WO2023017558A1 - Mass spectrometry assistance method, mass spectrometry assistance device, and mass spectrometry system - Google Patents

Mass spectrometry assistance method, mass spectrometry assistance device, and mass spectrometry system Download PDF

Info

Publication number
WO2023017558A1
WO2023017558A1 PCT/JP2021/029492 JP2021029492W WO2023017558A1 WO 2023017558 A1 WO2023017558 A1 WO 2023017558A1 JP 2021029492 W JP2021029492 W JP 2021029492W WO 2023017558 A1 WO2023017558 A1 WO 2023017558A1
Authority
WO
WIPO (PCT)
Prior art keywords
range
scan speed
mass
mass spectrum
scan
Prior art date
Application number
PCT/JP2021/029492
Other languages
French (fr)
Japanese (ja)
Inventor
拓也 吉本
司 師子鹿
俊幸 檜山
Original Assignee
株式会社日立ハイテク
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテク filed Critical 株式会社日立ハイテク
Priority to PCT/JP2021/029492 priority Critical patent/WO2023017558A1/en
Priority to JP2023541146A priority patent/JPWO2023017558A1/ja
Publication of WO2023017558A1 publication Critical patent/WO2023017558A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/62Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode

Definitions

  • the present invention relates to techniques for mass spectrometry support methods, mass spectrometry support devices, and mass spectrometry systems.
  • GUI graphical user interface
  • the GUI of the mass spectrometer displays a mass spectrum, which is the relationship between the m/z value and the detected ion intensity.
  • the mass spectrum is obtained by scanning the m/z range to be measured by the mass spectrometer at a predetermined scan speed, plotting the ion intensity corresponding to the amount of ions detected on the vertical axis and the m/z corresponding to the ion on the horizontal axis. It is the graph which displayed the value.
  • Patent Document 1 describes "Even in a device with little information obtained from the mass spectrum of MS 1 analysis such as LC / MS using the atmospheric pressure ionization method, it can be accurately and quickly A mass spectrometry method and apparatus are disclosed (see Abstract).
  • the designation of the m/z range and scanning speed is generally fixed in advance, and in some cases, such as the technique described in Patent Document 1, the user edits and designates a text box or the like.
  • it is difficult to change the m/z range and scan speed if the user does not have knowledge of mass spectrometry, or if the user does not know the position of the text box on the GUI screen. Become.
  • the present invention has been made in view of such a background, and an object of the present invention is to enable mass spectrometry to be performed with a simple operation.
  • the present invention provides a mass spectrum acquisition step in which a computing device acquires a first mass spectrum that is a result of measurement by a mass spectrometer; an m/z range obtaining step of obtaining an m/z range of the expanded range or the reduced range when the expanded range or the reduced range of one mass spectrum is specified; and the scan speed stored in the scan speed pattern. are sequentially selected, temporary measurement is performed on the m / z range at the selected scan speed, and the scan speed is determined based on the second mass spectrum obtained as a result of the temporary measurement. and are performed.
  • Other solutions will be described as appropriate in the embodiments.
  • mass spectrometry can be performed with easy operation
  • FIG. 4 is a flowchart showing the procedure of overall processing according to the first embodiment;
  • FIG. 5 is a diagram showing an example of a scan speed setting screen in the first embodiment;
  • FIG. It is a figure which shows the mass spectrum before an expansion process. It is a figure which shows an example of the mass spectrum after an expansion process.
  • FIG. 5 is a diagram showing an example of a scan speed setting screen in the first embodiment;
  • FIG. 10 is a diagram showing a detailed processing procedure of scan speed change processing
  • 1 is a diagram (1) showing an example of a mass spectrum obtained by provisional measurement
  • FIG. FIG. 2 is a diagram (part 2) showing an example of a mass spectrum obtained by provisional measurement
  • FIG. 3 is a diagram (part 3) showing an example of a mass spectrum obtained by provisional measurement
  • It is a figure which shows an example of the mass spectrum before an expansion process. An example of a mass spectrum under expansion processing is shown.
  • the user magnifies the mass spectrum M1 (see FIG. 7A) and stores the m/z range to measure. After that, the arithmetic device 100 performs processing to change the scanning speed according to the m/z range.
  • FIG. 1 is a diagram showing a configuration example of a mass spectrometry system Z according to the first embodiment.
  • the mass spectrometry system Z includes an arithmetic device 100 , a mass spectrometer 200 and a sample supply device 300 .
  • the computing device 100 has a display unit 101 , an input unit 102 , a processing unit 110 and a storage unit 120 .
  • the processing unit 110 and the storage unit 120 will be described later.
  • the display unit 101 displays a mass spectrum M (see FIGS. 7A and 7B), which is the result of measurement by the mass spectrometer 200, and the like.
  • the input unit 102 is a keyboard, a mouse, or the like, through which information is input by the user.
  • the sample supply device 300 supplies sample components to the mass spectrometer 200 .
  • the sample supply device 300 is a liquid chromatograph, a gas chromatograph, or a device that heats a sample to vaporize components.
  • the mass spectrometer 200 includes an ionization section 201 , a mass separation section 202 , an ion detection section 203 and a control section 210 .
  • the ionization section 201 ionizes the sample component supplied from the sample supply device 300 .
  • the mass separation unit 202 selects fragmentation of ions supplied from the ionization unit 201 , ion trap, and specific m/z values to be discharged to the ion detection unit 203 , and sends the ions to the ion detection unit 203 .
  • the mass separation unit 202 can be configured with a single mass, MS/MS, MS n in which three or more stages of MS are connected, or the like.
  • the ion detector 203 measures the ion intensity of ions sent from the mass separator 202 .
  • the control unit 210 performs control to update the m/z range to be measured and change the scan speed according to instructions from the arithmetic device 100 . Then, the ion intensity data corresponding to the m/z value is returned to the computing device 100 .
  • the m / z value selected by the mass separation unit 202 is fixed, and the change in ion intensity over time, that is, the chromatogram is obtained by selected ion monitoring (SIM) or selected reaction monitoring (Selected Reaction Monitoring: SRM). ) is a quantitative measurement called
  • FIG. 2 is a diagram showing a configuration example of the processing unit 110 in the arithmetic device 100 (see FIG. 1).
  • the processing unit 110 has an acquisition unit 111 , a scan speed change processing unit 112 and a display processing unit 113 .
  • the acquisition unit 111 acquires measurement results (mass spectrum information) and the like from the mass spectrometer 200 .
  • the scan speed change processing unit 112 determines an appropriate scan speed for the mass spectrometer 200 (determines the scan speed used for measurement) based on the enlargement or reduction processing of the mass spectrum M1 (see FIG. 7A) by the user. Then, the scan speed change processor 112 sets the determined scan speed in the mass spectrometer 200 .
  • the mass spectrum to be scaled is distinguished as a mass spectrum M1, and a mass spectrum M is used when mass spectra are generally indicated.
  • an appropriate scanning speed means a scanning speed at which a mass spectrum M with excellent resolution can be obtained. If the scanning speed is too fast or too slow, the resolution will decrease.
  • the display processing unit 113 displays the mass spectrum M (see FIGS. 7A and 7B), the scan speed setting screen 400 (see FIG. 6), and the like on the display unit 101 .
  • the functions of the processing unit 110 are provided in the arithmetic device 100, which is a device different from the mass spectrometer 200, but the functions of the processing unit 110 are provided in the control unit 210 of the mass spectrometer 200. may be provided.
  • FIG. 3 is a diagram showing a configuration example of the storage unit 120.
  • a scan speed pattern 121 and a change m/z range 122 are stored in the storage unit 120 .
  • the scan speed pattern 121 stores a plurality of scan speeds for each m/z range, which are used in provisional measurements described later.
  • the changed m/z range 122 is the m/z range changed by enlargement or contraction processing of the mass spectrum M1 (see FIG. 7A), which will be described later. As will be described later, since the expansion or contraction processing of the mass spectrum M1 is performed by the input unit 102, the changed m/z range 122 is stored in the storage unit 120 from the input unit 102.
  • the scan speed change processing unit 112 selects a scan speed for temporary measurement, which will be described later, by referring to the change m/z range 122 and the scan speed pattern 121 .
  • FIG. 4 is a diagram showing an example of the hardware configuration of the arithmetic device 100.
  • the arithmetic device 100 has a memory 131, a CPU (Central Processing Unit) 132, and a storage device 133 such as an HD (Hard Disk) or an SSD (Solid State Disk).
  • the computing device 100 also has an input device 134 such as a keyboard and a mouse, a display device 135 such as a display, and a communication device 136 .
  • a program is stored in the storage device 133 and loaded into the memory 131 .
  • the loaded program is then executed by the CPU 132 .
  • the acquisition unit 111 constituting the processing unit 110, the scan speed change processing unit 112, and the display processing unit 113 are embodied.
  • the input device 134 corresponds to the input section 102 in FIG. 1
  • the display device 135 corresponds to the display section 101 in FIG. 1
  • the storage device 133 corresponds to the storage section 120 in FIG.
  • FIG. 5 is a flowchart showing the procedure of overall processing according to the first embodiment. Reference will be made to FIGS. 1 to 3 as appropriate.
  • the user sets the scan speed on the scan speed setting screen 400 (see FIG. 6) (S1).
  • Auto 402 see FIG. 6
  • the scan speed setting screen 400 will be described later.
  • the mass spectrometer 200 (S2), and the acquisition unit 111 of the arithmetic device 100 acquires mass spectrum information, which is the result of the measurement (S3).
  • the scanning speed and m/z range used in the measurement performed in step S2 are automatically set by the control unit 210.
  • the display processing unit 113 displays the mass spectrum M1 (see FIG. 7A) on the display unit 101 based on the obtained mass spectrum information.
  • the scan speed change processing unit 112 determines whether or not enlargement/reduction processing of the mass spectrum M1 displayed on the display unit 101 has been executed via the input unit 102 (S4). The enlargement/reduction processing will be described later. If the enlargement/reduction process has not been executed (S4 ⁇ No), the scan speed change processing unit 112 returns the process to step S4.
  • step S5 When the scaling process is executed (S4 ⁇ Yes), the scan speed change processing unit 112 changes the m/z range (changed m/z range 122) in the scaled or reduced mass spectrum M (see FIGS. 7A and 7B). is obtained and stored in the storage unit 120 (S5).
  • the processing of step S5 will be described later. That is, the processing from step S5 onwards is executed when the enlargement execution processing of step S4 is performed.
  • the scan speed change processing unit 112 calculates an appropriate scan speed based on the changed m/z range 122 stored in the storage unit 120, and sets the calculated scan speed in the control unit 210 of the mass spectrometer 200.
  • Speed change processing is performed (S6). The processing of step S6 will be described later.
  • step S ⁇ b>6 the scan speed change processing unit 112 determines an appropriate scan speed for the change m/z range 122 and sets the determined scan speed in the control unit 210 .
  • the control unit 210 starts measuring the measurement object at the scanning speed set in step S6 (S7).
  • FIG. 6 is a diagram showing an example of the scan speed setting screen 400 in the first embodiment.
  • a scan speed setting screen 400 shown in FIG. 6 is displayed on the display unit 101 at the stage of step S1 in FIG.
  • the scan speed setting screen 400 allows the user to set the scan speed.
  • the user can set Narrow Range 401 , Auto 510 and Full Range 403 on the scan speed setting screen 400 .
  • Narrow Range 401 is selected, scanning is performed at low speed in mass spectrometry.
  • Auto 402 is selected, the scan speed is automatically changed according to the change m/z range 122 (see FIG. 3) determined by the user's scaling process.
  • Full Range 403 is selected, scanning is performed at high speed in mass spectrometry.
  • This embodiment (scanning speed change processing step for determining the scanning speed) is processing performed when Auto 402 is selected.
  • Narrow Range 401 may become unusable, but in this case, Narrow Range 401 is grayed out and cannot be selected.
  • Narrow Range 401 After the user selects one of Narrow Range 401, Auto 403, and Full Range 403, the selection is confirmed by selecting and inputting the OK button 411. Also, the selection is canceled by selecting and inputting the cancel button 412 .
  • FIG. 7A is a diagram showing a mass spectrum M1 before expansion processing.
  • the horizontal axis is the m/z value
  • the horizontal axis is the ion intensity (Intensity).
  • the user selects the expansion range 500 by dragging from the start point 501 to the end point 502 .
  • the user presses a left click at an arbitrary position in the mass spectrum M1 presented on the display device 135 to set the starting point 501 there.
  • the user moves the mouse while pressing the click to an arbitrary position to be measured, releases the click button, and sets the end point 502 there.
  • the m/z range indicated by symbol R corresponding to the base of the expanded range 500 is the expanded m/z range (changed m/z range 122).
  • a new m/z range (changed m/z range 122) is stored in the storage unit 120 based on the coordinates of the start point 501 and the end point 502 in the mass spectrum M1.
  • the scan speed change processing unit 112 reads the changed m/z range 122 stored in the storage unit 120 .
  • the scan speed change processing unit 112 selects the scan speed saved in the scan speed pattern 121 based on the read change m/z range 122 .
  • the scan speed change processing unit 112 repeats temporary measurement at the selected scan speed and determines an appropriate scan speed. A method for determining an appropriate scanning speed will be described later.
  • the scan speed change processing unit 112 determines a high frequency voltage corresponding to the determined scan speed.
  • the scan speed change processing unit 112 sets the determined high-frequency voltage and the change m/z range 122 in the control unit 210 .
  • the scan speed is controlled by controlling the high frequency voltage applied to the mass separator 202 .
  • FIG. 7B is a diagram showing an example of the mass spectrum M2 after expansion processing.
  • the scan speed change processing unit 112 updates the m/z range based on the expanded range 500 selected in FIG. It is shown. That is, the mass spectrum M2 shown in FIG. 7B is the result of measurement at the scan speed determined by the scan speed change processor 112 based on the expanded range 500 (see FIG. 7A). Therefore, the mass spectrum M2 differs in shape from the mass spectrum M1 shown in FIG. 7A. The mass spectrum M2 differs in shape from the mass spectrum M1 shown in FIG. 7A because of the difference in scanning speed.
  • the m/z range of the mass spectrum M2 shown in FIG. 7B is the m/z range indicated by symbol R in FIG. 7A.
  • the mass spectrum M2 shown in FIG. 7B has deeper valleys between the peaks than the mass spectrum M1 shown in FIG. 7A because it has undergone each step of the scan speed changing process and is measured at an appropriate scan speed. That is, the mass spectrum M2 is in a state in which the isotope components that could not be confirmed in the mass spectrum M1 due to the problem of mass resolution are separated, making it easier for the user to confirm the isotope components.
  • FIG. 8 is a diagram showing detailed processing procedures of the scan speed changing process in step S6 of FIG.
  • the scan speed change processing unit 112 acquires expanded mass spectrum information or reduced mass spectrum information (referred to as changed mass spectrum information) based on step S4 (enlargement/reduction processing) in FIG. 5 (S601). Then, the scan speed change processing unit 112 determines whether the mass spectrum M based on the acquired changed mass spectrum information (see FIGS. 7A and 7B; hereinafter referred to as a changed mass spectrum) satisfies the following conditions. (S602). (Condition #1) There are at least two peaks in the modified mass spectrum.
  • scan speed change processing unit 112 terminates the process. If condition #1 or condition #2 is not satisfied (S602 ⁇ No), the scan speed change processing unit 112 terminates the process. If condition #1 and condition #2 are satisfied (S602 ⁇ Yes), scan speed change processing unit 112 reads scan speed pattern 121 from storage unit 120 (S611). As described above, in the scan speed pattern 121, a plurality of scan speeds are set in advance for performing temporary measurements, which will be described later. Next, the scan speed change processing unit 112 selects one scan speed from the scan speed pattern 121 (S612). At this time, the scan speed change processing unit 112 selects a scan speed that is not used for temporary measurement, which will be described later. Also, as described above, the scan speed pattern 121 stores a plurality of scan speeds for each change m/z range 122 . Therefore, the scan speed change processing unit 112 selects one scan speed from the scan speeds assigned to the m/z range (changed m/z range 122) in the changed mass spectrum acquired in step S601.
  • the scan speed change processor 112 sets the scan speed selected in step S612 to the controller 210 of the mass spectrometer 200 (S613).
  • the control unit 210 measures the measurement object in the changed m/z range 122 at the set scanning speed. This is called provisional measurement. That is, the control unit 210 performs temporary measurement in the changed m/z range 122 at the set scan speed (S614).
  • the temporary measurement results (specifically, the mass spectrum M (FIGS. 7A and 7B)) are sent to the computing device 100 and stored in the storage unit 120 .
  • the scan speed change processing unit 112 determines whether provisional measurement has been completed at all scan speeds assigned to the change m/z range 122 in the scan speed pattern 121 (S621). If provisional measurement has not been completed at all scan speeds (S621 ⁇ No), the scan speed returns to step S612.
  • the scan speed change processing unit 112 compares the results of provisional measurements for each scan speed (S631). At this time, the scan speed change processing unit 112 compares the ion intensity at the deepest point in the temporary measurement result (mass spectrum M). A comparison of the temporary measurement results will be described later.
  • the scan speed change processing unit 112 determines the scan speed (used for measurement) based on the result of step S631 (S632). A method of determining the scanning speed will be described later. Then, the scan speed change processing unit 112 sets the scan speed determined in step S632 as an appropriate scan speed for the change m/z range 122 in the control unit 210 (S633).
  • FIGS. 9A to 9C describe scan speed change accompanying enlargement processing of mass spectrum M (see FIGS. 7A and 7B), but similar processing can be applied to scan speed change accompanying reduction processing.
  • FIG. 7A the scan speed change is triggered by the user performing enlargement processing (or reduction processing) from the state in which the entire mass spectrum M1 is displayed. That is, when the expansion range 500 shown in FIG. 7A is specified, the scan speed changing process of FIG. 8 is started. This process corresponds to "Yes" determined in step S4 of FIG. In this manner, the user's operation can be facilitated by using the user's enlargement processing (or reduction processing) as a trigger for changing the scanning speed.
  • the scan speed change processing unit 112 sets the highest peak in the entire mass spectrum M to an ion intensity ratio (Intensity Ratio) of 100%, as shown in FIGS. 9A to 9C.
  • the scan speed is not changed in the following cases.
  • (A1) When there is only a single peak within the expanded range 500, the scan speed change processing unit 112 does not change the scan speed.
  • (A2) After enlargement, if the height of peaks other than the maximum peak is 50% or less of the maximum peak, the half width cannot be obtained, so the scan speed change processing unit 112 does not change the scan speed.
  • the above (A1) and (A2) correspond to the case where condition #1 and condition #2 are not satisfied in step S602 of FIG.
  • a plurality of pre-registered scan velocities are held in the scan velocity pattern 121 for each change m/z range 122 .
  • scan speeds of 100 Da/s, 500 Da/s, and 1000 Da/s are held in the scan speed pattern 121 .
  • the scan speed change processing unit 112 selects the scan speeds held in the scan speed pattern 121 one by one, and performs measurement (provisional measurement) of the measurement target once at the selected scan speed. This processing corresponds to steps S611 to S621 in FIG.
  • the scan speed change processing unit 112 acquires the ion intensity ratio at the point where the valley between the peaks is the deepest in the measurement results at each scan speed. This process is the process of step S631 in FIG.
  • the ion intensity ratio at the point where the valley between peaks is the deepest is the ion intensity ratio when the highest peak point is taken as 100%.
  • FIG. 9A is a diagram showing provisional measurement results when the scan speed is 100 Da/s.
  • FIG. 9B is a diagram showing provisional measurement results when the scan speed is 500 Da/s.
  • FIG. 9C is a diagram showing provisional measurement results when the scan speed is 1000 Da/s.
  • the ion intensity ratio at the point where the valley between the peaks in the mass spectrum M11 is the deepest is assumed to be 42%.
  • the ion intensity ratio at the point where the valley between the peaks in the mass spectrum M12 is the deepest is assumed to be 25%.
  • the ion intensity ratio at the point where the valley between the peaks in the mass spectrum M13 is deepest is assumed to be 27%.
  • the scan speed change processing unit 112 stores each scan speed and the corresponding ion intensity ratio as data in the storage unit 120 .
  • “100 Da/s: 42%”, “500 Da/s: 25%”, and “1000 Da/s: 27%” are stored in storage unit 120 .
  • the scan speed change processing unit 112 compares each ion intensity ratio (S631 in FIG. 5) and selects the scan speed with the smallest ion intensity ratio. This determines an appropriate scan speed (S632 in FIG. 5). Then, the scan speed change processing unit 112 sets the read scan speed as an appropriate scan speed for the change m/z range 122 in the control unit 210 of the mass spectrometer 200 (S633 in FIG. 5). Specifically, the scan speed change processing unit 112 sets the high frequency voltage value corresponding to the determined scan speed in the control unit 210 . After that, the control unit 210 of the mass spectrometer 200 performs measurement at the set scan speed. As a result of this measurement, a mass spectrum M2 shown in FIG. 7B is obtained.
  • the valley is deepest at 500 Da/s. Therefore, in the example shown in FIGS. 9A to 9C, 500 Da/s (FIG. 9), which is the scan speed with the deepest valley between peaks, is determined as an appropriate scan speed.
  • the scan speed at which the valley in the mass spectrum M becomes the deepest is determined as the appropriate scan speed.
  • the deepest trough means that each peak in the mass spectrum M becomes clear, and good mass resolution is obtained.
  • a pointing device such as a mouse can be used to easily set the m/z range and appropriate scanning speed using the GUI.
  • the m/z range to be measured can be changed and measurement can be performed at a scan speed corresponding to the m/z range without having knowledge of software explanations or mass spectrometry.
  • even a user who has no knowledge of mass spectrometry or who does not know the position of the text box on the GUI screen can always keep the mass resolving power in an appropriate state.
  • a user who does not have knowledge of mass spectrometry can intuitively operate without knowledge of technical terms such as m / z values, and the mass resolution of the mass spectrum M is in an appropriate state. can be measured by Also, the mass resolution can be maintained in an appropriate state without the user being conscious of it.
  • the identification accuracy of the components (especially isotopes) will be improved due to the improved mass resolution.
  • mass spectrometer 200 it is necessary to measure a sample with a known m/z value in advance to calibrate the mass of the mass spectrometer 200.
  • Mass calibration is to calibrate the m/z value deviation based on the detected ion intensity.
  • the mass spectrometer 200 is calibrated by presetting the relationship between the m/z value and the high-frequency voltage corresponding to the m/z value. As a result, it is possible to maintain the accuracy of the ion trap that retains the ions of the component to be detected inside the mass spectrometer 200 and the control that ejects the ions of the specific component.
  • the relationship between the m/z value and the high-frequency voltage corresponding to the m/z value is susceptible to changes in temperature and humidity. Furthermore, since temperature and humidity change with time, the relationship between the m/z value and the high-frequency voltage corresponding to the m/z value changes with the lapse of time. A change in such a relationship is referred to as an m/z value shift.
  • the detected ions are observed with an m/z value that deviates from the true value, and the m/z value is determined to be different from the m/z value of the component to be measured. end up
  • the user visually determines the deviation of the m/z value, or mass calibration is performed by automatic detection.
  • the mass spectrum M is scaled as described above, good mass resolution can be obtained. Therefore, the identification accuracy of the components used for mass calibration is improved, and the user can easily determine the necessity of mass calibration. Further, according to the present embodiment, while monitoring the mass spectrum M, it is possible to select a component of the reagent used for mass calibration in the mass spectrometer 200 in consideration of the characteristics of each mass spectrometer 200 .
  • problems of the mass spectrometer 200 itself also exist as factors for the deviation of the m/z value. For example, there is one that accompanies a change in scan speed. The faster the scanning speed, the more qualitatively the components included in the measurement can be seen. In addition, the component to be measured can be quantitatively measured at a lower scanning speed. However, in mass spectrometry, if the scan speed is changed from low to high or from high to low, the m/z value will deviate, so it is necessary to correct the relationship between the m/z value and the high-frequency voltage each time.
  • an appropriate scanning speed is set for scaling of the mass spectrum M by the method described above. Therefore, it is not necessary to perform mass calibration accompanying changes in scan speed.
  • the scan speed change processing unit 112 scales the mass spectrum M during MS 1 analysis m / z range
  • the scan speed can be changed to correspond to (change m/z range 122).
  • the user when the user confirms the deviation of the m / z value in SIM and SRM with the mass spectrum M, not only the target components of SIM and SRM but also the m The /z value isotope can be confirmed by the user. Accordingly, the user can also confirm the deviation of the m/z value of the components (isotopes) other than the target components of SIM and SRM.
  • the first embodiment by setting the scanning speed appropriate for scaling of the mass spectrum M in the control unit 219, good mass resolution can be obtained. Thereby, the user can confirm the ion intensity of multiple masses in the mass spectrum M2 displayed on the display unit 102 .
  • the user evaluates not only the m/z value deviation of the components used in SIM and SRM, but also the m/z value deviation of components other than the components to be measured and components containing isotopes. , it is possible to assist the user in judging whether mass calibration is appropriate or not.
  • a common method for improving mass resolution is to manually adjust the RF voltage (ie, scan speed) to adjust the peak width.
  • scan speed ie, scan speed
  • the scan speed change processing unit 112 determines an appropriate scan speed based on the scaled mass spectrum M. FIG. At this time, the scanning speed is determined based on the depth of the valley in the mass spectrum M. Therefore, it is possible to prevent a decrease in sensitivity due to excessive reduction of the peak width.
  • an enlarged range 500 (or a reduced range) of the mass spectrum M1 is specified by dragging with a mouse.
  • FIGS. 10A and 10B A second embodiment of the present invention will now be described with reference to FIGS. 10A and 10B. Reference will be made to FIGS. 1 to 3 as appropriate.
  • a PC Personal Computer
  • the purpose of the second embodiment is to improve the ease of use as compared with the first embodiment.
  • a portable terminal such as a tablet terminal or a smart phone is used as the computing device 100 shown in FIG. Then, in the second embodiment, a process of enlarging the mass spectrum M (see FIGS. 7A and 7B) by a pinch-out operation on the touch panel will be described.
  • FIG. 10A and 10B are diagrams showing specific processing of the enlargement/reduction processing (step S4 in FIG. 5) in the second embodiment.
  • FIG. 10A shows an example of the mass spectrum M21 before enlarging
  • FIG. 10B shows an example of the mass spectrum M21 after enlarging.
  • the user presses arbitrary two points on the touch panel screen indicated by reference numerals 601 and 602 in the mass spectrum M21 shown in FIG. 10A.
  • Arithmetic device 100 uses the position information of the pressed finger of the user as a starting point.
  • the user slides the pressed finger on the screen of the display unit 101 to positions 611 and 612 and releases the finger.
  • the computing device 100 uses this as the end point. Thereby, the expansion range 600 is set.
  • the computing device 100 stores information on the m/z values of the reference numerals 602 and 602 in the storage unit 120 . Further, the computing device 100 (portable terminal) stores the amounts of change of the reference numerals 601 and 601 and the reference numerals 602 and 612 with respect to the m/z axis. Arithmetic device 100 (portable terminal) then adds the amount of change to the position information of reference numerals 601 and 602 . The computing device 100 (portable terminal) takes this as a new m/z range (changed m/z range 122 (see FIG. 3)).
  • the mass spectrum M22 shown in FIG. 10B which is an enlarged part of the mass spectrum M21 shown in FIG. 10A, is displayed on the display unit 101.
  • the mass spectrum M22 shown in FIG. 10B shows the result of measurement performed at the determined appropriate scan speed, and therefore has a shape different from that of the mass spectrum M21.
  • the scan speed change processing unit 112 stores the m/z range obtained by such operation in the storage unit 120 as a new measurement range of the mass spectrum M (changed m/z range 122). The scan speed change processing unit 112 then acquires the changed m/z range 122 stored in the storage unit 120 .
  • the scan speed change processing unit 112 determines an appropriate scan speed from the scan speeds saved in the scan speed pattern 121 based on the acquired information on the changed m/z range 122 . Since the process of determining an appropriate scanning speed is the same as that of the first embodiment, the description is omitted here.
  • the scan speed change processing unit 112 determines a high frequency voltage corresponding to the determined scan speed.
  • the scan speed change processing unit 112 sets the determined high frequency voltage in the control unit 210 .
  • Mass spectrometer 200 begins measurements at the changed m/z range 122 and the determined scan rate.
  • a tablet terminal, a smartphone, or the like is used as the computing device 100, and enlargement or reduction processing is performed by finger gestures.
  • 2nd Embodiment can improve a handiness rather than 1st Embodiment.
  • tandem mass spectrometry using a triple quadrupole or an ion trap precursor ions are selected, the ions are subjected to collision-induced dissociation, and then product ions are detected in the second stage of mass spectrometry MS/MS.
  • MS/MS mass spectrometry MS/MS.
  • MS n analysis MS n analysis in which the mass spectrometry process is repeated multiple times (three or more times).
  • the present invention is not limited to the above-described embodiments, and includes various modifications.
  • the above-described embodiments have been described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the configurations described.
  • part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.
  • each configuration, function, etc. described above may be realized by software by a processor such as the CPU 132 interpreting and executing a program for realizing each function.
  • Information such as programs, tables, files, etc. that realize each function is stored in the HD, and is stored in the memory 131, a recording device such as an SSD, an IC (Integrated Circuit) card, an SD (Secure Digital) card, It can be stored in a recording medium such as a DVD (Digital Versatile Disc).
  • control lines and information lines are those considered necessary for explanation, and not all control lines and information lines are necessarily shown on the product. In fact, it can be considered that almost all configurations are interconnected.
  • computing device 101 display unit 110 processing unit 111 acquisition unit (mass spectrum acquisition unit) 112 scan speed change processing unit (m/z range acquisition unit, setting unit) 113 display processing unit 120 storage unit 121 scan speed pattern 122 change m/z range 200 mass spectrometer 210 control unit 300 sample supply device 400 scan speed setting screen 500, 600 expansion range M, M1, M2, M11 to M13, M21, M22 mass spectrum Z mass spectrometry system S3 mass spectrum acquisition (mass spectrum acquisition step) S5 Storage of changed m/z range (m/z range acquisition step) S6 scan speed change processing unit (scan speed change processing step)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

To enable mass spectrometry using simple operations, this invention is characterized by comprising a storage unit (120) having a plurality of scan speeds stored thereon in advance as a scan speed pattern, an acquisition unit for acquiring a first mass spectrum that is the result of measurement by a mass spectrometry device (200), and a scan speed variation processing unit that, when an enlarged range or reduced range of the first mass spectrum displayed on a display unit is designated by a user, acquires the m/z range of the enlarged range or reduced range, selects the scan speeds stored in the scan speed pattern in order, uses a mass spectrometry device to carry out provisional measurement of the m/z range of the enlarged range or reduced range at the selected scan speeds, and determines a scan speed for the m/z range of the enlarged range or reduced range on the basis of second mass spectrums obtained as a result of the provisional measurement.

Description

質量分析支援方法、質量分析支援装置、及び、質量分析システムMass spectrometry support method, mass spectrometry support device, and mass spectrometry system
 本発明は、質量分析支援方法、質量分析支援装置、及び、質量分析システムの技術に関する。 The present invention relates to techniques for mass spectrometry support methods, mass spectrometry support devices, and mass spectrometry systems.
 質量分析の知識が乏しいユーザが質量分析装置を使用することは非常に難しい。また、ユーザが質量分析装置に関し十分な知識を保有していたとしても、質量分析装置のソフトウェアの全ての機能を網羅的に覚え、使いこなすことは非常に難しい。  It is very difficult for users with little knowledge of mass spectrometry to use mass spectrometers. Moreover, even if the user has sufficient knowledge about the mass spectrometer, it is extremely difficult to comprehensively learn and use all the functions of the software of the mass spectrometer.
 また、ユーザビリティの観点からも、質量分析の知識の有無にかかわらず、どんなユーザでも呈示されたグラフィカルユーザインタフェース(Graphical User Interface:GUI)によって一定の操作を行えることが望ましい。 Also, from the viewpoint of usability, it is desirable that any user can perform certain operations through the presented graphical user interface (GUI), regardless of whether or not they have knowledge of mass spectrometry.
 例えば、質量分析装置のGUIには、m/z値と検出したイオン強度との関係であるマススペクトルが表示される。マススペクトルは、質量分析装置が測定対象となるm/z範囲を決められたスキャン速度で走査し、縦軸に検出されたイオン量に応じたイオン強度、横軸にイオンに対応したm/z値を表示したグラフである。 For example, the GUI of the mass spectrometer displays a mass spectrum, which is the relationship between the m/z value and the detected ion intensity. The mass spectrum is obtained by scanning the m/z range to be measured by the mass spectrometer at a predetermined scan speed, plotting the ion intensity corresponding to the amount of ions detected on the vertical axis and the m/z corresponding to the ion on the horizontal axis. It is the graph which displayed the value.
 このような質量分析装置の操作に関する発明として、特許文献1には「大気圧イオン化法を用いるLC/MSのようなMS1分析のマススペクトルから得られる情報が少ない装置においても、正確且つ迅速に、成分の特定を行うことが可能となる」質量分析方法および装置が開示されている(要約参照)。 As an invention related to the operation of such a mass spectrometer, Patent Document 1 describes "Even in a device with little information obtained from the mass spectrum of MS 1 analysis such as LC / MS using the atmospheric pressure ionization method, it can be accurately and quickly A mass spectrometry method and apparatus are disclosed (see Abstract).
 また、特許文献2には「試料上の指定された質量分析範囲内の各微小領域のMS分析が実行され、それにより得られたデータに基づいて、指定されたm/z又はm/z範囲の分布画像が作成されて表示画面上に描出される(S10~S14)。オペレータがこれを見て関心物質を特定しそのm/zを指示すると(S15)、MSスペクトル上でそのm/zの強度が閾値以上である微小領域が抽出され、その微小領域に対して関心物質のm/zをプリカーサとしてMS/MS分析が実行される(S26、S27)。得られた各微小領域のMS/MSスペクトルデータから平均MS/MSスペクトルが算出され(S28)、平均MS/MSスペクトルに出現するピーク情報を利用して関心物質の同定が実行される(S19)」質量分析装置が開示されている(要約参照)。 In addition, in Patent Document 2, "MS analysis of each minute area within the specified mass spectrometry range on the sample is performed, and based on the data obtained, the specified m / z or m / z range is created and displayed on the display screen (S10 to S14), the operator identifies the substance of interest and designates its m/z (S15), and the m/z is displayed on the MS spectrum. A microregion whose intensity is equal to or greater than a threshold value is extracted, and MS/MS analysis is performed on the microregion using the m/z of the substance of interest as a precursor (S26, S27). An average MS/MS spectrum is calculated from the /MS spectrum data (S28), and identification of a substance of interest is performed using peak information appearing in the average MS/MS spectrum (S19). (see summary).
特開2001―249114号公報JP-A-2001-249114 国際公開第2010/001439号WO2010/001439
 m/z範囲やスキャン速度の指定は、予め固定されている場合が一般的であり、特許文献1に記載の技術のようにテキストボックスなどをユーザが編集し指定するものもある。
 しかし、これらの手法では質量分析の知識を持たないユーザが操作を行う場合や、ユーザがGUI画面上のテキストボックスの位置を把握していない場合、m/z範囲やスキャン速度の変更が困難になる。
The designation of the m/z range and scanning speed is generally fixed in advance, and in some cases, such as the technique described in Patent Document 1, the user edits and designates a text box or the like.
However, with these methods, it is difficult to change the m/z range and scan speed if the user does not have knowledge of mass spectrometry, or if the user does not know the position of the text box on the GUI screen. Become.
 このような背景に鑑みて本発明がなされたのであり、本発明は、容易な操作で質量分析を行うことができることを課題とする。 The present invention has been made in view of such a background, and an object of the present invention is to enable mass spectrometry to be performed with a simple operation.
 前記した課題を解決するため、本発明は、演算装置が、質量分析装置によって測定された結果である第1のマススペクトルを取得するマススペクトル取得ステップと、ユーザによって表示部に表示された前記第1のマススペクトルの拡大範囲もしくは縮小範囲が指定されると、前記拡大範囲もしくは縮小範囲のm/z範囲を取得するm/z範囲取得ステップと、前記スキャン速度パターンに格納されている前記スキャン速度を順に選択し、選択した前記スキャン速度で、前記m/z範囲に対する仮測定を実行させ、前記仮測定の結果得られる第2のマススペクトルを基に、前記スキャン速度を決定するスキャン速度変更処理ステップと、が実行されることを特徴とする。
 その他の解決手段は実施形態中において適宜記載する。
In order to solve the above-described problems, the present invention provides a mass spectrum acquisition step in which a computing device acquires a first mass spectrum that is a result of measurement by a mass spectrometer; an m/z range obtaining step of obtaining an m/z range of the expanded range or the reduced range when the expanded range or the reduced range of one mass spectrum is specified; and the scan speed stored in the scan speed pattern. are sequentially selected, temporary measurement is performed on the m / z range at the selected scan speed, and the scan speed is determined based on the second mass spectrum obtained as a result of the temporary measurement. and are performed.
Other solutions will be described as appropriate in the embodiments.
 本発明によれば、容易な操作で質量分析を行うことができる According to the present invention, mass spectrometry can be performed with easy operation
第1実施形態に係る質量分析システムの構成例を示す図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows the structural example of the mass spectrometry system which concerns on 1st Embodiment. 演算装置における処理部の構成例を示す図である。It is a figure which shows the structural example of the process part in an arithmetic unit. 記憶部の構成例を示す図である。It is a figure which shows the structural example of a memory|storage part. 演算装置のハードウェア構成の一例を示す図である。It is a figure which shows an example of the hardware constitutions of an arithmetic unit. 第1実施形態に係る全体処理の手順を示すフローチャートである。4 is a flowchart showing the procedure of overall processing according to the first embodiment; 第1実施形態におけるスキャン速度設定画面の例を示す図である。FIG. 5 is a diagram showing an example of a scan speed setting screen in the first embodiment; FIG. 拡大処理前のマススペクトルを示す図である。It is a figure which shows the mass spectrum before an expansion process. 拡大処理後のマススペクトルの一例を示す図である。It is a figure which shows an example of the mass spectrum after an expansion process. スキャン速度変更処理の詳細な処理手順を示す図である。FIG. 10 is a diagram showing a detailed processing procedure of scan speed change processing; 仮測定によるマススペクトルの一例を示す図(その1)である。1 is a diagram (1) showing an example of a mass spectrum obtained by provisional measurement; FIG. 仮測定によるマススペクトルの一例を示す図(その2)である。FIG. 2 is a diagram (part 2) showing an example of a mass spectrum obtained by provisional measurement; 仮測定によるマススペクトルの一例を示す図(その3)である。FIG. 3 is a diagram (part 3) showing an example of a mass spectrum obtained by provisional measurement; 拡大処理前のマススペクトルの一例を示す図である。It is a figure which shows an example of the mass spectrum before an expansion process. 拡大処理御のマススペクトルの一例を示している。An example of a mass spectrum under expansion processing is shown.
本発明を実施するための形態について、図面を参照して説明する。なお、本発明の実施の形態は、ここに示す実施例に限定されるものではない。 A mode for carrying out the present invention will be described with reference to the drawings. It should be noted that the embodiments of the present invention are not limited to the examples shown here.
 <第1実施形態>
 第1実施形態では、ユーザがマススペクトルM1(図7A参照)を拡大し、測定するm/z範囲を記憶する。その後、m/z範囲に応じて、演算装置100がスキャン速度を変更する処理を行う。
<First embodiment>
In a first embodiment, the user magnifies the mass spectrum M1 (see FIG. 7A) and stores the m/z range to measure. After that, the arithmetic device 100 performs processing to change the scanning speed according to the m/z range.
 [質量分析システムZの構成]
 図1は、第1実施形態に係る質量分析システムZの構成例を示す図である。
 質量分析システムZは、演算装置100、質量分析装置200及び試料供給装置300を備える。
 演算装置100は、表示部101、入力部102、処理部110、及び、記憶部120を有する。
 処理部110及び記憶部120については後記する。
 表示部101には、質量分析装置200で測定された結果であるマススペクトルM(図7A、図7B参照)等が表示される。
 入力部102は、キーボードや、マウス等であり、ユーザによる情報の入力が行われる。
[Configuration of mass spectrometry system Z]
FIG. 1 is a diagram showing a configuration example of a mass spectrometry system Z according to the first embodiment.
The mass spectrometry system Z includes an arithmetic device 100 , a mass spectrometer 200 and a sample supply device 300 .
The computing device 100 has a display unit 101 , an input unit 102 , a processing unit 110 and a storage unit 120 .
The processing unit 110 and the storage unit 120 will be described later.
The display unit 101 displays a mass spectrum M (see FIGS. 7A and 7B), which is the result of measurement by the mass spectrometer 200, and the like.
The input unit 102 is a keyboard, a mouse, or the like, through which information is input by the user.
 試料供給装置300は、質量分析装置200に試料成分を供給する。例えば、液体クロマトグラフやガスクロマトグラフ、試料を加熱し成分を気化させる装置などが試料供給装置300である。 The sample supply device 300 supplies sample components to the mass spectrometer 200 . For example, the sample supply device 300 is a liquid chromatograph, a gas chromatograph, or a device that heats a sample to vaporize components.
 質量分析装置200は、イオン化部201と、質量分離部202と、イオン検出部203と、制御部210とを備える。
 イオン化部201は、試料供給装置300から供給される試料成分をイオン化する。
 質量分離部202は、イオン化部201から供給されたイオンのフラグメンテーション、イオントラップ、イオン検出部203へ排出する特定のm/z値を選別し、イオンをイオン検出部203へ送る。質量分離部202はシングルマスや、MS/MS、3段以上のMSが連結されたMS等で構成することが可能である。
 イオン検出部203は、質量分離部202から送られたイオンのイオン強度を測定する。
The mass spectrometer 200 includes an ionization section 201 , a mass separation section 202 , an ion detection section 203 and a control section 210 .
The ionization section 201 ionizes the sample component supplied from the sample supply device 300 .
The mass separation unit 202 selects fragmentation of ions supplied from the ionization unit 201 , ion trap, and specific m/z values to be discharged to the ion detection unit 203 , and sends the ions to the ion detection unit 203 . The mass separation unit 202 can be configured with a single mass, MS/MS, MS n in which three or more stages of MS are connected, or the like.
The ion detector 203 measures the ion intensity of ions sent from the mass separator 202 .
 制御部210は、演算装置100による指示に従い、測定するm/z範囲を更新し、スキャン速度の変更を行う制御を行う。そして、m/z値に対応するイオン強度のデータを演算装置100に返す。 The control unit 210 performs control to update the m/z range to be measured and change the scan speed according to instructions from the arithmetic device 100 . Then, the ion intensity data corresponding to the m/z value is returned to the computing device 100 .
 なお、質量分離部202で選別するm/z値を固定し、イオン強度の経時変化、すなわちクロマトグラムを得るのが選択イオンモニタリング(Selected Ion Monitoring:SIM)や選択反応モニタリング(Selected Reaction Monitoring:SRM)と呼ばれる定量測定である。 Note that the m / z value selected by the mass separation unit 202 is fixed, and the change in ion intensity over time, that is, the chromatogram is obtained by selected ion monitoring (SIM) or selected reaction monitoring (Selected Reaction Monitoring: SRM). ) is a quantitative measurement called
 (処理部110)
 図2は、演算装置100(図1参照)における処理部110の構成例を示す図である。
 処理部110は、取得部111、スキャン速度変更処理部112、表示処理部113を有する。
 取得部111は、質量分析装置200から測定結果(マススペクトル情報)等を取得する。
 スキャン速度変更処理部112は、ユーザによるマススペクトルM1(図7A参照)の拡大又は縮小処理に基づいて、質量分析装置200の適切なスキャン速度を決定する(測定に用いるスキャン速度を決定する)。そして、スキャン速度変更処理部112は決定したスキャン速度を質量分析装置200に設定する。なお、本実施形態では拡大縮小されるマススペクトルをマススペクトルM1、マススペクトルを一般的に示す際にはマススペクトルMとして区別している。ここで、適切なスキャン速度とは、分解能に優れたマススペクトルMを取得することができるスキャン速度という意味である。なお、スキャン速度が速すぎても遅すぎても分解能が低下してしまう。
 表示処理部113は、表示部101にマススペクトルM(図7A、図7B参照)や、スキャン速度設定画面400(図6参照)等を表示する。
(Processing unit 110)
FIG. 2 is a diagram showing a configuration example of the processing unit 110 in the arithmetic device 100 (see FIG. 1).
The processing unit 110 has an acquisition unit 111 , a scan speed change processing unit 112 and a display processing unit 113 .
The acquisition unit 111 acquires measurement results (mass spectrum information) and the like from the mass spectrometer 200 .
The scan speed change processing unit 112 determines an appropriate scan speed for the mass spectrometer 200 (determines the scan speed used for measurement) based on the enlargement or reduction processing of the mass spectrum M1 (see FIG. 7A) by the user. Then, the scan speed change processor 112 sets the determined scan speed in the mass spectrometer 200 . In this embodiment, the mass spectrum to be scaled is distinguished as a mass spectrum M1, and a mass spectrum M is used when mass spectra are generally indicated. Here, an appropriate scanning speed means a scanning speed at which a mass spectrum M with excellent resolution can be obtained. If the scanning speed is too fast or too slow, the resolution will decrease.
The display processing unit 113 displays the mass spectrum M (see FIGS. 7A and 7B), the scan speed setting screen 400 (see FIG. 6), and the like on the display unit 101 .
 なお、本実施形態では処理部110の機能が質量分析装置200とは別の装置である演算装置100に備えられているものとしているが、質量分析装置200の制御部210に処理部110の機能が備えられていてもよい。 In this embodiment, the functions of the processing unit 110 are provided in the arithmetic device 100, which is a device different from the mass spectrometer 200, but the functions of the processing unit 110 are provided in the control unit 210 of the mass spectrometer 200. may be provided.
 (記憶部120)
 図3は、記憶部120の構成例を示す図である。
 記憶部120にはスキャン速度パターン121及び変更m/z範囲122が格納されている。
 スキャン速度パターン121には、後記する仮測定で使用される複数のスキャン速度がm/z範囲毎に格納されている。
 変更m/z範囲122は、後記するマススペクトルM1(図7A参照)の拡大又は縮小処理によって変更されたm/z範囲である。後記するように、マススペクトルM1の拡大又は縮小処理は入力部102によって行われるため、変更m/z範囲122は入力部102から記憶部120に格納される。
(storage unit 120)
FIG. 3 is a diagram showing a configuration example of the storage unit 120. As shown in FIG.
A scan speed pattern 121 and a change m/z range 122 are stored in the storage unit 120 .
The scan speed pattern 121 stores a plurality of scan speeds for each m/z range, which are used in provisional measurements described later.
The changed m/z range 122 is the m/z range changed by enlargement or contraction processing of the mass spectrum M1 (see FIG. 7A), which will be described later. As will be described later, since the expansion or contraction processing of the mass spectrum M1 is performed by the input unit 102, the changed m/z range 122 is stored in the storage unit 120 from the input unit 102.
 また、スキャン速度変更処理部112は、変更m/z範囲122と、スキャン速度パターン121とを参照することで、後記する仮測定でのスキャン速度を選択する。 Also, the scan speed change processing unit 112 selects a scan speed for temporary measurement, which will be described later, by referring to the change m/z range 122 and the scan speed pattern 121 .
 [演算装置100のハードウェア構成]
 図4は、演算装置100のハードウェア構成の一例を示す図である。
 演算装置100は、メモリ131、CPU(Central Processing Unit)132、HD(Hard Disk)や、SSD(Solid State Disk)等の記憶装置133を有する。また、演算装置100はキーボードや、マウス等の入力装置134、ディスプレイ等の表示装置135、通信装置136を有する。
 記憶装置133にはプログラムが格納されており、このプログラムがメモリ131にロードされる。そして、ロードされたプログラムがCPU132によって実行される。これにより、図2の処理部110、処理部110を構成する取得部111、スキャン速度変更処理部112及び表示処理部113が具現化する。
 ちなみに、入力装置134は図1の入力部102、表示装置135は図1の表示部101、記憶装置133は図1の記憶部120に相当する。
[Hardware Configuration of Arithmetic Device 100]
FIG. 4 is a diagram showing an example of the hardware configuration of the arithmetic device 100. As shown in FIG.
The arithmetic device 100 has a memory 131, a CPU (Central Processing Unit) 132, and a storage device 133 such as an HD (Hard Disk) or an SSD (Solid State Disk). The computing device 100 also has an input device 134 such as a keyboard and a mouse, a display device 135 such as a display, and a communication device 136 .
A program is stored in the storage device 133 and loaded into the memory 131 . The loaded program is then executed by the CPU 132 . As a result, the processing unit 110 in FIG. 2, the acquisition unit 111 constituting the processing unit 110, the scan speed change processing unit 112, and the display processing unit 113 are embodied.
Incidentally, the input device 134 corresponds to the input section 102 in FIG. 1, the display device 135 corresponds to the display section 101 in FIG. 1, and the storage device 133 corresponds to the storage section 120 in FIG.
 [全体処理]
 図5は、第1実施形態に係る全体処理の手順を示すフローチャートである。適宜、図1~図3を参照する。
 まず、ユーザはスキャン速度設定画面400(図6参照)でスキャン速度の設定を行う(S1)。ここでは、Auto402(図6参照)が設定されたものとする。なお、スキャン速度設定画面400については後記する。
[Overall processing]
FIG. 5 is a flowchart showing the procedure of overall processing according to the first embodiment. Reference will be made to FIGS. 1 to 3 as appropriate.
First, the user sets the scan speed on the scan speed setting screen 400 (see FIG. 6) (S1). Here, it is assumed that Auto 402 (see FIG. 6) is set. Note that the scan speed setting screen 400 will be described later.
 続いて、質量分析装置200による測定が行われ(S2)、演算装置100の取得部111は測定の結果であるマススペクトル情報を取得する(S3)。なお、ステップS2で行われる測定で使用されるスキャン速度や、m/z範囲は制御部210によって自動で設定される。
 そして、表示処理部113は取得したマススペクトル情報を基にマススペクトルM1(図7A参照)を表示部101に表示する。
Subsequently, measurement is performed by the mass spectrometer 200 (S2), and the acquisition unit 111 of the arithmetic device 100 acquires mass spectrum information, which is the result of the measurement (S3). Note that the scanning speed and m/z range used in the measurement performed in step S2 are automatically set by the control unit 210. FIG.
Then, the display processing unit 113 displays the mass spectrum M1 (see FIG. 7A) on the display unit 101 based on the obtained mass spectrum information.
 次に、スキャン速度変更処理部112は、入力部102を介して表示部101に表示されているマススペクトルM1の拡大縮小処理が実行されたか否かを判定する(S4)。拡大縮小処理については後記する。
 拡大縮小処理が実行されていない場合(S4→No)、スキャン速度変更処理部112はステップS4へ処理を戻す。
Next, the scan speed change processing unit 112 determines whether or not enlargement/reduction processing of the mass spectrum M1 displayed on the display unit 101 has been executed via the input unit 102 (S4). The enlargement/reduction processing will be described later.
If the enlargement/reduction process has not been executed (S4→No), the scan speed change processing unit 112 returns the process to step S4.
 拡大縮小処理が実行されると(S4→Yes)、スキャン速度変更処理部112は拡大または縮小されたマススペクトルM(図7A、図7B参照)におけるm/z範囲(変更m/z範囲122)を取得し、記憶部120に記憶する(S5)。ステップS5の処理については後記する。つまり、ステップS5以下の処理はステップS4の拡大実行処理が行われたことを契機として実行される。 When the scaling process is executed (S4→Yes), the scan speed change processing unit 112 changes the m/z range (changed m/z range 122) in the scaled or reduced mass spectrum M (see FIGS. 7A and 7B). is obtained and stored in the storage unit 120 (S5). The processing of step S5 will be described later. That is, the processing from step S5 onwards is executed when the enlargement execution processing of step S4 is performed.
 そして、スキャン速度変更処理部112は記憶部120に記憶した変更m/z範囲122を基に、適切なスキャン速度を算出し、算出したスキャン速度を質量分析装置200の制御部210に設定するスキャン速度変更処理を行う(S6)。ステップS6の処理については後記する。なお、ステップS6においてスキャン速度変更処理部112は変更m/z範囲122に対して適切なスキャン速度を決定し、決定したスキャン速度を制御部210に設定する。
 次に、制御部210はステップS6で設定されたスキャン速度で測定対象物の測定を開始する(S7)。
Then, the scan speed change processing unit 112 calculates an appropriate scan speed based on the changed m/z range 122 stored in the storage unit 120, and sets the calculated scan speed in the control unit 210 of the mass spectrometer 200. Speed change processing is performed (S6). The processing of step S6 will be described later. In step S<b>6 , the scan speed change processing unit 112 determines an appropriate scan speed for the change m/z range 122 and sets the determined scan speed in the control unit 210 .
Next, the control unit 210 starts measuring the measurement object at the scanning speed set in step S6 (S7).
 [スキャン速度設定画面400]
 図6は、第1実施形態におけるスキャン速度設定画面400の例を示す図である。図6に示すスキャン速度設定画面400は、図5のステップS1の段階で表示部101に表示されているものである。
 スキャン速度設定画面400では、ユーザがスキャン速度の設定を行うことができる。そして、スキャン速度設定画面400ではNarrow Range401、Auto510、Full Range403をユーザが設定することができる。
 Narrow Range401が選択されると、質量分析において低速でスキャンが行われる。Auto402が選択されると、ユーザによる拡大縮小処理により定められた変更m/z範囲122(図3参照)に応じたスキャン速度が自動で変更される。Full Range403が選択されると、質量分析において高速でスキャンが行われる。本実施形態(スキャン速度を決定するスキャン速度変更処理ステップ)は、Auto402が選択された場合に行われる処理である。なお、Narrow Range401は、使用不可となる場合があるが、この場合、Narrow Range401がグレーアウトし、選択不可となる。
[Scan speed setting screen 400]
FIG. 6 is a diagram showing an example of the scan speed setting screen 400 in the first embodiment. A scan speed setting screen 400 shown in FIG. 6 is displayed on the display unit 101 at the stage of step S1 in FIG.
The scan speed setting screen 400 allows the user to set the scan speed. The user can set Narrow Range 401 , Auto 510 and Full Range 403 on the scan speed setting screen 400 .
When Narrow Range 401 is selected, scanning is performed at low speed in mass spectrometry. When Auto 402 is selected, the scan speed is automatically changed according to the change m/z range 122 (see FIG. 3) determined by the user's scaling process. When Full Range 403 is selected, scanning is performed at high speed in mass spectrometry. This embodiment (scanning speed change processing step for determining the scanning speed) is processing performed when Auto 402 is selected. Note that Narrow Range 401 may become unusable, but in this case, Narrow Range 401 is grayed out and cannot be selected.
 Narrow Range401、Auto403、Full Range403のいずれかをユーザが選択した後、OKボタン411が選択入力されることで選択が確定される。また、キャンセルボタン412が選択入力されることで、選択が解除される。 After the user selects one of Narrow Range 401, Auto 403, and Full Range 403, the selection is confirmed by selecting and inputting the OK button 411. Also, the selection is canceled by selecting and inputting the cancel button 412 .
 [拡大縮小処理]
 次に図7A及び図7Bを参照して図5のステップS4における拡大縮小処理について説明する。なお、図7A及び図7Bでは拡大処理について説明しているが、縮小処理についても同様の手順で可能である。
[Enlargement/reduction process]
Next, the enlargement/reduction processing in step S4 of FIG. 5 will be described with reference to FIGS. 7A and 7B. Although the enlargement process is described with reference to FIGS. 7A and 7B, the reduction process can also be performed using the same procedure.
 図7Aは、拡大処理前のマススペクトルM1を示す図である。
 なお、図7A及び図7Bにおいて横軸はm/z値であり、横軸はイオン強度(Intensity)である。
 ユーザが、始点501から終点502までドラッグすることで拡大範囲500が選択される。
 例えば、ユーザは、表示装置135に呈示されているマススペクトルM1における任意の位置で左クリックを押下し、そこを始点501とする。その後、マススペクトルM1において、ユーザは測定したい任意の位置までクリックを押下した状態でマウスを移動させクリックボタンを離し、そこを終点502とする。
FIG. 7A is a diagram showing a mass spectrum M1 before expansion processing.
In addition, in FIG. 7A and FIG. 7B, the horizontal axis is the m/z value, and the horizontal axis is the ion intensity (Intensity).
The user selects the expansion range 500 by dragging from the start point 501 to the end point 502 .
For example, the user presses a left click at an arbitrary position in the mass spectrum M1 presented on the display device 135 to set the starting point 501 there. After that, in the mass spectrum M1, the user moves the mouse while pressing the click to an arbitrary position to be measured, releases the click button, and sets the end point 502 there.
 拡大範囲500の底辺に相当する符号Rで示されるm/z範囲が拡大m/z範囲(変更m/z範囲122)である。 The m/z range indicated by symbol R corresponding to the base of the expanded range 500 is the expanded m/z range (changed m/z range 122).
 このような動作により、マススペクトルM1における始点501と終点502の座標を基に、新たなm/z範囲(変更m/z範囲122)が記憶部120に記憶される。そして、スキャン速度変更処理部112は記憶部120に記憶された変更m/z範囲122を読み込む。
 スキャン速度変更処理部112は、読み込んだ変更m/z範囲122に基づいて、スキャン速度パターン121に保存されているスキャン速度を選択する。そして、スキャン速度変更処理部112は、選択したスキャン速度で仮測定を繰り返し、適切なスキャン速度を決定する。適切なスキャン速度の決定方法は後記する。更に、スキャン速度変更処理部112は、決定したスキャン速度に対応した高周波電圧を決定する。スキャン速度変更処理部112は、決定した高周波電圧と、変更m/z範囲122を制御部210に設定する。ちなみに、スキャン速度の制御は質量分離部202に印加される高周波電圧の制御によって行われる。
By such operation, a new m/z range (changed m/z range 122) is stored in the storage unit 120 based on the coordinates of the start point 501 and the end point 502 in the mass spectrum M1. Then, the scan speed change processing unit 112 reads the changed m/z range 122 stored in the storage unit 120 .
The scan speed change processing unit 112 selects the scan speed saved in the scan speed pattern 121 based on the read change m/z range 122 . Then, the scan speed change processing unit 112 repeats temporary measurement at the selected scan speed and determines an appropriate scan speed. A method for determining an appropriate scanning speed will be described later. Furthermore, the scan speed change processing unit 112 determines a high frequency voltage corresponding to the determined scan speed. The scan speed change processing unit 112 sets the determined high-frequency voltage and the change m/z range 122 in the control unit 210 . Incidentally, the scan speed is controlled by controlling the high frequency voltage applied to the mass separator 202 .
 図7Bは、拡大処理後のマススペクトルM2の一例を示す図である。
 図7Bでは、スキャン速度変更処理部112が図7Aで選択された拡大範囲500に基づいてm/z範囲を更新し、更新されたm/z範囲で測定が行われた結果であるマススペクトルM2が示されている。つまり、図7Bに示すマススペクトルM2は、スキャン速度変更処理部112が拡大範囲500(図7A参照)に基づいて決定したスキャン速度で測定された結果である。そのため、マススペクトルM2が、図7Aに示すマススペクトルM1と形状が異なっている。マススペクトルM2は、図7Aに示すマススペクトルM1と形状が異なっている理由はスキャン速度の違いによる。
FIG. 7B is a diagram showing an example of the mass spectrum M2 after expansion processing.
In FIG. 7B, the scan speed change processing unit 112 updates the m/z range based on the expanded range 500 selected in FIG. It is shown. That is, the mass spectrum M2 shown in FIG. 7B is the result of measurement at the scan speed determined by the scan speed change processor 112 based on the expanded range 500 (see FIG. 7A). Therefore, the mass spectrum M2 differs in shape from the mass spectrum M1 shown in FIG. 7A. The mass spectrum M2 differs in shape from the mass spectrum M1 shown in FIG. 7A because of the difference in scanning speed.
 ちなみに、図7Bで示されているマススペクトルM2のm/z範囲は、図7Aの符号Rで示されるm/z範囲である。 Incidentally, the m/z range of the mass spectrum M2 shown in FIG. 7B is the m/z range indicated by symbol R in FIG. 7A.
 図7Bに示すマススペクトルM2は、スキャン速度変更処理の各工程を経て、適切なスキャン速度で測定が行われているため、図7Aに示すマススペクトルM1よりピーク間の谷が深くなっている。つまり、マススペクトルM2は、マススペクトルM1において、質量分解能の問題で確認できなかった同位体成分が分離された状態となっており、ユーザによる同位体成分の確認が行いやすくなっている。 The mass spectrum M2 shown in FIG. 7B has deeper valleys between the peaks than the mass spectrum M1 shown in FIG. 7A because it has undergone each step of the scan speed changing process and is measured at an appropriate scan speed. That is, the mass spectrum M2 is in a state in which the isotope components that could not be confirmed in the mass spectrum M1 due to the problem of mass resolution are separated, making it easier for the user to confirm the isotope components.
 [スキャン速度変更処理]
 次に、図8、図9A~図9Cを参照して図5のステップS6におけるスキャン速度変更処理を説明する。
[Scan speed change processing]
Next, the scanning speed changing process in step S6 of FIG. 5 will be described with reference to FIGS. 8 and 9A to 9C.
 (フローチャート)
 図8は、図5のステップS6におけるスキャン速度変更処理の詳細な処理手順を示す図である。
 まず、スキャン速度変更処理部112は図5のステップS4(拡大縮小処理)に基づいて拡大マススペクトル情報もしくは縮小マススペクトル情報(変更マススペクトル情報と称する)を取得する(S601)。
 そして、スキャン速度変更処理部112は、取得した変更マススペクトル情報に基づくマススペクトルM(図7A、図B参照:以下、変更マススペクトルと称する)が以下の条件を満たしているか否かを判定する(S602)。
 (条件#1)変更マススペクトルに少なくとも2つのピークが存在する。
 (条件#2)変更マススペクトルにおいて、最大イオン強度を100%とした場合、2番目に大きいピークにおける最大イオン強度が50%より大きい。
 なお、条件#1及び条件#2の双方が満たされる場合、スキャン速度変更処理部112は、ステップS602で「Yes」を判定する。
(flowchart)
FIG. 8 is a diagram showing detailed processing procedures of the scan speed changing process in step S6 of FIG.
First, the scan speed change processing unit 112 acquires expanded mass spectrum information or reduced mass spectrum information (referred to as changed mass spectrum information) based on step S4 (enlargement/reduction processing) in FIG. 5 (S601).
Then, the scan speed change processing unit 112 determines whether the mass spectrum M based on the acquired changed mass spectrum information (see FIGS. 7A and 7B; hereinafter referred to as a changed mass spectrum) satisfies the following conditions. (S602).
(Condition #1) There are at least two peaks in the modified mass spectrum.
(Condition #2) In the modified mass spectrum, the maximum ion intensity at the second largest peak is greater than 50% when the maximum ion intensity is taken as 100%.
Note that if both the condition #1 and the condition #2 are satisfied, the scan speed change processing unit 112 determines "Yes" in step S602.
 条件#1または条件#2を満たしていない場合(S602→No)、スキャン速度変更処理部112は処理を終了する。
 条件#1及び条件#2を満たしている場合(S602→Yes)、スキャン速度変更処理部112は記憶部120からスキャン速度パターン121を読み込む(S611)。前記したように、スキャン速度パターン121は、後記する仮測定を行うためのスキャン速度が予め複数設定されているものである。
 次に、スキャン速度変更処理部112はスキャン速度パターン121からスキャン速度を1つ選択する(S612)。この際、スキャン速度変更処理部112は後記する仮測定で使用されていないスキャン速度を選択する。また、前記したように、スキャン速度パターン121には、変更m/z範囲122毎に複数のスキャン速度が格納されている。従って、スキャン速度変更処理部112は、ステップS601で取得した変更マススペクトルにおけるm/z範囲(変更m/z範囲122)に割り当てられているスキャン速度からスキャン速度を1つ選択する。
If the condition #1 or condition #2 is not satisfied (S602→No), the scan speed change processing unit 112 terminates the process.
If condition #1 and condition #2 are satisfied (S602→Yes), scan speed change processing unit 112 reads scan speed pattern 121 from storage unit 120 (S611). As described above, in the scan speed pattern 121, a plurality of scan speeds are set in advance for performing temporary measurements, which will be described later.
Next, the scan speed change processing unit 112 selects one scan speed from the scan speed pattern 121 (S612). At this time, the scan speed change processing unit 112 selects a scan speed that is not used for temporary measurement, which will be described later. Also, as described above, the scan speed pattern 121 stores a plurality of scan speeds for each change m/z range 122 . Therefore, the scan speed change processing unit 112 selects one scan speed from the scan speeds assigned to the m/z range (changed m/z range 122) in the changed mass spectrum acquired in step S601.
 そして、スキャン速度変更処理部112はステップS612で選択したスキャン速度を質量分析装置200の制御部210に設定する(S613)。
 その後、制御部210は設定されたスキャン速度で、変更m/z範囲122における測定対象物の測定を行う。これを仮測定と称する。つまり、制御部210は設定されたスキャン速度で、変更m/z範囲122における仮測定を行う(S614)。仮測定の結果(具体的にはマススペクトルM(図7A、図7B))は、演算装置100へ送られ、記憶部120に格納される。
 続いて、スキャン速度変更処理部112は、スキャン速度パターン121において変更m/z範囲122に割り当てられているすべてのスキャン速度で仮測定済みであるか否かを判定する(S621)。
 すべてのスキャン速度で仮測定済みではない場合(S621→No)、スキャン速度はステップS612へ処理を戻す。
Then, the scan speed change processor 112 sets the scan speed selected in step S612 to the controller 210 of the mass spectrometer 200 (S613).
After that, the control unit 210 measures the measurement object in the changed m/z range 122 at the set scanning speed. This is called provisional measurement. That is, the control unit 210 performs temporary measurement in the changed m/z range 122 at the set scan speed (S614). The temporary measurement results (specifically, the mass spectrum M (FIGS. 7A and 7B)) are sent to the computing device 100 and stored in the storage unit 120 .
Subsequently, the scan speed change processing unit 112 determines whether provisional measurement has been completed at all scan speeds assigned to the change m/z range 122 in the scan speed pattern 121 (S621).
If provisional measurement has not been completed at all scan speeds (S621→No), the scan speed returns to step S612.
 すべてのスキャン速度で仮測定済みである場合(S621→Yes)、スキャン速度変更処理部112はスキャン速度毎の仮測定の結果を比較する(S631)。この際、スキャン速度変更処理部112は、仮測定の結果(マススペクトルM)において最も深い点のイオン強度を比較する。なお、仮測定の結果の比較については後記する。 If provisional measurements have been completed at all scan speeds (S621→Yes), the scan speed change processing unit 112 compares the results of provisional measurements for each scan speed (S631). At this time, the scan speed change processing unit 112 compares the ion intensity at the deepest point in the temporary measurement result (mass spectrum M). A comparison of the temporary measurement results will be described later.
 続いて、スキャン速度変更処理部112はステップS631の結果を基に(測定に用いる)スキャン速度を決定する(S632)。スキャン速度の決定方法については後記する。
 そして、スキャン速度変更処理部112はステップS632で決定したスキャン速度を変更m/z範囲122に対して適切なスキャン速度として制御部210に設定する(S633)。
Subsequently, the scan speed change processing unit 112 determines the scan speed (used for measurement) based on the result of step S631 (S632). A method of determining the scanning speed will be described later.
Then, the scan speed change processing unit 112 sets the scan speed determined in step S632 as an appropriate scan speed for the change m/z range 122 in the control unit 210 (S633).
 (スキャン速度変更処理の具体例)
 次に、図9A~図9Cを参照して、図8に示すスキャン速度変更処理の具体的な処理について説明する。なお、図9A~図9Cでは、マススペクトルM(図7A、図7B参照)の拡大処理に伴うスキャン速度変更について記載しているが、縮小処理に伴うスキャン速度変更についても同様の処理が適用可能である。
 まず、図7Aに示すように、マススペクトルM1の全域が表示された状態から、ユーザが拡大処理(あるいは縮小処理)を行うことをスキャン速度変更のトリガとする。すなわち、図7Aに示す拡大範囲500が指定されると、図8のスキャン速度変更処理が実行開始される。この処理は、図5のステップS4で「Yes」が判定されたものに相当する。このように、ユーザが拡大処理(あるいは縮小処理)を行うことをスキャン速度変更のトリガとすることで、ユーザの操作を容易にすることができる。
(Specific example of scan speed change processing)
Next, specific processing of the scan speed change processing shown in FIG. 8 will be described with reference to FIGS. 9A to 9C. Note that FIGS. 9A to 9C describe scan speed change accompanying enlargement processing of mass spectrum M (see FIGS. 7A and 7B), but similar processing can be applied to scan speed change accompanying reduction processing. is.
First, as shown in FIG. 7A, the scan speed change is triggered by the user performing enlargement processing (or reduction processing) from the state in which the entire mass spectrum M1 is displayed. That is, when the expansion range 500 shown in FIG. 7A is specified, the scan speed changing process of FIG. 8 is started. This process corresponds to "Yes" determined in step S4 of FIG. In this manner, the user's operation can be facilitated by using the user's enlargement processing (or reduction processing) as a trigger for changing the scanning speed.
 そして、スキャン速度変更処理部112は、図9A~図9Cに示すように、マススペクトルMの全域中の最も高いピークをイオン強度比(Intensity Ratiо)100%とする。 Then, the scan speed change processing unit 112 sets the highest peak in the entire mass spectrum M to an ion intensity ratio (Intensity Ratio) of 100%, as shown in FIGS. 9A to 9C.
 また、前記したように、次に示す場合にはスキャン速度の変更が行われない。
 (A1)拡大範囲500の内部に単一のピークしか存在しない場合、スキャン速度変更処理部112はスキャン速度の変更を行わない。
 (A2)拡大後において、最大ピーク以外のピークの高さが最大ピークの50%以下であれば、半値幅を取得できないため、スキャン速度変更処理部112はスキャン速度の変更を行わない。
 上記(A1)、(A2)は、図8のステップS602において条件#1及び条件#2が満たされていない場合に相当する。
Also, as described above, the scan speed is not changed in the following cases.
(A1) When there is only a single peak within the expanded range 500, the scan speed change processing unit 112 does not change the scan speed.
(A2) After enlargement, if the height of peaks other than the maximum peak is 50% or less of the maximum peak, the half width cannot be obtained, so the scan speed change processing unit 112 does not change the scan speed.
The above (A1) and (A2) correspond to the case where condition #1 and condition #2 are not satisfied in step S602 of FIG.
 また、前記したように予め登録されている複数のスキャン速度が変更m/z範囲122毎にスキャン速度パターン121に保持されている。
 本実施形態では、例として、100Da/s、500Da/s、1000Da/sのスキャン速度がスキャン速度パターン121に保持されているものとする。
 次に、スキャン速度変更処理部112は、スキャン速度パターン121に保持されているスキャン速度を1つずつ選択し、選択したスキャン速度で一回ずつ測定対象の測定(仮測定)を行う。この処理は図8のステップS611~S621に相当する。
Further, as described above, a plurality of pre-registered scan velocities are held in the scan velocity pattern 121 for each change m/z range 122 .
In this embodiment, as an example, scan speeds of 100 Da/s, 500 Da/s, and 1000 Da/s are held in the scan speed pattern 121 .
Next, the scan speed change processing unit 112 selects the scan speeds held in the scan speed pattern 121 one by one, and performs measurement (provisional measurement) of the measurement target once at the selected scan speed. This processing corresponds to steps S611 to S621 in FIG.
 その後、スキャン速度変更処理部112はそれぞれのスキャン速度による測定結果において、ピーク間の谷が最も深い点のイオン強度比を取得する。この処理は図8のステップS631の処理である。
 ピーク間の谷が最も深い点のイオン強度比とは、最も高いピーク点を100%とした場合におけるイオン強度比である。
After that, the scan speed change processing unit 112 acquires the ion intensity ratio at the point where the valley between the peaks is the deepest in the measurement results at each scan speed. This process is the process of step S631 in FIG.
The ion intensity ratio at the point where the valley between peaks is the deepest is the ion intensity ratio when the highest peak point is taken as 100%.
 図9Aはスキャン速度が100Da/sの場合における仮測定結果を示す図である。図9Bはスキャン速度が500Da/sの場合における仮測定結果を示す図である。そして、図9Cはスキャン速度が1000Da/sの場合における仮測定結果を示す図である。
 図9Aに示すように、100Da/sではマススペクトルM11におけるピーク間の谷が一番深い点のイオン強度比が42%となったものとする。また、図9Bに示すように、500Da/sではマススペクトルM12におけるピーク間の谷が一番深い点のイオン強度比は25%となったものとする。さらに図9Cに示すように、1000Da/sではマススペクトルM13におけるピーク間の谷が一番深い点のイオン強度比が27%となったものとする。
FIG. 9A is a diagram showing provisional measurement results when the scan speed is 100 Da/s. FIG. 9B is a diagram showing provisional measurement results when the scan speed is 500 Da/s. FIG. 9C is a diagram showing provisional measurement results when the scan speed is 1000 Da/s.
As shown in FIG. 9A, at 100 Da/s, the ion intensity ratio at the point where the valley between the peaks in the mass spectrum M11 is the deepest is assumed to be 42%. Also, as shown in FIG. 9B, at 500 Da/s, the ion intensity ratio at the point where the valley between the peaks in the mass spectrum M12 is the deepest is assumed to be 25%. Further, as shown in FIG. 9C, at 1000 Da/s, the ion intensity ratio at the point where the valley between the peaks in the mass spectrum M13 is deepest is assumed to be 27%.
 そして、スキャン速度変更処理部112は、各スキャン速度とそれに対応したイオン強度比をデータとして記憶部120に保存する。図9A~図9Cに示す例では、「100Da/s:42%」、「500Da/s:25%」、「1000Da/s:27%」が記憶部120に保存される。 Then, the scan speed change processing unit 112 stores each scan speed and the corresponding ion intensity ratio as data in the storage unit 120 . In the example shown in FIGS. 9A to 9C, “100 Da/s: 42%”, “500 Da/s: 25%”, and “1000 Da/s: 27%” are stored in storage unit 120 .
 その後、スキャン速度変更処理部112は、各イオン強度比を比較し(図5のS631)、イオン強度比が最も小さいスキャン速度を選択する。これによって、適切なスキャン速度が決定される(図5のS632)。
 そして、スキャン速度変更処理部112は、読み出したスキャン速度を変更m/z範囲122に対して適切なスキャン速度として質量分析装置200の制御部210に設定する(図5のS633)。具体的には、スキャン速度変更処理部112は決定したスキャン速度に対応する高周波電圧の値を制御部210に設定する。
 質量分析装置200の制御部210は、以後、設定されたスキャン速度で測定を行う。この測定の結果結果、図7Bに示すマススペクトルM2が得られる。
After that, the scan speed change processing unit 112 compares each ion intensity ratio (S631 in FIG. 5) and selects the scan speed with the smallest ion intensity ratio. This determines an appropriate scan speed (S632 in FIG. 5).
Then, the scan speed change processing unit 112 sets the read scan speed as an appropriate scan speed for the change m/z range 122 in the control unit 210 of the mass spectrometer 200 (S633 in FIG. 5). Specifically, the scan speed change processing unit 112 sets the high frequency voltage value corresponding to the determined scan speed in the control unit 210 .
After that, the control unit 210 of the mass spectrometer 200 performs measurement at the set scan speed. As a result of this measurement, a mass spectrum M2 shown in FIG. 7B is obtained.
 図9A~図9Cに示す例では、500Da/sにおいて谷が最も深くなっている。そのため、図9A~図9Cに示す例では、ピーク間の谷が最も深いスキャン速度である500Da/s(図9)が適切なスキャン速度として決定される。 In the examples shown in FIGS. 9A to 9C, the valley is deepest at 500 Da/s. Therefore, in the example shown in FIGS. 9A to 9C, 500 Da/s (FIG. 9), which is the scan speed with the deepest valley between peaks, is determined as an appropriate scan speed.
 このように、第1実施形態ではマススペクトルMにおいて谷が最も深くなるスキャン速度が適切なスキャン速度として決定される。谷が最も深くなるということは、マススペクトルMにおけるそれぞれのピークが明確になるということであり、良好な質量分解能が得られるということである。 Thus, in the first embodiment, the scan speed at which the valley in the mass spectrum M becomes the deepest is determined as the appropriate scan speed. The deepest trough means that each peak in the mass spectrum M becomes clear, and good mass resolution is obtained.
 第1実施形態によれば、マウス等のポインティングデバイスを利用し、GUIを用いてm/z範囲や、適切なスキャン速度を容易に設定することができる。これにより、ソフトウェアの説明や質量分析の知識を有していなくても、測定するm/z範囲を変更し、m/z範囲に応じたスキャン速度で測定を行うことができ。この結果、質量分析の知識を持たないユーザや、GUI画面上のテキストボックスの位置を把握していないユーザでも常に質量分解能を適切な状態に保つことができる。 According to the first embodiment, a pointing device such as a mouse can be used to easily set the m/z range and appropriate scanning speed using the GUI. As a result, the m/z range to be measured can be changed and measurement can be performed at a scan speed corresponding to the m/z range without having knowledge of software explanations or mass spectrometry. As a result, even a user who has no knowledge of mass spectrometry or who does not know the position of the text box on the GUI screen can always keep the mass resolving power in an appropriate state.
 つまり、第1実施形態によれば、質量分析の知識を持たないユーザが、m/z値などの専門用語の知識を必要とせず直感的な動作で、マススペクトルMの質量分解能が適切な状態による測定を行うことができる。また、ユーザが意識することなく質量分解能を適切な状態に保つことができる。 That is, according to the first embodiment, a user who does not have knowledge of mass spectrometry can intuitively operate without knowledge of technical terms such as m / z values, and the mass resolution of the mass spectrum M is in an appropriate state. can be measured by Also, the mass resolution can be maintained in an appropriate state without the user being conscious of it.
 また、第1実施形態によれば、マススペクトルMに表示された同位体成分に関して、質量分解能の向上により成分(特に同位体)の同定精度の向上が期待できる。 Further, according to the first embodiment, with respect to the isotopic components displayed in the mass spectrum M, it is expected that the identification accuracy of the components (especially isotopes) will be improved due to the improved mass resolution.
 また、質量分析装置200では、予めm/z値が既知の試料を測定し、質量分析装置200の質量校正を行う必要がある。質量校正とは、検出されたイオン強度を基にm/z値のずれを校正することである。一般的に、質量分析装置200においてm/z値とm/z値に対応する高周波電圧の関係が予め設定されることで校正が行われる。これにより、検出したい成分のイオンを質量分析装置200の内部に留めるイオントラップや特定成分のイオンを排出する制御の精度を保つことが可能になる。 Also, in the mass spectrometer 200, it is necessary to measure a sample with a known m/z value in advance to calibrate the mass of the mass spectrometer 200. Mass calibration is to calibrate the m/z value deviation based on the detected ion intensity. In general, the mass spectrometer 200 is calibrated by presetting the relationship between the m/z value and the high-frequency voltage corresponding to the m/z value. As a result, it is possible to maintain the accuracy of the ion trap that retains the ions of the component to be detected inside the mass spectrometer 200 and the control that ejects the ions of the specific component.
 だが、m/z値とm/z値に対応する高周波電圧の関係は、温度や湿度などの変化を受けやすい。更に、温度や湿度は時間と共に変化するため、m/z値とm/z値に対応する高周波電圧の関係が時間経過に伴い変化してしまう。このような関係の変化をm/z値のずれと称する。 However, the relationship between the m/z value and the high-frequency voltage corresponding to the m/z value is susceptible to changes in temperature and humidity. Furthermore, since temperature and humidity change with time, the relationship between the m/z value and the high-frequency voltage corresponding to the m/z value changes with the lapse of time. A change in such a relationship is referred to as an m/z value shift.
 m/z値のずれが生じると、検出されたイオンが真値から外れたm/z値で観測されてしまい、測定対象である成分のm/z値とは異なるm/z値として判断されてしまう。この場合、一般的にユーザがm/z値のずれを目視による判断や、自動検知による質量校正が行われる。 When the m/z value deviates, the detected ions are observed with an m/z value that deviates from the true value, and the m/z value is determined to be different from the m/z value of the component to be measured. end up In this case, in general, the user visually determines the deviation of the m/z value, or mass calibration is performed by automatic detection.
 第1実施形態によれば、前記したようにマススペクトルMの拡大縮小が行われても、良好な質量分解能を得ることができる。このため、質量校正に用いられる成分の同定精度が向上され、ユーザは質量校正の必要性を容易に判断することができる。
 また、本実施形態によれば、質量分析装置200で質量校正に使用する試薬を、マススペクトルMをモニタリングしながら、個々の質量分析装置200の特性を考慮した成分を選定することができる。
According to the first embodiment, even if the mass spectrum M is scaled as described above, good mass resolution can be obtained. Therefore, the identification accuracy of the components used for mass calibration is improved, and the user can easily determine the necessity of mass calibration.
Further, according to the present embodiment, while monitoring the mass spectrum M, it is possible to select a component of the reagent used for mass calibration in the mass spectrometer 200 in consideration of the characteristics of each mass spectrometer 200 .
 また、m/z値のずれが生じる要因としては、温度や湿度だけでなく、質量分析装置200自体の問題も存在する。例えば、スキャン速度の変更に伴うものがある。
 スキャン速度は、高速であるほど測定時に含まれている成分を定性的に見ることができる。また、スキャン速度が低速であるほど測定したい成分を定量的に測定することができる。しかし、質量分析においては、スキャン速度を低速から高速、高速から低速に変化させるとm/z値のずれが生じるため、そのたびにm/z値と高周波電圧の関係を修正する必要がある。
In addition to the temperature and humidity, problems of the mass spectrometer 200 itself also exist as factors for the deviation of the m/z value. For example, there is one that accompanies a change in scan speed.
The faster the scanning speed, the more qualitatively the components included in the measurement can be seen. In addition, the component to be measured can be quantitatively measured at a lower scanning speed. However, in mass spectrometry, if the scan speed is changed from low to high or from high to low, the m/z value will deviate, so it is necessary to correct the relationship between the m/z value and the high-frequency voltage each time.
 第1実施形態では、前記した手法によりマススペクトルMの拡大縮小に対して適切なスキャン速度が設定される。このため、スキャン速度の変更に伴う質量校正を行わなくてもよい。 In the first embodiment, an appropriate scanning speed is set for scaling of the mass spectrum M by the method described above. Therefore, it is not necessary to perform mass calibration accompanying changes in scan speed.
 また、一般的にMS/MSにおけるMS分析において測定するm/z範囲を更新することや、スキャン速度の変更は行われない。ちなみに、特許文献1や特許文献2では、m/z範囲の変更はMS分析に限定されている。 Also, updating the m/z range measured in the MS 1 analysis in MS/MS and changing the scan speed are generally not performed. By the way, in US Pat.
 これに対し、MS分析時の測定結果に第1実施形態に示す手法を適用することで、スキャン速度変更処理部112がMS分析時のマススペクトルMを拡大縮小した際のm/z範囲(変更m/z範囲122)に対応したスキャン速度に変更することができる。これにより、MS分析において適切なスキャン速度による測定が行われ、良好な質量分解能を得ることができる。その結果、MSの段階で良好な質量分解能を有するマススペクトルMを取得することができるため、MSにおける測定成分の取りこぼし等を防止することができる。従って、MS/MS全体の精度を向上させることができる。 On the other hand, by applying the method shown in the first embodiment to the measurement result during MS 1 analysis, the scan speed change processing unit 112 scales the mass spectrum M during MS 1 analysis m / z range The scan speed can be changed to correspond to (change m/z range 122). This allows measurements with appropriate scan rates in MS 1 analysis to obtain good mass resolution. As a result, a mass spectrum M having good mass resolution can be obtained at the stage of MS 1 , so that it is possible to prevent components to be measured in MS 1 from being lost. Therefore, the accuracy of the entire MS/MS can be improved.
 また、良好な質量分解能により、SIMや、SRMにおけるm/z値のずれをユーザがマススペクトルMで確認する際に、SIM、SRMの対象成分だけではなく、SIM、SRMの対象成分以外のm/z値の同位体をユーザが確認することができる。そして、これにより、ユーザは、SIM、SRMの対象成分以外の成分(同位体)についてm/z値のずれも確認することができる。つまり、第1実施形態によれば、前記したように、マススペクトルMの拡大縮小に対して適切なスキャン速度が制御部219に設定されることで、良好な質量分解能を得ることができる。これにより、ユーザは表示部102に表示されるマススペクトルM2で複数質量のイオン強度を確認することができる。従って、SIMやSRMにおいて、SIMやSRMに使用する成分のm/z値のずれだけでなく、測定対象成分以外の成分や、同位体を含む成分のm/z値のずれをユーザが評価し、ユーザによる質量校正の是非判断の補助を行うことができる。 In addition, due to the good mass resolution, when the user confirms the deviation of the m / z value in SIM and SRM with the mass spectrum M, not only the target components of SIM and SRM but also the m The /z value isotope can be confirmed by the user. Accordingly, the user can also confirm the deviation of the m/z value of the components (isotopes) other than the target components of SIM and SRM. In other words, according to the first embodiment, as described above, by setting the scanning speed appropriate for scaling of the mass spectrum M in the control unit 219, good mass resolution can be obtained. Thereby, the user can confirm the ion intensity of multiple masses in the mass spectrum M2 displayed on the display unit 102 . Therefore, in SIM and SRM, the user evaluates not only the m/z value deviation of the components used in SIM and SRM, but also the m/z value deviation of components other than the components to be measured and components containing isotopes. , it is possible to assist the user in judging whether mass calibration is appropriate or not.
 質量分解能を向上させる方法として、高周波電圧(即ちスキャン速度)を手動で調整し、ピーク幅を調整する方法が一般的にある。しかし、ピーク幅を削りすぎることにより感度が低下する恐れがある。
 これに対し、本実施形態では、スキャン速度変更処理部112が拡大縮小したマススペクトルMを基に適切なスキャン速度を決定する。この際、マススペクトルMにおける谷の深さを基にスキャン速度が決定される。このため、ピーク幅を削りすぎることによる感度低下を防ぐことができる。
A common method for improving mass resolution is to manually adjust the RF voltage (ie, scan speed) to adjust the peak width. However, if the peak width is cut too much, the sensitivity may decrease.
On the other hand, in this embodiment, the scan speed change processing unit 112 determines an appropriate scan speed based on the scaled mass spectrum M. FIG. At this time, the scanning speed is determined based on the depth of the valley in the mass spectrum M. Therefore, it is possible to prevent a decrease in sensitivity due to excessive reduction of the peak width.
 また、第1実施形態では図7Aに示すように、マススペクトルM1の拡大範囲500(もしくは縮小範囲)がマウスによるドラッグで指定される。このようにすることで、質量分析に関する操作について知識を持たないユーザでも容易にマススペクトルM1の拡大又は縮小と、スキャン速度の変更を行うことができる。 Also, in the first embodiment, as shown in FIG. 7A, an enlarged range 500 (or a reduced range) of the mass spectrum M1 is specified by dragging with a mouse. By doing so, even a user who does not have knowledge of operations related to mass spectrometry can easily enlarge or reduce the mass spectrum M1 and change the scan speed.
 <第2実施形態>
 次に、図10A及び図10Bを参照して、本発明の第2実施形態を説明する。適宜、図1~図3を参照する。
 第1実施形態では、演算装置100としてPC(Personal Computer)が想定されているが、PCの操作は手軽さにかけるという課題がある。第2実施形態では、第1実施形態よりも手軽さを向上させることを目的とする。
<Second embodiment>
A second embodiment of the present invention will now be described with reference to FIGS. 10A and 10B. Reference will be made to FIGS. 1 to 3 as appropriate.
In the first embodiment, a PC (Personal Computer) is assumed as the computing device 100, but there is a problem that the operation of the PC is not easy. The purpose of the second embodiment is to improve the ease of use as compared with the first embodiment.
 第2実施形態では、図1に示す演算装置100としてタブレット端末や、スマートフォン等といった携帯端末が使用され、表示部101及び入力部102がタッチパネルに置き換えられる例を示す。そして、第2実施形態ではタッチパネル上のピンチアウト動作でマススペクトルM(図7A、図7B参照)を拡大する処理について記述する。 In the second embodiment, a portable terminal such as a tablet terminal or a smart phone is used as the computing device 100 shown in FIG. Then, in the second embodiment, a process of enlarging the mass spectrum M (see FIGS. 7A and 7B) by a pinch-out operation on the touch panel will be described.
 図10A及び図10Bは、第2実施形態における拡大縮小処理(図5のステップS4)の具体的な処理を示す図である。図10Aは拡大処理前のマススペクトルM21の一例を示し、図10Bは拡大処理御のマススペクトルM21の一例を示している。
 まず、ユーザは、図10Aに示すマススペクトルM21において、符号601と符号602とで示されるタッチパネル画面の上の任意の2点を押下する。演算装置100(携帯端末)は、押下されたユーザの指の位置情報を始点とする。次に、ユーザは、表示部101の画面上で押下された状態の指を符号611と符号612の位置までスライドさせ、指を離す。演算装置100(携帯端末)は、これを終点とする。これによって、拡大範囲600が設定される。
10A and 10B are diagrams showing specific processing of the enlargement/reduction processing (step S4 in FIG. 5) in the second embodiment. FIG. 10A shows an example of the mass spectrum M21 before enlarging, and FIG. 10B shows an example of the mass spectrum M21 after enlarging.
First, the user presses arbitrary two points on the touch panel screen indicated by reference numerals 601 and 602 in the mass spectrum M21 shown in FIG. 10A. Arithmetic device 100 (portable terminal) uses the position information of the pressed finger of the user as a starting point. Next, the user slides the pressed finger on the screen of the display unit 101 to positions 611 and 612 and releases the finger. The computing device 100 (portable terminal) uses this as the end point. Thereby, the expansion range 600 is set.
 この際、演算装置100(携帯端末)は、符号602と符号602それぞれのm/z値の情報を記憶部120に記憶する。更に、演算装置100(携帯端末)は、符号601と符号601、符号602と符号612のm/z軸に対する変化量を記憶する。そして、演算装置100(携帯端末)は、符号601,602の位置情報に対し、変化量を足し合わせる。演算装置100(携帯端末)は、これを新たなm/z範囲(変更m/z範囲122(図3参照))とする。 At this time, the computing device 100 (portable terminal) stores information on the m/z values of the reference numerals 602 and 602 in the storage unit 120 . Further, the computing device 100 (portable terminal) stores the amounts of change of the reference numerals 601 and 601 and the reference numerals 602 and 612 with respect to the m/z axis. Arithmetic device 100 (portable terminal) then adds the amount of change to the position information of reference numerals 601 and 602 . The computing device 100 (portable terminal) takes this as a new m/z range (changed m/z range 122 (see FIG. 3)).
 この結果、図10Bに示される、図10Aに示されるマススペクトルM21の一部を拡大したマススペクトルM22が表示部101に表示される。なお、図10Bに示されるマススペクトルM22は決定された適切なスキャン速度による測定が行われた結果を示しているため、マススペクトルM21とは形状が異なっている。 As a result, the mass spectrum M22 shown in FIG. 10B, which is an enlarged part of the mass spectrum M21 shown in FIG. 10A, is displayed on the display unit 101. Note that the mass spectrum M22 shown in FIG. 10B shows the result of measurement performed at the determined appropriate scan speed, and therefore has a shape different from that of the mass spectrum M21.
 スキャン速度変更処理部112は、このような動作により得られたm/z範囲を新たなマススペクトルMの測定範囲(変更m/z範囲122)として、記憶部120に記憶させる。そして、スキャン速度変更処理部112は、記憶部120に記憶された変更m/z範囲122を取得する。 The scan speed change processing unit 112 stores the m/z range obtained by such operation in the storage unit 120 as a new measurement range of the mass spectrum M (changed m/z range 122). The scan speed change processing unit 112 then acquires the changed m/z range 122 stored in the storage unit 120 .
 そして、スキャン速度変更処理部112は、取得した変更m/z範囲122の情報に基づき、スキャン速度パターン121に保存されているスキャン速度から適切なスキャン速度を決定する。適切なスキャン速度の決定処理は第1実施形態と同様であるため、ここでの説明を省略する。 Then, the scan speed change processing unit 112 determines an appropriate scan speed from the scan speeds saved in the scan speed pattern 121 based on the acquired information on the changed m/z range 122 . Since the process of determining an appropriate scanning speed is the same as that of the first embodiment, the description is omitted here.
 更に、スキャン速度変更処理部112は、決定したスキャン速度に対応した高周波電圧を決定する。スキャン速度変更処理部112は、決定した高周波電圧を制御部210に設定する。質量分析装置200は変更m/z範囲122と、決定したスキャン速度で測定を開始する。 Furthermore, the scan speed change processing unit 112 determines a high frequency voltage corresponding to the determined scan speed. The scan speed change processing unit 112 sets the determined high frequency voltage in the control unit 210 . Mass spectrometer 200 begins measurements at the changed m/z range 122 and the determined scan rate.
 第2実施形態では、演算装置100としてタブレット端末や、スマートフォン等が使用され、指動作によって拡大又は縮小処理が行われる。これにより、第2実施形態は第1実施形態よりも手軽さを向上させることができる。 In the second embodiment, a tablet terminal, a smartphone, or the like is used as the computing device 100, and enlargement or reduction processing is performed by finger gestures. Thereby, 2nd Embodiment can improve a handiness rather than 1st Embodiment.
 本実施形態は、三連四重極やイオントラップを用いるタンデム質量分析において、プリカーサイオンの選択を行い、イオンを衝突誘起解離させた後に二段階目の質量分析でプロダクトイオンを検出するMS/MSで使用が可能である。また、質量分析処理を複数回(3回以上)繰り返すMS分析でも同様に使用が可能である。 In this embodiment, in tandem mass spectrometry using a triple quadrupole or an ion trap, precursor ions are selected, the ions are subjected to collision-induced dissociation, and then product ions are detected in the second stage of mass spectrometry MS/MS. can be used in It can also be used in MS n analysis in which the mass spectrometry process is repeated multiple times (three or more times).
 本発明は前記した実施形態に限定されるものではなく、様々な変形例が含まれる。例えば、前記した実施形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明したすべての構成を有するものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、ある実施形態の構成に他の実施形態の構成を加えることも可能である。また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 The present invention is not limited to the above-described embodiments, and includes various modifications. For example, the above-described embodiments have been described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the configurations described. Also, part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Moreover, it is possible to add, delete, or replace part of the configuration of each embodiment with another configuration.
 また、前記した各構成、機能、各部110,111~113、記憶部120等は、それらの一部又はすべてを、例えば集積回路で設計すること等によりハードウェアで実現してもよい。また、図4に示すように、前記した各構成、機能等は、CPU132等のプロセッサがそれぞれの機能を実現するプログラムを解釈し、実行することによりソフトウェアで実現してもよい。各機能を実現するプログラム、テーブル、ファイル等の情報は、HDに格納すること以外に、メモリ131や、SSD等の記録装置、又は、IC(Integrated Circuit)カードや、SD(Secure Digital)カード、DVD(Digital Versatile Disc)等の記録媒体に格納することができる。
 また、各実施形態において、制御線や情報線は説明上必要と考えられるものを示しており、製品上必ずしもすべての制御線や情報線を示しているとは限らない。実際には、ほとんどすべての構成が相互に接続されていると考えてよい。
Also, the above configurations, functions, units 110, 111 to 113, storage unit 120, and the like may be realized by hardware, for example, by designing a part or all of them using an integrated circuit. Further, as shown in FIG. 4, each configuration, function, etc. described above may be realized by software by a processor such as the CPU 132 interpreting and executing a program for realizing each function. Information such as programs, tables, files, etc. that realize each function is stored in the HD, and is stored in the memory 131, a recording device such as an SSD, an IC (Integrated Circuit) card, an SD (Secure Digital) card, It can be stored in a recording medium such as a DVD (Digital Versatile Disc).
Further, in each embodiment, control lines and information lines are those considered necessary for explanation, and not all control lines and information lines are necessarily shown on the product. In fact, it can be considered that almost all configurations are interconnected.
 100 演算装置(制御装置)
 101 表示部
 110 処理部
 111 取得部(マススペクトル取得部)
 112 スキャン速度変更処理部(m/z範囲取得部、設定部)
 113 表示処理部
 120 記憶部
 121 スキャン速度パターン
 122 変更m/z範囲
 200 質量分析装置
 210 制御部
 300 試料供給装置
 400 スキャン速度設定画面
 500,600 拡大範囲
 M,M1,M2,M11~M13,M21,M22 マススペクトル
 Z   質量分析システム
 S3  マススペクトルの取得(マススペクトル取得ステップ)
 S5  変更m/z範囲の記憶(m/z範囲取得ステップ)
 S6  スキャン速度変更処理部(スキャン速度変更処理ステップ)
100 computing device (control device)
101 display unit 110 processing unit 111 acquisition unit (mass spectrum acquisition unit)
112 scan speed change processing unit (m/z range acquisition unit, setting unit)
113 display processing unit 120 storage unit 121 scan speed pattern 122 change m/z range 200 mass spectrometer 210 control unit 300 sample supply device 400 scan speed setting screen 500, 600 expansion range M, M1, M2, M11 to M13, M21, M22 mass spectrum Z mass spectrometry system S3 mass spectrum acquisition (mass spectrum acquisition step)
S5 Storage of changed m/z range (m/z range acquisition step)
S6 scan speed change processing unit (scan speed change processing step)

Claims (7)

  1.  複数のスキャン速度がスキャン速度パターンとして予め記憶部に格納されている演算装置が、
     質量分析装置によって測定された結果である第1のマススペクトルを取得するマススペクトル取得ステップと、
     ユーザによって表示部に表示された前記第1のマススペクトルの拡大範囲もしくは縮小範囲が指定されると、前記拡大範囲もしくは縮小範囲のm/z範囲を取得するm/z範囲取得ステップと、
     前記スキャン速度パターンに格納されている前記スキャン速度を順に選択し、選択した前記スキャン速度で、前記質量分析装置による前記拡大範囲もしくは縮小範囲の前記m/z範囲に対する仮測定を実行させ、前記仮測定の結果得られる第2のマススペクトルを基に、前記拡大範囲もしくは縮小範囲の前記m/z範囲において前記スキャン速度を決定するスキャン速度変更処理ステップと、
     を実行することを特徴とする質量分析支援方法。
    A computing device in which a plurality of scan speeds are stored in advance as scan speed patterns in a storage unit,
    a mass spectrum acquisition step of acquiring a first mass spectrum that is the result of measurement by the mass spectrometer;
    an m/z range obtaining step of obtaining an m/z range of the expanded range or the reduced range when the user designates the expanded range or the reduced range of the first mass spectrum displayed on the display unit;
    sequentially selecting the scan speeds stored in the scan speed pattern, causing the mass spectrometer to perform provisional measurement of the m/z range of the expansion range or contraction range at the selected scan speed; a scan speed change processing step of determining the scan speed in the m/z range of the expansion range or the contraction range based on the second mass spectrum obtained as a result of the measurement;
    A method for assisting mass spectrometry, characterized by performing
  2.  前記スキャン速度変更処理ステップでは、
     前記スキャン速度パターンから選択された前記スキャン速度のそれぞれによる前記仮測定で得られる前記第2のマススペクトルのそれぞれについて、もっとも高い信号強度を有する点に対するピーク間の谷部の最も深い点の信号強度の比が最も小さい前記第2のマススペクトルに対する前記スキャン速度が前記スキャン速度として決定される
     ことを特徴とする請求項1に記載の質量分析支援方法。
    In the scan speed change processing step,
    signal intensity of the deepest point in the valley between peaks relative to the point with the highest signal intensity for each of the second mass spectra obtained in the provisional measurements at each of the scan velocities selected from the scan velocity pattern; 2. The mass spectrometry assisting method according to claim 1, wherein the scan speed for the second mass spectrum having the smallest ratio of is determined as the scan speed.
  3.  前記スキャン速度変更処理ステップは、前記第1のマススペクトルの拡大範囲もしくは縮小範囲の指定に基づいて行われる
     ことを特徴とする請求項1に記載の質量分析支援方法。
    2. The mass spectrometry support method according to claim 1, wherein said scan speed change processing step is performed based on designation of an expansion range or a contraction range of said first mass spectrum.
  4.  前記拡大範囲もしくは縮小範囲の指定は、ユーザによるマウスの操作によって行われる
     ことを特徴とする請求項1に記載の質量分析支援方法。
    2. The method of supporting mass spectrometry according to claim 1, wherein the specification of the expansion range or contraction range is performed by a user operating a mouse.
  5.  前記第1のマススペクトルがタッチパネル画面に表示され、
     前記拡大範囲もしくは縮小範囲の指定は、ユーザによるタッチパネルの操作によって行われる
     ことを特徴とする請求項1に記載の質量分析支援方法。
    The first mass spectrum is displayed on the touch panel screen,
    2. The mass spectrometry support method according to claim 1, wherein the designation of the expansion range or the reduction range is performed by a user's operation of a touch panel.
  6.  複数のスキャン速度がスキャン速度パターンとして予め記憶している記憶部と、
     質量分析装置によって測定された結果である第1のマススペクトルを取得するマススペクトル取得部と、
     ユーザによって表示部に表示された前記第1のマススペクトルの拡大範囲もしくは縮小範囲が指定されると、前記拡大範囲もしくは縮小範囲のm/z範囲を取得するm/z範囲取得部と、
     前記スキャン速度パターンに格納されている前記スキャン速度を順に選択し、選択した前記スキャン速度で、前記質量分析装置による前記拡大範囲もしくは縮小範囲の前記m/z範囲に対する仮測定を実行させ、前記仮測定の結果得られる第2のマススペクトルを基に、前記拡大範囲もしくは縮小範囲の前記m/z範囲において前記スキャン速度を決定するスキャン速度変更処理部と、
     を有することを特徴とする質量分析支援装置。
    a storage unit in which a plurality of scan speeds are stored in advance as scan speed patterns;
    a mass spectrum acquisition unit that acquires a first mass spectrum that is the result of measurement by a mass spectrometer;
    an m/z range acquisition unit that acquires the m/z range of the expansion range or contraction range when the user specifies the expansion range or contraction range of the first mass spectrum displayed on the display unit;
    sequentially selecting the scan speeds stored in the scan speed pattern, causing the mass spectrometer to perform provisional measurement of the m/z range of the expansion range or contraction range at the selected scan speed; a scan speed change processing unit that determines the scan speed in the m/z range of the expansion range or the contraction range based on the second mass spectrum obtained as a result of the measurement;
    A mass spectrometry support device characterized by having:
  7.  質量分析装置と、
     前記質量分析装置の制御を行う制御装置と、
     を有し、
     前記制御装置は、
     複数のスキャン速度がスキャン速度パターンとして予め記憶している記憶部と、
     質量分析装置によって測定された結果である第1のマススペクトルを取得するマススペクトル取得部と、
     ユーザによって表示部に表示された前記第1のマススペクトルの拡大範囲もしくは縮小範囲が指定されると、前記拡大範囲もしくは縮小範囲のm/z範囲を取得するm/z範囲取得部と、
     前記スキャン速度パターンに格納されている前記スキャン速度を順に選択し、選択した前記スキャン速度で、前記質量分析装置による前記拡大範囲もしくは縮小範囲の前記m/z範囲に対する仮測定を実行させ、前記仮測定の結果得られる第2のマススペクトルを基に、前記拡大範囲もしくは縮小範囲の前記m/z範囲において前記スキャン速度を決定するスキャン速度変更処理部と、
     決定した前記スキャン速度を前記質量分析装置に設定する設定部と、
     を有することを特徴とする質量分析支援システム。
    a mass spectrometer;
    a control device that controls the mass spectrometer;
    has
    The control device is
    a storage unit in which a plurality of scan speeds are stored in advance as scan speed patterns;
    a mass spectrum acquisition unit that acquires a first mass spectrum that is the result of measurement by a mass spectrometer;
    an m/z range acquisition unit that acquires the m/z range of the expansion range or contraction range when the user specifies the expansion range or contraction range of the first mass spectrum displayed on the display unit;
    sequentially selecting the scan speeds stored in the scan speed pattern, causing the mass spectrometer to perform provisional measurement of the m/z range of the expansion range or contraction range at the selected scan speed; a scan speed change processing unit that determines the scan speed in the m/z range of the expansion range or the contraction range based on the second mass spectrum obtained as a result of the measurement;
    a setting unit that sets the determined scan speed to the mass spectrometer;
    A mass spectrometry support system comprising:
PCT/JP2021/029492 2021-08-10 2021-08-10 Mass spectrometry assistance method, mass spectrometry assistance device, and mass spectrometry system WO2023017558A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2021/029492 WO2023017558A1 (en) 2021-08-10 2021-08-10 Mass spectrometry assistance method, mass spectrometry assistance device, and mass spectrometry system
JP2023541146A JPWO2023017558A1 (en) 2021-08-10 2021-08-10

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/029492 WO2023017558A1 (en) 2021-08-10 2021-08-10 Mass spectrometry assistance method, mass spectrometry assistance device, and mass spectrometry system

Publications (1)

Publication Number Publication Date
WO2023017558A1 true WO2023017558A1 (en) 2023-02-16

Family

ID=85200654

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/029492 WO2023017558A1 (en) 2021-08-10 2021-08-10 Mass spectrometry assistance method, mass spectrometry assistance device, and mass spectrometry system

Country Status (2)

Country Link
JP (1) JPWO2023017558A1 (en)
WO (1) WO2023017558A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011523172A (en) * 2008-06-09 2011-08-04 ディーエイチ テクノロジーズ デベロップメント プライベート リミテッド How to operate a tandem ion trap
JP2012195104A (en) * 2011-03-15 2012-10-11 Shimadzu Corp Quadrupole type mass spectroscope
US8384022B1 (en) * 2011-10-31 2013-02-26 Thermo Finnigan Llc Methods and apparatus for calibrating ion trap mass spectrometers
US20210098241A1 (en) * 2018-02-19 2021-04-01 Cerno Bioscience Llc Reliable and automatic mass spectral analysis
JP2021515242A (en) * 2018-01-22 2021-06-17 ウニベルシタ パルドゥビツェ How to diagnose cancer based on lipidomics analysis of body fluids

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011523172A (en) * 2008-06-09 2011-08-04 ディーエイチ テクノロジーズ デベロップメント プライベート リミテッド How to operate a tandem ion trap
JP2012195104A (en) * 2011-03-15 2012-10-11 Shimadzu Corp Quadrupole type mass spectroscope
US8384022B1 (en) * 2011-10-31 2013-02-26 Thermo Finnigan Llc Methods and apparatus for calibrating ion trap mass spectrometers
JP2021515242A (en) * 2018-01-22 2021-06-17 ウニベルシタ パルドゥビツェ How to diagnose cancer based on lipidomics analysis of body fluids
US20210098241A1 (en) * 2018-02-19 2021-04-01 Cerno Bioscience Llc Reliable and automatic mass spectral analysis

Also Published As

Publication number Publication date
JPWO2023017558A1 (en) 2023-02-16

Similar Documents

Publication Publication Date Title
US8916818B2 (en) Chromatograph tandem quadrupole mass spectrometer
JP6176334B2 (en) Mass spectrometry method, mass spectrometer, and mass spectrometry data processing program
JP2014134385A (en) Data processor for chromatograph mass spectrometer
JP2013228295A (en) Data processor for chromatograph mass spectrometry
WO2012004855A1 (en) Analysis data processing method and device
JP6737396B2 (en) Mass spectrometer and chromatograph mass spectrometer
WO2023017558A1 (en) Mass spectrometry assistance method, mass spectrometry assistance device, and mass spectrometry system
JP5561016B2 (en) Chromatograph mass spectrometer
US11474086B2 (en) Measurement data processing method, measurement data processing device, and program for processing measurement data
JP6627968B2 (en) Chromatographic mass spectrometer
JPWO2008053531A1 (en) Chromatograph mass spectrometer
JP6288313B2 (en) Mass spectrometry method, chromatograph mass spectrometer, and program for mass spectrometry
JP2019148455A5 (en)
JP6631373B2 (en) Data processing device
JP3663140B2 (en) Mass spectrometry method and mass spectrometer
WO2004033997A1 (en) Measurement device and measurement result display method
US20150168360A1 (en) Chromatogram display method, chromatogram display device, and chromatograph comprising said device
WO2017168682A1 (en) Peak detection method and data processing device
JP2018136266A (en) Mass spectroscope
JP7056767B2 (en) Substance identification method using chromatograph
JP7088306B2 (en) Chromatograph device
JP2013142581A (en) Chromatograph tandem quadrupole type mass spectrograph
WO2015189696A1 (en) Chromatograph mass spectrometer and control method therefor
JP2008002895A (en) Data processor for chromatograph mass analysis
JP2016070789A (en) Mass analysis data processing apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21953456

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023541146

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE