WO2023017789A1 - Work machine - Google Patents

Work machine Download PDF

Info

Publication number
WO2023017789A1
WO2023017789A1 PCT/JP2022/030063 JP2022030063W WO2023017789A1 WO 2023017789 A1 WO2023017789 A1 WO 2023017789A1 JP 2022030063 W JP2022030063 W JP 2022030063W WO 2023017789 A1 WO2023017789 A1 WO 2023017789A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
lifter
housing
moving member
blade
Prior art date
Application number
PCT/JP2022/030063
Other languages
French (fr)
Japanese (ja)
Inventor
哲也 門前
祐樹 石川
Original Assignee
工機ホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 工機ホールディングス株式会社 filed Critical 工機ホールディングス株式会社
Priority to JP2023541430A priority Critical patent/JPWO2023017789A1/ja
Publication of WO2023017789A1 publication Critical patent/WO2023017789A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23DPLANING; SLOTTING; SHEARING; BROACHING; SAWING; FILING; SCRAPING; LIKE OPERATIONS FOR WORKING METAL BY REMOVING MATERIAL, NOT OTHERWISE PROVIDED FOR
    • B23D29/00Hand-held metal-shearing or metal-cutting devices

Definitions

  • the present invention relates to working machines.
  • the electric reciprocating tool (work machine) described in Patent Document 1 below includes a motor, a screw shaft connected to the motor, a shuttle screw threadedly engaged with the screw shaft, and a movable blade attached to the shuttle screw. , is composed of When the motor is driven, the shuttle screw moves axially relative to the screw shaft, thereby reciprocating the movable blade back and forth. Thereby, the material to be cut placed in front of the movable blade can be cut.
  • the mechanical part for temporarily releasing the threaded engagement between the shuttle screw and the screw shaft and re-engaging the shuttle screw and the screw shaft is electrically reciprocated.
  • the mechanism for reciprocating the movable blade back and forth becomes complicated, which may increase the number of parts and reduce the durability of the parts.
  • the screw fitting is released once, if the screw fitting is not performed correctly, there is a possibility that a problem may occur.
  • One or more embodiments of the present invention include a housing, a motor accommodated in the housing, a control section for controlling the motor, an operation section for operating the motor when turned on, and the motor.
  • a cutting blade that moves between an initial position and a reversed position along a first direction, and a support that supports a workpiece, and the workpiece is cut by the cutting blade and the support.
  • the support portion and the cutting blade do not overlap when viewed in a second direction orthogonal to the first direction, and the control portion controls the cutting blade.
  • the operation portion is turned on while the blade is in the initial position, the motor is rotated forward to move the cutting blade closer to the support portion, and the operation portion is turned on.
  • the motor is stopped or reversed in a state in which at least a part of the support portion and the cutting blade overlap when viewed in the second direction.
  • the cutting blade has a plate shape extending in the first direction and the second direction, and the control section is configured to extend in both the first direction and the second direction.
  • the working machine is configured to stop the motor or reverse the motor at a position where the support portion and the cutting blade overlap when viewed in a third direction perpendicular to .
  • the support portion is provided with a recess in which a portion of the work piece can be positioned, and the control portion is configured such that when viewed in the third direction, the The working machine is configured to stop the motor or reverse the motor at a position where the recess overlaps the cutting blade.
  • One or more embodiments of the present invention include a housing, a motor housed in the housing, a control section for controlling the motor, an operation section for operating the motor when operated, and and an output unit that is rotationally driven and is screwed with the output unit, and when the motor rotates forward, it operates in one direction, and when the motor rotates backward, it operates in the other direction opposite to the one direction.
  • a moving member that moves and a cutting blade configured to move integrally with the moving member.
  • the working machine is configured to stop the motor while the screw engagement between the moving member and the moving member is maintained.
  • the working machine has a position detection section that detects the position of the moving member, and the control section drives and controls the motor based on the detection result of the position detection section. is.
  • One or more embodiments of the present invention include a housing, a motor housed in the housing, an operation part provided in the housing for operating the motor when operated, and a motor movable in the housing.
  • a moving member accommodated and reciprocally moved between an initial position and a reversed position by the driving force of the motor; a blade that approaches the workpiece by moving toward the outward path, a position detection unit that detects the position of the moving member, a control unit that drives and controls the motor based on the detection result of the position detection unit; It is a work machine equipped with
  • the position detection section includes an initial position detection section that detects the initial position of the moving member, a reverse position detection section that detects the reverse position of the movement member,
  • the control unit detects the initial position of the moving member based on the detection result of the initial position detection unit, and adjusts the movement member based on the detection result of the reverse position detection unit. It is a work machine that detects the reversing position.
  • the position detection section is configured to detect the initial position of the moving member, and the control section detects the initial position of the moving member based on the detection signal of the position detection section.
  • the initial position of the moving member is detected, and the reverse position of the moving member is detected based on the number of rotations of the motor from the initial position.
  • the position detection unit is turned on by being pressed by the moving member when the moving member moves from the reverse position to the initial position on the return path side. It is a switching switch, and the control unit is a work machine that starts measuring the number of revolutions of the motor, starting from the point in time when the position detection unit switches from on to off.
  • control unit drives and controls the motor so as to move the moving member toward the return path after a predetermined time has elapsed since the reversal position of the moving member was detected. It is a work machine that
  • control unit if the control unit does not detect the initial position of the moving member at the start of operation of the operating unit, the control unit moves the moving member toward the return path. It is a work machine that drives and controls the motor so as to cause the motor to move.
  • the control unit drives and controls the motor so as to cause the motor to move.
  • the position detection unit is a work machine provided at a lateral position of the moving member.
  • the housing includes a first housing that accommodates the moving member, a second housing that accommodates the motor and the control section, and at least part of the position detection section. It is a work machine having a third housing that accommodates it.
  • the third housing is a work machine supported by the first housing or the second housing.
  • the cutting blade can be preferably reciprocated.
  • FIG. 2 is a cross-sectional view of the inside of the electric cutting machine shown in FIG. 1 as viewed from the right side;
  • FIG. (A) is a cross-sectional view (cross-sectional view taken along line 3A-3A in FIG. 2) showing the support mechanism shown in FIG. 2 as seen from the front side, and
  • (B) is a connection between the lifter and blade shown in FIG. 3B is a cross-sectional view (cross-sectional view taken along the line 3B-3B in FIG. 2) seen from the front side showing the state;
  • FIG. (A) is a cross-sectional view (cross-sectional view taken along line 4A-4A in FIG.
  • FIG. 4B is a cross-sectional view seen from the upper side showing the connection state of the plate and the head plate (cross-sectional view taken along the line 4B-4B in FIG. 2);
  • FIG. 3 is a cross-sectional view seen from the right side showing a state in which the lifter and blades shown in FIG. 2 have moved to reversed positions;
  • 2 is a right side view showing the blade and guide mechanism shown in FIG. 1 rotated from the first position to the second position;
  • FIG. 4 is a flowchart for explaining the operation of the electric cutting machine according to the embodiment; It is a time chart for explaining operation of the electric cutting machine concerning this embodiment.
  • FIG. 10 is a side view showing a folded state;
  • FIG. 10 is a three-sided view of the fixed washer shown in FIG. 9;
  • An electric cutting machine 10 as a work machine according to the present embodiment will be described below with reference to the drawings.
  • An arrow UP, an arrow FR, and an arrow RH appropriately shown in the drawings indicate the upper side, the front side, and the right side of the electric cutting machine 10, respectively.
  • the up/down, front/rear, and left/right directions of the electric cutting machine 10 are indicated unless otherwise specified.
  • the front-back direction corresponds to the first direction of the present invention
  • the up-down direction corresponds to the second direction of the present invention
  • the left-right direction corresponds to the third direction of the present invention.
  • the electric cutting machine 10 is configured as an electric power tool for cutting a workpiece W such as a light ceiling bar used for a suspended ceiling of a building.
  • This workpiece W is formed in a long columnar shape, and is formed in a substantially U shape when viewed from the longitudinal direction.
  • the electric cutting machine 10 includes a housing 20, a motor 50, a feed screw mechanism 60 (in a broad sense, it is an element grasped as a movement mechanism), a blade 72 as a cutting edge (tip tool), and a guide mechanism 80. , a holding mechanism 90 , and a control unit 100 .
  • a control unit 100 Each configuration of the electric cutting machine 10 will be described below.
  • the housing 20 constitutes the outer shell of the electric cutting machine 10 and extends in the front-rear direction as a whole.
  • the housing 20 includes a lifter housing 22 (first housing) forming a front portion of the housing 20 and a body housing 24 (second housing) forming a rear portion of the housing 20 .
  • the body housing 24 is formed in a substantially inverted P-shaped hollow shape when viewed from the right side, and the lifter housing 22 is formed in a substantially cylindrical shape extending in the front-rear direction.
  • a front end portion of the body housing 24 and a rear end portion of the lifter housing 22 are connected via a spacer 26 .
  • the lifter housing 22 is made of resin.
  • a rear end portion of the body housing 24 is configured as a handle portion 24A that is gripped by an operator, and the handle portion 24A extends vertically.
  • a trigger 30 as an operating portion is provided at the upper end portion of the handle portion 24A.
  • the trigger 30 is configured to be capable of being pulled rearward, and is turned on by being pulled.
  • a trigger switch 31 is provided on the handle portion 24 ⁇ /b>A behind and obliquely below the trigger 30 . When the trigger 30 is pulled, the trigger switch 31 is switched from off to on.
  • the trigger switch 31 is electrically connected to a control section 100 which will be described later, and the control section 100 is accommodated in the lower end portion of the body housing 24 . Then, when the trigger switch 31 is turned on, the trigger switch 31 outputs an ON signal to the control section 100 .
  • a battery mounting portion 24B is formed at the lower end portion of the body housing 24 .
  • a battery terminal 28 is provided in the battery mounting portion 24B, and the battery terminal 28 is electrically connected to the control portion 100, which will be described later.
  • a battery 32 is detachably attached to the battery attachment portion 24B, and the battery 32 has a connector (not shown) connected to the battery terminal 28 . As a result, electric power is supplied to the motor 50 to be described later via the control unit 100 .
  • the lifter housing 22 has an undivided integral structure and is formed in a substantially cylindrical shape. As shown in FIG. 3A, the front end portion 23 of the lifter housing 22 is formed so as to be spaced apart in the left-right direction. A pair of upper and lower flange portions 23A are formed at the front end portion 23 of the lifter housing 22, and the flange portions 23A extend outward from the front end portion 23 in the vertical direction.
  • the front end portion 23 of the lifter housing 22 is provided with a support mechanism 40 for supporting a lifter 65 of a feed screw mechanism 60, which will be described later.
  • the support mechanism 40 will be described below.
  • the support mechanism 40 includes a pair of left and right fixing plates 41 and an outer guide 44 (in a broad sense, a support member ) and an inner guide 45 as a rotating shaft.
  • the fixing plate 41 is formed in a substantially elongated plate shape with the lateral direction as the plate thickness direction and the vertical direction as the longitudinal direction.
  • a curved portion 41A is formed in the vertical intermediate portion of the fixing plate 41.
  • the curved portion 41A has a generally arcuate shape that projects outward in the left-right direction when viewed from the front side, corresponding to the outer shape of the lifter housing 22. formed.
  • the fixing plate 41 is arranged inside the front end portion 23 of the lifter housing 22 in the left-right direction, and the upper end portion and the lower end portion of the fixing plate 41 are arranged adjacently inside the flange portion 23A of the lifter housing 22 in the left-right direction.
  • Sleeves 42 are laid over the upper and lower ends of the pair of left and right fixing plates 41 .
  • the sleeve 42 is formed in a substantially cylindrical shape whose axial direction is the left-right direction, and a pair of fixing plates 41 are fixed to the sleeve 42 . Both longitudinal ends of the sleeve 42 protrude laterally outward beyond the fixing plate 41 , and the lifter housing 22 is formed with insertion holes 23 ⁇ /b>B through which the longitudinal ends of the sleeve 42 are inserted.
  • a nut 43 is provided at the left end of the sleeve 42 .
  • a bolt BL1 is inserted into the sleeve 42 from the right side and screwed into the nut 43 .
  • the fixed plate 41 is fixed to the lifter housing 22 .
  • the inner diameter of the insertion hole 23B is slightly smaller than the outer diameter of the sleeve 42, and the sleeve 42 is press-fitted into the insertion hole 23B.
  • the outer guide 44 is formed in a substantially cylindrical shape whose axial direction is the front-rear direction.
  • the outer guide 44 is arranged between the curved portions 41A of the pair of fixed plates 41 . Both left and right ends of the outer guide 44 are fastened and fixed to the curved portions 41A of the left and right fixing plates 41 by a pair of front and rear bolts BL2.
  • the tip of the bolt BL ⁇ b>2 protrudes radially inward of the outer guide 44 .
  • the head of the bolt BL2 is arranged in the notch 23C formed in the lifter housing 22 (see FIG. 1).
  • the inner guide 45 is formed in a substantially cylindrical shape whose axial direction is the front-rear direction.
  • the outer diameter of the inner guide 45 is slightly smaller than the inner diameter of the outer guide 44 , and the axial length of the inner guide 45 is set longer than the axial length of the outer guide 44 .
  • a rear portion of the inner guide 45 is rotatably inserted into the outer guide 44 .
  • a pair of front and rear guide grooves 45A are formed on the outer peripheral portion of the rear portion of the inner guide 45. formed throughout. The tip of the bolt BL2 is inserted into the guide groove 45A so as to allow relative rotation of the inner guide 45 with respect to the outer guide 44. As shown in FIG.
  • a rubber O-ring 46 is provided between the inner guide 45 and the lifter body 66 .
  • the elastic body is elastically deformed (that is, the O-ring 46 is compressed and deformed) during the movement.
  • the front portion of the inner guide 45 is formed with a pair of upper and lower slits 45B for arranging a blade 72, which will be described later.
  • the slit 45B extends in the front-rear direction and penetrates in the up-down direction, and the front end of the slit 45B opens forward.
  • the inner guide 45 constitutes a part of a guide mechanism 80 which will be described later.
  • the motor 50 is configured as a brushless motor and housed in the front end of the body housing 24 .
  • the motor 50 includes a drive shaft 51 whose axial direction is the front-rear direction, a substantially cylindrical rotor 52 fixed to the drive shaft 51, and a substantially cylindrical stator 53 arranged radially outside the rotor 52. is composed of A rear end portion of the drive shaft 51 is rotatably supported by a motor bearing 54 held by the main body housing 24, and a front end portion of the drive shaft 51 is rotatably supported by a motor bearing 55 held by the spacer 26. Supported. A pinion gear 51A is formed at the front end of the drive shaft 51 .
  • the motor 50 is electrically connected to the controller 100 and driven under the control of the controller 100 .
  • the motor bearing 55 is a well-known ball bearing, and is a bearing member including an inner ring, an outer ring, and balls provided therebetween.
  • the feed screw mechanism 60 includes a transmission gear 61, a drive shaft 63 as an output shaft (output part), a lifter 65 as a moving member, and a lifter detection switch 68 as a position detector for detecting the position of the lifter 65 .
  • the transmission gear 61 has a base portion 61A and a gear portion 61B.
  • the base portion 61A is formed in a substantially stepped columnar shape whose axial direction is the front-rear direction, and the diameter of the front portion of the base portion 61A is set larger than the diameter of the rear portion of the base portion 61A.
  • a recess 61C that is open to the front (recessed to the rear) is formed in the center of the front side of the base 61A.
  • the transmission gear 61 is accommodated in the housing 20 above the front end of the drive shaft 51 of the motor 50, and the rear portion of the transmission gear 61 is rotatably supported by a gear bearing 62 held by the spacer 26. .
  • a gear portion 61B is attached to the outer peripheral portion of the front portion of the base portion 61A, and the gear portion 61B is meshed with the pinion gear 51A of the drive shaft 51.
  • a front portion of the base portion 61A is press-fitted into an annular gear portion 61B.
  • the gear portion 61B is a helical gear.
  • the gear portion 61B is shaped so that when a load is applied to the blade 72, which will be described later, during work, a forward thrust force is applied to the transmission gear 61 (gear portion 61B) due to the meshing action with the pinion gear 51A.
  • there is At least a portion of the gear bearing 62 is located at the same position as the motor bearing 55 in the longitudinal direction.
  • the gear bearing 62 is positioned to overlap the motor bearing 55 when viewed in the radial direction (vertical direction).
  • the base portion 61A and the gear portion 61B may be configured as a single component (integrated structure), but since they are configured as separate members, it is easy to form a complicated shape as described above.
  • the gear bearing 62 is a well-known ball bearing, and is a bearing member including an inner ring, an outer ring, and balls provided therebetween. The outer ring of the gear bearing 62 is in contact with the spacer 26, and the inner ring is in contact with the transmission gear 61 (base portion 61A).
  • the drive shaft 63 is formed in a substantially columnar shape whose axial direction is the front-rear direction.
  • the drive shaft 63 is accommodated in the lifter housing 22 and arranged coaxially with the transmission gear 61 on the front side of the transmission gear 61 .
  • the rear end of the drive shaft 63 is fitted in the recess 61C of the transmission gear 61 so as to rotate integrally therewith, and the rear end of the drive shaft 63 is rotated by the shaft bearing 64 held by the lifter housing 22. supported as possible.
  • the drive shaft 63 rotates (integrally with the transmission gear 61) when the motor 50 is driven.
  • the recessed portion 61C has a key structure (for example, a structure having one or more flat portions), and the rear end portion of the drive shaft 63 has a similar shape. Further, the recessed portion 61C and the drive shaft 63 are fitted so that they can move relative to each other in the front-rear direction, which is a so-called "clearance fit" relationship. This allows the transmission gear 61 to move forward and backward. That is, the transmission gear 61 is supported so as to be movable in a direction (front-rear direction) that intersects the direction in which it is driven by the motor 50 (rotational direction centered on the front-rear direction, which is the vertical and horizontal directions).
  • the shaft bearing 64 is a well-known ball bearing, and is a bearing member including an inner ring, an outer ring, and balls provided therebetween.
  • a male screw 63A is formed on the outer peripheral portion of the drive shaft 63 except for the rear end portion.
  • a rear portion of the drive shaft 63 is provided with a collar portion 63B.
  • the rear side of the collar portion 63B is in contact with the front side of (the inner ring of) the shaft bearing 64 .
  • the rear side of (the outer ring of) the shaft bearing 64 contacts and is supported by the bearing support portion 22B formed in the lifter housing 22 . Therefore, even if the drive shaft 63 tries to move rearward, the movement is restricted by the bearing support portion 22B (lifter housing 22) through the shaft bearing 64. As shown in FIG.
  • the lifter 65 is formed in a substantially elongated shape extending in the front-rear direction as a whole.
  • the lifter 65 includes a lifter main body 66 and a lifter connecting portion 67 forming a rear end portion of the lifter 65 .
  • the lifter connecting portion 67 is formed in a substantially stepped cylindrical shape whose axial direction is the front-rear direction.
  • a female thread 67A is formed on the inner peripheral portion of the rear portion of the lifter connecting portion 67 .
  • the front portion of the drive shaft 63 is inserted into the lifter connecting portion 67, and the male screw 63A of the drive shaft 63 and the female screw 67A of the lifter connecting portion 67 are screwed together. That is, the drive shaft 63 and the lifter 65 are screwed together.
  • the drive shaft 63 rotates to move the lifter 65 in the front-rear direction (the axial direction of the drive shaft 63).
  • the lifter 65 reciprocates between the initial position (the position shown in FIG. 2) and the reverse position (the position shown in FIG. 5).
  • the rotation of the lifter 65 during rotation of the drive shaft 63 is restricted by a guide mechanism 80, which will be described later.
  • the reversal position may be rephrased as the terminal position.
  • a detected portion 67B is formed on the outer peripheral portion of the rear end portion of the lifter connecting portion 67 .
  • the detected portion 67B projects radially outward from the lifter main body 66 and is formed in a substantially columnar shape with the front-rear direction as the thickness direction.
  • the lifter main body 66 is formed in a substantially bottomed cylindrical shape that is open rearward.
  • the rear end portion of the lifter main body 66 is fitted into the front portion of the lifter connecting portion 67 so that the lifter connecting portion 67 and the lifter main body 66 are connected so as not to move relative to each other.
  • the front portion of the drive shaft 63 is inserted into the lifter main body 66 so as to be relatively movable.
  • a front end portion of the lifter body 66 is inserted into the inner guide 45 of the support mechanism 40 described above, and supported by the inner guide 45 so as to be relatively movable in the front-rear direction.
  • a lifter flange 66A is formed on the outer peripheral portion of the rear end portion of the lifter main body 66.
  • the lifter flange 66A is formed in a disc shape protruding radially outward from the lifter main body 66.
  • the lifter flange 66A is arranged close to the rear side of the inner guide 45.
  • the front end of the lifter connecting portion 67 is arranged adjacent to the rear side of the lifter flange 66A of the lifter main body 66 .
  • the lifter detection switch 68 is configured as a lever-type microswitch and arranged outside the lifter housing 22 (below the rear end portion).
  • the lifter detection switch 68 is housed in a switch cover 69 (third housing) supported (fixed) on the lifter housing 22 and held by the switch cover 69 .
  • the lifter detection switch 68 is operated by the body housing 24 housing the control section 100, It is housed in a housing area (switch cover 69 ) different from the lifter housing 22 housing the lifter 65 .
  • the switch cover 69 is a position detector housing that accommodates the lifter detection switch 68 (position detector).
  • the lifter detection switch 68 is supported in a space surrounded by the outer wall of the body housing 24 , the outer wall of the lifter housing 22 and the inner wall of the switch cover 69 .
  • the switch cover 69 may be configured to be supported by the body housing 24 , or may be configured to be connected and supported by both the lifter housing 22 and the body housing 24 .
  • a spherical ball 70 is provided above the lifter detection switch 68 , and the ball 70 is arranged in a ball hole 22 ⁇ /b>A formed in the lower end of the outer periphery of the lifter housing 22 .
  • the ball hole 22A penetrates in the vertical direction, and the diameter of the ball hole 22A increases downward.
  • the outer peripheral surface of the ball 70 is in contact with the lever portion of the lifter detection switch 68 and the inner peripheral surface of the ball hole 22A (see FIG. 5). Further, in this state, a part of the outer peripheral portion of the ball 70 protrudes radially inward with respect to the inner peripheral surface of the lifter housing 22 so as to be arranged inside the lifter housing 22 .
  • Ball 70 is a transmission member for transmitting the operation of lifter 65 to lifter detection switch 68 .
  • the ball hole 22A is a communication hole that communicates the inside of the lifter housing 22 and the inside of the switch cover 69 .
  • the lifter detection switch 68 is electrically connected to the control section 100 and outputs a detection signal to the control section 100 . That is, the lifter detection switch 68 is configured to transmit an ON signal to the control section 100 when pressed by the ball 70 .
  • the blade 72 is formed in a plate-like shape with the left-right direction as the plate thickness direction. That is, the blade 72 has a plate shape extending in the front-back direction and the up-down direction. A rear end portion of the blade 72 is fixed to a front end portion of the lifter 65 . Specifically, a stepped portion 66C (see FIG. 4A) is formed at the front end portion of the lifter body 66, and a pin P arranged in the stepped portion 66C lifts the vertical intermediate portion of the rear end portion of the blade 72. is locked.
  • the blade 72 is configured to be movable between the initial position and the reverse position integrally with the lifter 65 .
  • the blade 72 is arranged so as to overlap the center lines of the lifter 65 and the drive shaft 63 when viewed from the front side.
  • a front end portion of the blade 72 is configured as a blade portion 72A for cutting the workpiece W.
  • the blade portion 72A is configured as a single-edged blade, and is formed in a substantially V-shape that protrudes forward when viewed from the left-right direction.
  • the blade 72 In the initial position of the blade 72, the blade 72 is arranged on the front side of the lifter housing 22 and on the rear side of the workpiece W. As shown in FIG. Then, the workpiece W is cut by moving the blade 72 forward from the initial position. Furthermore, at the reversal position of the blade 72, the cutting of the workpiece W is completed.
  • the guide mechanism 80 (adjustment mechanism) includes the inner guide 45 of the support mechanism 40 described above, It includes a guide plate 81 as a pair of left and right guide members, a connecting member 82, and a pair of left and right head plates 83 as a head portion.
  • the head plate 83 is a member that covers the blade 72 in the reversed position from the left and right, and functions as a member (supporting portion) that supports the workpiece W.
  • the workpiece W is fixed to a specific location (wall, ceiling, etc.).
  • the state is also assumed to be a state in which the head plate 83 supports the workpiece W.
  • the guide mechanism 80 is connected to the housing 20 .
  • the guide plate 81 is formed in a substantially rectangular plate shape whose plate thickness direction is the left-right direction.
  • a curved portion 81A (see FIG. 3B) is formed in the vertical intermediate portion of the guide plate 81, and the curved portion 81A corresponds to the outer shape of the inner guide 45 when viewed from the front side. It is formed in a generally arcuate shape that protrudes outward.
  • the curved portion 81A is arranged radially outward of the inner guide 45 and fastened and fixed to the inner guide 45 by a pair of front and rear bolts BL3. Thereby, the guide plate 81 is connected to the inner guide 45 so as to rotate integrally therewith.
  • the guide mechanism 80 is rotatably connected to the housing 20 with the front-rear direction as its axial direction. That is, the inner guide 45 is configured as a rotating shaft of the guide mechanism 80 and also as a bearing member of the lifter 65 .
  • a portion above the curved portion 81A of the guide plate 81 is configured as a guide portion 81B, and a portion below the curved portion 81A of the guide plate 81 is configured as a connecting portion 81C.
  • the guide portions 81B of the pair of guide plates 81 are arranged to face each other with a predetermined gap in the left-right direction, and the connecting portions 81C of the pair of guide plates 81 face each other with a predetermined gap in the left-right direction. are placed.
  • the opposing distance between the pair of guide portions 81B is set shorter than the opposing distance between the pair of connecting portions 81C and slightly longer than the plate thickness of the blade 72 .
  • an escape portion 81D (see FIG. 2) is formed at the corner of the rear end portion of the connecting portion 81C. missing.
  • a blade 72 is arranged between the pair of guide plates 81 . Moreover, the relative rotation of the guide plate 81 (guide mechanism 80 ) with respect to the housing 20 is restricted by a holding mechanism 90 to be described later. As a result, when the drive shaft 63 rotates, the lifter 65 and the blade 72 are restricted from rotating together with the drive shaft 63 by the guide portion 81B of the guide plate 81, and the blade 72 reciprocates in the front-rear direction along the guide portion 81B. It is configured to move. A slight gap (space) is provided between the guide portion 81B and the blade 72, and the blade 72 is configured to be able to rotate by this gap. The size is so small that it has no effect.
  • the gap between the guide portions 81B is a size that prevents the blade 72 from coming off the area between the pair of head plates 83 (the gap in the left-right direction).
  • the interval between the guide portions 81B is set to such a size that the blade 72 moving toward the reversing position does not come into contact with the head plate 83.
  • the gap (left-right direction gap) between the pair of guide portions 81B is configured to be smaller than the gap (left-right direction gap) between the pair of head plates 83 .
  • the guide plate 81 when a rotational force (operating force) of a predetermined value or more is applied to the guide plate 81 (guide mechanism 80) by manual operation by an operator, the guide plate 81 relative to the housing 20 is displaced. Rotation is allowed. This changes the orientation of the blade 72 as seen from the front side. Specifically, the orientation of the blade portion 72A of the blade 72 viewed from the front side is changed.
  • the guide mechanism 80 is also configured as a mechanism section that changes the orientation of the blade 72 with respect to the workpiece W viewed from the movement direction of the blade 72 by operating.
  • the orientation of the blade 72 with respect to the workpiece W can be determined in two orientations by a stopper 94, which will be described later. More specifically, the stopper 94 allows the orientation of the blade 72 when the guide mechanism 80 is placed in the first position (the position shown in FIGS. 1 and 2) and the orientation of the blade 72 when the guide mechanism 80 is rotated 180 degrees from the first position. The orientation of the blade 72 when placed in two positions (the position shown in FIG. 6) and the orientation of the blade 72 can be determined in two directions.
  • the connecting member 82 is formed in a substantially elongated plate shape extending in the front-rear direction with the thickness direction being the left-right direction.
  • a connecting member 82 is arranged between the connecting portions 81C of the pair of guide plates 81 and fastened and fixed to the guide plates 81 with bolts BL4.
  • the head plate 83 is formed in a plate shape having a plate thickness direction in the left-right direction.
  • the head plate 83 is arranged on the front side of the guide plate 81 and laterally outside of the connecting member 82, and the lower end of the head plate 83 is fastened and fixed to the front end of the connecting member 82 with bolts BL4.
  • the head plate 83 functions as a support portion that supports the workpiece W, and has characteristics that match the shape of the workpiece W, so that workability can be improved.
  • head recesses 83A (notches) are formed as a plurality of (four in the present embodiment) recesses at the rear end of the head plate 83.
  • the head recesses 83A are It is formed in a concave shape that opens rearward and penetrates in the left-right direction. With this configuration, it is possible to suitably cut the workpiece W having a U-shaped cross section. That is, when cutting the workpiece W, both ends of the workpiece W viewed from the longitudinal direction of the workpiece W are inserted into the head recesses 83A to set (support) the workpiece W. It's becoming In this manner, the workpiece W is supported by the head plate 83 while being partially positioned in the head recess 83A. In this embodiment, since the head recesses 83A are provided at four locations, it is possible to cut the workpiece W having a width corresponding to the combination of the recesses.
  • the shape of the head concave portion 83A can be appropriately changed according to the shape of the workpiece.
  • the head concave portion 83A is an example of a notch portion in the support portion or an open portion in the support portion of the present invention.
  • the holding mechanism 90 includes a wave washer 92 as a movement restricting member and a pair of stoppers 94 .
  • the wave washer 92 is formed in a substantially disc shape with the front-rear direction as the plate thickness direction.
  • the wave washer 92 is arranged between the curved portion 81A of the guide plate 81 and the lifter housing 22, and the frictional force generated between the wave washer 92, the guide plate 81 and the lifter housing 22 causes the guide plate 81 to move.
  • the wave washer 92 is configured to function as a so-called torque limiter member.
  • the stopper 94 is configured as a member that determines the rotational position of the guide plate 81 and determines the orientation of the blade 72 with respect to the workpiece W. As shown in FIG. Specifically, when the guide mechanism 80 is manually rotated (operated), the guide plate 81 abuts against the stopper 94 to prevent the rotation of the guide plate 81, thereby preventing the blade 72 from being affected. An orientation with respect to the workpiece W is determined.
  • the stopper 94 includes a fixed portion 94A fixed to the housing 20 and a contact portion 94B configured to contact the guide plate 81 .
  • the fixed portion 94A is formed in a substantially rectangular plate shape whose plate thickness direction is the left-right direction.
  • the fixed portions 94A are arranged on the right side of the upper and lower flange portions 23A of the lifter housing 22, respectively, and are fastened together to the lifter housing 22 with bolts BL1.
  • the contact portion 94B is formed in a substantially rectangular columnar shape extending in the left-right direction.
  • the contact portion 94B is arranged on the front side of the lifter housing 22, and the right end portion of the contact portion 94B is connected to the vertical outer end portion of the fixed portion 94A. 1 and 3B, in the first position of the guide mechanism 80, the upper contact portion 94B contacts the rear end portion of the guide portion 81B of the guide plate 81 from the right side. , counterclockwise rotation of the guide mechanism 80 viewed from the front side is restricted. Further, at the first position of the guide mechanism 80, the left end of the lower contact portion 94B is arranged in the relief portion 81D of the guide plate 81 to avoid interference between the guide plate 81 and the lower stopper 94. It is
  • the guide mechanism 80 When the guide mechanism 80 is rotated 180 degrees clockwise from the first position as viewed from the front side, the rear end of the guide portion 81B of the guide plate 81 abuts on the lower abutment portion 94B and guides the guide. The clockwise rotation of the mechanism 80 is restricted, and the position of the guide mechanism 80 is determined at the second position (see FIG. 6). At the second position of the guide mechanism 80, the left end portion of the upper contact portion 94B is arranged within the relief portion 81D of the guide plate 81, thereby avoiding interference between the guide plate 81 and the upper stopper 94.
  • the pair of stoppers 94 are also configured as members that determine the operating rotation angle range of the guide mechanism 80 .
  • the pair of stoppers 94 determines the relative rotation angle range of the lifter 65 with respect to the drive shaft 63 when the guide mechanism 80 is actuated, and limits excessive relative movement of the lifter 65 with respect to the drive shaft 63. are doing.
  • the pair of stoppers 94 set the operating rotation angle range of the guide mechanism 80 to 180 degrees. That is, the operating range of the guide mechanism 80 is set to one rotation or less.
  • Control Unit 100 As shown in FIG. 2, the control unit 100 is accommodated in the lower end portion of the body housing 24 and held by the body housing 24. As shown in FIG. The trigger switch 31 , the motor 50 and the lifter detection switch 68 are electrically connected to the controller 100 . The control section 100 detects the initial position of the lifter 65 based on the detection signal from the lifter detection switch 68 . Further, the control unit 100 drives and controls the motor 50 based on output signals from the trigger switch 31 and the lifter detection switch 68 . When the control unit 100 drives the motor 50 forward, the lifter 65 (the blade 72) moves forward, and when the control unit 100 drives the motor 50 in the reverse direction, the lifter 65 (the blade 72) moves backward. It is designed to move to the side.
  • the control unit 100 when the operation of the trigger 30 is released and the trigger switch 31 is switched from ON to OFF while the motor 50 is driving forward, the control unit 100 reversely drives the motor 50 . Further, the control unit 100 has a rotation speed measurement unit 100A that measures the rotation speed of the drive shaft 51 of the motor 50 .
  • the rotation speed measurement unit 100A is a circuit board having a plurality of Hall ICs, and is capable of detecting the magnetism of the permanent magnets provided on the rotor 52 .
  • the control unit 100 is configured to be able to detect the rotation position and rotation speed of the rotor 52 (motor 50) based on the signal from the rotation speed measurement unit 100A.
  • the rotation speed measurement unit 100A Since the rotation speed measurement unit 100A needs to be arranged near the rotor 52, it is arranged apart from the control unit 100 by connecting with a signal line.
  • the control unit 100 can detect how many times the motor 50 has rotated from the initial position based on the signal from the rotation speed measurement unit 100A. Thereby, the control unit 100 detects the reverse position of the lifter 65 (blade 72) based on the number of rotations of the motor 50 with the initial position of the lifter 65 as the starting point. Further, when detecting the reverse position of the lifter 65 (blade 72), the control unit 100 switches the motor 50 from normal rotation to reverse rotation. In this way, the rotation speed measurement section 100A functions as part of the position detection section.
  • the number-of-revolutions measurement unit 100A functions as a reversal position detection unit that detects that the lifter 65 is positioned at the reversal position.
  • the position detection section in the present invention includes the lifter detection switch 68 and the rotation speed measurement section 100A.
  • the lifter detection switch 68 directly detects the initial position of the lifter 65, and the rotational speed measurement section 100A indirectly detects the reversed position of the lifter 65.
  • FIG. The timing at which the controller 100 starts measuring the number of revolutions of the motor 50 will be described later.
  • step 1 the control unit 100 determines whether or not the trigger switch 31 is on based on the output signal from the trigger switch 31. To detect. That is, the control unit 100 determines whether the trigger 30 has been operated. In step 1, if the trigger switch 31 is not turned on (No in step 1), the process returns to step 1. If the trigger switch 31 is turned on in step 1 (Yes in step 1), the process proceeds to step 2 (S2).
  • step 2 the control section 100 detects whether or not the lifter detection switch 68 is turned on based on the output signal from the lifter detection switch 68 . That is, the control unit 100 determines whether or not the lifter 65 is arranged at the initial position. In step 2, if the lifter detection switch 68 is on (Yes in step 2), the process proceeds to step 3 (S3).
  • step 3 the control unit 100 causes the motor 50 to rotate forward. That is, when the control unit 100 detects the operation of the trigger 30 and the initial position of the lifter 65, it drives the motor 50 forward. As a result, the lifter 65 and the blade 72 move forward (forward path side). That is, lifter 65 and blade 72 approach the workpiece.
  • step 4 the process proceeds to step 4 (S4).
  • step 4 the control unit 100 detects whether or not the trigger switch 31 continues to be on based on the output signal from the trigger switch 31 . That is, the control unit 100 determines whether the operation of the trigger 30 is continued.
  • step 4 when the ON state of the trigger switch 31 continues (in the case of Yes in step 4), the process proceeds to step 5 (S5).
  • step 5 based on the output signal from the lifter detection switch 68, the control section 100 detects whether or not the lifter detection switch 68 has been switched from ON to OFF. If the lifter detection switch 68 is turned off in step 5 (Yes in step 5), the process proceeds to step 6 (S6). That is, in the present embodiment, the position of the lifter 65 at which the lifter detection switch 68 is switched from ON to OFF is the starting point of the initial position of the lifter 65 moving forward (hereinafter, this position of the lifter 65 is referred to as the initial starting point position). , and in step 5, the control unit 100 detects the initial starting position of the lifter 65 .
  • step 5 if the lifter detection switch 68 is not turned off in step 5 (No in step 5), the process returns to step 4. In other words, when the lifter 65 moving forward from the initial position has not reached the initial starting point position, the process returns to step 4 .
  • step 6 the control unit 100 starts measuring the number of rotations of the motor 50 . Specifically, the control unit 100 starts measuring (counting) the rotation speed of the motor 50 based on the signal from the rotation speed measurement unit 100A. After the processing of step 6, the process proceeds to step 7 (S7).
  • step 7 the control section 100 detects whether or not the trigger switch 31 is kept on based on the output signal from the trigger switch 31. FIG. That is, the control unit 100 determines whether the operation of the trigger 30 is continued. In step 7, when the ON state of the trigger switch 31 continues (in the case of Yes in step 7), the process proceeds to step 8 (S8).
  • step 8 the control unit 100 determines whether or not the number of rotations of the motor 50 has reached or exceeded a predetermined number of rotations. That is, the control unit 100 determines whether or not the lifter 65 has reached the reverse position. In step 8, if the number of rotations of the motor 50 is not equal to or greater than the predetermined number of rotations (No in step 8), the process returns to step 7. In step 8, when the number of rotations of the motor 50 is equal to or higher than the predetermined number of rotations (Yes in step 8), the process proceeds to step 9 (S9).
  • step 9 the control unit 100 stops driving the motor 50 in the forward direction. After the processing of step 9, the process proceeds to step 10 (S10).
  • step 10 the motor 50 is placed in a standby state. That is, after stopping forward rotation of the motor 50, the control unit 100 does not control the driving of the motor 50, and puts the motor 50 in a standby state.
  • step 11 the process proceeds to step 11 (S11). Specifically, after the forward rotation of the motor 50 is stopped, the process proceeds to step 11 after a predetermined period of time has elapsed.
  • step 11 the control unit 100 drives the motor 50 in reverse. As a result, the lifter 65 and the blade 72 are moved rearward (return side) and separated from the workpiece W. As shown in FIG. That is, the lifter 65 and the blade 72 are reversed at the reverse position, and the return movement of the lifter 65 and the blade 72 is started. After the processing of step 11, the process proceeds to step 12 (S12).
  • step 12 the control section 100 detects whether or not the lifter detection switch 68 is turned on based on the output signal from the lifter detection switch 68. FIG. That is, the control unit 100 determines whether the lifter 65 has reached the initial position. In step 12, if the lifter detection switch 68 is not turned on (No in step 12), the process returns to step 12. On the other hand, if the lifter detection switch 68 is ON in step 12 (Yes in step 12), the process proceeds to step 13 (S3).
  • step 13 the reverse rotation of the motor 50 by the controller 100 is stopped. As a result, the lifter 65 stops at the initial position.
  • step 14 the process proceeds to step 14 (S14).
  • the lifter 65 returns to the initial position. However, due to the braking time of the motor 50, etc., the lifter 65 stops at a position where it overruns from the initial starting position toward the return path ( Hereinafter, the position of the lifter 65 will be referred to as an initial stop position).
  • step 14 the control unit 100 detects whether or not the trigger switch 31 has been switched from on to off based on the output signal from the trigger switch 31. FIG. That is, the control unit 100 detects whether or not the operation of the trigger 30 has been released. In step 14, if the trigger switch 31 is not off (No in step 14), the process returns to step 14. On the other hand, if the trigger switch 31 is off in step 14 (Yes in step 14), the operation of the electric cutting machine 10 is terminated because the operation of the trigger 30 has been released.
  • step 11 is performed. That is, in this case, since the lifter 65 has not returned to the initial position when the electric cutting machine 10 starts operating, the process proceeds to step 11 to return the lifter 65 to the initial position.
  • step 9 is performed. That is, in this case, the operator's operation of the trigger 30 is released while the lifter 65 is moving forward. Therefore, the control unit 100 stops forward rotation of the motor 50 and rotates the motor 50 in reverse rotation after a predetermined period of time has elapsed, thereby returning the lifter 65 to the initial position.
  • the lifter 65 is located at the initial stop position at time T0 when the electric cutting machine 10 is in a non-operating state. Therefore, at time T0, the lifter detection switch 68 is turned on. At time T0, the electric cutting machine 10 is in a non-operating state, so the trigger switch 31 is turned off.
  • the lifter 65 reaches the initial starting position, and the lifter detection switch 68 is switched from on to off.
  • the rotation speed measurement of the motor 50 in the control unit 100 is started at the time T2. That is, counting of the number of rotations of the motor 50 in the control unit 100 is started.
  • the lifter 65 reaches the reversing position, and the number of revolutions of the motor 50 reaches a predetermined number.
  • forward rotation driving of the motor 50 by the control unit 100 is stopped. That is, the power supplied to the motor 50 becomes zero, and the rotational speed of the motor 50 gradually decreases.
  • the control unit 100 resets the counted number of rotations to zero.
  • the rotational speed of motor 50 becomes zero.
  • the control unit 100 starts to reversely drive the motor 50, the output of the motor 50 gradually increases from zero, and the rotational speed of the motor 50 gradually increases from zero.
  • the lifter 65 moves from the reversal position to the return path side. That is, the time from time T3 to time T5 is the standby time during which the motor 50 is placed in the standby state.
  • the lifter 65 reaches the initial starting position and the lifter detection switch 68 is switched from off to on.
  • the reverse driving of the motor 50 by the controller 100 is stopped. That is, the output of the motor 50 becomes zero, and the rotation speed of the motor 50 gradually decreases.
  • time chart shows an example in which the operator's operation of the trigger 30 is released between time T5 and time T6. That is, the operation of the trigger 30 is canceled while the lifter 65 is moving backward. Therefore, the control unit 100 continues to reversely drive the motor 50, and the lifter 65 is returned to the initial position.
  • the feed screw mechanism 60 has the lifter detection switch 68 that detects the initial position of the lifter 65 . Then, the controller 100 detects the initial position of the lifter 65 based on the detection signal from the lifter detection switch 68 . As a result, when the lifter 65 is at the initial position, the control unit 100 drives the motor 50 to rotate forward, thereby moving the lifter 65 forward from the initial position to the reverse position. Also, the control unit 100 detects the reversing position of the lifter 65 based on the rotation speed of the motor 50 . As a result, the motor 50 is stopped at the reverse position of the lifter 65, and the cutting of the workpiece W by the blade 72 can be finished. Then, the control unit 100 reversely drives the motor 50 to move the lifter 65 backward from the reverse position to the initial position, thereby stopping the motor 50 at the initial position.
  • the control section 100 can detect the initial position and the reverse position based on the detection signal of the lifter detection switch 68 and the rotation speed of the motor 50. . That is, the control unit 100 drives and controls the motor 50 to stop the movement of the lifter 65 and the blade 72 at the initial position and the reverse position. That is, in the state in which the blade 72 is moved by driving the motor 50, the control unit 100 controls the movement of the blade 72 as viewed from the left-right direction perpendicular to the front-rear direction and the up-down direction even if the trigger 30 is maintained in the ON state (pulled state). The motor 50 can be stopped in a state in which a portion of the blade 72 and the head plate 83 overlap with each other.
  • control unit 100 can stop the motor 50 so that the drive shaft 63 and the lifter 65 are not disengaged while the blade 72 is being moved by driving the motor 50 .
  • the motor 50 can be stopped while the screwed state between the drive shaft 63 and the lifter 65 is maintained.
  • the lifter 65 can be moved at the reversing position without providing a switching mechanism for switching the transmission path of the driving force of the motor to the lifter between the disconnected state and the connected state, for example, as in the electric cutting machine described in the background art. Can be stopped or reversed.
  • the control unit 100 when the blade 72 partially overlaps the head plate 83 when viewed in the left-right direction, that is, when the workpiece W is cut by the blade 72, the control unit 100 It is configured to stop the motor 50 even if the trigger 30 is kept on. Therefore, the lifter 65 and blade 72 can be preferably moved.
  • the control unit 100 is configured to stop the motor 50 even when the trigger 30 is maintained in the ON state (pulled state) in a state where the head concave portion 83A and the blade 72 overlap when viewed in the horizontal direction. .
  • the cutting operation can be preferably performed.
  • the motor 50 may be maintained in a stopped state, or may be immediately reversed without being stopped.
  • the timing of stopping the motor 50 is determined when a part of the blade 72 overlaps the head plate 83 when viewed in the left-right direction. If there is, it can be changed arbitrarily. That is, when cutting a thin material, it may be stopped or reversed early, and when cutting a workpiece W having a complicated shape using the head recess 83A, the motor is operated while the blade 72 and the head recess 83A overlap each other. 50 should be stopped or reversed.
  • the motor 50 automatically stops when the lifter 65 is positioned at the reverse position, the operator can recognize that the machining is completed. This improves workability.
  • the lifter 65 can be configured to operate outside the drive shaft 63, and the inside of the lifter 65 can be configured. The position of the lifter 65 can be easily detected compared to the configuration in which the drive shaft 63 operates.
  • the lifter detection switch 68 is configured to switch from OFF to ON when the lifter 65 reaches the initial position while the lifter 65 is moving from the reverse position to the initial position in the backward direction. . Further, the control unit 100 starts measuring the number of revolutions of the motor 50 starting from the time when the lifter detection switch 68 is switched from ON to OFF. That is, the control unit 100 starts measuring the number of revolutions of the motor 50 starting from the initial starting position of the lifter 65 . As a result, the reversal position of the lifter 65 can be detected with high accuracy.
  • the control unit 100 stops driving the motor 50 based on the detection signal that the lifter detection switch 68 switches from off to on. At this time, the lifter 65 stops at the initial stop position where the lifter 65 overruns the return path side from the initial starting position. Since this initial stop position is caused by the braking performance of the motor 50, etc., the initial stop position varies. Therefore, if the rotation speed measurement of the motor 50 is started from the initial stop position of the lifter 65, the reverse position of the lifter 65 may not be detected accurately.
  • the control unit 100 starts measuring the number of rotations of the motor 50 starting from the time when the lifter detection switch 68 is switched from on to off. Since the time at which the lifter detection switch 68 switches from on to off is constant, by starting to measure the number of revolutions of the motor 50 from the initial starting point position of the lifter 65, the reversing position of the lifter 65 can be accurately determined. can be detected well.
  • the lifter 65 rotates relative to the drive shaft 63 when the guide mechanism 80 is operated to change the orientation of the blade 72 . That is, at this time, the lifter 65 moves forward and backward with respect to the drive shaft 63 . Therefore, the initial stop position of the lifter 65 before and after the operation of the guide mechanism 80 is shifted. Therefore, in the electric cutting machine 10 having the guide mechanism 80 for changing the direction of the blade 72, the reversal position of the lifter 65 is determined by starting the measurement of the number of revolutions of the motor 50 with the initial starting position of the lifter 65 as the starting point. It can be detected well.
  • the control unit 100 reversely drives the motor 50 to move the lifter 65 toward the return path after a predetermined time has elapsed. Therefore, the operator can be made aware that the blade 72 has reached the reversing position and the cutting of the workpiece W by the blade 72 has been completed.
  • control unit 100 If the control unit 100 does not detect the initial position of the lifter 65 when the trigger 30 is started to be operated, the control unit 100 reversely drives the motor 50 so as to move the lifter 65 toward the return path. As a result, the work on the electric cutting machine 10 can be continued after the blade 72 is automatically returned to the initial position.
  • the control unit 100 When the trigger 30 is released while the lifter 65 is moving forward from the initial position to the reverse position, the control unit 100 reversely drives the motor 50 so as to move the lifter 65 backward. As a result, the blade 72 can be automatically returned to the initial position when the cutting of the workpiece W is stopped or interrupted.
  • the electric cutting machine 10 also has a guide mechanism 80 that guides the forward and backward movement of the blade 72, and restricts the blade 72 from rotating about the forward and backward direction (moving direction of the lifter 65).
  • the rotational force is transmitted by screwing the drive shaft 63 and the lifter 65 together. Therefore, when the motor 50 is rotationally driven, the rotational force about the longitudinal direction is also transmitted to the lifter 65.
  • the guide mechanism 80 can prevent the blade 72 (lifter 65) from rotating.
  • the guide mechanism 80 (guide portion 81B) also functions as a portion that covers the blade 72, the rotation of the blade 72 can be regulated by the blade 72 cover member.
  • the guide portion 81B guides (regulates rotation of) the blade 72 at a position separated in the vertical direction (radial direction) from the lifter 65, the force transmitted from the blade 72 about to rotate to the guide portion 81B is reduced. can do.
  • the orientation of the blade 72 viewed from the front-rear direction is changed. Specifically, the direction of the blade 72 viewed from the front-rear direction is changed by rotating the guide plate 81 of the guide mechanism 80 around the axis of the inner guide 45 by the operator's manual operation. Therefore, the orientation of the blade 72 with respect to the workpiece W arranged on the front side of the blade 72 can be changed.
  • the orientation of the blade 72 with respect to the workpiece W can be changed without changing the orientation of the entire electric cutting machine 10 with respect to the workpiece W.
  • the blade portion 72A of the blade 72 is composed of a single edge, the finished surface of the workpiece W can be easily changed by operating the guide mechanism 80. FIG. Therefore, the workability of the electric cutting machine 10 can be improved.
  • a lifter 65 is screw-engaged with a drive shaft 63 whose axial direction is the front-rear direction, and the blade 72 is fixed to the lifter 65 .
  • the guide mechanism 80 has a guide plate 81 that guides the movement of the blade 72 in the front-rear direction, and the guide plate 81 is rotatably connected to the lifter housing 22 with the front-rear direction as its axial direction.
  • the guide mechanism 80 rotates around the axis of the drive shaft 63 .
  • the lifter 65 and the blade 72 can be rotated around the axis of the drive shaft 63 by the guide plate 81 to change the orientation of the blade 72 .
  • the lifter 65 is supported by the inner guide 45 so as to be able to reciprocate. That is, the inner guide 45 allows movement in the front-rear direction while restricting the movement of the lifter 65 in the vertical and horizontal directions. By doing so, it is possible to improve the accuracy of the reciprocating motion of the lifter 65, and it is possible to perform cutting with high accuracy. Further, the lifter 65 is supported by the inner guide 45 on the front side and by the male screw 63A (the drive shaft 63) on the rear side. Therefore, the lifter 65 is operably supported at two locations spaced apart in the front-rear direction, thereby preventing the lifter 65 from tilting. Therefore, cutting accuracy can be improved.
  • the guide mechanism 80 includes a pair of guide plates 81 and an inner guide 45 that rotatably connects the guide plates 81 to the lifter housing 22 .
  • the inner guide 45 is formed in a cylindrical shape whose axial direction is the front-rear direction, and supports the lifter 65 so as to be movable in the front-rear direction.
  • the lifter 65 can be movably supported by utilizing the inner guide 45 which is the rotating shaft of the guide plate 81 . Therefore, it is possible to suppress an increase in the number of parts of the electric cutting machine 10 and contribute to downsizing of the electric cutting machine 10 .
  • the lifter body 66 is supported so as to be movable in directions (up, down, left, and right) intersecting the front-rear direction, which is the direction driven by the motor 50 .
  • the lifter 65 lifter main body 66
  • the lifter guide 45 there is a slight gap in the radial direction.
  • slight dimensional variations occur during manufacturing, providing a radial gap between the lifter 65 and the lifter guide 45 makes it possible to appropriately cope with such variations. That is, it becomes easy to manufacture.
  • An O-ring 46 (elastic body) is used to absorb rattling movements.
  • the transmission gear 61 is movably supported in a direction (front-rear direction) intersecting the direction in which the transmission gear 61 is driven by the motor 50 (rotational direction centered on the front-rear direction, vertical and horizontal directions). It is By doing so, it is possible to cope with the above-described variations in component dimensions due to manufacturing, and to facilitate manufacturing. That is, in the present invention, the housing 20 (the spacer 26, the lifter housing 22) is arranged so that the parts that receive the power of the motor 50 and transmit the power to the blade 72 can move in a direction that intersects the direction in which the motor 50 drives. ), it is possible to realize a work machine that is easy to manufacture. Cost reduction can also be achieved by facilitating manufacturing.
  • the lifter housing 22 is provided with a pair of stoppers 94, and the position of the guide mechanism 80 is determined when the guide plate 81 abuts against the abutting portions 94B of the stoppers 94. As shown in FIG. That is, the orientation of the blade 72 with respect to the workpiece W is determined. Specifically, in the present embodiment, the orientation of the blade 72 when the guide mechanism 80 is arranged at the first position and the orientation of the blade 72 when the guide mechanism 80 is arranged at the second position are They are shifted by 180 degrees in the direction of rotation of the guide mechanism 80 . This allows the operator to easily determine the position of the guide mechanism 80 and change the orientation of the blade 72 .
  • the operating range of the guide mechanism 80 is defined by the pair of stoppers 94 .
  • the rotation angle range of the guide mechanism 80 is regulated to 180 degrees by the pair of stoppers 94 .
  • a wave washer 92 is provided between the lifter housing 22 and the guide plate 81 .
  • a wave washer 92 restricts the relative rotation of the guide mechanism 80 with respect to the housing 20 when the motor 50 is driven. Further, when the operator applies an operating force (rotational force) equal to or greater than a predetermined value to the guide mechanism 80 (guide plate 81), the guide mechanism 80 is permitted to rotate relative to the housing 20. FIG. As a result, with a simple configuration, it is possible to restrict the relative rotation of the guide mechanism 80 with respect to the housing 20 when the motor 50 is driven, and allow the manual operation of the guide mechanism 80 by the operator.
  • the control unit 100 detects the reversing position of the lifter 65 by measuring the number of revolutions of the motor 50, but the method of detecting the reversing position of the lifter 65 is not limited to this.
  • a reversal position detection switch microwaveswitch
  • the lifter detection switch 68 corresponds to the initial position detection section of the present invention
  • the reverse position detection switch corresponds to the reverse position detection section of the present invention.
  • a contact or non-contact linear sensor may be provided, and the position of the lifter 65 may be detected by the linear sensor.
  • the control unit 100 can detect the initial position and the reverse position of the lifter 65 .
  • the load on the motor 50 may be increased when the lifter 65 is positioned at the initial position, and the initial position may be detected by detecting the current increase under load.
  • the reverse position may be detected as described above by setting the timing at which the load on the motor 50 is reduced (the timing at which the current value is decreased) during forward rotation as the initial position.
  • the position detection section in the present invention can be configured using various means as well as mechanical/electronic switches.
  • the transmission gear 61 is meshed with the pinion gear 51A of the drive shaft 51 of the motor 50, and the drive shaft 63 is connected to the transmission gear 61 so as to be integrally rotatable.
  • the motor 50 may be changed to a stepping motor with a feed screw, and the lifter 65 may be screw-fitted to the feed screw. In this case, the position detection accuracy of the lifter 65 in the control section 100 can be further improved.
  • the transmission gear 61 can be omitted, it is possible to contribute to miniaturization of the electric cutting machine 10 .
  • the rotation range of the guide mechanism 80 is restricted by a pair of stoppers 94 so that the direction of the blade 72 can be easily changed.
  • the orientation of the blade 72 is changed by positioning the guide mechanism 80 relative to the housing 20 by arranging the guide mechanism 80 at the first position or the second position where the guide mechanism 80 contacts the stopper 94 . That is, although the guide mechanism 80 for changing the orientation of the blade 72 is set at two positions, the guide mechanism 80 may be positioned at three positions. In other words, the guide mechanism 80 may be positioned at an intermediate position between the first position and the second position so that the guide mechanism 80 can be held at the intermediate position. This configuration will be described below with reference to FIGS. 9 and 10. FIG.
  • a fixed washer 110 as a movement restricting member is arranged between the guide plate 81 and the lifter housing 22 (fixed plate 41). ing.
  • the fixed washer 110 is formed substantially in the shape of a frame plate whose plate thickness direction is the front-rear direction.
  • the fixed washer 110 has a pair of upper and lower fixed pieces 112, and the fixed pieces 112 extend in the left-right direction.
  • a pair of left and right engaging projections 114 are formed on the fixed piece 112, and the engaging projections 114 are bent in a substantially U-shape that protrudes forward and opens rearward.
  • the fixed washer 110 is disposed between the curved portion 81A of the guide plate 81 and the lifter housing 22 with the inner guide 45 (not shown in FIG. 9) inserted through the fixed washer 110.
  • a pair of left and right engaging projections 114 sandwich the guide portion 81B and the connecting portion 81C of the guide plate 81 from the outside in the left-right direction. As a result, the fixed washer 110 is attached to the guide plate 81 so as to rotate integrally therewith.
  • a locking projection 116 as a locking portion is formed at the center of the fixing piece 112 in the left-right direction, and the locking projection 116 projects rearward and is bent in a generally arcuate shape that opens forward. .
  • the front end of the fixing plate 41 is formed with a locking recess 41B as a locked portion on the front side of the bolt BL2.
  • the engaging recess 41B is formed in a generally arcuate shape that opens forward when viewed from the left-right direction.
  • the locking protrusion 116 is arranged at a position spaced apart from the locking recess 41B by 90 degrees in the rotational direction of the guide mechanism 80 (see FIG. 9 ( A) shows the second position of the guide mechanism 80).
  • the locking projection 116 is fitted into the locking recess 41B, and the locking projection 116 and the locking recess 41B are engaged with each other. 41B are engaged in the rotational direction (see FIG. 9(B)).
  • the locking projection 116 is indirectly locked to the housing 20 via the fixing plate 41, and the rotation of the guide mechanism 80 is preferably suppressed.
  • the operator is provided with a sense of moderation (a click feeling).
  • moderation a click feeling
  • the guide portion 81B which is the contact point between the blade 72 and the guide mechanism 80, is located vertically (radially) away from the lifter 65 (rotational center), so the blade 72 itself may rotate.
  • the rotation of the blade 72 can be suppressed with a small force, and when the operator tries to rotate the blade 72 via the guide mechanism 80, the blade 72 can be rotated with a small force.
  • the locking recess 41B is formed in the fixing plate 41 in the above example, the locking recess 41B may be formed in the housing 20 to directly lock the locking projection 116 to the housing 20.
  • a male screw portion (drive shaft 63) is on the drive side (motor 50 side), and the female screw portion (lifter 65) is on the driven side (blade 72 side). If the female screw is on the drive side and the male screw is on the driven side, the female screw will cover the reciprocating male screw.
  • the lifter 65 on the driven side can be pivotally supported with a simple structure. As a result, cost reduction can also be achieved.
  • the rearward movement of the drive shaft 63 is indirectly restricted by the lifter housing 22 (bearing support portion 22B).
  • rearward forces transmitted to drive shaft 63 are received by shaft bearing 64 and lifter housing 22 .
  • the gear portion 61B is formed as follows. By doing so, it is possible to suppress the rearward biasing force from being transmitted to the gear bearing 62 via the transmission gear 61 at the time of cutting.
  • the inner ring of the gear bearing 62 is in contact with the transmission gear 61 on the front side. A rearward biasing force is generated on the inner ring.
  • This biasing force acts to shift the position of the inner ring in the front-rear direction with respect to the position of the outer ring, which leads to shortening of the life of the gear bearing 62 .
  • such problems can be suppressed. That is, the durability required for the gear bearing 62 can be reduced, and the gear bearing 62 can be made low-cost or compact.
  • At least part of the gear bearing 62 is located at the same position as the motor bearing 55 in the longitudinal direction. In other words, at least part of the gear bearing 62 is positioned to overlap the motor bearing 55 when viewed in the radial direction (vertical direction). As a result, the length in the front-rear direction can be shortened. Further, in the present embodiment, as described above, the gear bearing 62 can be made small, so that the center position of the motor bearing 55 and the center position of the gear bearing 62 in the direction crossing the front-rear direction (vertical direction) can be brought close to each other. can.
  • the axial center of the drive shaft 63 or the lifter 65 extending in the front-rear direction can be brought close to the drive shaft 51 extending in the front-rear direction in a direction intersecting the front-rear direction (vertical direction). That is, the drive shaft 63 or the lifter 65 can be brought closer to the drive shaft 51 in the vertical direction. This makes it possible to reduce the size in the vertical direction.
  • the guide plate 81 contacts the contact portion 94B of the stopper 94 to limit the rotation of the guide mechanism 80.
  • a magnet may be embedded in the portion 94B and the guide plate 81 may be made of a steel plate so that the contact state between the guide plate 81 and the stopper 94 is maintained by the magnetic force of the magnet.
  • the guide mechanism 80 can be favorably held at the first position or the second position.
  • the work machine may be configured to apply only one invention.
  • the features described one by one are effective by themselves, that is, only one of the multiple inventions described in this embodiment may be employed.
  • a work machine with good workability is realized by applying both the invention of control and the invention of machine configuration, but only one of them may be applied.
  • SYMBOLS 10 Electric cutting machine (work machine), 20... Housing, 30... Trigger (operation part), 50... Motor, 65... Lifter (moving member), 68... Lifter detection switch (position detection part), 72... Blade (cutting blade), 83... head plate (supporting portion), 83A... head concave portion (concave portion), 100... control portion, W... workpiece

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Milling, Drilling, And Turning Of Wood (AREA)

Abstract

This invention optimally reciprocates a cutting blade. In this motorized cutting machine 10, a control unit 100 detects an initial position and a reversing position on the basis of a detection signal from a lifter detection switch 68, and the rpms of the motor 50. Namely, the motor 50 is drive-controlled by means of the control unit 100 to allow the travel of a lifter 65 and a blade 72 to be halted in the initial position and the reversing position. As a result thereof, for example, without providing a switching mechanism or the like for switching between disconnected and connected states of the path transmitting the motor drive force to the lifter, the lifter 65 can be halted or reversed in the reversing position. Accordingly, the lifter 65 and the blade 72 can be made to travel optimally.

Description

作業機work machine
本発明は、作業機に関するものである。 The present invention relates to working machines.
下記特許文献1に記載の電動往復動工具(作業機)は、モータと、モータに連結されたスクリューシャフトと、スクリューシャフトにネジ篏合されたシャトルスクリューと、シャトルスクリューに装着された可動刃と、を含んで構成されている。そして、モータの駆動時には、シャトルスクリューがスクリューシャフトに対して軸方向に相対移動することで、可動刃が前後方向に往復移動する。これにより、可動刃の前側に配置された被切断材に対して切断加工を施すことができる。 The electric reciprocating tool (work machine) described in Patent Document 1 below includes a motor, a screw shaft connected to the motor, a shuttle screw threadedly engaged with the screw shaft, and a movable blade attached to the shuttle screw. , is composed of When the motor is driven, the shuttle screw moves axially relative to the screw shaft, thereby reciprocating the movable blade back and forth. Thereby, the material to be cut placed in front of the movable blade can be cut.
特開2001-277039号公報JP-A-2001-277039
ここで、上記電動往復動工具では、可動刃が最前位置に移動したときには、シャトルスクリューとスクリューシャフトとのネジ嵌合が解除されて、シャトルスクリューへの動力伝達が遮断される。これにより、最前位置において可動刃(切断刃)が停止する。一方、可動刃の最前位置への移動後、モータを逆転させると、スクリューシャフトが変位して、シャトルスクリューとスクリューシャフトとが、再びネジ嵌合する。これにより、シャトルスクリューに対するモータの動力伝達が復帰する。したがって、可動刃が最前位置から後側へ移動する。 Here, in the electric reciprocating tool, when the movable blade moves to the foremost position, the screw engagement between the shuttle screw and the screw shaft is released, and power transmission to the shuttle screw is cut off. As a result, the movable blade (cutting blade) stops at the foremost position. On the other hand, when the motor is reversed after the movable blade has moved to the forefront position, the screw shaft is displaced and the shuttle screw and the screw shaft are screwed together again. This restores power transmission of the motor to the shuttle screw. Therefore, the movable blade moves rearward from the forefront position.
このように、上記電動往復動工具では、可動刃の最前位置において、シャトルスクリューとスクリューシャフトとのネジ嵌合を一端解除させ、シャトルスクリューとスクリューシャフトとを再びネジ嵌合させる機構部を電動往復動工具に設ける必要がある。このため、可動刃を前後に往復移動させるための機構が複雑になり、部品点数が増加したり、部品の耐久性が低下したりする可能性がある。また、一度ネジ嵌合が解除される構成であるため、仮にネジ嵌合が正しくされなかった場合、不具合が生じる可能性がある。 As described above, in the electric reciprocating tool, at the forefront position of the movable blade, the mechanical part for temporarily releasing the threaded engagement between the shuttle screw and the screw shaft and re-engaging the shuttle screw and the screw shaft is electrically reciprocated. Must be provided on power tools. For this reason, the mechanism for reciprocating the movable blade back and forth becomes complicated, which may increase the number of parts and reduce the durability of the parts. In addition, since the screw fitting is released once, if the screw fitting is not performed correctly, there is a possibility that a problem may occur.
本発明は、上記事実を考慮して、好適に切断刃を往復移動させることができる作業機を提供することを目的とする。 SUMMARY OF THE INVENTION In consideration of the above facts, it is an object of the present invention to provide a work machine capable of suitably reciprocating a cutting blade.
本発明の1又はそれ以上の実施形態は、ハウジングと、前記ハウジングに収容されたモータと、前記モータを制御する制御部と、オン操作されることで前記モータを作動させる操作部と、前記モータによって第1方向に沿って初期位置と反転位置との間で移動する切断刃と、被加工材を支持する支持部と、を備え、前記切断刃と前記支持部とによって被加工材を切断する作業機であって、前記切断刃が前記初期位置にある状態で、前記第1方向と直交する第2方向で見て前記支持部と前記切断刃は重ならず、前記制御部は、前記切断刃が前記初期位置にある状態で前記操作部をオン操作したとき、前記モータを正転させて前記切断刃を前記支持部へ近接するように移動させるとともに、前記操作部がオン操作された状態において前記第2方向で見て前記支持部と前記切断刃の少なくとも一部が重なった状態で、前記モータを停止または逆転させるように構成されている作業機である。 One or more embodiments of the present invention include a housing, a motor accommodated in the housing, a control section for controlling the motor, an operation section for operating the motor when turned on, and the motor. a cutting blade that moves between an initial position and a reversed position along a first direction, and a support that supports a workpiece, and the workpiece is cut by the cutting blade and the support. In the work machine, in a state in which the cutting blade is at the initial position, the support portion and the cutting blade do not overlap when viewed in a second direction orthogonal to the first direction, and the control portion controls the cutting blade. When the operation portion is turned on while the blade is in the initial position, the motor is rotated forward to move the cutting blade closer to the support portion, and the operation portion is turned on. In the work machine, the motor is stopped or reversed in a state in which at least a part of the support portion and the cutting blade overlap when viewed in the second direction.
本発明の1又はそれ以上の実施形態は、切断刃は、前記第1方向と前記第2方向に延びる板形状を有し、前記制御部は、前記第1方向と前記第2方向との双方に垂直な第3方向で見て前記支持部と前記切断刃が重なる位置で、前記モータを停止させる、または前記モータを逆転させるように構成されている作業機である。 In one or more embodiments of the present invention, the cutting blade has a plate shape extending in the first direction and the second direction, and the control section is configured to extend in both the first direction and the second direction. The working machine is configured to stop the motor or reverse the motor at a position where the support portion and the cutting blade overlap when viewed in a third direction perpendicular to .
本発明の1又はそれ以上の実施形態は、前記支持部には、前記被加工材の一部を位置させることが可能な凹部が設けられ、前記制御部は、前記第3方向で見て前記凹部と前記切断刃が重なる位置で、前記モータを停止させる、または前記モータを逆転させるように構成されている作業機である。 In one or more embodiments of the present invention, the support portion is provided with a recess in which a portion of the work piece can be positioned, and the control portion is configured such that when viewed in the third direction, the The working machine is configured to stop the motor or reverse the motor at a position where the recess overlaps the cutting blade.
本発明の1又はそれ以上の実施形態は、ハウジングと、前記ハウジングに収容されたモータと、前記モータを制御する制御部と、操作されることで前記モータを作動させる操作部と、前記モータによって回転駆動する出力部と、前記出力部と螺合し、前記モータが正転することで一方向に動作し、前記モータが逆転することで前記一方向に対して反対の方向となる他方向に動作する移動部材と、前記移動部材と一体的に動作するように構成された切断刃と、を備え、前記制御部は、前記移動部材を一方向または他方向へ動作させたとき、前記出力部と前記移動部材との螺合を維持した状態で前記モータを停止するように構成されている作業機である。 One or more embodiments of the present invention include a housing, a motor housed in the housing, a control section for controlling the motor, an operation section for operating the motor when operated, and and an output unit that is rotationally driven and is screwed with the output unit, and when the motor rotates forward, it operates in one direction, and when the motor rotates backward, it operates in the other direction opposite to the one direction. A moving member that moves and a cutting blade configured to move integrally with the moving member. The working machine is configured to stop the motor while the screw engagement between the moving member and the moving member is maintained.
本発明の1又はそれ以上の実施形態は、前記移動部材の位置を検出する位置検出部を有し、前記制御部は、前記位置検出部の検出結果に基づいて前記モータを駆動制御する作業機である。 According to one or more embodiments of the present invention, the working machine has a position detection section that detects the position of the moving member, and the control section drives and controls the motor based on the detection result of the position detection section. is.
本発明の1又はそれ以上の実施形態は、ハウジングと、前記ハウジングに収容されたモータと、前記ハウジングに設けられ、操作されることで前記モータを作動させる操作部と、前記ハウジングに移動可能に収容されると共に、前記モータの駆動力によって初期位置と反転位置との間を往復移動する移動部材と、前記ハウジングの外部において前記移動部材に取付けられ、前記移動部材の前記初期位置から前記反転位置への往路側への移動によって被加工材に接近するブレードと、前記移動部材の位置を検出する位置検出部と、前記位置検出部の検出結果に基づいて前記モータを駆動制御する制御部と、を備えた作業機である。 One or more embodiments of the present invention include a housing, a motor housed in the housing, an operation part provided in the housing for operating the motor when operated, and a motor movable in the housing. a moving member accommodated and reciprocally moved between an initial position and a reversed position by the driving force of the motor; a blade that approaches the workpiece by moving toward the outward path, a position detection unit that detects the position of the moving member, a control unit that drives and controls the motor based on the detection result of the position detection unit; It is a work machine equipped with
本発明の1又はそれ以上の実施形態は、前記位置検出部は、前記移動部材の前記初期位置を検出する初期位置検出部と、前記移動部材の前記反転位置を検出する反転位置検出部と、を含んで構成されており、前記制御部は、前記初期位置検出部の検出結果に基づいて前記移動部材の初期位置を検知すると共に、前記反転位置検出部の検出結果に基づいて前記移動部材の反転位置を検知する作業機である。 In one or more embodiments of the present invention, the position detection section includes an initial position detection section that detects the initial position of the moving member, a reverse position detection section that detects the reverse position of the movement member, The control unit detects the initial position of the moving member based on the detection result of the initial position detection unit, and adjusts the movement member based on the detection result of the reverse position detection unit. It is a work machine that detects the reversing position.
本発明の1又はそれ以上の実施形態は、前記位置検出部は、前記移動部材の前記初期位置を検出可能に構成されており、前記制御部は、前記位置検出部の検出信号に基づいて前記移動部材の前記初期位置を検知すると共に、前記初期位置からの前記モータの回転数に基づいて前記移動部材の反転位置を検知する作業機である。 In one or more embodiments of the present invention, the position detection section is configured to detect the initial position of the moving member, and the control section detects the initial position of the moving member based on the detection signal of the position detection section. In the work machine, the initial position of the moving member is detected, and the reverse position of the moving member is detected based on the number of rotations of the motor from the initial position.
本発明の1又はそれ以上の実施形態は、前記位置検出部は、前記移動部材の前記反転位置から前記初期位置への復路側への移動時に前記移動部材によって押圧されることでオフからオンに切替るスイッチであり、前記制御部は、前記位置検出部がオンからオフに切替る時点を起点として、前記モータの回転数の計測を開始する作業機である。 In one or more embodiments of the present invention, the position detection unit is turned on by being pressed by the moving member when the moving member moves from the reverse position to the initial position on the return path side. It is a switching switch, and the control unit is a work machine that starts measuring the number of revolutions of the motor, starting from the point in time when the position detection unit switches from on to off.
本発明の1又はそれ以上の実施形態は、前記制御部は、前記移動部材の前記反転位置を検知してから所定時間経過後に、前記移動部材を復路側へ移動させるように前記モータを駆動制御する作業機である。 In one or more embodiments of the present invention, the control unit drives and controls the motor so as to move the moving member toward the return path after a predetermined time has elapsed since the reversal position of the moving member was detected. It is a work machine that
本発明の1又はそれ以上の実施形態は、前記操作部の操作開始時に、前記制御部が前記移動部材の前記初期位置を検知しない場合には、前記制御部は前記移動部材を復路側へ移動させるように前記モータを駆動制御する作業機である。 In one or more embodiments of the present invention, if the control unit does not detect the initial position of the moving member at the start of operation of the operating unit, the control unit moves the moving member toward the return path. It is a work machine that drives and controls the motor so as to cause the motor to move.
本発明の1又はそれ以上の実施形態は、前記移動部材の前記初期位置から前記反転位置への往路側への移動時に前記操作部の操作が解除されたときには、前記移動部材を復路側へ移動させるように前記制御部が前記モータを駆動制御する作業機である。 In one or more embodiments of the present invention, when the operation of the operation unit is released during movement of the moving member from the initial position to the reversing position in the forward direction, the moving member moves in the backward direction. In the work machine, the control unit drives and controls the motor so as to cause the motor to move.
本発明の1又はそれ以上の実施形態は、前記位置検出部は、前記移動部材の側方位置に設けられる作業機である。 In one or more embodiments of the present invention, the position detection unit is a work machine provided at a lateral position of the moving member.
本発明の1又はそれ以上の実施形態は、前記ハウジングは、前記移動部材を収容する第1ハウジングと、前記モータと前記制御部を収容する第2ハウジングと、前記位置検出部の少なくとも一部を収容する第3ハウジングを有する作業機である。 In one or more embodiments of the present invention, the housing includes a first housing that accommodates the moving member, a second housing that accommodates the motor and the control section, and at least part of the position detection section. It is a work machine having a third housing that accommodates it.
本発明の1又はそれ以上の実施形態は、前記第3ハウジングは、前記第1ハウジングまたは前記第2ハウジングに支持される作業機である。 In one or more embodiments of the present invention, the third housing is a work machine supported by the first housing or the second housing.
上記構成の作業機によれば、好適に切断刃を往復移動させることができる。 According to the work machine having the above configuration, the cutting blade can be preferably reciprocated.
本実施形態に係る電動切断機を示す右側から見た側面図である。It is the side view seen from the right side which shows the electric cutting machine concerning this embodiment. 図1に示される電動切断機の内部を示す右側から見た断面図である。2 is a cross-sectional view of the inside of the electric cutting machine shown in FIG. 1 as viewed from the right side; FIG. (A)は、図2に示される支持機構を示す前側から見た断面図(図2の3A-3A線断面図)であり、(B)は、図2に示されるリフタとブレードとの連結状態を示す前側から見た断面図(図2の3B-3B線断面図)である。(A) is a cross-sectional view (cross-sectional view taken along line 3A-3A in FIG. 2) showing the support mechanism shown in FIG. 2 as seen from the front side, and (B) is a connection between the lifter and blade shown in FIG. 3B is a cross-sectional view (cross-sectional view taken along the line 3B-3B in FIG. 2) seen from the front side showing the state; FIG. (A)は、図2に示されるリフタとブレードとの連結状態を示す上側から見た断面図(図2の4A-4A線断面図)であり、(B)は、図2に示されるガイドプレートとヘッドプレートとの連結状態(図2の4B-4B線断面図)を示す上側から見た断面図である。(A) is a cross-sectional view (cross-sectional view taken along line 4A-4A in FIG. 2) showing the connection state between the lifter and the blade shown in FIG. 2, and (B) is a guide shown in FIG. FIG. 4B is a cross-sectional view seen from the upper side showing the connection state of the plate and the head plate (cross-sectional view taken along the line 4B-4B in FIG. 2); 図2に示されるリフタ及びブレードが反転位置に移動した状態を示す右側から見た断面図である。FIG. 3 is a cross-sectional view seen from the right side showing a state in which the lifter and blades shown in FIG. 2 have moved to reversed positions; 図1に示されるブレード及びガイド機構が第1位置から第2位置に回転した状態を示す右側から見た側面図である。2 is a right side view showing the blade and guide mechanism shown in FIG. 1 rotated from the first position to the second position; FIG. 本実施形態に係る電動切断機の動作を説明するためのフローチャートである。4 is a flowchart for explaining the operation of the electric cutting machine according to the embodiment; 本実施形態に係る電動切断機の動作を説明するためのタイムチャートである。It is a time chart for explaining operation of the electric cutting machine concerning this embodiment. (A)は、ガイド機構を第1位置と第2位置との間の中間位置で保持するための機構を示す右側から見た側面図であり、(B)は、ガイド機構が中間位置に保持された状態を示す側面図である。(A) is a right side view of a mechanism for holding a guide mechanism at an intermediate position between a first position and a second position; (B) is a side view of the guide mechanism held at the intermediate position; FIG. 10 is a side view showing a folded state; 図9に示されるフィックスワッシャの3面図である。FIG. 10 is a three-sided view of the fixed washer shown in FIG. 9;
以下、図面を用いて、本実施形態に係る作業機としての電動切断機10について説明する。なお、図面において適宜示される矢印UP、矢印FR、及び矢印RHは、それぞれ電動切断機10の上側、前側、及び右側を示している。そして、以下の説明において、上下、前後、左右の方向を用いて説明するときには、特に断りのない限り、電動切断機10の上下方向、前後方向、左右方向を示すものとする。また、前後方向が本発明の第1方向に対応し、上下方向が本発明の第2方向に対応し、左右方向が本発明の第3方向に対応する。 An electric cutting machine 10 as a work machine according to the present embodiment will be described below with reference to the drawings. An arrow UP, an arrow FR, and an arrow RH appropriately shown in the drawings indicate the upper side, the front side, and the right side of the electric cutting machine 10, respectively. In the following description, when the up/down, front/rear, and left/right directions are used, the up/down, front/rear, and left/right directions of the electric cutting machine 10 are indicated unless otherwise specified. Further, the front-back direction corresponds to the first direction of the present invention, the up-down direction corresponds to the second direction of the present invention, and the left-right direction corresponds to the third direction of the present invention.
図1及び図2に示されるように、電動切断機10は、建物の吊り天井に用いられる軽天バーなどの被加工材Wに切断加工を施す電動工具として構成されている。この被加工材Wは、長尺柱状に形成されており、その長手方向から見て、略U字形状に形成されている。電動切断機10は、ハウジング20と、モータ50と、送りネジ機構60(広義には、移動機構として把握される要素である)と、切断刃(先端工具)としてのブレード72と、ガイド機構80と、保持機構90と、制御部100と、を含んで構成されている。以下、電動切断機10の各構成について説明する。 As shown in FIGS. 1 and 2, the electric cutting machine 10 is configured as an electric power tool for cutting a workpiece W such as a light ceiling bar used for a suspended ceiling of a building. This workpiece W is formed in a long columnar shape, and is formed in a substantially U shape when viewed from the longitudinal direction. The electric cutting machine 10 includes a housing 20, a motor 50, a feed screw mechanism 60 (in a broad sense, it is an element grasped as a movement mechanism), a blade 72 as a cutting edge (tip tool), and a guide mechanism 80. , a holding mechanism 90 , and a control unit 100 . Each configuration of the electric cutting machine 10 will be described below.
(ハウジング20について) ハウジング20は、電動切断機10の外郭を構成しており、全体として前後方向に延在されている。ハウジング20は、ハウジング20の前部を構成するリフタハウジング22(第1ハウジング)と、ハウジング20の後部を構成する本体ハウジング24(第2ハウジング)と、を含んで構成されている。本体ハウジング24は、右側から見た側面視で略逆P字形中空状に形成されており、リフタハウジング22は、前後方向に延在された略円筒状に形成されている。そして、本体ハウジング24の前端部とリフタハウジング22の後端部とが、スペーサ26を介して連結されている。リフタハウジング22は樹脂製である。 (Regarding the housing 20) The housing 20 constitutes the outer shell of the electric cutting machine 10 and extends in the front-rear direction as a whole. The housing 20 includes a lifter housing 22 (first housing) forming a front portion of the housing 20 and a body housing 24 (second housing) forming a rear portion of the housing 20 . The body housing 24 is formed in a substantially inverted P-shaped hollow shape when viewed from the right side, and the lifter housing 22 is formed in a substantially cylindrical shape extending in the front-rear direction. A front end portion of the body housing 24 and a rear end portion of the lifter housing 22 are connected via a spacer 26 . The lifter housing 22 is made of resin.
本体ハウジング24の後端部は、作業者が把持するハンドル部24Aとして構成されており、ハンドル部24Aは、上下方向に延在されている。ハンドル部24Aの上端部には、操作部としてのトリガ30が設けられており、トリガ30は、後側へ引き操作可能に構成され、引き操作されることでオン状態となる。また、ハンドル部24Aには、トリガ30の後斜め下方において、トリガスイッチ31が設けられている。そして、トリガ30が引き操作されることで、トリガスイッチ31が、オフ状態からオン状態に切替るようになっている。 A rear end portion of the body housing 24 is configured as a handle portion 24A that is gripped by an operator, and the handle portion 24A extends vertically. A trigger 30 as an operating portion is provided at the upper end portion of the handle portion 24A. The trigger 30 is configured to be capable of being pulled rearward, and is turned on by being pulled. A trigger switch 31 is provided on the handle portion 24</b>A behind and obliquely below the trigger 30 . When the trigger 30 is pulled, the trigger switch 31 is switched from off to on.
トリガスイッチ31は、後述する制御部100に電気的に接続されており、制御部100は、本体ハウジング24の下端部に収容されている。そして、トリガスイッチ31がオンされると、トリガスイッチ31は、オン信号を制御部100に出力する。 The trigger switch 31 is electrically connected to a control section 100 which will be described later, and the control section 100 is accommodated in the lower end portion of the body housing 24 . Then, when the trigger switch 31 is turned on, the trigger switch 31 outputs an ON signal to the control section 100 .
また、本体ハウジング24の下端部には、バッテリ装着部24Bが形成されている。バッテリ装着部24Bには、バッテリターミナル28が設けられており、バッテリターミナル28は、後述する制御部100に電気的に接続されている。バッテリ装着部24Bには、バッテリ32が着脱可能に装着されており、バッテリ32は、バッテリターミナル28と接続されるコネクタ(図示省略)を有している。これにより、制御部100を介して後述するモータ50に電力が供給される構成になっている。 A battery mounting portion 24B is formed at the lower end portion of the body housing 24 . A battery terminal 28 is provided in the battery mounting portion 24B, and the battery terminal 28 is electrically connected to the control portion 100, which will be described later. A battery 32 is detachably attached to the battery attachment portion 24B, and the battery 32 has a connector (not shown) connected to the battery terminal 28 . As a result, electric power is supplied to the motor 50 to be described later via the control unit 100 .
リフタハウジング22は、分割不能な一体構造を成し、略筒状の形状に形成されている。図3(A)に示されるように、リフタハウジング22の前端部23は、左右方向に離間するように形成されている。リフタハウジング22の前端部23には、上下一対のフランジ部23Aが形成されており、フランジ部23Aは、前端部23から上下方向外側へ延出している。 The lifter housing 22 has an undivided integral structure and is formed in a substantially cylindrical shape. As shown in FIG. 3A, the front end portion 23 of the lifter housing 22 is formed so as to be spaced apart in the left-right direction. A pair of upper and lower flange portions 23A are formed at the front end portion 23 of the lifter housing 22, and the flange portions 23A extend outward from the front end portion 23 in the vertical direction.
リフタハウジング22の前端部23には、後述する送りネジ機構60のリフタ65を支持するための支持機構40が設けられている。以下、支持機構40について説明する。 The front end portion 23 of the lifter housing 22 is provided with a support mechanism 40 for supporting a lifter 65 of a feed screw mechanism 60, which will be described later. The support mechanism 40 will be described below.
(支持機構40について) 図2、図3(A)、及び図4(A)に示されるように、支持機構40は、左右一対の固定プレート41と、アウタガイド44(広義には、支持部材として把握される要素である)と、回転軸としてのインナガイド45と、を含んで構成されている。 (Support Mechanism 40) As shown in FIGS. 2, 3(A), and 4(A), the support mechanism 40 includes a pair of left and right fixing plates 41 and an outer guide 44 (in a broad sense, a support member ) and an inner guide 45 as a rotating shaft.
固定プレート41は、左右方向を板厚方向とし且つ上下方向を長手方向とする略長尺板状に形成されている。固定プレート41の上下方向中間部には、湾曲部41Aが形成されており、湾曲部41Aは、前側から見て、リフタハウジング22の外形に対応して左右方向外側へ凸となる略円弧状に形成されている。そして、固定プレート41がリフタハウジング22の前端部23の左右方向内側に配置されると共に、固定プレート41の上端部及び下端部が、リフタハウジング22のフランジ部23Aの左右方向内側に隣接配置されている。 The fixing plate 41 is formed in a substantially elongated plate shape with the lateral direction as the plate thickness direction and the vertical direction as the longitudinal direction. A curved portion 41A is formed in the vertical intermediate portion of the fixing plate 41. The curved portion 41A has a generally arcuate shape that projects outward in the left-right direction when viewed from the front side, corresponding to the outer shape of the lifter housing 22. formed. The fixing plate 41 is arranged inside the front end portion 23 of the lifter housing 22 in the left-right direction, and the upper end portion and the lower end portion of the fixing plate 41 are arranged adjacently inside the flange portion 23A of the lifter housing 22 in the left-right direction. there is
左右一対の固定プレート41の上端部及び下端部には、スリーブ42が、それぞれ架け渡されている。スリーブ42は、左右方向を軸方向とする略円筒状に形成され、一対の固定プレート41がスリーブ42に固定されている。スリーブ42の長手方向両端部は、固定プレート41よりも左右方向外側へ突出しており、リフタハウジング22には、スリーブ42の長手方向両端部が挿入される挿入孔23Bが貫通形成されている。スリーブ42の左端部には、ナット43が設けられている。そして、ボルトBL1が、右側からスリーブ42内に挿入されて、ナット43に螺合されている。これにより、固定プレート41が、リフタハウジング22に固定されている。挿入孔23Bの内径は、スリーブ42の外径よりもやや小さくなっており、スリーブ42は挿入孔23Bに圧入される。 Sleeves 42 are laid over the upper and lower ends of the pair of left and right fixing plates 41 . The sleeve 42 is formed in a substantially cylindrical shape whose axial direction is the left-right direction, and a pair of fixing plates 41 are fixed to the sleeve 42 . Both longitudinal ends of the sleeve 42 protrude laterally outward beyond the fixing plate 41 , and the lifter housing 22 is formed with insertion holes 23</b>B through which the longitudinal ends of the sleeve 42 are inserted. A nut 43 is provided at the left end of the sleeve 42 . A bolt BL1 is inserted into the sleeve 42 from the right side and screwed into the nut 43 . Thereby, the fixed plate 41 is fixed to the lifter housing 22 . The inner diameter of the insertion hole 23B is slightly smaller than the outer diameter of the sleeve 42, and the sleeve 42 is press-fitted into the insertion hole 23B.
アウタガイド44は、前後方向を軸方向とする略円筒状に形成されている。アウタガイド44は、一対の固定プレート41の湾曲部41Aの間に配置されている。そして、前後一対のボルトBL2によって、アウタガイド44の左右方向両端部が、左右の固定プレート41の湾曲部41Aに締結固定されている。アウタガイド44の固定プレート41への固定状態では、ボルトBL2の先端部が、アウタガイド44の径方向内側へ突出している。また、この状態では、ボルトBL2の頭部が、リフタハウジング22に形成された切欠部23C内に配置されている(図1参照)。 The outer guide 44 is formed in a substantially cylindrical shape whose axial direction is the front-rear direction. The outer guide 44 is arranged between the curved portions 41A of the pair of fixed plates 41 . Both left and right ends of the outer guide 44 are fastened and fixed to the curved portions 41A of the left and right fixing plates 41 by a pair of front and rear bolts BL2. When the outer guide 44 is fixed to the fixing plate 41 , the tip of the bolt BL<b>2 protrudes radially inward of the outer guide 44 . Also, in this state, the head of the bolt BL2 is arranged in the notch 23C formed in the lifter housing 22 (see FIG. 1).
インナガイド45は、前後方向を軸方向とする略円筒状に形成されている。インナガイド45の外径は、アウタガイド44の内径よりも僅かに小さく、インナガイド45の軸長が、アウタガイド44の軸長よりも長く設定されている。そして、インナガイド45の後部が、アウタガイド44内に回転可能に挿入されている。また、インナガイド45の後部の外周部には、前後一対のガイド溝45Aが形成されており、ガイド溝45Aは、インナガイド45の周方向に延在されると共に、インナガイド45の全周に亘って形成されている。そして、インナガイド45のアウタガイド44に対する相対回転を許容するように、ボルトBL2の先端部がガイド溝45A内に挿入されている。これにより、インナガイド45の前後方向の移動がボルトBL2によって制限されている。インナガイド45とリフタ本体66との間には、ゴム製のOリング46が設けられる。インナガイド45とリフタ本体66との間は若干の隙間があり、リフタ本体66はインナガイド45に対して径方向に僅かに相対移動ができるようになっているが、その相対移動時にはOリング46が圧縮し、動きを緩衝するようになっている。すなわち、リフタ本体66は、モータ50によって駆動される方向である前後方向に対して交差する方向(上下左右方向)に移動可能に支持されている。そして、その移動時には弾性体が弾性変形する(すなわちOリング46が圧縮変形する)ように構成されている。 The inner guide 45 is formed in a substantially cylindrical shape whose axial direction is the front-rear direction. The outer diameter of the inner guide 45 is slightly smaller than the inner diameter of the outer guide 44 , and the axial length of the inner guide 45 is set longer than the axial length of the outer guide 44 . A rear portion of the inner guide 45 is rotatably inserted into the outer guide 44 . A pair of front and rear guide grooves 45A are formed on the outer peripheral portion of the rear portion of the inner guide 45. formed throughout. The tip of the bolt BL2 is inserted into the guide groove 45A so as to allow relative rotation of the inner guide 45 with respect to the outer guide 44. As shown in FIG. As a result, the movement of the inner guide 45 in the front-rear direction is restricted by the bolt BL2. A rubber O-ring 46 is provided between the inner guide 45 and the lifter body 66 . There is a slight gap between the inner guide 45 and the lifter main body 66 so that the lifter main body 66 can move slightly relative to the inner guide 45 in the radial direction. compresses and dampens movement. That is, the lifter main body 66 is supported so as to be movable in directions (vertical and horizontal directions) intersecting the front-rear direction, which is the direction driven by the motor 50 . The elastic body is elastically deformed (that is, the O-ring 46 is compressed and deformed) during the movement.
図3(B)にも示されるように、インナガイド45の前部には、後述するブレード72を配置するための上下一対のスリット45Bが形成されている。スリット45Bは、前後方向に延在され且つ上下方向に貫通しており、スリット45Bの前端部が、前側へ開放されている。なお、インナガイド45は、後述するガイド機構80の一部を構成している。 As shown in FIG. 3B, the front portion of the inner guide 45 is formed with a pair of upper and lower slits 45B for arranging a blade 72, which will be described later. The slit 45B extends in the front-rear direction and penetrates in the up-down direction, and the front end of the slit 45B opens forward. In addition, the inner guide 45 constitutes a part of a guide mechanism 80 which will be described later.
(モータ50について) 図2に示されるように、モータ50は、ブラシレスモータとして構成されて、本体ハウジング24の前端部に収容されている。モータ50は、前後方向を軸方向とする駆動軸51と、駆動軸51に固定された略円筒状のロータ52と、ロータ52の径方向外側に配置された略円筒状のステータ53と、を含んで構成されている。駆動軸51の後端部は、本体ハウジング24に保持されたモータ軸受54に回転可能に支持されており、駆動軸51の前端側部分が、スペーサ26に保持されたモータ軸受55に回転可能に支持されている。駆動軸51の前端部には、ピニオンギヤ51Aが形成されている。モータ50は、制御部100に電気的に接続されており、制御部100の制御によって駆動する。モータ軸受55は周知のボールベアリングであり、内輪と外輪、及びその間に設けられたボールを含む軸受部材である。 (Motor 50 ) As shown in FIG. 2 , the motor 50 is configured as a brushless motor and housed in the front end of the body housing 24 . The motor 50 includes a drive shaft 51 whose axial direction is the front-rear direction, a substantially cylindrical rotor 52 fixed to the drive shaft 51, and a substantially cylindrical stator 53 arranged radially outside the rotor 52. is composed of A rear end portion of the drive shaft 51 is rotatably supported by a motor bearing 54 held by the main body housing 24, and a front end portion of the drive shaft 51 is rotatably supported by a motor bearing 55 held by the spacer 26. Supported. A pinion gear 51A is formed at the front end of the drive shaft 51 . The motor 50 is electrically connected to the controller 100 and driven under the control of the controller 100 . The motor bearing 55 is a well-known ball bearing, and is a bearing member including an inner ring, an outer ring, and balls provided therebetween.
(送りネジ機構60について) 図2及び図5に示されるように、送りネジ機構60は、伝達ギヤ61と、出力軸(出力部)としてのドライブシャフト63と、移動部材としてのリフタ65と、リフタ65の位置を検出するための位置検出部としてのリフタ検出スイッチ68と、を含んで構成されている。 (Regarding the feed screw mechanism 60) As shown in FIGS. 2 and 5, the feed screw mechanism 60 includes a transmission gear 61, a drive shaft 63 as an output shaft (output part), a lifter 65 as a moving member, and a lifter detection switch 68 as a position detector for detecting the position of the lifter 65 .
伝達ギヤ61は、基部61Aとギヤ部61Bを有する。基部61Aは、前後方向を軸方向とする略段付き円柱状に形成されており、基部61Aの前部の直径が、基部61Aの後部の直径よりも大きく設定されている。基部61Aの前側中央部には、前側へ開放された(後方へ凹む)凹部61Cが形成されている。伝達ギヤ61は、モータ50の駆動軸51の前端部の上側においてハウジング20内に収容されており、伝達ギヤ61の後部が、スペーサ26に保持されたギヤ軸受62によって回転可能に支持されている。基部61Aの前部の外周部には、ギヤ部61Bが取り付けられており、ギヤ部61Bが駆動軸51のピニオンギヤ51Aに噛合されている。基部61Aの前部は円環状となるギヤ部61Bに圧入されている。ギヤ部61Bは斜歯ギヤ(ヘリカルギヤ)となっている。ギヤ部61Bは、作業時において後述するブレード72に負荷がかかった際に、ピニオンギヤ51Aとの噛合の作用により伝達ギヤ61(ギヤ部61B)には前方へのスラスト力がかかるように形作られている。ギヤ軸受62の少なくとも一部は前後方向でモータ軸受55と同じ位置にある。換言すれば、ギヤ軸受62の少なくとも一部は、径方向(上下方向)で見たときにモータ軸受55と重なる位置にある。基部61Aとギヤ部61Bは単一部品(一体的な構造)として構成してもよいが、別部材として構成したので上記したような複雑な形状を作りやすい。ギヤ軸受62は周知のボールベアリングであり、内輪と外輪、及びその間に設けられたボールを含む軸受部材である。ギヤ軸受62の外輪はスペーサ26と接触し、内輪が伝達ギヤ61(基部61A)と接触している。 The transmission gear 61 has a base portion 61A and a gear portion 61B. The base portion 61A is formed in a substantially stepped columnar shape whose axial direction is the front-rear direction, and the diameter of the front portion of the base portion 61A is set larger than the diameter of the rear portion of the base portion 61A. A recess 61C that is open to the front (recessed to the rear) is formed in the center of the front side of the base 61A. The transmission gear 61 is accommodated in the housing 20 above the front end of the drive shaft 51 of the motor 50, and the rear portion of the transmission gear 61 is rotatably supported by a gear bearing 62 held by the spacer 26. . A gear portion 61B is attached to the outer peripheral portion of the front portion of the base portion 61A, and the gear portion 61B is meshed with the pinion gear 51A of the drive shaft 51. As shown in FIG. A front portion of the base portion 61A is press-fitted into an annular gear portion 61B. The gear portion 61B is a helical gear. The gear portion 61B is shaped so that when a load is applied to the blade 72, which will be described later, during work, a forward thrust force is applied to the transmission gear 61 (gear portion 61B) due to the meshing action with the pinion gear 51A. there is At least a portion of the gear bearing 62 is located at the same position as the motor bearing 55 in the longitudinal direction. In other words, at least part of the gear bearing 62 is positioned to overlap the motor bearing 55 when viewed in the radial direction (vertical direction). The base portion 61A and the gear portion 61B may be configured as a single component (integrated structure), but since they are configured as separate members, it is easy to form a complicated shape as described above. The gear bearing 62 is a well-known ball bearing, and is a bearing member including an inner ring, an outer ring, and balls provided therebetween. The outer ring of the gear bearing 62 is in contact with the spacer 26, and the inner ring is in contact with the transmission gear 61 (base portion 61A).
ドライブシャフト63は、前後方向を軸方向とする略円柱状に形成されている。ドライブシャフト63は、リフタハウジング22内に収容されると共に、伝達ギヤ61の前側で伝達ギヤ61と同軸上に配置されている。そして、ドライブシャフト63の後端部が、伝達ギヤ61の凹部61C内に一体回転可能に嵌入されており、ドライブシャフト63の後端側部分が、リフタハウジング22に保持されたシャフト軸受64によって回転可能に支持されている。これにより、モータ50が駆動することで、ドライブシャフト63が(伝達ギヤ61と一体的に)回転するようになっている。なお、凹部61Cはキー構造(例えば1つまたは複数の平面部を有するような構造)となっており、ドライブシャフト63の後端部も同様の形状となっている。また、凹部61Cとドライブシャフト63は互いに前後方向へ相対移動できる程度の嵌合となっており、いわゆる「すきまばめ」の関係にある。これによって伝達ギヤ61は前後方向に動作可能となっている。すなわち、伝達ギヤ61はモータ50によって駆動される方向(前後方向を中心とした回転方向であり、上下左右方向)に対して交差する方向(前後方向)に移動可能に支持されている。伝達ギヤ61の前後方向動作時には、シャフト軸受64と一体的に動いても良いし、伝達ギヤ61がシャフト軸受64に対して相対移動するように構成してもよい。なお、伝達ギヤ61(凹部61C)とドライブシャフト63とを互いに前後方向へ相対移動できる程度の嵌合で接続することが重要であり、必ずしも伝達ギヤ61を前後方向に動作可能とする必要はない。シャフト軸受64は周知のボールベアリングであり、内輪と外輪、及びその間に設けられたボールを含む軸受部材である。ドライブシャフト63の外周部には、後端部を除く部分において、雄ネジ63Aが形成されている。ドライブシャフト63の後部には、鍔部63Bが設けられている。鍔部63Bの後側はシャフト軸受64(の内輪)前側と接触している。シャフト軸受64(の外輪)後側はリフタハウジング22に形成される軸受支持部22Bに接触し、これに支持されている。従って、ドライブシャフト63は後方に移動しようとしても、シャフト軸受64を介して軸受支持部22B(リフタハウジング22)によりその移動が規制されるよう構成されている。 The drive shaft 63 is formed in a substantially columnar shape whose axial direction is the front-rear direction. The drive shaft 63 is accommodated in the lifter housing 22 and arranged coaxially with the transmission gear 61 on the front side of the transmission gear 61 . The rear end of the drive shaft 63 is fitted in the recess 61C of the transmission gear 61 so as to rotate integrally therewith, and the rear end of the drive shaft 63 is rotated by the shaft bearing 64 held by the lifter housing 22. supported as possible. As a result, the drive shaft 63 rotates (integrally with the transmission gear 61) when the motor 50 is driven. The recessed portion 61C has a key structure (for example, a structure having one or more flat portions), and the rear end portion of the drive shaft 63 has a similar shape. Further, the recessed portion 61C and the drive shaft 63 are fitted so that they can move relative to each other in the front-rear direction, which is a so-called "clearance fit" relationship. This allows the transmission gear 61 to move forward and backward. That is, the transmission gear 61 is supported so as to be movable in a direction (front-rear direction) that intersects the direction in which it is driven by the motor 50 (rotational direction centered on the front-rear direction, which is the vertical and horizontal directions). When the transmission gear 61 moves back and forth, it may move integrally with the shaft bearing 64 , or the transmission gear 61 may move relative to the shaft bearing 64 . It is important to connect the transmission gear 61 (recessed portion 61C) and the drive shaft 63 so that they can move relative to each other in the front-rear direction. . The shaft bearing 64 is a well-known ball bearing, and is a bearing member including an inner ring, an outer ring, and balls provided therebetween. A male screw 63A is formed on the outer peripheral portion of the drive shaft 63 except for the rear end portion. A rear portion of the drive shaft 63 is provided with a collar portion 63B. The rear side of the collar portion 63B is in contact with the front side of (the inner ring of) the shaft bearing 64 . The rear side of (the outer ring of) the shaft bearing 64 contacts and is supported by the bearing support portion 22B formed in the lifter housing 22 . Therefore, even if the drive shaft 63 tries to move rearward, the movement is restricted by the bearing support portion 22B (lifter housing 22) through the shaft bearing 64. As shown in FIG.
リフタ65は、全体として前後方向に延在された略長尺状に形成されている。リフタ65は、リフタ本体66と、リフタ65の後端部を構成するリフタ連結部67と、を含んで構成されている。リフタ連結部67は、前後方向を軸方向とする略段付き円筒状に形成されている。リフタ連結部67の後部の内周部には、雌ネジ67Aが形成されている。そして、ドライブシャフト63の前部が、リフタ連結部67の内部に挿入され、ドライブシャフト63の雄ネジ63Aとリフタ連結部67の雌ネジ67Aとが螺合されている。すなわち、ドライブシャフト63とリフタ65とがネジ嵌合している。 The lifter 65 is formed in a substantially elongated shape extending in the front-rear direction as a whole. The lifter 65 includes a lifter main body 66 and a lifter connecting portion 67 forming a rear end portion of the lifter 65 . The lifter connecting portion 67 is formed in a substantially stepped cylindrical shape whose axial direction is the front-rear direction. A female thread 67A is formed on the inner peripheral portion of the rear portion of the lifter connecting portion 67 . The front portion of the drive shaft 63 is inserted into the lifter connecting portion 67, and the male screw 63A of the drive shaft 63 and the female screw 67A of the lifter connecting portion 67 are screwed together. That is, the drive shaft 63 and the lifter 65 are screwed together.
これにより、ドライブシャフト63が回転することで、リフタ65が前後方向(ドライブシャフト63の軸方向)に移動する構成になっている。具体的には、リフタ65が、初期位置(図2に示される位置)と、反転位置(図5に示される位置)と、の間を往復移動する。なお、ドライブシャフト63の回転時におけるリフタ65の回転は、後述するガイド機構80によって制限されている。反転位置は終端位置と言い換えてもよい。 As a result, the drive shaft 63 rotates to move the lifter 65 in the front-rear direction (the axial direction of the drive shaft 63). Specifically, the lifter 65 reciprocates between the initial position (the position shown in FIG. 2) and the reverse position (the position shown in FIG. 5). The rotation of the lifter 65 during rotation of the drive shaft 63 is restricted by a guide mechanism 80, which will be described later. The reversal position may be rephrased as the terminal position.
リフタ連結部67における後端部の外周部には、被検出部67Bが形成されている。被検出部67Bは、リフタ本体66の径方向外側へ突出し且つ前後方向を厚み方向とする略円柱状に形成されている。 A detected portion 67B is formed on the outer peripheral portion of the rear end portion of the lifter connecting portion 67 . The detected portion 67B projects radially outward from the lifter main body 66 and is formed in a substantially columnar shape with the front-rear direction as the thickness direction.
リフタ本体66は、後側へ開放された略有底円筒状に形成されている。そして、リフタ本体66の後端部がリフタ連結部67の前部内に嵌入されて、リフタ連結部67とリフタ本体66とが相対移動不能に連結されている。そして、リフタ65の初期位置では、ドライブシャフト63の前部が、リフタ本体66の内部に相対移動可能に挿入されている。リフタ本体66の前端部は、前述した支持機構40のインナガイド45内に挿入されると共に、インナガイド45によって前後方向に相対移動可能に支持されている。 The lifter main body 66 is formed in a substantially bottomed cylindrical shape that is open rearward. The rear end portion of the lifter main body 66 is fitted into the front portion of the lifter connecting portion 67 so that the lifter connecting portion 67 and the lifter main body 66 are connected so as not to move relative to each other. At the initial position of the lifter 65, the front portion of the drive shaft 63 is inserted into the lifter main body 66 so as to be relatively movable. A front end portion of the lifter body 66 is inserted into the inner guide 45 of the support mechanism 40 described above, and supported by the inner guide 45 so as to be relatively movable in the front-rear direction.
リフタ本体66の後端側部分の外周部には、リフタフランジ66Aが形成されており、リフタフランジ66Aは、リフタ本体66の径方向外側へ突出した円板状に形成されている。そして、リフタ65の反転位置では、リフタフランジ66Aがインナガイド45の後側に近接して配置される。なお、リフタ本体66とリフタ連結部67との連結状態では、リフタ連結部67の前端がリフタ本体66のリフタフランジ66Aの後側に隣接配置されている。 A lifter flange 66A is formed on the outer peripheral portion of the rear end portion of the lifter main body 66. The lifter flange 66A is formed in a disc shape protruding radially outward from the lifter main body 66. As shown in FIG. At the reverse position of the lifter 65, the lifter flange 66A is arranged close to the rear side of the inner guide 45. As shown in FIG. When the lifter main body 66 and the lifter connecting portion 67 are connected, the front end of the lifter connecting portion 67 is arranged adjacent to the rear side of the lifter flange 66A of the lifter main body 66 .
リフタ検出スイッチ68は、レバー式のマイクロスイッチとして構成されて、リフタハウジング22の外部(後端部の下側)に配置されている。リフタ検出スイッチ68は、リフタハウジング22に支持(固定)されたスイッチカバー69(第3ハウジング)に収容されると共に、スイッチカバー69よって保持されている。このように、制御部100を収容するハウジング20とは異なる収容部(リフタハウジング22)に収容されたリフタ65の位置を検出するため、リフタ検出スイッチ68は制御部100を収容する本体ハウジング24やリフタ65を収容するリフタハウジング22とは異なる収容領域(スイッチカバー69)に収容される。スイッチカバー69は、リフタ検出スイッチ68(位置検出部)を収容する位置検出部ハウジングである。リフタ検出スイッチ68は、本体ハウジング24の外壁と、リフタハウジング22の外壁と、スイッチカバー69の内壁によって囲われる空間内にて支持される。スイッチカバー69は本体ハウジング24に支持されるように構成してもよいし、リフタハウジング22と本体ハウジング24の双方に接続、支持されるように構成してもよい。 The lifter detection switch 68 is configured as a lever-type microswitch and arranged outside the lifter housing 22 (below the rear end portion). The lifter detection switch 68 is housed in a switch cover 69 (third housing) supported (fixed) on the lifter housing 22 and held by the switch cover 69 . In this way, in order to detect the position of the lifter 65 housed in a housing (lifter housing 22) different from the housing 20 housing the control section 100, the lifter detection switch 68 is operated by the body housing 24 housing the control section 100, It is housed in a housing area (switch cover 69 ) different from the lifter housing 22 housing the lifter 65 . The switch cover 69 is a position detector housing that accommodates the lifter detection switch 68 (position detector). The lifter detection switch 68 is supported in a space surrounded by the outer wall of the body housing 24 , the outer wall of the lifter housing 22 and the inner wall of the switch cover 69 . The switch cover 69 may be configured to be supported by the body housing 24 , or may be configured to be connected and supported by both the lifter housing 22 and the body housing 24 .
また、リフタ検出スイッチ68の上側には、球状のボール70が設けられており、ボール70は、リフタハウジング22の外周下端部に形成されたボール用孔部22A内に配置されている。ボール用孔部22Aは、上下方向に貫通しており、ボール用孔部22Aの直径が下側へ向かうに従い大きくなっている。そして、リフタ検出スイッチ68のオフ状態では、ボール70の外周面が、リフタ検出スイッチ68のレバー部及びボール用孔部22Aの内周面に当接している(図5参照)。また、この状態では、ボール70の外周部の一部が、リフタハウジング22内に配置されるように、リフタハウジング22の内周面に対して径方向内側へ突出している。ボール70は、リフタ65の動作をリフタ検出スイッチ68に伝達するための伝達部材である。ボール用孔部22Aは、リフタハウジング22の内部とスイッチカバー69の内部とを連通する連通孔である。 A spherical ball 70 is provided above the lifter detection switch 68 , and the ball 70 is arranged in a ball hole 22</b>A formed in the lower end of the outer periphery of the lifter housing 22 . The ball hole 22A penetrates in the vertical direction, and the diameter of the ball hole 22A increases downward. When the lifter detection switch 68 is in the OFF state, the outer peripheral surface of the ball 70 is in contact with the lever portion of the lifter detection switch 68 and the inner peripheral surface of the ball hole 22A (see FIG. 5). Further, in this state, a part of the outer peripheral portion of the ball 70 protrudes radially inward with respect to the inner peripheral surface of the lifter housing 22 so as to be arranged inside the lifter housing 22 . Ball 70 is a transmission member for transmitting the operation of lifter 65 to lifter detection switch 68 . The ball hole 22A is a communication hole that communicates the inside of the lifter housing 22 and the inside of the switch cover 69 .
そして、リフタ65が、初期位置に配置されたときには、リフタ65の被検出部67Bの外周部がボール70を径方向外側(下側)へ押圧して、ボール70がリフタ検出スイッチ68側(下側)へ変位する。すなわち、リフタ65の反転位置から初期位置への復路側への移動時にリフタ65が初期位置に到達すると、ボール70がリフタ検出スイッチ68のレバー部を押圧して、リフタ検出スイッチ68がオフからオンに切替るように構成されている。また、リフタ検出スイッチ68は、制御部100に電気的に接続されており、検出信号を制御部100に出力する。すなわち、リフタ検出スイッチ68はボール70に押圧されることでオン信号を制御部100に送信するように構成されている。 When the lifter 65 is located at the initial position, the outer peripheral portion of the detected portion 67B of the lifter 65 presses the ball 70 radially outward (lower side), and the ball 70 moves toward the lifter detection switch 68 (lower side). side). That is, when the lifter 65 reaches the initial position while the lifter 65 is moving from the reverse position to the initial position, the ball 70 presses the lever portion of the lifter detection switch 68 to turn the lifter detection switch 68 from off to on. is configured to switch to Also, the lifter detection switch 68 is electrically connected to the control section 100 and outputs a detection signal to the control section 100 . That is, the lifter detection switch 68 is configured to transmit an ON signal to the control section 100 when pressed by the ball 70 .
(ブレード72について) 図1、図2、図3(B)、及び図4(A)に示されるように、ブレード72は、左右方向を板厚方向とする板状に形成されている。すなわち、ブレード72は前後方向と上下方向に延びるような板形状を有している。そして、ブレード72の後端部が、リフタ65の前端部に固定されている。具体的には、リフタ本体66の前端部に段差部66C(図4(A)参照)が形成されており、段差部66Cに配置されたピンPによってブレード72の後端部の上下方向中間部が係止されている。これにより、ブレード72は、リフタ65と一体に、初期位置と反転位置との間を移動可能に構成されている。また、ブレード72のリフタ65への固定状態では、前側から見て、ブレード72がリフタ65及びドライブシャフト63の中心線と重なるように配置されている。 (Regarding the blade 72) As shown in Figs. 1, 2, 3(B), and 4(A), the blade 72 is formed in a plate-like shape with the left-right direction as the plate thickness direction. That is, the blade 72 has a plate shape extending in the front-back direction and the up-down direction. A rear end portion of the blade 72 is fixed to a front end portion of the lifter 65 . Specifically, a stepped portion 66C (see FIG. 4A) is formed at the front end portion of the lifter body 66, and a pin P arranged in the stepped portion 66C lifts the vertical intermediate portion of the rear end portion of the blade 72. is locked. Thereby, the blade 72 is configured to be movable between the initial position and the reverse position integrally with the lifter 65 . In addition, when the blade 72 is fixed to the lifter 65 , the blade 72 is arranged so as to overlap the center lines of the lifter 65 and the drive shaft 63 when viewed from the front side.
ブレード72の前端部は、被加工材Wを切断するための刃部72Aとして構成されている。刃部72Aは、片刃として構成されると共に、左右方向から見て、前側へ凸となる略V字形状に形成されている。 A front end portion of the blade 72 is configured as a blade portion 72A for cutting the workpiece W. As shown in FIG. The blade portion 72A is configured as a single-edged blade, and is formed in a substantially V-shape that protrudes forward when viewed from the left-right direction.
そして、ブレード72の初期位置では、ブレード72がリフタハウジング22の前側で且つ被加工材Wの後側に配置される。そして、ブレード72が初期位置から前側へ移動することで、被加工材Wに対する切断加工が施される。さらに、ブレード72の反転位置では、被加工材Wに対する切断加工が終了するように設定されている。 In the initial position of the blade 72, the blade 72 is arranged on the front side of the lifter housing 22 and on the rear side of the workpiece W. As shown in FIG. Then, the workpiece W is cut by moving the blade 72 forward from the initial position. Furthermore, at the reversal position of the blade 72, the cutting of the workpiece W is completed.
(ガイド機構80について) 図1、図2、図3(B)、及び図4~図6に示されるように、ガイド機構80(調整機構)は、前述した支持機構40のインナガイド45と、左右一対のガイド部材としてのガイドプレート81と、連結部材82と、ヘッド部としての左右一対のヘッドプレート83と、を含んで構成されている。ヘッドプレート83は反転位置にあるブレード72を左右から覆う部材であり、被加工材Wを支持する部材(支持部)として機能する。なお、被加工材Wは特定の箇所(壁や天井など)に固定されている場合があるが、本発明においては、そのような固定状態の被加工材Wとヘッドプレート83を係合させた状態も、ヘッドプレート83によって被加工材Wを支持している状態とする。また、ガイド機構80はハウジング20に接続されている。 (Regarding the guide mechanism 80) As shown in FIGS. 1, 2, 3(B), and 4 to 6, the guide mechanism 80 (adjustment mechanism) includes the inner guide 45 of the support mechanism 40 described above, It includes a guide plate 81 as a pair of left and right guide members, a connecting member 82, and a pair of left and right head plates 83 as a head portion. The head plate 83 is a member that covers the blade 72 in the reversed position from the left and right, and functions as a member (supporting portion) that supports the workpiece W. As shown in FIG. In some cases, the workpiece W is fixed to a specific location (wall, ceiling, etc.). The state is also assumed to be a state in which the head plate 83 supports the workpiece W. As shown in FIG. Also, the guide mechanism 80 is connected to the housing 20 .
ガイドプレート81は、左右方向を板厚方向とする略矩形板状に形成されている。ガイドプレート81の上下方向中間部には、湾曲部81A(図3(B)参照)が形成されており、湾曲部81Aは、前側から見て、インナガイド45の外形に対応して、左右方向外側へ凸となる略円弧状に形成されている。そして、湾曲部81Aが、インナガイド45の径方向外側に配置されて、前後一対のボルトBL3によってインナガイド45に締結固定されている。これにより、ガイドプレート81がインナガイド45に一体回転可能に連結されている。換言すると、ガイド機構80が、前後方向を軸方向として、ハウジング20に回転可能に連結されている。すなわち、インナガイド45は、ガイド機構80の回転軸として構成されると共に、リフタ65の軸受部材としても構成されている。 The guide plate 81 is formed in a substantially rectangular plate shape whose plate thickness direction is the left-right direction. A curved portion 81A (see FIG. 3B) is formed in the vertical intermediate portion of the guide plate 81, and the curved portion 81A corresponds to the outer shape of the inner guide 45 when viewed from the front side. It is formed in a generally arcuate shape that protrudes outward. The curved portion 81A is arranged radially outward of the inner guide 45 and fastened and fixed to the inner guide 45 by a pair of front and rear bolts BL3. Thereby, the guide plate 81 is connected to the inner guide 45 so as to rotate integrally therewith. In other words, the guide mechanism 80 is rotatably connected to the housing 20 with the front-rear direction as its axial direction. That is, the inner guide 45 is configured as a rotating shaft of the guide mechanism 80 and also as a bearing member of the lifter 65 .
また、ガイドプレート81の湾曲部81Aよりも上側部分が、ガイド部81Bとして構成されており、ガイドプレート81の湾曲部81Aよりも下側部分が、連結部81Cとして構成されている。一対のガイドプレート81のガイド部81B同士は、左右方向に所定の隙間を空けて対向して配置され、一対のガイドプレート81の連結部81C同士は、左右方向に所定の隙間を空けて対向して配置されている。そして、一対のガイド部81Bの対向距離が、一対の連結部81Cの対向距離よりも短く設定されると共に、ブレード72の板厚よりも僅かに長く設定されている。また、連結部81Cの後端部の角部には、逃げ部81D(図2参照)が形成されており、逃げ部81Dは、側面視で、後側及び下側へ開放された凹状に切り欠かれている。 Further, a portion above the curved portion 81A of the guide plate 81 is configured as a guide portion 81B, and a portion below the curved portion 81A of the guide plate 81 is configured as a connecting portion 81C. The guide portions 81B of the pair of guide plates 81 are arranged to face each other with a predetermined gap in the left-right direction, and the connecting portions 81C of the pair of guide plates 81 face each other with a predetermined gap in the left-right direction. are placed. The opposing distance between the pair of guide portions 81B is set shorter than the opposing distance between the pair of connecting portions 81C and slightly longer than the plate thickness of the blade 72 . In addition, an escape portion 81D (see FIG. 2) is formed at the corner of the rear end portion of the connecting portion 81C. missing.
そして、ブレード72が、一対のガイドプレート81の間に配置されている。また、後述する保持機構90によって、ガイドプレート81(ガイド機構80)のハウジング20に対する相対回転が制限されている。これにより、ドライブシャフト63の回転時において、リフタ65及びブレード72がドライブシャフト63と共に回転することをガイドプレート81のガイド部81Bによって制限して、ブレード72がガイド部81Bに沿って前後方向に往復移動する構成になっている。なお、ガイド部81Bとブレード72との間には僅かな隙間(空間)が設けられており、ブレード72はこの隙間の分は回転ができるように構成されているが、当該隙間は切断作業に影響しない程度の微小な大きさである。特に、ガイド部81Bの間隔は、一対のヘッドプレート83の間の領域(左右方向の間隔)からブレード72が外れてしまうことを抑制する大きさとなっている。換言すれば、ガイド部81Bの間隔は、反転位置に向かうブレード72がヘッドプレート83に接触しないような大きさに設定されている。より詳細には、一対のガイド部81Bの間隔(左右方向の隙間)は、一対のヘッドプレート83の間隔(左右方向の隙間)よりも小さくなるように構成されている。また、後述する保持機構90では、作業者の手動操作によって所定値以上の回転力(操作力)がガイドプレート81(ガイド機構80)に付与された場合には、ガイドプレート81のハウジング20に対する相対回転が許可されるようになっている。これにより、前側から見たブレード72の向きが変更される。具体的には、前側から見たブレード72の刃部72Aの向きが変更される。つまり、ガイド機構80は、作動することで、ブレード72の移動方向から見た被加工材Wに対するブレード72の向きを変更する機構部としても構成されている。 A blade 72 is arranged between the pair of guide plates 81 . Moreover, the relative rotation of the guide plate 81 (guide mechanism 80 ) with respect to the housing 20 is restricted by a holding mechanism 90 to be described later. As a result, when the drive shaft 63 rotates, the lifter 65 and the blade 72 are restricted from rotating together with the drive shaft 63 by the guide portion 81B of the guide plate 81, and the blade 72 reciprocates in the front-rear direction along the guide portion 81B. It is configured to move. A slight gap (space) is provided between the guide portion 81B and the blade 72, and the blade 72 is configured to be able to rotate by this gap. The size is so small that it has no effect. In particular, the gap between the guide portions 81B is a size that prevents the blade 72 from coming off the area between the pair of head plates 83 (the gap in the left-right direction). In other words, the interval between the guide portions 81B is set to such a size that the blade 72 moving toward the reversing position does not come into contact with the head plate 83. As shown in FIG. More specifically, the gap (left-right direction gap) between the pair of guide portions 81B is configured to be smaller than the gap (left-right direction gap) between the pair of head plates 83 . Further, in the holding mechanism 90 to be described later, when a rotational force (operating force) of a predetermined value or more is applied to the guide plate 81 (guide mechanism 80) by manual operation by an operator, the guide plate 81 relative to the housing 20 is displaced. Rotation is allowed. This changes the orientation of the blade 72 as seen from the front side. Specifically, the orientation of the blade portion 72A of the blade 72 viewed from the front side is changed. In other words, the guide mechanism 80 is also configured as a mechanism section that changes the orientation of the blade 72 with respect to the workpiece W viewed from the movement direction of the blade 72 by operating.
そして、本実施の形態では、被加工材Wに対するブレード72の向きを、後述するストッパ94によって、2つの向きに決定できるようになっている。詳しくは、ストッパ94によって、ガイド機構80が第1位置(図1及び図2に示される位置)に配置されたときのブレード72の向きと、第1位置からガイド機構80が180度回転した第2位置(図6に示される位置)に配置されたときのブレード72の向きと、の2つの向きに決定できる構成になっている。 In this embodiment, the orientation of the blade 72 with respect to the workpiece W can be determined in two orientations by a stopper 94, which will be described later. More specifically, the stopper 94 allows the orientation of the blade 72 when the guide mechanism 80 is placed in the first position (the position shown in FIGS. 1 and 2) and the orientation of the blade 72 when the guide mechanism 80 is rotated 180 degrees from the first position. The orientation of the blade 72 when placed in two positions (the position shown in FIG. 6) and the orientation of the blade 72 can be determined in two directions.
連結部材82は、左右方向を板厚方向とし且つ前後方向に延在された略長尺板状に形成されている。そして、連結部材82が、一対のガイドプレート81の連結部81Cの間に配置されて、ボルトBL4によってガイドプレート81に締結固定されている。 The connecting member 82 is formed in a substantially elongated plate shape extending in the front-rear direction with the thickness direction being the left-right direction. A connecting member 82 is arranged between the connecting portions 81C of the pair of guide plates 81 and fastened and fixed to the guide plates 81 with bolts BL4.
ヘッドプレート83は、左右方向を板厚方向とする板状に形成されている。ヘッドプレート83は、ガイドプレート81の前側で且つ連結部材82の左右方向外側に配置されており、ヘッドプレート83の下端部が、ボルトBL4によって連結部材82の前端部に締結固定されている。ヘッドプレート83は被加工材Wを支持する支持部として機能するものであり、被加工材Wの形状に合わせた特徴を有することで作業性を向上させることができる。本実施の形態の場合、ヘッドプレート83の後端部には、複数(本実施の形態では、4箇所)の凹部としてのヘッド凹部83A(切り欠き)が形成されており、ヘッド凹部83Aは、後側へ開放された凹状に形成されると共に、左右方向に貫通している。このように構成することで、断面がコの字(U字)の被加工材Wの切断を好適に行うことができるようになっている。すなわち、被加工材Wへの切断加工時には、被加工材Wの長手方向から見た被加工材Wの両端部をヘッド凹部83Aに挿入して、被加工材Wをセット(支持)するようになっている。このように、被加工材Wはその一部をヘッド凹部83Aに位置されながら、ヘッドプレート83に支持される。本実施の形態では4箇所にヘッド凹部83Aを設けているので、凹部の組み合わせに対応した幅の被加工材Wの切断に対応可能となっている。なお、ヘッド凹部83Aの形状は、加工材の形状に合わせて適宜変更可能である。ヘッド凹部83Aは、本発明の支持部における切り欠き部、または支持部における開放部の一例である。 The head plate 83 is formed in a plate shape having a plate thickness direction in the left-right direction. The head plate 83 is arranged on the front side of the guide plate 81 and laterally outside of the connecting member 82, and the lower end of the head plate 83 is fastened and fixed to the front end of the connecting member 82 with bolts BL4. The head plate 83 functions as a support portion that supports the workpiece W, and has characteristics that match the shape of the workpiece W, so that workability can be improved. In the case of the present embodiment, head recesses 83A (notches) are formed as a plurality of (four in the present embodiment) recesses at the rear end of the head plate 83. The head recesses 83A are It is formed in a concave shape that opens rearward and penetrates in the left-right direction. With this configuration, it is possible to suitably cut the workpiece W having a U-shaped cross section. That is, when cutting the workpiece W, both ends of the workpiece W viewed from the longitudinal direction of the workpiece W are inserted into the head recesses 83A to set (support) the workpiece W. It's becoming In this manner, the workpiece W is supported by the head plate 83 while being partially positioned in the head recess 83A. In this embodiment, since the head recesses 83A are provided at four locations, it is possible to cut the workpiece W having a width corresponding to the combination of the recesses. The shape of the head concave portion 83A can be appropriately changed according to the shape of the workpiece. The head concave portion 83A is an example of a notch portion in the support portion or an open portion in the support portion of the present invention.
(保持機構90について) 図1~図6に示されるように、保持機構90は、移動制限部材としてのウェーブワッシャ92と、一対のストッパ94と、を含んで構成されている。図6に示されるように、ウェーブワッシャ92は、前後方向を板厚方向とする略円板状に形成されている。ウェーブワッシャ92は、ガイドプレート81の湾曲部81Aとリフタハウジング22との間に配置されており、ウェーブワッシャ92と、ガイドプレート81及びリフタハウジング22と、の間に発生する摩擦力によってガイドプレート81の回転を制限するように構成されている。より詳しくは、モータ50の駆動によってドライブシャフト63が回転するときには、リフタ65及びブレード72がドライブシャフト63と共に回転しようとするため、ブレード72からガイドプレート81に回転力が入力されるが、このときには、ガイドプレート81が回転しないように、ウェーブワッシャ92の形状などが設定されている。一方、作業者の手動操作によって所定値以上の回転力(操作力)がガイドプレート81に入力されたときには、ガイドプレート81の回転が許可されるようになっている。すなわち、ウェーブワッシャ92は、所謂トルクリミッタ部材として機能するように構成されている。 (Regarding the Holding Mechanism 90 ) As shown in FIGS. 1 to 6, the holding mechanism 90 includes a wave washer 92 as a movement restricting member and a pair of stoppers 94 . As shown in FIG. 6, the wave washer 92 is formed in a substantially disc shape with the front-rear direction as the plate thickness direction. The wave washer 92 is arranged between the curved portion 81A of the guide plate 81 and the lifter housing 22, and the frictional force generated between the wave washer 92, the guide plate 81 and the lifter housing 22 causes the guide plate 81 to move. is configured to limit the rotation of the More specifically, when the drive shaft 63 is rotated by driving the motor 50, the lifter 65 and the blades 72 tend to rotate together with the drive shaft 63, so that a rotational force is input from the blades 72 to the guide plate 81. , and the shape of the wave washer 92 is set so that the guide plate 81 does not rotate. On the other hand, the rotation of the guide plate 81 is permitted when a rotational force (operating force) greater than or equal to a predetermined value is input to the guide plate 81 by manual operation by the operator. That is, the wave washer 92 is configured to function as a so-called torque limiter member.
図1~図6に示されるように、ストッパ94は、ガイドプレート81の回転位置を決定して、ブレード72の被加工材Wに対する向きを決定する部材として構成されている。具体的には、ガイド機構80が手動操作によって回転したとき(作動したとき)には、ガイドプレート81がストッパ94に当接して、ガイドプレート81の回転が阻止されることで、ブレード72の被加工材Wに対する向きが決定される。 As shown in FIGS. 1 to 6, the stopper 94 is configured as a member that determines the rotational position of the guide plate 81 and determines the orientation of the blade 72 with respect to the workpiece W. As shown in FIG. Specifically, when the guide mechanism 80 is manually rotated (operated), the guide plate 81 abuts against the stopper 94 to prevent the rotation of the guide plate 81, thereby preventing the blade 72 from being affected. An orientation with respect to the workpiece W is determined.
ストッパ94は、ハウジング20に固定される固定部94Aと、ガイドプレート81に当接可能に構成された当接部94Bと、を含んで構成されている。固定部94Aは、左右方向を板厚方向とする略矩形プレート状に形成されている。固定部94Aは、リフタハウジング22における上下のフランジ部23Aの右側にそれぞれ配置されて、ボルトBL1によって、リフタハウジング22に共締めされている。 The stopper 94 includes a fixed portion 94A fixed to the housing 20 and a contact portion 94B configured to contact the guide plate 81 . The fixed portion 94A is formed in a substantially rectangular plate shape whose plate thickness direction is the left-right direction. The fixed portions 94A are arranged on the right side of the upper and lower flange portions 23A of the lifter housing 22, respectively, and are fastened together to the lifter housing 22 with bolts BL1.
当接部94Bは、左右方向に延在された略矩形柱状に形成されている。当接部94Bは、リフタハウジング22の前側に配置されており、当接部94Bの右端部が、固定部94Aの上下方向外側端部に接続されている。そして、図1及び図3(B)に示されるように、ガイド機構80の第1位置では、上側の当接部94Bが、ガイドプレート81のガイド部81Bの後端部に右側から当接して、前側から見たガイド機構80の反時計周りの回転が規制されている。また、ガイド機構80の第1位置では、下側の当接部94Bの左端部が、ガイドプレート81の逃げ部81D内に配置されて、ガイドプレート81と下側のストッパ94との干渉が回避されている。 The contact portion 94B is formed in a substantially rectangular columnar shape extending in the left-right direction. The contact portion 94B is arranged on the front side of the lifter housing 22, and the right end portion of the contact portion 94B is connected to the vertical outer end portion of the fixed portion 94A. 1 and 3B, in the first position of the guide mechanism 80, the upper contact portion 94B contacts the rear end portion of the guide portion 81B of the guide plate 81 from the right side. , counterclockwise rotation of the guide mechanism 80 viewed from the front side is restricted. Further, at the first position of the guide mechanism 80, the left end of the lower contact portion 94B is arranged in the relief portion 81D of the guide plate 81 to avoid interference between the guide plate 81 and the lower stopper 94. It is
また、前側から見て、ガイド機構80を第1位置から時計周りに180度回転させたときには、ガイドプレート81のガイド部81Bの後端部が、下側の当接部94Bに当接し、ガイド機構80の時計周りの回転が規制されると共に、ガイド機構80の位置が第2位置に決定されるようになっている(図6参照)。ガイド機構80の第2位置では、上側の当接部94Bの左端部が、ガイドプレート81の逃げ部81D内に配置されて、ガイドプレート81と上側のストッパ94との干渉が回避されている。このように、一対のストッパ94は、ガイド機構80の作動回転角度範囲を決定する部材としても構成されている。換言すると、一対のストッパ94は、ガイド機構80の作動時における、リフタ65のドライブシャフト63に対する相対回転角度範囲を決定して、リフタ65がドライブシャフト63に対して過度に相対移動することを制限している。本実施の形態では、一対のストッパ94によって、ガイド機構80の作動回転角度範囲が180度に設定されている。すなわち、ガイド機構80の作動範囲が1回転以下に設定されている。 When the guide mechanism 80 is rotated 180 degrees clockwise from the first position as viewed from the front side, the rear end of the guide portion 81B of the guide plate 81 abuts on the lower abutment portion 94B and guides the guide. The clockwise rotation of the mechanism 80 is restricted, and the position of the guide mechanism 80 is determined at the second position (see FIG. 6). At the second position of the guide mechanism 80, the left end portion of the upper contact portion 94B is arranged within the relief portion 81D of the guide plate 81, thereby avoiding interference between the guide plate 81 and the upper stopper 94. Thus, the pair of stoppers 94 are also configured as members that determine the operating rotation angle range of the guide mechanism 80 . In other words, the pair of stoppers 94 determines the relative rotation angle range of the lifter 65 with respect to the drive shaft 63 when the guide mechanism 80 is actuated, and limits excessive relative movement of the lifter 65 with respect to the drive shaft 63. are doing. In this embodiment, the pair of stoppers 94 set the operating rotation angle range of the guide mechanism 80 to 180 degrees. That is, the operating range of the guide mechanism 80 is set to one rotation or less.
(制御部100について) 図2に示されるように、制御部100は、本体ハウジング24の下端部内に収容されて、本体ハウジング24に保持されている。制御部100には、トリガスイッチ31、モータ50、及びリフタ検出スイッチ68が電気的に接続されている。制御部100は、リフタ検出スイッチ68の検出信号に基づいて、リフタ65の初期位置を検知する。また、制御部100は、トリガスイッチ31及びリフタ検出スイッチ68からの出力信号に基づいて、モータ50を駆動制御する。そして、制御部100がモータ50を正転駆動させることで、リフタ65(ブレード72)が前方側へ移動し、制御部100がモータ50を逆転駆動させることで、リフタ65(ブレード72)が後方側へ移動するようになっている。 (Control Unit 100) As shown in FIG. 2, the control unit 100 is accommodated in the lower end portion of the body housing 24 and held by the body housing 24. As shown in FIG. The trigger switch 31 , the motor 50 and the lifter detection switch 68 are electrically connected to the controller 100 . The control section 100 detects the initial position of the lifter 65 based on the detection signal from the lifter detection switch 68 . Further, the control unit 100 drives and controls the motor 50 based on output signals from the trigger switch 31 and the lifter detection switch 68 . When the control unit 100 drives the motor 50 forward, the lifter 65 (the blade 72) moves forward, and when the control unit 100 drives the motor 50 in the reverse direction, the lifter 65 (the blade 72) moves backward. It is designed to move to the side.
また、制御部100は、モータ50の正転駆動中にトリガ30の操作が解除されてトリガスイッチ31がオンからオフに切替わったときには、モータ50を逆転駆動させるようになっている。さらに、制御部100は、モータ50の駆動軸51の回転数を計測する回転数計測部100Aを有している。回転数計測部100Aは複数のホールICを有する回路基板であり、ロータ52に設けられた永久磁石の磁気を検出可能となっている。制御部100は、回転数計測部100Aからの信号に基づいてロータ52(モータ50)の回転位置、及び回転数を検知することが可能に構成されている。回転数計測部100Aは、ロータ52の近くに配置する必要があるため、信号線によって接続することで制御部100と離間して配置されている。回転数計測部100Aからの信号によって、モータ50が初期位置から何回転したかを、制御部100が検知することができる。これによって、制御部100は、リフタ65の初期位置を起点としたモータ50の回転数に基づいてリフタ65(ブレード72)の反転位置を検知する。さらに、制御部100は、リフタ65(ブレード72)の反転位置を検知すると、モータ50を正転から逆転に切替えるようになっている。このように、回転数計測部100Aは、位置検出部の一部として機能する。より具体的には、回転数計測部100Aは、リフタ65が反転位置に位置したことを検知する反転位置検出部として機能する。このように、本発明における位置検出部はリフタ検出スイッチ68と回転数計測部100Aを含んでいる。なお、リフタ検出スイッチ68はリフタ65の初期位置を直接検出するものであり、回転数計測部100Aはリフタ65の反転位置を間接的に検出するものである。なお、制御部100におけるモータ50の回転数計測開始のタイミングについては後述する。 Further, when the operation of the trigger 30 is released and the trigger switch 31 is switched from ON to OFF while the motor 50 is driving forward, the control unit 100 reversely drives the motor 50 . Further, the control unit 100 has a rotation speed measurement unit 100A that measures the rotation speed of the drive shaft 51 of the motor 50 . The rotation speed measurement unit 100A is a circuit board having a plurality of Hall ICs, and is capable of detecting the magnetism of the permanent magnets provided on the rotor 52 . The control unit 100 is configured to be able to detect the rotation position and rotation speed of the rotor 52 (motor 50) based on the signal from the rotation speed measurement unit 100A. Since the rotation speed measurement unit 100A needs to be arranged near the rotor 52, it is arranged apart from the control unit 100 by connecting with a signal line. The control unit 100 can detect how many times the motor 50 has rotated from the initial position based on the signal from the rotation speed measurement unit 100A. Thereby, the control unit 100 detects the reverse position of the lifter 65 (blade 72) based on the number of rotations of the motor 50 with the initial position of the lifter 65 as the starting point. Further, when detecting the reverse position of the lifter 65 (blade 72), the control unit 100 switches the motor 50 from normal rotation to reverse rotation. In this way, the rotation speed measurement section 100A functions as part of the position detection section. More specifically, the number-of-revolutions measurement unit 100A functions as a reversal position detection unit that detects that the lifter 65 is positioned at the reversal position. Thus, the position detection section in the present invention includes the lifter detection switch 68 and the rotation speed measurement section 100A. The lifter detection switch 68 directly detects the initial position of the lifter 65, and the rotational speed measurement section 100A indirectly detects the reversed position of the lifter 65. FIG. The timing at which the controller 100 starts measuring the number of revolutions of the motor 50 will be described later.
(作用効果) 次に、電動切断機10の動作を説明しつつ、本実施の形態の電動切断機10の作用効果について説明する。 (Action and Effect) Next, while explaining the operation of the electric cutting machine 10, the action and effect of the electric cutting machine 10 of the present embodiment will be explained.
図7には、電動切断機10のフローチャートが記載されている。この図に示されるように、電動切断機10の動作では、ステップ1(S1)において、制御部100が、トリガスイッチ31からの出力信号に基づいて、トリガスイッチ31がオンであるか否かを検出する。すなわち、トリガ30が操作されたか否かを、制御部100が判別する。ステップ1において、トリガスイッチ31がオンされていない場合(ステップ1のNoの場合)には、ステップ1に戻る。ステップ1において、トリガスイッチ31がオンされた場合(ステップ1のYesの場合)には、ステップ2(S2)に移行する。 A flow chart of the electric cutting machine 10 is described in FIG. As shown in this figure, in the operation of the electric cutting machine 10, in step 1 (S1), the control unit 100 determines whether or not the trigger switch 31 is on based on the output signal from the trigger switch 31. To detect. That is, the control unit 100 determines whether the trigger 30 has been operated. In step 1, if the trigger switch 31 is not turned on (No in step 1), the process returns to step 1. If the trigger switch 31 is turned on in step 1 (Yes in step 1), the process proceeds to step 2 (S2).
ステップ2では、制御部100が、リフタ検出スイッチ68からの出力信号に基づいて、リフタ検出スイッチ68がオンされたか否かを検出する。すなわち、リフタ65が初期位置に配置されているか否かを、制御部100が判別する。ステップ2において、リフタ検出スイッチ68がオンである場合(ステップ2のYesの場合)には、ステップ3(S3)に移行する。 In step 2, the control section 100 detects whether or not the lifter detection switch 68 is turned on based on the output signal from the lifter detection switch 68 . That is, the control unit 100 determines whether or not the lifter 65 is arranged at the initial position. In step 2, if the lifter detection switch 68 is on (Yes in step 2), the process proceeds to step 3 (S3).
ステップ3では、制御部100によってモータ50を正転駆動させる。すなわち、制御部100が、トリガ30の操作及びリフタ65の初期位置を検知すると、モータ50を正転駆動させる。これにより、リフタ65及びブレード72が前方側(往路側)へ移動する。すなわち、リフタ65及びブレード72が加工材に接近する。ステップ3の処理後、ステップ4(S4)に移行する。 In step 3, the control unit 100 causes the motor 50 to rotate forward. That is, when the control unit 100 detects the operation of the trigger 30 and the initial position of the lifter 65, it drives the motor 50 forward. As a result, the lifter 65 and the blade 72 move forward (forward path side). That is, lifter 65 and blade 72 approach the workpiece. After the processing of step 3, the process proceeds to step 4 (S4).
ステップ4では、制御部100が、トリガスイッチ31からの出力信号に基づいて、トリガスイッチ31のオン状態が継続されているか否かを検出する。すなわち、トリガ30の操作が継続されているか否かを、制御部100が判別する。ステップ4において、トリガスイッチ31のオン状態が継続されている場合(ステップ4のYesの場合)には、ステップ5(S5)に移行する。 In step 4, the control unit 100 detects whether or not the trigger switch 31 continues to be on based on the output signal from the trigger switch 31 . That is, the control unit 100 determines whether the operation of the trigger 30 is continued. In step 4, when the ON state of the trigger switch 31 continues (in the case of Yes in step 4), the process proceeds to step 5 (S5).
ステップ5では、制御部100が、リフタ検出スイッチ68からの出力信号に基づいて、リフタ検出スイッチ68がオンからオフに切替わったか否かを検出する。ステップ5において、リフタ検出スイッチ68がオフに切替わった場合(ステップ5のYesの場合)には、ステップ6(S6)に移行する。すなわち、本実施の形態では、リフタ検出スイッチ68がオンからオフに切替わったリフタ65の位置を、往路移動するリフタ65の初期位置における起点(以下、リフタ65のこの位置を初期起点位置という)としており、ステップ5では、制御部100が、リフタ65の初期起点位置を検知する。一方、ステップ5において、リフタ検出スイッチ68がオフに切替わっていない場合(ステップ5のNoの場合)には、ステップ4に戻る。すなわち、初期位置において往路移動するリフタ65が初期起点位置に到達していない場合には、ステップ4に戻る。 At step 5, based on the output signal from the lifter detection switch 68, the control section 100 detects whether or not the lifter detection switch 68 has been switched from ON to OFF. If the lifter detection switch 68 is turned off in step 5 (Yes in step 5), the process proceeds to step 6 (S6). That is, in the present embodiment, the position of the lifter 65 at which the lifter detection switch 68 is switched from ON to OFF is the starting point of the initial position of the lifter 65 moving forward (hereinafter, this position of the lifter 65 is referred to as the initial starting point position). , and in step 5, the control unit 100 detects the initial starting position of the lifter 65 . On the other hand, if the lifter detection switch 68 is not turned off in step 5 (No in step 5), the process returns to step 4. In other words, when the lifter 65 moving forward from the initial position has not reached the initial starting point position, the process returns to step 4 .
ステップ6では、制御部100が、モータ50の回転数計測を開始する。具体的には、制御部100が、回転数計測部100Aからの信号に基づいてモータ50の回転数の計測(カウント)を開始する。ステップ6の処理後、ステップ7(S7)に移行する。 At step 6 , the control unit 100 starts measuring the number of rotations of the motor 50 . Specifically, the control unit 100 starts measuring (counting) the rotation speed of the motor 50 based on the signal from the rotation speed measurement unit 100A. After the processing of step 6, the process proceeds to step 7 (S7).
ステップ7では、制御部100が、トリガスイッチ31からの出力信号に基づいて、トリガスイッチ31のオン状態が継続されているか否かを検出する。すなわち、トリガ30の操作が継続されているか否かを、制御部100が判別する。ステップ7において、トリガスイッチ31のオン状態が継続されている場合(ステップ7のYesの場合)には、ステップ8(S8)に移行する。 At step 7, the control section 100 detects whether or not the trigger switch 31 is kept on based on the output signal from the trigger switch 31. FIG. That is, the control unit 100 determines whether the operation of the trigger 30 is continued. In step 7, when the ON state of the trigger switch 31 continues (in the case of Yes in step 7), the process proceeds to step 8 (S8).
ステップ8では、制御部100が、モータ50の回転数が所定回転数以上になったか否かを判別する。すなわち、リフタ65が反転位置に到達したか否かを、制御部100が判別する。ステップ8において、モータ50の回転数が所定回転数以上でない場合(ステップ8のNoの場合)には、ステップ7に戻る。ステップ8において、モータ50の回転数が所定回転数以上である場合(ステップ8のYesの場合)には、ステップ9(S9)に移行する。 At step 8, the control unit 100 determines whether or not the number of rotations of the motor 50 has reached or exceeded a predetermined number of rotations. That is, the control unit 100 determines whether or not the lifter 65 has reached the reverse position. In step 8, if the number of rotations of the motor 50 is not equal to or greater than the predetermined number of rotations (No in step 8), the process returns to step 7. In step 8, when the number of rotations of the motor 50 is equal to or higher than the predetermined number of rotations (Yes in step 8), the process proceeds to step 9 (S9).
ステップ9では、制御部100によって、モータ50の正転駆動を停止する。ステップ9の処理後、ステップ10(S10)に移行する。 In step 9, the control unit 100 stops driving the motor 50 in the forward direction. After the processing of step 9, the process proceeds to step 10 (S10).
ステップ10では、モータ50を待機状態にする。すなわち、モータ50の正転駆動の停止後、制御部100によるモータ50の駆動制御を行わず、モータ50を待機状態にする。ステップ10の処理後、ステップ11(S11)に移行する。具体的には、モータ50の正転駆動の停止後、所定時間経過後にステップ11に移行する。 At step 10, the motor 50 is placed in a standby state. That is, after stopping forward rotation of the motor 50, the control unit 100 does not control the driving of the motor 50, and puts the motor 50 in a standby state. After the processing of step 10, the process proceeds to step 11 (S11). Specifically, after the forward rotation of the motor 50 is stopped, the process proceeds to step 11 after a predetermined period of time has elapsed.
ステップ11では、制御部100によって、モータ50を逆転駆動させる。これにより、リフタ65及びブレード72が後方側(復路側)へ移動して被加工材Wから離間する。すなわち、リフタ65及びブレード72が、反転位置において反転して、リフタ65及びブレード72の復路移動が開始する。ステップ11の処理後、ステップ12(S12)に移行する。 In step 11, the control unit 100 drives the motor 50 in reverse. As a result, the lifter 65 and the blade 72 are moved rearward (return side) and separated from the workpiece W. As shown in FIG. That is, the lifter 65 and the blade 72 are reversed at the reverse position, and the return movement of the lifter 65 and the blade 72 is started. After the processing of step 11, the process proceeds to step 12 (S12).
ステップ12では、制御部100が、リフタ検出スイッチ68からの出力信号に基づいて、リフタ検出スイッチ68がオンされたか否かを検出する。すなわち、リフタ65が初期位置に到達したか否かを、制御部100が判別する。ステップ12において、リフタ検出スイッチ68がオンでない場合(ステップ12のNoの場合)には、ステップ12に戻る。一方、ステップ12において、リフタ検出スイッチ68がオンである場合(ステップ12のYesの場合)には、ステップ13(S3)に移行する。 At step 12, the control section 100 detects whether or not the lifter detection switch 68 is turned on based on the output signal from the lifter detection switch 68. FIG. That is, the control unit 100 determines whether the lifter 65 has reached the initial position. In step 12, if the lifter detection switch 68 is not turned on (No in step 12), the process returns to step 12. On the other hand, if the lifter detection switch 68 is ON in step 12 (Yes in step 12), the process proceeds to step 13 (S3).
ステップ13では、制御部100によるモータ50の逆転駆動を停止する。これにより、リフタ65が初期位置において停止する。ステップ13の処理後、ステップ14(S14)に移行する。なお、モータ50の逆転駆動を停止させることで、リフタ65が初期位置に復帰するが、モータ50の制動時間等によって、リフタ65は初期起点位置よりも復路側へオーバーランした位置で停止する(以下、このリフタ65の位置を初期停止位置という)。 At step 13, the reverse rotation of the motor 50 by the controller 100 is stopped. As a result, the lifter 65 stops at the initial position. After the processing of step 13, the process proceeds to step 14 (S14). By stopping the reverse driving of the motor 50, the lifter 65 returns to the initial position. However, due to the braking time of the motor 50, etc., the lifter 65 stops at a position where it overruns from the initial starting position toward the return path ( Hereinafter, the position of the lifter 65 will be referred to as an initial stop position).
ステップ14では、制御部100が、トリガスイッチ31からの出力信号に基づいて、トリガスイッチ31がオンからオフに切替わったか否かを検出する。すなわち、トリガ30の操作が解除されたか否かを、制御部100が検出する。ステップ14において、トリガスイッチ31がオフでない場合(ステップ14のNoの場合)には、ステップ14に戻る。一方、ステップ14において、トリガスイッチ31がオフである場合(ステップ14のYesの場合)には、トリガ30の操作が解除されたため、電動切断機10の動作を終了する。 At step 14, the control unit 100 detects whether or not the trigger switch 31 has been switched from on to off based on the output signal from the trigger switch 31. FIG. That is, the control unit 100 detects whether or not the operation of the trigger 30 has been released. In step 14, if the trigger switch 31 is not off (No in step 14), the process returns to step 14. On the other hand, if the trigger switch 31 is off in step 14 (Yes in step 14), the operation of the electric cutting machine 10 is terminated because the operation of the trigger 30 has been released.
なお、ステップ2において、リフタ検出スイッチ68がオンでない場合(ステップ2のNoの場合)には、ステップ11に移行する。すなわち、この場合には、電動切断機10の動作開始時において、リフタ65が初期位置に復帰していないため、ステップ11に移行させて、リフタ65を初期位置に復帰させる。 If the lifter detection switch 68 is not turned on in step 2 (No in step 2), step 11 is performed. That is, in this case, since the lifter 65 has not returned to the initial position when the electric cutting machine 10 starts operating, the process proceeds to step 11 to return the lifter 65 to the initial position.
また、ステップ4及びステップ7において、トリガスイッチ31のオン状態が継続されていない場合(ステップ4及びステップ7のNoの場合)には、ステップ9に移行する。すなわち、この場合は、リフタ65の往路移動中に作業者のトリガ30に対する操作が解除された場合である。このため、制御部100によってモータ50の正転駆動を停止して、所定時間経過後にモータ50を逆転駆動させて、リフタ65を初期位置に戻す。 If the ON state of the trigger switch 31 is not continued in steps 4 and 7 (No in steps 4 and 7), step 9 is performed. That is, in this case, the operator's operation of the trigger 30 is released while the lifter 65 is moving forward. Therefore, the control unit 100 stops forward rotation of the motor 50 and rotates the motor 50 in reverse rotation after a predetermined period of time has elapsed, thereby returning the lifter 65 to the initial position.
上記の電動切断機10の動作を図8に示すタイムチャートを用いて説明する。この図に示されるように、電動切断機10の非動作状態である時間T0では、リフタ65が初期停止位置に配置されている。このため、時間T0では、リフタ検出スイッチ68がオンになっている。また、時間T0では、電動切断機10の非動作状態であるため、トリガスイッチ31がオフになっている。 The operation of the electric cutting machine 10 will be described with reference to the time chart shown in FIG. As shown in this figure, the lifter 65 is located at the initial stop position at time T0 when the electric cutting machine 10 is in a non-operating state. Therefore, at time T0, the lifter detection switch 68 is turned on. At time T0, the electric cutting machine 10 is in a non-operating state, so the trigger switch 31 is turned off.
そして、時間T1において、トリガスイッチ31がオンされると、制御部100によるモータ50の正転駆動が開始され、モータ50の出力がゼロから徐々に高くなると共に、モータ50の回転速度がゼロから徐々に高くなる。これにより、リフタ65が初期停止位置から往路側へ移動する。 At time T1, when the trigger switch 31 is turned on, the forward rotation of the motor 50 is started by the control unit 100, the output of the motor 50 gradually increases from zero, and the rotational speed of the motor 50 increases from zero. gradually become higher. As a result, the lifter 65 moves from the initial stop position toward the outward path.
時間T2では、リフタ65が初期起点位置に到達し、リフタ検出スイッチ68がオンからオフに切替る。これにより、時間T2において、制御部100におけるモータ50の回転数計測が開始される。すなわち、制御部100におけるモータ50の回転数のカウントが開始される。 At time T2, the lifter 65 reaches the initial starting position, and the lifter detection switch 68 is switched from on to off. As a result, the rotation speed measurement of the motor 50 in the control unit 100 is started at the time T2. That is, counting of the number of rotations of the motor 50 in the control unit 100 is started.
時間T3では、リフタ65が反転位置に到達して、モータ50の回転数カウントが所定回数に達する。これにより、制御部100によるモータ50の正転駆動が停止される。すなわち、モータ50への供給電力がゼロになり、モータ50の回転速度が徐々に低くなる。また、時間T3では、モータ50の回転数カウントが所定回数に達するため、制御部100は、回転数のカウントをリセットして、ゼロに戻す。 At time T3, the lifter 65 reaches the reversing position, and the number of revolutions of the motor 50 reaches a predetermined number. As a result, forward rotation driving of the motor 50 by the control unit 100 is stopped. That is, the power supplied to the motor 50 becomes zero, and the rotational speed of the motor 50 gradually decreases. At time T3, the number of rotations counted by the motor 50 reaches a predetermined number of times, so the control unit 100 resets the counted number of rotations to zero.
時間T4では、モータ50の回転速度がゼロになる。そして、時間T5において、制御部100によるモータ50の逆転駆動が開始され、モータ50の出力がゼロから徐々に高くなると共に、モータ50の回転速度がゼロから徐々に高くなる。これにより、リフタ65が反転位置から復路側へ移動する。すなわち、時間T3から時間T5までの間の時間が、モータ50を待機状態にする待機時間となる。 At time T4, the rotational speed of motor 50 becomes zero. At time T5, the control unit 100 starts to reversely drive the motor 50, the output of the motor 50 gradually increases from zero, and the rotational speed of the motor 50 gradually increases from zero. As a result, the lifter 65 moves from the reversal position to the return path side. That is, the time from time T3 to time T5 is the standby time during which the motor 50 is placed in the standby state.
時間T6では、リフタ65が初期起点位置に到達して、リフタ検出スイッチ68がオフからオンに切替る。これにより、制御部100によるモータ50の逆転駆動が停止される。すなわち、モータ50の出力がゼロになり、モータ50の回転速度が徐々に低くなる。 At time T6, the lifter 65 reaches the initial starting position and the lifter detection switch 68 is switched from off to on. As a result, the reverse driving of the motor 50 by the controller 100 is stopped. That is, the output of the motor 50 becomes zero, and the rotation speed of the motor 50 gradually decreases.
そして、時間T7において、モータ50の回転速度がゼロになり、リフタ65が初期停止位置に到達する。 At time T7, the rotation speed of the motor 50 becomes zero, and the lifter 65 reaches the initial stop position.
なお、上記のタイムチャートでは、作業者のトリガ30に対する操作が、時間T5と時間T6との間で解除された例を示している。すなわち、トリガ30の操作が、リフタ65の復路移動中に解除されている。このため、制御部100によるモータ50の逆転駆動が継続されて、リフタ65が初期位置に復帰される。 Note that the above time chart shows an example in which the operator's operation of the trigger 30 is released between time T5 and time T6. That is, the operation of the trigger 30 is canceled while the lifter 65 is moving backward. Therefore, the control unit 100 continues to reversely drive the motor 50, and the lifter 65 is returned to the initial position.
以上説明したように、本実施の形態の電動切断機10によれば、送りネジ機構60が、リフタ65の初期位置を検出するリフタ検出スイッチ68を有している。そして、制御部100が、リフタ検出スイッチ68の検出信号に基づいてリフタ65の初期位置を検知する。これにより、リフタ65の初期位置において、制御部100がモータ50を正転駆動することで、リフタ65を初期位置から反転位置へ往路移動させることができる。また、制御部100は、モータ50の回転数に基づいてリフタ65の反転位置を検知する。これにより、モータ50をリフタ65の反転位置において停止させて、ブレード72による被加工材Wに対する切断加工を終了させることができる。そして、制御部100がモータ50を逆転駆動することで、リフタ65を、反転位置から初期位置へ復路移動させて、初期位置においてモータ50を停止させることができる。 As described above, according to the electric cutting machine 10 of the present embodiment, the feed screw mechanism 60 has the lifter detection switch 68 that detects the initial position of the lifter 65 . Then, the controller 100 detects the initial position of the lifter 65 based on the detection signal from the lifter detection switch 68 . As a result, when the lifter 65 is at the initial position, the control unit 100 drives the motor 50 to rotate forward, thereby moving the lifter 65 forward from the initial position to the reverse position. Also, the control unit 100 detects the reversing position of the lifter 65 based on the rotation speed of the motor 50 . As a result, the motor 50 is stopped at the reverse position of the lifter 65, and the cutting of the workpiece W by the blade 72 can be finished. Then, the control unit 100 reversely drives the motor 50 to move the lifter 65 backward from the reverse position to the initial position, thereby stopping the motor 50 at the initial position.
このように、本実施の形態の電動切断機10によれば、制御部100が、リフタ検出スイッチ68の検出信号及びモータ50の回転数に基づいて、初期位置及び反転位置を検知することができる。すなわち、制御部100によってモータ50を駆動制御して、リフタ65及びブレード72の移動を、初期位置及び反転位置において、停止させることができる。すなわち、制御部100は、モータ50を駆動させてブレード72を移動させていく状態において、トリガ30をオン状態(引き状態)で維持したままでも、前後方向に直交する左右方向や上下方向から見てブレード72の一部とヘッドプレート83が重なった状態でモータ50を停止させることができる。また、制御部100は、モータ50を駆動させてブレード72を移動させていく状態において、ドライブシャフト63とリフタ65との螺合が外れないようにモータ50を停止させることができる。換言すれば、ドライブシャフト63とリフタ65との螺合状態を維持しながらモータ50を停止させることができる。これにより、例えば、背景技術に記載した電動切断機のような、リフタに対するモータの駆動力の伝達経路を遮断状態又は連結状態に切り替えるための切替機構などを設けることなく、反転位置においてリフタ65を停止または反転させることができる。換言すれば、制御部100は、左右方向で見てブレード72の一部とヘッドプレート83が重なった状態、すなわち、ブレード72による被加工材Wへの切断がなされた状態となったときに、トリガ30をオン状態に維持していてもモータ50を停止するように構成されている。したがって、好適に、リフタ65及びブレード72を移動させることができる。特に、制御部100は、左右方向で見てヘッド凹部83Aとブレード72が重なった状態において、トリガ30をオン状態(引き状態)で維持したままでも、モータ50を停止するように構成されている。これによって、ヘッド凹部83Aに被加工材Wの一部が位置した状態でも、好適に切断作業を行うことができる。なお、反転位置にブレード72が位置した際においては、モータ50の停止状態を維持してもよいし、停止させずに直ちに逆転させてもよい。また、被加工材は薄いものから形状が複雑なものまで様々な形状があるため、モータ50を停止させるタイミングについては、左右方向で見てブレード72の一部とヘッドプレート83が重なった状態であれば任意に変更可能である。すなわち、薄い材料を切る場合は早めに停止または逆転させれば良いし、ヘッド凹部83Aを用いた複雑形状な被加工材Wを切断する場合は、ブレード72とヘッド凹部83Aとが重なる状態でモータ50を停止または逆転させれば良い。さらに、モータ50はリフタ65が反転位置に位置した際に自動的に停止するため、加工が終了したことを作業者が認識することができる。これにより作業性が向上する。また、往復動するリフタ65に雌ネジ67Aを設け、ドライブシャフト63に雄ネジ63Aを設けることで、リフタ65をドライブシャフト63の外側で動作するように構成することができ、リフタ65の内部をドライブシャフト63が動作する構成と比較して、容易にリフタ65の位置を検出することができる。 Thus, according to the electric cutting machine 10 of the present embodiment, the control section 100 can detect the initial position and the reverse position based on the detection signal of the lifter detection switch 68 and the rotation speed of the motor 50. . That is, the control unit 100 drives and controls the motor 50 to stop the movement of the lifter 65 and the blade 72 at the initial position and the reverse position. That is, in the state in which the blade 72 is moved by driving the motor 50, the control unit 100 controls the movement of the blade 72 as viewed from the left-right direction perpendicular to the front-rear direction and the up-down direction even if the trigger 30 is maintained in the ON state (pulled state). The motor 50 can be stopped in a state in which a portion of the blade 72 and the head plate 83 overlap with each other. In addition, the control unit 100 can stop the motor 50 so that the drive shaft 63 and the lifter 65 are not disengaged while the blade 72 is being moved by driving the motor 50 . In other words, the motor 50 can be stopped while the screwed state between the drive shaft 63 and the lifter 65 is maintained. As a result, the lifter 65 can be moved at the reversing position without providing a switching mechanism for switching the transmission path of the driving force of the motor to the lifter between the disconnected state and the connected state, for example, as in the electric cutting machine described in the background art. Can be stopped or reversed. In other words, when the blade 72 partially overlaps the head plate 83 when viewed in the left-right direction, that is, when the workpiece W is cut by the blade 72, the control unit 100 It is configured to stop the motor 50 even if the trigger 30 is kept on. Therefore, the lifter 65 and blade 72 can be preferably moved. In particular, the control unit 100 is configured to stop the motor 50 even when the trigger 30 is maintained in the ON state (pulled state) in a state where the head concave portion 83A and the blade 72 overlap when viewed in the horizontal direction. . As a result, even when part of the workpiece W is positioned in the head concave portion 83A, the cutting operation can be preferably performed. Note that when the blade 72 is positioned at the reverse position, the motor 50 may be maintained in a stopped state, or may be immediately reversed without being stopped. In addition, since the material to be processed has various shapes, from thin to complicated, the timing of stopping the motor 50 is determined when a part of the blade 72 overlaps the head plate 83 when viewed in the left-right direction. If there is, it can be changed arbitrarily. That is, when cutting a thin material, it may be stopped or reversed early, and when cutting a workpiece W having a complicated shape using the head recess 83A, the motor is operated while the blade 72 and the head recess 83A overlap each other. 50 should be stopped or reversed. Furthermore, since the motor 50 automatically stops when the lifter 65 is positioned at the reverse position, the operator can recognize that the machining is completed. This improves workability. In addition, by providing the reciprocating lifter 65 with a female screw 67A and providing the drive shaft 63 with a male screw 63A, the lifter 65 can be configured to operate outside the drive shaft 63, and the inside of the lifter 65 can be configured. The position of the lifter 65 can be easily detected compared to the configuration in which the drive shaft 63 operates.
また、リフタ検出スイッチ68は、リフタ65の反転位置から初期位置への復路側への移動時にリフタ65が初期位置に到達すると、リフタ検出スイッチ68がオフからオンに切替るように構成されている。さらに、制御部100は、リフタ検出スイッチ68がオンからオフに切替る時点を起点として、モータ50の回転数の計測を開始する。すなわち、制御部100は、リフタ65の初期起点位置を起点として、モータ50の回転数の計測を開始する。これにより、リフタ65の反転位置を精度よく検知することができる。 Further, the lifter detection switch 68 is configured to switch from OFF to ON when the lifter 65 reaches the initial position while the lifter 65 is moving from the reverse position to the initial position in the backward direction. . Further, the control unit 100 starts measuring the number of revolutions of the motor 50 starting from the time when the lifter detection switch 68 is switched from ON to OFF. That is, the control unit 100 starts measuring the number of revolutions of the motor 50 starting from the initial starting position of the lifter 65 . As a result, the reversal position of the lifter 65 can be detected with high accuracy.
つまり、上述のように、リフタ65が初期位置に復帰したときには、制御部100が、リフタ検出スイッチ68のオフからオンへ切替わる検出信号に基づいて、モータ50に対する駆動を停止する。このときには、リフタ65が初期起点位置よりも復路側へオーバーランした初期停止位置で停止する。そして、この初期停止位置は、モータ50の制動性能等に起因するため、初期停止位置にばらつきが生じる。このため、リフタ65の初期停止位置を起点としてモータ50の回転数の計測を開始すると、リフタ65の反転位置を精度よく検知することができなくなる可能性がある。 That is, as described above, when the lifter 65 returns to the initial position, the control unit 100 stops driving the motor 50 based on the detection signal that the lifter detection switch 68 switches from off to on. At this time, the lifter 65 stops at the initial stop position where the lifter 65 overruns the return path side from the initial starting position. Since this initial stop position is caused by the braking performance of the motor 50, etc., the initial stop position varies. Therefore, if the rotation speed measurement of the motor 50 is started from the initial stop position of the lifter 65, the reverse position of the lifter 65 may not be detected accurately.
これに対して、本実施の形態では、上述のように、制御部100が、リフタ検出スイッチ68がオンからオフに切替る時点を起点として、モータ50の回転数の計測を開始する。そして、リフタ検出スイッチ68がオンからオフに切替る時点は、一定であるため、リフタ65の初期起点位置を起点としてモータ50の回転数の計測を開始することで、リフタ65の反転位置を精度よく検知することができる。 On the other hand, in the present embodiment, as described above, the control unit 100 starts measuring the number of rotations of the motor 50 starting from the time when the lifter detection switch 68 is switched from on to off. Since the time at which the lifter detection switch 68 switches from on to off is constant, by starting to measure the number of revolutions of the motor 50 from the initial starting point position of the lifter 65, the reversing position of the lifter 65 can be accurately determined. can be detected well.
特に、本実施形態の電動切断機10では、ブレード72の向きを変更させるために、ガイド機構80を作動させたときには、リフタ65がドライブシャフト63に対して相対回転する。すなわち、このときには、リフタ65がドライブシャフト63に対して前後方向に移動する。このため、ガイド機構80の作動前後におけるリフタ65の初期停止位置がずれる。したがって、ブレード72の向きを変更させるためのガイド機構80を有する電動切断機10では、リフタ65の初期起点位置を起点としてモータ50の回転数の計測を開始することで、リフタ65の反転位置を良好に検知することができる。 In particular, in the electric cutting machine 10 of this embodiment, the lifter 65 rotates relative to the drive shaft 63 when the guide mechanism 80 is operated to change the orientation of the blade 72 . That is, at this time, the lifter 65 moves forward and backward with respect to the drive shaft 63 . Therefore, the initial stop position of the lifter 65 before and after the operation of the guide mechanism 80 is shifted. Therefore, in the electric cutting machine 10 having the guide mechanism 80 for changing the direction of the blade 72, the reversal position of the lifter 65 is determined by starting the measurement of the number of revolutions of the motor 50 with the initial starting position of the lifter 65 as the starting point. It can be detected well.
また、制御部100は、リフタ65の反転位置を検知すると、所定時間経過後に、モータ50を逆転駆動させて、リフタ65を復路側へ移動させる。このため、ブレード72が反転位置に到達して、ブレード72による被加工材Wに対する切断加工が終了した旨を、作業者に認知させることができる。 Further, when the reverse position of the lifter 65 is detected, the control unit 100 reversely drives the motor 50 to move the lifter 65 toward the return path after a predetermined time has elapsed. Therefore, the operator can be made aware that the blade 72 has reached the reversing position and the cutting of the workpiece W by the blade 72 has been completed.
また、トリガ30の操作開始時に、制御部100がリフタ65の初期位置を検知しない場合には、制御部100は、リフタ65を復路側へ移動させるように、モータ50を逆転駆動させる。これにより、ブレード72を初期位置に自動的に復帰させてから、電動切断機10に対する作業を継続させることができる。 If the control unit 100 does not detect the initial position of the lifter 65 when the trigger 30 is started to be operated, the control unit 100 reversely drives the motor 50 so as to move the lifter 65 toward the return path. As a result, the work on the electric cutting machine 10 can be continued after the blade 72 is automatically returned to the initial position.
また、リフタ65の初期位置から反転位置への往路側への移動時にトリガ30に対する操作が解除されたときには、リフタ65を復路移動させるように、制御部100がモータ50を逆転駆動させる。これにより、被加工材Wに対する切断加工を中止又は中断した場合には、ブレード72を初期位置に自動的に復帰させることができる。 When the trigger 30 is released while the lifter 65 is moving forward from the initial position to the reverse position, the control unit 100 reversely drives the motor 50 so as to move the lifter 65 backward. As a result, the blade 72 can be automatically returned to the initial position when the cutting of the workpiece W is stopped or interrupted.
また、電動切断機10は、ブレード72の前後移動をガイドするガイド機構80を有しており、ブレード72が前後方向(リフタ65の移動方向)を軸として回転することを規制している。電動切断機10においては、ドライブシャフト63とリフタ65との螺合によって回転力の伝達が行われるため、モータ50が回転駆動している際にはリフタ65に前後方向を軸とした回転力も伝達されるが、ガイド機構80によってブレード72(リフタ65)が回転してしまうことを抑制することができる。特に、ガイド機構80(ガイド部81B)はブレード72を覆う部分としても機能するため、ブレード72の覆い部材によってブレード72の回転を規制することができる。また、ガイド部81Bはリフタ65よりも上下方向(径方向)に離間した位置でブレード72をガイド(回転を規制)するため、回転しようとするブレード72からガイド部81Bに伝達される力を小さくすることができる。そして、ガイド機構80が作動することで、前後方向から見たブレード72の向きが変更される。具体的には、作業者の手動操作によって、ガイド機構80のガイドプレート81をインナガイド45の軸回りに回転させることで、前後方向から見たブレード72の向きが変更される。このため、ブレード72の前方側に配置される被加工材Wに対するブレード72の向きを変更することができる。これにより、被加工材Wに対する電動切断機10全体の向きを変更することなく、被加工材Wに対するブレード72の向きを変更することができる。特に、ブレード72の刃部72Aは、片刃で構成されているため、ガイド機構80を操作することで、被加工材Wに対する仕上げ面を容易に変更することができる。したがって、電動切断機10の作業性を向上することができる。 The electric cutting machine 10 also has a guide mechanism 80 that guides the forward and backward movement of the blade 72, and restricts the blade 72 from rotating about the forward and backward direction (moving direction of the lifter 65). In the electric cutting machine 10, the rotational force is transmitted by screwing the drive shaft 63 and the lifter 65 together. Therefore, when the motor 50 is rotationally driven, the rotational force about the longitudinal direction is also transmitted to the lifter 65. However, the guide mechanism 80 can prevent the blade 72 (lifter 65) from rotating. In particular, since the guide mechanism 80 (guide portion 81B) also functions as a portion that covers the blade 72, the rotation of the blade 72 can be regulated by the blade 72 cover member. In addition, since the guide portion 81B guides (regulates rotation of) the blade 72 at a position separated in the vertical direction (radial direction) from the lifter 65, the force transmitted from the blade 72 about to rotate to the guide portion 81B is reduced. can do. By operating the guide mechanism 80, the orientation of the blade 72 viewed from the front-rear direction is changed. Specifically, the direction of the blade 72 viewed from the front-rear direction is changed by rotating the guide plate 81 of the guide mechanism 80 around the axis of the inner guide 45 by the operator's manual operation. Therefore, the orientation of the blade 72 with respect to the workpiece W arranged on the front side of the blade 72 can be changed. Accordingly, the orientation of the blade 72 with respect to the workpiece W can be changed without changing the orientation of the entire electric cutting machine 10 with respect to the workpiece W. In particular, since the blade portion 72A of the blade 72 is composed of a single edge, the finished surface of the workpiece W can be easily changed by operating the guide mechanism 80. FIG. Therefore, the workability of the electric cutting machine 10 can be improved.
また、送りネジ機構60では、前後方向を軸方向とするドライブシャフト63にリフタ65がネジ篏合されており、ブレード72がリフタ65に固定されている。さらに、ガイド機構80は、ブレード72の前後方向の移動をガイドするガイドプレート81を有しており、ガイドプレート81は前後方向を軸方向としてリフタハウジング22に回転可能に連結されている。そして、ガイド機構80の作動時には、ガイド機構80がドライブシャフト63の軸回りに回転する。これにより、ガイドプレート81によって、リフタ65及びブレード72をドライブシャフト63の軸回りに回転させて、ブレード72の向きを変更することができる。 Further, in the feed screw mechanism 60 , a lifter 65 is screw-engaged with a drive shaft 63 whose axial direction is the front-rear direction, and the blade 72 is fixed to the lifter 65 . Further, the guide mechanism 80 has a guide plate 81 that guides the movement of the blade 72 in the front-rear direction, and the guide plate 81 is rotatably connected to the lifter housing 22 with the front-rear direction as its axial direction. When the guide mechanism 80 is actuated, the guide mechanism 80 rotates around the axis of the drive shaft 63 . As a result, the lifter 65 and the blade 72 can be rotated around the axis of the drive shaft 63 by the guide plate 81 to change the orientation of the blade 72 .
また、リフタ65はインナガイド45によって往復動可能に支持されている。すなわちインナガイド45はリフタ65の上下左右方向への移動を規制しながら、前後方向への動きを許容される。こうすることで、リフタ65の往復動に関する精度を向上させることができ、精度のよい切断を行うことが可能となる。また、リフタ65は前方でインナガイド45によって支持されながら、後方では雄ネジ63A(ドライブシャフト63)に支持されている。従って、リフタ65は前後方向で離間した2か所で動作可能に支持されることとなり、これによってリフタ65が傾いてしまうことを抑制できる。従って切断の精度を向上させることができる。さらにリフタ65の傾きが抑制されることで、ドライブシャフト63とのネジ嵌合に不具合が発生することを抑制することができる。また、ガイド機構80は、一対のガイドプレート81と、ガイドプレート81をリフタハウジング22に回転可能に連結するインナガイド45と、を含んで構成されている。インナガイド45は、前後方向を軸方向とする円筒状に形成されており、リフタ65を前後方向に移動可能に支持している。これにより、ガイドプレート81の回転軸であるインナガイド45を活用して、リフタ65を移動可能に支持することができる。したがって、電動切断機10の部品点数の増加を抑制することができると共に、電動切断機10の小型化に寄与することができる。また、上述したように、リフタ本体66は、モータ50によって駆動される方向である前後方向に対して交差する方向(上下左右方向)に移動可能に支持されている。言い換えれば、リフタ65(リフタ本体66)とリフタガイド45との間には、径方向で若干の隙間があるように構成される。製造においては寸法のばらつきが僅かながら発生するものであるが、リフタ65とリフタガイド45との間に径方向の隙間を設けることで、このばらつきに好適に対応することができる。つまり、製造を行いやすくなる。しかし、リフタ65とリフタガイド45との間に隙間を生じさせると、リフタ65がリフタガイド45の内部でガタつく恐れがあるが、本実施の形態ではリフタ65とリフタガイド45との間に設けたOリング46(弾性体)によって、ガタつく動きを吸収するように構成している。さらに、本実施の形態では、伝達ギヤ61がモータ50によって駆動される方向(前後方向を中心とした回転方向であり、上下左右方向)に対して交差する方向(前後方向)に移動可能に支持されている。こうすることで、さらに上記した製造上の部品寸法のばらつきに対応することができ、製造を行いやすくすることができる。すなわち本発明では、モータ50の動力を受けてブレード72に当該動力を伝達する部品が、モータ50によって駆動される方向とは交差する方向に移動可能なようにハウジング20(スペーサ26、リフタハウジング22)に支持されているため、製造を行いやすい作業機を実現できる。製造を行いやすくすることで、コスト削減を図ることも可能となる。 Also, the lifter 65 is supported by the inner guide 45 so as to be able to reciprocate. That is, the inner guide 45 allows movement in the front-rear direction while restricting the movement of the lifter 65 in the vertical and horizontal directions. By doing so, it is possible to improve the accuracy of the reciprocating motion of the lifter 65, and it is possible to perform cutting with high accuracy. Further, the lifter 65 is supported by the inner guide 45 on the front side and by the male screw 63A (the drive shaft 63) on the rear side. Therefore, the lifter 65 is operably supported at two locations spaced apart in the front-rear direction, thereby preventing the lifter 65 from tilting. Therefore, cutting accuracy can be improved. Furthermore, by suppressing the inclination of the lifter 65, it is possible to suppress the occurrence of troubles in the screw engagement with the drive shaft 63. Further, the guide mechanism 80 includes a pair of guide plates 81 and an inner guide 45 that rotatably connects the guide plates 81 to the lifter housing 22 . The inner guide 45 is formed in a cylindrical shape whose axial direction is the front-rear direction, and supports the lifter 65 so as to be movable in the front-rear direction. As a result, the lifter 65 can be movably supported by utilizing the inner guide 45 which is the rotating shaft of the guide plate 81 . Therefore, it is possible to suppress an increase in the number of parts of the electric cutting machine 10 and contribute to downsizing of the electric cutting machine 10 . In addition, as described above, the lifter body 66 is supported so as to be movable in directions (up, down, left, and right) intersecting the front-rear direction, which is the direction driven by the motor 50 . In other words, between the lifter 65 (lifter main body 66) and the lifter guide 45, there is a slight gap in the radial direction. Although slight dimensional variations occur during manufacturing, providing a radial gap between the lifter 65 and the lifter guide 45 makes it possible to appropriately cope with such variations. That is, it becomes easy to manufacture. However, if a gap is formed between the lifter 65 and the lifter guide 45, the lifter 65 may rattle inside the lifter guide 45. An O-ring 46 (elastic body) is used to absorb rattling movements. Further, in the present embodiment, the transmission gear 61 is movably supported in a direction (front-rear direction) intersecting the direction in which the transmission gear 61 is driven by the motor 50 (rotational direction centered on the front-rear direction, vertical and horizontal directions). It is By doing so, it is possible to cope with the above-described variations in component dimensions due to manufacturing, and to facilitate manufacturing. That is, in the present invention, the housing 20 (the spacer 26, the lifter housing 22) is arranged so that the parts that receive the power of the motor 50 and transmit the power to the blade 72 can move in a direction that intersects the direction in which the motor 50 drives. ), it is possible to realize a work machine that is easy to manufacture. Cost reduction can also be achieved by facilitating manufacturing.
また、リフタハウジング22には、一対のストッパ94が設けられており、ガイドプレート81がストッパ94の当接部94Bに当接することで、ガイド機構80の位置が決定される。すなわち、ブレード72の被加工材Wに対する向きが決定される。具体的には、本実施の形態では、ガイド機構80が第1位置に配置されたときのブレード72の向きと、ガイド機構80が第2位置に配置されたときのブレード72の向きとが、ガイド機構80の回転方向において180度ずれている。これにより、作業者がガイド機構80の位置を容易に決定してブレード72の向きを変更することができる。 Further, the lifter housing 22 is provided with a pair of stoppers 94, and the position of the guide mechanism 80 is determined when the guide plate 81 abuts against the abutting portions 94B of the stoppers 94. As shown in FIG. That is, the orientation of the blade 72 with respect to the workpiece W is determined. Specifically, in the present embodiment, the orientation of the blade 72 when the guide mechanism 80 is arranged at the first position and the orientation of the blade 72 when the guide mechanism 80 is arranged at the second position are They are shifted by 180 degrees in the direction of rotation of the guide mechanism 80 . This allows the operator to easily determine the position of the guide mechanism 80 and change the orientation of the blade 72 .
また、一対のストッパ94によって、ガイド機構80の作動範囲が規定されている。具体的には、ガイド機構80の回転角度範囲が一対のストッパ94によって180度に規定されている。これにより、ガイド機構80の作動前後において、リフタ65の初期停止位置が過度にずれることを抑制できる。 Also, the operating range of the guide mechanism 80 is defined by the pair of stoppers 94 . Specifically, the rotation angle range of the guide mechanism 80 is regulated to 180 degrees by the pair of stoppers 94 . As a result, the initial stop position of the lifter 65 can be prevented from being excessively deviated before and after the guide mechanism 80 is actuated.
また、リフタハウジング22とガイドプレート81との間には、ウェーブワッシャ92が設けられている。そして、モータ50の駆動時におけるガイド機構80のハウジング20に対する相対回転がウェーブワッシャ92によって制限される。また、作業者による所定値以上の操作力(回転力)がガイド機構80(ガイドプレート81)に付与された場合には、ガイド機構80のハウジング20に対する相対回転が許可される。これにより、簡易な構成で、モータ50の駆動時におけるガイド機構80のハウジング20に対する相対回転を制限しつつ、作業者の手動操作によるガイド機構80の作動を許可することができる。 A wave washer 92 is provided between the lifter housing 22 and the guide plate 81 . A wave washer 92 restricts the relative rotation of the guide mechanism 80 with respect to the housing 20 when the motor 50 is driven. Further, when the operator applies an operating force (rotational force) equal to or greater than a predetermined value to the guide mechanism 80 (guide plate 81), the guide mechanism 80 is permitted to rotate relative to the housing 20. FIG. As a result, with a simple configuration, it is possible to restrict the relative rotation of the guide mechanism 80 with respect to the housing 20 when the motor 50 is driven, and allow the manual operation of the guide mechanism 80 by the operator.
なお、本実施の形態では、制御部100がモータ50の回転数を計測することで、リフタ65の反転位置を検知しているが、リフタ65の反転位置を検知する方法はこれに限らない。例えば、リフタ検出スイッチ68と同様に構成された反転位置検出スイッチ(マイクロスイッチ)を送りネジ機構60に設けて、反転位置検出スイッチによってリフタ65の反転位置を直接的に検出すると共に、制御部100が反転位置検出スイッチからの検出信号に基づいてリフタ65の反転位置を検知してもよい。この場合には、リフタ検出スイッチ68が、本発明の初期位置検出部に対応し、反転位置検出スイッチが本発明の反転位置検出部に対応する。 In the present embodiment, the control unit 100 detects the reversing position of the lifter 65 by measuring the number of revolutions of the motor 50, but the method of detecting the reversing position of the lifter 65 is not limited to this. For example, a reversal position detection switch (microswitch) configured in the same manner as the lifter detection switch 68 is provided in the feed screw mechanism 60, and the reversal position of the lifter 65 is directly detected by the reversal position detection switch. may detect the reverse position of the lifter 65 based on the detection signal from the reverse position detection switch. In this case, the lifter detection switch 68 corresponds to the initial position detection section of the present invention, and the reverse position detection switch corresponds to the reverse position detection section of the present invention.
また、例えば、送りネジ機構60において、リフタ検出スイッチ68の代わりに、接触式又は非接触式のリニアセンサを設けて、当該リニアセンサによって、リフタ65の位置を検出してもよい。この場合においても、制御部100によってリフタ65の初期位置及び反転位置を検知することができる。また、リフタ65が初期位置に位置した際にモータ50への負荷が上昇するように構成し、負荷時における電流上昇を検出することで初期位置を検知するようにしてもよい。この場合、正転時においてモータ50への負荷が軽減したタイミング(電流値が下がったタイミング)を初期位置とすることで、上記のように反転位置を検出するように構成すればよい。このように、本件発明における位置検出部は、機械・電子的なスイッチのみならず、種々の手段を用いて構成することができる。 Further, for example, in the feed screw mechanism 60, instead of the lifter detection switch 68, a contact or non-contact linear sensor may be provided, and the position of the lifter 65 may be detected by the linear sensor. Even in this case, the control unit 100 can detect the initial position and the reverse position of the lifter 65 . Alternatively, the load on the motor 50 may be increased when the lifter 65 is positioned at the initial position, and the initial position may be detected by detecting the current increase under load. In this case, the reverse position may be detected as described above by setting the timing at which the load on the motor 50 is reduced (the timing at which the current value is decreased) during forward rotation as the initial position. In this way, the position detection section in the present invention can be configured using various means as well as mechanical/electronic switches.
また、本実施の形態では、伝達ギヤ61が、モータ50の駆動軸51のピニオンギヤ51Aに噛合され、ドライブシャフト63が伝達ギヤ61に一体回転可能に連結されている。これに代えて、例えば、モータ50を、送りネジ付きのステッピングモータに変更して、リフタ65を当該送りネジにネジ嵌合させるように構成してもよい。この場合には、制御部100におけるリフタ65の位置検知精度を一層高くすることができる。さらに、伝達ギヤ61を省略できるため、電動切断機10の小型化に寄与することができる。 Further, in the present embodiment, the transmission gear 61 is meshed with the pinion gear 51A of the drive shaft 51 of the motor 50, and the drive shaft 63 is connected to the transmission gear 61 so as to be integrally rotatable. Alternatively, for example, the motor 50 may be changed to a stepping motor with a feed screw, and the lifter 65 may be screw-fitted to the feed screw. In this case, the position detection accuracy of the lifter 65 in the control section 100 can be further improved. Furthermore, since the transmission gear 61 can be omitted, it is possible to contribute to miniaturization of the electric cutting machine 10 .
また、本実施の形態では、一対のストッパ94によってガイド機構80の回転範囲を規制して、ブレード72の向きを容易に変更可能に構成している。換言すると、ガイド機構80をストッパ94に当接する第1位置又は第2位置に配置することで、ガイド機構80のハウジング20に対する位置を決めて、ブレード72の向きを変更している。すなわち、ブレード72の向きを変更するためのガイド機構80の位置決め箇所が2箇所に設定されているが、ガイド機構80の位置決め箇所を3箇所に設定してもよい。換言すると、第1位置と第2位置との間の中間位置において、ガイド機構80を位置決めして、ガイド機構80を中間位置に保持できるように構成してもよい。以下、図9及び図10を用いて、この構成について説明する。 Further, in this embodiment, the rotation range of the guide mechanism 80 is restricted by a pair of stoppers 94 so that the direction of the blade 72 can be easily changed. In other words, the orientation of the blade 72 is changed by positioning the guide mechanism 80 relative to the housing 20 by arranging the guide mechanism 80 at the first position or the second position where the guide mechanism 80 contacts the stopper 94 . That is, although the guide mechanism 80 for changing the orientation of the blade 72 is set at two positions, the guide mechanism 80 may be positioned at three positions. In other words, the guide mechanism 80 may be positioned at an intermediate position between the first position and the second position so that the guide mechanism 80 can be held at the intermediate position. This configuration will be described below with reference to FIGS. 9 and 10. FIG.
図9及び図10に示されるように、この構成では、ウェーブワッシャ92の代わりに、移動制限部材としてのフィックスワッシャ110が、ガイドプレート81とリフタハウジング22(固定プレート41)との間に配置されている。フィックスワッシャ110は、前後方向を板厚方向とする略枠プレート状に形成されている。フィックスワッシャ110は、上下一対の固定片112を有しており、固定片112は、左右方向に延在している。 9 and 10, in this configuration, instead of the wave washer 92, a fixed washer 110 as a movement restricting member is arranged between the guide plate 81 and the lifter housing 22 (fixed plate 41). ing. The fixed washer 110 is formed substantially in the shape of a frame plate whose plate thickness direction is the front-rear direction. The fixed washer 110 has a pair of upper and lower fixed pieces 112, and the fixed pieces 112 extend in the left-right direction.
固定片112には、左右一対の係合凸部114が形成されており、係合凸部114は、前方側へ突出し且つ後側へ開放された略U字形状に屈曲されている。そして、インナガイド45(図9では、不図示)がフィックスワッシャ110内を挿通した状態で、フィックスワッシャ110が、ガイドプレート81の湾曲部81Aとリフタハウジング22との間に配置されている。また、左右一対の係合凸部114が、ガイドプレート81のガイド部81B及び連結部81Cを、左右方向外側から挟み込んでいる。これにより、フィックスワッシャ110がガイドプレート81に一体回転可能に取付けられている。 A pair of left and right engaging projections 114 are formed on the fixed piece 112, and the engaging projections 114 are bent in a substantially U-shape that protrudes forward and opens rearward. The fixed washer 110 is disposed between the curved portion 81A of the guide plate 81 and the lifter housing 22 with the inner guide 45 (not shown in FIG. 9) inserted through the fixed washer 110. As shown in FIG. A pair of left and right engaging projections 114 sandwich the guide portion 81B and the connecting portion 81C of the guide plate 81 from the outside in the left-right direction. As a result, the fixed washer 110 is attached to the guide plate 81 so as to rotate integrally therewith.
固定片112の左右方向中央部には、係止部としての係止突起116が形成されており、係止突起116は、後側へ突出し且つ前側へ開放された略円弧状に屈曲されている。 A locking projection 116 as a locking portion is formed at the center of the fixing piece 112 in the left-right direction, and the locking projection 116 projects rearward and is bent in a generally arcuate shape that opens forward. .
一方、固定プレート41の前端部には、ボルトBL2の前側において、被係止部としての係止凹部41Bが形成されている。係止凹部41Bは、左右方向から見て、前側へ開放された略円弧状に形成されている。 On the other hand, the front end of the fixing plate 41 is formed with a locking recess 41B as a locked portion on the front side of the bolt BL2. The engaging recess 41B is formed in a generally arcuate shape that opens forward when viewed from the left-right direction.
そして、ガイド機構80の第1位置又は第2位置では、係止突起116が、係止凹部41Bに対して、ガイド機構80の回転方向の90度離間した位置に配置されている(図9(A)では、ガイド機構80の第2位置を図示している)。そして、ガイド機構80が、第1位置と第2位置との間の中間位置に配置された状態では、係止突起116が係止凹部41Bに嵌まり込んで、係止突起116と係止凹部41Bとが回転方向に係合する(図9(B)参照)。これにより、係止突起116が、固定プレート41を介してハウジング20に間接的に係止されて、ガイド機構80の回転が好適に抑制される。また、このときには、作業者に節度感(クリック感)が付与される。以上により、ガイド機構80の位置決め箇所を3箇所に設定して、ガイド機構80の回転を制限することができる。特に、上記したようにブレード72とガイド機構80の当接箇所となるガイド部81Bはリフタ65(回転中心)よりも上下方向(径方向)に離間した位置にあるため、ブレード72自体が回転しようとした際には少ない力でブレード72の回転を抑制し、作業者がガイド機構80を介してブレード72を回転させようとした際には少ない力でブレード72を回転させることができる。なお、上記の例では、係止凹部41Bを固定プレート41に形成したが、係止凹部41Bをハウジング20に形成して、係止突起116をハウジング20に直接的に係止させてもよい。 At the first position or the second position of the guide mechanism 80, the locking protrusion 116 is arranged at a position spaced apart from the locking recess 41B by 90 degrees in the rotational direction of the guide mechanism 80 (see FIG. 9 ( A) shows the second position of the guide mechanism 80). When the guide mechanism 80 is positioned at an intermediate position between the first position and the second position, the locking projection 116 is fitted into the locking recess 41B, and the locking projection 116 and the locking recess 41B are engaged with each other. 41B are engaged in the rotational direction (see FIG. 9(B)). Thereby, the locking projection 116 is indirectly locked to the housing 20 via the fixing plate 41, and the rotation of the guide mechanism 80 is preferably suppressed. Also, at this time, the operator is provided with a sense of moderation (a click feeling). As described above, it is possible to limit the rotation of the guide mechanism 80 by setting three positions for positioning the guide mechanism 80 . In particular, as described above, the guide portion 81B, which is the contact point between the blade 72 and the guide mechanism 80, is located vertically (radially) away from the lifter 65 (rotational center), so the blade 72 itself may rotate. In this case, the rotation of the blade 72 can be suppressed with a small force, and when the operator tries to rotate the blade 72 via the guide mechanism 80, the blade 72 can be rotated with a small force. Although the locking recess 41B is formed in the fixing plate 41 in the above example, the locking recess 41B may be formed in the housing 20 to directly lock the locking projection 116 to the housing 20. FIG.
また、本実施の形態では、ドライブシャフト63とリフタ65のネジ嵌合を利用して、ブレード72を前後方向に往復動させるように構成する際、動力の伝達経路において、雄ネジ部(ドライブシャフト63)を駆動側(モータ50側)とし、雌ネジ部(リフタ65)を従動側(ブレード72側)とした。仮に雌ネジ部を駆動側とし、雄ネジ部を従動側として構成する場合、往復動する雄ネジ部の周りを雌ネジ部が覆ってしまうこととなるため、従動側の雄ネジ部を軸支することが困難、またはその実現に複雑な機構を要することとなるが、本実施の形態では従動側となるリフタ65をシンプルな構成で軸支することが可能となる。これによって、低コスト化も図ることができるようになる。 Further, in the present embodiment, when the drive shaft 63 and the lifter 65 are screwed together to reciprocate the blade 72 in the front-rear direction, a male screw portion (drive shaft 63) is on the drive side (motor 50 side), and the female screw portion (lifter 65) is on the driven side (blade 72 side). If the female screw is on the drive side and the male screw is on the driven side, the female screw will cover the reciprocating male screw. However, in this embodiment, the lifter 65 on the driven side can be pivotally supported with a simple structure. As a result, cost reduction can also be achieved.
また、ドライブシャフト63には、鍔部63Bを設けることで、ドライブシャフト63の後方移動が間接的にリフタハウジング22(軸受支持部22B)に規制される。言い換えれば、ドライブシャフト63に伝達される後方への力を、シャフト軸受64とリフタハウジング22によって受けるように構成される。こうすることで、ブレード72による切断時に、ドライブシャフト63に後方への反力が伝達されたとしても、この反力が伝達ギヤ61に伝達されることを抑制することができる。これによって、伝達ギヤ61やギヤ軸受62に対して要求される耐久性を小さくすることができるので、例えばこれらについては安価または小型なものを採用することができる。 Further, by providing the drive shaft 63 with the collar portion 63B, the rearward movement of the drive shaft 63 is indirectly restricted by the lifter housing 22 (bearing support portion 22B). In other words, rearward forces transmitted to drive shaft 63 are received by shaft bearing 64 and lifter housing 22 . By doing so, even if a rearward reaction force is transmitted to the drive shaft 63 when the blade 72 cuts, the transmission of this reaction force to the transmission gear 61 can be suppressed. As a result, the durability required for the transmission gear 61 and the gear bearing 62 can be reduced, so that, for example, inexpensive or small-sized devices can be adopted.
また、本実施の形態では、ブレード72に負荷がかかった際(加工材の切断時)に、ピニオンギヤ51Aとの噛合の作用により伝達ギヤ61(ギヤ部61B)には前方へのスラスト力がかかるようにギヤ部61Bが形作られている。こうすることで、切断時において伝達ギヤ61を介してギヤ軸受62に後方への付勢力が伝達されることを抑制することができる。これが逆、すなわちブレード72に負荷がかかった際に伝達ギヤ61に後方へのスラスト力がかかる場合、ギヤ軸受62の内輪は前側で伝達ギヤ61と接触しているため、負荷時にはギヤ軸受62の内輪に後方への付勢力が発生する。この付勢力は、外輪の位置に対して内輪が前後方向に位置ずれするように作用するため、ギヤ軸受62の寿命低下に繋がってしまう。本実施の形態の場合、このような問題を抑制することができる。すなわち、ギヤ軸受62に要求される耐久性を小さくすることができ、ひいてはギヤ軸受62を低コストなものに、または小型なものにすることができる。 Further, in the present embodiment, when a load is applied to the blade 72 (when cutting the workpiece), a forward thrust force is applied to the transmission gear 61 (gear portion 61B) due to the meshing action with the pinion gear 51A. The gear portion 61B is formed as follows. By doing so, it is possible to suppress the rearward biasing force from being transmitted to the gear bearing 62 via the transmission gear 61 at the time of cutting. In the opposite case, that is, when a load is applied to the blade 72 and a rearward thrust force is applied to the transmission gear 61, the inner ring of the gear bearing 62 is in contact with the transmission gear 61 on the front side. A rearward biasing force is generated on the inner ring. This biasing force acts to shift the position of the inner ring in the front-rear direction with respect to the position of the outer ring, which leads to shortening of the life of the gear bearing 62 . In the case of this embodiment, such problems can be suppressed. That is, the durability required for the gear bearing 62 can be reduced, and the gear bearing 62 can be made low-cost or compact.
また、ギヤ軸受62の少なくとも一部は前後方向でモータ軸受55と同じ位置にある。換言すれば、ギヤ軸受62の少なくとも一部は、径方向(上下方向)で見たときにモータ軸受55と重なる位置にある。これによって、前後方向の長さを短縮できる。また、本実施の形態では前述したようにギヤ軸受62を小型にできるため、前後方向と交差する方向(上下方向)におけるモータ軸受55の中心位置と、ギヤ軸受62の中心位置を近接させることができる。これによって、前後方向に延びるドライブシャフト63またはリフタ65の軸心を、前後方向に延びる駆動軸51に対して前後方向と交差する方向(上下方向)で近接させることができる。すなわち、ドライブシャフト63またはリフタ65を上下方向で駆動軸51に近づけることができる。これによって、上下方向の小型化が可能となる。 At least part of the gear bearing 62 is located at the same position as the motor bearing 55 in the longitudinal direction. In other words, at least part of the gear bearing 62 is positioned to overlap the motor bearing 55 when viewed in the radial direction (vertical direction). As a result, the length in the front-rear direction can be shortened. Further, in the present embodiment, as described above, the gear bearing 62 can be made small, so that the center position of the motor bearing 55 and the center position of the gear bearing 62 in the direction crossing the front-rear direction (vertical direction) can be brought close to each other. can. As a result, the axial center of the drive shaft 63 or the lifter 65 extending in the front-rear direction can be brought close to the drive shaft 51 extending in the front-rear direction in a direction intersecting the front-rear direction (vertical direction). That is, the drive shaft 63 or the lifter 65 can be brought closer to the drive shaft 51 in the vertical direction. This makes it possible to reduce the size in the vertical direction.
また、本実施の形態では、ガイド機構80の第1位置又は第2位置では、ガイドプレート81が、ストッパ94の当接部94Bに当接してガイド機構80の回転が制限されるが、当接部94Bに磁石を埋設し、且つガイドプレート81を鋼板製にして、磁石の磁力によってガイドプレート81とストッパ94との当接状態を維持するように構成してもよい。これにより、第1位置又は第2位置においてガイド機構80を良好に保持することができる。 Further, in the present embodiment, at the first position or the second position of the guide mechanism 80, the guide plate 81 contacts the contact portion 94B of the stopper 94 to limit the rotation of the guide mechanism 80. A magnet may be embedded in the portion 94B and the guide plate 81 may be made of a steel plate so that the contact state between the guide plate 81 and the stopper 94 is maintained by the magnetic force of the magnet. As a result, the guide mechanism 80 can be favorably held at the first position or the second position.
本実施の形態では、上記(作用効果)にて説明された、各段落及び各分節に記載される複数の発明を組み合わせて構成されているが、1つの発明のみを適用した作業機としてもよい。上記したように、1つ1つ説明される特徴はそれのみで効果を奏するものであり、すなわち本実施の形態に記載される複数の発明のうち1つのみを採用してもよい。特に、本実施の形態では制御の発明と機械構成の発明の両方を適用することで作業性の良い作業機を実現しているが、一方のみでもよい。 Although the present embodiment is configured by combining a plurality of inventions described in each paragraph and each segment described in the above (action and effect), the work machine may be configured to apply only one invention. . As described above, the features described one by one are effective by themselves, that is, only one of the multiple inventions described in this embodiment may be employed. In particular, in the present embodiment, a work machine with good workability is realized by applying both the invention of control and the invention of machine configuration, but only one of them may be applied.
10…電動切断機(作業機)、20…ハウジング、30…トリガ(操作部)、50…モータ、65…リフタ(移動部材)、68…リフタ検出スイッチ(位置検出部)、72…ブレード(切断刃)、83…ヘッドプレート(支持部)、83A…ヘッド凹部(凹部)、100…制御部、W…被加工材 DESCRIPTION OF SYMBOLS 10... Electric cutting machine (work machine), 20... Housing, 30... Trigger (operation part), 50... Motor, 65... Lifter (moving member), 68... Lifter detection switch (position detection part), 72... Blade (cutting blade), 83... head plate (supporting portion), 83A... head concave portion (concave portion), 100... control portion, W... workpiece

Claims (15)

  1. ハウジングと、
    前記ハウジングに収容されたモータと、
    前記モータを制御する制御部と、
    オン操作されることで前記モータを作動させる操作部と、
    前記モータによって第1方向に沿って初期位置と反転位置との間で移動する切断刃と、
    被加工材を支持する支持部と、を備え、
    前記切断刃と前記支持部とによって被加工材を切断する作業機であって、
    前記切断刃が前記初期位置にある状態で、前記第1方向と直交する第2方向で見て前記支持部と前記切断刃は重ならず、
    前記制御部は、前記切断刃が前記初期位置にある状態で前記操作部をオン操作したとき、前記モータを正転させて前記切断刃を前記支持部へ近接するように移動させるとともに、前記操作部がオン操作された状態において前記第2方向で見て前記支持部と前記切断刃の少なくとも一部が重なった状態で、前記モータを停止または逆転させるように構成されている作業機。
    a housing;
    a motor housed in the housing;
    a control unit that controls the motor;
    an operation unit that operates the motor by being turned on;
    a cutting blade moved between an initial position and a reversed position along a first direction by the motor;
    a support for supporting the workpiece,
    A work machine that cuts a workpiece with the cutting blade and the support,
    When the cutting blade is in the initial position, the supporting portion and the cutting blade do not overlap when viewed in a second direction perpendicular to the first direction,
    When the operation unit is turned on while the cutting blade is at the initial position, the control unit rotates the motor forward to move the cutting blade closer to the support unit, and rotates the operation unit. is configured to stop or reversely rotate the motor in a state where the support portion and the cutting blade are at least partially overlapped when viewed in the second direction when the portion is turned on.
  2. 切断刃は、前記第1方向と前記第2方向に延びる板形状を有し、
    前記制御部は、前記第1方向と前記第2方向との双方に垂直な第3方向で見て前記支持部と前記切断刃が重なる位置で、前記モータを停止させる、または前記モータを逆転させるように構成されている請求項1に記載の作業機。
    The cutting blade has a plate shape extending in the first direction and the second direction,
    The control section stops the motor or reverses the motor at a position where the support section and the cutting blade overlap when viewed in a third direction perpendicular to both the first direction and the second direction. The work machine according to claim 1, which is configured as follows.
  3. 前記支持部には、前記被加工材の一部を位置させることが可能な凹部が設けられ、
    前記制御部は、前記第3方向で見て前記凹部と前記切断刃が重なる位置で、前記モータを停止させる、または前記モータを逆転させるように構成されている請求項2に記載の作業機。
    The support portion is provided with a recess in which a portion of the workpiece can be positioned,
    The working machine according to claim 2, wherein the control section is configured to stop the motor or reverse the motor at a position where the recess and the cutting blade overlap when viewed in the third direction.
  4. ハウジングと、
    前記ハウジングに収容されたモータと、
    前記モータを制御する制御部と、
    操作されることで前記モータを作動させる操作部と、
    前記モータによって回転駆動する出力部と、
    前記出力部と螺合し、前記モータが正転することで一方向に動作し、前記モータが逆転することで前記一方向に対して反対の方向となる他方向に動作する移動部材と、
    前記移動部材と一体的に動作するように構成された切断刃と、
    を備え、
    前記制御部は、前記移動部材を一方向または他方向へ動作させたとき、前記出力部と前記移動部材との螺合を維持した状態で前記モータを停止するように構成されている作業機。
    a housing;
    a motor housed in the housing;
    a control unit that controls the motor;
    an operation unit that operates the motor when operated;
    an output unit rotationally driven by the motor;
    a moving member that is screwed to the output unit and operates in one direction when the motor rotates forward and operates in the other direction opposite to the one direction when the motor rotates in the reverse direction;
    a cutting blade configured to operate integrally with the moving member;
    with
    The control section is configured to stop the motor while the output section and the moving member are kept screwed together when the moving member is moved in one direction or the other direction.
  5. 前記移動部材の位置を検出する位置検出部を有し、
    前記制御部は、前記位置検出部の検出結果に基づいて前記モータを駆動制御する請求項4に記載の作業機。
    a position detection unit that detects the position of the moving member;
    The working machine according to claim 4, wherein the control section drives and controls the motor based on the detection result of the position detection section.
  6. ハウジングと、
    前記ハウジングに収容されたモータと、
    前記ハウジングに設けられ、操作されることで前記モータを作動させる操作部と、
    前記ハウジングに移動可能に収容されると共に、前記モータの駆動力によって初期位置と反転位置との間を往復移動する移動部材と、
    前記ハウジングの外部において前記移動部材に取付けられ、前記移動部材の前記初期位置から前記反転位置への往路側への移動によって被加工材に接近するブレードと、
    前記移動部材の位置を検出する位置検出部と、
    前記位置検出部の検出結果に基づいて前記モータを駆動制御する制御部と、
    を備えた作業機。
    a housing;
    a motor housed in the housing;
    an operation unit provided in the housing for operating the motor when operated;
    a moving member that is movably accommodated in the housing and reciprocates between an initial position and a reverse position by driving force of the motor;
    a blade attached to the moving member outside the housing and approaching a workpiece by moving the moving member from the initial position to the reversal position toward the outward path;
    a position detection unit that detects the position of the moving member;
    a control unit that drives and controls the motor based on the detection result of the position detection unit;
    machine with
  7. 前記位置検出部は、
    前記移動部材の前記初期位置を検出する初期位置検出部と、
    前記移動部材の前記反転位置を検出する反転位置検出部と、
    を含んで構成されており、
    前記制御部は、前記初期位置検出部の検出結果に基づいて前記移動部材の初期位置を検知すると共に、前記反転位置検出部の検出結果に基づいて前記移動部材の反転位置を検知する請求項6に記載の作業機。
    The position detection unit is
    an initial position detection unit that detects the initial position of the moving member;
    a reversal position detection unit that detects the reversal position of the moving member;
    is composed of
    7. The control unit detects the initial position of the moving member based on the detection result of the initial position detection unit, and detects the reverse position of the moving member based on the detection result of the reverse position detection unit. The working machine described in .
  8. 前記位置検出部は、前記移動部材の前記初期位置を検出可能に構成されており、
    前記制御部は、前記位置検出部の検出信号に基づいて前記移動部材の前記初期位置を検知すると共に、前記初期位置からの前記モータの回転数に基づいて前記移動部材の反転位置を検知する請求項6に記載の作業機。
    The position detection unit is configured to detect the initial position of the moving member,
    The control unit detects the initial position of the moving member based on the detection signal of the position detecting unit, and detects the reverse position of the moving member based on the number of revolutions of the motor from the initial position. Item 6. The working machine according to Item 6.
  9. 前記位置検出部は、前記移動部材の前記反転位置から前記初期位置への復路側への移動時に前記移動部材によって押圧されることでオフからオンに切替るスイッチであり、
    前記制御部は、前記位置検出部がオンからオフに切替る時点を起点として、前記モータの回転数の計測を開始する請求項8に記載の作業機。
    The position detection unit is a switch that is switched from off to on by being pressed by the moving member when the moving member moves from the reverse position to the initial position on the return path side,
    9. The working machine according to claim 8, wherein the control unit starts measuring the number of revolutions of the motor, starting from the point in time when the position detection unit switches from on to off.
  10. 前記制御部は、前記移動部材の前記反転位置を検知してから所定時間経過後に、前記移動部材を復路側へ移動させるように前記モータを駆動制御する請求項7~請求項9の何れか1項に記載の作業機。 10. The controller according to any one of claims 7 to 9, wherein after a predetermined time has passed since the reverse position of the moving member was detected, the control unit drives and controls the motor so as to move the moving member toward the return path. Working machine described in paragraph.
  11. 前記操作部の操作開始時に、前記制御部が前記移動部材の前記初期位置を検知しない場合には、前記制御部は前記移動部材を復路側へ移動させるように前記モータを駆動制御する請求項7~請求項10の何れか1項に記載の作業機。 8. When the control unit does not detect the initial position of the moving member when the operation of the operating unit is started, the control unit drives and controls the motor so as to move the moving member toward the return path. The working machine according to any one of claims 1 to 10.
  12. 前記移動部材の前記初期位置から前記反転位置への往路側への移動時に前記操作部の操作が解除されたときには、前記移動部材を復路側へ移動させるように前記制御部が前記モータを駆動制御する請求項6~請求項11の何れか1項に記載の作業機。 When the operation of the operation unit is released while the moving member is moving from the initial position to the reversing position in the forward direction, the control unit drives and controls the motor so as to move the moving member in the backward direction. The work machine according to any one of claims 6 to 11.
  13. 前記位置検出部は、前記移動部材の側方位置に設けられる請求項5~請求項12の何れか1項に記載の作業機。 The working machine according to any one of claims 5 to 12, wherein the position detection section is provided at a lateral position of the moving member.
  14. 前記ハウジングは、前記移動部材を収容する第1ハウジングと、前記モータと前記制御部を収容する第2ハウジングと、前記位置検出部の少なくとも一部を収容する第3ハウジングを有する請求項13に記載の作業機。 14. The housing according to claim 13, wherein the housing has a first housing that accommodates the moving member, a second housing that accommodates the motor and the controller, and a third housing that accommodates at least part of the position detector. working machine.
  15. 前記第3ハウジングは、前記第1ハウジングまたは前記第2ハウジングに支持される請求項14に記載の作業機。 The working machine according to claim 14, wherein the third housing is supported by the first housing or the second housing.
PCT/JP2022/030063 2021-08-07 2022-08-05 Work machine WO2023017789A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023541430A JPWO2023017789A1 (en) 2021-08-07 2022-08-05

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021130390 2021-08-07
JP2021-130390 2021-08-07

Publications (1)

Publication Number Publication Date
WO2023017789A1 true WO2023017789A1 (en) 2023-02-16

Family

ID=85200761

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/030063 WO2023017789A1 (en) 2021-08-07 2022-08-05 Work machine

Country Status (2)

Country Link
JP (1) JPWO2023017789A1 (en)
WO (1) WO2023017789A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4747212A (en) * 1985-12-19 1988-05-31 Cavdek Richard S Plastic pipe cutter
JPH11347831A (en) * 1998-06-03 1999-12-21 System Craft:Kk Cutter of lightweight shape steel

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4747212A (en) * 1985-12-19 1988-05-31 Cavdek Richard S Plastic pipe cutter
JPH11347831A (en) * 1998-06-03 1999-12-21 System Craft:Kk Cutter of lightweight shape steel

Also Published As

Publication number Publication date
JPWO2023017789A1 (en) 2023-02-16

Similar Documents

Publication Publication Date Title
EP2172358B1 (en) Accelerator pedal device
JP4894413B2 (en) Steering device
JP5491115B2 (en) Accelerator pedal device
EP2055530B1 (en) Motor-driven actuator
EP2508303B1 (en) Percussion driver drill
EP2636928B1 (en) Parking lock device
US9815182B2 (en) Power tool
JP5524552B2 (en) Accelerator pedal device
US20090293661A1 (en) Shift apparatus of axially moving shaft
CN110270956B (en) Screw fastening tool
WO2023017789A1 (en) Work machine
JP7254623B2 (en) Electric tool
JP2023024840A (en) work machine
JP3873393B2 (en) Plate folding machine
WO2005033556A1 (en) Motor driven transmission operating unit
CN112338873B (en) Impact tool
JP2024025300A (en) Work machine
JP6162589B2 (en) Shift device
JP6603114B2 (en) Shift switch device
JP3856636B2 (en) Vehicle steering system
JP7220304B2 (en) Clutch mechanism and power tools
CN221042527U (en) Driving device, power tool and movable machine
JP7153541B2 (en) Rotary tool and engaging member provided therewith
JP5460249B2 (en) Drive control device for electric rotary tool
JP2009293725A (en) Shift-by-wire control device and its assembling method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22855851

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023541430

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE