WO2023016489A1 - Particulate filter having partially coated catalytic layer - Google Patents
Particulate filter having partially coated catalytic layer Download PDFInfo
- Publication number
- WO2023016489A1 WO2023016489A1 PCT/CN2022/111444 CN2022111444W WO2023016489A1 WO 2023016489 A1 WO2023016489 A1 WO 2023016489A1 CN 2022111444 W CN2022111444 W CN 2022111444W WO 2023016489 A1 WO2023016489 A1 WO 2023016489A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- particulate filter
- catalytic layer
- composition
- catalyzed particulate
- catalyzed
- Prior art date
Links
- 230000003197 catalytic effect Effects 0.000 title claims abstract description 133
- 239000000203 mixture Substances 0.000 claims abstract description 67
- 238000011144 upstream manufacturing Methods 0.000 claims abstract description 33
- 229910052751 metal Inorganic materials 0.000 claims abstract description 32
- 239000002184 metal Substances 0.000 claims abstract description 32
- 239000000463 material Substances 0.000 claims abstract description 31
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical group [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims abstract description 27
- 238000002485 combustion reaction Methods 0.000 claims abstract description 22
- 239000000758 substrate Substances 0.000 claims description 68
- 239000007789 gas Substances 0.000 claims description 52
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 claims description 40
- 239000002002 slurry Substances 0.000 claims description 27
- 229910044991 metal oxide Inorganic materials 0.000 claims description 25
- 150000004706 metal oxides Chemical class 0.000 claims description 25
- 239000011248 coating agent Substances 0.000 claims description 21
- 238000000576 coating method Methods 0.000 claims description 21
- 238000000034 method Methods 0.000 claims description 19
- 239000013618 particulate matter Substances 0.000 claims description 17
- 239000003870 refractory metal Substances 0.000 claims description 15
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims description 13
- 229910002091 carbon monoxide Inorganic materials 0.000 claims description 13
- 238000001354 calcination Methods 0.000 claims description 12
- 229910010272 inorganic material Inorganic materials 0.000 claims description 11
- 239000011147 inorganic material Substances 0.000 claims description 11
- 230000008569 process Effects 0.000 claims description 9
- 229910052802 copper Inorganic materials 0.000 claims description 7
- 229910052742 iron Inorganic materials 0.000 claims description 7
- 238000004519 manufacturing process Methods 0.000 claims description 7
- 229910052684 Cerium Inorganic materials 0.000 claims description 6
- 229930195733 hydrocarbon Natural products 0.000 claims description 6
- 150000002430 hydrocarbons Chemical class 0.000 claims description 6
- 229910052748 manganese Inorganic materials 0.000 claims description 6
- 229910052746 lanthanum Inorganic materials 0.000 claims description 5
- 229910052809 inorganic oxide Inorganic materials 0.000 claims description 4
- 229910017053 inorganic salt Inorganic materials 0.000 claims description 3
- 229910052759 nickel Inorganic materials 0.000 claims description 3
- KDLHZDBZIXYQEI-UHFFFAOYSA-N palladium Substances [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 50
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 47
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 41
- 239000003054 catalyst Substances 0.000 description 39
- 239000010948 rhodium Substances 0.000 description 35
- 239000000843 powder Substances 0.000 description 33
- 239000000306 component Substances 0.000 description 30
- 238000011068 loading method Methods 0.000 description 26
- 239000002245 particle Substances 0.000 description 22
- 239000002131 composite material Substances 0.000 description 21
- 108091006146 Channels Proteins 0.000 description 20
- 239000000243 solution Substances 0.000 description 18
- 229910052763 palladium Inorganic materials 0.000 description 17
- QVQLCTNNEUAWMS-UHFFFAOYSA-N barium oxide Chemical compound [Ba]=O QVQLCTNNEUAWMS-UHFFFAOYSA-N 0.000 description 16
- 229910052703 rhodium Inorganic materials 0.000 description 16
- 238000001914 filtration Methods 0.000 description 15
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 13
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 12
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 11
- 229910000422 cerium(IV) oxide Inorganic materials 0.000 description 11
- 239000011148 porous material Substances 0.000 description 11
- CETPSERCERDGAM-UHFFFAOYSA-N ceric oxide Chemical compound O=[Ce]=O CETPSERCERDGAM-UHFFFAOYSA-N 0.000 description 10
- 238000009826 distribution Methods 0.000 description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 10
- OERNJTNJEZOPIA-UHFFFAOYSA-N zirconium nitrate Chemical compound [Zr+4].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O OERNJTNJEZOPIA-UHFFFAOYSA-N 0.000 description 10
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 8
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 8
- AMWRITDGCCNYAT-UHFFFAOYSA-L hydroxy(oxo)manganese;manganese Chemical compound [Mn].O[Mn]=O.O[Mn]=O AMWRITDGCCNYAT-UHFFFAOYSA-L 0.000 description 8
- 230000003647 oxidation Effects 0.000 description 8
- 238000007254 oxidation reaction Methods 0.000 description 8
- 239000001301 oxygen Substances 0.000 description 8
- 229910052760 oxygen Inorganic materials 0.000 description 8
- 229910052697 platinum Inorganic materials 0.000 description 8
- -1 PGMs) Chemical class 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 7
- 239000007788 liquid Substances 0.000 description 7
- 238000002429 nitrogen sorption measurement Methods 0.000 description 7
- 238000003860 storage Methods 0.000 description 7
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 6
- 150000001875 compounds Chemical class 0.000 description 6
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 6
- GPNDARIEYHPYAY-UHFFFAOYSA-N palladium(ii) nitrate Chemical compound [Pd+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O GPNDARIEYHPYAY-UHFFFAOYSA-N 0.000 description 6
- 239000010970 precious metal Substances 0.000 description 6
- VXNYVYJABGOSBX-UHFFFAOYSA-N rhodium(3+);trinitrate Chemical compound [Rh+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O VXNYVYJABGOSBX-UHFFFAOYSA-N 0.000 description 6
- 239000010457 zeolite Substances 0.000 description 6
- 229910021536 Zeolite Inorganic materials 0.000 description 5
- RQPZNWPYLFFXCP-UHFFFAOYSA-L barium dihydroxide Chemical compound [OH-].[OH-].[Ba+2] RQPZNWPYLFFXCP-UHFFFAOYSA-L 0.000 description 5
- 229910001863 barium hydroxide Inorganic materials 0.000 description 5
- 239000010949 copper Substances 0.000 description 5
- 239000002019 doping agent Substances 0.000 description 5
- 238000001035 drying Methods 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 5
- 229910052753 mercury Inorganic materials 0.000 description 5
- 229910052757 nitrogen Inorganic materials 0.000 description 5
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 4
- 238000005470 impregnation Methods 0.000 description 4
- 239000000395 magnesium oxide Substances 0.000 description 4
- 239000011572 manganese Substances 0.000 description 4
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 4
- 229910052707 ruthenium Inorganic materials 0.000 description 4
- 150000003839 salts Chemical class 0.000 description 4
- 239000000377 silicon dioxide Substances 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 238000010531 catalytic reduction reaction Methods 0.000 description 3
- 229910052878 cordierite Inorganic materials 0.000 description 3
- JSKIRARMQDRGJZ-UHFFFAOYSA-N dimagnesium dioxido-bis[(1-oxido-3-oxo-2,4,6,8,9-pentaoxa-1,3-disila-5,7-dialuminabicyclo[3.3.1]nonan-7-yl)oxy]silane Chemical compound [Mg++].[Mg++].[O-][Si]([O-])(O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2)O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2 JSKIRARMQDRGJZ-UHFFFAOYSA-N 0.000 description 3
- 239000010931 gold Substances 0.000 description 3
- 229910052741 iridium Inorganic materials 0.000 description 3
- QGLKJKCYBOYXKC-UHFFFAOYSA-N nonaoxidotritungsten Chemical compound O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1 QGLKJKCYBOYXKC-UHFFFAOYSA-N 0.000 description 3
- 239000006069 physical mixture Substances 0.000 description 3
- 230000002035 prolonged effect Effects 0.000 description 3
- 229910001404 rare earth metal oxide Inorganic materials 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 229910001930 tungsten oxide Inorganic materials 0.000 description 3
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- 229910052779 Neodymium Inorganic materials 0.000 description 2
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 2
- 229910052777 Praseodymium Inorganic materials 0.000 description 2
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 229910021529 ammonia Inorganic materials 0.000 description 2
- 229910052788 barium Inorganic materials 0.000 description 2
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 2
- 239000010953 base metal Substances 0.000 description 2
- 229910001593 boehmite Inorganic materials 0.000 description 2
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 2
- 239000003638 chemical reducing agent Substances 0.000 description 2
- 229940000425 combination drug Drugs 0.000 description 2
- 230000001186 cumulative effect Effects 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- FAHBNUUHRFUEAI-UHFFFAOYSA-M hydroxidooxidoaluminium Chemical compound O[Al]=O FAHBNUUHRFUEAI-UHFFFAOYSA-M 0.000 description 2
- MRELNEQAGSRDBK-UHFFFAOYSA-N lanthanum(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[La+3].[La+3] MRELNEQAGSRDBK-UHFFFAOYSA-N 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 238000003801 milling Methods 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000003345 natural gas Substances 0.000 description 2
- 150000002823 nitrates Chemical class 0.000 description 2
- 229910052762 osmium Inorganic materials 0.000 description 2
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 2
- 229910010271 silicon carbide Inorganic materials 0.000 description 2
- 239000004071 soot Substances 0.000 description 2
- 241000269350 Anura Species 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 241000907788 Cordia gerascanthus Species 0.000 description 1
- 241000264877 Hippospongia communis Species 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- FMRLDPWIRHBCCC-UHFFFAOYSA-L Zinc carbonate Chemical compound [Zn+2].[O-]C([O-])=O FMRLDPWIRHBCCC-UHFFFAOYSA-L 0.000 description 1
- XHCLAFWTIXFWPH-UHFFFAOYSA-N [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] XHCLAFWTIXFWPH-UHFFFAOYSA-N 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 230000001464 adherent effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910000272 alkali metal oxide Inorganic materials 0.000 description 1
- 229910000287 alkaline earth metal oxide Inorganic materials 0.000 description 1
- 239000004411 aluminium Substances 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- CNLWCVNCHLKFHK-UHFFFAOYSA-N aluminum;lithium;dioxido(oxo)silane Chemical compound [Li+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O CNLWCVNCHLKFHK-UHFFFAOYSA-N 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052792 caesium Inorganic materials 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229960003563 calcium carbonate Drugs 0.000 description 1
- 235000010216 calcium carbonate Nutrition 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 1
- 239000000292 calcium oxide Substances 0.000 description 1
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- ZMIGMASIKSOYAM-UHFFFAOYSA-N cerium Chemical compound [Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce] ZMIGMASIKSOYAM-UHFFFAOYSA-N 0.000 description 1
- 229910000420 cerium oxide Inorganic materials 0.000 description 1
- RCFVMJKOEJFGTM-UHFFFAOYSA-N cerium zirconium Chemical compound [Zr].[Ce] RCFVMJKOEJFGTM-UHFFFAOYSA-N 0.000 description 1
- 229910052676 chabazite Inorganic materials 0.000 description 1
- 150000004696 coordination complex Chemical class 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- KZHJGOXRZJKJNY-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Si]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O KZHJGOXRZJKJNY-UHFFFAOYSA-N 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- AEBZCFFCDTZXHP-UHFFFAOYSA-N europium(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Eu+3].[Eu+3] AEBZCFFCDTZXHP-UHFFFAOYSA-N 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 230000008642 heat stress Effects 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 1
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 229910000476 molybdenum oxide Inorganic materials 0.000 description 1
- 229910052863 mullite Inorganic materials 0.000 description 1
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 description 1
- PLDDOISOJJCEMH-UHFFFAOYSA-N neodymium(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Nd+3].[Nd+3] PLDDOISOJJCEMH-UHFFFAOYSA-N 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000010955 niobium Substances 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 229910000484 niobium oxide Inorganic materials 0.000 description 1
- URLJKFSTXLNXLG-UHFFFAOYSA-N niobium(5+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Nb+5].[Nb+5] URLJKFSTXLNXLG-UHFFFAOYSA-N 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 230000001473 noxious effect Effects 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 description 1
- PQQKPALAQIIWST-UHFFFAOYSA-N oxomolybdenum Chemical compound [Mo]=O PQQKPALAQIIWST-UHFFFAOYSA-N 0.000 description 1
- 229960003903 oxygen Drugs 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- NWAHZABTSDUXMJ-UHFFFAOYSA-N platinum(2+);dinitrate Chemical compound [Pt+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O NWAHZABTSDUXMJ-UHFFFAOYSA-N 0.000 description 1
- 231100000614 poison Toxicity 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- PUDIUYLPXJFUGB-UHFFFAOYSA-N praseodymium atom Chemical compound [Pr] PUDIUYLPXJFUGB-UHFFFAOYSA-N 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000006722 reduction reaction Methods 0.000 description 1
- 229910052701 rubidium Inorganic materials 0.000 description 1
- 239000012812 sealant material Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 229910052642 spodumene Inorganic materials 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- 230000002311 subsequent effect Effects 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 239000003440 toxic substance Substances 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 1
- 229910001935 vanadium oxide Inorganic materials 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 1
- RUDFQVOCFDJEEF-UHFFFAOYSA-N yttrium(III) oxide Inorganic materials [O-2].[O-2].[O-2].[Y+3].[Y+3] RUDFQVOCFDJEEF-UHFFFAOYSA-N 0.000 description 1
- 239000011667 zinc carbonate Substances 0.000 description 1
- 235000004416 zinc carbonate Nutrition 0.000 description 1
- 229910000010 zinc carbonate Inorganic materials 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
- GFQYVLUOOAAOGM-UHFFFAOYSA-N zirconium(iv) silicate Chemical compound [Zr+4].[O-][Si]([O-])([O-])[O-] GFQYVLUOOAAOGM-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/02—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
- F01N3/021—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
- F01N3/033—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
- F01N3/035—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/92—Chemical or biological purification of waste gases of engine exhaust gases
- B01D53/94—Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
- B01D53/9445—Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC]
- B01D53/945—Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC] characterised by a specific catalyst
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/92—Chemical or biological purification of waste gases of engine exhaust gases
- B01D53/94—Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
- B01D53/9459—Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts
- B01D53/9463—Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts with catalysts positioned on one brick
- B01D53/9468—Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts with catalysts positioned on one brick in different layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/40—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/0215—Coating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/10—Noble metals or compounds thereof
- B01D2255/102—Platinum group metals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/10—Noble metals or compounds thereof
- B01D2255/102—Platinum group metals
- B01D2255/1023—Palladium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/10—Noble metals or compounds thereof
- B01D2255/102—Platinum group metals
- B01D2255/1025—Rhodium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/20—Metals or compounds thereof
- B01D2255/204—Alkaline earth metals
- B01D2255/2042—Barium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/20—Metals or compounds thereof
- B01D2255/206—Rare earth metals
- B01D2255/2065—Cerium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/20—Metals or compounds thereof
- B01D2255/207—Transition metals
- B01D2255/20715—Zirconium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/20—Metals or compounds thereof
- B01D2255/209—Other metals
- B01D2255/2092—Aluminium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/40—Mixed oxides
- B01D2255/407—Zr-Ce mixed oxides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/90—Physical characteristics of catalysts
- B01D2255/902—Multilayered catalyst
- B01D2255/9022—Two layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/90—Physical characteristics of catalysts
- B01D2255/915—Catalyst supported on particulate filters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/90—Physical characteristics of catalysts
- B01D2255/915—Catalyst supported on particulate filters
- B01D2255/9155—Wall flow filters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2258/00—Sources of waste gases
- B01D2258/01—Engine exhaust gases
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2510/00—Surface coverings
- F01N2510/06—Surface coverings for exhaust purification, e.g. catalytic reaction
- F01N2510/068—Surface coverings for exhaust purification, e.g. catalytic reaction characterised by the distribution of the catalytic coatings
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Definitions
- the present invention relates to a catalyzed particulate filter having partially coated catalytic layer for the treatment of exhaust gas from an internal combustion engine, relates to a process for preparing the catalyzed particulate filter and relates to a method for the treatment of ex-haust gas from an internal combustion engine.
- the exhaust gas from internal combustion engine contains in relatively large part of nitrogen, water vapor, and carbon dioxide; but the exhaust gas also contains in relatively small part of noxious and/or toxic substances, such as carbon monoxide from incomplete combustion, hy-drocarbons from un-burnt fuel, nitrogen oxides (NOx) from excessive combustion tempera-tures, and particulate matter (PM) .
- noxious and/or toxic substances such as carbon monoxide from incomplete combustion, hy-drocarbons from un-burnt fuel, nitrogen oxides (NOx) from excessive combustion tempera-tures, and particulate matter (PM) .
- Certain internal combustion engines for example lean-burn engines, diesel engines, natural gas engines, power plants, incinerators, and gasoline engines, tend to produce an exhaust gas with a considerable amount of soot and other particulate matter.
- particulate mat-ter emissions can be remedied by passing the PM-containing exhaust gas through a particu-late filter.
- China 6 On December 23, 2016, the Ministry of Environmental Protection (MEP) of the People’s Re-public of China published the final legislation for the China 6 limits and measurement methods for emissions from light-duty vehicles (GB18352.6-2016; hereafter referred to as China 6) , which is much stricter than the China 5 emission standard. Especially, China 6b incorporates limits on particulate matter (PM) and adopts the on-board diagnostic (OBD) requirements. Fur-thermore, it is implemented that vehicles should be tested under World Harmonized Light-duty Vehicle Test Cycle (WLTC) .
- WLTC World Harmonized Light-duty Vehicle Test Cycle
- WLTC includes many steep accelerations and prolonged high-speed requirements, which demand high power output that could have caused “open-loop” situation (as fuel paddle needs to be pushed all the way down) at extended time (e.g., >5 sec) under rich (lambda ⁇ 1) or under deep rich (lambda ⁇ 0.8) conditions.
- PF particulate filter
- a first catalytic layer coated onto the particulate filter comprising a first composition, wherein the first composition comprising a first support material; and a first platinum group metal (PGM) and/or a first catalytic active transitional metal;
- PGM platinum group metal
- a second catalytic layer coated onto the particulate filter comprising a second composi-tion, wherein the second composition comprising a second support material;
- said first catalytic layer is present on a portion of said PF, and extends from either up-stream or downstream end in axial direction of said PF for a length (L1) , and L1 is in the range from 20 to 90%of L.
- Another object of the present invention is to provide a process for preparing the catalyzed par-ticulate filter for the treatment of exhaust gas from an internal combustion engine.
- a further object of the present invention is to provide a method for the treatment of exhaust gas from an internal combustion engine, which comprises flowing the exhaust gas from the engine through the catalyzed particulate filter according to the present invention.
- a catalyzed particulate filter for exhaust gas from an internal combustion engine comprising:
- PF particulate filter
- a first catalytic layer coated onto the particulate filter comprising a first composition, wherein the first composition comprising a first support material; and a first platinum group metal (PGM) and/or a first catalytic active transitional metal;
- PGM platinum group metal
- a second catalytic layer coated onto the particulate filter comprising a second composi-tion, wherein the second composition comprises a second support material;
- said first catalytic layer is present on a portion of said PF, and extends from either up-stream or downstream end in axial direction of said PF for a length (L1) , and L1 is in the range from 20 to 90%of L.
- L1 is in the range from 25%to 85%of L, preferably from 28%to 80%of L.
- the second support material comprises at least one inorganic material, preferably, the inorganic material is select-ed from inorganic oxide and inorganic salt.
- a process for preparing the catalyzed particulate filter according to any of items 1 to 13, comprises:
- length (L1) of the portion of the filter substrate coated with the first composition is in the range from 20 to 90%of L.
- step (iii) is carried out by coating the filter sub-strate obtained in step (ii) with the second composition in a particulate form via a gas carrier through one side of the filter substrate.
- step (ii) further comprises calcinating the coated filter substrate after coating.
- a method for the treatment of exhaust gas from an internal combustion engine which comprises flowing the exhaust gas from the engine through the catalyzed particulate filter ac-cording to any one of items 1 to 13.
- the catalyzed particulate filter of the present invention can obtain better filtration efficiency without increasing backpressure, and/or produce lower backpressure without reducing the filtration efficiency and/or use less amount of second catalytic layer without reducing the filtra-tion efficiency or increasing backpressure.
- FIG. 1 shows a plot of backpressure for catalyzed particulate filters prepared in example 1 and example 2 at fresh state.
- FIG. 2 shows a plot of filtration efficiency for catalyzed particulate filters prepared in example 1 and example 2 at fresh state.
- FIG. 3 shows a plot of backpressure for catalyzed particulate filters prepared in examples 3, 4, 5 and 6 at fresh state.
- FIG. 4 shows a plot of filtration efficiency for catalyzed particulate filters prepared in examples 3, 4, 5 and 6 at fresh state.
- FIG. 5 shows a plot of backpressure for catalyzed particulate filters prepared in examples 7, 8, 9 and 10 at fresh state.
- FIG. 6 shows a plot of filtration efficiency for catalyzed particulate filters prepared in examples 7, 8, 9 and 10 at fresh state.
- FIG. 7 (a) and FIG. 7 (b) show an exemplary wall-flow filter.
- WLTC World Harmonized Light-duty Vehicle Test Cycle
- PGM platinum group metal
- SCR catalyst selective catalytic reduction catalyst
- DOC diesel oxidation catalyst
- TWC catalyst Three-way conversion catalyst.
- any specific values mentioned for a feature (compris-ing the specific values mentioned in a range as the end point) can be recombined to form a new range.
- each aspect so defined may be combined with any other aspect or aspects unless clearly indicated to the contrary.
- any feature indi-cated as being preferred or advantageous may be combined with any other feature or features indicated as being preferred or advantageous.
- catalyst or “catalyst composition” refers to a material that promotes a reaction.
- upstream and downstream refer to relative directions according to the flow of an engine exhaust gas stream from an engine towards a tailpipe, with the engine in an upstream location and the tailpipe and any pollution abatement articles such as filters being downstream from the engine.
- exhaust gas refers to any combination of flowing engine effluent gas that may also contain solid or liquid particulate matter.
- the stream comprises gaseous components and is, for example, ex-haust of a lean burn engine, which may contain certain non-gaseous components such as liquid droplets, solid particulates and the like.
- An exhaust stream of a lean burn engine typical-ly further comprises combustion products, hydrocarbon, products of incomplete combustion, oxides of nitrogen, combustible and/or carbonaceous particulate matter (soot) and un-reacted oxygen and/or nitrogen.
- washcoat has its usual meaning in the art of a thin, adherent coat-ing of a catalytic or other material applied to a substrate material.
- a washcoat is formed by preparing a slurry containing a certain solid content (e.g., 10-90%by weight or 30-90%by weight) of particles in a liquid medium, which is then coated onto a sub-strate and dried to provide a washcoat layer.
- a certain solid content e.g. 10-90%by weight or 30-90%by weight
- the catalyst may be “fresh” meaning it is new and has not been exposed to any heat or ther-mal stress for a prolonged period of time. “Fresh” may also mean that the catalyst was recently prepared and has not been exposed to any exhaust gases. Likewise, an “aged” catalyst is not new and has been exposed to exhaust gases and/or elevated temperature (i.e., greater than 500°C. ) for a prolonged period of time (i.e., greater than 3 hours) .
- a “support” in a catalytic material or catalyst washcoat refers to a material that receives metals (e.g., PGMs) , stabilizers, promoters, binders, and the like through precipitation, association, dispersion, impregnation, or other suitable methods.
- metals e.g., PGMs
- Exemplary supports include refractory metal oxide supports as described herein below.
- Refractory metal oxide supports are metal oxides including, for example, alumina, silica, titania, ceria, and zirconia, magnesia, barium oxide, manganese oxide, tungsten oxide, and rear earth metal oxide rear earth metal oxide, base metal oxides, as well as physical mixtures, chemical combinations and/or atomically-doped combinations there-of and including high sur-face area or activated compounds such as activated alumina.
- Exemplary combinations of metal oxides include alumina-zirconia, alumina-ceria-zirconia, lanthana-alumina, lanthana-zirconia-alumina, baria-alumina, baria-lanthana-alumina, baria-lanthana-neodymia alumina, and alumina-ceria.
- Exemplary aluminas include large pore boehmite, gamma-alumina, and delta/theta alumina.
- Useful commercial aluminas used as starting materials in exemplary pro-cesses include activated aluminas, such as high bulk density gamma-alumina, low or medium bulk density large pore gamma-alumina, and low bulk density large pore boehmite and gam-ma-alumina. Such materials are generally considered as providing durability to the resulting catalyst.
- High surface area refractory metal oxide supports refer specifically to support particles hav-ing pores larger than and a wide pore distribution.
- High surface area refractory metal oxide supports e.g., alumina support materials, also referred to as “gamma alumina” or “acti-vated alumina, ” typically exhibit a BET surface area of fresh material in excess of 60 square meters per gram ( “m 2 /g” ) , often up to about 200 m 2 /g or higher.
- Such activated alumina is usu-ally a mixture of the gamma and delta phases of alumina, but may also contain substantial amounts of eta, kappa and theta alumina phases.
- NOx refers to nitrogen oxide compounds, such as NO or NO 2 .
- oxygen storage component refers to an entity that has a multi-valence state and can actively react with reductants such as carbon monoxide (CO) and/or hydrogen under reduction conditions and then react with oxidants such as oxygen or nitrogen oxides under oxidative conditions.
- reductants such as carbon monoxide (CO) and/or hydrogen under reduction conditions
- oxidants such as oxygen or nitrogen oxides under oxidative conditions.
- oxygen storage components include rare earth oxides, particularly ceria, lanthana, praseodymia, neodymia, niobia, europia, samar-ia, ytterbia, yttria, zirconia, and mixtures thereof.
- the oxygen storage component comprises a ceria-zirconia composite or a rare earth-stabilized ceria-zirconia.
- a platinum group metal (PGM) component refers to any component that includes a PGM (Ru, Rh, Os, Ir, Pd, Pt and/or Au) .
- the PGM may be in metallic form, with zero va-lence, or the PGM may be in an oxide form.
- Reference to “PGM component” allows for the presence of the PGM in any valence state.
- platinum (Pt) component rhodium (Rh) component, ” “palladium (Pd) component, ” “iridium (Ir) component, ” “ruthenium (Ru) compo-nent, ” and the like refer to the respective platinum group metal compound, complex, or the like which, upon calcination or use of the catalyst, decomposes or otherwise converts to a catalyti-cally active form, usually the metal or the metal oxide.
- One aspect of the present invention is directed to a catalyzed particulate filter for exhaust gas from an internal combustion engine comprising:
- PF particulate filter
- a first catalytic layer coated onto the particulate filter comprising a first composition, wherein the first composition comprising a first support material; and a first platinum group metal (PGM) and/or a first catalytic active transitional metal;
- PGM platinum group metal
- a second catalytic layer coated onto the particulate filter comprising a second composi-tion, wherein the second composition comprises a second support material; and said first catalytic layer is present on a portion of said PF, and extends from either upstream or downstream end in axial direction of said PF for a length (L1) , and L1 is in the range from 20 to 90%of L.
- the particulate filter is typically formed of a porous substrate.
- the porous substrate may com-prise a ceramic material such as, for example, cordierite, silicon carbide, silicon nitride, zirco-nia, mullite, spodumene, alumina-silica-magnesia, zirconium silicate, and/or aluminium titanate, typically cordierite or silicon carbide.
- the porous substrate may be a porous substrate of the type typically used in emission treatment systems of internal combustion engines.
- the internal combustion engine may be a lean-burn engine, a diesel engine, a natural gas engine, a power plant, an incinerator, or a gasoline engine.
- the porous substrate may exhibit a conventional honey-comb structure.
- the filter may take the form of a conventional "through-flow filter” .
- the filter may take the form of a conventional "wall-flow filter” (WFF) .
- WFF wall-flow filter
- the particulate filter is preferably a wall-flow filter.
- a wall-flow filter Referring to FIG. 7 (a) and FIG. 7 (b) , an exemplary wall-flow filter is provided.
- Wall-flow filters work by forcing a flow of exhaust gases (13) (including particulate matter) to pass through walls formed of a porous material.
- a wall-flow filter typically has a first face and a second face defining a longitudinal direction therebetween. In use, one of the first face and the second face will be the inlet face (upstream end) for exhaust gases (13) and the other will be the outlet face (downstream end) for the treated exhaust gases (14) .
- a conventional wall-flow filter has first and second pluralities of channels extending in the longitudinal direction. The first plurality of channels (11) is open at the inlet face (01) and closed at the outlet face (02) . The second plurality of channels (12) is open at the outlet face (02) and closed at the inlet face (01) . The channels are preferably par-allel to each other to provide a constant wall thickness between the channels.
- the walls-flow filter has from 100 to 500 channels per square inch, preferably from 200 to 400.
- the density of open channels and closed channels is from 200 to 400 channels per square inch.
- the channels can have cross sections that are rectangular, square, circular, oval, triangular, hexagonal, or other po-lygonal shapes.
- the first catalytic layer is the first catalytic layer
- the first catalytic layer extends either from the upstream end or from downstream end of the particulate filter.
- the length (L1) of the portion of PF coated with the first catalytic can be in the range from 20 to 90%of the total length (L) of the particulate filter, preferably in the range from 25%to 85%of total length L, for example, L1 can be 25%, 30%, 40%, 50%, 60%, 70%, 80%, 85%, or 90%of total length L, preferably from 28%to 80%or from 30%to 78%or from 40%to 60%of total length L.
- the ratio of the weight of the first catalytic layer to the volume of the portion of the PF coated with the first catalytic layer is in the range from 10 to 160 g/L, for example 10 g/L, 20 g/L, 30 g/L, 40 g/L, 50 g/L, 60 g/L, 80 g/L, 100 g/L, 120 g/L, 140 g/L or 160 g/L, prefer-ably from 15 to 150 g/L, or from 20 to 150 g/L, or from 30 to 150 g/L, or from 40 to 150 g/L, or from 55 to 145 g/L, from 20 to 120 g/L, or from 30 to 120 g/L, or from 40 to 120 g/L, or from 55 to 120 g/L, or from 20 to 100 g/L, or from 30 to 100 g/L, or from 40 to 100 g/L.
- the volume of the portion of the PF coated with the first catalytic layer can be cal-culated as follows: ⁇ R 2 ⁇ H ⁇ 0.5.
- the ratio of the weight of the first catalytic layer to the total volume of the PF can be in the range from 10 to 120 g/L, for example 10 g/L, 20 g/L, 30 g/L, 40 g/L, 50 g/L, 60 g/L, 70 g/L, 80 g/L, 90 g/L, or 100 g/L, preferably from 20 to 100 g/L or from 30 to 90 g/L or from 35 to 75 g/L.
- the first catalytic layer comprises a first composition
- the first composition comprises a first support material; and a first platinum group metal (PGM) and/or a first catalytic active transitional metal.
- PGM platinum group metal
- the first platinum group metal can be selected from Ru, Rh, Os, Ir, Pd, Pt and Au.
- PGM is selected from Pt, Rh and Pd.
- the ratio of the weight of the first PGM in the first catalytic layer to the volume of the portion of the PF coated with the first catalytic layer can be in the range from 0.1 to 3 g/L, for example 0.1 g/L, 0.12 g/L, 0.15 g/L, 0.18 g/L, 0.2 g/L, 0.25 g/L, 0.3 g/L, 0.5 g/L, 0.8 g/L, 1.0 g/L, 1.5 g/L, 2 g/L, 2.5 g/L or 3 g/L, preferably from 0.15 to 2.5 g/L, or from 0.18 to 2.2 g/L.
- the ratio of the weight of the first PGM in the first catalytic layer to the total volume of PF can be in the range from 0.07 to 1.8 g/L, for example 0.08 g/L, 0.09 g/L, 0.1 g/L, 0.12 g/L, 0.15 g/L, 0.18 g/L, 0.2 g/L, 0.25 g/L, 0.3 g/L, 0.5 g/L, 0.8 g/L, 1 g/L, 1.2 g/L, 1.5 g/L, 1.6 g/L or 1.8 g/L, preferably from 0.1 to 1.5 g/L or from 0.15 to 1.2 g/L.
- the first catalytic active transitional metal can be selected from Cu, Fe, Co, Ni, La, Ce, Ag or Mn, or any combination thereof, preferably selected from Ce, Mn, Cu or Fe, or any combina-tion thereof.
- the ratio of the weight of the first catalytic active transitional metal in the first catalytic layer to the volume of the portion of the PF coated with the first catalytic layer can be in the range from 1.5 to 18 g/L, for example 1.0 g/L, 1.5 g/L, 2 g/L, 2.5 g/L, 3 g/L, 4 g/L, 5 g/L, 6 g/L, 8 g/L, 10 g/L, 12 g/L, 14 g/L, 16 g/L or 18 g/L, preferably from 2 to 15 g/L.
- the ratio of the weight of the first catalytic active transitional metal in the first catalytic layer to the total volume of PF can be in the range from 1 to 15 g/L, for example 1.0 g/L, 1.5 g/L, 2 g/L, 2.5 g/L, 3 g/L, 4 g/L, 5 g/L, 6 g/L, 8 g/L, 10 g/L, 12 g/L, 14 g/L or 15 g/L, preferably from 1.5 to 10 g/L.
- said first catalytic layer is present on a portion of said PF, and extends from either upstream or downstream end in axial direction of said PF for a length (L1) .
- the remaining part is substantially free of a layer comprising the first composition.
- substantially free of a layer comprising the first composition means the ratio of the weight of the layer comprising the first composition in the remaining part to the volume of the remaining part of the particulate filter is less than 5 g/L, preferably less than 3 g/L, more preferably less than 2 g/L or less than 1 g/L or less than 0.5 g/L or less than 0.1 g/L.
- the first composition comprises a first support material.
- the first support material comprises at least one refractory metal oxide.
- the refractory metal oxide can be used as the support of the PGM and/or the catalytic active transitional metal.
- the details of the refractory metal oxide can refer to the above description for “Refractory metal oxide supports” .
- refractory metal oxide is selected from the group consisting of alumina, zirconia, silica, titania, and combinations thereof.
- the first composition can further comprise at least one oxygen storage component (OSC) .
- OSC oxygen storage component
- the details of the OSC can refer to the above description for “oxy-gen storage component” .
- the first composition can further comprise at least one dopant.
- dopant referring to a component that is intentionally added to enhance the activity of the first composition as compared to a first composition that does not have a dopant intentionally added.
- exemplary dopants are oxides of metals such as lanthanum, neodymium, praseodymium, yttrium, barium, cerium, niobium and combi-nations thereof.
- the first composition may further comprise one or more of a selective catalytic reduction (SCR) catalyst, a diesel oxidation catalyst (DOC) , an AMOx catalyst, a NOx trap, a NOx absorber catalyst.
- SCR selective catalytic reduction
- DOC diesel oxidation catalyst
- AMOx AMOx
- NOx trap NOx absorber catalyst
- the terms of “selective catalytic reduction” and “SCR” refer to the catalytic pro-cess of reducing oxides of nitrogen to nitrogen (N2) using a nitrogenous reductant.
- the SCR catalyst may include at least one material selected front: MOR; USY; ZSM-5; ZSM-20; beta-zeolite; CHA; LEV; AEI; AFX; FER; SAPO; ALPO; vanadium; vanadium oxide; titanium oxide; tungsten oxide; molybdenum oxide; cerium oxide; zirconium oxide; niobium oxide; iron; iron oxide; manganese oxide; copper; molybdenum; tungsten; and mixtures thereof.
- the support structures for the active components of the SCR catalyst may include any suitable zeolite, zeo-type, or non-zeolitic compound.
- the SCR catalyst may include a metal, a metal oxide, or a mixed oxide as the active component.
- Transition metal loaded zeolites e.g., cop-per-chabazite, or Cu-CHA, as well as copper-levyne, or Cu-LEV, as well as Fe-Beta
- zeo-types e.g., copper-SAPO, or Cu-SAPO
- diesel oxidation catalyst and “DOC” refer to diesel oxidation catalysts, which are well-known in the art. Diesel oxidation catalysts are designed to oxidize CO to CO 2 and gas phase HC and an organic fraction of diesel particulates (soluble organic fraction) to CO 2 and H 2 O. Typical diesel oxidation catalysts include platinum and optionally also palladium on a high surface area inorganic oxide support, such as alumina, silica-alumina, titania, silica-titania, and a zeolite. As used herein, the term includes a DEC (Diesel Exotherm Catalyst) with creates an exotherm.
- DEC Diesel Exotherm Catalyst
- ammonia oxidation catalyst and “AMOx” refer to catalysts com-prise at least a supported precious metal component, such as one or more platinum group metals (PGMs) , which is effective to remove ammonia from an exhaust gas stream.
- PGMs platinum group metals
- the precious metal may include platinum, palladium, rhodium, ruthenium, iridi-um, silver or gold.
- the precious metal component includes physical mixtures or chemical or atomically-doped combinations of precious metals.
- the precious metal component is typically deposited on a high surface area refractory metal oxide support.
- suitable high surface area Refractory Metal Oxides include alumi-na, silica, titania, ceria, and zirconia, magnesia, barium oxide, manganese oxide, tungsten oxide, and rear earth metal oxide, base metal oxides, as well as physical mixtures, chemical combinations and/or atomically-doped combinations thereof.
- NOx adsorbed catalyst and “NOx trap (also called Lean NOx trap, abbr. LNT) ” refer to catalysts for reducing oxides of nitrogen (NO and NO 2 ) emissions from a lean burn internal combustion engine by means of adsorption.
- Typical NOx trap in-cludes alkaline earth metal oxides, such as oxides of Mg, Ca, Sr and Ba, alkali metal oxides such as oxides of Li, Na, K, Rb and Cs, and rare earth metal oxides such as oxides of Ce, La, Pr and Nd in combination with precious metal catalysts such as platinum dispersed on an alu-mina support have been used in the purification of exhaust gas from an internal combustion engine.
- baria is usually preferred because it forms nitrates at lean engine operation and releases the nitrates relatively easily under rich conditions.
- the first catalytic layer is a washcoat.
- the details of the washcoat can refer to the above description for “washcoat” .
- the first catalytic layer is formed from the first composition.
- first catalytic layer extends from upstream end of the PF. In an embodiment, the first catalytic layer extends from downstream end of the PF.
- the second catalytic layer is the second catalytic layer
- the catalyzed particulate filter of the present invention fur-ther comprises a second catalytic layer coated onto the particulate filter, wherein the second catalytic layer comprises a second composition, and wherein the second composition com-prises a second support material.
- the second support material comprises at least one inor-ganic material, preferably, the inorganic material is selected from inorganic oxide and inorgan-ic salt.
- the inorganic material and inorganic salt can be selected from alumina, zirconia, ceria, silica, titania, magnesium oxide, zinc oxide, manganese oxide, calcium oxide, silicate zeolite, alumi-no silicate zeolite, a rare earth metal oxide other than ceria, a mixed oxide comprising two or more of Al, Zr, Ti, Si, and Ce, cerium zirconium mixed oxide, hydrated alumina, calcium car-bonate, calcium sulfate, barium sulfate and zinc carbonate, preferably alumina, such as gam-ma alumina.
- the second composition is in the form of particulate.
- the second composition has a D90 of 0.1 to 50 ⁇ m, for example 0.2, 0.5, 0.8, 1, 1.5, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 15, 18, 20, 25, 30, 35, 40, 45 ⁇ m, preferably 1 to 20 ⁇ m, and more preferably a D90 of 3 to 10 ⁇ m, for example 4, 5, 6, 7, 8, or 9 ⁇ m.
- the second composition has a D50 of 1.2 to 8 ⁇ m, preferably 1.8 to 6 ⁇ m, for example, 2, 3, 4, or 5 ⁇ m.
- the second composition has a D10 of 0.4 to 2.2 ⁇ m, preferably 0.6 to 1.5 ⁇ m.
- D90 is the value determined by measuring the particle size distribu-tion, respectively. The particle size distribution is measured by using laser diffraction particle size distribution analyzer.
- the second support material has high specific BET surface area, for ex-ample in the range from 100 to 250 m 2 /g, preferably in the range from 120 to 200 m 2 /g charac-terized by 77K nitrogen sorption.
- the inorganic material has a spe-cific surface area characterized by 77K nitrogen sorption in the range from 50 to 120 m 2 ⁇ g -1 , preferably 60 to 95 m 2 /g after 4 h calcination in air at 1000°C.
- the second composition further comprises a platinum group metal (PGM) , preferably selected from the group consisting of platinum (Pt) , palladium (Pd) and rhodium (Rh) , and mixtures thereof.
- PGM platinum group metal
- the PGM is present in a catalytically effective amount to convert NOx, CO and hydrocarbons in an exhaust gas to N 2 , CO 2 and H 2 O and to cause the oxidation of particulate matter trapped on the particulate filter.
- the second composition comprises a PGM containing inorganic material.
- the PGM containing inorganic material can be prepared by impregnating the inorganic material with a PGM containing liquid, for example an amine-complex solution or solution of the nitrate of PGM (for example platinum nitrate, palladium nitrate, and rhodium nitrate) . After the impregnation, the mixture can be cal-cinated.
- a PGM containing liquid for example an amine-complex solution or solution of the nitrate of PGM (for example platinum nitrate, palladium nitrate, and rhodium nitrate) . After the impregnation, the mixture can be cal-cinated.
- the second catalytic layer and the second composition does not comprise a platinum group metal.
- the ratio of the weight of the second catalytic layer to the total volume of the PF can be in the range from 0.5 to 20 g/L, for example 0.6 g/L, 0.7 g/L, 0.8 g/L, 0.9 g/L, 1.0 g/L, 2.0 g/L, 5 g/L, 8 g/L, 10 g/L, 12 g/L, 15 g/L, 18 g/L, or 20 g/L, preferably from 0.6 to 15 g/L, more preferably from 0.7 to 12 g/L.
- the second catalytic layer is present on the whole length L of the PF. According to the present invention, the second catalytic layer can be present on the inlet channels.
- the second catalytic layer can be coated via a gas carrier.
- the details of the coating via a gas carrier can refer to the following description for step (iii) in the process for preparing the catalyzed particulate filter of the present invention.
- the second catalytic layer is formed from the second composition.
- Another aspect of the present invention relates to a process for preparing the catalyzed partic-ulate filter according to the present invention, comprises:
- step iii) further coating the filter substrate obtained in step ii) with the second composition.
- length (L1) of the portion of the filter substrate coated with the first composition is in the range from 20 to 90%of L.
- the slurry in step ii) can be formed by mixing a liquid medium (such as water) with the plati-num group metal (PGM) component and refractory metal oxide and if present OSC and dopant.
- PGM plati-num group metal
- the PGM component e.g., in the form of a solution of a PGM salt
- a refractory metal oxide support e.g., as a powder
- Water-soluble PGM compounds or salts or water-dispersible compounds or complexes of the PGM component may be used as long as the liquid medium used to impregnate or deposit the metal component onto the support parti-cles does not adversely react with the metal or its compound or its complex or other compo-nents which may be present in the catalyst composition and is capable of being removed by volatilization or decomposition upon heating and/or application of a vacuum.
- aqueous solutions of soluble compounds, salts, or complexes of the PGM component are advantageously utilized.
- the PGM component are loaded onto the support by the co-impregnation meth-od.
- the co-impregnation technique is known to those skilled in the art and is disclosed in, for example, U.S. Pat. No. 7,943,548, which is incorporated by reference herein for the relevant teachings.
- the wet powder can be mixed with the liquid medium such as water to form the slurry.
- the slurry can be milled to enhance mixing of the particles and formation of a homogenous material.
- the milling can be accomplished in a ball mill, continuous mill, or other similar equipment, and the solids content of the slurry may be, e.g., about 20 to 60 wt. %, more par-ticularly about 30 to 40 wt. %.
- the post-milling slurry is characterized by a D90 particle size of about 1 to about 30 microns. The D90 is defined as the particle size at which 90%of the particles have a finer particle size.
- the slurry was then coated onto the particulate filter from either upstream or downstream end of PF using deposition methods, which is known in the art.
- the filter substrate After coating with the slurry, the filter substrate can be dried. Most of the water in the slurry can be removed by drying so as to reduce the amount of moisture produced during the subse-quent calcination. Conventional drying methods include drying at elevated temperature (for example at 100 to 200 °C for 1 min to 2 h) or drying by microwave. The input power of micro-wave drying can be between 1 kW and 12KW, and the duration can be between 5min and 2hr. Then, the filter substrate is generally calcined. An exemplary calcination process involves heat treatment in air at a temperature of about 400 to about 700 °C for about 10 minutes to about 3 hours. During the calcination step, the PGM component is converted into a catalytically active form of the metal or metal oxide thereof. The above process can be repeated as needed.
- Step (iii) can be carried out by coating the filter substrate obtained in step (ii) with the second composition in a particulate form via a gas carrier through one side of the filter substrate.
- the second composition can be coated onto the inlet channels.
- the filter substrate can be dried and/or calcinated, for example dried at 120 to 200 °C, and/or calcinated at 350 to 550 °C for 30 min to 3 h.
- a further aspect of the present invention relates to a method for the treatment of exhaust gas from an internal combustion engine, which comprises flowing the exhaust gas from the engine through the particulate filter according to the present invention or prepared by the process ac-cording to the present invention.
- the exhaust gas comprises unburned hydrocarbons, carbon monoxide, nitrogen oxides, and particulate matter.
- the present invention is further illustrated by the following examples, which are set forth to illustrate the present invention and is not to be construed as limiting thereof. Unless otherwise noted, all parts and percentages are by weight, and all weight percentages are expressed on a dry basis, meaning excluding water content, unless otherwise indicated. In each of the exam-ples, the filter substrate was made of cordierite.
- the catalyzed particulate filter of Example 1 was prepared using double coats: a first catalytic layer coated from upstream end, extending in axial direction for the full length of the filter sub-strate; and a second catalytic layer coated from upstream end of the wall-flow filter substrate.
- the wall-flow filter substrate had a size of 118.4 mm (D) *127 mm (L) , a volume of 1.4 L, a cell density of 300 cells per square inch, a wall thickness of approximately 200 ⁇ m, a porosity of 65%and a mean pore size of 17 ⁇ m in diameter by mercury intrusion measurements.
- the Pd/Rh containing catalytic layer was pre-pared as following:
- Palladium in the form of a palladium nitrate solution was impregnated by planetary mixer onto a refractory alumina and a stabilized ceria-zirconia composite with approximately 40 wt. %ce-ria to form a wet powder while achieving incipient wetness.
- Rhodium in the form of a rhodium nitrate solution was impregnated by planetary mixer onto a refractory alumina and a stabilized ceria-zirconia composite with approximately 40 wt. %ceria to form a wet powder while achiev-ing incipient wetness.
- aqueous slurry was formed by adding the above wet powders into water, followed by the addition of barium hydroxide and zirconium nitrate solution. The slurry was then milled to a particle size of 90%being 5 ⁇ m. The slurry was then coated from the up-stream end of the wall-flow filter substrate and covering the total substrate length. After coating, the filter substrate plus the washcoat were dried at 150°C and then calcined at a temperature of 550°C for about 1 hour. The calcined Pd/Rh catalytic layer was having 68.4 wt. %ceria-zirconia composite, 0.70 wt. %palladium, 0.23 wt.
- the total loading of the first catalytic layer was 1.24 g/in 3 (75.67 g/L) .
- the second catalytic layer was a high surface area alumina powder (about 150 m 2 /g) .
- This powder had a particle size distribution of 90%being 5 ⁇ m, 50%being 2 ⁇ m, and 10%bing 0.8 ⁇ m, and a specific surface area (BET model, 77K nitrogen adsorption measurement) of 66 m 2 /g after 4hr calcination in air at 1000°C.
- This powder was mixed with gas carrier and blown-in into the filter substrate from upstream end at room temperature.
- the flow rate of gas carrier was 500 kg/hr.
- the loading of the second catalytic layer was 0.115 g/in 3 (7.02 g/L) .
- the catalyzed particulate filter of Example 2 was prepared using double coats: a first catalytic layer coated from upstream end, extending in axial direction for 50%of the length of the filter substrate; and a second catalytic layer coated from upstream end of the wall-flow filter sub-strate.
- the wall-flow filter substrate had a size of 118.4 mm (D) *127 mm (L) , a volume of 1.4 L, a cell density of 300 cells per square inch, a wall thickness of approximately 200 ⁇ m, a porosi-ty of 65%and a mean pore size of 17 ⁇ m in diameter by mercury intrusion measurements.
- the Pd/Rh containing cat-alytic layer was prepared as following:
- Palladium in the form of a palladium nitrate solution was impregnated by planetary mixer onto a refractory alumina and a stabilized ceria-zirconia composite with approximately 40 wt. %ce-ria to form a wet powder while achieving incipient wetness.
- Rhodium in the form of a rhodium nitrate solution was impregnated by planetary mixer onto a refractory alumina and a stabilized ceria-zirconia composite with approximately 40 wt. %ceria to form a wet powder while achiev-ing incipient wetness.
- aqueous slurry was formed by adding the above wet powders into water, followed by the addition of barium hydroxide and zirconium nitrate solution. The slurry was then milled to a particle size of 90%being 5 ⁇ m. The slurry was then coated from the up-stream end of the wall-flow filter substrate and covering 50%of the total length of the filter substrate. After coating, the filter substrate plus the washcoat were dried at 150°C and then calcined at a temperature of 550°C for about 1 hour. The calcined Pd/Rh catalytic layer was having 68.0 wt. %ceria-zirconia composite, 1.16 wt. %palladium, 0.39 wt.
- the total loading of the first catalytic layer was 1.50 g/in 3 (91.54 g/L) for the coated area.
- the second catalytic layer was a high surface area alumina powder (about 150 m 2 /g) .
- This powder had a particle size distribution of 90%being 5 ⁇ m, 50%being 2 ⁇ m, and 10%being 0.8 ⁇ m, and a specific surface area (BET model, 77K nitrogen adsorption measurement) of 66 m 2 /g after 4hr calcination in air at 1000°C.
- This powder was mixed with gas carrier and blown- in into the filter substrate from upstream end at room temperature.
- the flow rate of gas carrier was 500 kg/hr.
- the loading of the second catalytic layer was 0.0574 g/in 3 (3.50 g/L) .
- the catalyzed particulate filter of Example 4 was prepared using double coats: a first catalytic layer coated from upstream end, extending in axial direction for 75%of the length of the filter substrate; and a second catalytic layer coated from upstream end of the wall-flow filter sub-strate.
- the wall-flow filter substrate had a size of 118.4 mm (D) *127 mm (L) , a volume of 1.4 L, a cell density of 300 cells per square inch, a wall thickness of approximately 200 ⁇ m, a porosi-ty of 65%and a mean pore size of 17 ⁇ m in diameter by mercury intrusion measurements.
- the Pd/Rh containing cata-lytic layer was prepared as following:
- Palladium in the form of a palladium nitrate solution was impregnated by planetary mixer onto a refractory alumina and a stabilized ceria-zirconia composite with approximately 40 wt. %ce-ria to form a wet powder while achieving incipient wetness.
- Rhodium in the form of a rhodium nitrate solution was impregnated by planetary mixer onto a refractory alumina and a stabilized ceria-zirconia composite with approximately 40 wt. %ceria to form a wet powder while achiev-ing incipient wetness.
- aqueous slurry was formed by adding the above wet powders into water, followed by the addition of barium hydroxide and zirconium nitrate solution. The slurry was then milled to a particle size of 90%being 5 ⁇ m. The slurry was then coated from the up-stream end of the wall-flow filter substrate and covering 75%of the total length of the filter substrate. After coating, the filter substrate plus the washcoat were dried at 150°C and then calcined at a temperature of 550°C for about 1 hour. The calcined Pd/Rh catalytic layer was having 68.7 wt. %ceria-zirconia composite, 0.23 wt. %palladium, 0.23 wt.
- the total loading of the first catalytic layer was 0.99 g/in 3 (60.41 g/L) for the coated area.
- the second catalytic layer was a high surface area alumina powder (about 150 m 2 /g) .
- This powder had a particle size distribution of 90%being 5 ⁇ m, 50%being 2 ⁇ m, and 10%being 0.8 ⁇ m, and a specific surface area (BET model, 77K nitrogen adsorption measurement) of 66 m 2 /g after 4hr calcination in air at 1000°C.
- This powder was mixed with gas carrier and blown-in into the filter substrate from upstream end at room temperature.
- the flow rate of gas carrier was 500 kg/hr.
- the loading of the second catalytic layer was 0.0164 g/in 3 (1.00 g/L) .
- the catalyzed particulate filter of Example 6 was prepared using double coats: a first catalytic layer coated from upstream end, extending in axial direction for 33%of the length of the filter substrate; and a second catalytic layer coated from upstream end of the wall-flow filter sub-strate.
- the wall-flow filter substrate had a size of 118.4 mm (D) *127 mm (L) , a volume of 1.4 L, a cell density of 300 cells per square inch, a wall thickness of approximately 200 ⁇ m, a porosi-ty of 65%and a mean pore size of 17 ⁇ m in diameter by mercury intrusion measurements.
- the Pd/Rh containing cat-alytic layer was prepared as following:
- Palladium in the form of a palladium nitrate solution was impregnated by planetary mixer onto a refractory alumina and a stabilized ceria-zirconia composite with approximately 40 wt. %ce-ria to form a wet powder while achieving incipient wetness.
- Rhodium in the form of a rhodium nitrate solution was impregnated by planetary mixer onto a refractory alumina and a stabilized ceria-zirconia composite with approximately 40 wt. %ceria to form a wet powder while achiev-ing incipient wetness.
- aqueous slurry was formed by adding the above wet powders into water, followed by the addition of barium hydroxide and zirconium nitrate solution. The slurry was then milled to a particle size of 90%being 5 ⁇ m. The slurry was then coated from the up-stream end of the wall-flow filter substrate and covering 33%of the total length of the filter substrate. After coating, the filter substrate plus the washcoat were dried at 150°C and then calcined at a temperature of 550°C for about 1 hour. The calcined Pd/Rh catalytic layer was having 68.7 wt. %ceria-zirconia composite, 0.23 wt. %palladium, 0.23 wt.
- the total loading of the first catalytic layer was 2.22 g/in 3 (135.47 g/L) for the coated area.
- the second catalytic layer was a high surface area alumina powder (about 150 m 2 /g) .
- This powder had a particle size distribution of 90%being 5 ⁇ m, 50%being 2 ⁇ m, and 10%being 0.8 ⁇ m, and a specific surface area (BET model, 77K nitrogen adsorption measurement) of 66 m 2 /g after 4hr calcination in air at 1000°C.
- This powder was mixed with gas carrier and blown-in into the filter substrate from upstream end at room temperature.
- the flow rate of gas carrier was 500 kg/hr.
- the loading of the second catalytic layer was 0.0164 g/in 3 (1.00 g/L) .
- the catalyzed particulate filter of Example 7 was prepared in a similar way as Example 3, ex-cept that the loading of the second catalytic layer was 0.115 g/in 3 (7.02 g/L) .
- the catalyzed particulate filter of Example 8 was prepared in a similar way as Example 4, ex-cept that the loading of the second catalytic layer was 0.111 g/in 3 (6.77 g/L) .
- the catalyzed particulate filter of Example 9 was prepared in a similar way as Example 5, ex-cept that the loading of the second catalytic layer was 0.106 g/in 3 (6.47 g/L) .
- the catalyzed particulate filter of Example 10 was prepared using double coats: a first catalytic layer coated from downstream end, extending in axial direction for 50%of the length of the filter substrate; and a second catalytic layer coated from upstream end of the wall-flow filter substrate.
- the wall-flow filter substrate had a size of 118.4 mm (D) *127 mm (L) , a volume of 1.4 L, a cell density of 300 cells per square inch, a wall thickness of approximately 200 ⁇ m, a porosity of 65%and a mean pore size of 17 ⁇ m in diameter by mercury intrusion measure-ments.
- the Pd/Rh containing cat-alytic layer was prepared as following:
- Palladium in the form of a palladium nitrate solution was impregnated by planetary mixer onto a refractory alumina and a stabilized ceria-zirconia composite with approximately 40 wt. %ce-ria to form a wet powder while achieving incipient wetness.
- Rhodium in the form of a rhodium nitrate solution was impregnated by planetary mixer onto a refractory alumina and a stabilized ceria-zirconia composite with approximately 40 wt. %ceria to form a wet powder while achiev-ing incipient wetness.
- aqueous slurry was formed by adding the above powders into water, followed by the addition of barium hydroxide and zirconium nitrate solution. The slurry was then milled to a particle size of 90%being 5 ⁇ m. The slurry was then coated from the down-stream end of the wall-flow filter substrate and covering 50%of the total length of the filter substrate. After coating, the filter substrate plus the washcoat were dried at 150°C and then calcined at a temperature of 550°C for about 1 hour. The calcined Pd/Rh catalytic layer was having 68.7 wt. %ceria-zirconia composite, 0.23 wt. %palladium, 0.23 wt.
- the total loading of the first catalytic layer was 2.22 g/in 3 (135.47 g/L) for the coated area.
- the second catalytic layer was a high surface area alumina powder (about 150 m 2 /g) .
- This powder had a particle size distribution of 90%being 5 ⁇ m, 50%being 2 ⁇ m, and 10%being 0.8 ⁇ m, and a specific surface area (BET model, 77K nitrogen adsorption measurement) of 66 m 2 /g after 4hr calcination in air at 1000°C.
- This powder was mixed with gas carrier and blown-in into the filter substrate from upstream end at room temperature.
- the flow rate of gas carrier was 500 kg/hr.
- the loading of the second catalytic layer was 0.106 g/in 3 (6.47 g/L) .
- Example 11 Testing of filtration efficiency and backpressure of catalyzed particulate filter
- PN downstream is the number of particulate matters measured downstream of the filter
- PN upstream is the number of particulate matters measured upstream of the filter
- dP upstream is the pressure drop measured upstream of the filter
- dP downstream is the pressure drop measured upstream of the filter.
- Example 2 was able to show comparable filtration efficiency to comparative Ex-ample 1, but with a favorable much lower backpressure.
- Example 6 As exhibited in FIG. 3, with the same universal washcoat loading of the first catalytic layer and the same material loading of the second catalytic layer, which was blown-in with gas carrier, Example 6, with the shortest coated length of the first catalytic layer, showed approximately 5%higher backpressure than Examples 3, 4 and 5, whose backpressures were measured similar under the described condition.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Combustion & Propulsion (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Environmental & Geological Engineering (AREA)
- Analytical Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Biomedical Technology (AREA)
- Health & Medical Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Catalysts (AREA)
- Processes For Solid Components From Exhaust (AREA)
- Filtering Of Dispersed Particles In Gases (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Exhaust Gas After Treatment (AREA)
Abstract
Description
Claims (18)
- A catalyzed particulate filter for exhaust gas from an internal combustion engine comprising:a particulate filter (PF) of total length L;a first catalytic layer coated onto the particulate filter, comprising a first composition, wherein the first composition comprising a first support material; and a first platinum group metal (PGM) and/or a first catalytic active transitional metal;a second catalytic layer coated onto the particulate filter, comprising a second composi-tion, wherein the second composition comprises a second support material; andsaid first catalytic layer is present on a portion of said PF, and extends from either up-stream or downstream end in axial direction of said PF for a length (L1) , and L1 is in the range from 20 to 90%of L.
- The catalyzed particulate filter according to claim 1, wherein L1 is in the range from 25%to 85%of L, preferably from 28%to 80%of L.
- The catalyzed particulate filter according to claim 1 or 2, wherein the ratio of the weight of the first catalytic layer to the volume of the portion of the PF coated with the first catalytic layer is in the range from 10 to 160 g/L, preferably from 15 to 150 g/L or from 20 to 120 g/L.
- The catalyzed particulate filter according to any of claims 1 to 3, wherein the ratio of the weight of the first catalytic layer to the total volume of the PF is in the range from 10 to 120 g/L, preferably from 20 to 100 g/L.
- The catalyzed particulate filter according to any of claims 1 to 4, wherein the first support material comprises at least one refractory metal oxide.
- The catalyzed particulate filter according to any of claims 1 to 5, wherein the first catalytic layer is a washcoat.
- The catalyzed particulate filter according to any of claims 1 to 6, wherein the first catalytic active transitional metal is selected from Cu, Fe, Co, Ni, La, Ce, Ag or Mn, or any combination thereof, preferably selected from Ce, Mn, Cu or Fe, or any combination thereof.
- The catalyzed particulate filter according to any of claims 1 to 7, wherein the second support material comprises at least one inorganic material, preferably, the inorganic material is select-ed from inorganic oxide and inorganic salt.
- The catalyzed particulate filter according to any of claims 1 to 8, wherein the second com-position is in the form of particulate, preferably the second composition has a D90 of 0.1 to 50 μm, preferably 1 to 20 μm, and more preferably a D90 of 3 to 10 μm.
- The catalyzed particulate filter according to any of claims 1 to 9, wherein the ratio of the weight of the second catalytic layer to the total volume of the PF is in the range from 0.5 to 20 g/L, preferably from 0.6 to 15 g/L, more preferably from 0.7 to 12 g/L.
- The catalyzed particulate filter according to any of claims 1 to 10, wherein the second cata-lytic layer is present on the whole length L of the PF.
- The catalyzed particulate filter according to any of claims 1 to 11, wherein said first catalyt-ic layer extends from upstream end of the PF.
- The catalyzed particulate filter according to any of claims 1 to 11, wherein said first catalyt-ic layer extends from downstream end of the PF.
- A process for preparing the catalyzed particulate filter according to any of claims 1 to 13, comprises:i) providing a filter substrate of total length L;ii) coating the filter substrate with a slurry containing the first composition from either the up-stream end or the downstream end of the particulate filter; andiii) further coating the filter substrate obtained in step ii) with the second composition;wherein the length (L1) of the portion of the filter substrate coated with the first composition is in the range from 20 to 90%of L.
- The process according to claim 14, wherein step (iii) is carried out by coating the filter sub-strate obtained in step (ii) with the second composition in a particulate form via a gas carrier through one side of the filter substrate.
- The process according to claim 14 or 15, wherein step (ii) further comprises calcinating the coated filter substrate after coating.
- A method for the treatment of exhaust gas from an internal combustion engine, which comprises flowing the exhaust gas from the engine through the catalyzed particulate filter ac-cording to any one of claims 1 to 13.
- The method according to claim 17, wherein the exhaust gas comprises unburned hydro-carbons, carbon monoxide, nitrogen oxides, and particulate matter.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020247007891A KR20240064639A (en) | 2021-08-11 | 2022-08-10 | Particulate filter with partially coated catalyst layer |
JP2024508500A JP2024531951A (en) | 2021-08-11 | 2022-08-10 | Particulate filter having a partially coated catalyst layer - Patents.com |
CN202280061120.5A CN117940205A (en) | 2021-08-11 | 2022-08-10 | Particulate filter with partially coated catalytic layer |
EP22855469.7A EP4384303A1 (en) | 2021-08-11 | 2022-08-10 | Particulate filter having partially coated catalytic layer |
US18/682,744 US20240344473A1 (en) | 2021-08-11 | 2022-08-10 | Particulate filter having partially coated catalytic layer |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2021112033 | 2021-08-11 | ||
CNPCT/CN2021/112033 | 2021-08-11 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023016489A1 true WO2023016489A1 (en) | 2023-02-16 |
Family
ID=85200579
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/111444 WO2023016489A1 (en) | 2021-08-11 | 2022-08-10 | Particulate filter having partially coated catalytic layer |
Country Status (6)
Country | Link |
---|---|
US (1) | US20240344473A1 (en) |
EP (1) | EP4384303A1 (en) |
JP (1) | JP2024531951A (en) |
KR (1) | KR20240064639A (en) |
CN (1) | CN117940205A (en) |
WO (1) | WO2023016489A1 (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050239642A1 (en) * | 2003-04-14 | 2005-10-27 | Yong-Woo Kim | Catalytic filter for removing soot particulates from diesel engine exhaust and method of preparing the same |
CN101516502A (en) * | 2006-08-19 | 2009-08-26 | 乌米科雷股份两合公司 | Catalytically coated diesel particle filter, process for producing it and its use |
CN103974768A (en) * | 2011-12-12 | 2014-08-06 | 庄信万丰股份有限公司 | Substrate monolith comprising SCR catalyst |
CN104632329A (en) * | 2014-12-31 | 2015-05-20 | 江西宝安新材料科技有限公司 | Metal soot particle filter for diesel engine |
CN109647088A (en) * | 2018-12-26 | 2019-04-19 | 中自环保科技股份有限公司 | A kind of preparation method of low back pressure and high soot filter efficiency diesel particulate filter |
CN109996595A (en) * | 2016-10-28 | 2019-07-09 | 庄信万丰股份有限公司 | Catalyzed wall-flow filter with part of the surface coating |
-
2022
- 2022-08-10 WO PCT/CN2022/111444 patent/WO2023016489A1/en active Application Filing
- 2022-08-10 EP EP22855469.7A patent/EP4384303A1/en active Pending
- 2022-08-10 KR KR1020247007891A patent/KR20240064639A/en unknown
- 2022-08-10 JP JP2024508500A patent/JP2024531951A/en active Pending
- 2022-08-10 CN CN202280061120.5A patent/CN117940205A/en active Pending
- 2022-08-10 US US18/682,744 patent/US20240344473A1/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050239642A1 (en) * | 2003-04-14 | 2005-10-27 | Yong-Woo Kim | Catalytic filter for removing soot particulates from diesel engine exhaust and method of preparing the same |
CN101516502A (en) * | 2006-08-19 | 2009-08-26 | 乌米科雷股份两合公司 | Catalytically coated diesel particle filter, process for producing it and its use |
CN103974768A (en) * | 2011-12-12 | 2014-08-06 | 庄信万丰股份有限公司 | Substrate monolith comprising SCR catalyst |
CN104632329A (en) * | 2014-12-31 | 2015-05-20 | 江西宝安新材料科技有限公司 | Metal soot particle filter for diesel engine |
CN109996595A (en) * | 2016-10-28 | 2019-07-09 | 庄信万丰股份有限公司 | Catalyzed wall-flow filter with part of the surface coating |
CN109647088A (en) * | 2018-12-26 | 2019-04-19 | 中自环保科技股份有限公司 | A kind of preparation method of low back pressure and high soot filter efficiency diesel particulate filter |
Also Published As
Publication number | Publication date |
---|---|
CN117940205A (en) | 2024-04-26 |
KR20240064639A (en) | 2024-05-13 |
US20240344473A1 (en) | 2024-10-17 |
EP4384303A1 (en) | 2024-06-19 |
JP2024531951A (en) | 2024-09-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11713705B2 (en) | Nitrous oxide removal catalysts for exhaust systems | |
EP2969205B1 (en) | Zoned catalyst for diesel applications | |
JP2020182943A (en) | Catalyst article for oxidizing nitrogen oxide, system and method | |
JP6925351B2 (en) | Multilayer catalyst composition for internal combustion engine | |
KR20130105644A (en) | Catalyst for gasoline lean burn engines with improved no oxidation activity | |
WO2010104658A2 (en) | Palladium-supported catalyst composites | |
CN106999921B (en) | Titania doped zirconia as platinum group metal support in catalysts for treating exhaust gas streams from combustion engines | |
US20230330640A1 (en) | Particulate Filter | |
US20220395814A1 (en) | Particulate filter | |
CN106061586B (en) | Improved catalyzed soot filter | |
WO2018163052A1 (en) | Catalyst combining platinum group metal with copper-alumina spinel | |
EP4284551A1 (en) | Particulate filter having a centralized-distributed pgm and process for preparing the same | |
US20230358155A1 (en) | Catalyzed particulate filter | |
WO2023016489A1 (en) | Particulate filter having partially coated catalytic layer | |
US20240001271A1 (en) | Particulate Filter Having A Centralized-Distributed Functional Material Layer And Process For Preparing The Same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22855469 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18682744 Country of ref document: US Ref document number: 2024508500 Country of ref document: JP |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112024002856 Country of ref document: BR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202417016356 Country of ref document: IN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202280061120.5 Country of ref document: CN |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2022855469 Country of ref document: EP Effective date: 20240311 |
|
ENP | Entry into the national phase |
Ref document number: 112024002856 Country of ref document: BR Kind code of ref document: A2 Effective date: 20240214 |