WO2023016947A1 - Drive device for electrically driving a motor vehicle, in particular a passenger vehicle - Google Patents

Drive device for electrically driving a motor vehicle, in particular a passenger vehicle Download PDF

Info

Publication number
WO2023016947A1
WO2023016947A1 PCT/EP2022/072154 EP2022072154W WO2023016947A1 WO 2023016947 A1 WO2023016947 A1 WO 2023016947A1 EP 2022072154 W EP2022072154 W EP 2022072154W WO 2023016947 A1 WO2023016947 A1 WO 2023016947A1
Authority
WO
WIPO (PCT)
Prior art keywords
differential
shaft
rotor
bearings
gear
Prior art date
Application number
PCT/EP2022/072154
Other languages
German (de)
French (fr)
Inventor
Goran Ogrizovic
Original Assignee
Mercedes-Benz Group AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mercedes-Benz Group AG filed Critical Mercedes-Benz Group AG
Publication of WO2023016947A1 publication Critical patent/WO2023016947A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/003Couplings; Details of shafts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/04Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing
    • B60K17/16Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing of differential gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/04Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing
    • B60K17/16Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing of differential gearing
    • B60K17/165Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing of differential gearing provided between independent half axles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/006Structural association of a motor or generator with the drive train of a motor vehicle
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/10Structural association with clutches, brakes, gears, pulleys or mechanical starters
    • H02K7/116Structural association with clutches, brakes, gears, pulleys or mechanical starters with gears
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K2001/001Arrangement or mounting of electrical propulsion units one motor mounted on a propulsion axle for rotating right and left wheels of this axle

Definitions

  • the invention relates to a drive device for, in particular, purely electrically driving a motor vehicle, in particular a passenger car, according to the preamble of patent claim 1.
  • Such a drive device for, in particular, purely electric drives of wheels of an axle of a motor vehicle, in particular of a passenger car, is already known, for example, from DE 10 2017 211 881 A1.
  • the drive device comprises a housing and an electrical machine, which has a stator arranged in the housing and fixed to the housing and a rotor arranged in the housing, which can be driven by means of the stator and thereby about an axis of rotation relative to the housing and relative to the stator is rotatable.
  • the rotor includes a rotor shaft.
  • the drive device includes a first output shaft, via which at least a first of the wheels can be driven by the electric machine.
  • the drive device includes a first planetary gear set, via which the first output shaft can be driven by the rotor shaft.
  • the drive device also includes a second output shaft, via which at least a second of the wheels can be driven by the electric machine.
  • the drive device also includes a second planetary gear set, via which the second output shaft can be driven by the rotor shaft.
  • the drive device also has a differential gear with an input element connected in a torque-proof manner to the rotor shaft, the planetary gear sets being able to be driven by the rotor shaft via the differential gear.
  • EP 1 469 232 A2 discloses a differential gear.
  • a drive assembly with an electric motor is known from DE 696 17 337 T2.
  • the object of the present invention is to improve a drive device of the type mentioned at the outset.
  • a first differential shaft of the differential gear is connected in a rotationally fixed manner to a first sun gear of a first of the planetary gear sets and a second differential shaft is connected in a rotationally fixed manner to a second sun gear of the second planetary gear set of the differential gear are arranged inside the rotor shaft designed as a hollow shaft and are mounted in bearings arranged inside the hollow shaft, in particular in a non-buckling manner, the rotor shaft being mounted rotatably on the differential shafts via the input element and via the bearings, in particular in such a way that the input element can be rotated via the bearings mounted on the differential shafts.
  • the respective bearing is arranged between the respective differential shaft and the input element, which is arranged in the radial direction of the respective differential shaft between the respective differential shaft and the rotor shaft.
  • the rotor shaft and the input element are designed as separate components that are connected to one another in a torque-proof manner, or the rotor shaft is designed in one piece with the input element and is thereby connected to the input element in a torque-proof manner.
  • the bearings allow the differential shafts to be guided or supported within the rotor shaft and thus within the rotor in a buckling-resistant manner, as a result of which a particularly advantageous and in particular low-loss mounting can be represented.
  • the bearings arranged on the differential shafts and inside the hollow shaft (rotor shaft) are arranged far enough apart in the axial direction of the differential shafts to enable the differential shafts to be mounted in a stable and non-buckling manner relative to the rotor shaft.
  • a running in the axial direction of the differential shaft distance between the bearings is at least twice the average bearing diameter.
  • differential gear is designed as a spur gear differential or as a bevel gear differential.
  • both planetary gear sets are completely connected to the rotor in the axial direction of the electric machine and are therefore arranged completely outside of the rotor.
  • the bearings arranged on the differential shafts and inside the hollow shaft are each designed as plain bearings or as a plurality of individual roller bearings or plain bearings distributed over a length.
  • a respective securing element is connected to the respective differential shaft, which is arranged between a bearing inner ring of a respective further bearing and a respective axial bearing on the respective differential shaft and secures the respective differential shaft against axial displacement and absorbs axial forces .
  • the respective axial bearing between the respective securing element and the rotor absorbs axial forces which act on the respective differential shaft in the direction of the rotor.
  • a spring element is provided for preloading the rotor and the other bearings.
  • the respective inside diameters of the additional bearings are smaller than the respective addendum circle diameters of the respective toothings of the sun gears of the first and of the second planetary gear set are.
  • the differential gear is designed as a spur gear, with the differential gear having a first and a second sun gear.
  • the respective head tear diameters of the respective toothings of the first and second sun gears of the differential gear are smaller than the respective inside diameters of the other bearings.
  • the drive device is also referred to as an electric drive train, since the motor vehicle can be driven, in particular purely electrically, by means of the drive device.
  • smaller and therefore lower-loss bearings can be used for supporting the rotor shaft.
  • the respective differential shaft is axially fixed by a bearing or by a bearing arrangement, in particular a respective one, and cannot slip, so that the differential speed when cornering is only applied to a defined contact surface. Fewer bearings, especially those rotating at rotor speed, are required to support the rotor and the differential shafts.
  • the gearing forces on the differential shafts are completely or at least partially compensated for with a corresponding design of the helical gearing in the suns of the differential gear and the respective planetary gear set.
  • No forces generated by gearing forces in the sun act on bearings rotating or stationary at rotor speed or on contact surfaces that are exposed to a differential speed.
  • only one axial bearing ie only one axial bearing, is required for each differential shaft and thus for each side of the differential gear.
  • Interlocking forces can be advantageously compensated.
  • the following advantages can be realized by the invention:
  • the differential shafts can be easily plugged into the pre-assembled rotor, the pre-assembled rotor comprising the rotor and the differential gear, which is also simply referred to as a differential.
  • the differential shafts can be made in one piece, in particular with two running gears.
  • a rotor bearing and a bearing of the respective differential shaft including sun wheel can be represented by only two bearings rotating at rotor speed.
  • the drawing shows a detail of a schematic longitudinal sectional view of a drive device for electrically driving wheels of an axle of a motor vehicle.
  • the only figure shows a detail in a schematic longitudinal sectional view of a drive device 10 for, in particular, purely electric driving of wheels, also referred to as vehicle wheels, of an axle of a motor vehicle, in particular a passenger car.
  • the motor vehicle which is preferably embodied as a passenger car, comprises the axle mentioned, which preferably has exactly two wheels in the form of the wheels mentioned above.
  • the wheels and thus the motor vehicle as a whole can be driven electrically, in particular purely electrically, by means of the drive device 10 .
  • the drive device 10 comprises a housing 12 and an electric machine 14 which comprises a stator 16 which is arranged in the housing 12 and fixed to the housing 12 .
  • the stator 16 is connected to the housing 12 at least in a rotationally fixed manner.
  • the stator 16 also includes at least one winding forming end turns 18 and 20, respectively.
  • the end winding 18 is arranged on a first side S1 of the stator 16 while the end winding 20 is arranged on a second side S2 of the stator 16 .
  • the second side S2 faces away from the first side S1 or vice versa in the axial direction of the electrical machine 14 .
  • the respective end winding 18 or 20 is formed in particular in that the winding on the respective side S1 or S2 protrudes in the axial direction from a carrier of the stator 16 embodied, for example, as a laminated core.
  • the electrical machine 14 has a rotor 22 which can be driven by the stator 16 and is therefore rotatable about an axis of rotation 24 relative to the stator 16 and relative to the housing 12 .
  • the electric machine 14 can provide torque via the rotor 22, by means of which the wheels and thus the motor vehicle can be driven, in particular purely electrically.
  • the rotor 22 includes a rotor shaft 23, via which the rotor 22 or the electric machine 14 can provide the torque. It can be seen that the rotor 22 and the stator 16 are each arranged at least partially, in particular at least predominantly or completely, in the housing 12 .
  • the drive device 10 has a first output shaft 26, also referred to as a first side shaft or designed as a first side shaft, shown particularly schematically in the figure, and a second output shaft 26, also referred to as a second side shaft or designed as a second side shaft and shown particularly schematically in the figure Output shaft 28 on.
  • the output shafts 26 and 28 are arranged coaxially to one another and can be rotated about the axis of rotation 24 relative to one another, relative to the housing 12 and relative to the stator 16 and can - as will be explained in more detail below - be separated from the rotor shaft 23 and thus from the rotor 22 , That is, from the electric machine 14, in particular pure, electrically driven.
  • a first of the wheels of the axle can be driven by the output shaft 26 and a second of the wheels of the axle can be driven by the output shaft 28 .
  • the first wheel may be electrically driven by the electric machine 14 via the output shaft 26 and the second wheel may be electrically driven by the electric machine 14 via the output shaft 28 .
  • the first wheel is arranged coaxially to the output shaft 26 and/or is connected to the output shaft 26 in a torque-transmitting manner, in particular in a rotationally fixed manner.
  • the second wheel is arranged coaxially to the output shaft 28 and/or is connected to the output shaft 28 in a torque-transmitting manner, in particular in a rotationally fixed manner.
  • the wheels are arranged on opposite sides of the motor vehicle in the transverse direction of the vehicle, so that, for example, the first wheel is arranged on the left side of the motor vehicle in the forward direction of travel and the second wheel is arranged on the right side of the motor vehicle in the forward direction of travel.
  • Each output shaft 26 or 28 is at least or exactly one, simply referred to as a planetary gear set, planetary gear set 30 or 32 of the Drive device 10 is provided.
  • the output shaft 26 can be driven by the rotor shaft 23 and thus by the rotor 22 via the associated planetary gear set 30, and the output shaft 28 can be driven by the rotor shaft 23 and thus by the rotor 22 via the associated planetary gear set 32 .
  • the drive device 10 also includes a differential gear 34, also referred to simply as a differential, via which the planetary gear sets 30 and 32 can be driven by the rotor shaft 23 and thus by the rotor 22.
  • the differential gear 34 has an input element 36 which, in the present case, is designed, for example, as a differential housing of the differential gear 34 .
  • the differential gear 34 is designed, for example, as a spur gear differential or as a bevel gear differential.
  • the input element 36 is, in particular permanently, non-rotatably connected to the rotor shaft 23 and thus to the rotor 22 .
  • the input element 36 is, for example, a carrier, in particular a planetary carrier, on or on which respective differential gears 38 of the differential gear 34, which are formed separately from one another, are rotatably mounted.
  • one of the differential gears 38 is arranged behind the other differential gear 38 with respect to the image plane of the figure and is therefore illustrated by a dashed line.
  • the differential gears 38 which are designed here, for example, as planetary gears, are gears, in particular spur gears in the present case.
  • the differential gears 38 are formed separately from one another and can rotate about a respective, second axis of rotation 43 relative to the input member 36 and relative to one another.
  • the respective axis of rotation 43 runs parallel to the axis of rotation 24, with the axes of rotation 43 running parallel to one another.
  • the input element 36 and the rotor shaft 23 to be components which are formed separately from one another and are connected to one another in a torque-proof manner, in particular permanently.
  • the differential gears 38 which are designed as planetary gears in the exemplary embodiment shown in the figure, form a spur differential gear set of the differential gear 34, which can thus include a further planetary gear set.
  • the one differential gear 38 shown in the figure by dashed lines meshes, in particular directly, with a first sun gear 39 of the differential gear 34, in particular the spur differential gear set of the differential gear 34, and the other differential gear 38 meshes, in particular directly, with a second sun gear 41 of the differential gear 34, in particular of the spur gear wheel set of the differential gear 34.
  • the differential gears 38 do not mesh with one another.
  • the differential gear 34, in particular the spur gear wheel set of the differential gear 34 can optionally, that is optionally, have a ring gear, not shown in the figure, with which the differential gears 38 mesh, in particular directly and/or simultaneously.
  • sun gear 41 is arranged coaxially to a first differential shaft 40, also referred to simply as the first shaft, of the differential gear 34
  • sun gear 39 is coaxial to a second differential shaft 42, also referred to simply as the second shaft, of the differential gear 34 arranged.
  • the differential shafts 40 and 42 which are also referred to as balancing shafts, can therefore be driven by the input element 36 via the sun gears 39 and 40 and via the differential gears 38, in particular in such a way that the sun gears 39 and 41 can be driven by the input element 36 via the differential gears 38 are, which in turn can be driven by the rotor shaft 23 and thus by the electric machine 14, in particular electrically.
  • the rotor shaft 23 is designed as a hollow shaft, in which the input element 36 is at least partially arranged.
  • the input element 36 completely penetrates the hollow shaft in the axial direction of the rotor shaft 23 .
  • respective length regions L1 and L2 of the differential shafts 40 and 42 are arranged inside the hollow shaft (rotor shaft 23), with a respective, further length region of the respective differential shaft 40 or 42 being arranged outside the hollow shaft. This means that the differential shafts 40 and 42, which are partially arranged inside the hollow shaft, are led out of the hollow shaft.
  • the differential shafts 40 and 42 are each partially disposed in the input member 36 and led out of the input member.
  • a respective bearing 44 or 46 in the present case designed as a radial bearing, is arranged on the respective length region L1 or L2, so that the respective bearing 44 or 46 is arranged at least partially in the hollow shaft.
  • the differential shafts 40 and 42 arranged inside the hollow shaft are mounted or guided in the bearings 44 and 46 arranged inside the hollow shaft in a buckling-resistant manner.
  • the rotor shaft 23 is connected via the input element 36 and rotatably supported on differential shafts 40 and 42 via bearings 44 and 46 such that input member 36 is rotatably supported on differential shafts 40 and 42 via bearings 44 and 46 .
  • the sun gears 39 and 41 are output gears of the differential gear 34, one of the output gears, in particular the sun gear 39, meshing directly with the one differential gear 38 shown in dashed lines, in particular directly, while the sun gear 39 does not mesh with the other differential gear 38, and the other differential gear 38 shown in the figure by solid lines meshes directly with the other differential gear in the form of sun gear 41 , which does not mesh directly with one differential gear 38 and also not directly with sun gear 39 .
  • the output gears (sun gears 39 and 41) are respective gears, which are preferably designed as spur gears.
  • the output gears are rotatable about the axis of rotation 24 relative to each other and relative to the housing 12 .
  • the sun gear 39 can be driven by the input element 36 via the one differential gear 38
  • the sun gear 41 can be driven by the input element 36 via the other differential gear 38
  • the differential shafts 40 and 42 are so-called output shafts of the differential gear 34 and can be rotated, for example, about the axis of rotation 24 relative to one another and relative to the housing 12 .
  • the planetary gear set 30 can be driven by the differential shaft 40 and thus by the rotor shaft 23 via the differential shaft 40, and the planetary gear set 32 can be driven by the differential shaft 42 and thus by the rotor shaft 23 or the rotor 22 via the differential shaft 42.
  • the respective planetary gear set 30 or 32 has a respective sun gear 48 or 50, a respective ring gear 52 or 54 and respective planet gears.
  • One of the planet gears of the planetary gear set 30 is indicated at 56 in the figure, and one of the planet gears of the planetary gear set 32 is indicated at 58 in the figure.
  • the respective planetary gear set 30 or 32 can also have a respective planet carrier, not shown in the figure, it being preferably provided that the planet gears of the planetary gear set 30 are rotatably mounted on or on the planet carrier of the planetary gear set 30, and it is preferably provided that the planet gears of the planetary gear set 32 are rotatably mounted on or on the planet carrier of the planetary gear set 32 .
  • the planetary gear sets 30 and 32 are deliberately shown without their planet carriers and bearings. It can be seen that the planet gear 56 meshes with the ring gear 52 on the one hand and with the sun gear 48 on the other hand, and the planet gear 58 meshes with the ring gear 54 on the one hand and with the sun gear 50 on the other hand provided that the differential shaft 40 is, in particular permanently, non-rotatably connected to the sun gear 48, and the differential shaft 42 is, in particular permanently, non-rotatably connected to the sun gear 50.
  • ring gears 52 and 54 are connected to housing 12 in a torque-proof manner, in particular permanently.
  • the respective sun gear 48 or 50 is a respective input of the respective planetary gearset 30 or 32, via whose input torques provided by the respective differential shaft 40 or 42 can be or are introduced into the respective planetary gearset 30 or 32.
  • the respective planet carrier of the respective planetary gearset 30 or 32 is a respective output of the respective planetary gearset 30 or 32, via whose output the respective planetary gearset 30 or 32 can provide torque for driving the respective wheel.
  • the planet carrier of the planetary gear set 30 is connected to the output shaft 26 in a torque-proof manner, in particular permanently, so that the output shaft 26 can be driven by the planetary gear set 30 via the planet carrier of the planetary gear set 30 .
  • the planet carrier of the planetary gear set 32 is connected to the output shaft 28 in a torque-proof manner, in particular permanently, so that the output shaft 28 can be driven by the planetary gear set 32 via the planet carrier of the planetary gear set 32 .
  • the respective planetary gear set 30 or 32 is at least predominantly, in particular completely, connected to the rotor 22 in the axial direction of the electric machine 14 and is therefore at least predominantly, in particular completely, arranged outside of the rotor 22 .
  • the planetary gear sets 30 and 32 are arranged on the opposite sides S1 and S2 of the stator 16 and the rotor 22 in the axial direction of the electric machine 14 .
  • ring gears 52 and 54 arranged on sides S1 and S2 are at least predominantly, in particular completely, arranged outside rotor 22 in the axial direction of electric machine 14 .
  • the drive device 10 includes additional bearings 60 and 62, which are also referred to as main bearings.
  • the first bearings 44 and 46 are radial bearings, via which the input element 36 or the rotor shaft 23 are rotatably mounted on the differential shafts 40 and 42 inward in the radial direction of the rotor shaft 23 .
  • the differential shafts 40 and, in particular, the input element 36 and the rotor 22 are arranged radially via the bearings 60 and 62, which are also referred to as main bearings Direction of the electrical machine 14, in particular to the outside, rotatably mounted on the housing 12.
  • the drive device 10 includes third bearings 64 and 66, which are designed as axial bearings. Furthermore, securing elements 68 and 70 are provided, which are designed or function as axial stops. It can be seen that differential shafts 40 and 42 are secured in the axial direction of electric machine 14 or differential shafts 40 and 42 via securing elements 68 and 70 on bearings 60 and 62 and/or on the axial bearings (on bearings 64 and 66) and are supported or can be supported via this, for example, on the input element 36 .
  • the bearing 62 is associated with a spring element 72, which in the present case is designed as a plate spring.
  • the bearing 62 can be supported or is supported on the housing 12 in the axial direction of the electric machine 14 and thus of the differential shafts 40 and 42 via the spring element 72 .
  • the two differential shafts 40 and 42 in particular at least on one side, are or are mounted within the rotor 22, in particular mounted or guided in a kink-resistant manner.
  • the two differential shafts 40 and 42 are guided or mounted in the differential housing, in particular in a kink-resistant manner.
  • the latter can be realized by means of the bearings 44 and 46, which are designed as slide bearings in the embodiment shown in the figure, but could alternatively be designed as roller bearings.
  • the respective bearing 44 or 46 is provided at a respective bearing point or is part of a respective bearing point at which the respective differential shaft 40 or 42 is mounted, in particular rotatably, on the input element 36 or vice versa.
  • the respective bearing point can comprise a plurality of individual bearings which are distributed in the axial direction of the respective differential shaft 40 or 42 and which can be embodied as plain bearings or roller bearings.
  • the differential housing also referred to or designed as a spur gear differential housing, is located inside the rotor 22.
  • the differential housing can be part of the rotor 22, in particular the hollow shaft, also referred to as the rotor hollow shaft.
  • the spur gear differential gear set of the differential gear 34 is a gear set of the differential gear 34, the gear set of which is designed as a spur gear differential gear set in the exemplary embodiment shown in the figure. It can be provided that the wheel set of the differential gear 34 is located within the rotor 22 is arranged. This is also conceivable if the gear set of the differential gear 34 were designed as a bevel gear differential gear set.
  • the main bearings can be connected, for example, by an end shield to the housing 12, which is designed, for example, as a stator housing or a transmission housing.
  • the rotor 22 and the differential gear 34 also referred to simply as a differential, form an overall arrangement which is mounted, in particular rotatably and/or on the housing 12, via the differential shafts 40 and 42. It is conceivable that, in particular for the overall arrangement, only one axial stop is provided for a bearing outer ring, in particular one of the main bearings.
  • the main bearings can axially fix the differential shafts 40 and 42 and the rotor 22 in the complete assembly so that they prevent axial movement.
  • a securing element that acts in particular as an axial stop such as the respective securing element 68 or 70, which is located on the respective differential shaft 40 or 42, also simply referred to as a shaft, and is connected to it, fixes the respective shaft axially.
  • the securing element 68 or 70 is located between a respective bearing inner ring of the respective main bearing and the input element 36 or the respective axial bearing.
  • the respective axial bearing designed for example as a roller bearing or plain bearing, is located between the respective securing element 68 or 70 (stop) and the input element 36 or the hollow shaft and can absorb preload forces and other axial forces.
  • the main bearings and the rotor 22 are prestressed by the spring element 72, as a result of which the rotor shaft 23 is also fixed axially without play at the same time.
  • the spring element 72 can be located anywhere in an axial force path, in this case a bearing outer ring of the bearing 62.
  • the axial preload is preferably applied via the bearing outer ring or at a suitable point in the force path.
  • the differential shafts 40 and 42 have helical or straight teeth or a combination of them at both ends, as a result of which the respective sun gear 48 or 50, also simply referred to as a sun, can be formed. In the combined case, the gearing forces may not be able to be compensated.
  • the gearing in the differential can be designed as helical gearing in order to be able to compensate for axial forces from the helical geared sun in the respective planetary gear set 30 or 32 .
  • Axial forces on the respective shaft are compensated, at least partially or completely, by designing the helical gearing if straight gearing is not provided.
  • the axial forces on the running teeth of the sun of the respective planetary gear set 30 or 32 can be compensated for by the running teeth of the respective sun of the differential gear 34.
  • An adaptation of the helix angle is conceivable depending on the pitch circle diameter (gear geometry). Within the differential, axial forces on the planets can cancel each other out (no axial forces).
  • the main bearings transmit only low axial forces resulting from the bearing preload force, not fully compensated gearing forces, acceleration forces, which means that bearings with a low load rating or small bearings are possible, resulting in low bearing losses (speed-dependent due to small dimensions and load-dependent due to minimization of axial forces).
  • the size of the main bearing is determined by the diameter of the differential shaft 40 or 42, which means that a smaller diameter can be selected than if the rotor shaft 23 (hollow shaft) were mounted directly (rotor output shaft diameter plus radial air plus material thickness of the ring gear).
  • the diameter of the differential shaft 40 or 42 is determined by strength and rigidity requirement (torque requirement, buckling resistance requirement), which results in low bearing losses (speed-dependent due to small dimensions).
  • the differential shafts 40 and 42 can be mounted freely or plugged freely axially in the rotor shaft 23, since the head ring diameter of the sun of the differential is smaller than the bore diameter in the differential housing.
  • the differential shafts 40 and 42 are in one piece (toothing, shaft section, toothing), in particular the toothing of the sun of the differential gear 34 is integrated.
  • the inside diameter of the main bearing can be smaller than the addendum circle diameter of the toothing of the sun of the respective planetary gear set 30 or 32 .
  • the tip tear diameter of the toothing of the sun of the differential gear 34 can be smaller than the inside diameter of the main bearing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Retarders (AREA)

Abstract

The invention relates to a drive device (10) for electrically driving wheels of a motor vehicle, comprising a housing (12); an electric machine (14), which has a rotor (22) with a rotor shaft; a first output shaft (26), via which at least a first wheel of the wheels can be driven by the electric machine (14); a first planetary gear set (30), via which the first output shaft (26) can be driven by the rotor shaft (23); a second output shaft (28), via which at least a second wheel of the wheels can be driven by the electric machine (14); a second planetary gear set (32), via which the second output shaft (28) can be driven by the rotor shaft; and a differential transmission (34), which has an input element (36) rotationally fixed to the rotor shaft and via which the planetary gear sets (30, 32) can be driven by the rotor shaft.

Description

Antriebsvorrichtung zum elektrischen Antreiben eines Kraftwagens, insbesondere eines Personenkraftwagens Drive device for electrically driving a motor vehicle, in particular a passenger car
Die Erfindung betrifft eine Antriebsvorrichtung zum, insbesondere rein, elektrischen Antreiben eines Kraftwagens, insbesondere eines Personenkraftwagens, gemäß dem Oberbegriff von Patentanspruch 1. The invention relates to a drive device for, in particular, purely electrically driving a motor vehicle, in particular a passenger car, according to the preamble of patent claim 1.
Eine solche Antriebsvorrichtung zum, insbesondere rein, elektrischen Antrieben von Rädern einer Achse eines Kraftwagens, insbesondere eines Personenkraftwagens, ist beispielsweise bereits der DE 10 2017 211 881 A1 als bekannt zu entnehmen. Die Antriebsvorrichtung umfasst ein Gehäuse und eine elektrische Maschine, welche einen in dem Gehäuse angeordneten und an dem Gehäuse festgelegten Stator und einen in dem Gehäuse angeordneten Rotor aufweist, welcher mittels des Stators antreibbar und dadurch um eine Drehachse relativ zu dem Gehäuse und relativ zu dem Stator drehbar ist. Außerdem umfasst der Rotor eine Rotorwelle. Die Antriebsvorrichtung umfasst eine erste Abtriebswelle, über welche wenigstens ein erstes der Räder von der elektrischen Maschine antreibbar ist. Außerdem umfasst die Antriebsvorrichtung einen ersten Planetenradsatz, über welchen die erste Abtriebswelle von der Rotorwelle antreibbar ist. Die Antriebsvorrichtung umfasst außerdem eine zweite Abtriebswelle, über welche wenigstens ein zweites der Räder von der elektrischen Maschine antreibbar ist. Die Antriebsvorrichtung umfasst außerdem einen zweiten Planetenradsatz, über welchen die zweite Abtriebswelle von der Rotorwelle antreibbar ist. Die Antriebsvorrichtung weist des Weiteren ein Differentialgetriebe mit einem drehfest mit der Rotorwelle verbundenen Eingangselement auf, wobei die Planetenradsätze über das Differentialgetriebe von der Rotorwelle antreibbar sind. Des Weiteren offenbart die EP 1 469 232 A2 ein Differentialgetriebe. Darüber hinaus ist aus der DE 696 17 337 T2 ein Antriebszusammenbau mit einem elektrischen Motor bekannt. Such a drive device for, in particular, purely electric drives of wheels of an axle of a motor vehicle, in particular of a passenger car, is already known, for example, from DE 10 2017 211 881 A1. The drive device comprises a housing and an electrical machine, which has a stator arranged in the housing and fixed to the housing and a rotor arranged in the housing, which can be driven by means of the stator and thereby about an axis of rotation relative to the housing and relative to the stator is rotatable. In addition, the rotor includes a rotor shaft. The drive device includes a first output shaft, via which at least a first of the wheels can be driven by the electric machine. In addition, the drive device includes a first planetary gear set, via which the first output shaft can be driven by the rotor shaft. The drive device also includes a second output shaft, via which at least a second of the wheels can be driven by the electric machine. The drive device also includes a second planetary gear set, via which the second output shaft can be driven by the rotor shaft. The drive device also has a differential gear with an input element connected in a torque-proof manner to the rotor shaft, the planetary gear sets being able to be driven by the rotor shaft via the differential gear. Furthermore, EP 1 469 232 A2 discloses a differential gear. In addition, a drive assembly with an electric motor is known from DE 696 17 337 T2.
Aufgabe der vorliegenden Erfindung ist es, eine Antriebsvorrichtung der eingangs genannten Art zu verbessern. The object of the present invention is to improve a drive device of the type mentioned at the outset.
Diese Aufgabe wird durch eine Antriebsvorrichtung mit den Merkmalen des Patentanspruchs 1 gelöst. Vorteilhafte Ausgestaltungen mit zweckmäßigen Weiterbildungen der Erfindung sind in den übrigen Ansprüchen angegeben. This problem is solved by a drive device with the features of patent claim 1 . Advantageous configurations with expedient developments of the invention are specified in the remaining claims.
Um eine Antriebsvorrichtung der im Oberbegriff des Patentanspruchs 1 angegebenen Art zu verbessern, ist es erfindungsgemäß vorgesehen, dass eine drehfest mit einem ersten Sonnenrad eines ersten der Planetenradsätze verbundene, erste Differentialwelle des Differentialgetriebes und eine drehfest mit einem zweiten Sonnenrad des zweiten Planetenradsatzes verbundene, zweite Differentialwelle des Differentialgetriebes innerhalb der als Hohlwelle ausgebildeten Rotorwelle angeordnet und in innerhalb der Hohlwelle angeordneten Lagern, insbesondere knickfest, gelagert sind, wobei die Rotorwelle über das Eingangselement und über die Lager drehbar auf den Differentialwellen gelagert ist, insbesondere derart, dass das Eingangselement über die Lager drehbar auf den Differentialwellen gelagert ist. Mit anderen Worten ist es vorzugsweise vorgesehen, dass in radialer Richtung der jeweiligen Differentialwelle das jeweilige Lager zwischen der jeweiligen Differentialwelle und dem Eingangselement angeordnet ist, welches in radialer Richtung der jeweiligen Differentialwelle zwischen der jeweiligen Differentialwelle und der Rotorwelle angeordnet ist. Es ist denkbar, dass die Rotorwelle und das Eingangselement als separat voneinander ausgebildete und drehfest miteinander verbundene Komponenten ausgebildet sind, oder die Rotorwelle ist einstückig mit dem Eingangselement ausgebildet und dadurch drehfest mit dem Eingangselement verbunden. Durch die Lager werden die Differentialwellen innerhalb der Rotorwelle und somit innerhalb des Rotors knickfest geführt beziehungsweise gelagert, wodurch eine besonders vorteilhafte und insbesondere verlustarme Lagerung darstellbar ist. In order to improve a drive device of the type specified in the preamble of patent claim 1, it is provided according to the invention that a first differential shaft of the differential gear is connected in a rotationally fixed manner to a first sun gear of a first of the planetary gear sets and a second differential shaft is connected in a rotationally fixed manner to a second sun gear of the second planetary gear set of the differential gear are arranged inside the rotor shaft designed as a hollow shaft and are mounted in bearings arranged inside the hollow shaft, in particular in a non-buckling manner, the rotor shaft being mounted rotatably on the differential shafts via the input element and via the bearings, in particular in such a way that the input element can be rotated via the bearings mounted on the differential shafts. In other words, it is preferably provided that in the radial direction of the respective differential shaft the respective bearing is arranged between the respective differential shaft and the input element, which is arranged in the radial direction of the respective differential shaft between the respective differential shaft and the rotor shaft. It is conceivable that the rotor shaft and the input element are designed as separate components that are connected to one another in a torque-proof manner, or the rotor shaft is designed in one piece with the input element and is thereby connected to the input element in a torque-proof manner. The bearings allow the differential shafts to be guided or supported within the rotor shaft and thus within the rotor in a buckling-resistant manner, as a result of which a particularly advantageous and in particular low-loss mounting can be represented.
Als besonders vorteilhaft hat es sich gezeigt, wenn die auf den Differentialwellen und innerhalb der Hohlwelle (Rotorwelle) angeordneten Lager in axialer Richtung der Differentialwellen so weit auseinander angeordnet sind, um eine stabile und knickfeste Lagerung der Differentialwellen zur Rotorwelle zu ermöglichen. Insbesondere ist es vorgesehen, dass ein in axialer Richtung der Differentialwellen verlaufender Abstand zwischen den Lagern mindestens das Zweifache des mittleren Lagerdurchmessers beträgt. It has been shown to be particularly advantageous if the bearings arranged on the differential shafts and inside the hollow shaft (rotor shaft) are arranged far enough apart in the axial direction of the differential shafts to enable the differential shafts to be mounted in a stable and non-buckling manner relative to the rotor shaft. In particular it is provided that a running in the axial direction of the differential shaft distance between the bearings is at least twice the average bearing diameter.
Als weiterhin besonders vorteilhaft hat es sich gezeigt, wenn das Differentialgetriebe als ein Stirnraddifferential oder als ein Kegelraddifferential ausgebildet ist. It has also been shown to be particularly advantageous if the differential gear is designed as a spur gear differential or as a bevel gear differential.
Als weiterhin vorteilhaft hat es sich gezeigt, wenn sich beide Planetenradsätze in axialer Richtung der elektrischen Maschine vollständig an den Rotor anschließen und dadurch vollständig außerhalb des Rotors angeordnet sind. It has also been shown to be advantageous if both planetary gear sets are completely connected to the rotor in the axial direction of the electric machine and are therefore arranged completely outside of the rotor.
In weiterer Ausgestaltung der Erfindung ist es vorgesehen, dass die auf den Differentialwellen und innerhalb der Hohlwelle angeordneten Lager jeweils als Gleitlager oder als jeweils mehrere über eine Länge verteilte Einzelwälzlager oder Gleitlager ausgeführt sind. In a further embodiment of the invention, it is provided that the bearings arranged on the differential shafts and inside the hollow shaft are each designed as plain bearings or as a plurality of individual roller bearings or plain bearings distributed over a length.
In weiterer Ausgestaltung der Erfindung ist es vorgesehen, dass weitere Lager für eine Lagerung der jeweiligen Differentialwelle im Gehäuse vorgesehen sind. In a further embodiment of the invention, it is provided that additional bearings are provided for mounting the respective differential shaft in the housing.
In weiterer Ausgestaltung der Erfindung ist es vorgesehen, dass mit der jeweiligen Differentialwelle ein jeweiliges Sicherungselement verbunden ist, welches zwischen einem Lagerinnenring eines jeweiligen, weiteren Lagers und einem jeweiligen Axiallager auf der jeweiligen Differentialwelle angeordnet ist und die jeweilige Differentialwelle axial gegen Verschieben sichert und Axialkräfte aufnimmt. In a further embodiment of the invention, it is provided that a respective securing element is connected to the respective differential shaft, which is arranged between a bearing inner ring of a respective further bearing and a respective axial bearing on the respective differential shaft and secures the respective differential shaft against axial displacement and absorbs axial forces .
In weiterer Ausgestaltung der Erfindung ist es vorgesehen, dass das jeweilige Axiallager zwischen dem jeweiligen Sicherungselement und dem Rotor Axialkräfte, welche auf die jeweilige Differentialwelle in Richtung des Rotors wirken, aufnimmt. In a further embodiment of the invention, it is provided that the respective axial bearing between the respective securing element and the rotor absorbs axial forces which act on the respective differential shaft in the direction of the rotor.
In weiterer Ausgestaltung der Erfindung ist es vorgesehen, dass ein Federelement für eine Vorspannung des Rotors und der weiteren Lager vorgesehen ist. In a further embodiment of the invention, it is provided that a spring element is provided for preloading the rotor and the other bearings.
In weiterer Ausgestaltung der Erfindung ist es vorgesehen, dass jeweilige Innendurchmesser der weiteren Lager kleiner als jeweilige Kopfkreisdurchmesser jeweiliger Verzahnungen der Sonnenräder des ersten und des zweiten Planetenradsatzes sind. In a further embodiment of the invention, it is provided that the respective inside diameters of the additional bearings are smaller than the respective addendum circle diameters of the respective toothings of the sun gears of the first and of the second planetary gear set are.
In weiterer Ausgestaltung der Erfindung ist es vorgesehen, dass das Differentialgetriebe als Stirnradgetriebe ausgeführt ist, wobei das Differentialgetriebe ein erstes und ein zweites Sonnenrad aufweist. In a further embodiment of the invention, it is provided that the differential gear is designed as a spur gear, with the differential gear having a first and a second sun gear.
In weiterer Ausgestaltung der Erfindung ist es vorgesehen, dass jeweilige Kopfreisdurchmesser jeweiliger Verzahnungen der ersten und der zweiten Sonnenräder des Differentialgetriebes kleiner als jeweilige Innendurchmesser der weiteren Lager sind. In a further embodiment of the invention, it is provided that the respective head tear diameters of the respective toothings of the first and second sun gears of the differential gear are smaller than the respective inside diameters of the other bearings.
Die Antriebsvorrichtung wird auch als elektrischer Antriebsstrang bezeichnet, da mittels der Antriebsvorrichtung der Kraftwagen, insbesondere rein, elektrisch angetrieben werden kann. Durch die Erfindung können im Vergleich zu herkömmlichen Lösungen kleinere und dadurch verlustärmere Lager für die Lagerung der Rotorwelle verwendet werden. Die jeweilige Differentialwelle ist dabei durch ein, insbesondere jeweiliges, Lager beziehungsweise durch eine Lageranordnung axial fixiert und kann nicht verrutschen, sodass die Differenzdrehzahl bei Kurvenfahrt nur an einer definierten Kontaktfläche anliegt. Es werden weniger, insbesondere mit Rotordrehzahl drehende, Lager benötigt, um den Rotor und die Differentialwellen zu lagern. Die Verzahnungskräfte an den auch als Differentialabtriebswellen bezeichneten Differentialwellen werden bei entsprechender Gestaltung der Schrägverzahnungen in den Sonnen des Differentialgetriebes und des jeweiligen Planetenradsatzes vollständig oder zumindest teilweise kompensiert. Es wirken keine durch Verzahnungskräfte an der Sonne erzeugten Kräfte auf mit Rotordrehzahl drehende oder stehende Lager oder auf Kontaktflächen, welche einer Differenzdrehzahl ausgesetzt sind. Insbesondere ist je Differentialwelle und somit je Seite des Differentialgetriebes nur eine Axial-Lagerung, das heißt nur ein Axiallager erforderlich. Verzahnungskräfte können vorteilhaft kompensiert werden. Insbesondere können durch die Erfindung die folgenden Vorteile realisiert werden: The drive device is also referred to as an electric drive train, since the motor vehicle can be driven, in particular purely electrically, by means of the drive device. As a result of the invention, in comparison to conventional solutions, smaller and therefore lower-loss bearings can be used for supporting the rotor shaft. The respective differential shaft is axially fixed by a bearing or by a bearing arrangement, in particular a respective one, and cannot slip, so that the differential speed when cornering is only applied to a defined contact surface. Fewer bearings, especially those rotating at rotor speed, are required to support the rotor and the differential shafts. The gearing forces on the differential shafts, also referred to as differential output shafts, are completely or at least partially compensated for with a corresponding design of the helical gearing in the suns of the differential gear and the respective planetary gear set. No forces generated by gearing forces in the sun act on bearings rotating or stationary at rotor speed or on contact surfaces that are exposed to a differential speed. In particular, only one axial bearing, ie only one axial bearing, is required for each differential shaft and thus for each side of the differential gear. Interlocking forces can be advantageously compensated. In particular, the following advantages can be realized by the invention:
Erhöhung des Wirkungsgrads durch die Möglichkeit, kleinere Lager zu verwenden. Increased efficiency due to the possibility of using smaller bearings.
Erhöhung des Wirkungsgrads durch die Möglichkeit, axiale Verzahnungskräfte zu kompensieren und somit die lastabhängigen Verluste zu reduzieren. Increase in efficiency through the possibility of compensating for axial gearing forces and thus reducing load-dependent losses.
Die Differentialwellen können einfach in den vormontierten Rotor gesteckt werden, wobei der vormontierte Rotor den Rotor und das Differentialgetriebe umfasst, welches einfach auch als Differential bezeichnet wird. Die Differentialwellen können einteilig ausgeführt werden, insbesondere mit zwei Laufverzahnungen. The differential shafts can be easily plugged into the pre-assembled rotor, the pre-assembled rotor comprising the rotor and the differential gear, which is also simply referred to as a differential. The differential shafts can be made in one piece, in particular with two running gears.
Eine Rotorlagerung und eine Lagerung der jeweiligen Differentialwelle inklusive Sonnenrad können durch nur zwei mit Rotordrehzahl drehende Lager dargestellt werden. A rotor bearing and a bearing of the respective differential shaft including sun wheel can be represented by only two bearings rotating at rotor speed.
Weitere Vorteile, Merkmale und Einzelheiten der Erfindung ergeben sich aus der nachfolgenden Beschreibung eines bevorzugten Ausführungsbeispiels sowie anhand der Zeichnung. Die vorstehend in der Beschreibung genannten Merkmale und Merkmalskombinationen sowie die nachfolgend in der Figurenbeschreibung genannten und/oder in der einzigen Figur alleine gezeigten Merkmale und Merkmalskombinationen sind nicht nur in der jeweils angegebenen Kombination, sondern auch in anderen Kombinationen oder in Alleinstellung verwendbar, ohne den Rahmen der Erfindung zu verlassen. Further advantages, features and details of the invention result from the following description of a preferred exemplary embodiment and from the drawing. The features and combinations of features mentioned above in the description and the features and combinations of features mentioned below in the description of the figures and/or shown alone in the single figure can be used not only in the combination specified in each case, but also in other combinations or on their own, without the frame to abandon the invention.
Die Zeichnung zeigt in der einzigen Fig. ausschnittsweise eine schematische Längsschnittansicht einer Antriebsvorrichtung zum elektrischen Antreiben von Rädern einer Achse eines Kraftwagens. In the single figure, the drawing shows a detail of a schematic longitudinal sectional view of a drive device for electrically driving wheels of an axle of a motor vehicle.
Die einzige Fig. zeigt ausschnittsweise in einer schematischen Längsschnittansicht eine Antriebsvorrichtung 10 zum, insbesondere rein, elektrischen Antreiben von auch als Fahrzeugräder bezeichneten Rädern einer Achse eines Kraftwagens, insbesondere eines Personenkraftwagens. Dies bedeutet, dass der vorzugsweise als Personenkraftwagen ausgebildete Kraftwagen die genannte Achse umfasst, welche vorzugsweise genau zwei Räder in Form der zuvor genannten Räder aufweist. Dabei können die Räder und somit der Kraftwagen insgesamt mittels der Antriebsvorrichtung 10, insbesondere rein, elektrisch angetrieben werden. Hierzu umfasst die Antriebsvorrichtung 10 ein Gehäuse 12 und eine elektrische Maschine 14, welche einen in dem Gehäuse 12 angeordneten und an dem Gehäuse 12 festgelegten Stator 16 umfasst. Dies bedeutet, dass der Stator 16 zumindest drehfest mit dem Gehäuse 12 verbunden ist. Der Stator 16 weist auch wenigstens eine Wicklung auf, welche jeweilige Wickelköpfe 18 und 20 bildet. Der Wickelkopf 18 ist auf einer ersten Seite S1 des Stators 16 angeordnet, während der Wickelkopf 20 auf einer zweiten Seite S2 des Stators 16 angeordnet ist. Dabei ist die zweite Seite S2 in axialer Richtung der elektrischen Maschine 14 von der ersten Seite S1 abgewandt beziehungsweise umgekehrt. Der jeweilige Wickelkopf 18 beziehungsweise 20 ist insbesondere dadurch gebildet, dass die Wicklung auf der jeweiligen Seite S1 beziehungsweise S2 in axialer Richtung von einem beispielsweise als Blechpaket ausgebildeten Träger des Stators 16 absteht. The only figure shows a detail in a schematic longitudinal sectional view of a drive device 10 for, in particular, purely electric driving of wheels, also referred to as vehicle wheels, of an axle of a motor vehicle, in particular a passenger car. This means that the motor vehicle, which is preferably embodied as a passenger car, comprises the axle mentioned, which preferably has exactly two wheels in the form of the wheels mentioned above. The wheels and thus the motor vehicle as a whole can be driven electrically, in particular purely electrically, by means of the drive device 10 . For this purpose, the drive device 10 comprises a housing 12 and an electric machine 14 which comprises a stator 16 which is arranged in the housing 12 and fixed to the housing 12 . This means that the stator 16 is connected to the housing 12 at least in a rotationally fixed manner. The stator 16 also includes at least one winding forming end turns 18 and 20, respectively. The end winding 18 is arranged on a first side S1 of the stator 16 while the end winding 20 is arranged on a second side S2 of the stator 16 . In this case, the second side S2 faces away from the first side S1 or vice versa in the axial direction of the electrical machine 14 . The respective end winding 18 or 20 is formed in particular in that the winding on the respective side S1 or S2 protrudes in the axial direction from a carrier of the stator 16 embodied, for example, as a laminated core.
Die elektrische Maschine 14 weist einen Rotor 22 auf, welcher mittels des Stators 16 antreibbar und dadurch um eine Drehachse 24 relativ zu dem Stator 16 und relativ zu dem Gehäuse 12 drehbar ist. Über den Rotor 22 kann die elektrische Maschine 14 Drehmomente bereitstellen, mittels welchen die Räder und somit der Kraftwagen, insbesondere rein, elektrisch angetrieben werden können. Dabei umfasst der Rotor 22 eine Rotorwelle 23, über welche der Rotor 22 beziehungsweise die elektrische Maschine 14 die Drehmomente bereitstellen kann. Es ist erkennbar, dass der Rotor 22 und der Stator 16 jeweils zumindest teilweise, insbesondere zumindest überwiegend oder vollständig, in dem Gehäuse 12 angeordnet sind. The electrical machine 14 has a rotor 22 which can be driven by the stator 16 and is therefore rotatable about an axis of rotation 24 relative to the stator 16 and relative to the housing 12 . The electric machine 14 can provide torque via the rotor 22, by means of which the wheels and thus the motor vehicle can be driven, in particular purely electrically. The rotor 22 includes a rotor shaft 23, via which the rotor 22 or the electric machine 14 can provide the torque. It can be seen that the rotor 22 and the stator 16 are each arranged at least partially, in particular at least predominantly or completely, in the housing 12 .
Die Antriebsvorrichtung 10 weist eine auch als erste Seitenwelle bezeichnete oder als eine erste Seitenwelle ausgebildete, in der Fig. besonders schematisch dargestellte, erste Abtriebswelle 26 und eine auch als zweite Seitenwelle bezeichnete oder als zweite Seitenwelle ausgebildete und in der Fig. besonders schematisch dargestellte, zweite Abtriebswelle 28 auf. Die Abtriebswellen 26 und 28 sind koaxial zueinander angeordnet und um die Drehachse 24 relativ zueinander, relativ zu dem Gehäuse 12 und relativ zu dem Stator 16 drehbar und können - wie im Folgenden noch genauer erläutert wird - von der Rotorwelle 23 und somit von dem Rotor 22, das heißt von der elektrischen Maschine 14, insbesondere rein, elektrisch angetrieben werden. Dabei ist ein erstes der Räder der Achse von der Abtriebswelle 26 antreibbar, und ein zweites der Räder der Achse ist von der Abtriebswelle 28 antreibbar. Somit kann das erste Rad über die Abtriebswelle 26 elektrisch von der elektrischen Maschine 14 angetrieben werden, und das zweite Rad kann über die Abtriebswelle 28 elektrisch von der elektrischen Maschine 14 angetrieben werden. Beispielsweise ist das erste Rad koaxial zu der Abtriebswelle 26 angeordnet und/oder drehmomentübertragend, insbesondere drehfest, mit der Abtriebswelle 26 verbunden. Alternativ oder zusätzlich ist das zweite Rad koaxial zu der Abtriebswelle 28 angeordnet und/oder drehmomentübertragend, insbesondere drehfest, mit der Abtriebswelle 28 verbunden. Die Räder sind dabei in Fahrzeugquerrichtung auf gegenüberliegenden Seiten des Kraftwagens angeordnet, sodass beispielsweise das erste Rad auf der in Vorwärtsfahrtrichtung linken Seite des Kraftwagens und das zweite Rad auf der in Vorwärtsfahrtrichtung rechten Seite des Kraftwagens angeordnet ist. The drive device 10 has a first output shaft 26, also referred to as a first side shaft or designed as a first side shaft, shown particularly schematically in the figure, and a second output shaft 26, also referred to as a second side shaft or designed as a second side shaft and shown particularly schematically in the figure Output shaft 28 on. The output shafts 26 and 28 are arranged coaxially to one another and can be rotated about the axis of rotation 24 relative to one another, relative to the housing 12 and relative to the stator 16 and can - as will be explained in more detail below - be separated from the rotor shaft 23 and thus from the rotor 22 , That is, from the electric machine 14, in particular pure, electrically driven. A first of the wheels of the axle can be driven by the output shaft 26 and a second of the wheels of the axle can be driven by the output shaft 28 . Thus, the first wheel may be electrically driven by the electric machine 14 via the output shaft 26 and the second wheel may be electrically driven by the electric machine 14 via the output shaft 28 . For example, the first wheel is arranged coaxially to the output shaft 26 and/or is connected to the output shaft 26 in a torque-transmitting manner, in particular in a rotationally fixed manner. Alternatively or additionally, the second wheel is arranged coaxially to the output shaft 28 and/or is connected to the output shaft 28 in a torque-transmitting manner, in particular in a rotationally fixed manner. The wheels are arranged on opposite sides of the motor vehicle in the transverse direction of the vehicle, so that, for example, the first wheel is arranged on the left side of the motor vehicle in the forward direction of travel and the second wheel is arranged on the right side of the motor vehicle in the forward direction of travel.
Je Abtriebswelle 26 beziehungsweise 28 ist wenigstens oder genau ein, einfach auch als Planetensatz bezeichneter, Planetenradsatz 30 beziehungsweise 32 der Antriebsvorrichtung 10 vorgesehen. Wie im Folgenden noch genauer erläutert wird, ist die Abtriebswelle 26 über den zugehörigen Planetenradsatz 30 von der Rotorwelle 23 und somit von dem Rotor 22 antreibbar, und die Abtriebswelle 28 ist über den zugehörigen Planetenradsatz 32 von der Rotorwelle 23 und somit von dem Rotor 22 antreibbar. Die Antriebsvorrichtung 10 umfasst außerdem ein einfach auch als Differential bezeichnetes Differentialgetriebe 34, über welches die Planetenradsätze 30 und 32 von der Rotorwelle 23 und somit von dem Rotor 22 antreibbar sind. Dabei weist das Differentialgetriebe 34 ein Eingangselement 36 auf, welches vorliegend beispielsweise als ein Differentialgehäuse des Differentialgetriebes 34 ausgebildet ist. Das Differentialgetriebe 34 ist beispielsweise als Stirnraddifferential oder als Kegelraddifferential ausgebildet. Das Eingangselement 36 ist, insbesondere permanent, drehfest mit der Rotorwelle 23 und somit mit dem Rotor 22 verbunden. Das Eingangselement 36 ist beispielsweise ein Träger, insbesondere ein Planetenträger, auf oder an welchem jeweilige, separat voneinander ausgebildete Ausgleichsräder 38 des Differentialgetriebes 34 drehbar gelagert sind. In der Fig. ist eines der Ausgleichsräder 38 bezogen auf die Bildebene der Fig. hinter dem anderen Ausgleichsrad 38 angeordnet und daher durch eine gestrichelte Linie veranschaulicht. Die Ausgleichsräder 38, welche vorliegend beispielsweise als Planetenräder ausgebildet sind, sind Zahnräder, insbesondere vorliegend Stirnräder. Die Ausgleichsräder 38 sind separat voneinander ausgebildet und können sich um eine jeweilige, zweite Drehachse 43 relativ zu dem Eingangselement 36 und relativ zueinander drehen. Die jeweilige Drehachse 43 verläuft parallel zur Drehachse 24, wobei die Drehachsen 43 parallel zueinander verlaufen. Insbesondere ist es denkbar, dass das Eingangselement 36 und die Rotorwelle 23 separat voneinander ausgebildete und, insbesondere permanent, drehfest miteinander verbundene Komponenten sind. Each output shaft 26 or 28 is at least or exactly one, simply referred to as a planetary gear set, planetary gear set 30 or 32 of the Drive device 10 is provided. As will be explained in more detail below, the output shaft 26 can be driven by the rotor shaft 23 and thus by the rotor 22 via the associated planetary gear set 30, and the output shaft 28 can be driven by the rotor shaft 23 and thus by the rotor 22 via the associated planetary gear set 32 . The drive device 10 also includes a differential gear 34, also referred to simply as a differential, via which the planetary gear sets 30 and 32 can be driven by the rotor shaft 23 and thus by the rotor 22. In this case, the differential gear 34 has an input element 36 which, in the present case, is designed, for example, as a differential housing of the differential gear 34 . The differential gear 34 is designed, for example, as a spur gear differential or as a bevel gear differential. The input element 36 is, in particular permanently, non-rotatably connected to the rotor shaft 23 and thus to the rotor 22 . The input element 36 is, for example, a carrier, in particular a planetary carrier, on or on which respective differential gears 38 of the differential gear 34, which are formed separately from one another, are rotatably mounted. In the figure, one of the differential gears 38 is arranged behind the other differential gear 38 with respect to the image plane of the figure and is therefore illustrated by a dashed line. The differential gears 38, which are designed here, for example, as planetary gears, are gears, in particular spur gears in the present case. The differential gears 38 are formed separately from one another and can rotate about a respective, second axis of rotation 43 relative to the input member 36 and relative to one another. The respective axis of rotation 43 runs parallel to the axis of rotation 24, with the axes of rotation 43 running parallel to one another. In particular, it is conceivable for the input element 36 and the rotor shaft 23 to be components which are formed separately from one another and are connected to one another in a torque-proof manner, in particular permanently.
Bei dem in der Fig. gezeigten Ausführungsbeispiel bilden die Ausgleichsräder 38, welche bei dem in der Fig. gezeigten Ausführungsbeispiel als Planetenräder ausgebildet sind, einen Stirnraddifferential-Radsatz des Differentialgetriebes 34, welches somit einen weiteren Planetenradsatz umfassen kann. Dabei kämmt beispielsweise das eine, in der Fig. durch gestrichelte Linien dargestellte Ausgleichsrad 38, insbesondere direkt, mit einem ersten Sonnenrad 39 des Differentialgetriebes 34, insbesondere des Stirnraddifferential-Radsatzes des Differentialgetriebes 34, und das andere Ausgleichsrad 38 kämmt, insbesondere direkt, mit einem zweiten Sonnenrad 41 des Differentialgetriebes 34, insbesondere des Stirnraddifferential-Radsatzes des Differentialgetriebes 34. Dabei ist es insbesondere vorgesehen, dass ein Kämmen der Ausgleichsräder 38 miteinander unterbleibt. Das Differentialgetriebe 34, insbesondere der Stirnraddifferential-Radsatz des Differentialgetriebes 34, kann gegebenenfalls, das heißt optional, ein in der Fig. nicht dargestelltes Hohlrad aufweisen, mit welchem die Ausgleichsräder 38, insbesondere direkt und/oder gleichzeitig, kämmen. In the exemplary embodiment shown in the figure, the differential gears 38, which are designed as planetary gears in the exemplary embodiment shown in the figure, form a spur differential gear set of the differential gear 34, which can thus include a further planetary gear set. In this case, for example, the one differential gear 38 shown in the figure by dashed lines meshes, in particular directly, with a first sun gear 39 of the differential gear 34, in particular the spur differential gear set of the differential gear 34, and the other differential gear 38 meshes, in particular directly, with a second sun gear 41 of the differential gear 34, in particular of the spur gear wheel set of the differential gear 34. It is provided in particular that the differential gears 38 do not mesh with one another. The differential gear 34, in particular the spur gear wheel set of the differential gear 34 can optionally, that is optionally, have a ring gear, not shown in the figure, with which the differential gears 38 mesh, in particular directly and/or simultaneously.
Aus der Fig. ist erkennbar, dass das Sonnenrad 41 koaxial zu einer ersten, einfach auch als erste Welle bezeichneten Differentialwelle 40 des Differentialgetriebes 34 angeordnet ist, und das Sonnenrad 39 ist koaxial zu einer einfach auch als zweite Welle bezeichneten, zweiten Differentialwelle 42 des Differentialgetriebes 34 angeordnet. Dabei ist es insbesondere vorgesehen, dass das Sonnenrad 41 drehmomentübertragend, insbesondere drehfest, mit der Differentialwelle 40 verbunden ist, wobei es ferner vorzugsweise vorgesehen ist, dass das Sonnenrad 39 drehmomentübertragend, insbesondere drehfest, mit der Differentialwelle 42 verbunden ist. Somit sind die Differentialwellen 40 und 42, welche auch als Ausgleichswellen bezeichnet werden, über die Sonnenräder 39 und 40 und über die Ausgleichsräder 38 von dem Eingangselement 36 antreibbar, insbesondere derart, dass die Sonnenräder 39 und 41 über die Ausgleichsräder 38 von dem Eingangselement 36 antreibbar sind, welches wiederum von der Rotorwelle 23 und somit von der elektrischen Maschine 14, insbesondere elektrisch, antreibbar ist. It can be seen from the figure that the sun gear 41 is arranged coaxially to a first differential shaft 40, also referred to simply as the first shaft, of the differential gear 34, and the sun gear 39 is coaxial to a second differential shaft 42, also referred to simply as the second shaft, of the differential gear 34 arranged. Provision is made in particular for sun gear 41 to be connected to differential shaft 40 in a torque-transmitting manner, in particular in a torque-proof manner, and provision is also preferably made for sun gear 39 to be connected to differential shaft 42 in a torque-transmitting manner, in particular in a torque-proof manner. The differential shafts 40 and 42, which are also referred to as balancing shafts, can therefore be driven by the input element 36 via the sun gears 39 and 40 and via the differential gears 38, in particular in such a way that the sun gears 39 and 41 can be driven by the input element 36 via the differential gears 38 are, which in turn can be driven by the rotor shaft 23 and thus by the electric machine 14, in particular electrically.
Um nun eine besonders vorteilhafte und insbesondere verlustarme Lagerung realisieren zu können, ist es bei der Antriebsvorrichtung 10 vorgesehen, dass die Rotorwelle 23 als eine Hohlwelle ausgebildet ist, in welcher das Eingangselement 36 zumindest teilweise angeordnet ist. Bei dem in der Fig. gezeigten Ausführungsbeispiel ist es vorgesehen, dass das Eingangselement 36 die Hohlwelle in axialer Richtung der Rotorwelle 23 vollständig durchdringt. Außerdem sind jeweilige Längenbereiche L1 und L2 der Differentialwellen 40 und 42 innerhalb der Hohlwelle (Rotorwelle 23) angeordnet, wobei ein jeweiliger, weiterer Längenbereich der jeweiligen Differentialwelle 40 beziehungsweise 42 außerhalb der Hohlwelle angeordnet ist. Dies bedeutet, dass die teilweise innerhalb der Hohlwelle angeordneten Differentialwellen 40 und 42 aus der Hohlwelle herausgeführt sind. Außerdem sind die Differentialwellen 40 und 42 jeweils teilweise in dem Eingangselement 36 angeordnet und aus dem Eingangselement herausgeführt. In order to be able to implement a particularly advantageous and in particular low-loss bearing, it is provided in the drive device 10 that the rotor shaft 23 is designed as a hollow shaft, in which the input element 36 is at least partially arranged. In the exemplary embodiment shown in the figure, it is provided that the input element 36 completely penetrates the hollow shaft in the axial direction of the rotor shaft 23 . In addition, respective length regions L1 and L2 of the differential shafts 40 and 42 are arranged inside the hollow shaft (rotor shaft 23), with a respective, further length region of the respective differential shaft 40 or 42 being arranged outside the hollow shaft. This means that the differential shafts 40 and 42, which are partially arranged inside the hollow shaft, are led out of the hollow shaft. In addition, the differential shafts 40 and 42 are each partially disposed in the input member 36 and led out of the input member.
Auf den jeweiligen Längenbereich L1 beziehungsweise L2 ist ein jeweiliges, vorliegend als Radiallager ausgebildetes Lager 44 beziehungsweise 46 angeordnet, sodass das jeweilige Lager 44 beziehungsweise 46 zumindest teilweise in der Hohlwelle angeordnet ist. Die innerhalb der Hohlwelle angeordneten Differentialwellen 40 und 42 sind in den innerhalb der Hohlwelle angeordneten Lagern 44 und 46 knickfest gelagert beziehungsweise geführt. Außerdem ist die Rotorwelle 23 über das Eingangselement 36 und über die Lager 44 und 46 drehbar auf den Differentialwellen 40 und 42 gelagert, derart, dass das Eingangselement 36 über die Lager 44 und 46 drehbar auf den Differentialwellen 40 und 42 gelagert ist. A respective bearing 44 or 46, in the present case designed as a radial bearing, is arranged on the respective length region L1 or L2, so that the respective bearing 44 or 46 is arranged at least partially in the hollow shaft. The differential shafts 40 and 42 arranged inside the hollow shaft are mounted or guided in the bearings 44 and 46 arranged inside the hollow shaft in a buckling-resistant manner. In addition, the rotor shaft 23 is connected via the input element 36 and rotatably supported on differential shafts 40 and 42 via bearings 44 and 46 such that input member 36 is rotatably supported on differential shafts 40 and 42 via bearings 44 and 46 .
Die Sonnenräder 39 und 41 sind Abtriebsräder des Differentialgetriebes 34, wobei eines der Abtriebsräder, insbesondere das Sonnenrad 39, direkt mit dem einen, gestrichelt dargestellten Ausgleichsrad 38, insbesondere direkt, kämmt, während ein Kämmen des Sonnenrads 39 mit dem anderen Ausgleichsrad 38 unterbleibt, und das andere, in der Fig. durch durchgezogene Linien dargestellte Ausgleichsrad 38 kämmt direkt mit dem anderen Ausgleichsrad in Form des Sonnenrads 41 , welches nicht direkt mit dem einen Ausgleichsrad 38 und auch nicht direkt mit dem Sonnenrad 39 kämmt. Die Abtriebsräder (Sonnenräder 39 und 41) sind jeweilige Zahnräder, welche vorzugsweise als Stirnräder ausgebildet sind. Die Abtriebsräder sind um die Drehachse 24 relativ zueinander und relativ zu dem Gehäuse 12 drehbar. Insgesamt ist erkennbar, dass das Sonnenrad 39 über das eine Ausgleichsrad 38 von dem Eingangselement 36 antreibbar ist, und das Sonnenrad 41 ist über das andere Ausgleichsrad 38 von dem Eingangselement 36 antreibbar. Die Differentialwellen 40 und 42 sind sogenannte Ausgangswellen des Differentialgetriebes 34 und beispielsweise um die Drehachse 24 relativ zueinander und relativ zu dem Gehäuse 12 drehbar. Dabei ist der Planetenradsatz 30 von der Differentialwelle 40 und somit über die Differentialwelle 40 von der Rotorwelle 23 antreibbar, und der Planetenradsatz 32 ist von der Differentialwelle 42 und somit über die Differentialwelle 42 von der Rotorwelle 23 beziehungsweise dem Rotor 22 antreibbar. The sun gears 39 and 41 are output gears of the differential gear 34, one of the output gears, in particular the sun gear 39, meshing directly with the one differential gear 38 shown in dashed lines, in particular directly, while the sun gear 39 does not mesh with the other differential gear 38, and the other differential gear 38 shown in the figure by solid lines meshes directly with the other differential gear in the form of sun gear 41 , which does not mesh directly with one differential gear 38 and also not directly with sun gear 39 . The output gears (sun gears 39 and 41) are respective gears, which are preferably designed as spur gears. The output gears are rotatable about the axis of rotation 24 relative to each other and relative to the housing 12 . Overall, it can be seen that the sun gear 39 can be driven by the input element 36 via the one differential gear 38 , and the sun gear 41 can be driven by the input element 36 via the other differential gear 38 . The differential shafts 40 and 42 are so-called output shafts of the differential gear 34 and can be rotated, for example, about the axis of rotation 24 relative to one another and relative to the housing 12 . The planetary gear set 30 can be driven by the differential shaft 40 and thus by the rotor shaft 23 via the differential shaft 40, and the planetary gear set 32 can be driven by the differential shaft 42 and thus by the rotor shaft 23 or the rotor 22 via the differential shaft 42.
Der jeweilige Planetenradsatz 30 beziehungsweise 32 weist ein jeweiliges Sonnenrad 48 beziehungsweise 50, ein jeweiliges Hohlrad 52 beziehungsweise 54 und jeweilige Planetenräder auf. Eines der Planetenräder des Planetenradsatzes 30 ist in der Fig. mit 56 bezeichnet, und eines der Planetenräder des Planetenradsatzes 32 ist in der Fig. mit 58 bezeichnet. Der jeweilige Planetenradsatz 30 beziehungsweise 32 kann auch einen in der Fig. nicht dargestellten, jeweiligen Planetenträger aufweisen, wobei es vorzugsweise vorgesehen ist, dass die Planetenräder des Planetenradsatzes 30 drehbar an oder auf dem Planetenträger des Planetenradsatzes 30 gelagert sind, und vorzugsweise ist es vorgesehen, dass die Planetenräder des Planetenradsatzes 32 drehbar an oder auf dem Planetenträger des Planetenradsatzes 32 gelagert sind. In der Fig. sind die Planetenradsätze 30 und 32 bewusst ohne ihre Planetenträger und Lagerungen dargestellt. Es ist erkennbar, dass das Planetenrad 56 einerseits mit dem Hohlrad 52 und andererseits mit dem Sonnenrad 48 kämmt, und das Planetenrad 58 kämmt einerseits mit dem Hohlrad 54 und andererseits mit dem Sonnenrad 50. Außerdem ist es vorgesehen, dass die Differentialwelle 40, insbesondere permanent, drehfest mit dem Sonnenrad 48 verbunden ist, und die Differentialwelle 42 ist, insbesondere permanent, drehfest mit dem Sonnenrad 50 verbunden. Beispielsweise sind die Hohlräder 52 und 54, insbesondere permanent, drehfest mit dem Gehäuse 12 verbunden. Es ist erkennbar, dass das jeweilige Sonnenrad 48 beziehungsweise 50 ein jeweiliger Eingang des jeweiligen Planetenradsatzes 30 beziehungsweise 32 ist, über dessen Eingang von der jeweiligen Differentialwelle 40 beziehungsweise 42 bereitgestellte Drehmomente in den jeweiligen Planetenradsatz 30 beziehungsweise 32 einleitbar sind beziehungsweise eingeleitet werden. Es ist denkbar, dass der jeweilige Planetenträger des jeweiligen Planetenradsatzes 30 beziehungsweise 32 ein jeweiliger Ausgang des jeweiligen Planetenradsatzes 30 beziehungsweise 32 ist, über dessen Ausgang der jeweilige Planetenradsatz 30 beziehungsweise 32 Drehmomente zum Antreiben des jeweiligen Rads bereitstellen kann. Dabei kann insbesondere vorgesehen sein, dass der Planetenträger des Planetenradsatzes 30, insbesondere permanent, drehfest mit der Abtriebswelle 26 verbunden ist, sodass die Abtriebswelle 26 über den Planetenträger des Planetenradsatzes 30 von dem Planetenradsatz 30 antreibbar ist. Ferner ist es denkbar, dass der Planetenträger des Planetenradsatzes 32, insbesondere permanent, drehfest mit der Abtriebswelle 28 verbunden ist, sodass die Abtriebswelle 28 über den Planetenträger des Planetenradsatzes 32 von dem Planetenradsatz 32 antreibbar ist. The respective planetary gear set 30 or 32 has a respective sun gear 48 or 50, a respective ring gear 52 or 54 and respective planet gears. One of the planet gears of the planetary gear set 30 is indicated at 56 in the figure, and one of the planet gears of the planetary gear set 32 is indicated at 58 in the figure. The respective planetary gear set 30 or 32 can also have a respective planet carrier, not shown in the figure, it being preferably provided that the planet gears of the planetary gear set 30 are rotatably mounted on or on the planet carrier of the planetary gear set 30, and it is preferably provided that the planet gears of the planetary gear set 32 are rotatably mounted on or on the planet carrier of the planetary gear set 32 . In the figure, the planetary gear sets 30 and 32 are deliberately shown without their planet carriers and bearings. It can be seen that the planet gear 56 meshes with the ring gear 52 on the one hand and with the sun gear 48 on the other hand, and the planet gear 58 meshes with the ring gear 54 on the one hand and with the sun gear 50 on the other hand provided that the differential shaft 40 is, in particular permanently, non-rotatably connected to the sun gear 48, and the differential shaft 42 is, in particular permanently, non-rotatably connected to the sun gear 50. For example, ring gears 52 and 54 are connected to housing 12 in a torque-proof manner, in particular permanently. It can be seen that the respective sun gear 48 or 50 is a respective input of the respective planetary gearset 30 or 32, via whose input torques provided by the respective differential shaft 40 or 42 can be or are introduced into the respective planetary gearset 30 or 32. It is conceivable that the respective planet carrier of the respective planetary gearset 30 or 32 is a respective output of the respective planetary gearset 30 or 32, via whose output the respective planetary gearset 30 or 32 can provide torque for driving the respective wheel. It can be provided in particular that the planet carrier of the planetary gear set 30 is connected to the output shaft 26 in a torque-proof manner, in particular permanently, so that the output shaft 26 can be driven by the planetary gear set 30 via the planet carrier of the planetary gear set 30 . It is also conceivable that the planet carrier of the planetary gear set 32 is connected to the output shaft 28 in a torque-proof manner, in particular permanently, so that the output shaft 28 can be driven by the planetary gear set 32 via the planet carrier of the planetary gear set 32 .
Es ist vorgesehen, dass sich der jeweilige Planetenradsatz 30 beziehungsweise 32 in axialer Richtung der elektrischen Maschine 14 zumindest überwiegend, insbesondere vollständig, an den Rotor 22 anschließt und dadurch zumindest überwiegend, insbesondere vollständig, außerhalb des Rotors 22 angeordnet ist. Dabei sind die Planetenradsätze 30 und 32 auf den in axialer Richtung der elektrischen Maschine 14 einander gegenüberliegenden Seiten S1 und S2 des Stators 16 beziehungsweise des Rotors 22 angeordnet. Insbesondere sind die auf den Seiten S1 und S2 angeordneten Hohlräder 52 und 54 in axialer Richtung der elektrischen Maschine 14 zumindest überwiegen, insbesondere vollständig, außerhalb des Rotors 22 angeordnet. It is provided that the respective planetary gear set 30 or 32 is at least predominantly, in particular completely, connected to the rotor 22 in the axial direction of the electric machine 14 and is therefore at least predominantly, in particular completely, arranged outside of the rotor 22 . The planetary gear sets 30 and 32 are arranged on the opposite sides S1 and S2 of the stator 16 and the rotor 22 in the axial direction of the electric machine 14 . In particular, ring gears 52 and 54 arranged on sides S1 and S2 are at least predominantly, in particular completely, arranged outside rotor 22 in the axial direction of electric machine 14 .
Die Antriebsvorrichtung 10 umfasst weitere Lager 60 und 62, welche auch als Hauptlager bezeichnet werden. Die ersten Lager 44 und 46 sind Radiallager, über welche das Eingangselement 36 beziehungsweise die Rotorwelle 23 in radialer Richtung der Rotorwelle 23 nach innen hin an den Differentialwellen 40 und 42 drehbar gelagert sind. Über die auch als Hauptlager bezeichneten Lager 60 und 62 sind die Differentialwellen 40 und insbesondere über diese das Eingangselement 36 und der Rotor 22 in radialer Richtung der elektrischen Maschine 14, insbesondere nach außen hin, an dem Gehäuse 12 drehbar gelagert. The drive device 10 includes additional bearings 60 and 62, which are also referred to as main bearings. The first bearings 44 and 46 are radial bearings, via which the input element 36 or the rotor shaft 23 are rotatably mounted on the differential shafts 40 and 42 inward in the radial direction of the rotor shaft 23 . The differential shafts 40 and, in particular, the input element 36 and the rotor 22 are arranged radially via the bearings 60 and 62, which are also referred to as main bearings Direction of the electrical machine 14, in particular to the outside, rotatably mounted on the housing 12.
Die Antriebsvorrichtung 10 umfasst dritte Lager 64 und 66, welche als Axiallager ausgebildet sind. Des Weiteren sind Sicherungselemente 68 und 70 vorgesehen, welche als axiale Anschläge ausgebildet sind beziehungsweise fungieren. Es ist erkennbar, dass die Differentialwellen 40 und 42 über die Sicherungselemente 68 und 70 in axialer Richtung der elektrischen Maschine 14 beziehungsweise der Differentialwellen 40 und 42 an den Lagern 60 und 62 und/oder an den Axiallagern (an den Lagern 64 und 66) und über diese beispielsweise an dem Eingangselement 36 abgestützt oder abstützbar sind. The drive device 10 includes third bearings 64 and 66, which are designed as axial bearings. Furthermore, securing elements 68 and 70 are provided, which are designed or function as axial stops. It can be seen that differential shafts 40 and 42 are secured in the axial direction of electric machine 14 or differential shafts 40 and 42 via securing elements 68 and 70 on bearings 60 and 62 and/or on the axial bearings (on bearings 64 and 66) and are supported or can be supported via this, for example, on the input element 36 .
Dem Lager 62 ist ein Federelement 72 zugeordnet, welches vorliegend als Tellerfeder ausgebildet ist. Über das Federelement 72 ist das Lager 62 in axialer Richtung der elektrischen Maschine 14 und somit der Differentialwellen 40 und 42 an dem Gehäuse 12 abstützbar oder abgestützt. Insbesondere ist bei der Antriebsvorrichtung 10 Folgendes vorgesehen: Die zwei Differentialwellen 40 und 42, insbesondere mindestens auf einer Seite, werden oder sind innerhalb des Rotors 22 gelagert, insbesondere knickfest gelagert oder geführt. Alternativ oder zusätzlich sind oder werden die zwei Differentialwellen 40 und 42 in dem Differentialgehäuse, insbesondere knickfest, geführt beziehungsweise gelagert. Letzteres kann mittels der Lager 44 und 46 realisiert sein, welche bei dem in der Fig. gezeigten Ausführungsbeispiel als Gleitlager ausgebildet sind, jedoch alternativ als Wälzlager ausgebildet sein könnten. Das jeweilige Lager 44 beziehungsweise 46 ist an einer jeweiligen Lagerstelle vorgesehen oder Bestandteil einer jeweiligen Lagerstelle, an welcher die jeweilige Differentialwelle 40 beziehungsweise 42, insbesondere drehbar, an dem Eingangselement 36 gelagert ist beziehungsweise umgekehrt. Die jeweilige Lagerstelle kann mehrere, über eine in axialer Richtung der jeweiligen Differentialwelle 40 beziehungsweise 42 verteilte Einzellager, welche als Gleitoder Wälzlager ausgebildet sein können, umfassen. Alternativ oder zusätzlich befindet sich das auch als Stirnraddifferential-Gehäuse bezeichnete oder ausgebildete Differentialgehäuse innerhalb des Rotors 22. Das Differentialgehäuse kann Teil des Rotors 22, insbesondere der auch als Rotor-Hohlwelle bezeichneten Hohlwelle, sein. Hierunter kann insbesondere verstanden werden, dass es denkbar ist, dass das Eingangselement 36 einstückig mit der Rotorwelle 23 ausgebildet ist. Der Stirnraddifferential-Radsatz des Differentialgetriebes 34 ist ein Radsatz des Differentialgetriebes 34, dessen Radsatz bei dem in der Fig. gezeigten Ausführungsbeispiel als Stirnraddifferential-Radsatz ausgebildet ist. Dabei kann vorgesehen sein, dass der Radsatz des Differentialgetriebes 34 innerhalb des Rotors 22 angeordnet ist. Dies ist auch denkbar, wenn der Radsatz des Differentialgetriebes 34 als ein Kegelraddifferential-Radsatz ausgebildet wäre. Die Hauptlager können beispielsweise durch ein Lagerschild mit dem beispielsweise als Statorgehäuse oder Getriebegehäuse ausgebildeten Gehäuse 12 verbunden sein. Der Rotor 22 und das einfach auch als Differential bezeichnete Differentialgetriebe 34 bilden eine Gesamtanordnung, die über die Differentialwellen 40 und 42, insbesondere drehbar und/oder an dem Gehäuse 12, gelagert ist. Dabei ist es denkbar, dass, insbesondere für die Gesamtanordnung, nur ein axialer Anschlag für einen Lageraußenring, insbesondere eines der Hauptlager, vorgesehen ist. Die Hauptlager können die Differentialwellen 40 und 42 und den Rotor 22 insbesondere in der vollständigen Gesamtanordnung axial fixieren, sodass sie eine Axialbewegung unterbinden. Ein insbesondere als axialer Anschlag fungierendes Sicherungselement wie beispielsweise das jeweilige Sicherungselement 68 beziehungsweise 70, das sich auf der jeweiligen, einfach auch als Welle bezeichneten Differentialwelle 40 beziehungsweise 42 befindet und mit dieser verbunden ist, fixiert die jeweilige Welle axial. Hierbei befindet sich das Sicherungselement 68 beziehungsweise 70 zwischen einem jeweiligen Lagerinnenring des jeweiligen Hauptlagers und dem Eingangselement 36 beziehungsweise dem jeweiligen Axiallager. Das jeweilige, beispielsweise als Wälzlager oder Gleitlager ausgebildete Axiallager befindet sich zwischen dem jeweiligen Sicherungselement 68 beziehungsweise 70 (Anschlag) und dem Eingangselement 36 beziehungsweise der Hohlwelle und kann Vorspannkräfte und sonstige Axialkräfte aufnehmen. Die Hauptlager und der Rotor 22 werden durch das Federelement 72 vorgespannt, wodurch auch gleichzeitig die Rotorwelle 23 axial spielfrei fixiert wird. Das Federelement 72 kann sich an einer beliebigen Stelle in einem Axialkräftepfad befinden, vorliegend einem Lageraußenring des Lagers 62. Die axiale Vorspannung wird vorzugsweise über den Lageraußenring oder an einer geeigneten Stelle im Kräftepfad aufgebracht. Die Differentialwellen 40 und 42 haben an beiden Enden eine Schräg- oder Geradverzahnung oder kombiniert, wodurch das jeweilige, einfach auch als Sonne bezeichnete Sonnenrad 48 beziehungsweise 50 gebildet sein kann. Im kombinierten Fall können die Verzahnungskräfte gegebenenfalls nicht kompensiert werden. Die Verzahnung in dem Differential kann als Schrägverzahnung ausgeführt sein, um Axialkräfte aus der schräg verzahnten Sonne im jeweiligen Planetenradsatz 30 beziehungsweise 32 kompensieren zu können. Axialkräfte an der jeweiligen Welle werden kompensiert, zumindest teilweise oder vollständig, durch Ausgestaltung der Schrägverzahnung, falls keine Geradverzahnung vorgesehen ist. Die Axialkräfte an der Laufverzahnung der Sonne des jeweiligen Planetenradsatzes 30 beziehungsweise 32 kann kompensiert werden durch die Laufverzahnung der jeweiligen Sonne des Differentialgetriebes 34. Denkbar ist eine Anpassung der Schrägungswinkel abhängig vom Teilkreisdurchmesser (Verzahnungsgeometrie). Innerhalb des Differentials können sich Axialkräfte an den Planeten aufheben (axialkraftfrei). Die Hauptlager übertragen nur geringe Axialkräfte resultierend aus der Lagervorspannkraft, nicht vollständig kompensierten Verzahnungskräften, Beschleunigungskräften, dadurch sind Lager mit geringer Tragzahl beziehungsweise kleine Lager möglich, woraus geringe Lagerverluste (drehzahlabhängige durch kleine Dimension und lastabhängig durch Minimierung Axialkräfte) resultieren. Die Größe der Hauptlager wird durch den Durchmesser der Differentialwelle 40 beziehungsweise 42 bestimmt, wodurch ein kleinerer Durchmesser gewählt werden kann, als wenn die Rotorwelle 23 (Hohlwelle) direkt gelagert würde (Rotor-Abtriebswellendurchmesser zuzüglich radiale Luft zuzüglich Materialdicke Hohlrad). Der Durchmesser der Differentialwelle 40 beziehungsweise 42 wird bestimmt durch Festigkeits- und Steifigkeitsanforderung (Drehmomentanforderung, Knicksteifigkeitsanforderung), woraus geringe Lagerverluste (drehzahlabhängige durch kleine Dimensionen) resultieren. Die Differentialwellen 40 und 42 sind axial in der Rotorwelle 23 frei montierbar beziehungsweise frei steckbar, da der Kopfreisdurchmesser der Sonne des Differentials kleiner als der Bohrungsdurchmesser im Differentialgehäuse ist. Die Differentialwellen 40 und 42 sind einteilig (Verzahnung, Wellenabschnitt, Verzahnung), insbesondere die Verzahnung der Sonne des Differentialgetriebes 34 ist integriert. Der Innendurchmesser des Hauptlagers kann kleiner als der Kopfkreisdurchmeser der Verzahnung der Sonne des jeweiligen Planetenradsatzes 30 beziehungsweise 32 sein. Der Kopfreisdurchmesser der Verzahnung der Sonne des Differentialgetriebes 34 kann kleiner als der Innendurchmesser des Hauptlagers sein. Bei einer Geradeausfahrt entstehen keine Differenzdrehzahlen zwischen der Hohlwelle und der jeweiligen Differentialwelle 40 beziehungsweise 42. Bei einer Kurvenfahrt liegt eine Differenzdrehzahl zwischen der Hohlwelle und der jeweiligen Differentialwelle 40 beziehungsweise 42 an. Insbesondere können bei der Antriebsvorrichtung 10 Lagerverluste besonders gering gehalten werden, insbesondere können drehzahlabhängige Verluste minimiert werden durch eine kleine Dimensionierung der Lager beziehungsweise der Tragzahl. Lastabhängige Verluste werden minimiert durch weitestgehend Eliminierung der axialen Verzahnungskräfte, insbesondere unter Last. Bezugszeichenliste The bearing 62 is associated with a spring element 72, which in the present case is designed as a plate spring. The bearing 62 can be supported or is supported on the housing 12 in the axial direction of the electric machine 14 and thus of the differential shafts 40 and 42 via the spring element 72 . In particular, the following is provided in the drive device 10: the two differential shafts 40 and 42, in particular at least on one side, are or are mounted within the rotor 22, in particular mounted or guided in a kink-resistant manner. Alternatively or additionally, the two differential shafts 40 and 42 are guided or mounted in the differential housing, in particular in a kink-resistant manner. The latter can be realized by means of the bearings 44 and 46, which are designed as slide bearings in the embodiment shown in the figure, but could alternatively be designed as roller bearings. The respective bearing 44 or 46 is provided at a respective bearing point or is part of a respective bearing point at which the respective differential shaft 40 or 42 is mounted, in particular rotatably, on the input element 36 or vice versa. The respective bearing point can comprise a plurality of individual bearings which are distributed in the axial direction of the respective differential shaft 40 or 42 and which can be embodied as plain bearings or roller bearings. Alternatively or additionally, the differential housing, also referred to or designed as a spur gear differential housing, is located inside the rotor 22. The differential housing can be part of the rotor 22, in particular the hollow shaft, also referred to as the rotor hollow shaft. This can in particular be understood to mean that it is conceivable that the input element 36 is formed in one piece with the rotor shaft 23 . The spur gear differential gear set of the differential gear 34 is a gear set of the differential gear 34, the gear set of which is designed as a spur gear differential gear set in the exemplary embodiment shown in the figure. It can be provided that the wheel set of the differential gear 34 is located within the rotor 22 is arranged. This is also conceivable if the gear set of the differential gear 34 were designed as a bevel gear differential gear set. The main bearings can be connected, for example, by an end shield to the housing 12, which is designed, for example, as a stator housing or a transmission housing. The rotor 22 and the differential gear 34, also referred to simply as a differential, form an overall arrangement which is mounted, in particular rotatably and/or on the housing 12, via the differential shafts 40 and 42. It is conceivable that, in particular for the overall arrangement, only one axial stop is provided for a bearing outer ring, in particular one of the main bearings. In particular, the main bearings can axially fix the differential shafts 40 and 42 and the rotor 22 in the complete assembly so that they prevent axial movement. A securing element that acts in particular as an axial stop, such as the respective securing element 68 or 70, which is located on the respective differential shaft 40 or 42, also simply referred to as a shaft, and is connected to it, fixes the respective shaft axially. In this case, the securing element 68 or 70 is located between a respective bearing inner ring of the respective main bearing and the input element 36 or the respective axial bearing. The respective axial bearing, designed for example as a roller bearing or plain bearing, is located between the respective securing element 68 or 70 (stop) and the input element 36 or the hollow shaft and can absorb preload forces and other axial forces. The main bearings and the rotor 22 are prestressed by the spring element 72, as a result of which the rotor shaft 23 is also fixed axially without play at the same time. The spring element 72 can be located anywhere in an axial force path, in this case a bearing outer ring of the bearing 62. The axial preload is preferably applied via the bearing outer ring or at a suitable point in the force path. The differential shafts 40 and 42 have helical or straight teeth or a combination of them at both ends, as a result of which the respective sun gear 48 or 50, also simply referred to as a sun, can be formed. In the combined case, the gearing forces may not be able to be compensated. The gearing in the differential can be designed as helical gearing in order to be able to compensate for axial forces from the helical geared sun in the respective planetary gear set 30 or 32 . Axial forces on the respective shaft are compensated, at least partially or completely, by designing the helical gearing if straight gearing is not provided. The axial forces on the running teeth of the sun of the respective planetary gear set 30 or 32 can be compensated for by the running teeth of the respective sun of the differential gear 34. An adaptation of the helix angle is conceivable depending on the pitch circle diameter (gear geometry). Within the differential, axial forces on the planets can cancel each other out (no axial forces). The main bearings transmit only low axial forces resulting from the bearing preload force, not fully compensated gearing forces, acceleration forces, which means that bearings with a low load rating or small bearings are possible, resulting in low bearing losses (speed-dependent due to small dimensions and load-dependent due to minimization of axial forces). The size of the main bearing is determined by the diameter of the differential shaft 40 or 42, which means that a smaller diameter can be selected than if the rotor shaft 23 (hollow shaft) were mounted directly (rotor output shaft diameter plus radial air plus material thickness of the ring gear). The diameter of the differential shaft 40 or 42 is determined by strength and rigidity requirement (torque requirement, buckling resistance requirement), which results in low bearing losses (speed-dependent due to small dimensions). The differential shafts 40 and 42 can be mounted freely or plugged freely axially in the rotor shaft 23, since the head ring diameter of the sun of the differential is smaller than the bore diameter in the differential housing. The differential shafts 40 and 42 are in one piece (toothing, shaft section, toothing), in particular the toothing of the sun of the differential gear 34 is integrated. The inside diameter of the main bearing can be smaller than the addendum circle diameter of the toothing of the sun of the respective planetary gear set 30 or 32 . The tip tear diameter of the toothing of the sun of the differential gear 34 can be smaller than the inside diameter of the main bearing. When driving straight ahead, there are no differential speeds between the hollow shaft and the respective differential shaft 40 or 42. When cornering, there is a differential speed between the hollow shaft and the respective differential shaft 40 or 42. In particular, bearing losses can be kept particularly low in the drive device 10, in particular speed-dependent losses can be minimized by small dimensioning of the bearings or the load rating. Load-dependent losses are minimized by largely eliminating the axial gearing forces, especially under load. Reference List
10 Antriebsvorrichtung10 drive device
12 Gehäuse 12 housing
14 elektrische Maschine14 electric machine
16 Stator 16 stator
18 Wickelkopf 18 winding head
20 Wickelkopf 20 winding head
22 Rotor 22 rotors
23 Rotorwelle 23 rotor shaft
24 Drehachse 24 axis of rotation
26 Abtriebswelle 26 output shaft
28 Antriebswelle 28 drive shaft
30 Planetenradsatz30 planetary gear set
32 Planetenradsatz32 planetary gear set
34 Differentialgetriebe34 differential gears
36 Eingangselement36 input element
38 Ausgleichsrad 38 balance wheel
39 Sonnenrad 39 sun wheel
40 Differentialwelle40 differential shaft
41 Sonnenrad 41 sun wheel
42 Differentialwelle42 differential shaft
43 Drehachse 43 axis of rotation
44 Lager 44 camp
46 Lager 46 camp
48 Sonnenrad 48 sun gear
50 Sonnenrad 50 sun wheel
52 Hohlrad 52 ring gear
54 Hohlrad 54 ring gear
56 Planetenrad 56 planet wheel
58 Planetenrad 58 planet wheel
60 Lager 60 camp
62 Lager 62 camp
64 Lager 64 camp
66 Lager 66 camp
68 Sicherungselement68 fuse element
70 Sicherungselement 72 Federelement70 fuse element 72 spring element
L1 LängenbereichL1 length range
L2 LängenbereichL2 length range
S1 erste SeiteS1 first page
S2 zweite Seite S2 second page

Claims

Mercedes-Benz Group AG Patentansprüche Mercedes-Benz Group AG patent claims
1. Antriebsvorrichtung (10) zum elektrischen Antreiben von Rädern einer Achse eines Kraftwagens, mit einem Gehäuse (12), mit einer elektrischen Maschine (14), welche einen in dem Gehäuse (12) angeordneten und an dem Gehäuse (12) festgelegten Stator (16) und einen in dem Gehäuse (12) angeordneten, mittels des Stators (16) antreibbaren und dadurch um eine Drehachse (24) relativ zu dem Gehäuse (12) und relativ zu dem Stator (16) drehbaren Rotor (22) mit einer Rotorwelle aufweist, mit einer ersten Abtriebswelle (26), über welche wenigstens ein erstes der Räder von der elektrischen Maschine (14) antreibbar ist, mit einem ersten Planetenradsatz (30), über weichen die erste Abtriebswelle (26) von der Rotorwelle (23) antreibbar ist, mit einer zweiten Abtriebswelle (28), über welche wenigstens ein zweites der Räder von der elektrischen Maschine (14) antreibbar ist, mit einem zweiten Planetenradsatz (32), über welchen die zweite Abtriebswelle (28) von der Rotorwelle antreibbar ist, und mit einem ein drehfest mit der Rotorwelle verbundenes Eingangselement (36) aufweisenden Differentialgetriebe (34), über welches die Planetenradsätze (30, 32) von der Rotorwelle antreibbar sind, dadurch gekennzeichnet, dass eine drehfest mit einem ersten Sonnenrad (48) des ersten Planetenradsatzes (30) verbundene, erste Differentialwelle (40) des Differentialgetriebes (34) und eine drehfest mit einem zweiten Sonnenrad (50) des zweiten Planetenradsatzes (32) verbundene, zweite Differentialwelle (42) des Differentialgetriebes (34) innerhalb der als Hohlwelle ausgebildeten Rotorwelle (23) angeordnet und in innerhalb der Hohlwelle angeordneten Lagern (44, 46) gelagert sind, wobei die Rotorwelle (23) über das Eingangselement (36) und über die Lager (44, 46) drehbar auf den Differentialwellen (40, 42) gelagert ist. Antriebsvorrichtung (10) nach Anspruch 1, dadurch gekennzeichnet, dass die auf den Differentialwellen (40 ,42) und innerhalb der Hohlwelle angeordneten Lager (44, 46) jeweils als Gleitlager oder als jeweils mehrere über eine Länge verteilte Einzelwälzlager oder Gleitlager ausgeführt sind. Antriebsvorrichtung (10) nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass weitere Lager (60, 62) für eine Lagerung der jeweiligen Differentialwelle (40, 42) im Gehäuse (12) vorgesehen sind. Antriebsvorrichtung (10) nach Anspruch 3, dadurch gekennzeichnet, dass mit der jeweiligen Differentialwelle (40, 42) ein jeweiliges Sicherungselement (68, 70) verbunden ist, welches zwischen einem Lagerinnenring des jeweiligen, weiteren Lagers (60, 62) und einem jeweiligen Axiallager (64, 66) auf der jeweiligen Differentialwelle (40, 42) angeordnet ist und die jeweilige Differentialwelle (40, 42) axial gegen Verschieben sichert und Axialkräfte aufnimmt. Antriebsvorrichtung (10) nach Anspruch 4, dadurch gekennzeichnet, dass das jeweilige Axiallager (64, 66) zwischen dem jeweiligen Sicherungselement (68, 70) und dem Rotor (22) Axialkräfte, welche auf die jeweilige Differentialwelle (40, 42) in Richtung des Rotors (22) wirken, aufnimmt. Antriebsvorrichtung (10) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass ein Federelement (72) für eine Vorspannung des Rotors (22) und der weiteren Lager (60, 62) vorgesehen ist. Antriebsvorrichtung (10) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass jeweilige Innendurchmesser der weiteren Lager (60, 62) kleiner als jeweilige Kopfkreisdurchmesser jeweiliger Verzahnungen der Sonnenräder (48, 50) des ersten und des zweiten Planetenradsatzes (30, 32) sind. 18 Antriebsvorrichtung (10) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Differentialgetriebe (34) als Stirnradgetriebe ausgeführt ist, wobei das Stirnradgetriebe ein erstes und ein zweites Sonnenrad (39, 41) aufweist. Antriebsvorrichtung (10) nach Anspruch 8, dadurch gekennzeichnet, dass ein jeweiliger Kopfreisdurchmesser einer jeweiligen Verzahnung des ersten und zweiten Sonnenrads (39, 41) des Differentialgetriebes (34) jeweils kleiner als die Innendurchmesser der weiteren Lager (60, 62) ist. 1. Drive device (10) for electrically driving wheels of an axle of a motor vehicle, with a housing (12), with an electric machine (14) which has a stator (12) arranged in the housing (12) and fixed to the housing (12). 16) and a rotor (22) arranged in the housing (12) and drivable by means of the stator (16) and thereby rotatable about an axis of rotation (24) relative to the housing (12) and relative to the stator (16) with a rotor shaft with a first output shaft (26) via which at least one of the first wheels can be driven by the electric machine (14), with a first planetary gear set (30) via which the first output shaft (26) can be driven by the rotor shaft (23). with a second output shaft (28) via which at least a second of the wheels can be driven by the electric machine (14), with a second planetary gear set (32) via which the second output shaft (28) can be driven by the rotor shaft, and with a a differential gear (34) which is non-rotatably connected to the rotor shaft and via which the planetary gear sets (30, 32) can be driven, characterized in that a differential gear (34) which is non-rotatably connected to a first sun gear (48) of the first planetary gear set (30) connected, first differential shaft (40) of the differential gear (34) and a second differential shaft (42) of the differential gear (34), which is non-rotatably connected to a second sun gear (50) of the second planetary gear set (32), is arranged inside the rotor shaft (23), which is designed as a hollow shaft and supported in bearings (44, 46) disposed within the hollow shaft, the rotor shaft (23) being rotatably supported on the differential shafts (40, 42) via the input member (36) and via the bearings (44, 46). Drive device (10) according to Claim 1, characterized in that the bearings (44, 46) arranged on the differential shafts (40, 42) and inside the hollow shaft are each designed as plain bearings or as a plurality of individual roller bearings or plain bearings distributed over a length. Drive device (10) according to Claim 1 or 2, characterized in that further bearings (60, 62) are provided for mounting the respective differential shaft (40, 42) in the housing (12). Drive device (10) according to Claim 3, characterized in that a respective securing element (68, 70) is connected to the respective differential shaft (40, 42) and is located between a bearing inner ring of the respective further bearing (60, 62) and a respective axial bearing (64, 66) is arranged on the respective differential shaft (40, 42) and secures the respective differential shaft (40, 42) against axial displacement and absorbs axial forces. Drive device (10) according to Claim 4, characterized in that the respective axial bearing (64, 66) between the respective securing element (68, 70) and the rotor (22) transmits axial forces which act on the respective differential shaft (40, 42) in the direction of the Rotors (22) act, absorbs. Drive device (10) according to one of the preceding claims, characterized in that a spring element (72) is provided for prestressing the rotor (22) and the further bearings (60, 62). Drive device (10) according to one of the preceding claims, characterized in that the respective inside diameters of the further bearings (60, 62) are smaller than the respective addendum circle diameters of respective teeth of the sun gears (48, 50) of the first and second planetary gear sets (30, 32). 18 drive device (10) according to any one of the preceding claims, characterized in that the differential gear (34) is designed as a spur gear, the spur gear having a first and a second sun wheel (39, 41). Drive device (10) according to Claim 8, characterized in that a respective head tear diameter of a respective toothing of the first and second sun gear (39, 41) of the differential gear (34) is smaller than the inner diameter of the further bearings (60, 62).
PCT/EP2022/072154 2021-08-12 2022-08-05 Drive device for electrically driving a motor vehicle, in particular a passenger vehicle WO2023016947A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102021004151.8A DE102021004151A1 (en) 2021-08-12 2021-08-12 Drive device for electrically driving a motor vehicle, in particular a passenger car
DE102021004151.8 2021-08-12

Publications (1)

Publication Number Publication Date
WO2023016947A1 true WO2023016947A1 (en) 2023-02-16

Family

ID=83152162

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2022/072154 WO2023016947A1 (en) 2021-08-12 2022-08-05 Drive device for electrically driving a motor vehicle, in particular a passenger vehicle

Country Status (2)

Country Link
DE (1) DE102021004151A1 (en)
WO (1) WO2023016947A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69617337T2 (en) 1995-09-04 2002-07-18 Toyota Motor Co Ltd Drive assembly with an electric motor and a differential gear built into the armature of this motor
EP1469232A2 (en) 2003-04-18 2004-10-20 Kabushiki Kaisha Toyota Jidoshokki Differential apparatus
GB2421989A (en) * 2004-12-03 2006-07-12 Modiff Ltd A differential gear with a casing that is a rotor of an electric motor
US20180299000A1 (en) * 2016-10-26 2018-10-18 GM Global Technology Operations LLC Multi-axis final drive assembly
DE102017211881A1 (en) 2017-07-12 2019-01-17 Robert Bosch Gmbh Drive device for driving an electrical axis
WO2019154402A1 (en) * 2018-02-08 2019-08-15 西安六环传动新能源科技有限公司 Transverse coaxial differential-reducer integrated electric bridge

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69617337T2 (en) 1995-09-04 2002-07-18 Toyota Motor Co Ltd Drive assembly with an electric motor and a differential gear built into the armature of this motor
EP1469232A2 (en) 2003-04-18 2004-10-20 Kabushiki Kaisha Toyota Jidoshokki Differential apparatus
GB2421989A (en) * 2004-12-03 2006-07-12 Modiff Ltd A differential gear with a casing that is a rotor of an electric motor
US20180299000A1 (en) * 2016-10-26 2018-10-18 GM Global Technology Operations LLC Multi-axis final drive assembly
DE102017211881A1 (en) 2017-07-12 2019-01-17 Robert Bosch Gmbh Drive device for driving an electrical axis
WO2019154402A1 (en) * 2018-02-08 2019-08-15 西安六环传动新能源科技有限公司 Transverse coaxial differential-reducer integrated electric bridge

Also Published As

Publication number Publication date
DE102021004151A1 (en) 2023-02-16

Similar Documents

Publication Publication Date Title
EP2134564B1 (en) Transfer case for motor vehicles
DE102011102749B4 (en) Gear arrangement for a motor vehicle
DE102012219212A1 (en) Spur gear differential for use as e.g. distribution, branching, and axle differential gear box in motor car, has coupling and circulation planetary parts formed such that cladding circle is smaller than addendum circle of teeth
WO2010043217A1 (en) Eccentric differential drive
DE102017213110A1 (en) driving device
WO2021078892A1 (en) Transmission, drive train and vehicle comprising transmission
DE102019124666B4 (en) Differential gear
DE10353927B4 (en) Axle assembly
WO2017016552A1 (en) Transmission arrangement for a motor vehicle
DE102020200123A1 (en) Spur gear differential and drive system
DE102017219546B4 (en) Gear arrangement
DE102018205126B4 (en) Torque vectoring superimposition unit for a differential differential gear
WO2020064044A1 (en) Transmission unit for a motor vehicle transmission with a spur gear arranged rotatably on an intermediate shaft
DE102009027342A1 (en) Superposition gear for a steering system
DE102009013136A1 (en) Spur gear differential gearbox unit, particularly for motor vehicle, has helical sun gears, planetary gears, gear ring, and surrounding housing with bearings supported in it
WO2023016947A1 (en) Drive device for electrically driving a motor vehicle, in particular a passenger vehicle
DE102022000466A1 (en) Electric drive unit for a motor vehicle, in particular for a motor vehicle
WO2006066813A1 (en) Device, especially a planet gear, comprising an annular base body
DE102021208545A1 (en) Transmission for a vehicle and drive train with such a transmission
DE102021208546B3 (en) Power train for a vehicle with a torque vectoring superimposition unit
DE102018131503B3 (en) Drive device for a motor vehicle
DE102022001679B3 (en) Electric drive device for a motor vehicle with two electric motors and torque vectoring function
WO2023104413A1 (en) Electric drive system for a motor vehicle
WO2023169750A1 (en) Axle gear system for a motor vehicle drive axle
DE102018131502A1 (en) Drive device for a motor vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22762036

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE