WO2023017755A1 - Hydrocarbon-compound production device and production method - Google Patents

Hydrocarbon-compound production device and production method Download PDF

Info

Publication number
WO2023017755A1
WO2023017755A1 PCT/JP2022/029603 JP2022029603W WO2023017755A1 WO 2023017755 A1 WO2023017755 A1 WO 2023017755A1 JP 2022029603 W JP2022029603 W JP 2022029603W WO 2023017755 A1 WO2023017755 A1 WO 2023017755A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
hydrocarbon
temperature
cathode
based compound
Prior art date
Application number
PCT/JP2022/029603
Other languages
French (fr)
Japanese (ja)
Inventor
拓哉 北畠
暁 茂木
勉 樋口
祐之輔 中原
Original Assignee
三井金属鉱業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井金属鉱業株式会社 filed Critical 三井金属鉱業株式会社
Publication of WO2023017755A1 publication Critical patent/WO2023017755A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/02Process control or regulation
    • C25B15/021Process control or regulation of heating or cooling
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/02Process control or regulation
    • C25B15/023Measuring, analysing or testing during electrolytic production
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/02Process control or regulation
    • C25B15/023Measuring, analysing or testing during electrolytic production
    • C25B15/025Measuring, analysing or testing during electrolytic production of electrolyte parameters
    • C25B15/027Temperature
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/08Supplying or removing reactants or electrolytes; Regeneration of electrolytes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/01Products
    • C25B3/03Acyclic or carbocyclic hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/20Processes
    • C25B3/25Reduction
    • C25B3/26Reduction of carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • C25B9/23Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms comprising ion-exchange membranes in or on which electrode material is embedded
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to an apparatus and method for producing a hydrocarbon-based compound that synthesizes a hydrocarbon-based compound from H 2 O and CO 2 by energization, and in particular, production in which the temperature is raised by the heat generated during the synthesis of the hydrocarbon-based compound.
  • the present invention relates to an apparatus and method for producing a hydrocarbon compound capable of cooling the apparatus and suppressing a decrease in conversion efficiency due to electrolysis of H 2 O and CO 2 .
  • Patent Documents 1 and 2 In recent years, due to growing awareness of environmental issues, systems have been proposed that utilize a methanation reaction using CO 2 , which is a cause of global warming, as a raw material (for example, Patent Documents 1 and 2).
  • a methanation reaction using CO 2 which is a cause of global warming, as a raw material
  • Patent Documents 1 and 2 In recent years, due to growing awareness of environmental issues, systems have been proposed that utilize a methanation reaction using CO 2 , which is a cause of global warming, as a raw material (for example, Patent Documents 1 and 2).
  • PCEC water electrolysis system
  • H + proton conductive ceramics
  • methane can be produced by simultaneously electrolyzing CO 2 on the cathode side.
  • JP 2010-62192 A Japanese Patent Application Laid-Open No. 2021-9820
  • the temperature should be 700° C. or less at normal pressure from the equilibrium of the methanation reaction, and 550° C. or less from the viewpoint of CO 2 conversion efficiency.
  • the electrolysis efficiency of the PCEC will decrease, and the methane production efficiency will also decrease.
  • the present invention was invented to solve the problems in the prior art as described above, and the apparatus and method for producing a hydrocarbon compound of the present invention are configured at least as follows. include.
  • a hydrocarbon-based compound manufacturing apparatus for synthesizing a hydrocarbon-based compound from H 2 O and CO 2 by energization, an electrolytic cell having a fuel synthesis section including a cathode, a proton generation section including an anode, and an electrolyte membrane disposed between the cathode and the anode; an H 2 O supply unit that supplies H 2 O to the proton generation unit; a cathode gas supply unit that supplies a cathode gas containing CO 2 to the fuel synthesizing unit; a fuel synthesizing unit temperature measuring unit for measuring the temperature of the fuel synthesizing unit; a controller for controlling the amount of H 2 O supplied from the H 2 O supply unit based on the temperature of the fuel synthesizing unit measured by the temperature measuring unit of the fuel synthesizing unit.
  • Device for controlling the amount of H 2 O supplied from the H 2 O supply unit based on the temperature of the fuel synthesizing unit measured by the temperature measuring unit of the fuel synthesizing unit.
  • the fuel synthesizing unit temperature measuring unit measures the temperature difference between the inlet side temperature and the outlet side temperature of the fuel synthesizing unit, the temperature difference between the inlet side temperature of the fuel synthesizing unit and the temperature of the cathode, and the fuel synthesizing unit temperature.
  • the apparatus for producing a hydrocarbon-based compound according to any one of [1] to [3], wherein at least one of the outlet side temperatures of the part is measured.
  • [5] further comprising a generated gas measuring unit for measuring the amount of generated gas generated in the fuel synthesizing unit;
  • the control unit The hydrocarbon-based compound manufacturing apparatus according to any one of [1] to [4], wherein the H 2 O supply amount is controlled based on the generated amount of the generated gas measured by the generated gas measuring unit.
  • [6] further comprising a hydrocarbon-based compound production rate measuring unit that measures the production rate R of the hydrocarbon-based compound produced in the fuel synthesizing unit with respect to the amount of CO 2 supplied from the cathode gas supply unit;
  • the control unit Production of a hydrocarbon-based compound according to any one of [1] to [5], wherein the H 2 O supply amount is controlled based on the production rate R measured in the hydrocarbon-based compound production rate measuring unit.
  • a current-voltage measuring unit that measures at least one of a voltage value to the anode with respect to the cathode, a current value flowing between the cathode and the anode, and an electrical resistance value between the cathode and the anode; further prepared, The control unit any one of [1] to [6], wherein the H 2 O supply amount is controlled based on at least one of the voltage value, the current value, and the electrical resistance value measured by the current-voltage measuring unit; An apparatus for producing the hydrocarbon-based compound described.
  • [10] further comprising a proton generation unit temperature measurement unit that measures the temperature of the proton generation unit; The carbonization according to any one of [1] to [9], wherein the control unit controls the H 2 O supply amount based on the temperature of the proton generation unit measured by the proton generation unit temperature measurement unit. Manufacturing equipment for hydrogen-based compounds.
  • the control section determines the The apparatus for producing a hydrocarbon-based compound according to [10], wherein the amount of carrier gas supplied from the carrier gas supply unit is controlled.
  • [12] further comprising a carrier gas supply unit for supplying a carrier gas for transporting the H 2 O, Any one of [1] to [11], wherein the control unit controls the amount of carrier gas supplied from the carrier gas supply unit based on the temperature of the fuel synthesizing unit measured by the fuel synthesizing unit temperature measuring unit.
  • the control unit controls the amount of carrier gas supplied from the carrier gas supply unit based on the temperature of the fuel synthesizing unit measured by the fuel synthesizing unit temperature measuring unit.
  • an electrolytic cell having a fuel synthesizing section including a cathode, a proton generating section including an anode, and an electrolyte membrane disposed between the cathode and the anode; an H 2 O supply unit that supplies H 2 O to the proton generation unit; a cathode gas supply unit for supplying a cathode gas containing CO2 to the fuel synthesis unit; A method for producing a hydrogen-based compound, A method for producing a hydrocarbon-based compound, wherein the amount of H 2 O supplied from the H 2 O supply unit is controlled based on the temperature of the fuel synthesizing unit.
  • the temperature of the fuel synthesizing section is the temperature difference between the inlet side temperature and the outlet side temperature of the fuel synthesizing section, the temperature difference between the inlet side temperature of the fuel synthesizing section and the temperature of the cathode, and the fuel synthesizing section.
  • the apparatus for producing a hydrocarbon-based compound further includes a carrier gas supply unit for supplying a carrier gas for carrying the H 2 O, The method for producing a hydrocarbon-based compound according to [20], wherein the amount of carrier gas supplied from the carrier gas supply unit is controlled based on at least one of the temperature of the fuel synthesis unit and the temperature of the proton generation unit. .
  • the apparatus for producing a hydrocarbon-based compound further includes a carrier gas supply unit for supplying a carrier gas for transporting the H 2 O,
  • the amount of H 2 O supplied to the proton generating section including the anode is controlled based on the temperature of the fuel synthesizing section including the cathode, thereby cooling the manufacturing apparatus and reducing the electrolysis efficiency. , it is possible to suppress the decrease in the production efficiency of the hydrocarbon-based compound, and to continue the efficient production of the hydrocarbon-based compound.
  • FIG. 1 is a schematic diagram for explaining the configuration of a hydrocarbon-based compound production apparatus according to the present embodiment.
  • FIG. 2 is a schematic diagram for explaining the configuration of a hydrocarbon-based compound production apparatus according to another embodiment.
  • FIG. 1 is a schematic diagram for explaining the configuration of a hydrocarbon-based compound production apparatus according to the present embodiment.
  • methane (CH 4 ) as a hydrocarbon compound
  • the present invention is not limited to hydrocarbons such as methane and ethane.
  • the manufacturing apparatus and manufacturing method for manufacturing hydrocarbon compounds including alcohols such as methanol and ethanol, aldehydes such as formaldehyde and acetaldehyde, carboxylic acids such as formic acid and acetic acid, and ethers such as dimethyl ether. It is possible to apply
  • the hydrocarbon-based compound manufacturing apparatus 10 of the present embodiment includes a fuel synthesizing section 20 including a cathode 22, a proton generating section 30 including an anode 32, and between the cathode 22 and the anode 32 an electrolytic cell 40 having an electrolyte membrane 42 disposed thereon.
  • the anode 32 and the cathode 22 are connected to a power source 50 and are configured such that current flows from the cathode 22 to the power source 50 and current flows from the power source 50 to the anode 32 .
  • the electrolyte membrane 42 is not particularly limited as long as it is a membrane that has the property of allowing ions to pass through mainly as charge carriers, and has the property of preventing an electrical short circuit between the anode 32 and the cathode 22.
  • Proton-conducting ceramics are preferably used as such a proton-conducting material.
  • An H 2 O supply unit 34 for supplying H 2 O to the proton generation unit 30 is connected to the proton generation unit 30, while a cathode containing CO 2 in the fuel synthesis unit 20 is connected to the fuel synthesis unit 20.
  • a cathode gas supply unit 24 for supplying gas is connected.
  • the cathode gas supplied from the cathode gas supply unit 24 is not particularly limited as long as it contains at least CO2 . It may be a mixed gas with active gas, a mixed gas with NOx or CO, or air.
  • Pressure regulating valves 35 and 25 are provided on the H 2 O supply path 33 from the H 2 O supply section 34 to the proton generation section 30 and on the cathode gas supply path 23 from the cathode gas supply section 24 to the fuel synthesis section 20, respectively. is provided.
  • a check valve 36 is provided on the H 2 O supply path 33 from the H 2 O supply unit 34 to the proton generation unit 30 , and the H 2 O This prevents H 2 O from flowing back to the 2 O supply section 34 .
  • the fuel synthesizing section 20 and the proton generating section 30 are provided with a cathode gas heating section 29 and an H 2 O heating section 39, respectively.
  • CO 2 and H 2 O are electrolyzed in the fuel synthesizing section 20 and the proton generating section 30, respectively, CO 2 and H 2 O are produced by heating with the cathode gas heating section 29 and the H 2 O heating section 39. electrolysis efficiency is improved.
  • the produced gas containing the hydrocarbon compound produced in the fuel synthesizing section 20 is discharged from the outlet 20b of the fuel synthesizing section 20 .
  • the generated gas discharged from the outlet 20b of the fuel synthesizing unit 20 may contain, in addition to hydrocarbon compounds, CO 2 , CO, H 2 , H 2 O, etc. that have not undergone a generation reaction. .
  • the discharge part 30b may be provided at any position as long as the gas in the proton generation part 30 can be discharged. Note that H 2 O that has not been electrolyzed is also discharged from the discharge part. Also, although not shown, for example, a path for the discharged H 2 O to flow from the discharge portion 30b to the H 2 O supply portion 34 may be provided and circulated, so that H 2 O can be reused.
  • the fuel synthesizing section 20 is provided with a fuel synthesizing section temperature measuring section 21 for measuring the temperature of the fuel synthesizing section 20 .
  • the temperature of the fuel synthesizing section 20 measured by the fuel synthesizing section temperature measuring section 21 is output as an electric signal and transmitted to the control section 60 as will be described later.
  • the fuel synthesizing unit temperature measuring unit 21 is provided on the outlet 20b side of the fuel synthesizing unit 20, and the temperature of the generated gas discharged from the fuel synthesizing unit 20 is measured as the temperature of the fuel synthesizing unit 20.
  • the fuel synthesizing unit temperature measuring unit 21 is provided on both the inlet 20a side and the outlet 20b side of the fuel synthesizing unit 20, and the inlet side temperature (supplied cathode gas temperature) and the outlet side temperature (the temperature of the produced gas discharged) may be measured.
  • the fuel synthesizing unit temperature measuring unit 21 is provided on the inlet 20a side of the fuel synthesizing unit and on the surface of the cathode 22 to measure the temperature difference between the inlet side temperature (the temperature of the supplied cathode gas) and the temperature of the cathode 22. You may make it
  • the H 2 O supply unit 34 and the fuel synthesizing unit temperature measuring unit 21 are each provided with a control unit 60 electrically connected thereto. It is configured to control the amount of H 2 O supplied from the H 2 O supply section 34 .
  • a control unit 60 for example, a microcontroller having calculation means, storage means, input/output means, etc. can be used.
  • the controller 60 is configured to acquire the H 2 O supply amount in real time from the electrically connected H 2 O supply unit 34 . Also, the control unit 60 is electrically connected to the cathode gas supply unit 24 and configured to acquire the CO 2 supply amount in real time.
  • the amount of CO 2 supplied is determined by measuring the amount of CO 2 contained in the cathode gas using a known analyzer or measuring instrument. can be made to
  • the H 2 O supply unit It controls the amount of H 2 O supplied from 34 .
  • the supply amount of H 2 O supplied from the H 2 O supply section 34 is increased.
  • the supply amount of H 2 O supplied from the H 2 O supply section 34 is set as the standard amount.
  • the "standard amount" of the supply amount of H 2 O means the supply amount that enables sufficient generation of protons necessary for the production of the hydrocarbon-based compound.
  • the standard amount of H 2 O supplied is not particularly limited, but from the viewpoint of CO 2 conversion efficiency, it is preferably 0.5 times or more 5.0 times the amount of CO 2 contained in the cathode gas.
  • the amount of substance can be set to be 1.0 times or less, more preferably 1.0 times or more and 5.0 times or less, and still more preferably 1.0 times or more and 4.0 times or less.
  • the predetermined temperature threshold can be appropriately set from the viewpoint of methanation reaction equilibrium, CO 2 conversion efficiency, and the like.
  • the temperature threshold when measuring the temperature of the generated gas discharged from the fuel synthesizing unit 20 as the temperature of the fuel synthesizing unit 20, it is preferable to set the temperature threshold to 300° C. or higher and 700° C. or lower. It is more preferably 330°C or higher and 650°C or lower, and still more preferably 350°C or higher and 600°C or lower.
  • the amount of H 2 O supplied from the H 2 O supply unit 34 to the proton generation unit 30 can be increased.
  • the entire manufacturing apparatus 10 can be cooled, and a decrease in the electrolysis efficiency of CO 2 at the cathode 22 and a decrease in the production efficiency of methane can be suppressed, and efficient methane production can be continued.
  • FIG. 2 is a schematic diagram for explaining the configuration of a hydrocarbon-based compound production apparatus according to another embodiment.
  • the hydrocarbon-based compound manufacturing apparatus 10 shown in FIG. 2 basically has the same configuration as the hydrocarbon-based compound manufacturing apparatus 10 shown in FIG. Therefore, a detailed description thereof will be omitted. Also, in FIG. 2, some lines indicating electrical connection with the control unit 60 are not shown because the drawing would be complicated.
  • the hydrocarbon-based compound manufacturing apparatus 10 of the present embodiment includes a carrier gas supply unit 38 that supplies a carrier gas that carries H 2 O supplied from the H 2 O supply unit 34 .
  • a carrier gas supply unit 38 that supplies a carrier gas that carries H 2 O supplied from the H 2 O supply unit 34 .
  • the carrier gas By configuring the carrier gas to transport H 2 O in this way, the amount of H 2 O supplied to the proton generating section 30 can be determined using an analytical instrument or measuring instrument such as a gas chromatograph or a mass flow meter. can be accurately grasped. That is, it is possible to more accurately control the amount of H 2 O supplied from the H 2 O supply section 34 to the proton generation section 30 based on the values obtained from the above-mentioned analysis equipment and measuring instruments.
  • control unit 60 is electrically connected to the carrier gas supply unit 38, acquires the carrier gas supply amount in real time, and measures the temperature of the fuel synthesis unit 20 measured by the fuel synthesis unit temperature measurement unit 21.
  • the amount of H 2 O supplied from the H 2 O supply unit 34 and the amount of carrier gas supplied from the carrier gas supply unit 38 based on the temperature the amount of H 2 O supplied to the proton generation unit 30 is reduced. It controls the amount of supply.
  • the hydrocarbon-based compound production apparatus 10 of the present embodiment measures the production rate R of the hydrocarbon-based compound in the fuel synthesizing unit 20 with respect to the amount of CO 2 supplied from the cathode gas supply unit 24.
  • a rate measuring unit 62 is provided.
  • the hydrocarbon-based compound production rate measuring unit 62 is provided in the outlet side pipe 26 of the fuel synthesizing unit 20 .
  • the hydrocarbon-based compound production rate measurement unit 62 is electrically connected to the control unit 60, and acquires the CO 2 supply amount from the cathode gas supply unit 24 via the control unit 60, whereby the CO 2 Calculates the production rate R of hydrocarbon-based compounds with respect to the supply amount.
  • the calculated generation rate R is transmitted to the control unit as an electrical signal.
  • the hydrocarbon-based compound production rate measurement unit 62 calculates the production rate R from the ratio of the produced hydrocarbon-based compound production amount to the CO 2 supply amount, and outputs the calculated production rate R to the control unit 60 .
  • the amount (volume) of hydrocarbon-based compounds produced can be measured using a known measuring device such as a gas chromatograph . It can also be calculated using a value.
  • the control unit 60 controls the H 2 O supply amount and the carrier gas supply amount based on the production rate R obtained from the hydrocarbon-based compound production rate measurement unit 62 . That is, when the generation rate R is equal to or less than a predetermined generation rate threshold value, it is determined that the fuel synthesizing section 20 is overheated and the hydrocarbon-based compound generation efficiency is declining, and H 2 O is supplied to the proton generating section 30. is increased, and the carrier gas supply is increased or decreased as necessary. On the other hand, if the generation rate R exceeds the predetermined generation rate threshold, control by the control unit 60 is not performed.
  • the production rate threshold value can be appropriately set, for example, based on the design of heat storage and heat release of the hydrocarbon-based compound manufacturing apparatus 10 .
  • the hydrocarbon-based compound manufacturing apparatus 10 of the present embodiment includes a product gas separation unit 64 that separates only methane from the product gas in the fuel synthesis unit 20 .
  • the product gas separation unit 64 is provided downstream of the hydrocarbon-based compound production rate measurement unit 62 in the outlet pipe 26 of the fuel synthesis unit 20 .
  • the methane separated by the generated gas separation section 64 is recovered and stored in the CH 4 recovery section 66 .
  • the produced gas separation unit 64 is configured to separate only methane, but the produced gas is separated by component, for example, CO 2 and H 2 O contained in the produced gas. can be configured to be reused.
  • the hydrocarbon-based compound manufacturing apparatus 10 of the present embodiment includes a generated gas measurement unit 68 that measures the amount of generated gas generated in the fuel synthesizing unit 20 .
  • the generated gas measurement unit 68 is provided upstream of the generated gas separation unit 64 in the outlet pipe 26 of the fuel synthesizing unit 20 .
  • the generated gas amount measured by the generated gas measuring unit 68 is transmitted as an electric signal to the control unit, and the control unit 60 determines the H 2 O supply amount and the carrier gas supply amount based on the generated gas amount. is controlled to control the amount of H 2 O supplied to the proton generating section 30 .
  • control unit 60 determines that the CO 2 electrolysis efficiency at the cathode 22 and the methane production efficiency have decreased, that is, fuel synthesis It is determined that the temperature of the portion 20 has risen, and the amount of H 2 O supplied and the amount of carrier gas supplied are controlled so as to increase the amount of H 2 O supplied to the proton generating portion 30 .
  • the hydrocarbon-based compound production apparatus 10 of the present embodiment also includes a CH 4 measurement unit 65 that measures the amount of methane produced in the fuel synthesis unit 20 .
  • the CH 4 measurement unit 65 is provided downstream of the generated gas separation unit 64 and upstream of the CH 4 recovery unit 66 in the outlet pipe 26 of the fuel synthesizing unit 20 .
  • the hydrocarbon-based compound manufacturing apparatus 10 of the present embodiment includes a voltage measuring section 52 (current-voltage measuring section) that measures the voltage value of the anode 32 with respect to the cathode 22 .
  • the voltage measurement unit 52 is electrically connected to the control unit 60, and the voltage value of the anode 32 with respect to the cathode 22 measured by the voltage measurement unit 52 is transmitted to the control unit 60 as an electric signal.
  • the control unit 60 controls the H 2 O supply amount and the carrier gas supply amount based on the voltage value obtained from the voltage measurement unit 52 . That is, when the voltage value is equal to or less than a predetermined voltage threshold, the supply amount of H 2 O supplied to the proton generating section 30 is increased, and the carrier gas supply amount is increased or decreased as necessary. On the other hand, when the voltage value exceeds the voltage threshold, control by the control unit 60 is not performed.
  • the current value flowing between the cathode 22 and the anode 32 is kept constant, and in order to measure the voltage value of the anode 32 with respect to the cathode 22, the voltage measurement unit 52 is used as a current/voltage measurement unit.
  • the voltage measurement unit 52 can also be used as a current measurement unit for measuring the value of current flowing between the cathode 22 and the anode 32.
  • it may be an electrical resistance measuring unit that measures the electrical resistance value between the cathode 22 and the anode 32 .
  • the value of the current flowing through the power supply 50 can also be used as the value of the current flowing between the cathode 22 and the anode 32 .
  • the electrical resistance value between the cathode 22 and the anode 32 the electrical resistance value between the surface of the cathode 22 on the side of the fuel synthesizing section 20 and the surface of the anode 32 on the side of the proton generating section 30 is measured. preferably.
  • the controller 60 controls the H 2 O supply amount and the carrier gas supply amount based on the current value and the electrical resistance value.
  • the hydrocarbon-based compound manufacturing apparatus 10 of the present embodiment also includes a cathode gas preheating unit 27 that heats the cathode gas supplied from the cathode gas supply unit 24 to the fuel synthesizing unit 20 .
  • a cathode gas preheating unit 27 that heats the cathode gas supplied from the cathode gas supply unit 24 to the fuel synthesizing unit 20 .
  • the temperature of the cathode gas is more preferably 100° C. or higher and 400° C. or lower, and still more preferably 300° C. or higher and 400° C. or lower.
  • the hydrocarbon-based compound manufacturing apparatus 10 of the present embodiment includes an H 2 O preheating section 37 that heats the H 2 O supplied from the H 2 O supply section 34 to the proton generation section 30 .
  • the temperature of the H 2 O supplied to the proton generating section 30 is not particularly limited as long as it exceeds 0° C. and is equal to or lower than the set temperature threshold. However, for example, by setting the temperature of H 2 O to 200° C. or more and 300° C. or less, it can be supplied to the proton generation section 30 in the state of low-temperature steam, and the electrolysis efficiency of H 2 O in the proton generation section 30 is improved. can be made
  • the hydrocarbon-based compound manufacturing apparatus 10 of the present embodiment includes a proton generation unit temperature measurement unit 31 that measures the temperature of the proton generation unit 30 .
  • the temperature of the proton generating section 30 measured by the proton generating section temperature measuring section 31 is output as an electrical signal and sent to the control section 60 .
  • the proton generation part temperature measurement part 31 is provided in the discharge part 30b of the proton generation part 30, but it is not limited to this and can be attached to any position of the proton generation part 30. That is, it can be provided on the inlet side (introduction part 30a) of the proton generating part 30, the surface of the anode 32, or the like.
  • the control unit 60 controls the H 2 O supply amount and carrier gas supply amount based on the proton generation unit temperature obtained from the proton generation unit temperature measurement unit 31 . That is, when the proton generation unit temperature exceeds a predetermined proton generation unit temperature threshold value, it is determined that the fuel synthesizing unit 20 is overheated and the hydrocarbon-based compound generation efficiency is reduced, and the proton generation unit 30 The supply amount of H 2 O to be supplied is increased, and the carrier gas supply amount is increased or decreased as necessary. On the other hand, when the proton generating part temperature is equal to or lower than the predetermined proton generating part temperature threshold, control by the control part 60 is not performed.
  • the proton generating part temperature threshold value can be appropriately set, for example, based on the design of heat storage and heat dissipation of the hydrocarbon-based compound manufacturing apparatus 10 .

Abstract

[Problem] To provide a hydrocarbon-compound production device and production method with which it is possible to efficiently suppress an increase in temperature without employing a dedicated cooling device and to continue efficient hydrocarbon compound production when producing a hydrocarbon compound by utilizing electrolysis, such as methane generation by means of a PCEC co-electrolysis system. [Solution] The present invention provides a hydrocarbon-compound production device that synthesizes a hydrocarbon compound from H2O and CO2 by means of electrification, the hydrocarbon-compound production device including: an electrolyzer that has a fuel synthesis unit containing a cathode, a proton generation unit containing an anode, and an electrolyte membrane disposed between said electrodes; an H2O supply unit that supplies H2O to the proton generation unit; a cathode-gas supply unit that supplies a cathode gas containing CO2 to the fuel synthesis unit; a fuel-synthesis-unit temperature measurement unit that measures the temperature of the fuel synthesis unit; and a control unit that controls the H2O supply amount from the H2O supply unit on the basis of the temperature of the fuel synthesis unit measured by the fuel-synthesis-unit temperature measurement unit.

Description

炭化水素系化合物の製造装置及び製造方法Hydrocarbon compound production apparatus and production method
 本発明は、通電によりH2O及びCO2から炭化水素系化合物を合成する炭化水素系化合物の製造装置及び製造方法に関し、特に、炭化水素系化合物の合成時に発生する熱によって温度が上昇した製造装置を冷却し、H2O及びCO2の電解による変換効率の低下を抑制することができる炭化水素系化合物の製造装置及び製造方法に関する。 TECHNICAL FIELD The present invention relates to an apparatus and method for producing a hydrocarbon-based compound that synthesizes a hydrocarbon-based compound from H 2 O and CO 2 by energization, and in particular, production in which the temperature is raised by the heat generated during the synthesis of the hydrocarbon-based compound. The present invention relates to an apparatus and method for producing a hydrocarbon compound capable of cooling the apparatus and suppressing a decrease in conversion efficiency due to electrolysis of H 2 O and CO 2 .
 近年、環境問題への意識の高まりから、地球温暖化の原因であるCO2を原料としたメタネーション反応を利用したシステムが提案されている(例えば、特許文献1,2)。このようなメタネーションシステムのうち、プロトン伝導性セラミックスを用いた水電解システム(PCEC)(例えば、非特許文献1)では、アノード側でH2Oを電気分解することで、プロトン(H+)が電解質中を移動し、カソード側にH2が発生する。このとき、同時にカソード側でCO2を電気分解することで、メタンの生成が可能である。 In recent years, due to growing awareness of environmental issues, systems have been proposed that utilize a methanation reaction using CO 2 , which is a cause of global warming, as a raw material (for example, Patent Documents 1 and 2). Among such methanation systems, in a water electrolysis system (PCEC) using proton conductive ceramics (for example, Non-Patent Document 1), by electrolyzing H 2 O on the anode side, protons (H + ) migrates in the electrolyte, generating H 2 on the cathode side. At this time, methane can be produced by simultaneously electrolyzing CO 2 on the cathode side.
特開2010-62192号公報JP 2010-62192 A 特開2021-9820号公報Japanese Patent Application Laid-Open No. 2021-9820
 このようなPCEC共電解システムでのCO2からのメタン生成においては、メタン化反応平衡から常圧では700℃以下、また、CO2の変換効率の観点からは550℃以下の温度とすることが好ましいが、アノードにおける水電解反応での過電圧の影響と、カソードでの反応が発熱反応であることから、反応の進行に伴い温度が上昇してしまい、メタンの生成効率が低下するという課題がある。一方で、発熱を抑えるために過度に冷却を行うと、PCECの電解効率が低下してしまい、やはり、メタンの生成効率が低下してしまう。 In the production of methane from CO 2 in such a PCEC co-electrolysis system, the temperature should be 700° C. or less at normal pressure from the equilibrium of the methanation reaction, and 550° C. or less from the viewpoint of CO 2 conversion efficiency. Although it is preferable, there is a problem that the temperature rises as the reaction progresses due to the influence of overvoltage in the water electrolysis reaction at the anode and the reaction at the cathode is an exothermic reaction, and the methane production efficiency decreases. . On the other hand, if excessive cooling is performed to suppress heat generation, the electrolysis efficiency of the PCEC will decrease, and the methane production efficiency will also decrease.
 本発明では、このような現状に鑑み、PCEC共電解システムでメタンなどの炭化水素系化合物を製造するにあたり、専用の冷却装置を用いずに、効率的に温度の上昇を抑え、効率的な炭化水素系化合物の製造を継続することができる炭化水素系化合物の製造装置及び製造方法を提供することを目的とする。 In the present invention, in view of the current situation, when producing hydrocarbon compounds such as methane in a PCEC co-electrolysis system, it is possible to efficiently suppress the temperature rise and efficiently carbonize without using a dedicated cooling device. It is an object of the present invention to provide a production apparatus and a production method for a hydrocarbon-based compound that can continue production of the hydrogen-based compound.
 本発明は、上述するような従来技術における課題を解決するために発明されたものであって、本発明の炭化水素系化合物の製造装置及び製造方法は、少なくとも以下のように構成されたものを含む。 The present invention was invented to solve the problems in the prior art as described above, and the apparatus and method for producing a hydrocarbon compound of the present invention are configured at least as follows. include.
 [1] 通電によりH2O及びCO2から炭化水素系化合物を合成する炭化水素系化合物の製造装置であって、
 カソードを含む燃料合成部と、アノードを含むプロトン発生部と、カソード及びアノード間に配置された電解質膜と、を有する電解槽と、
 前記プロトン発生部にH2Oを供給するH2O供給部と、
 前記燃料合成部にCO2を含むカソードガスを供給するカソードガス供給部と、
 前記燃料合成部の温度を測定する燃料合成部温度測定部と、
 前記燃料合成部温度測定部により測定された前記燃料合成部の温度に基づいて、前記H2O供給部からのH2O供給量を制御する制御部と、を備える、炭化水素系化合物の製造装置。
[1] A hydrocarbon-based compound manufacturing apparatus for synthesizing a hydrocarbon-based compound from H 2 O and CO 2 by energization,
an electrolytic cell having a fuel synthesis section including a cathode, a proton generation section including an anode, and an electrolyte membrane disposed between the cathode and the anode;
an H 2 O supply unit that supplies H 2 O to the proton generation unit;
a cathode gas supply unit that supplies a cathode gas containing CO 2 to the fuel synthesizing unit;
a fuel synthesizing unit temperature measuring unit for measuring the temperature of the fuel synthesizing unit;
a controller for controlling the amount of H 2 O supplied from the H 2 O supply unit based on the temperature of the fuel synthesizing unit measured by the temperature measuring unit of the fuel synthesizing unit. Device.
 [2] 前記電解質膜が、プロトン伝導性材料を含む、[1]に記載の炭化水素系化合物の製造装置。 [2] The apparatus for producing a hydrocarbon-based compound according to [1], wherein the electrolyte membrane contains a proton-conducting material.
 [3] 前記プロトン伝導性材料が、プロトン伝導性セラミックスである、[2]に記載の炭化水素系化合物の製造装置。 [3] The apparatus for producing a hydrocarbon-based compound according to [2], wherein the proton-conducting material is proton-conducting ceramics.
 [4] 前記燃料合成部温度測定部は、前記燃料合成部の入口側温度と出口側温度との温度差、前記燃料合成部の入口側温度と前記カソードの温度との温度差、前記燃料合成部の出口側温度の少なくともいずれかを測定する、[1]から[3]のいずれかに記載の炭化水素系化合物の製造装置。 [4] The fuel synthesizing unit temperature measuring unit measures the temperature difference between the inlet side temperature and the outlet side temperature of the fuel synthesizing unit, the temperature difference between the inlet side temperature of the fuel synthesizing unit and the temperature of the cathode, and the fuel synthesizing unit temperature. The apparatus for producing a hydrocarbon-based compound according to any one of [1] to [3], wherein at least one of the outlet side temperatures of the part is measured.
 [5] 前記燃料合成部における生成ガスの生成量を測定する生成ガス測定部をさらに備え、
 前記制御部は、
 前記生成ガス測定部により測定された前記生成ガスの生成量に基づいて、前記H2O供給量を制御する、[1]から[4]のいずれかに記載の炭化水素系化合物の製造装置。
[5] further comprising a generated gas measuring unit for measuring the amount of generated gas generated in the fuel synthesizing unit;
The control unit
The hydrocarbon-based compound manufacturing apparatus according to any one of [1] to [4], wherein the H 2 O supply amount is controlled based on the generated amount of the generated gas measured by the generated gas measuring unit.
 [6] 前記カソードガス供給部からのCO2供給量に対する、前記燃料合成部において生成された炭化水素系化合物の生成率Rを測定する炭化水素系化合物生成率測定部をさらに備え、
 前記制御部は、
 前記炭化水素系化合物生成率測定部において測定された前記生成率Rに基づいて、前記H2O供給量を制御する、[1]から[5]のいずれかに記載の炭化水素系化合物の製造装置。
[6] further comprising a hydrocarbon-based compound production rate measuring unit that measures the production rate R of the hydrocarbon-based compound produced in the fuel synthesizing unit with respect to the amount of CO 2 supplied from the cathode gas supply unit;
The control unit
Production of a hydrocarbon-based compound according to any one of [1] to [5], wherein the H 2 O supply amount is controlled based on the production rate R measured in the hydrocarbon-based compound production rate measuring unit. Device.
 [7] 前記カソードに対する前記アノードへの電圧値、前記カソードと前記アノードとの間に流れる電流値、前記カソードと前記アノードとの間の電気抵抗値の少なくともいずれかを測定する電流電圧測定部をさらに備え、
 前記制御部は、
 前記電流電圧測定部において測定された前記電圧値、前記電流値、前記電気抵抗値の少なくともいずれかに基づいて、前記H2O供給量を制御する、[1]から[6]のいずれかに記載の炭化水素系化合物の製造装置。
[7] A current-voltage measuring unit that measures at least one of a voltage value to the anode with respect to the cathode, a current value flowing between the cathode and the anode, and an electrical resistance value between the cathode and the anode; further prepared,
The control unit
any one of [1] to [6], wherein the H 2 O supply amount is controlled based on at least one of the voltage value, the current value, and the electrical resistance value measured by the current-voltage measuring unit; An apparatus for producing the hydrocarbon-based compound described.
 [8] 前記カソードガス供給部から前記燃料合成部に供給されるカソードガスを加熱するカソードガス予備加熱部をさらに備える、[1]から[7]のいずれかに記載の炭化水素系化合物の製造装置。 [8] Production of the hydrocarbon-based compound according to any one of [1] to [7], further comprising a cathode gas preheating unit for heating the cathode gas supplied from the cathode gas supply unit to the fuel synthesis unit Device.
 [9] 前記H2O供給部から前記プロトン発生部に供給されるH2Oを加熱するH2O予備加熱部をさらに備える、[1]から[8]のいずれかに記載の炭化水素系化合物の製造装置。 [9] The hydrocarbon system according to any one of [1] to [8], further comprising an H 2 O preheating section for heating H 2 O supplied from the H 2 O supply section to the proton generation section. Compound manufacturing equipment.
 [10] 前記プロトン発生部の温度を測定するプロトン発生部温度測定部をさらに備え、
 前記制御部は、前記プロトン発生部温度測定部により測定された前記プロトン発生部の温度に基づいて、前記H2O供給量を制御する、[1]から[9]のいずれかに記載の炭化水素系化合物の製造装置。
[10] further comprising a proton generation unit temperature measurement unit that measures the temperature of the proton generation unit;
The carbonization according to any one of [1] to [9], wherein the control unit controls the H 2 O supply amount based on the temperature of the proton generation unit measured by the proton generation unit temperature measurement unit. Manufacturing equipment for hydrogen-based compounds.
 [11] 前記H2Oを搬送するキャリアガスを供給するキャリアガス供給部をさらに備え、
 前記制御部は、前記燃料合成部温度測定部により測定された前記燃料合成部の温度、前記プロトン発生部温度測定部により測定された前記プロトン発生部の温度の少なくともいずれか一方に基づいて、前記キャリアガス供給部からのキャリアガス供給量を制御する、[10]に記載の炭化水素系化合物の製造装置。
[11] further comprising a carrier gas supply unit for supplying a carrier gas for transporting the H 2 O,
Based on at least one of the temperature of the fuel synthesizing section measured by the temperature measuring section of the fuel synthesizing section and the temperature of the proton generating section measured by the proton generating section temperature measuring section, the control section determines the The apparatus for producing a hydrocarbon-based compound according to [10], wherein the amount of carrier gas supplied from the carrier gas supply unit is controlled.
 [12] 前記H2Oを搬送するキャリアガスを供給するキャリアガス供給部をさらに備え、
 前記制御部は、前記燃料合成部温度測定部により測定された前記燃料合成部の温度に基づいて、前記キャリアガス供給部からのキャリアガス供給量を制御する、[1]から[11]のいずれかに記載の炭化水素系化合物の製造装置。
[12] further comprising a carrier gas supply unit for supplying a carrier gas for transporting the H 2 O,
Any one of [1] to [11], wherein the control unit controls the amount of carrier gas supplied from the carrier gas supply unit based on the temperature of the fuel synthesizing unit measured by the fuel synthesizing unit temperature measuring unit. 1. The apparatus for producing a hydrocarbon-based compound according to 1.
 [13] カソードを含む燃料合成部と、アノードを含むプロトン発生部と、カソード及びアノード間に配置された電解質膜と、を有する電解槽と、
 前記プロトン発生部にH2Oを供給するH2O供給部と、
 前記燃料合成部にCO2を含むカソードガスを供給するカソードガス供給部と、を備える炭化水素系化合物の製造装置を用いて、通電によりH2O及びCO2から炭化水素系化合物を合成する炭化水素系化合物の製造方法であって、
 前記燃料合成部の温度に基づいて、前記H2O供給部からのH2O供給量を制御する、炭化水素系化合物の製造方法。
[13] an electrolytic cell having a fuel synthesizing section including a cathode, a proton generating section including an anode, and an electrolyte membrane disposed between the cathode and the anode;
an H 2 O supply unit that supplies H 2 O to the proton generation unit;
a cathode gas supply unit for supplying a cathode gas containing CO2 to the fuel synthesis unit; A method for producing a hydrogen-based compound,
A method for producing a hydrocarbon-based compound, wherein the amount of H 2 O supplied from the H 2 O supply unit is controlled based on the temperature of the fuel synthesizing unit.
 [14] 前記燃料合成部の温度が、前記燃料合成部の入口側温度と出口側温度との温度差、前記燃料合成部の入口側温度と前記カソードの温度との温度差、前記燃料合成部の出口側温度の少なくともいずれかである、[13]に記載の炭化水素系化合物の製造方法。 [14] The temperature of the fuel synthesizing section is the temperature difference between the inlet side temperature and the outlet side temperature of the fuel synthesizing section, the temperature difference between the inlet side temperature of the fuel synthesizing section and the temperature of the cathode, and the fuel synthesizing section. The method for producing a hydrocarbon-based compound according to [13], wherein at least one of the outlet-side temperatures of
 [15] 前記燃料合成部において生成された生成ガスの生成量に基づいて、前記H2O供給量を制御する、[13]または[14]に記載の炭化水素系化合物の製造方法。 [15] The method for producing a hydrocarbon compound according to [13] or [14], wherein the H 2 O supply amount is controlled based on the production amount of the product gas produced in the fuel synthesizing section.
 [16] 前記カソードガス供給部からのCO2供給量に対する、前記燃料合成部において生成された炭化水素系化合物の生成率Rに基づいて、前記H2O供給量を制御する、[13]から[15]のいずれかに記載の炭化水素系化合物の製造方法。 [16] Controlling the H 2 O supply amount based on the production rate R of the hydrocarbon-based compound produced in the fuel synthesis unit with respect to the CO 2 supply amount from the cathode gas supply unit, from [13] [15] The method for producing a hydrocarbon-based compound according to any one of [15].
 [17] 前記カソードに対する前記アノードへの電圧値、前記カソードと前記アノードとの間に流れる電流値、前記カソードと前記アノードとの間の電気抵抗値の少なくともいずれかに基づいて、前記H2O供給量を制御する、[13]から[16]のいずれかに記載の炭化水素系化合物の製造方法。 [17] The H 2 O The method for producing a hydrocarbon-based compound according to any one of [13] to [16], wherein the supply amount is controlled.
 [18] 前記カソードガス供給部から前記燃料合成部に供給されるカソードガスを加熱する、[13]から[17]のいずれかに記載の炭化水素系化合物の製造方法。 [18] The method for producing a hydrocarbon-based compound according to any one of [13] to [17], wherein the cathode gas supplied from the cathode gas supply unit to the fuel synthesis unit is heated.
 [19] 前記H2O供給部から前記プロトン発生部に供給されるH2Oを加熱する、[13]から[18]のいずれかに記載の炭化水素系化合物の製造方法。 [19] The method for producing a hydrocarbon-based compound according to any one of [13] to [18], wherein H 2 O supplied from the H 2 O supply unit to the proton generation unit is heated.
 [20] 前記プロトン発生部の温度に基づいて、前記H2O供給量を制御する、[13]から[19]のいずれかに記載の炭化水素系化合物の製造方法。
 [21] 前記炭化水素系化合物の製造装置は、前記H2Oを搬送するキャリアガスを供給するキャリアガス供給部をさらに備え、
 前記燃料合成部の温度、前記プロトン発生部の温度の少なくともいずれか一方に基づいて、前記キャリアガス供給部からのキャリアガス供給量を制御する、[20]に記載の炭化水素系化合物の製造方法。
[20] The method for producing a hydrocarbon-based compound according to any one of [13] to [19], wherein the H 2 O supply amount is controlled based on the temperature of the proton generating section.
[21] The apparatus for producing a hydrocarbon-based compound further includes a carrier gas supply unit for supplying a carrier gas for carrying the H 2 O,
The method for producing a hydrocarbon-based compound according to [20], wherein the amount of carrier gas supplied from the carrier gas supply unit is controlled based on at least one of the temperature of the fuel synthesis unit and the temperature of the proton generation unit. .
 [22] 前記炭化水素系化合物の製造装置は、前記H2Oを搬送するキャリアガスを供給するキャリアガス供給部をさらに備え、
 前記燃料合成部の温度に基づいて、前記キャリアガス供給部からのキャリアガス供給量を制御する、[13]から[20]のいずれかに記載の炭化水素系化合物の製造方法。
[22] The apparatus for producing a hydrocarbon-based compound further includes a carrier gas supply unit for supplying a carrier gas for transporting the H 2 O,
The method for producing a hydrocarbon-based compound according to any one of [13] to [20], wherein the amount of carrier gas supplied from the carrier gas supply unit is controlled based on the temperature of the fuel synthesizing unit.
 本発明によれば、カソードを含む燃料合成部の温度に基づき、アノードを含むプロトン発生部に供給するH2Oの供給量を制御することにより、製造装置の冷却を図り、電解効率の低下や、炭化水素系化合物の生成効率の低下を抑制し、効率的な炭化水素系化合物の製造を継続することができる。 According to the present invention, the amount of H 2 O supplied to the proton generating section including the anode is controlled based on the temperature of the fuel synthesizing section including the cathode, thereby cooling the manufacturing apparatus and reducing the electrolysis efficiency. , it is possible to suppress the decrease in the production efficiency of the hydrocarbon-based compound, and to continue the efficient production of the hydrocarbon-based compound.
図1は、本実施形態における炭化水素系化合物の製造装置の構成を説明するための模式図である。FIG. 1 is a schematic diagram for explaining the configuration of a hydrocarbon-based compound production apparatus according to the present embodiment. 図2は、別の実施形態における炭化水素系化合物の製造装置の構成を説明するための模式図である。FIG. 2 is a schematic diagram for explaining the configuration of a hydrocarbon-based compound production apparatus according to another embodiment.
 以下、本発明の実施の形態(実施例)を図面に基づいて、より詳細に説明する。
 図1は、本実施形態における炭化水素系化合物の製造装置の構成を説明するための模式図である。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments (examples) of the present invention will be described in more detail with reference to the drawings.
FIG. 1 is a schematic diagram for explaining the configuration of a hydrocarbon-based compound production apparatus according to the present embodiment.
 なお、本実施形態では、炭化水素系化合物としてメタン(CH4)を製造する例を説明しているが、本発明はメタンやエタンなどの炭化水素に限られない。例えば、メタノールやエタノールなどのアルコール類、さらにはホルムアルデヒドやアセトアルデヒドなどのアルデヒド類、蟻酸や酢酸などのカルボン酸類、ジメチルエーテルなどのエーテル類などを含む炭化水素系化合物を製造する製造装置及び製造方法にも適用することが可能である。 In this embodiment, an example of producing methane (CH 4 ) as a hydrocarbon compound is described, but the present invention is not limited to hydrocarbons such as methane and ethane. For example, the manufacturing apparatus and manufacturing method for manufacturing hydrocarbon compounds including alcohols such as methanol and ethanol, aldehydes such as formaldehyde and acetaldehyde, carboxylic acids such as formic acid and acetic acid, and ethers such as dimethyl ether. It is possible to apply
 図1に示すように、本実施形態の炭化水素系化合物の製造装置10は、カソード22を含む燃料合成部20と、アノード32を含むプロトン発生部30と、カソード22とアノード32との間に配置された電解質膜42と、を有する電解槽40を有する。 As shown in FIG. 1, the hydrocarbon-based compound manufacturing apparatus 10 of the present embodiment includes a fuel synthesizing section 20 including a cathode 22, a proton generating section 30 including an anode 32, and between the cathode 22 and the anode 32 an electrolytic cell 40 having an electrolyte membrane 42 disposed thereon.
 アノード32とカソード22は、電源50に接続されており、カソード22から電源50へ電流が流れ出すとともに、電源50からアノード32へ電流が流れ込むように構成されている。 The anode 32 and the cathode 22 are connected to a power source 50 and are configured such that current flows from the cathode 22 to the power source 50 and current flows from the power source 50 to the anode 32 .
 電解質膜42は、主に電荷キャリアとしてイオンを通す性質を有する膜であって、アノード32とカソード22とが電気的に短絡しないような性質を有していれば、特に限定されるものではないが、例えば、プロトン伝導性材料を含む電解質膜42とすることができる。このように、電解質膜42がプロトン伝導性材料を含むことにより、アノード32を含むプロトン発生部30においてH2Oが電気分解されることで生成されたプロトンは、この電解質膜42を通過してカソード22に移動する。このようなプロトン伝導性材料としては、プロトン伝導性セラミックスを用いることが好ましい。 The electrolyte membrane 42 is not particularly limited as long as it is a membrane that has the property of allowing ions to pass through mainly as charge carriers, and has the property of preventing an electrical short circuit between the anode 32 and the cathode 22. can be, for example, an electrolyte membrane 42 comprising a proton-conducting material. Since the electrolyte membrane 42 contains the proton conductive material, the protons generated by the electrolysis of H 2 O in the proton generating section 30 including the anode 32 pass through the electrolyte membrane 42 to Move to cathode 22 . Proton-conducting ceramics are preferably used as such a proton-conducting material.
 また、プロトン発生部30には、プロトン発生部30にH2Oを供給するH2O供給部34が接続され、一方で、燃料合成部20には、燃料合成部20にCO2を含むカソードガスを供給するカソードガス供給部24が接続されている。カソードガス供給部24から供給するカソードガスは、少なくともCO2を含むガスであれば、特に限定されるものではないが、例えば、CO2のみからなるガスでもよいし、N2やArなどの不活性ガスとの混合ガスや、NOxやCOとの混合ガスであってもよいし、また、空気であってもよい。 An H 2 O supply unit 34 for supplying H 2 O to the proton generation unit 30 is connected to the proton generation unit 30, while a cathode containing CO 2 in the fuel synthesis unit 20 is connected to the fuel synthesis unit 20. A cathode gas supply unit 24 for supplying gas is connected. The cathode gas supplied from the cathode gas supply unit 24 is not particularly limited as long as it contains at least CO2 . It may be a mixed gas with active gas, a mixed gas with NOx or CO, or air.
 H2O供給部34からプロトン発生部30へのH2O供給経路33上及びカソードガス供給部24から燃料合成部20へのカソードガス供給経路23上には、それぞれ圧力調整弁35,25が設けられている。また、H2O供給部34からプロトン発生部30へのH2O供給経路33上には、逆止弁36が設けられており、プロトン発生部30の圧力上昇により、プロトン発生部30からH2O供給部34へとH2Oが逆流してしまうことを防止している。 Pressure regulating valves 35 and 25 are provided on the H 2 O supply path 33 from the H 2 O supply section 34 to the proton generation section 30 and on the cathode gas supply path 23 from the cathode gas supply section 24 to the fuel synthesis section 20, respectively. is provided. In addition, a check valve 36 is provided on the H 2 O supply path 33 from the H 2 O supply unit 34 to the proton generation unit 30 , and the H 2 O This prevents H 2 O from flowing back to the 2 O supply section 34 .
 また、燃料合成部20及びプロトン発生部30には、それぞれ、カソードガス加熱部29及びH2O加熱部39を備えている。燃料合成部20及びプロトン発生部30において、それぞれ、CO2及びH2Oを電気分解する際に、カソードガス加熱部29及びH2O加熱部39によって加熱することによって、CO2及びH2Oの電解効率が向上する。 The fuel synthesizing section 20 and the proton generating section 30 are provided with a cathode gas heating section 29 and an H 2 O heating section 39, respectively. When CO 2 and H 2 O are electrolyzed in the fuel synthesizing section 20 and the proton generating section 30, respectively, CO 2 and H 2 O are produced by heating with the cathode gas heating section 29 and the H 2 O heating section 39. electrolysis efficiency is improved.
 燃料合成部20において生成された炭化水素系化合物を含む生成ガスは、燃料合成部20の出口20bから排出される。なお、燃料合成部20の出口20bから排出される生成ガスには、炭化水素系化合物の他に、生成反応が生じなかったCO2やCO、H2、H2Oなどが含まれる場合がある。 The produced gas containing the hydrocarbon compound produced in the fuel synthesizing section 20 is discharged from the outlet 20b of the fuel synthesizing section 20 . The generated gas discharged from the outlet 20b of the fuel synthesizing unit 20 may contain, in addition to hydrocarbon compounds, CO 2 , CO, H 2 , H 2 O, etc. that have not undergone a generation reaction. .
 また、プロトン発生部30においてH2Oを電気分解することにより生じたO2は、プロトン発生部30の排出部30bから排出される。排出部30bは、プロトン発生部30内のガスが排出できる位置であれば、どの位置に設けても構わない。なお、電気分解されなかったH2Oも同様に排出部から排出される。また、図示しないが、排出されたH2Oが、例えば、排出部30bからH2O供給部34まで流れる経路を設けて循環させ、H2Oを再利用可能な構成にすることもできる。 O 2 produced by electrolyzing H 2 O in the proton generating section 30 is discharged from the discharging section 30 b of the proton generating section 30 . The discharge part 30b may be provided at any position as long as the gas in the proton generation part 30 can be discharged. Note that H 2 O that has not been electrolyzed is also discharged from the discharge part. Also, although not shown, for example, a path for the discharged H 2 O to flow from the discharge portion 30b to the H 2 O supply portion 34 may be provided and circulated, so that H 2 O can be reused.
 また、燃料合成部20には、燃料合成部20の温度を測定するための燃料合成部温度測定部21が設けられている。燃料合成部温度測定部21によって測定された燃料合成部20の温度は、電気信号として出力され、後述するように制御部60に送信される。 Further, the fuel synthesizing section 20 is provided with a fuel synthesizing section temperature measuring section 21 for measuring the temperature of the fuel synthesizing section 20 . The temperature of the fuel synthesizing section 20 measured by the fuel synthesizing section temperature measuring section 21 is output as an electric signal and transmitted to the control section 60 as will be described later.
 本実施形態においては、燃料合成部温度測定部21を、燃料合成部20の出口20b側に設けた構成とし、燃料合成部20から排出される生成ガスの温度を燃料合成部20の温度として測定するようにしているが、これに限らず、例えば、燃料合成部温度測定部21を、燃料合成部20の入口20a側と出口20b側の両方に設けて、入口側温度(供給されるカソードガスの温度)と出口側温度(排出される生成ガスの温度)との温度差を測定するようにしてもよい。また、燃料合成部温度測定部21を、燃料合成部の入口20a側と、カソード22表面に設けて、入口側温度(供給されるカソードガスの温度)とカソード22の温度との温度差を測定するようにしてもよい。 In this embodiment, the fuel synthesizing unit temperature measuring unit 21 is provided on the outlet 20b side of the fuel synthesizing unit 20, and the temperature of the generated gas discharged from the fuel synthesizing unit 20 is measured as the temperature of the fuel synthesizing unit 20. However, not limited to this, for example, the fuel synthesizing unit temperature measuring unit 21 is provided on both the inlet 20a side and the outlet 20b side of the fuel synthesizing unit 20, and the inlet side temperature (supplied cathode gas temperature) and the outlet side temperature (the temperature of the produced gas discharged) may be measured. Further, the fuel synthesizing unit temperature measuring unit 21 is provided on the inlet 20a side of the fuel synthesizing unit and on the surface of the cathode 22 to measure the temperature difference between the inlet side temperature (the temperature of the supplied cathode gas) and the temperature of the cathode 22. You may make it
 また、H2O供給部34及び燃料合成部温度測定部21が、それぞれ電気的に接続された制御部60を備え、制御部60は、燃料合成部温度測定部21の出力信号に基づいて、H2O供給部34から供給されるH2Oの供給量を制御するように構成されている。なお、制御部60としては、例えば、演算手段、記憶手段、入出力手段などを備えたマイクロコントローラなどを用いることができる。 The H 2 O supply unit 34 and the fuel synthesizing unit temperature measuring unit 21 are each provided with a control unit 60 electrically connected thereto. It is configured to control the amount of H 2 O supplied from the H 2 O supply section 34 . As the control unit 60, for example, a microcontroller having calculation means, storage means, input/output means, etc. can be used.
 制御部60は、電気的に接続されたH2O供給部34から、H2O供給量をリアルタイムで取得できるように構成されている。また、制御部60は、カソードガス供給部24と電気的に接続され、CO2供給量をリアルタイムで取得できるように構成されている。なお、カソードガス供給部24からCO2以外の物質を含むカソードガスを供給する場合、CO2供給量は、公知の分析機器や測定器を用いて、カソードガスに含まれるCO2の量を測定するようにすることができる。 The controller 60 is configured to acquire the H 2 O supply amount in real time from the electrically connected H 2 O supply unit 34 . Also, the control unit 60 is electrically connected to the cathode gas supply unit 24 and configured to acquire the CO 2 supply amount in real time. When the cathode gas containing a substance other than CO 2 is supplied from the cathode gas supply unit 24, the amount of CO 2 supplied is determined by measuring the amount of CO 2 contained in the cathode gas using a known analyzer or measuring instrument. can be made to
 このように構成された本実施形態の炭化水素系化合物の製造装置10は、燃料合成部温度測定部21によって測定された燃料合成部20の温度に基づき、制御部60によって、H2O供給部34から供給されるH2Oの供給量を制御する。 In the hydrocarbon-based compound manufacturing apparatus 10 of the present embodiment configured as described above, the H 2 O supply unit It controls the amount of H 2 O supplied from 34 .
 具体的には、燃料合成部20の温度が、所定の温度閾値よりも高くなった場合には、H2O供給部34から供給されるH2Oの供給量を増加させる。一方で、燃料合成部20の温度が、所定の温度閾値以下の場合には、H2O供給部34から供給されるH2Oの供給量を標準量とする。ここで、H2Oの供給量の「標準量」とは、炭化水素系化合物の製造に必要となるプロトンを十分に発生させることが可能となる供給量を意味する。H2O供給量の標準量は特に限定されるものではないが、CO2変換効率の観点から、カソードガスに含まれるCO2の物質量に対して、好ましくは0.5倍以上5.0倍以下、より好ましくは1.0倍以上5.0倍以下、さらに好ましくは1.0倍以上4.0倍以下の物質量と設定することができる。 Specifically, when the temperature of the fuel synthesizing section 20 becomes higher than a predetermined temperature threshold, the supply amount of H 2 O supplied from the H 2 O supply section 34 is increased. On the other hand, when the temperature of the fuel synthesizing section 20 is equal to or lower than the predetermined temperature threshold, the supply amount of H 2 O supplied from the H 2 O supply section 34 is set as the standard amount. Here, the "standard amount" of the supply amount of H 2 O means the supply amount that enables sufficient generation of protons necessary for the production of the hydrocarbon-based compound. The standard amount of H 2 O supplied is not particularly limited, but from the viewpoint of CO 2 conversion efficiency, it is preferably 0.5 times or more 5.0 times the amount of CO 2 contained in the cathode gas. The amount of substance can be set to be 1.0 times or less, more preferably 1.0 times or more and 5.0 times or less, and still more preferably 1.0 times or more and 4.0 times or less.
 また、所定の温度閾値は、メタン化反応平衡やCO2の変換効率の観点などから適宜設定することができる。具体的には、例えば、燃料合成部20の温度として、燃料合成部20から排出される生成ガスの温度を測定する場合には、温度閾値を300℃以上700℃以下と設定することが好ましい。より好ましくは、330℃以上650℃以下であり、さらに好ましくは、350℃以上600℃以下である。 Further, the predetermined temperature threshold can be appropriately set from the viewpoint of methanation reaction equilibrium, CO 2 conversion efficiency, and the like. Specifically, for example, when measuring the temperature of the generated gas discharged from the fuel synthesizing unit 20 as the temperature of the fuel synthesizing unit 20, it is preferable to set the temperature threshold to 300° C. or higher and 700° C. or lower. It is more preferably 330°C or higher and 650°C or lower, and still more preferably 350°C or higher and 600°C or lower.
 このようにH2Oの供給量を制御することによって、製造装置10の温度が上昇した場合には、H2O供給部34からプロトン発生部30へのH2O供給量を増加させることで、製造装置10全体の冷却を図ることができ、カソード22におけるCO2の電解効率の低下や、メタンの生成効率の低下を抑制し、効率的なメタンの製造を継続することができる。 By controlling the supply amount of H 2 O in this way, when the temperature of the manufacturing apparatus 10 rises, the amount of H 2 O supplied from the H 2 O supply unit 34 to the proton generation unit 30 can be increased. , the entire manufacturing apparatus 10 can be cooled, and a decrease in the electrolysis efficiency of CO 2 at the cathode 22 and a decrease in the production efficiency of methane can be suppressed, and efficient methane production can be continued.
 図2は、別の実施形態における炭化水素系化合物の製造装置の構成を説明するための模式図である。
 図2に示す炭化水素系化合物の製造装置10は、基本的には、図1に示す炭化水素系化合物の製造装置10と同様な構成であり、同様な構成要素には、同じ符合を付して、その詳細な説明を省略する。また、図2においては、図面が煩雑になってしまうため、制御部60との電気的接続を示す線を一部図示していない。
FIG. 2 is a schematic diagram for explaining the configuration of a hydrocarbon-based compound production apparatus according to another embodiment.
The hydrocarbon-based compound manufacturing apparatus 10 shown in FIG. 2 basically has the same configuration as the hydrocarbon-based compound manufacturing apparatus 10 shown in FIG. Therefore, a detailed description thereof will be omitted. Also, in FIG. 2, some lines indicating electrical connection with the control unit 60 are not shown because the drawing would be complicated.
 本実施形態の炭化水素系化合物の製造装置10は、H2O供給部34から供給されるH2Oを搬送するキャリアガスを供給するキャリアガス供給部38を備えている。
 このようにキャリアガスによってH2Oを搬送するように構成することで、例えば、ガスクロマトグラフやマスフローメーターなどの分析機器や測定器を用いて、プロトン発生部30へ供給するH2Oの供給量を正確に把握することが可能である。すなわち、上記の分析機器や測定器から得られる値を基に、H2O供給部34からプロトン発生部30へ供給するH2Oの供給量の制御をより正確に行うことが可能となる。
The hydrocarbon-based compound manufacturing apparatus 10 of the present embodiment includes a carrier gas supply unit 38 that supplies a carrier gas that carries H 2 O supplied from the H 2 O supply unit 34 .
By configuring the carrier gas to transport H 2 O in this way, the amount of H 2 O supplied to the proton generating section 30 can be determined using an analytical instrument or measuring instrument such as a gas chromatograph or a mass flow meter. can be accurately grasped. That is, it is possible to more accurately control the amount of H 2 O supplied from the H 2 O supply section 34 to the proton generation section 30 based on the values obtained from the above-mentioned analysis equipment and measuring instruments.
 本実施形態においては、制御部60は、キャリアガス供給部38と電気的に接続され、キャリアガス供給量をリアルタイムで取得するとともに、燃料合成部温度測定部21によって測定された燃料合成部20の温度に基づき、H2O供給部34から供給されるH2O供給量やキャリアガス供給部38から供給されるキャリアガス供給量を制御することにより、プロトン発生部30へ供給するH2Oの供給量を制御している。 In the present embodiment, the control unit 60 is electrically connected to the carrier gas supply unit 38, acquires the carrier gas supply amount in real time, and measures the temperature of the fuel synthesis unit 20 measured by the fuel synthesis unit temperature measurement unit 21. By controlling the amount of H 2 O supplied from the H 2 O supply unit 34 and the amount of carrier gas supplied from the carrier gas supply unit 38 based on the temperature, the amount of H 2 O supplied to the proton generation unit 30 is reduced. It controls the amount of supply.
 また、本実施形態の炭化水素系化合物の製造装置10は、カソードガス供給部24からのCO2供給量に対する、燃料合成部20における炭化水素系化合物の生成率Rを測定する炭化水素系化合物生成率測定部62を備えている。本実施形態において炭化水素系化合物生成率測定部62は、燃料合成部20の出口側配管26に設けられている。また、炭化水素系化合物生成率測定部62は、制御部60と電気的に接続されており、カソードガス供給部24からのCO2供給量を、制御部60を介して取得することにより、CO2供給量に対する炭化水素系化合物の生成率Rを算出している。算出された生成率Rは、電気信号として制御部に送信される。 Further, the hydrocarbon-based compound production apparatus 10 of the present embodiment measures the production rate R of the hydrocarbon-based compound in the fuel synthesizing unit 20 with respect to the amount of CO 2 supplied from the cathode gas supply unit 24. A rate measuring unit 62 is provided. In this embodiment, the hydrocarbon-based compound production rate measuring unit 62 is provided in the outlet side pipe 26 of the fuel synthesizing unit 20 . In addition, the hydrocarbon-based compound production rate measurement unit 62 is electrically connected to the control unit 60, and acquires the CO 2 supply amount from the cathode gas supply unit 24 via the control unit 60, whereby the CO 2 Calculates the production rate R of hydrocarbon-based compounds with respect to the supply amount. The calculated generation rate R is transmitted to the control unit as an electrical signal.
 炭化水素系化合物生成率測定部62は、生成した炭化水素系化合物生成量とCO2供給量との比により生成率Rを算出し、制御部60に出力する。ここで、生成率R=(炭化水素系化合物生成量(体積))/(CO2供給量(体積))によって算出することができる。なお、炭化水素系化合物生成量(体積)は、ガスクロマトグラフなどの公知の測定装置を用いて測定することも可能であるし、また、後述するCH4測定部65で測定されるメタン生成量の値を用いて算出することもできる。 The hydrocarbon-based compound production rate measurement unit 62 calculates the production rate R from the ratio of the produced hydrocarbon-based compound production amount to the CO 2 supply amount, and outputs the calculated production rate R to the control unit 60 . Here, it can be calculated by the production rate R=(hydrocarbon-based compound production amount (volume))/(CO 2 supply amount (volume)). The amount (volume) of hydrocarbon-based compounds produced can be measured using a known measuring device such as a gas chromatograph . It can also be calculated using a value.
 制御部60は、炭化水素系化合物生成率測定部62から得られた生成率Rに基づき、H2O供給量やキャリアガス供給量を制御する。すなわち、生成率Rが、所定の生成率閾値以下の場合、燃料合成部20が過熱して炭化水素系化合物の生成効率が低下していると判定し、プロトン発生部30へ供給するH2Oの供給量を増加させ、必要に応じてキャリアガス供給量を増減させる。一方で、生成率Rが所定の生成率閾値を超えている場合、制御部60による制御は行わない。なお、生成率閾値は、例えば、炭化水素系化合物の製造装置10の蓄熱や放熱の設計に基づき適宜設定することができる。 The control unit 60 controls the H 2 O supply amount and the carrier gas supply amount based on the production rate R obtained from the hydrocarbon-based compound production rate measurement unit 62 . That is, when the generation rate R is equal to or less than a predetermined generation rate threshold value, it is determined that the fuel synthesizing section 20 is overheated and the hydrocarbon-based compound generation efficiency is declining, and H 2 O is supplied to the proton generating section 30. is increased, and the carrier gas supply is increased or decreased as necessary. On the other hand, if the generation rate R exceeds the predetermined generation rate threshold, control by the control unit 60 is not performed. Note that the production rate threshold value can be appropriately set, for example, based on the design of heat storage and heat release of the hydrocarbon-based compound manufacturing apparatus 10 .
 また、本実施形態の炭化水素系化合物の製造装置10は、燃料合成部20における生成ガスからメタンのみを分離する生成ガス分離部64を備えている。本実施形態において、生成ガス分離部64は、燃料合成部20の出口側配管26において、炭化水素系化合物生成率測定部62の下流側に設けられている。 Further, the hydrocarbon-based compound manufacturing apparatus 10 of the present embodiment includes a product gas separation unit 64 that separates only methane from the product gas in the fuel synthesis unit 20 . In this embodiment, the product gas separation unit 64 is provided downstream of the hydrocarbon-based compound production rate measurement unit 62 in the outlet pipe 26 of the fuel synthesis unit 20 .
 生成ガス分離部64で分離されたメタンは、CH4回収部66において回収・貯蔵される。なお、本実施形態においては、生成ガス分離部64において、メタンのみを分離するように構成しているが、生成ガスを成分毎に分離し、例えば、生成ガスに含まれるCO2やH2Oを再利用するように構成することもできる。 The methane separated by the generated gas separation section 64 is recovered and stored in the CH 4 recovery section 66 . In the present embodiment, the produced gas separation unit 64 is configured to separate only methane, but the produced gas is separated by component, for example, CO 2 and H 2 O contained in the produced gas. can be configured to be reused.
 また、本実施形態の炭化水素系化合物の製造装置10は、燃料合成部20における生成ガスの生成量を測定する生成ガス測定部68を備えている。本実施形態において、生成ガス測定部68は、燃料合成部20の出口側配管26において、生成ガス分離部64の上流側に設けられている。生成ガス測定部68において測定された生成ガスの生成量は、電気信号として制御部に送信され、制御部60は、この生成ガスの生成量に基づいて、H2O供給量やキャリアガス供給量を制御することにより、プロトン発生部30へ供給するH2Oの供給量を制御している。 Further, the hydrocarbon-based compound manufacturing apparatus 10 of the present embodiment includes a generated gas measurement unit 68 that measures the amount of generated gas generated in the fuel synthesizing unit 20 . In the present embodiment, the generated gas measurement unit 68 is provided upstream of the generated gas separation unit 64 in the outlet pipe 26 of the fuel synthesizing unit 20 . The generated gas amount measured by the generated gas measuring unit 68 is transmitted as an electric signal to the control unit, and the control unit 60 determines the H 2 O supply amount and the carrier gas supply amount based on the generated gas amount. is controlled to control the amount of H 2 O supplied to the proton generating section 30 .
 具体的には、制御部60は、生成ガスの生成量が低下した場合には、カソード22におけるCO2の電解効率の低下や、メタンの生成効率の低下が発生している、すなわち、燃料合成部20の温度が上昇してしまっていると判断し、プロトン発生部30へ供給するH2Oの供給量を増加させるように、H2O供給量やキャリアガス供給量を制御する。 Specifically, when the amount of generated gas produced decreases, the control unit 60 determines that the CO 2 electrolysis efficiency at the cathode 22 and the methane production efficiency have decreased, that is, fuel synthesis It is determined that the temperature of the portion 20 has risen, and the amount of H 2 O supplied and the amount of carrier gas supplied are controlled so as to increase the amount of H 2 O supplied to the proton generating portion 30 .
 また、本実施形態の炭化水素系化合物の製造装置10は、燃料合成部20において生成されたメタン生成量を測定するCH4測定部65を備えている。 The hydrocarbon-based compound production apparatus 10 of the present embodiment also includes a CH 4 measurement unit 65 that measures the amount of methane produced in the fuel synthesis unit 20 .
 本実施形態において、CH4測定部65は、燃料合成部20の出口側配管26において、生成ガス分離部64の下流側、かつ、CH4回収部66の上流側に設けられている。 In this embodiment, the CH 4 measurement unit 65 is provided downstream of the generated gas separation unit 64 and upstream of the CH 4 recovery unit 66 in the outlet pipe 26 of the fuel synthesizing unit 20 .
 また、本実施形態の炭化水素系化合物の製造装置10は、カソード22に対するアノード32の電圧値を測定する電圧測定部52(電流電圧測定部)を備えている。電圧測定部52は、制御部60と電気的に接続されており、電圧測定部52において測定されたカソード22に対するアノード32の電圧値は、電気信号として制御部60に送信される。 In addition, the hydrocarbon-based compound manufacturing apparatus 10 of the present embodiment includes a voltage measuring section 52 (current-voltage measuring section) that measures the voltage value of the anode 32 with respect to the cathode 22 . The voltage measurement unit 52 is electrically connected to the control unit 60, and the voltage value of the anode 32 with respect to the cathode 22 measured by the voltage measurement unit 52 is transmitted to the control unit 60 as an electric signal.
 制御部60は、電圧測定部52より得られた電圧値に基づき、H2O供給量やキャリアガス供給量を制御する。すなわち、電圧値が、所定の電圧閾値以下の場合、プロトン発生部30へ供給するH2Oの供給量を増加させ、必要に応じてキャリアガス供給量を増減させる。一方で、電圧値が電圧閾値を超えている場合、制御部60による制御は行わない。 The control unit 60 controls the H 2 O supply amount and the carrier gas supply amount based on the voltage value obtained from the voltage measurement unit 52 . That is, when the voltage value is equal to or less than a predetermined voltage threshold, the supply amount of H 2 O supplied to the proton generating section 30 is increased, and the carrier gas supply amount is increased or decreased as necessary. On the other hand, when the voltage value exceeds the voltage threshold, control by the control unit 60 is not performed.
 なお、本実施形態においては、カソード22とアノード32との間に流れる電流値を一定として動作させ、カソード22に対するアノード32の電圧値を測定するために、電流電圧測定部として電圧測定部52を設けているが、これに限らず、例えば、カソード22に対するアノード32への電圧値を一定として動作させる場合には、カソード22とアノード32との間に流れる電流値を測定する電流測定部としてもよいし、また、カソード22とアノード32との間の電気抵抗値を測定する電気抵抗測定部としてもよい。 In this embodiment, the current value flowing between the cathode 22 and the anode 32 is kept constant, and in order to measure the voltage value of the anode 32 with respect to the cathode 22, the voltage measurement unit 52 is used as a current/voltage measurement unit. However, not limited to this, for example, when operating with the voltage value to the anode 32 with respect to the cathode 22 constant, it can also be used as a current measurement unit for measuring the value of current flowing between the cathode 22 and the anode 32. Alternatively, it may be an electrical resistance measuring unit that measures the electrical resistance value between the cathode 22 and the anode 32 .
 なお、カソード22とアノード32との間に流れる電流値としては、電源50に流れる電流値を利用することもできる。また、カソード22とアノード32との間の電気抵抗値としては、カソード22の燃料合成部20側表面と、アノード32のプロトン発生部30側表面との間の電気抵抗値を測定するように構成することが好ましい。 The value of the current flowing through the power supply 50 can also be used as the value of the current flowing between the cathode 22 and the anode 32 . As for the electrical resistance value between the cathode 22 and the anode 32, the electrical resistance value between the surface of the cathode 22 on the side of the fuel synthesizing section 20 and the surface of the anode 32 on the side of the proton generating section 30 is measured. preferably.
 上記印加電圧値の場合と同様に、制御部60は、電流値及び電気抵抗値に基づいて、H2O供給量やキャリアガス供給量を制御する。 As in the case of the applied voltage value, the controller 60 controls the H 2 O supply amount and the carrier gas supply amount based on the current value and the electrical resistance value.
 また、本実施形態の炭化水素系化合物の製造装置10は、カソードガス供給部24から燃料合成部20に供給されるカソードガスを加熱するカソードガス予備加熱部27を備えている。
 このように燃料合成部20に供給するカソードガスを加熱し、例えば、カソードガスの温度を0℃以上400℃以下としておくことにより、燃料合成部20における炭化水素系化合物の生成率Rを向上させることができる。なお、カソードガスの温度としては、より好ましくは、100℃以上400℃以下であり、さらに好ましくは、300℃以上400℃以下である。
The hydrocarbon-based compound manufacturing apparatus 10 of the present embodiment also includes a cathode gas preheating unit 27 that heats the cathode gas supplied from the cathode gas supply unit 24 to the fuel synthesizing unit 20 .
By heating the cathode gas supplied to the fuel synthesizing unit 20 in this way, for example, by setting the temperature of the cathode gas to 0° C. or higher and 400° C. or lower, the production rate R of the hydrocarbon-based compound in the fuel synthesizing unit 20 is improved. be able to. The temperature of the cathode gas is more preferably 100° C. or higher and 400° C. or lower, and still more preferably 300° C. or higher and 400° C. or lower.
 また、本実施形態の炭化水素系化合物の製造装置10は、H2O供給部34からプロトン発生部30に供給されるH2Oを加熱するH2O予備加熱部37を備えている。
 プロトン発生部30に供給するH2Oの温度は0℃超かつ設定された温度閾値以下であれば特に限定されるものではないが、このようにプロトン発生部30に供給するH2Oを加熱し、例えば、H2Oの温度を200℃以上300℃以下とすることで、低温水蒸気の状態でプロトン発生部30に供給することができ、プロトン発生部30におけるH2Oの電解効率を向上させることができる。
Further, the hydrocarbon-based compound manufacturing apparatus 10 of the present embodiment includes an H 2 O preheating section 37 that heats the H 2 O supplied from the H 2 O supply section 34 to the proton generation section 30 .
The temperature of the H 2 O supplied to the proton generating section 30 is not particularly limited as long as it exceeds 0° C. and is equal to or lower than the set temperature threshold. However, for example, by setting the temperature of H 2 O to 200° C. or more and 300° C. or less, it can be supplied to the proton generation section 30 in the state of low-temperature steam, and the electrolysis efficiency of H 2 O in the proton generation section 30 is improved. can be made
 また、本実施形態の炭化水素系化合物の製造装置10は、プロトン発生部30の温度を測定するプロトン発生部温度測定部31を備えている。プロトン発生部温度測定部31によって測定されたプロトン発生部30の温度は、電気信号として出力され、制御部60に送信される。 In addition, the hydrocarbon-based compound manufacturing apparatus 10 of the present embodiment includes a proton generation unit temperature measurement unit 31 that measures the temperature of the proton generation unit 30 . The temperature of the proton generating section 30 measured by the proton generating section temperature measuring section 31 is output as an electrical signal and sent to the control section 60 .
 本実施形態においては、プロトン発生部温度測定部31は、プロトン発生部30の排出部30bに設けているが、これに限らず、プロトン発生部30の任意の位置に取り付けることが可能である。すなわち、プロトン発生部30の入口側(導入部30a)やアノード32の表面などの位置に設けるようにすることもできる。 In the present embodiment, the proton generation part temperature measurement part 31 is provided in the discharge part 30b of the proton generation part 30, but it is not limited to this and can be attached to any position of the proton generation part 30. That is, it can be provided on the inlet side (introduction part 30a) of the proton generating part 30, the surface of the anode 32, or the like.
 制御部60は、プロトン発生部温度測定部31から得られたプロトン発生部温度に基づき、H2O供給量やキャリアガス供給量を制御する。すなわち、プロトン発生部温度が、所定のプロトン発生部温度閾値を超えている場合、燃料合成部20が過熱して炭化水素系化合物の生成効率が低下していると判定し、プロトン発生部30へ供給するH2Oの供給量を増加させ、必要に応じてキャリアガス供給量を増減させる。一方で、プロトン発生部温度が所定のプロトン発生部温度閾値以下の場合、制御部60による制御は行わない。なお、プロトン発生部温度閾値は、例えば、炭化水素系化合物の製造装置10の蓄熱や放熱の設計に基づき適宜設定することができる。 The control unit 60 controls the H 2 O supply amount and carrier gas supply amount based on the proton generation unit temperature obtained from the proton generation unit temperature measurement unit 31 . That is, when the proton generation unit temperature exceeds a predetermined proton generation unit temperature threshold value, it is determined that the fuel synthesizing unit 20 is overheated and the hydrocarbon-based compound generation efficiency is reduced, and the proton generation unit 30 The supply amount of H 2 O to be supplied is increased, and the carrier gas supply amount is increased or decreased as necessary. On the other hand, when the proton generating part temperature is equal to or lower than the predetermined proton generating part temperature threshold, control by the control part 60 is not performed. The proton generating part temperature threshold value can be appropriately set, for example, based on the design of heat storage and heat dissipation of the hydrocarbon-based compound manufacturing apparatus 10 .
 以上、本発明の好ましい実施形態について説明したが、本発明はこれに限定されることはなく、本発明の目的を逸脱しない範囲で種々の変更が可能である。例えば、図2のみに配置されている機能を一部選択して図1の装置に組み込むこともできる。 Although the preferred embodiment of the present invention has been described above, the present invention is not limited to this, and various modifications are possible without departing from the scope of the present invention. For example, some of the functions arranged only in FIG. 2 can be selected and incorporated into the apparatus of FIG.
10   製造装置
20   燃料合成部
20a  燃料合成部入口
20b  燃料合成部出口
21   燃料合成部温度測定部
22   カソード
23   カソードガス供給経路
24   カソードガス供給部
25   圧力調整弁
26   出口側配管
27   カソードガス予備加熱部
29   カソードガス加熱部
30   プロトン発生部
30a  導入部(プロトン発生部入口)
30b  排出部(プロトン発生部出口)
31   プロトン発生部温度測定部
32   アノード
33   H2O供給経路
34   H2O供給部
35   圧力調整弁
36   逆止弁
37   H2O予備加熱部
38   キャリアガス供給部
39   H2O加熱部
40   電解槽
42   電解質膜
50   電源
52   電圧測定部
60   制御部
62   炭化水素系化合物生成率測定部
64   生成ガス分離部
65   CH4測定部
66   CH4回収部
68   生成ガス測定部
10 manufacturing device 20 fuel synthesizing unit 20a fuel synthesizing unit inlet 20b fuel synthesizing unit outlet 21 fuel synthesizing unit temperature measuring unit 22 cathode 23 cathode gas supply path 24 cathode gas supply unit 25 pressure control valve 26 outlet pipe 27 cathode gas preheating unit 29 cathode gas heating unit 30 proton generation unit 30a introduction unit (proton generation unit inlet)
30b discharge section (proton generation section exit)
31 Proton generation unit temperature measurement unit 32 Anode 33 H 2 O supply path 34 H 2 O supply unit 35 Pressure control valve 36 Check valve 37 H 2 O preheating unit 38 Carrier gas supply unit 39 H 2 O heating unit 40 Electrolytic bath 42 Electrolyte membrane 50 Power supply 52 Voltage measurement unit 60 Control unit 62 Hydrocarbon compound production rate measurement unit 64 Generated gas separation unit 65 CH 4 measurement unit 66 CH 4 recovery unit 68 Generated gas measurement unit

Claims (22)

  1.  通電によりH2O及びCO2から炭化水素系化合物を合成する炭化水素系化合物の製造装置であって、
     カソードを含む燃料合成部と、アノードを含むプロトン発生部と、カソード及びアノード間に配置された電解質膜と、を有する電解槽と、
     前記プロトン発生部にH2Oを供給するH2O供給部と、
     前記燃料合成部にCO2を含むカソードガスを供給するカソードガス供給部と、
     前記燃料合成部の温度を測定する燃料合成部温度測定部と、
     前記燃料合成部温度測定部により測定された前記燃料合成部の温度に基づいて、前記H2O供給部からのH2O供給量を制御する制御部と、を備える、炭化水素系化合物の製造装置。
    A hydrocarbon-based compound manufacturing apparatus for synthesizing a hydrocarbon-based compound from H 2 O and CO 2 by energization,
    an electrolytic cell having a fuel synthesis section including a cathode, a proton generation section including an anode, and an electrolyte membrane disposed between the cathode and the anode;
    an H 2 O supply unit that supplies H 2 O to the proton generation unit;
    a cathode gas supply unit that supplies a cathode gas containing CO 2 to the fuel synthesizing unit;
    a fuel synthesizing unit temperature measuring unit for measuring the temperature of the fuel synthesizing unit;
    a controller for controlling the amount of H 2 O supplied from the H 2 O supply unit based on the temperature of the fuel synthesizing unit measured by the temperature measuring unit of the fuel synthesizing unit. Device.
  2.  前記電解質膜が、プロトン伝導性材料を含む、請求項1に記載の炭化水素系化合物の製造装置。 The apparatus for producing a hydrocarbon-based compound according to claim 1, wherein the electrolyte membrane contains a proton-conducting material.
  3.  前記プロトン伝導性材料が、プロトン伝導性セラミックスである、請求項2に記載の炭化水素系化合物の製造装置。 The apparatus for producing a hydrocarbon-based compound according to claim 2, wherein the proton-conducting material is proton-conducting ceramics.
  4.  前記燃料合成部温度測定部は、前記燃料合成部の入口側温度と出口側温度との温度差、前記燃料合成部の入口側温度と前記カソードの温度との温度差、前記燃料合成部の出口側温度の少なくともいずれかを測定する、請求項1から3のいずれか一項に記載の炭化水素系化合物の製造装置。 The fuel synthesizing unit temperature measuring unit measures the temperature difference between the inlet side temperature and the outlet side temperature of the fuel synthesizing unit, the temperature difference between the inlet side temperature of the fuel synthesizing unit and the temperature of the cathode, and the temperature difference between the inlet side temperature of the fuel synthesizing unit and the temperature of the cathode. 4. The apparatus for producing a hydrocarbon-based compound according to any one of claims 1 to 3, wherein at least one of side temperatures is measured.
  5.  前記燃料合成部における生成ガスの生成量を測定する生成ガス測定部をさらに備え、
     前記制御部は、
     前記生成ガス測定部により測定された前記生成ガスの生成量に基づいて、前記H2O供給量を制御する、請求項1から3のいずれか一項に記載の炭化水素系化合物の製造装置。
    further comprising a generated gas measurement unit that measures the amount of generated gas generated in the fuel synthesizing unit;
    The control unit
    The apparatus for producing a hydrocarbon compound according to any one of claims 1 to 3, wherein the H2O supply amount is controlled based on the production amount of the produced gas measured by the produced gas measurement unit.
  6.  前記カソードガス供給部からのCO2供給量に対する、前記燃料合成部において生成された炭化水素系化合物の生成率Rを測定する炭化水素系化合物生成率測定部をさらに備え、
     前記制御部は、
     前記炭化水素系化合物生成率測定部において測定された前記生成率Rに基づいて、前記H2O供給量を制御する、請求項1から3のいずれか一項に記載の炭化水素系化合物の製造装置。
    further comprising a hydrocarbon-based compound production rate measuring unit that measures the production rate R of the hydrocarbon-based compound produced in the fuel synthesis unit with respect to the amount of CO 2 supplied from the cathode gas supply unit;
    The control unit
    4. Production of the hydrocarbon compound according to any one of claims 1 to 3, wherein the H 2 O supply amount is controlled based on the production rate R measured in the hydrocarbon compound production rate measurement unit. Device.
  7.  前記カソードに対する前記アノードへの電圧値、前記カソードと前記アノードとの間に流れる電流値、前記カソードと前記アノードとの間の電気抵抗値の少なくともいずれかを測定する電流電圧測定部をさらに備え、
     前記制御部は、
     前記電流電圧測定部において測定された前記電圧値、前記電流値、前記電気抵抗値の少なくともいずれかに基づいて、前記H2O供給量を制御する、請求項1から3のいずれか一項に記載の炭化水素系化合物の製造装置。
    a current-voltage measuring unit that measures at least one of a voltage value to the anode with respect to the cathode, a current value flowing between the cathode and the anode, and an electrical resistance value between the cathode and the anode;
    The control unit
    4. The H 2 O supply amount according to any one of claims 1 to 3, wherein the H 2 O supply amount is controlled based on at least one of the voltage value, the current value, and the electrical resistance value measured by the current-voltage measuring unit. An apparatus for producing the hydrocarbon-based compound described.
  8.  前記カソードガス供給部から前記燃料合成部に供給されるカソードガスを加熱するカソードガス予備加熱部をさらに備える、請求項1から3のいずれか一項に記載の炭化水素系化合物の製造装置。 The apparatus for producing a hydrocarbon-based compound according to any one of claims 1 to 3, further comprising a cathode gas preheating section for heating the cathode gas supplied from the cathode gas supply section to the fuel synthesizing section.
  9.  前記H2O供給部から前記プロトン発生部に供給されるH2Oを加熱するH2O予備加熱部をさらに備える、請求項1から3のいずれか一項に記載の炭化水素系化合物の製造装置。 4. Production of the hydrocarbon-based compound according to any one of claims 1 to 3, further comprising an H2O preheating section for heating H2O supplied from the H2O supply section to the proton generation section. Device.
  10.  前記プロトン発生部の温度を測定するプロトン発生部温度測定部をさらに備え、
     前記制御部は、前記プロトン発生部温度測定部により測定された前記プロトン発生部の温度に基づいて、前記H2O供給量を制御する、請求項1から3のいずれか一項に記載の炭化水素系化合物の製造装置。
    further comprising a proton generation unit temperature measurement unit that measures the temperature of the proton generation unit;
    The carbonization according to any one of claims 1 to 3, wherein the control unit controls the H 2 O supply amount based on the temperature of the proton generation unit measured by the proton generation unit temperature measurement unit. Manufacturing equipment for hydrogen-based compounds.
  11.  前記H2Oを搬送するキャリアガスを供給するキャリアガス供給部をさらに備え、
     前記制御部は、前記燃料合成部温度測定部により測定された前記燃料合成部の温度、前記プロトン発生部温度測定部により測定された前記プロトン発生部の温度の少なくともいずれか一方に基づいて、前記キャリアガス供給部からのキャリアガス供給量を制御する、請求項10に記載の炭化水素系化合物の製造装置。
    further comprising a carrier gas supply unit for supplying a carrier gas for transporting the H 2 O,
    Based on at least one of the temperature of the fuel synthesizing section measured by the temperature measuring section of the fuel synthesizing section and the temperature of the proton generating section measured by the proton generating section temperature measuring section, the control section determines the 11. The apparatus for producing a hydrocarbon-based compound according to claim 10, wherein the amount of carrier gas supplied from the carrier gas supply unit is controlled.
  12.  前記H2Oを搬送するキャリアガスを供給するキャリアガス供給部をさらに備え、
     前記制御部は、前記燃料合成部温度測定部により測定された前記燃料合成部の温度に基づいて、前記キャリアガス供給部からのキャリアガス供給量を制御する、請求項1から3のいずれか一項に記載の炭化水素系化合物の製造装置。
    further comprising a carrier gas supply unit for supplying a carrier gas for transporting the H 2 O,
    4. The controller according to any one of claims 1 to 3, wherein the control unit controls the amount of carrier gas supplied from the carrier gas supply unit based on the temperature of the fuel synthesizing unit measured by the fuel synthesizing unit temperature measuring unit. 10. An apparatus for producing the hydrocarbon-based compound according to claim 1.
  13.  カソードを含む燃料合成部と、アノードを含むプロトン発生部と、カソード及びアノード間に配置された電解質膜と、を有する電解槽と、
     前記プロトン発生部にH2Oを供給するH2O供給部と、
     前記燃料合成部にCO2を含むカソードガスを供給するカソードガス供給部と、を備える炭化水素系化合物の製造装置を用いて、通電によりH2O及びCO2から炭化水素系化合物を合成する炭化水素系化合物の製造方法であって、
     前記燃料合成部の温度に基づいて、前記H2O供給部からのH2O供給量を制御する、炭化水素系化合物の製造方法。
    an electrolytic cell having a fuel synthesis section including a cathode, a proton generation section including an anode, and an electrolyte membrane disposed between the cathode and the anode;
    an H 2 O supply unit that supplies H 2 O to the proton generation unit;
    a cathode gas supply unit for supplying a cathode gas containing CO2 to the fuel synthesis unit; A method for producing a hydrogen-based compound,
    A method for producing a hydrocarbon-based compound, wherein the amount of H 2 O supplied from the H 2 O supply unit is controlled based on the temperature of the fuel synthesizing unit.
  14.  前記燃料合成部の温度が、前記燃料合成部の入口側温度と出口側温度との温度差、前記燃料合成部の入口側温度と前記カソードの温度との温度差、前記燃料合成部の出口側温度の少なくともいずれかである、請求項13に記載の炭化水素系化合物の製造方法。 The temperature of the fuel synthesizing section includes a temperature difference between an inlet side temperature and an outlet side temperature of the fuel synthesizing section, a temperature difference between the inlet side temperature of the fuel synthesizing section and the temperature of the cathode, and an outlet side of the fuel synthesizing section. 14. The method for producing a hydrocarbon-based compound according to claim 13, wherein the temperature is at least one of:
  15.  前記燃料合成部において生成された生成ガスの生成量に基づいて、前記H2O供給量を制御する、請求項13または14に記載の炭化水素系化合物の製造方法。 15. The method for producing a hydrocarbon compound according to claim 13, wherein the H2O supply amount is controlled based on the production amount of the product gas produced in the fuel synthesizing section.
  16.  前記カソードガス供給部からのCO2供給量に対する、前記燃料合成部において生成された炭化水素系化合物の生成率Rに基づいて、前記H2O供給量を制御する、請求項13または14に記載の炭化水素系化合物の製造方法。 15. The H 2 O supply amount according to claim 13 or 14, wherein the H 2 O supply amount is controlled based on a production rate R of the hydrocarbon compound produced in the fuel synthesizing unit with respect to the CO 2 supply amount from the cathode gas supply unit. A method for producing a hydrocarbon-based compound of
  17.  前記カソードに対する前記アノードへの電圧値、前記カソードと前記アノードとの間に流れる電流値、前記カソードと前記アノードとの間の電気抵抗値の少なくともいずれかに基づいて、前記H2O供給量を制御する、請求項13または14に記載の炭化水素系化合物の製造方法。 The H 2 O supply amount is adjusted based on at least one of a voltage value to the anode with respect to the cathode, a current value flowing between the cathode and the anode, and an electrical resistance value between the cathode and the anode. 15. The method for producing a hydrocarbon-based compound according to claim 13 or 14, wherein the hydrocarbon-based compound is controlled.
  18.  前記カソードガス供給部から前記燃料合成部に供給されるカソードガスを加熱する、請求項13または14に記載の炭化水素系化合物の製造方法。 The method for producing a hydrocarbon-based compound according to claim 13 or 14, wherein the cathode gas supplied from the cathode gas supply unit to the fuel synthesis unit is heated.
  19.  前記H2O供給部から前記プロトン発生部に供給されるH2Oを加熱する、請求項13または14に記載の炭化水素系化合物の製造方法。 15. The method for producing a hydrocarbon-based compound according to claim 13, wherein the H2O supplied from the H2O supply unit to the proton generation unit is heated.
  20.  前記プロトン発生部の温度に基づいて、前記H2O供給量を制御する、請求項13または14に記載の炭化水素系化合物の製造方法。 15. The method for producing a hydrocarbon-based compound according to claim 13, wherein the H2O supply amount is controlled based on the temperature of the proton generating section.
  21.  前記炭化水素系化合物の製造装置は、前記H2Oを搬送するキャリアガスを供給するキャリアガス供給部をさらに備え、
     前記燃料合成部の温度、前記プロトン発生部の温度の少なくともいずれか一方に基づいて、前記キャリアガス供給部からのキャリアガス供給量を制御する、請求項20に記載の炭化水素系化合物の製造方法。
    The apparatus for producing a hydrocarbon-based compound further comprises a carrier gas supply unit for supplying a carrier gas for transporting the H 2 O,
    21. The method for producing a hydrocarbon compound according to claim 20, wherein the amount of carrier gas supplied from the carrier gas supply unit is controlled based on at least one of the temperature of the fuel synthesis unit and the temperature of the proton generation unit. .
  22.  前記炭化水素系化合物の製造装置は、前記H2Oを搬送するキャリアガスを供給するキャリアガス供給部をさらに備え、
     前記燃料合成部の温度に基づいて、前記キャリアガス供給部からのキャリアガス供給量を制御する、請求項13または14に記載の炭化水素系化合物の製造方法。
    The apparatus for producing a hydrocarbon-based compound further comprises a carrier gas supply unit for supplying a carrier gas for transporting the H 2 O,
    15. The method for producing a hydrocarbon compound according to claim 13, wherein the amount of carrier gas supplied from said carrier gas supply unit is controlled based on the temperature of said fuel synthesizing unit.
PCT/JP2022/029603 2021-08-13 2022-08-02 Hydrocarbon-compound production device and production method WO2023017755A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-131929 2021-08-13
JP2021131929 2021-08-13

Publications (1)

Publication Number Publication Date
WO2023017755A1 true WO2023017755A1 (en) 2023-02-16

Family

ID=85200504

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/029603 WO2023017755A1 (en) 2021-08-13 2022-08-02 Hydrocarbon-compound production device and production method

Country Status (1)

Country Link
WO (1) WO2023017755A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016108657A (en) * 2014-10-16 2016-06-20 リン, シン−ユンLin, Hsin−Yung Gas generator
JP2017203203A (en) * 2016-05-13 2017-11-16 本田技研工業株式会社 Water electrolysis system and temperature control method thereof
JP2021046576A (en) * 2019-09-17 2021-03-25 株式会社東芝 Electrochemical reaction apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016108657A (en) * 2014-10-16 2016-06-20 リン, シン−ユンLin, Hsin−Yung Gas generator
JP2017203203A (en) * 2016-05-13 2017-11-16 本田技研工業株式会社 Water electrolysis system and temperature control method thereof
JP2021046576A (en) * 2019-09-17 2021-03-25 株式会社東芝 Electrochemical reaction apparatus

Similar Documents

Publication Publication Date Title
EP2025030B1 (en) Hydrogen-producing fuel cell systems with load-responsive feedstock delivery systems
CN101322268B (en) Utilization-based fuel cell monitoring and control
CN101341617B (en) Power supply system and control method thereof
EP3168330B1 (en) Apparatus and method for hydrogen production using high-temperature water vapor electrolysis
Zhiani et al. Comparative Study of on‐Line Membrane Electrode Assembly Activation Procedures in Proton Exchange Membrane Fuel Cell
KR102355899B1 (en) Hydrogen system and method of operation
EP3719171A1 (en) Electrolysis system with controlled thermal profile
KR20180057555A (en) Fuel cell system and shutdown method thereof
WO2023017755A1 (en) Hydrocarbon-compound production device and production method
WO2023112845A1 (en) Production device and production method for hydrocarbon-based compound
KR20130003585A (en) Fuel cell system and driving method thereof
US8637199B2 (en) Fuel cell using organic fuel
US20080131743A1 (en) Fuel Cell System and Associated Control Method
WO2023112846A1 (en) Hydrocarbon compound production device and production method
JP2009099414A (en) Fuel cell system
US11859299B2 (en) Temperature control of an electrolyzer cell
US20070148504A1 (en) Maintaining a fluid level in a heat exchanger of a fuel cell system
WO2023150556A2 (en) Temperature control of an electrolyzer cell
KR100987175B1 (en) Fuel Cell System and Fuel Supply Method Thereof
WO2019187211A1 (en) Hydrogen generating system and operation method for same
JPWO2020054334A1 (en) Hydrogen generation system and how to operate the hydrogen generation system
KR20070035854A (en) Fuel cell system having fuel concentration measuring device
JP2018104731A (en) Electrochemical device and method of operating the same
KR20070035853A (en) Fuel cell system having fuel concentration measuring device
JP2005332597A (en) Density adjustment device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22855818

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE