로세서(130)가 수행하는 치밀 부위 예측 연산 과정에서 사용되는 변환 가중치 F 는 앞서 도 2 및 3을 참조하여 설명한 같이 학습 과정을 통해 도출될 수 있으며, 이러한 학습 과정은 전처리 영상 데이터베이스(32)와 분할 영상 데이터베이스(33)에 기초하여 유방 밀도 평가 과정을 학습시키기 위한 과정을 포함할 수 있다. The transform weight F used in the process of predicting the dense region performed by the processor 130 may be derived through a learning process as described above with reference to FIGS. 2 and 3, and this learning process is divided into the preprocessed image database 32. A process for learning a breast density evaluation process based on the image database 33 may be included.
상기 학습 과정은 배치 생성기로부터 생성된 배치 데이터를 입력 받아 수행될 수 있다. 배치 생성기는 전처리 영상 데이터베이스와 분할 영상 데이터베이스로부터 배치 데이터를 생성하고, 이를 학습 과정에 전달함으로써 유방밀도 평가 과정을 학습 시킬 수 있도록 하는 기능을 담당한다. The learning process may be performed by receiving batch data generated from the batch generator. The batch generator generates batch data from the pre-processing image database and the segmented image database, and transmits the batch data to the learning process so that the breast density evaluation process can be learned.
이러한 학습 과정은 비용함수(loss function)가 가장 적은 변환 가중치 세트 F 를 찾기 위한 과정이다. 이 과정은 훈련 세트에 대한 비용(loss)을 최소화 시키는 가중치(W)의 변화량을 이용해 W 를 갱신해나가는 과정에서 모니터링에 의해 검증 세트에 대한 비용 함수를 최소화 시키는 F 를 구함으로써 이루어진다. This learning process is a process for finding a transform weight set F having the smallest loss function. This process is performed by obtaining F that minimizes the cost function for the validation set by monitoring in the process of updating W using the change in weight (W) that minimizes the cost (loss) for the training set.
상기 학습 과정은 입력 영상에 현재의 변환 가중치를 적용해 픽셀별 치밀도를 예측하는 제 1 과정, 비용 함수에 의해 전문가 측정치와의 차이를 의미하는 비용을 계산하는 제 2 과정, 상기 비용을 최소화하기 변환 가중치의 변화량을 계산하여 변환 가중치를 갱신하는 제 3 과정을 반복 수행함으로써 변환 가중치를 조절한다. The learning process includes a first process of predicting the density of each pixel by applying the current transform weight to the input image, a second process of calculating a cost meaning a difference from the expert measurement value using a cost function, and a process of minimizing the cost. The transform weight is adjusted by repeating the third process of updating the transform weight by calculating the amount of change in the transform weight.
상기 학습 과정은 비용함수(cost function)를 가지며, 이는 cost(true_label, predicted label) 로 나타낼 수 있다. 상기 학습 과정의 비용함수로는 cross entropy 함수를 사용할 수 있으나, 이에 제한되는 것은 아니며, 이외에도 비용함수는 다양하게 설정될 수 있다. 학습 과정의 비용 함수에 의해 계산된 비용(cost)을 최소화 시킬 수 있도록 현재 변환 가중치의 변화량 f_delta를 계산하고, f_new = f_old + f_delta 로 갱신할 수 있다. The learning process has a cost function, which can be expressed as cost(true_label, predicted label). A cross entropy function may be used as the cost function of the learning process, but is not limited thereto, and other cost functions may be set in various ways. In order to minimize the cost calculated by the cost function of the learning process, f_delta, the amount of change in the current transform weight, can be calculated and updated to f_new = f_old + f_delta.
학습 과정에 의해 변환 가중치를 갱신함으로써 학습 데이터에 대한 비용 함수를 최소화 시키는 과정에서 모니터링 과정에 의해 검증 데이터에 대한 비용함수가 모니터링 된다. 검증 데이터에 대한 비용함수가 최소화 되는 지점까지 상기 갱신과정을 반복 수행하여 최종 가중치를 결정한다. In the process of minimizing the cost function for the training data by updating the transform weight by the learning process, the cost function for the verification data is monitored by the monitoring process. The update process is repeatedly performed until the point where the cost function for the verification data is minimized to determine the final weight.
상술한 학습 과정과 모니터링 과정을 통해 유방 밀도 평가를 가장 잘 수행할 수 있는 변환 가중치가 학습될 수 있다. 최종적으로 학습 과정에 의해 학습된 변환 함수
Figure PCTKR2021013806-appb-img-000010
를 영상
Figure PCTKR2021013806-appb-img-000011
에 적용해 계산된 벡터를 출력 벡터
Figure PCTKR2021013806-appb-img-000012
로 정의하며, 출력 벡터는 0부터 1사이의 값을 가질 수 있다.
Through the above-described learning process and monitoring process, a conversion weight that can best perform breast density evaluation can be learned. Finally, the transform function learned by the learning process
Figure PCTKR2021013806-appb-img-000010
image
Figure PCTKR2021013806-appb-img-000011
Apply the calculated vector to the output vector
Figure PCTKR2021013806-appb-img-000012
, and the output vector can have a value between 0 and 1.
Figure PCTKR2021013806-appb-img-000013
는 입력 영상인
Figure PCTKR2021013806-appb-img-000014
의 x, y 좌표의 픽셀이 각 치밀도 범주 c 에 속할 확률을 원소로 갖는 벡터이며, 다음 식 (6)의 범위를 갖는다.
Figure PCTKR2021013806-appb-img-000013
is the input image
Figure PCTKR2021013806-appb-img-000014
It is a vector having a probability that a pixel of x, y coordinates belongs to each density category c as an element, and has the range of the following equation (6).
Figure PCTKR2021013806-appb-img-000015
Figure PCTKR2021013806-appb-img-000015
-식 (6)--Formula (6)-
출력 벡터
Figure PCTKR2021013806-appb-img-000016
에서 치밀도 범주를 의미하는 c 가 가질 수 있는 값은 0부터 k 사이의 정수이며, 0 은 비치밀 부위를 의미하고, 1, 쪋은 치밀한 정도를 의미하는 치밀도 범주이며, 그 값이 클수록 더 치밀한 부분임을 의미한다. 치밀 부위 예측 과정의 최종 출력 결과인 예측 분할영상
Figure PCTKR2021013806-appb-img-000017
을 얻는 식은 다음 식 (7)과 같다.
output vector
Figure PCTKR2021013806-appb-img-000016
In , the value that c, which means the density category, can have is an integer between 0 and k. This means that it is a detailed part. Prediction segmentation image, which is the final output result of the dense region prediction process
Figure PCTKR2021013806-appb-img-000017
The expression to obtain is the following equation (7).
Figure PCTKR2021013806-appb-img-000018
Figure PCTKR2021013806-appb-img-000018
-식 (7)--Formula (7)-
프로세서(130)가 수행하는 유방 이미지 분할 과정에서는 입력 영상을 1차원 벡터로 변환하는 제1 과정을 거친 후, 혼합 가우시안 모델 (gaussian mixture model)을 적용해 추정된 모수 추정값, 에 평균을 취한 값(
Figure PCTKR2021013806-appb-img-000019
)을 임계치로 하여 입력 영상으로부터 유방 부위를 분할하는 제 2과정으로 나뉜다.
In the breast image segmentation process performed by the processor 130, after going through the first process of converting the input image into a one-dimensional vector, a gaussian mixture model is applied to estimate the parameter, the value obtained by averaging (
Figure PCTKR2021013806-appb-img-000019
) as a threshold, and is divided into a second process of segmenting a breast part from an input image.
상기 유방 분할 과정의 제 2과정에서 입력 영상에 임계치를 적용하면, 입력 영상은 이진(binary) 유방 분할 영상 출력 S_breast 로 변환되며, 유방 분할 과정의 최종 출력인 유방 면적(breast area, BA)는 유방 부위로 분할된 총 픽셀의 개수에 cm^2 으로 변환하기 위한 환산 계수 K를 곱한 값이다. When a threshold is applied to the input image in the second step of the breast segmentation process, the input image is converted into a binary breast segmentation image output S_breast, and the breast area (BA), which is the final output of the breast segmentation process, is converted to a breast segmentation image output S_breast. It is a value obtained by multiplying the total number of pixels divided into regions by the conversion factor K for conversion to cm^2.
입력 영상 X 에 대해 유방 분할부의 출력인 유방 면적은 다음 식 (8)과 같이 계산된다. The breast area, which is the output of the breast segmentation unit for the input image X, is calculated as shown in Equation (8) below.
Figure PCTKR2021013806-appb-img-000020
Figure PCTKR2021013806-appb-img-000020
-식 (8)--Formula (8)-
프로세서(130)가 수행하는 유방 밀도 평가 과정의 유방 밀도 예측 과정에서는 유방 분할 과정과 치밀 부위 예측 과정으로부터 예측된 유방 부위와 치밀 부위의 결과를 종합해 최종 유방 밀도 예측 결과를 출력한다. In the breast density estimation process of the breast density evaluation process performed by the processor 130, a final breast density prediction result is output by synthesizing results of the breast region and the dense region predicted from the breast segmentation process and the dense region prediction process.
유방 밀도 예측 과정에 따른 유방 밀도 출력 값은 치밀도 범주에 대한 절대적 유방 밀도 (dense area, DA), 상대적 유방 밀도 (percent density, PD) 로 나누어진다.The breast density output value according to the breast density prediction process is divided into absolute breast density (dense area, DA) and relative breast density (percent density, PD) for the density category.
상기 유방 밀도 예측 과정에 의해 입력 영상으로부터 출력되는 절대적 유방 밀도는 치밀 부위로 분류된 픽셀의 총 개수에 단위를 cm^2 으로 변환하기 위한 환산 계수 K를 곱한 값으로 입력영상 X에 대한 j 번째 치밀도의 절대적 유방밀도
Figure PCTKR2021013806-appb-img-000021
는 아래 식 (9)를 통해 구할 수 있다.
The absolute breast density output from the input image by the breast density prediction process is the value obtained by multiplying the total number of pixels classified as dense regions by the conversion factor K for converting the unit to cm^2, and is the jth density for the input image X. degree of absolute breast density
Figure PCTKR2021013806-appb-img-000021
can be obtained through Equation (9) below.
Figure PCTKR2021013806-appb-img-000022
Figure PCTKR2021013806-appb-img-000022
Ic(x)={1, x>=c
Figure PCTKR2021013806-appb-img-000023
0, x<c}
Ic(x)={1, x>=c
Figure PCTKR2021013806-appb-img-000023
0, x<c}
-식 (9)--Formula (9)-
유방 밀도 예측과정에 의해 입력 영상으로부터 출력되는 상대적 유방 밀도(PD) 는 유방 분할 과정에 의해 출력된 유방 면적(BA)에 대한 절대적 유방 밀도 면적(DA)의 비율을 퍼센트 (%) 로 환산한 값이다. 이미지 X 에 대해 치밀도 범주 c 의 상대적 유방 밀도
Figure PCTKR2021013806-appb-img-000024
는 아래 식 (10)을 통해 계산된다.
The relative breast density (PD) output from the input image by the breast density prediction process is a value obtained by converting the ratio of the absolute breast density area (DA) to the breast area (BA) output by the breast segmentation process into a percentage (%) am. Relative breast density of density category c for image X
Figure PCTKR2021013806-appb-img-000024
is calculated through Equation (10) below.
Figure PCTKR2021013806-appb-img-000025
Figure PCTKR2021013806-appb-img-000025
-식 (10)--Formula (10)-
프로세서(130)가 수행하는 표준 치밀도 변환과정 유방 밀도 평가 과정에 따른 출력을 표준화 잔여 밀도로 변환하는 과정이다. 표준 치밀도 변환 과정의 구현은 유방 밀도 평가 과정에 따른 출력(치밀도 범주별 절대적 유방 밀도와 상대적 유방 밀도)에 Box-cox 변환을 수행하는 제 1 과정, 이전 단계의 결과에서 보정 변수를 이용해 잔여 밀도를 추정하는 제 2 과정, 이전 단계의 결과에서 태그드 영상 데이터베이스의 대조군 데이터에 대한 전문가 측정치로부터 구한 잔여 밀도의 표본 평균과 표준편차를 의미하는 μ 와 s를 이용해 표준화 잔여 밀도를 계산하는 제3 과정을 포함한다. Standard density conversion process performed by the processor 130 This is a process of converting an output according to a breast density evaluation process into a standardized residual density. The implementation of the standard density transformation process is the first process of performing Box-cox transformation on the output (absolute breast density and relative breast density by density category) according to the breast density evaluation process, and the residual The second process of estimating the density, the third process of calculating the standardized residual density using μ and s, which mean the sample mean and standard deviation of the residual density obtained from expert measurements of the control data of the tagged image database in the results of the previous step include the process
유방 밀도 평가 과정의 출력 중 하나를 x 라 할 때, 표준 치밀도 변환 과정의 제 1 내지 제3 과정은 아래 식 (11)과 같이 나타낼 수 있다. When one of the outputs of the breast density evaluation process is x, the first to third processes of the standard density conversion process can be expressed as Equation (11) below.
Figure PCTKR2021013806-appb-img-000026
Figure PCTKR2021013806-appb-img-000026
Figure PCTKR2021013806-appb-img-000027
Figure PCTKR2021013806-appb-img-000027
Figure PCTKR2021013806-appb-img-000028
Figure PCTKR2021013806-appb-img-000028
- 식 (11)-- Formula (11) -
Figure PCTKR2021013806-appb-img-000029
는 box-cox 변환의 결과이며, 변환 상수
Figure PCTKR2021013806-appb-img-000030
는 태그드 영상 데이터베이스의 대조군의 영상에 대한 전문가 측정치에 대해 변환을 반복적으로 시행하면서 보정변수에 의해 예측된 값에 대하여 정규분포 (normal distribution)에 대한 최대우도추정법 (maximum likelihood estimation) 을 통해 추정된다.
Figure PCTKR2021013806-appb-img-000029
is the result of the box-cox transformation, and the transformation constant
Figure PCTKR2021013806-appb-img-000030
is estimated through the maximum likelihood estimation method for the normal distribution with respect to the value predicted by the calibration variable while repeatedly performing conversion on the expert measurement values for the image of the control group in the tagged image database. .
상기 식 (11)에서
Figure PCTKR2021013806-appb-img-000031
는 태그드 영상 데이터베이스의 대조군 영상의 전문가 측정치에 대해 변환된 에 대해 보정 변수를 이용한 선형 회귀 모형(linear regression)을 적합시킨 후 추정된 계수를 사용한다.
Figure PCTKR2021013806-appb-img-000032
은 대조군 영상에 대하여
Figure PCTKR2021013806-appb-img-000033
를 계산한 후, 평균과 표준편차로 계산한 값이다.
In the above equation (11)
Figure PCTKR2021013806-appb-img-000031
uses the coefficients estimated after fitting a linear regression model using a correction variable for the transformed β for the expert measurements of the control image in the tagged image database.
Figure PCTKR2021013806-appb-img-000032
for the control image
Figure PCTKR2021013806-appb-img-000033
After calculating , it is a value calculated as the mean and standard deviation.
프로세서(130)가 수행하는 패턴 분석 과정은 입력 영상으로부터 유방암 위험도와 관련 있는 특징 패턴을 추출한 후, 위험도 분석을 수행하여 최종적으로 패턴 위험도를 출력하는 과정으로 전처리 과정과 패턴 추출 과, 패턴 위험도 예측 과정을 포함한다.The pattern analysis process performed by the processor 130 is a process of extracting a feature pattern related to breast cancer risk from an input image, performing a risk analysis, and finally outputting a pattern risk. Preprocessing, pattern extraction, and pattern risk prediction process includes
상술한 바와 같이, 전처리 과정의 일 예로서, 입력 영상에 선형 보간법 (bilinear interpolation) 을 이용해 가로 w 세로 h 의 크기를 갖는 표준 영상 사이즈로 변환한 후, CLAHE (contrast limited adaptive histogram equalization) 를 적용해 영상에 대한 지역 명암 강조 및 정규화를 수행할 수 있다. As described above, as an example of the preprocessing process, after converting an input image to a standard image size having a size of horizontal w and vertical h using linear interpolation, CLAHE (contrast limited adaptive histogram equalization) is applied Local contrast enhancement and normalization can be performed on images.
프로세서(130)가 수행하는 패턴 추출 과정의 구현 예로 합성곱 신경망 (Convolutional neural network) 을 들 수 있으며, 합성곱 신경망의 구현은 영상 처리 기법에서 널리 활용되고 있는 기법이므로 자세한 설명은 생략하며, 출력은 1차원 벡터로 나타낼 수 있다.An example of implementation of the pattern extraction process performed by the processor 130 may include a convolutional neural network. Since the implementation of the convolutional neural network is a technique widely used in image processing techniques, a detailed description thereof will be omitted. It can be represented as a one-dimensional vector.
프로세서(130)가 수행하는 패턴 위험도 예측 과정은 패턴 추출 과정에 따른 출력을 입력으로 받아 변환 벡터를 이용하여 유방암 위험도를 산출하는 과정이다.The pattern risk prediction process performed by the processor 130 is a process of receiving an output according to the pattern extraction process as an input and calculating a breast cancer risk using a conversion vector.
패턴 위험도 예측 과정의 구현 예로 신경망 모형 (Multi-layer perceptron)을 적용시킬 수 있다. 일 예로서, 1개의 은닉층 (hidden layer)을 갖는 신경망 모형을 구현 예로 설명한다. As an example of implementing the pattern risk prediction process, a neural network model (multi-layer perceptron) can be applied. As an example, a neural network model having one hidden layer will be described as an implementation example.
패턴 추출 과정에 따른 출력 결과를 n 개의 원소를 갖는 벡터 X 라 하고, n-by-m 의 가중치 벡터 w(1) 와 m 개의 원소를 갖는 벡터 b(1) 가 있을 때, 은닉층의 출력 벡터 h 는 다음 식 (12)와 같이 나타낸다. Let the output result from the pattern extraction process be a vector X with n elements, and when there is an n-by-m weight vector w(1) and a vector b(1) with m elements, the output vector h of the hidden layer is represented by the following equation (12).
Figure PCTKR2021013806-appb-img-000034
Figure PCTKR2021013806-appb-img-000034
Figure PCTKR2021013806-appb-img-000035
Figure PCTKR2021013806-appb-img-000035
-식 (12)--Equation (12)-
패턴 추출 과정에 따른 출력 결과인 패턴 위험도는 은닉층 출력 h 에 대해 m-by-1의 가중치 벡터 w(2) 와 b(2) 를 적용한 값에 시그모이드 변환을 수행하여 산출할 수 있다. 최종 패턴 위험도를 산출하는 식은 아래 식 (13)과 같다. The pattern risk, which is an output result from the pattern extraction process, can be calculated by performing sigmoid transformation on the values obtained by applying the m-by-1 weight vectors w(2) and b(2) to the hidden layer output h. The formula for calculating the final pattern risk is Equation (13) below.
Figure PCTKR2021013806-appb-img-000036
Figure PCTKR2021013806-appb-img-000036
 -식 (13)--Equation (13)-
프로세서(130)가 수행하는 패턴 분석 과정의 패턴 추출 과정과와 패턴 위험도 예측 과정에서 사용되는 가중치는 태그드 영상 데이터베이스를 이용하여 학습 과정에 의해 학습될 수 있다. 상술한 바와 같이, 상기 학습 과정은 손실함수 (loss function) 의 값이 가장 적은 변환 가중치 세트 F 를 찾기 위한 과정에서 검증 세트에 대한 비용 함수를 최소화 시키는 F 를 구함으로써 이루어진다. Weights used in the pattern extraction process of the pattern analysis process performed by the processor 130 and the pattern risk prediction process may be learned through a learning process using a tagged image database. As described above, the learning process is performed by obtaining F that minimizes the cost function for the validation set in the process of finding the transform weight set F having the smallest value of the loss function.
프로세서(130)가 수행하는 영상 기반 위험도 평가 과정은 유방 밀도 예측 과정 과 패턴 분석 과정에 따른 출력을 입력으로 받아 영상 기반 위험도를 출력하는 과정이다. 총 k 개의 치밀도 범주에 있어 유방 밀도 예측 과정에 따른 출력을
Figure PCTKR2021013806-appb-img-000037
패턴 분석 과정에 따른 출력을 P라 할 때 영상 기반 위험도 평가 과정 의 구현으로 다음 식 (14)를 예로 들 수 있다
The image-based risk assessment process performed by the processor 130 is a process of outputting an image-based risk rating by receiving outputs according to a breast density prediction process and a pattern analysis process as inputs. The output of the breast density prediction process for a total of k density categories
Figure PCTKR2021013806-appb-img-000037
When the output of the pattern analysis process is P, the following equation (14) can be exemplified as an implementation of the image-based risk assessment process.
Figure PCTKR2021013806-appb-img-000038
Figure PCTKR2021013806-appb-img-000038
  -식 (14)-Eq. (14)
상기 식에서
Figure PCTKR2021013806-appb-img-000039
는 상술한 태그드 영상 데이터베이스로부터 추정될 수 있다.
in the above formula
Figure PCTKR2021013806-appb-img-000039
Can be estimated from the above-described tagged image database.
프로세서(130)가 수행하는 임상 정보 기반 위험도 평가 과정은 유방 촬영 영상에 대해 적용되는 과정과 별개의 과정으로서, 대상자의 임상정보 및 유전체 정보를 고려한 위험도를 출력하는 과정이다. The clinical information-based risk assessment process performed by the processor 130 is a process that is separate from the process applied to mammography images, and is a process of outputting a risk level considering clinical information and genome information of a subject.
임상 정보 기반 위험도 평가 과정은 다양한 구현 예가 있으며, 본 실시 예에서는 임상에서 널리 활용되는 한 가지 모형인 Tyrer-cuzick 모형을 예로 들어 설명한다. Tyrer-cuzick 모형의 위험도 산출식은 아래 식 (15)와 같다.There are various implementation examples of the clinical information-based risk assessment process, and in this embodiment, the Tyrer-Cuzick model, which is one widely used clinical model, will be described as an example. The risk calculation formula of the Tyrer-Cuzick model is shown in Equation (15) below.
Figure PCTKR2021013806-appb-img-000040
Figure PCTKR2021013806-appb-img-000040
-식 (15)--Equation (15)-
상기 식에서
Figure PCTKR2021013806-appb-img-000041
는 (BRCA gene 없음/low penetrance gene 없음), (BRCA gene 없음/low penetrance gene 있음), (BRCA1 gene 있음/low penetrance gene 없음), (BRCA1 gene 있음/low penetrance gene 있음), (BRCA2 gene 있음/low penetrance gene 없음), (BRCA2 gene 있음/low penetrance gene 있음) 6가지의 표현형 중에 i 번째 표현형을 가질 확률이다.
in the above formula
Figure PCTKR2021013806-appb-img-000041
(BRCA gene absent/low penetrance gene absent), (BRCA gene absent/low penetrance gene present), (BRCA1 gene present/low penetrance gene absent), (BRCA1 gene present/low penetrance gene present), (BRCA2 gene present/ It is the probability of having the ith phenotype among 6 phenotypes.
상기 식에서
Figure PCTKR2021013806-appb-img-000042
는 환자의 유방암/난소암 가족력을 통해 추정된다.
Figure PCTKR2021013806-appb-img-000043
는 나이가 t1, t2사이에 i 번째 표현형이 유방암에 걸릴 확률로서 미리 정의된 값이다. 상기 식에서
Figure PCTKR2021013806-appb-img-000044
는 임상정보를 종합한 환자의 유방암에 대한 상대 위험도 (relative risk) 로 정의된다. 상기 식에서 사용되는 계수와 특정 나이에서의 유방암 발생 확률 등은 선행 연구 결과를 토대로 미리 산출된 값이다. 임상 정보 기반 위험도 평가 과정에서 사용되는 Tyrer-cuzick 모형의 경우 유방암 위험도를 산출하는데 널리 활용되고 있는 식이므로 구체적인 설명은 생략한다.
in the above formula
Figure PCTKR2021013806-appb-img-000042
is estimated through the patient's family history of breast/ovarian cancer.
Figure PCTKR2021013806-appb-img-000043
is a predefined value as the probability that the ith phenotype has breast cancer between ages t1 and t2. in the above formula
Figure PCTKR2021013806-appb-img-000044
is defined as the patient's relative risk of breast cancer after combining clinical information. The coefficients used in the above formula and the probability of breast cancer occurrence at a specific age are values calculated in advance based on the results of previous studies. In the case of the Tyrer-Cuzick model used in the clinical information-based risk assessment process, it is widely used to calculate the risk of breast cancer, so a detailed description is omitted.
프로세서(130)가 수행하는 통합 유방암 위험도 평가 과정은 영상 기반 위험도 평가 과정에 따른 출력과 임상 정보 기반 위험도 평가 과정에 따른 출력을 결합하여 유방암 위험도를 산출하는 과정이다. 통합 유방암 위험도 평가 과정의 구현 예로는 두 예측 모형의 성능을 이용한 가중 평균 (weighted average)이 있다. 가중 평균은 아래 식 (16)과 같이 나타낼 수 있다 통합 유방암 평가 과정의 가중치 w_1, w_2 는 상술한 태그드 영상 데이터베이스로부터 추정될 수 있다.The integrated breast cancer risk assessment process performed by the processor 130 is a process of calculating a breast cancer risk by combining an output according to an image-based risk assessment process and an output according to a clinical information-based risk assessment process. An example of implementing an integrated breast cancer risk assessment process is a weighted average using the performance of two predictive models. The weighted average can be expressed as Equation (16) below. The weights w_1 and w_2 of the integrated breast cancer evaluation process can be estimated from the above-described tagged image database.
Figure PCTKR2021013806-appb-img-000045
Figure PCTKR2021013806-appb-img-000045
-식 (16)- -Equation (16)-
도 6을 참조하면, 상술한 설명들을 토대로한 본 발명의 일 실험예로서, 프로세서(130)는 맘모그램 기반 위험도 산출 자동화 알고리즘을 토대로 유방암 위험도 산출을 수행할 수 있다. 해당 알고리즘은 2개의 대분류로서 유방밀도평가 및 패턴추출을 포함하고, 이를 기반으로 맘모그램 기반 유방암 위험도를 출력할 수 있다. 해당 실험예에서, 프로세서(130)는 먼저, DICOM 이미지를 입력 영상으로 하여 전처리를 수행한다. 다음, 프로세서(130)는 유방 부위를 분할하여 대상자의 유방 총 면적을 산출한다. 다음, 프로세서(130)는 다수준 유방 밀도 면적별 절대값(cm^2)과 총 면적 대비 상대 값(%)을 산출한다. 다음, 프로세서(130)는 유방 치밀도 외에 패턴 분석 과정을 통해 산출한 위험도 및 임상정보를 기반으로 이를 종합하여 최종 유방암 위험도를 포함한 평가 정보(61)를 제시할 수 있다. Referring to FIG. 6 , as an experimental example of the present invention based on the above descriptions, the processor 130 may perform breast cancer risk calculation based on a mammogram-based risk calculation automation algorithm. The corresponding algorithm includes breast density evaluation and pattern extraction as two major categories, and based on this, mammogram-based breast cancer risk can be output. In the experimental example, the processor 130 first performs preprocessing on a DICOM image as an input image. Next, the processor 130 divides the breast area to calculate the total area of the subject's breast. Next, the processor 130 calculates an absolute value (cm^2) for each multilevel breast density area and a relative value (%) for the total area. Next, the processor 130 may present evaluation information 61 including the final breast cancer risk by integrating the risk and clinical information calculated through the pattern analysis process in addition to the breast density.
도 7은 본 발명의 실시예에 따른 유방암 위험도 평가 방법의 단계들을 도시한 흐름도이고, 도 8 및 도 9는 도 7에 도시된 유방암 위험도 평가 방법의 일부 단계에 대한 세부 절차를 도시한 흐름도이다. 본 실시예에 따른 유방암 위험도 평가 방법은 앞서 도 1 내지 도 6을 참조하여 설명한 유방암 위험도 평가 시스템(100)을 이용한 방법이다. 아래에서 설명되는 유방암 위험도 평가 방법의 각 단계들 및 세부 과정들은 상술한 유방암 위험도 평가 시스템(100)을 통해 구현될 수 있으며, 프로세서(130)의 프로그램 실행에 의해 수행될 수 있다. 따라서, 앞서 도 1 내지 도 6을 참조하여 설명한 실시 예의 내용은 이하의 실시예에 동일하게 적용될 수 있으며, 상술한 설명과 중복되는 내용은 이하에서 생략하도록 한다.7 is a flow chart showing steps of a breast cancer risk assessment method according to an embodiment of the present invention, and FIGS. 8 and 9 are flowcharts showing detailed procedures for some steps of the breast cancer risk assessment method shown in FIG. 7 . The breast cancer risk evaluation method according to this embodiment is a method using the breast cancer risk evaluation system 100 described above with reference to FIGS. 1 to 6 . Each step and detailed process of the breast cancer risk assessment method described below may be implemented through the above-described breast cancer risk assessment system 100 and may be performed by the processor 130 executing a program. Therefore, the contents of the embodiments described above with reference to FIGS. 1 to 6 may be equally applied to the following embodiments, and the contents overlapping with the above description will be omitted below.
도 1과 함께 도 7을 참조하면, 본 실시예에 따른, 유방 촬영 이미지를 이용한 유방암 위험도 평가 방법은, 유방 밀도 정보 및 유방 패턴 정보를 포함하는 평가 데이터 생성 단계(S110) 및 평가 데이터를 기초로 유방암 발생 위험도를 산출하는 단계(S120)를 포함한다.Referring to FIG. 7 together with FIG. 1 , the breast cancer risk evaluation method using mammography images according to the present embodiment includes a step of generating evaluation data including breast density information and breast pattern information (S110) and based on the evaluation data and calculating the risk of breast cancer (S120).
유방 밀도 정보 및 유방 패턴 정보를 포함하는 평가 데이터 생성 단계(S110)는 유방암 위험도 평가 시스템(100)이, 평가 대상 유방에 대한 유방 촬영 이미지로부터 평가 대상 유방의 밀도를 측정하여 생성한 유방 밀도 정보 및 유방 촬영 이미지로부터 평가 대상 유방의 특징 패턴을 추출하여 생성한 유방 패턴 정보를 포함하는 평가 데이터를 생성하는 단계이다. 평가 데이터를 기초로 유방암 발생 위험도를 산출하는 단계(S120)는 유방암 위험도 평가 시스템(100)이, 평가 데이터에 포함된 정보들 각각에 기설정된 가중치를 적용하여 평가 대상 유방에 대한 유방암 발생 위험도를 산출하는 단계이다. 여기서, 유방 촬영 이미지는 DICOM(Digital Imaging and Communications in Medicine) 형태의 이미지일 수 있다.In the step of generating evaluation data including breast density information and breast pattern information (S110), the breast cancer risk assessment system 100 measures the density of the breast to be evaluated from the mammography image of the breast to be evaluated, and generates breast density information and A step of generating evaluation data including breast pattern information generated by extracting a characteristic pattern of a breast to be evaluated from a mammography image. In the step of calculating the risk of breast cancer occurrence based on the evaluation data (S120), the breast cancer risk evaluation system 100 calculates the risk of breast cancer occurrence for the breast to be evaluated by applying a predetermined weight to each piece of information included in the evaluation data. It is a step to Here, the mammography image may be a DICOM (Digital Imaging and Communications in Medicine) type image.
일 예에서, 유방 밀도 정보 및 유방 패턴 정보를 포함하는 평가 데이터 생성 단계(S110)는 인공지능 기술을 이용한 밀도 측정 단계를 포함할 수 있다. 이 때, 밀도 측정 단계는, 복수개의 학습 대상 유방 촬영 이미지들을 토대로 가중치를 적용한 벡터 변환을 수행하여 이미지 내 유방 부위의 유방 밀도를 산출하고, 산출된 유방 밀도와 복수개의 학습 대상 유방 촬영 이미지들을 대상으로 전문가가 도출한 이미지 내 유방 부위의 유방 밀도의 차이가 최소화되도록 학습된 인공지능 모델을 이용하여, 평가 대상 유방의 밀도를 측정하는 단계일 수 있다. In one example, generating evaluation data including breast density information and breast pattern information ( S110 ) may include a density measurement step using artificial intelligence technology. At this time, in the density measuring step, a vector transformation to which a weight is applied is performed based on a plurality of mammography images to be learned, to calculate the breast density of the breast part in the image, and the calculated breast density and the plurality of mammography images to be learned are targeted. It may be a step of measuring the density of the breast to be evaluated using an artificial intelligence model trained to minimize the difference in breast density of the breast region in the image drawn by the expert.
일 예에서, 유방 밀도 정보 및 유방 패턴 정보를 포함하는 평가 데이터 생성 단계(S110)는 인공지능 기술을 이용한 패턴 추출 단계를 포함하고, 특징 패턴은 평가 대상 유방의 비정상 유방 특징 패턴을 포함할 수 있다. 이 때, 패턴 추출 단계는, 정상인과 유방암 환자의 유방 촬영 이미지를 토대로 기계 학습을 수행하여 입력된 영상에서 비정상 유방의 특징 패턴을 추출하도록 구성된 비정상 유방 패턴 추출 인공지능 모델을 이용하여, 유방 촬영 이미지로부터 평가 대상 유방의 비정상 유방 특징 패턴을 추출하는 단계일 수 있다. In one example, the step of generating evaluation data including breast density information and breast pattern information (S110) includes a pattern extraction step using artificial intelligence technology, and the feature pattern may include an abnormal breast feature pattern of the breast to be evaluated. . At this time, in the pattern extraction step, an abnormal breast pattern extraction artificial intelligence model configured to perform machine learning based on mammogram images of normal persons and breast cancer patients to extract feature patterns of abnormal breasts from the input images is used, and the mammogram images It may be a step of extracting an abnormal breast feature pattern of the breast to be evaluated from the breast.
유방 밀도 정보 및 유방 패턴 정보를 포함하는 평가 데이터 생성 단계(S110)는 유방암 위험도 평가 시스템(100)이, 평가 대상 유방에 대응되는 특정인의 나이 정보, 유전체 정보 및 유방암 가족력 정보 중 적어도 어느 하나 이상의 정보를 토대로 생성한 임상 정보를 생성하는 단계를 더 포함할 수 있다. 이 때, 평가 데이터는 임상 정보를 포함할 수 있다. In the step of generating evaluation data including breast density information and breast pattern information (S110), the breast cancer risk assessment system 100 provides information on at least one of age information, genetic information, and breast cancer family history information of a specific person corresponding to the breast to be evaluated. A step of generating clinical information generated based on may be further included. In this case, the evaluation data may include clinical information.
도 8을 참조하면, 유방 밀도 정보 및 유방 패턴 정보를 포함하는 평가 데이터 생성 단계(S110)는 유방 촬영 이미지를 기설정된 명암 및 크기 기준에 따른 전처리를 수행하는 단계(S111), 전처리된 유방 촬영 이미지로부터 유방 부위를 분할하여 평가 대상 유방의 크기를 산출하는 단계(S112) 및 유방 부위의 픽셀 밀도를 이용하여 유방 밀도를 산출하는 단계(S113)를 포함할 수 있다. 이러한 단계들은 밀도 측정 단계일 수 있다. 유방 부위의 픽셀 밀도를 이용하여 유방 밀도를 산출하는 단계(S113)는 제1 내지 제3 밀도 영역 내 픽셀 밀도를 이용하여 영역별 유방 밀도를 산출하는 단계를 포함할 수 있다. Referring to FIG. 8 , generating evaluation data including breast density information and breast pattern information (S110) includes pre-processing a mammogram image according to preset contrast and size standards (S111), and preprocessing the mammogram image. It may include calculating the size of the breast to be evaluated by dividing the breast region from (S112) and calculating the breast density using the pixel density of the breast region (S113). These steps may be density measurement steps. Calculating the breast density using the pixel density of the breast region ( S113 ) may include calculating the breast density for each region using pixel densities in the first to third density regions.
도 9를 참조하면, 전처리된 유방 촬영 이미지로부터 유방 부위를 분할하여 평가 대상 유방의 크기를 산출하는 단계(S112)는 유방 촬영 이미지 내에서 픽셀별 밝기값의 기설정된 기준에 따라, 밝기값이 낮은 순서대로 제1 밀도 영역, 제2 밀도 영역 및 제3 밀도 영역으로 구분하는 단계(S112-1) 및 유방 부위의 제1 내지 제3 밀도 영역의 크기를 산출하는 단계(S112-2)를 포함할 수 있다. 여기서, 제1 내지 제3 밀도 영역별 유방 부위의 크기는, 유방 부위의 제1 내지 제3 밀도 영역의 면적값에 해당하는 유방 크기 절대치와, 유방 부위의 제1 내지 제3 밀도 영역의 면적값을 유방의 전체 면적값으로 나눈 값에 해당하는 유방 크기 상대치를 포함할 수 있다. Referring to FIG. 9 , in step S112 of calculating the size of the breast to be evaluated by segmenting a breast region from a preprocessed mammography image (S112), according to a predetermined criterion of brightness values for each pixel in the mammography image, the brightness value is low. Sequentially classifying the first density region, the second density region, and the third density region (S112-1), and calculating the size of the first to third density regions of the breast (S112-2). can Here, the size of the breast region for each of the first to third density regions is the absolute value of the breast size corresponding to the area value of the first to third density regions of the breast region and the area value of the first to third density regions of the breast region. may include a breast size relative value corresponding to a value obtained by dividing ? by the total area value of the breast.
이상에서 설명된 유방암 위험도 평가 방법은, 컴퓨터에 의해 실행되는 프로그램과 같은 컴퓨터에 의해 실행가능한 명령어를 포함하는 기록 매체의 형태로도 구현될 수 있다. 컴퓨터 판독 가능 매체는 컴퓨터에 의해 액세스될 수 있는 임의의 가용 매체일 수 있고, 휘발성 및 비휘발성 매체, 분리형 및 비분리형 매체를 모두 포함한다. 또한, 컴퓨터 판독가능 매체는 컴퓨터 저장 매체 및 통신 매체를 모두 포함할 수 있다. 컴퓨터 저장 매체는 컴퓨터 판독가능 명령어, 데이터 구조, 프로그램 또는 기타 데이터와 같은 정보의 저장을 위한 임의의 방법 또는 기술로 구현된 휘발성 및 비휘발성, 분리형 및 비분리형 매체를 모두 포함한다. The breast cancer risk assessment method described above may be implemented in the form of a recording medium containing instructions executable by a computer, such as a program executed by a computer. Computer readable media can be any available media that can be accessed by a computer and includes both volatile and nonvolatile media, removable and non-removable media. Also, computer readable media may include both computer storage media and communication media. Computer storage media includes both volatile and nonvolatile, removable and non-removable media implemented in any method or technology for storage of information such as computer readable instructions, data structures, programs or other data.
본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 상술한 설명을 기초로 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해되어야만 한다. 본 발명의 범위는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.Those skilled in the art to which the present invention pertains will be able to understand that it can be easily modified into other specific forms without changing the technical spirit or essential features of the present invention based on the above description. Therefore, the embodiments described above should be understood as illustrative in all respects and not limiting. The scope of the present invention is indicated by the following claims, and all changes or modifications derived from the meaning and scope of the claims and equivalent concepts should be interpreted as being included in the scope of the present invention.
상술한 발명을 실시하기 위한 최선이 형태와 같다. The best mode for carrying out the above-described invention is as follows.
본 발명은 유방암 진단, 평가 기술로서 질환 진단과 관련된 의료 산업에 이용가능하므로, 산업상 이용가능성을 갖는다.Since the present invention can be used in the medical industry related to disease diagnosis as a breast cancer diagnosis and evaluation technology, it has industrial applicability.

Claims (19)

  1. 유방 촬영 이미지를 이용한 유방암 위험도 평가 시스템의 유방암 위험도 평가 방법에 있어서,In the breast cancer risk assessment method of the breast cancer risk assessment system using mammography images,
    a) 상기 시스템이, 평가 대상 유방에 대한 유방 촬영 이미지로부터 상기 평가 대상 유방의 밀도를 측정하여 생성한 유방 밀도 정보 및 상기 유방 촬영 이미지로부터 상기 평가 대상 유방의 특징 패턴을 추출하여 생성한 유방 패턴 정보를 포함하는 평가 데이터를 생성하는 단계; 및a) Breast density information generated by the system by measuring the density of the breast to be evaluated from a mammogram image of the breast to be evaluated, and breast pattern information generated by extracting a characteristic pattern of the breast to be evaluated from the mammogram image Generating evaluation data comprising a; and
    b) 상기 시스템이, 상기 평가 데이터에 포함된 정보들 각각에 기설정된 가중치를 적용하여 상기 평가 대상 유방에 대한 유방암 발생 위험도를 산출하는 단계를 포함하는, 유방암 위험도 평가 방법.b) calculating, by the system, a risk of breast cancer occurrence for the breast to be evaluated by applying a predetermined weight to each piece of information included in the evaluation data.
  2. 제1항에 있어서,According to claim 1,
    상기 a) 단계는, In step a),
    상기 시스템이, 상기 평가 대상 유방에 대응되는 특정인의 나이 정보, 유전체 정보 및 유방암 가족력 정보 중 적어도 어느 하나 이상의 정보를 토대로 생성한 임상 정보를 생성하는 단계를 더 포함하고,The system further comprises generating clinical information generated based on at least one or more of age information, genome information, and breast cancer family history information of a specific person corresponding to the breast to be evaluated,
    상기 평가 데이터는 상기 임상 정보를 포함하는 것인, 유방암 위험도 평가 방법.The evaluation data includes the clinical information, breast cancer risk assessment method.
  3. 제1항에 있어서,According to claim 1,
    상기 유방 촬영 이미지는 DICOM(Digital Imaging and Communications in Medicine) 형태의 이미지인 것인, 유방암 위험도 평가 방법.The mammography image is an image in the form of Digital Imaging and Communications in Medicine (DICOM), breast cancer risk assessment method.
  4. 제1항에 있어서,According to claim 1,
    상기 a) 단계는, 밀도 측정 단계를 포함하고,Step a) includes a density measurement step,
    상기 밀도 측정 단계는, The density measurement step,
    a-1) 상기 유방 촬영 이미지를 기설정된 명암 및 크기 기준에 따른 전처리를 수행하는 단계; a-1) pre-processing the mammography image according to preset contrast and size standards;
    a-2) 전처리된 상기 유방 촬영 이미지로부터 유방 부위를 분할하여 상기 평가 대상 유방의 크기를 산출하는 단계; 및a-2) calculating the size of the breast to be evaluated by segmenting a breast from the preprocessed mammography image; and
    a-3) 상기 유방 부위의 픽셀 밀도를 이용하여 유방 밀도를 산출하는 단계를 포함하는, 유방암 위험도 평가 방법.a-3) a breast cancer risk assessment method comprising the step of calculating a breast density using the pixel density of the breast region.
  5. 제4항에 있어서,According to claim 4,
    상기 a-2) 단계는, In step a-2),
    상기 유방 촬영 이미지 내에서 픽셀별 밝기값의 기설정된 기준에 따라, 밝기값이 낮은 순서대로 제1 밀도 영역, 제2 밀도 영역 및 제3 밀도 영역으로 구분하는 단계; 및dividing the mammography image into a first density area, a second density area, and a third density area in descending order of brightness values according to a preset standard of brightness values for each pixel; and
    상기 유방 부위의 제1 내지 제3 밀도 영역의 크기를 산출하는 단계를 포함하는, 유방암 위험도 평가 방법.Comprising the step of calculating the size of the first to third density areas of the breast region, breast cancer risk assessment method.
  6. 제5항에 있어서,According to claim 5,
    상기 제1 내지 제3 밀도 영역별 유방 부위의 크기는,The size of the breast area for each of the first to third density areas,
    상기 유방 부위의 제1 내지 제3 밀도 영역의 면적값에 해당하는 유방 크기 절대치와, 상기 유방 부위의 제1 내지 제3 밀도 영역의 면적값을 상기 유방의 전체 면적값으로 나눈 값에 해당하는 유방 크기 상대치를 포함하는, 유방암 위험도 평가 방법.Breast size corresponding to the absolute value of the breast size corresponding to the area value of the first to third density regions of the breast region and the value obtained by dividing the area value of the first to third density regions of the breast region by the total area value of the breast A method for assessing breast cancer risk, including relative size.
  7. 제5항에 있어서,According to claim 5,
    상기 a-3) 단계는, In step a-3),
    상기 제1 내지 제3 밀도 영역 내 픽셀 밀도를 이용하여 영역별 유방 밀도를 산출하는 단계를 포함하는, 유방암 위험도 평가 방법.Calculating breast density for each region using pixel densities in the first to third density regions.
  8. 제1항에 있어서,According to claim 1,
    상기 a) 단계는, 인공지능 기술을 이용한 유방 밀도 측정 단계를 포함하고,Step a) includes a step of measuring breast density using artificial intelligence technology,
    상기 인공지능 기술을 이용한 유방 밀도 측정 단계는,The breast density measurement step using the artificial intelligence technology,
    복수개의 학습 대상 유방 촬영 이미지들을 토대로 가중치를 적용한 벡터 변환을 수행하여 이미지 내 유방 부위의 유방 밀도를 산출하고, 산출된 유방 밀도와 상기 복수개의 학습 대상 유방 촬영 이미지들을 대상으로 전문가가 도출한 이미지 내 유방 부위의 유방 밀도의 차이가 최소화되도록 학습된 인공지능 모델을 이용하여, 상기 평가 대상 유방의 밀도를 측정하는 단계인 것인, 유방암 위험도 평가 방법.Based on a plurality of mammography images to be learned, vector transformation to which weights are applied is performed to calculate the breast density of the breast area in the image, and the calculated breast density and the plurality of mammography images to be learned are calculated in the image derived by the expert. The step of measuring the density of the breast to be evaluated using an artificial intelligence model learned to minimize the difference in breast density in the breast area, the breast cancer risk assessment method.
  9. 제1항에 있어서,According to claim 1,
    상기 a) 단계는, 인공지능 기술을 이용한 패턴 추출 단계를 포함하고,Step a) includes a pattern extraction step using artificial intelligence technology,
    상기 특징 패턴은 상기 평가 대상 유방의 비정상 유방 특징 패턴을 포함하고,The feature pattern includes an abnormal breast feature pattern of the breast to be evaluated,
    상기 인공지능 기술을 이용한 패턴 추출 단계는,The pattern extraction step using the artificial intelligence technology,
    정상인과 유방암 환자의 유방 촬영 이미지를 토대로 기계 학습을 수행하여 입력된 영상에서 비정상 유방의 특징 패턴을 추출하도록 구성된 비정상 유방 패턴 추출 인공지능 모델을 이용하여, 상기 유방 촬영 이미지로부터 상기 평가 대상 유방의 비정상 유방 특징 패턴을 추출하는 단계를 포함하는, 유방암 위험도 평가 방법.By using an artificial intelligence model for extracting abnormal breast patterns configured to extract characteristic patterns of abnormal breasts from the input images by performing machine learning based on mammogram images of normal people and breast cancer patients, the abnormality of the breast to be evaluated from the mammogram images. A breast cancer risk assessment method comprising the step of extracting a breast feature pattern.
  10. 유방 촬영 이미지를 이용한 유방암 위험도 평가 시스템에 있어서,In the breast cancer risk assessment system using mammography images,
    상기 유방 촬영 이미지를 수신하는 통신 모듈;a communication module receiving the mammography image;
    유방암 위험도 평가 프로그램을 저장하는 메모리; 및a memory for storing a breast cancer risk assessment program; and
    상기 메모리에 저장된 유방암 위험도 평가 프로그램을 실행하는 프로세서를 포함하며,A processor for executing a breast cancer risk assessment program stored in the memory;
    상기 프로세서는 상기 유방암 위험도 평가 프로그램을 실행하여, The processor executes the breast cancer risk assessment program,
    평가 대상 유방에 대한 유방 촬영 이미지로부터 상기 평가 대상 유방의 밀도를 측정하여 생성한 유방 밀도 정보 및 상기 유방 촬영 이미지로부터 상기 평가 대상 유방의 특징 패턴을 추출하여 생성한 유방 패턴 정보를 포함하는 평가 데이터를 생성하고, 그리고, 상기 평가 데이터에 포함된 정보들 각각에 기설정된 가중치를 적용하여 상기 평가 대상 유방에 대한 유방암 발생 위험도를 산출하는 것을 수행하도록 구성되는, 유방암 위험도 평가 시스템.Evaluation data including breast density information generated by measuring the density of the breast to be evaluated from a mammogram image of the breast to be evaluated and breast pattern information generated by extracting a characteristic pattern of the breast to be evaluated from the mammogram image Generating, and configured to calculate the risk of breast cancer occurrence for the breast to be evaluated by applying a predetermined weight to each of the information included in the evaluation data, breast cancer risk evaluation system.
  11. 제10항에 있어서,According to claim 10,
    상기 프로세서는 상기 유방암 위험도 평가 프로그램을 실행하여, The processor executes the breast cancer risk assessment program,
    상기 평가 대상 유방에 대응되는 특정인의 나이 정보, 유전체 정보 및 유방암 가족력 정보 중 적어도 어느 하나 이상의 정보를 토대로 생성한 임상 정보를 생성하는 것을 더 수행하도록 구성되고, It is configured to further generate clinical information generated based on at least one or more of age information, genetic information, and breast cancer family history information of a specific person corresponding to the breast to be evaluated,
    상기 평가 데이터는 상기 임상 정보를 포함하는 것인, 유방암 위험도 평가 시스템.The evaluation data includes the clinical information, breast cancer risk assessment system.
  12. 제10항에 있어서,According to claim 10,
    상기 유방 촬영 이미지는 DICOM(Digital Imaging and Communications in Medicine) 형태의 이미지인 것인, 유방암 위험도 평가 시스템.The mammography image is a DICOM (Digital Imaging and Communications in Medicine) type image, breast cancer risk assessment system.
  13. 제10항에 있어서,According to claim 10,
    상기 프로세서는 상기 유방암 위험도 평가 프로그램을 실행하여, The processor executes the breast cancer risk assessment program,
    상기 유방 촬영 이미지를 기설정된 명암 및 크기 구조를 갖도록 조절하는 전처리를 수행하고, 전처리된 상기 유방 촬영 이미지로부터 유방 부위를 분할하여 상기 평가 대상 유방의 크기를 산출하고, 그리고, 상기 유방 부위의 픽셀 밀도를 이용하여 유방 밀도를 산출하는 것을 더 수행하도록 구성되는, 유방암 위험도 평가 시스템.Preprocessing is performed to adjust the mammography image to have a preset contrast and size structure, a breast portion is divided from the preprocessed mammography image to calculate the size of the breast to be evaluated, and pixel density of the breast portion is calculated. , Breast cancer risk assessment system configured to further perform calculation of breast density using.
  14. 제13항에 있어서,According to claim 13,
    상기 프로세서는 상기 유방암 위험도 평가 프로그램을 실행하여, The processor executes the breast cancer risk assessment program,
    상기 유방 촬영 이미지 내에서 픽셀별 밝기값의 기설정된 기준에 따라, 밝기값이 낮은 순서대로 제1 밀도 영역, 제2 밀도 영역 및 제3 밀도 영역으로 구분하고, 그리고, 상기 유방 부위의 제1 내지 제3 밀도 영역의 크기를 산출하는 것을 더 수행하도록 구성되는, 유방암 위험도 평가 시스템.The mammography image is divided into a first density area, a second density area, and a third density area in descending order of brightness value according to a preset criterion of brightness value for each pixel, and then, first to second density areas of the breast region The breast cancer risk assessment system, configured to further perform calculating the size of the third density region.
  15. 제14항에 있어서,According to claim 14,
    상기 제1 내지 제3 밀도 영역별 유방 부위의 크기는,The size of the breast area for each of the first to third density areas,
    상기 유방 부위의 제1 내지 제3 밀도 영역의 면적값에 해당하는 유방 크기 절대치와, 상기 유방 부위의 제1 내지 제3 밀도 영역의 면적값을 상기 유방의 전체 면적값으로 나눈 값에 해당하는 유방 크기 상대치를 포함하는, 유방암 위험도 평가 시스템.Breast size corresponding to the absolute value of the breast size corresponding to the area value of the first to third density regions of the breast region and the value obtained by dividing the area value of the first to third density regions of the breast region by the total area value of the breast Breast cancer risk rating system, including size relative.
  16. 제14항에 있어서,According to claim 14,
    상기 프로세서는 상기 유방암 위험도 평가 프로그램을 실행하여, The processor executes the breast cancer risk assessment program,
    상기 제1 내지 제3 밀도 영역 내 픽셀 밀도를 이용하여 영역별 유방 밀도를 산출하는 것을 더 수행하도록 구성되는, 유방암 위험도 평가 시스템.The breast cancer risk assessment system configured to further perform calculation of breast density by region using pixel densities in the first to third density regions.
  17. 제10항에 있어서,According to claim 10,
    상기 프로세서는 상기 유방암 위험도 평가 프로그램을 실행하여, The processor executes the breast cancer risk assessment program,
    복수개의 학습 대상 유방 촬영 이미지들을 토대로 가중치를 적용한 벡터 변환을 수행하여 이미지 유방 부위의 유방 밀도를 산출하고 산출된 유방 밀도와 상기 복수개의 학습 대상 유방 촬영 이미지들을 대상으로 전문가가 도출한 유방 밀도의 차이가 최소화되도록 학습된 인공지능 모델을 이용하여 상기 평가 대상 유방의 밀도를 측정하는 것을 더 수행하도록 구성되는, 유방암 위험도 평가 시스템.Based on a plurality of mammography images to be learned, a weighted vector transformation is performed to calculate the breast density of the breast part of the image, and the difference between the calculated breast density and the breast density derived by an expert for the plurality of mammography images to be learned is calculated. , Breast cancer risk assessment system configured to further perform measuring the density of the breast to be evaluated using an artificial intelligence model learned to minimize.
  18. 제10항에 있어서,According to claim 10,
    상기 특징 패턴은 상기 평가 대상 유방의 비정상 유방 특징 패턴을 포함하고,The feature pattern includes an abnormal breast feature pattern of the breast to be evaluated,
    상기 프로세서는 상기 유방암 위험도 평가 프로그램을 실행하여, The processor executes the breast cancer risk assessment program,
    정상인과 유방암 환자의 유방 촬영 이미지를 토대로 기계 학습을 수행하여 입력된 영상에서 비정상 유방의 특징 패턴을 추출하도록 구성된 비정상 유방 패턴 추출 인공지능 모델을 이용하여, 상기 유방 촬영 이미지로부터 상기 평가 대상 유방의 비정상 유방 특징 패턴을 추출하는 것을 더 수행하도록 구성되는, 유방암 위험도 평가 시스템.By using an artificial intelligence model for extracting abnormal breast patterns configured to extract characteristic patterns of abnormal breasts from the input images by performing machine learning based on mammogram images of normal people and breast cancer patients, the abnormality of the breast to be evaluated from the mammogram images. A breast cancer risk assessment system, configured to further perform extracting a breast feature pattern.
  19. 제1항에 따른 유방암 위험도 평가 방법을 구현하기 위한 컴퓨터 프로그램이 기록된 비일시적 컴퓨터 판독가능 기록매체.A non-transitory computer-readable recording medium on which a computer program for implementing the breast cancer risk assessment method according to claim 1 is recorded.
PCT/KR2021/013806 2021-08-12 2021-10-07 Breast cancer risk assessment system and method WO2023017901A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/437,377 US20240186015A1 (en) 2021-08-12 2024-02-09 Breast cancer risk assessment system and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210106592A KR20230025555A (en) 2021-08-12 2021-08-12 Systems and methods for assessing breast cancer
KR10-2021-0106592 2021-08-12

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/437,377 Continuation US20240186015A1 (en) 2021-08-12 2024-02-09 Breast cancer risk assessment system and method

Publications (1)

Publication Number Publication Date
WO2023017901A1 true WO2023017901A1 (en) 2023-02-16

Family

ID=85200824

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/013806 WO2023017901A1 (en) 2021-08-12 2021-10-07 Breast cancer risk assessment system and method

Country Status (3)

Country Link
US (1) US20240186015A1 (en)
KR (1) KR20230025555A (en)
WO (1) WO2023017901A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115881304A (en) * 2023-03-01 2023-03-31 深圳市森盈智能科技有限公司 Risk assessment method, device, equipment and medium based on intelligent detection
CN117954099A (en) * 2024-03-26 2024-04-30 天津市肿瘤医院(天津医科大学肿瘤医院) Breast cancer risk prediction method, device, equipment and storage medium

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010253245A (en) * 2009-03-31 2010-11-11 Fujifilm Corp Mammary gland content rate estimating apparatus and method
US20110026791A1 (en) * 2009-07-29 2011-02-03 Icad, Inc. Systems, computer-readable media, and methods for classifying and displaying breast density

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010253245A (en) * 2009-03-31 2010-11-11 Fujifilm Corp Mammary gland content rate estimating apparatus and method
US20110026791A1 (en) * 2009-07-29 2011-02-03 Icad, Inc. Systems, computer-readable media, and methods for classifying and displaying breast density

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
GASTOUNIOTI AIMILIA, CONANT EMILY F., KONTOS DESPINA: "Beyond breast density: a review on the advancing role of parenchymal texture analysis in breast cancer risk assessment", BREAST CANCER RESEARCH, vol. 18, no. 1, 1 December 2016 (2016-12-01), XP093034545, DOI: 10.1186/s13058-016-0755-8 *
IONESCU GEORGIA V., FERGIE MARTIN, BERKS MICHAEL, HARKNESS ELAINE F., HULLEMAN JOHAN, BRENTNALL ADAM R., CUZICK JACK, EVANS D. GAR: "Prediction of reader estimates of mammographic density using convolutional neural networks", JOURNAL OF MEDICAL IMAGING, SOCIETY OF PHOTO-OPTICAL INSTRUMENTATION ENGINEERS, 1000 20TH ST. BELLINGHAM WA 98225-6705 USA, vol. 6, no. 03, 31 January 2019 (2019-01-31), 1000 20th St. Bellingham WA 98225-6705 USA , pages 1, XP093034591, ISSN: 2329-4302, DOI: 10.1117/1.JMI.6.3.031405 *
SCHMIDT DANIEL F, MAKALIC ENES, GOUDEY BENJAMIN, DITE GILLIAN S, STONE JENNIFER, NGUYEN TUONG L, DOWTY JAMES G, BAGLIETTO LAURA, S: "Cirrus: An Automated Mammography-Based Measure of Breast Cancer Risk Based on Textural Features", JNCI CANCER SPECTRUM, vol. 2, no. 4, 1 October 2018 (2018-10-01), XP093034542, DOI: 10.1093/jncics/pky057 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115881304A (en) * 2023-03-01 2023-03-31 深圳市森盈智能科技有限公司 Risk assessment method, device, equipment and medium based on intelligent detection
CN117954099A (en) * 2024-03-26 2024-04-30 天津市肿瘤医院(天津医科大学肿瘤医院) Breast cancer risk prediction method, device, equipment and storage medium

Also Published As

Publication number Publication date
US20240186015A1 (en) 2024-06-06
KR20230025555A (en) 2023-02-22

Similar Documents

Publication Publication Date Title
WO2023017901A1 (en) Breast cancer risk assessment system and method
WO2021049729A1 (en) Method for predicting likelihood of developing lung cancer by using artificial intelligence model, and analysis device therefor
WO2021060899A1 (en) Training method for specializing artificial intelligence model in institution for deployment, and apparatus for training artificial intelligence model
CN111751002A (en) Intelligent charged equipment fault diagnosis method based on infrared thermal imaging
CN108416379A (en) Method and apparatus for handling cervical cell image
CN110672189A (en) Weight estimation method, device, system and storage medium
WO2020122606A1 (en) Method for measuring volume of organ by using artificial neural network, and apparatus therefor
US10832410B2 (en) Computer system, method, and program for diagnosing subject
Low et al. Automating vitiligo skin lesion segmentation using convolutional neural networks
CN111583199A (en) Sample image annotation method and device, computer equipment and storage medium
CN111932522B (en) Alzheimer&#39;s disease classifier based on brain imaging big data deep learning
CN110717449A (en) Vehicle annual inspection personnel behavior detection method and device and computer equipment
KR20170128577A (en) Tissue sample analysis technology
WO2023273297A1 (en) Multi-modality-based living body detection method and apparatus, electronic device, and storage medium
WO2023234730A1 (en) Patch level severity determination method, slide level severity determination method, and computing system for performing same
CN117392138A (en) Tongue picture image processing method, storage medium and electronic equipment
JP2011115393A (en) Skin feature determination system, skin feature determination method, and skin feature determination program
CN109886923B (en) Measurement detection system and method based on machine learning for Internet detection
JP4609322B2 (en) Chromosome state evaluation method and evaluation system
WO2017010612A1 (en) System and method for predicting pathological diagnosis on basis of medical image analysis
CN110570022A (en) mGBDT-based building energy consumption prediction method and system
CN116051421A (en) Multi-dimensional-based endoscope image quality evaluation method, device, equipment and medium
CN115619756A (en) Heart region identification method of human body infrared image
Jaddoa et al. Multi view face detection in cattle using infrared thermography
WO2021177532A1 (en) Method, apparatus, and computer program for determining chromosome abnormality through analysis of chromosome images aligned using artificial intelligence

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21953548

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE