WO2023016295A1 - 熔化极绞丝电弧磁旋控焊接方法 - Google Patents

熔化极绞丝电弧磁旋控焊接方法 Download PDF

Info

Publication number
WO2023016295A1
WO2023016295A1 PCT/CN2022/109579 CN2022109579W WO2023016295A1 WO 2023016295 A1 WO2023016295 A1 WO 2023016295A1 CN 2022109579 W CN2022109579 W CN 2022109579W WO 2023016295 A1 WO2023016295 A1 WO 2023016295A1
Authority
WO
WIPO (PCT)
Prior art keywords
welding
twisted wire
arc
wire
magnetic field
Prior art date
Application number
PCT/CN2022/109579
Other languages
English (en)
French (fr)
Inventor
黄瑞生
孙谦
武鹏博
梁晓梅
徐锴
陈健
曹浩
方乃文
韩鹏薄
Original Assignee
哈尔滨焊接研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 哈尔滨焊接研究院有限公司 filed Critical 哈尔滨焊接研究院有限公司
Publication of WO2023016295A1 publication Critical patent/WO2023016295A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/16Arc welding or cutting making use of shielding gas
    • B23K9/173Arc welding or cutting making use of shielding gas and of a consumable electrode
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/095Monitoring or automatic control of welding parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/32Accessories

Definitions

  • the invention relates to the technical field of quality control of molten pole twisted wire arc welding joints, in particular to a melting pole twisted wire arc magnetic spin control welding method.
  • Multi-strand stranded welding wire is a new type of melting electrode welding material. Its concept was first proposed by Professor Gao Ding of China University of Mining and Technology in 2009. Its production method is to twist a single wire into a spiral multi-strand wire. Compared with Ordinary welding wire, multi-strand welding wire structure can be combined with different diameters or quantities of single wires, and the composition can also be precisely controlled by different components and quantities of single wires, especially in terms of welding physical properties, when multi-strand wires are welded A multi-spotted current conduction will be formed. This arc conduction form is more conducive to improving the distribution of arc energy and the uniform transition of molten droplets.
  • the purpose of the present invention is to provide a melting pole twisted wire arc magnetic spin control welding method, the method is centered on the twisted wire welding melting pole arc welding point, and a coaxial coil is added around it to effectively improve the internal pores, Joint performance degradation and other technical deficiencies, to achieve the purpose of further regulation of weld structure and joint performance.
  • the invention provides a melting pole twisted wire arc magnetic spin control welding method, which takes the twisted wire welding melting pole arc welding point as the center, and a coaxial coil is added around it, and a direct current is passed into the coaxial coil to form Longitudinal magnetic field, the force direction of the longitudinal magnetic field on the twisted wire welding arc should be consistent with the self-rotation direction of the twisted wire welding arc, opposite to the twisting direction of the twisted wire, and the direction of the longitudinal magnetic field should pass through the direct current direction control;
  • the stranded wire welding arc is in the longitudinal magnetic field, while the skeined wire is melted to form its own twisting angle and released, and affected by the Lorentz force, the rotational angular velocity of the skeined wire welding arc is rapidly increased, realizing high-speed directional rotation of the skeined wire welding arc;
  • the control of The stirring force of the molten pool makes the molten pool produce a directional rotational flow, and during the solidification process, the dendrites are broken into equiaxed crystals and the grains are refined.
  • the process parameters are as follows: the welding object is 5A06 aluminum alloy, the welding speed is 0.6m/min, the welding voltage is 26V, and the wire feeding speed is 11m/min.
  • the overall size of the coaxial coil has an outer diameter of 40 mm to 150 mm, an inner diameter of 30 mm to 140 mm, a width of 4 mm to 50 mm, and a coil number of 50 to 2000 turns , the DC current is 0-10A, and the coaxial coil can be replaced by a permanent magnet.
  • the present invention is a melting pole twisted wire arc magnetic spin control welding method, which adopts adding a longitudinal magnetic field around the twisted wire welding melting pole arc welding spot, and utilizes the Lorentz force to rapidly increase the twisted wire welding arc self-rotation angular velocity,
  • the high-speed directional rotation of the stranded wire welding arc can greatly increase the stirring force of the molten pool, so that the molten pool can produce a directional rotational flow, thereby achieving the effect of refining the grains, and can also crush the dendrites into pieces during the solidification process.
  • Axial grains can homogenize the grains, increase the isotropy of the grains and reduce segregation, thereby enhancing the mechanical properties of the welded joint such as plasticity and toughness.
  • the present invention also uses arc stirring at the same time, which can increase the heat transfer and mass transfer speed in the molten pool, thereby delaying the solidification speed at the bottom of the molten pool in terms of crystallization temperature, nucleation conditions, etc., plus its convection and stirring of the molten pool Function, so that the gas inside the molten pool can be effectively precipitated, thereby reducing the tendency of process-type pores to form.
  • the present invention can adjust the directional rotation speed of the twisted wire welding arc by controlling the magnetic field strength.
  • the stability of itself can be effectively improved, and the length of the twisted wire welding arc can also be significantly shortened, and the electric field strength of the arc can be improved.
  • the transfer frequency of the droplet increases accordingly, making the impact effect of a single droplet on the molten pool smaller. Therefore, it can also effectively reduce welding spatter during high-current welding, making the welding process more stable, and effectively improving the deposition rate. Rate.
  • the present invention can effectively adjust the thermal field distribution in the arc heat source of stranded wire welding, and make the heat flow distribution in the arc heat source more uniform, so that the surface of the molten pool can be heated more uniformly, and the heat distribution gradient of the thermal field in the molten pool is smaller. It has a more obvious effect on changing the shape of the weld after crystallization, and has a certain effect on improving the performance of the joint after welding.
  • the present invention can effectively solve the problems of pore defects, coarse crystal grains, and joint performance degradation of twisted wire welding during high-current welding, so the potential technical advantages of the twisted wire welding method can be further improved.
  • Fig. 1 is the schematic diagram of melting pole stranded wire arc magnetic spin control welding of the present invention
  • Fig. 2 is the weld seam sectional view of embodiment 3 of the present invention stranded wire welding
  • Fig. 3 is the weld seam sectional view of conventional twisted wire welding
  • Fig. 4 is the X-ray diagram of the weld seam of the embodiment of the present invention 3 stranded wire welding;
  • Fig. 5 is the X-ray pattern of the weld seam of conventional twisted wire welding
  • Fig. 6 is the metallographic structure diagram of the weld zone of stranded wire welding in embodiment 3 of the present invention.
  • Fig. 7 is a metallographic structure diagram of weld zone 5 of conventional twisted wire welding.
  • a melting pole twisted wire arc magnetic spin control welding method with the twisted wire welding melting pole arc welding point as the center, and a coaxial coil is added around it, and a direct current is passed into the coaxial coil to form a longitudinal magnetic field.
  • the force direction of the longitudinal magnetic field on the twisted wire welding arc should be consistent with the rotation direction of the twisted wire welding arc, and opposite to the twisting direction of the twisted wire, and the direction of the longitudinal magnetic field is controlled by the direction of the direct current;
  • the stranded wire welding arc is in the longitudinal magnetic field, while the skeined wire melts to form its own twisting angle release, and at the same time affected by the Lorentz force, the rotational angular velocity of the skeined wire welding arc is rapidly increased, realizing high-speed directional rotation of the skeined wire welding arc;
  • the control of The stirring force of the molten pool makes the molten pool produce a directional rotational flow, and during the solidification process, the dendrites are broken into equiaxed crystals and the grains are refined.
  • the process parameters are: the welding object is 5A06 aluminum alloy, the welding speed is 0.6m/min, the welding voltage is 26V, and the wire feeding speed is 11m /min.
  • the coaxial coil has a magnetic core inside, the overall size of the outer diameter is 40mm-150mm, the inner diameter is 30mm-140mm, and the width is 4mm-50mm, The number of turns of the coil is 50-2000 turns, and the direct current is 0-10A.
  • the coaxial coil can be replaced by a permanent magnet.
  • the depth-to-width ratio of the welding seam obtained by the welding method of the present invention is larger, which is about 18.37% higher than that of conventional twisted wire welding, and the weld width is smaller at the same time, which is about 26.23% lower than that of conventional twisted wire welding, indicating that the welding method of the present invention
  • the formed heat source distribution is more concentrated, and the binding effect on the skeined wire arc is better;

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Arc Welding In General (AREA)

Abstract

一种熔化极绞丝电弧磁旋控焊接方法,以绞丝焊熔化极电弧焊点为中心,周围加设一个同轴线圈,同轴线圈内通入直流电流,形成纵向磁场,纵向磁场对绞丝焊电弧的施力方向要与绞丝焊电弧自旋转方向相一致,与绞丝的绞捻方向相反,纵向磁场方向通过直流电流方向控制,在绞丝熔化形成自身绞捻角度释放的同时,受到洛伦兹力影响使绞丝焊电弧旋转角速度快速提升,实现绞丝焊电弧高速定向旋转。该焊接方法能够有效改善绞丝焊内部气孔、接头性能下降等技术不足,实现对焊缝结构形态及接头性能的进一步调控。

Description

熔化极绞丝电弧磁旋控焊接方法
本申请要求于2021年08月07日提交中国专利局、申请号为202110904787.4、发明名称为“熔化极绞丝电弧磁旋控焊接方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及熔化极绞丝电弧焊接头质量控制技术领域,具体涉及一种熔化极绞丝电弧磁旋控焊接方法。
背景技术
多股绞合焊丝是一种新型结构的熔化极焊接材料,其概念在2009年由中国矿业大学高顶教授首先提出,其制作方式是通过单丝绞捻成螺旋形多股丝,相比于普通焊丝,多股绞合焊丝结构可采用不同直径或数量的单丝组合,成分也可通过不同成分和数量的单丝进行精量化控制,尤其是在焊接物理特性方面,多股绞丝焊接时会形成多斑点的电流导通,这种电弧的导通形式更有利于改善电弧能量的分布和熔滴的均匀过渡,可以在更大的电流下更好的保持焊接过程的稳定性,因此具有较高的熔敷率、易于实现“控形和控性”等凸出技术优势。目前现有技术绞丝焊在大电流焊接时,焊缝内部极易产生大量的气孔缺陷,同时过高的热输入下也会引起接头区域发生组织和性能变化,如焊缝区晶粒的长大,接头塑性、韧性等力学性能下降等,这些问题目前还无法有效解决。
发明内容
本发明的目的是提供一种熔化极绞丝电弧磁旋控焊接方法,该方法是以绞丝焊熔化极电弧焊点为中心,周围加设一个同轴线圈,有效改善绞丝焊内部气孔、接头性能下降等技术不足,实现对焊缝结构形态及接头性能的进一步调控的目的。
上述的目的通过以下的技术方案实现:
本发明提供了一种熔化极绞丝电弧磁旋控焊接方法,以绞丝焊熔化极电弧焊点为中心,周围加设一个同轴线圈,所述的同轴线圈内通入直流电 流,形成纵向磁场,所述的纵向磁场对绞丝焊电弧的施力方向要与绞丝焊电弧自旋转方向相一致,与绞丝的绞捻方向相反,所述的纵向磁场方向通过所述的直流电流方向控制;
所述的绞丝焊电弧在纵向磁场内,在绞丝熔化形成自身绞捻角度释放的同时,受到洛伦兹力影响使绞丝焊电弧旋转角速度快速提升,实现绞丝焊电弧高速定向旋转;
所述的绞丝焊电弧在高速定向旋转中,结合焊接电流为100~260A、焊接电压为15~30V、频率为0~200Hz、占比为20%~100%及工艺参数控制,加大对熔池的搅拌力度,使熔池产生定向旋转流动,在凝固过程中将树枝晶搅碎成等轴晶,细化晶粒。
优选的,所述的工艺参数为:焊接对象为5A06铝合金,焊接速度为0.6m/min,焊接电压为26V,送丝速度为11m/min。
优选的,所述的同轴线圈内有磁芯,所述的同轴线圈的整体尺寸外径为40mm~150mm,内径为30mm~140mm,宽度为4mm~50mm,线圈匝数为50~2000匝,直流电流为0~10A,所述的同轴线圈可以采用永磁铁代替。
有益效果:
1.本发明是一种熔化极绞丝电弧磁旋控焊接方法,采用在绞丝焊熔化极电弧焊点周围加设一个纵向磁场,利用洛伦兹力快速提升绞丝焊电弧自旋转角速度,绞丝焊电弧高速定向旋转可大幅增加对熔池的搅拌力度,使熔池产生定向旋转流动,由此,可以实现细化晶粒效果,并且在凝固过程中还能将树枝晶搅碎成等轴晶,起到均匀化晶粒、提高晶粒的各向同性和降低偏析等作用,由此增强焊后接头塑性、韧度等力学性能。
2.本发明还同时采用电弧搅拌,能够提高熔池内的传热、传质速度,由此在结晶温度、形核条件等方面延缓熔池底部的凝固速度,加之其对熔池的对流与搅拌作用,使熔池内部气体可以有效析出,进而降低工艺型气孔生成倾向。
3.本发明通过控制磁场强度可以调节绞丝焊电弧定向旋转速度,当绞丝焊电弧高速定向旋转后可有效提高自身的稳定性,同时绞丝焊弧长也能够明显缩短,电弧电场强度提高,熔滴过渡频率随之加大,使得单个熔滴 对熔池的冲击效果更小,因此,在大电流焊接时,也能够有效减小焊接飞溅,使焊接过程更加稳定,并有效提高熔敷率。
4.本发明可以有效调节绞丝焊电弧热源内的热场分布情况,使电弧热源内的热流分布更加均匀化,因此能够使熔池表面受热更均匀,熔池热场热分布梯度更小,对结晶后的焊缝形态有较明显的改变效果,对焊后接头性能也有一定的改善效果。
5.本发明能够有效解决绞丝焊在大电流焊接时的气孔缺陷、晶粒粗大、接头性能下降等问题,因此可以进一步提升绞丝焊接方法的潜在技术优势。
附图说明:
图1是本发明熔化极绞丝电弧磁旋控焊接的示意图;
图2是本发明实施例3绞丝焊的焊缝截面图;
图3是常规绞丝焊的焊缝截面图;
图4是本发明实施例3绞丝焊的焊缝的X射线图;
图5是常规绞丝焊的焊缝的X射线图;
图6是本发明实施例3绞丝焊的焊缝区金相组织图;
图7是常规绞丝焊的焊缝区5金相组织图。
具体实施方式
下面结合实施例和附图对本发明进一步说明。
实施例1:
一种熔化极绞丝电弧磁旋控焊接方法,以绞丝焊熔化极电弧焊点为中心,周围加设一个同轴线圈,所述的同轴线圈内通入直流电流,形成纵向磁场,所述的纵向磁场对绞丝焊电弧的施力方向要与绞丝焊电弧自旋转方向相一致,与绞丝的绞捻方向相反,所述的纵向磁场方向通过所述的直流电流方向控制;
所述的绞丝焊电弧在纵向磁场内,在绞丝熔化形成自身绞捻角度释放的同时,受到洛伦兹力影响使绞丝焊电弧旋转角速度快速提升,实现绞丝焊电弧高速定向旋转;
所述的绞丝焊电弧在高速定向旋转中,结合焊接电流为100~260A、 焊接电压为15~30V、频率为0~200Hz、占比为20%~100%及工艺参数控制,加大对熔池的搅拌力度,使熔池产生定向旋转流动,在凝固过程中将树枝晶搅碎成等轴晶,细化晶粒。
实施例2:
根据实施例1所述的熔化极绞丝电弧磁旋控焊接方法,所述的工艺参数为:焊接对象为5A06铝合金,焊接速度为0.6m/min,焊接电压为26V,送丝速度为11m/min。
实施例3:
根据实施例2所述的熔化极绞丝电弧磁旋控焊接方法,所述的同轴线圈内有磁芯,整体尺寸外径为40mm~150mm,内径为30mm~140mm,宽度为4mm~50mm,线圈匝数为50~2000匝,直流电流为0~10A,所述的同轴线圈可以采用永磁铁代替。
在相同的焊接工艺条件下,对熔化极绞丝电弧磁旋控焊和常规熔化极绞丝焊进行了对比试验,实际焊接工艺参数及对比试验结果如下:
对比试验结果:
(1)本发明与常规绞丝焊的焊缝截面对比结果如图2、图3所示,观察可知:
1)采用本发明焊接方法获得的焊缝底部成形为较光滑的“圆弧”形态,而常规绞丝焊得到的焊缝底部存在一个明显的“凸起”,说明本发明焊接方法形成的热源分布更均匀,熔池中心区域热场热分布梯度更小;
2)采用本发明焊接方法获得的焊缝深宽比更大,比常规绞丝焊提高约18.37%,同时焊缝熔宽更小,比常规绞丝焊降低约26.23%,说明本发明焊接方法形成的热源分布更集中,对绞丝电弧的束缚效果更好;
3)从截面气孔来看,采用本发明焊接方法获得的焊缝截面内观察不到气孔,而常规绞丝焊焊缝截面内存在明显的工艺类气孔,说明本发明焊接方法对气孔缺陷存在较好抑制效果。
(2)本发明与常规绞丝焊的焊缝气孔率对比结果如图4、图5所示,观察可知:采用本发明焊接方法获得的焊缝内部看不到明显的工艺类气孔,而常规绞丝焊得到的焊缝内部可以观察到较多气孔存在,进一步说明本发明焊接方法对气孔缺陷存在较好抑制效果。
(3)本发明与常规绞丝焊的焊缝区金相组织对比结果如图6、图7所示,观察可知采用本发明焊接方法得到的焊接接头相比于常规绞丝焊,在焊缝区的金相组织具有明显的细化效果,并呈现出一定的均匀化效果。
以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。对这些实施例的多种修改对本领域的专业技术人员来说是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (4)

  1. 一种熔化极绞丝电弧磁旋控焊接方法,其特征在于,包括以下步骤:以绞丝焊熔化极电弧焊点为中心,周围加设一个同轴线圈,所述的同轴线圈内通入直流电流,形成纵向磁场,所述的纵向磁场对绞丝焊电弧的施力方向与绞丝焊电弧自旋转方向相一致,且与绞丝的绞捻方向相反,所述的纵向磁场方向通过所述的直流电流方向控制;
    所述的绞丝焊电弧在纵向磁场内,在绞丝熔化形成自身绞捻角度释放的同时,受到洛伦兹力影响使绞丝焊电弧旋转角速度快速提升,实现绞丝焊电弧高速定向旋转;
    所述的绞丝焊电弧在高速定向旋转中,结合焊接电流为100~260A、焊接电压为15~30V、频率为0~200Hz、占比为20%~100%及工艺参数控制,加大对熔池的搅拌力度,使熔池产生定向旋转流动,在凝固过程中将树枝晶搅碎成等轴晶,细化晶粒。
  2. 根据权利要求1所述的熔化极绞丝电弧磁旋控焊接方法,其特征在于,所述的工艺参数为:焊接对象为5A06铝合金,焊接速度为0.6m/min,焊接电压为26V,送丝速度为11m/min。
  3. 根据权利要求2所述的熔化极绞丝电弧磁旋控焊接方法,其特征在于,所述的同轴线圈内有磁芯,所述同轴线圈的整体尺寸外径为40mm~150mm,内径为30mm~140mm,宽度为4mm~50mm,线圈匝数为50~2000匝,直流电流为0~10A。
  4. 根据权利要求1或3所述的熔化极绞丝电弧磁旋控焊接方法,其特征在于,所述的同轴线圈用永磁铁代替。
PCT/CN2022/109579 2021-08-07 2022-08-02 熔化极绞丝电弧磁旋控焊接方法 WO2023016295A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110904787.4A CN113732458A (zh) 2021-08-07 2021-08-07 熔化极绞丝电弧磁旋控焊接方法
CN202110904787.4 2021-08-07

Publications (1)

Publication Number Publication Date
WO2023016295A1 true WO2023016295A1 (zh) 2023-02-16

Family

ID=78730489

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/109579 WO2023016295A1 (zh) 2021-08-07 2022-08-02 熔化极绞丝电弧磁旋控焊接方法

Country Status (2)

Country Link
CN (1) CN113732458A (zh)
WO (1) WO2023016295A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113732458A (zh) * 2021-08-07 2021-12-03 哈尔滨焊接研究院有限公司 熔化极绞丝电弧磁旋控焊接方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002120068A (ja) * 2000-10-17 2002-04-23 Nippon Steel Corp 溶接ビード形状に優れた多電極サブマージアーク溶接方法
CN101143401A (zh) * 2007-10-19 2008-03-19 重庆大学 中高强度大厚度构件电磁控制窄间隙或超窄间隙脉冲射流熔化极气体保护焊接方法与设备
CN101176954A (zh) * 2007-12-07 2008-05-14 北京工业大学 一种强化电流磁流体动力学效应的激光电弧复合焊接方法
CN102615391A (zh) * 2012-04-12 2012-08-01 时振 多丝旋转电弧焊
CN102848058A (zh) * 2011-06-30 2013-01-02 宝山钢铁股份有限公司 焊接过程中使用脉冲磁场细化焊缝组织的方法和设备
US20130126501A1 (en) * 2010-06-02 2013-05-23 Honda Motor Co., Ltd. Arc welding method, arc welding device and arc welding magnetic field strength adjustment method
CN113732458A (zh) * 2021-08-07 2021-12-03 哈尔滨焊接研究院有限公司 熔化极绞丝电弧磁旋控焊接方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002120068A (ja) * 2000-10-17 2002-04-23 Nippon Steel Corp 溶接ビード形状に優れた多電極サブマージアーク溶接方法
CN101143401A (zh) * 2007-10-19 2008-03-19 重庆大学 中高强度大厚度构件电磁控制窄间隙或超窄间隙脉冲射流熔化极气体保护焊接方法与设备
CN101176954A (zh) * 2007-12-07 2008-05-14 北京工业大学 一种强化电流磁流体动力学效应的激光电弧复合焊接方法
US20130126501A1 (en) * 2010-06-02 2013-05-23 Honda Motor Co., Ltd. Arc welding method, arc welding device and arc welding magnetic field strength adjustment method
CN102848058A (zh) * 2011-06-30 2013-01-02 宝山钢铁股份有限公司 焊接过程中使用脉冲磁场细化焊缝组织的方法和设备
CN102615391A (zh) * 2012-04-12 2012-08-01 时振 多丝旋转电弧焊
CN113732458A (zh) * 2021-08-07 2021-12-03 哈尔滨焊接研究院有限公司 熔化极绞丝电弧磁旋控焊接方法

Also Published As

Publication number Publication date
CN113732458A (zh) 2021-12-03

Similar Documents

Publication Publication Date Title
CN105132705B (zh) 真空磁控电弧重熔精炼金属的方法及装置
WO2023016295A1 (zh) 熔化极绞丝电弧磁旋控焊接方法
CN109202270B (zh) 增材制造中双螺旋搅拌方法及搅拌装置
CN104827007B (zh) 大型均匀组织合金锭的连铸制备方法及磁控电渣连铸装置
CN103056344B (zh) 外加瞬变磁场控制电渣熔铸的方法及电渣熔铸装置
CN105316488B (zh) 一种高速、低夹杂物的电渣重熔装置及其重熔方法
CN112975199B (zh) 一种提高立焊工艺性能的不锈钢焊条
CN113909635A (zh) 一种外加纵向磁场作用下电弧双丝增材制造的装置和方法
CN110343913A (zh) 一种铝基高强度复合材料及其制备方法
CN114951673A (zh) 一种高频等离子加热钛合金粉末雾化装备及其工艺
US20190022746A1 (en) Electroslag Fusion Process for Manufacturing a Blade Slab having a Large Curved Surface
CN109449133A (zh) 一种铜镀纯镍键合丝及其制备方法
CN108500238A (zh) 一种基于电渣重熔双金属复合轧辊的生产方法
CN114226742A (zh) 一种铝合金粉末制备方法
CN111334674B (zh) 制备钛棒的装置、钛棒、钛合金以及钛合金器件
CN110629116B (zh) 0Cr13Ni8Mo2Al不锈钢的真空自耗熔炼方法
CN114833326B (zh) 一种磁控电弧制备共晶高温合金定向凝固的设备和方法
CN103540775B (zh) 用于熔炼ta10铸锭的镍-32%钼中间合金制备方法
CN101327515A (zh) 一种无铅喷金料合金线材的粗线坯加工方法
CN112296343B (zh) 一种空心电极熔炼制备超细金属粉末的方法
CN110643875B (zh) 一种制备细晶纯铌锭的熔炼方法
JP3632722B2 (ja) チタン合金製造用バナジウム含有母合金の製造法
CN109332715A (zh) 一种近β型钛合金制粉的方法
CN109128103A (zh) 一种电渣熔铸法制备复合轧辊/复合钢锭的装置及方法
CN114293042B (zh) 一种预防var一次锭熔炼过焊缝处掉块的控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22855278

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112022002501

Country of ref document: DE