WO2023016360A1 - 加载l型枝节线的hmcsiw双带通滤波器 - Google Patents

加载l型枝节线的hmcsiw双带通滤波器 Download PDF

Info

Publication number
WO2023016360A1
WO2023016360A1 PCT/CN2022/110497 CN2022110497W WO2023016360A1 WO 2023016360 A1 WO2023016360 A1 WO 2023016360A1 CN 2022110497 W CN2022110497 W CN 2022110497W WO 2023016360 A1 WO2023016360 A1 WO 2023016360A1
Authority
WO
WIPO (PCT)
Prior art keywords
shaped
hmcsiw
dielectric substrate
bandpass filter
metal layer
Prior art date
Application number
PCT/CN2022/110497
Other languages
English (en)
French (fr)
Inventor
许锋
张笑
Original Assignee
南京邮电大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京邮电大学 filed Critical 南京邮电大学
Priority to JP2023503510A priority Critical patent/JP7345952B2/ja
Publication of WO2023016360A1 publication Critical patent/WO2023016360A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/201Filters for transverse electromagnetic waves
    • H01P1/205Comb or interdigital filters; Cascaded coaxial cavities

Definitions

  • the invention belongs to the field of microwave technology, and in particular relates to an HMCSIW double-bandpass filter loaded with L-shaped stub lines, in particular to a double-passband filter coupled with a source and a load.
  • SIW Substrate Integrated Waveguide
  • CSIW comb-like line substrate integrated waveguide
  • the present invention provides an HMCSIW dual-bandpass filter loaded with L-shaped stub lines. By introducing transmission zeros, frequency band separation is realized, and finally a dual-passband filter is formed. An attempt at a passband filter.
  • the present invention is a HMCSIW dual-bandpass filter loaded with L-shaped stub lines, which uses U-shaped slot perturbation and L-shaped stub line coupling source and load to realize the HMCSIW filter with dual-pass bands.
  • a tapered rectangular slot is introduced to widen the stopband bandwidth.
  • the HMCSIW double bandpass filter of the present invention uses HMCSIW as a basic transmission line, and includes a dielectric substrate, a top metal layer arranged on the upper surface of the dielectric substrate, and a bottom metal layer arranged on the lower surface of the dielectric substrate.
  • Periodic quarter-wavelength comb stub lines are arranged on the upper and lower surfaces of the dielectric substrate, and two microstrip lines are also arranged.
  • the two microstrip lines are respectively inserted into the HMCSIW waveguide through a trapezoidal transition structure, and are respectively used as input and output ports. .
  • Two groups of tapered rectangular grooves are etched on the bottom metal layer of the dielectric substrate, which are respectively located in the transition area of the input and output ports, so as to widen the bandwidth of the stop band.
  • the further improvement of the present invention is: the length of each L-shaped open stub line is 18-20mm, the width of each L-shaped open stub line is 4-5mm, the size of the L-shaped open stub line and the two L-shaped
  • the distance between the open-circuit stub lines will affect the coupling effect of the source and the load, thereby affecting the position of the transmission zero point.
  • the U-shaped EBG structure, the slot height of each U-shaped EBG structure is 3-4mm, and the slot width is 1 -3mm, the slot width is 0.1-0.3mm.
  • the size and period of the U-shaped slit, that is, the EBG, are determined as required.
  • the size of the U-shaped slit and the distance between adjacent U-shaped slits will affect the performance of the mother filter.
  • a further improvement of the present invention is that: the impedance of each microstrip line is 50 ohms.
  • the present invention first introduces three U slots on the upper surface of the HMCSIW to realize a wide-band mother filter, and then couples the source and the load through two L-shaped stub lines to generate a transmission zero point, and the mother filter
  • the passband is split into two sub-passbands to finally construct a dual-passband filter; in this process, the out-of-band rejection performance of the dual-passband filter is further optimized by loading a gradient slot at the feed to widen the bandwidth of the stopband , so as to obtain the expected result.
  • the invention has the characteristics of novel structure, compact size, simple processing and the like.
  • Fig. 1 is a schematic top view of the structure of the HMCSIW mother filter in the present invention.
  • FIG. 2 is a schematic structural diagram of an HMCSIW dual bandpass filter loaded with L-shaped stub lines in the present invention.
  • Fig. 3 is a schematic diagram of three-dimensional analysis of the HMCSIW double bandpass filter loaded with L-shaped stub lines in the present invention.
  • Fig. 4 is an S-parameter simulation structure diagram of the HMCSIW double-bandpass filter loaded with L-shaped stub lines in the present invention.
  • Fig. 5 is a comparative diagram of the S parameter curves of the HMCSIW dual-passband filter with or without loading gradient rectangular slots in the present invention.
  • Fig. 6 is a comparative diagram of the S parameter curves of the HMCSIW dual-passband filter with or without loading a gradient rectangular slot in the present invention.
  • the invention discloses an HMCSIW double-bandpass filter loaded with L-shaped stub lines, which adopts frequency band separation technology to realize double-passbands.
  • a broadband mother filter then introduce an L-shaped open-circuit stub line, couple the source and the load, generate a transmission zero, and split the mother passband into two sub-passbands to form a double passband, each of the L
  • the length of the open stub line 4 of the type is 18-20mm
  • the width of each of the L-shaped open stub lines 4 is 4-5mm
  • the coupling distance between the two L-shaped open stub lines 4 is 0.2- Adjust between 0.4mm to determine the position of the transmission zero point.
  • a gradient rectangular structure is etched in the transition area where the microstrip connects to the HMCSIW.
  • the function is to combine the two transition areas to achieve miniaturization, which can be more efficient.
  • the implementation of mode conversion improves the performance of the HMCSIW dual passband filter.
  • the broadband mother filter is mainly composed of HMCSIW structure and three U-shaped EBGs.
  • the structure is shown in Figure 1.
  • each U-shaped slot Type EBG structure 2 has a groove height of 3-4mm, a groove width of 1-3mm, and a groove gap width of 0.1-0.3mm.
  • the coupling structure of source and load is introduced.
  • the specific implementation method introduce two L-shaped open-circuit stub lines near the input and output ports, with a gap in the middle, and finally realize a coupling path. Through This method can flexibly control the strength of the coupling, which can be used to generate multiple transmission zeros.
  • the dual-passband filter proposed in this experiment realizes source and load coupling by directly connecting two feed ends, ie, microstrip line 8, which makes the structure relatively simple and compact, and easy to process.
  • the two L-shaped open-circuit stub lines are the key to realize the dual-pass frequency band, and they are modeled and analyzed according to the model structure.
  • the overall plane structure is shown in Figure 2, mainly including: input and output feed structure, gradually changing rectangular slots, three U-shaped slots, two L-shaped open stub lines, and HMCSIW.
  • the design of the filter starts with an all-mode CSIW structure, and the feed port consists of a 50 ⁇ microstrip line 8 .
  • Gradient rectangular grooves are etched in the trapezoidal transition area from the microstrip line to the HMCSIW to improve impedance matching.
  • DGS is a slow wave structure that has certain constraints on electromagnetic waves and can reduce the length of the transition zone to a certain extent.
  • U-shaped grooves are used for Construct a broadband filter, two L-shaped open-circuit short-circuits couple the source and the load, introduce a transmission zero, split the mother passband into two sub-passbands, and finally realize a dual-passband filter, specifically three-dimensional
  • the structure diagram is shown in Figure 3.
  • the upper and lower black surfaces in the figure represent the metal layer, and the white part in the middle represents the dielectric substrate.
  • the periodic quarter-wavelength comb-shaped stub lines are arranged on the upper and lower surfaces of the dielectric substrate 6. The spacing is determined as required.
  • the substrate used is Rogers (RT/Duriod) 5880, which has a dielectric constant of 2.2, a thickness of 0.508 millimeters, and a loss tangent of 0.0009.
  • the impedance of the two microstrip lines is 50 ohms. Two microstrip lines are used as the input and output of the filter respectively.
  • Figure 4 describes the S-parameter simulation results of the HMCSIW dual-passband filter. Due to the introduction of the L-shaped open-circuit stub line, a transmission zero point is generated at the position of 11.45 GHz in the original mother passband, which is divided into two sub-passbands. At the same time, the five resonance points in the mother filter are distributed to two Among the sub-passbands, the first passband has three resonant points, and the second passband has two resonant points. The first passband of the dual-passband filter designed in this experiment ranges from 8.08GHz to 10.54GHz.
  • the frequency is 9.4GHz
  • the relative bandwidth is about 26.2%
  • the second passband ranges from 12.1GHz to 13.6GHz
  • the center frequency is 12.8GHz
  • the relative bandwidth is about 11.7%.
  • the return loss of the two passbands is better than 12dB
  • the insertion loss is better than 1.5dB
  • the performance is good.
  • Figures 5 and 6 show the comparison of the S-parameters of the double-passband filter with and without the gradient rectangular slot loaded.
  • the filter loaded with the gradient slot has better suppression of out-of-band signals at the low frequency of the first passband, which means It is because DGS has a single-pole stop band characteristic, which will generate resonance at a specific frequency point, so as to obtain better out-of-band suppression characteristics and optimize the performance of the entire filter.
  • the present invention uses a frequency band separation structure, first designs a broadband mother filter, then couples the source and the load through two L-shaped stub lines to generate transmission zeros, splits the mother passband into two sub-passbands, and finally constructs A dual passband filter.
  • the tapered slot is loaded at the feeder, and the single-pole stopband characteristic of DGS is used to widen the stopband bandwidth and further optimize the out-of-band rejection characteristic of the filter.
  • the invention has novel structure, easy processing and good performance.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

本发明是加载L型枝节线的HMCSIW双带通滤波器,以HMCSIW作为基础传输线,包括介质基板以及设置在介质基板上表面的顶层金属层和设置在所述介质基板下表面的底层金属层,在介质基板的顶层金属层上刻蚀数个U型缝隙,实现宽频带的母滤波器,且在顶层金属层的宽边加载两条L型枝节线,两条L型枝节线之间的距离用于产生传输零点,在介质基板的底层金属层刻蚀两组渐变矩形槽,分为位于输入输出端口的过渡区域,拓宽阻带带宽。本发明首先在HMCSIW的上表面引入三个U缝隙实现宽频带的母滤波器,接着通过两个L型的枝节线将源和负载进行耦合,产生传输零点,将母通带分裂成两个子通带,最终构建一款双通带滤波器。

Description

加载L型枝节线的HMCSIW双带通滤波器 技术领域
本发明属于微波技术领域,具体的说是涉及一种加载L型枝节线的HMCSIW双带通滤波器,尤其涉及源和负载耦合的双通带滤波器。
背景技术
现代通信技术的不断发展对通信电路的各项指标提出了越来越高的要求,矩形波导、微带线等传统微波电路已经难以达到人们对未来新型微波电路的期许,所以研究传输性能高、结构简单、尺寸紧凑的新型微波电路是很有意义的。SIW(基片集成波导)作为一种新型波导结构,近些年来被广泛使用于微波电路中,但由于其需要进行金属钻孔,当在金属孔直径较小时,加工容易出现偏差,这会大大影响SIW器件的精度。CSIW(类梳状线基片集成波导)是SIW衍生的产物,继承了SIW的大部分特性,其四分之一波长开路梳状线用来克服了SIW中金属化过孔难以加工,且无法与有源器件集成的困难,进一步拓宽了微波元件的应用范畴。
现代无线通信中,各种通信协议相继出现,有限的频谱资源显得极其珍贵,为此,提高频谱的利用率成了当务之急。学者们对已有的只能工作在单个频段的通信系统进行改进,使其可以在不同频段工作,进而小体积、低损耗、低成本,易集成的双通道或多通道的微波器件成为一个研究热点,滤波器就是其中之一。
近年来,出现了许多基于CSIW的天线,但是对于耦合电路的研究涉猎甚少,特别是双通带的滤波器。对于双通带的实现可以引入传输零点进行频带分离。传输零点的获取分别是由源和负载的耦合或者是非相邻谐振器间的交叉耦合来实现的,然而这些方法都引入了特殊的拓扑结构,这就导致这些滤波器在设计过程中要么结构太复杂要么加工成本太高。所以结构简单紧凑,易加工的双通带滤波器是值得研究的课题。
发明内容
为了解决上述技术问题,本发明提供了一种加载L型枝节线的HMCSIW双带通滤波器,通过引入传输零点,实现频带分离,最终形成一款双通带滤波器,是业内使用HMCSIW设计双通带滤波器的一次尝试。
为了达到上述目的,本发明是通过以下技术方案实现的:
本发明是一种加载L型枝节线的HMCSIW双带通滤波器,使用U型缝隙微扰和L型枝节线耦合源和负载实现了双通带的HMCSIW滤波器,为了进一步优化带外特性,引入渐变矩形槽,拓宽阻带带宽。
本发明的HMCSIW双带通滤波器以HMCSIW作为基础传输线,包括介质基板以及设置在介质基板上表面的顶层金属层和设置在所述介质基板下表面的底层金属层。
在介质基板的上下表面排列着周期性的四分之一波长梳状枝节线,还设置有两条微带线,两条微带线分别通过梯形过渡结构介入HMCSIW波导中,分别作为输入输出端口。
在介质基板的顶层金属层上刻蚀数个U型缝隙,实现宽频带的母滤波器,且在顶层金属层的宽边加载两条L型的开路枝节线,两条L型的开路枝节线之间的耦合间距在0.2-0.4mm之间调整,耦合源和负载,产生传输零点,实现频带分离,两条L型的开路枝节线之间的距离用于产生传输零点。
在介质基板的底层金属层刻蚀两组渐变矩形槽,分别位于输入输出端口的过渡区域,拓宽阻带带宽。
本发明的进一步改进在于:每条L型的开路枝节线的长度为18-20mm,每条L型的开路枝节线的宽度为4-5mm,L型的开路枝节线的尺寸以及两个L型的开路枝节线之间的距离会影响源和负载的耦合效果,从而影响传输零点的位置,所述U型EBG结构,每个所述U型EBG结构的槽高度为3-4mm, 槽宽度1-3mm,槽缝隙宽度为0.1-0.3mm。U型缝隙即EBG尺寸以及周期根据需要确定,U型缝隙的尺寸以及相邻U型缝隙的距离会影响母滤波器的性能。
本发明的进一步改进在于:每条所述微带线的阻抗均为50欧姆。
本发明的有益效果是:本发明首先在HMCSIW的上表面引入三个U缝隙实现宽频带的母滤波器,接着通过两个L型的枝节线将源和负载进行耦合,产生传输零点,将母通带分裂成两个子通带,最终构建一款双通带滤波器;在这过程中通过在馈电处加载渐变槽,拓宽阻带带宽,进一步优化该双通带滤波器的带外抑制性能,从而获得预想结果。
本发明具有结构新颖、尺寸紧凑、加工简单等特点。
附图说明
图1是本发明中HMCSIW母滤波器的结构俯视示意图。
图2是本发明中加载L型枝节线的HMCSIW双带通滤波器的结构示意图。
图3是本发明中加载L型枝节线的HMCSIW双带通滤波器的三维剖析示意图。
图4是本发明中加载L型枝节线的HMCSIW双带通滤波器的S参数仿真结构图。
图5是本发明中有无加载渐变矩形槽的HMCSIW双通带滤波器的S参数曲线对比图。
图6是本发明中有无加载渐变矩形槽的HMCSIW双通带滤波器的S参数曲线对比图。
图中:1-梳状枝节线;2-U型EBG结构;3-渐变矩形槽;4-L型的开路枝节线;5-顶层金属层;6-介质基板;7-底层金属层;8-微带线
具体实施方式
以下将以图式揭露本发明的实施方式,为明确说明起见,许多实务上的细节将在以下叙述中一并说明。然而,应了解到,这些实务上的细节不应用以限制本发明。也就是说,在本发明的部分实施方式中,这些实务上的细节是非必要的。
本发明公开了一种加载L型枝节线的HMCSIW双带通滤波器,采用频带分离技术实现双通带。首先设计一个宽频带的母滤波器,接着引入L型的开路枝节线,耦合源和负载,产生传输零点,将母通带分裂成两个子通带,从而形成双通带,每条所述L型的开路枝节线4的长度为18-20mm,每条所述L型的开路枝节线4的宽度为4-5mm,两条所述L型的开路枝节线4之间的耦合间距在0.2-0.4mm之间调整,以决定传输零点的位置,另外为了提高性能,在微带连接HMCSIW的过渡区域刻蚀渐变矩形结构,其作用是将两个过渡区组合在一起实现微型化,能够更高效的实现模式转化,从而改善HMCSIW双通带滤波器的性能。
宽频带的母滤波器主要由HMCSIW结构和三个U型EBG组成,结构如图1所示,
在HMCSIW的顶层金属层5上刻蚀了三个对称的U型槽,利用U型槽的产生传输零点,最终构成一款超宽带滤波器,U型槽的周期为5mm,每个所述U型EBG结构2的槽高度为3-4mm,槽宽度1-3mm,槽缝隙宽度为0.1-0.3mm,
随后,引入源和负载的耦合结构。采用L型开路枝节的微带线来实现源和负载耦合,具体实现方式:在靠近输入输出端口的地方分别引入两个L型的开路枝节线,中间有一个缝隙,最终实现一条耦合路径,通过此方法,可以灵活控制耦合的强度,用作产生多个传输零点。本实验所提出的双通带滤波器是直接将两个馈电端即微带线8相连来实现源和负载耦合的,这就使得结构较为简单紧凑,易加工。其中两个L型的开路枝节线是实现双通频带的 关键,按照模型结构对其进行建模分析。
整体平面结构如图2所示,主要包括:输入输出馈电结构、渐变的矩形槽、三个U型槽、两个L型开路枝节线,以及HMCSIW。该滤波器的设计始于全模式CSIW结构,馈电端口由50Ω的微带线8组成。微带线到HMCSIW的梯形过渡区域刻蚀渐变的矩形槽,改善阻抗匹配,DGS是一种慢波结构,对电磁波具有一定的束缚,可以一定程度上缩小过渡带的长度,U型槽用于构建一个宽带的滤波器,两个L型的开路短接线将源和负载之间实现耦合,引入传输零点,将母通带分裂成两个子通带,最终实现双通带滤波器,具体的三维结构图如3所示,图中的上下黑色表面表示金属层,中间白色部分表示介质基板,在所述介质基板6的上下表面排列这周期性的四分之一波长梳状枝节线,之间的间距根据需要确定。
下面通过具体实施例对本发明的技术方案做进一步的详细说明:
本发明实施例中,使用的基片是罗杰斯(RT/Duriod)5880,其介电常数为2.2、厚度为0.508毫米、损耗角正切为0.0009,两条微带线的阻抗均为50欧姆,这两条微带线分别作为滤波器的输入端和输出端。
实施例1
使用HFSS对以上设计的结构进行建模仿真,图4描述的是该HMCSIW双通带滤波器的S参数仿真结果。由于L型的开路枝节线的引入,在原本母通带中的11.45GHz位置产生了一个传输零点,将其分为两个子通带,同时,将母滤波器中的五个谐振点分配到两个子通带中,第一个通带有三个谐振点,第二个通带有两个谐振点,本实验设计的双通带滤波器第一个通频带的范围为8.08GHz到10.54GHz,中心频率为9.4GHz,相对带宽约为26.2%,第二个通频带的范围为12.1GHz到13.6GHz,中心频率为12.8GHz,相对带宽约为11.7%。两个通频带的回波损耗均优于12dB,插入损耗优于1.5dB,性能良好。
图5、6显示的是有无加载渐变矩形槽的双通带滤波器S参数的对比,加 载渐变槽的滤波器在第一个通带的低频处带外信号得到了更好的抑制,这是因为DGS具有单极点阻带特性,会在特定频点会产生谐振,从而获得更好的带外抑制特性,使整个滤波器的性能得到优化。
本发明使用频带分离结构,先设计一个宽频带的母滤波器,然后通过两个L型的枝节线将源和负载进行耦合,产生传输零点,将母通带分裂成两个子通带,最终构建一款双通带滤波器。在这过程中通过在馈电处加载渐变槽,利用DGS的单极点阻带特性,拓宽阻带带宽,进一步优化该滤波器的带外抑制特性。
本发明结构新颖,易于加工,性能良好。
以上所述仅为本发明的实施方式而已,并不用于限制本发明。对于本领域技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原理的内所作的任何修改、等同替换、改进等,均应包括在本发明的权利要求范围之内。

Claims (7)

  1. 一种加载L型枝节线的HMCSIW双带通滤波器,以HMCSIW作为基础传输线,包括介质基板(6)以及设置在所述介质基板(6)上表面的顶层金属层(5)和设置在所述介质基板(6)下表面的底层金属层(7),在所述顶层金属层(5)远离梳状枝节线的一侧刻蚀数个U型EBG结构实现宽频带的母滤波器,在所述顶层金属层(5)远离梳状枝节线的宽边加载两条L型的开路枝节线(4),在所述介质基板(6)的上表面设置有两条微带线(8)分别作为滤波器的输入端和输出端,两条微带线(8)分别通过梯形过渡结构与HMCSIW衔接,在靠近输入端和输出端的地方分别引入两个L型的开路枝节线(4),且两条L型的开路枝节线(4)之间存在距离用于产生传输零点,两条所述L型的开路枝节线(4)之间的耦合间距在0.2-0.4mm之间调整。
  2. 根据权利要求1所述加载L型枝节线的HMCSIW双带通滤波器,其特征在于:在所述介质基板(6)的底层金属层(7)中靠近馈电端口的位置刻蚀渐变矩形槽(3)。
  3. 根据权利要求1所述加载L型枝节线的HMCSIW双带通滤波器,其特征在于:每条所述L型的开路枝节线(4)的长度为18-20mm,每条所述L型的开路枝节线(4)的宽度为4-5mm。
  4. 根据权利要求1所述加载L型枝节线的HMCSIW双带通滤波器,其特征在于:所述U型EBG结构(2),每个所述U型EBG结构(2)的槽高度为3-4mm,槽宽度1-3mm,槽缝隙宽度为0.1-0.3mm。
  5. 根据权利要求4所述加载L型枝节线的HMCSIW双带通滤波器,其特征在于:所述U型EBG结构(2)的数量为三个。
  6. 根据权利要求1所述加载L型枝节线的HMCSIW双带通滤波器,其特征在于:每条所述微带线的阻抗均为50欧姆。
  7. 根据权利要求1所述加载L型枝节线的HMCSIW双带通滤波器,其特 征在于:在所述介质基板(6)的上下表面排列着周期性的四分之一波长梳状枝节线(1)。
PCT/CN2022/110497 2021-08-09 2022-08-05 加载l型枝节线的hmcsiw双带通滤波器 WO2023016360A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023503510A JP7345952B2 (ja) 2021-08-09 2022-08-05 L字形スタブを付加したhmcsiwデュアルバンドパスフィルタ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110906392.8A CN113611995B (zh) 2021-08-09 2021-08-09 加载l型枝节线的hmcsiw双带通滤波器
CN202110906392.8 2021-08-09

Publications (1)

Publication Number Publication Date
WO2023016360A1 true WO2023016360A1 (zh) 2023-02-16

Family

ID=78339898

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/110497 WO2023016360A1 (zh) 2021-08-09 2022-08-05 加载l型枝节线的hmcsiw双带通滤波器

Country Status (3)

Country Link
JP (1) JP7345952B2 (zh)
CN (1) CN113611995B (zh)
WO (1) WO2023016360A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116759779A (zh) * 2023-08-22 2023-09-15 安徽蓝讯通信科技有限公司 一种5g毫米波滤波功分模块
CN116937091A (zh) * 2023-09-19 2023-10-24 中国计量大学 一种sspp与siw混合电路的可重构带通滤波器

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113611995B (zh) 2021-08-09 2022-06-14 南京邮电大学 加载l型枝节线的hmcsiw双带通滤波器
CN114725658B (zh) * 2022-04-14 2023-06-06 西华大学 一种融合缺陷结构的慢波介质集成滤波天线及其设计方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105186080A (zh) * 2015-07-27 2015-12-23 电子科技大学 一种半模基片集成波导带通滤波器
CN106602185A (zh) * 2016-12-07 2017-04-26 中国船舶重工集团公司第七〇九研究所 一种基于非对称短路枝节加载谐振器的双通带滤波器
CN107565195A (zh) * 2017-08-21 2018-01-09 成都艺馨达科技有限公司 微波滤波器
CN110957553A (zh) * 2019-12-27 2020-04-03 华勤通讯技术有限公司 一种滤波器
CN113611995A (zh) * 2021-08-09 2021-11-05 南京邮电大学 加载l型枝节线的hmcsiw双带通滤波器

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4697160A (en) * 1985-12-19 1987-09-29 Hughes Aircraft Company Hybrid power combiner and amplitude controller
KR101367310B1 (ko) * 2013-02-07 2014-03-27 주식회사 아이스퀘어엠 선택도를 향상시킨 광대역 분기선 결합기
KR101429105B1 (ko) * 2013-03-25 2014-08-18 아주대학교산학협력단 폴디드 코러게이티드 기판 집적 도파관
CN203367454U (zh) * 2013-08-19 2013-12-25 国家电网公司 一种基于半模基片集成波导的带通滤波器
US20200076037A1 (en) * 2017-05-15 2020-03-05 Valorbec Societe En Commandite Contactless air-filled substrate integrated waveguide devices and methods
CN109244614B (zh) * 2018-08-30 2021-03-02 南京理工大学 一种基于dgs结构的谐波抑制超宽带滤波器
CN109768358B (zh) * 2019-02-25 2020-08-18 广东曼克维通信科技有限公司 一种耦合折叠基片集成波导滤波器
CN112366434A (zh) 2020-10-20 2021-02-12 南京航空航天大学 基于双层半模梳状型基片集成波导的高共模抑制传输线

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105186080A (zh) * 2015-07-27 2015-12-23 电子科技大学 一种半模基片集成波导带通滤波器
CN106602185A (zh) * 2016-12-07 2017-04-26 中国船舶重工集团公司第七〇九研究所 一种基于非对称短路枝节加载谐振器的双通带滤波器
CN107565195A (zh) * 2017-08-21 2018-01-09 成都艺馨达科技有限公司 微波滤波器
CN110957553A (zh) * 2019-12-27 2020-04-03 华勤通讯技术有限公司 一种滤波器
CN113611995A (zh) * 2021-08-09 2021-11-05 南京邮电大学 加载l型枝节线的hmcsiw双带通滤波器

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
IQBAL AMJAD; TIANG JUN JIAT; KWANG LEE CHING; MUHAMMAD SURAJO: "Wideband Half Mode Substrate Integrated Waveguide (HMSIW) Bandpass Filter", 2020 17TH INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING/ELECTRONICS, COMPUTER, TELECOMMUNICATIONS AND INFORMATION TECHNOLOGY (ECTI-CON), IEEE, 24 June 2020 (2020-06-24), pages 710 - 712, XP033807115, DOI: 10.1109/ECTI-CON49241.2020.9158241 *
JIANG DI; LIU YUPENG; LI XIAOYU; WANG GUOFU; ZHENG ZHI: "Tunable Microwave Bandpass Filters With Complementary Split Ring Resonator and Liquid Crystal Materials", IEEE ACCESS, IEEE, USA, vol. 7, 1 January 1900 (1900-01-01), USA , pages 126265 - 126272, XP011745737, DOI: 10.1109/ACCESS.2019.2924194 *
LV DAN-DAN, MENG LINGQIN, ZOU ZHE: "MINIATURIZED HMSIW DUAL-BAND FILTER BASED ON CSRRS AND MICROSTRIP OPEN-STUBS", PROGRESS IN ELECTROMAGNETICS RESEARCH LETTERS, vol. 77, 1 January 2018 (2018-01-01), pages 97 - 102, XP093035055, DOI: 10.2528/PIERL18030202 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116759779A (zh) * 2023-08-22 2023-09-15 安徽蓝讯通信科技有限公司 一种5g毫米波滤波功分模块
CN116759779B (zh) * 2023-08-22 2023-11-10 安徽蓝讯通信科技有限公司 一种5g毫米波滤波功分模块
CN116937091A (zh) * 2023-09-19 2023-10-24 中国计量大学 一种sspp与siw混合电路的可重构带通滤波器
CN116937091B (zh) * 2023-09-19 2023-12-08 中国计量大学 一种sspp与siw混合电路的可重构带通滤波器

Also Published As

Publication number Publication date
CN113611995B (zh) 2022-06-14
JP7345952B2 (ja) 2023-09-19
CN113611995A (zh) 2021-11-05
JP2023536400A (ja) 2023-08-25

Similar Documents

Publication Publication Date Title
WO2023016360A1 (zh) 加载l型枝节线的hmcsiw双带通滤波器
CN104425860A (zh) 一种宽阻带特性的基片集成波导带通滤波器
CN103367844B (zh) 基于多个枝节加载的三通带高温超导滤波器
CN103326093A (zh) 新型交叉耦合基片集成波导带通滤波器
CN110400995B (zh) 小型化宽阻带的hmsiw单腔三模带通滤波器
CN106654497B (zh) 小型化宽带慢波半模基片集成波导耦合器及其设计方法
CN101719579B (zh) 多频带带阻滤波器及多频带带通滤波器
CN111063975B (zh) 基于脊间隙波导的Ka波段GYSEL功分器
CN104466317A (zh) 砷化镓双模带通滤波器及其制备方法
CN105489984A (zh) 一种分形缺陷结构四分之一模基片集成波导带通滤波器
CN104319435A (zh) 一种应用于wlan系统的基片集成波导带通滤波器
CN204289663U (zh) 一种采用频率选择性耦合来抑制基波的毫米波滤波器
CN2886828Y (zh) 毫米波定向耦合器
CN1825691A (zh) 微波毫米波基片集成波导定向耦合器
CN204130666U (zh) 一种应用于wlan系统的基片集成波导带通滤波器
CN212257633U (zh) 一种半模基片集成波导双带滤波器
CN109638395B (zh) 一种微带超宽带带通滤波器
CN112928409A (zh) 具有宽阻带和高选择性的微带带通滤波器
CN114784475B (zh) 带有微带滤波枝节的毫米波波导-悬置微带探针过渡结构
CN104466316A (zh) 一种2x波段缺陷接结构-半模基片集成波导滤波器
CN203895577U (zh) 基于三分之一等边三角形基片集成波导的带通滤波器
CN209747694U (zh) 一种互补开口谐振环和u槽缺陷地的低通滤波器
CN113488752A (zh) 一种基于c型谐振器的五陷波微型超宽带滤波器
CN108539333B (zh) 混合半模基片集成波导和微带线的紧凑型宽带带通滤波器
CN107086339B (zh) 一种基于新型缺陷微带结构的超宽带滤波器

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2023503510

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22855341

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE