WO2023016139A1 - 数据调制方法、装置、网络设备和存储介质 - Google Patents

数据调制方法、装置、网络设备和存储介质 Download PDF

Info

Publication number
WO2023016139A1
WO2023016139A1 PCT/CN2022/103492 CN2022103492W WO2023016139A1 WO 2023016139 A1 WO2023016139 A1 WO 2023016139A1 CN 2022103492 W CN2022103492 W CN 2022103492W WO 2023016139 A1 WO2023016139 A1 WO 2023016139A1
Authority
WO
WIPO (PCT)
Prior art keywords
path
sdo
request
shaping
data modulation
Prior art date
Application number
PCT/CN2022/103492
Other languages
English (en)
French (fr)
Inventor
刘盼
叶友道
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2023016139A1 publication Critical patent/WO2023016139A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/50Routing or path finding of packets in data switching networks using label swapping, e.g. multi-protocol label switch [MPLS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/06Notations for structuring of protocol data, e.g. abstract syntax notation one [ASN.1]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems

Definitions

  • the embodiments of the present application relate to the communication field, and in particular to a data modulation method, device, network device, and storage medium.
  • Path Computation Element Communication Protocol is an application layer protocol based on Transmission Control Protocol (Transmission Control Protocol, TCP).
  • TCP Transmission Control Protocol
  • PCEP protocol is a kind of southbound interface protocol.
  • the PCEP protocol defines a path calculation server (Path Computation Element, PCE), a path calculation request client PCC (Path Computation Client, PCC), and communication standards between PCC and PCE.
  • the management and control plane can act as a PCE to calculate network paths or routes based on the network topology
  • an Optical Transport Network (OTN) device can act as a PCC to initiate a path calculation request to the PCE.
  • OTN Optical Transport Network
  • the optical transport network equipment After receiving the path information from the PCE, the optical transport network equipment transmits data on the optical network layer, that is, the optical layer, according to the path information.
  • optical transmission performance may have problems that seriously affect optical transmission performance due to capacity, distance, and spectrum. loss, poor service quality caused by non-optimal transmission spectrum, etc.
  • optical transmission performance is often adjusted by replacing hardware optical modules, adding relay sites, deleting services, adjusting transmission channels, etc.
  • the above methods require manual hardware installation or manual configuration adjustments , wasting manpower cost and hardware cost.
  • the embodiment of the present application provides a data modulation method, which is applied to the path calculation server PCE.
  • the data modulation method includes: receiving a path request message based on the PCEP protocol sent by the path calculation request client PCC; wherein the path request message carrying a software-defined optical module SDO object; according to the SDO information carried in the SDO object, obtaining a shaping mode adapted to the request path; transmitting the request path to the PCC through the path response message based on the PCEP protocol, It is used for the PCC to modulate the service data sent to the request path according to the adapted shaping mode.
  • the embodiment of the present application also provides a data modulation method, which is applied to the path calculation request client PCC.
  • the data modulation method includes: sending a path request message based on the PCEP protocol to the path calculation server PCE, and the path request message carries The software defines the SDO object of the optical module, so that the PCE obtains a shaping mode adapted to the requested path based on the SDO information carried in the SDO object; if a path response message based on the PCEP protocol is received, then according to the path response message Acquiring the request path; and modulating the service data sent to the request path according to the adapted shaping mode.
  • the embodiment of the present application also provides a data modulation device, the data modulation device is used as a path calculation server, including: a receiving module, configured to receive a path request message based on the PCEP protocol sent by a path calculation request client PCC; wherein, the The path request message carries the SDO object of the software-defined optical module; the matching module is used to obtain the shaping mode adapted to the requested path according to the SDO information carried in the SDO object; the transmission module is used to pass the path based on the PCEP protocol The response message transmits the request path to the PCC, so that the PCC can modulate the service data sent to the request path according to the adapted shaping mode.
  • a receiving module configured to receive a path request message based on the PCEP protocol sent by a path calculation request client PCC
  • the The path request message carries the SDO object of the software-defined optical module
  • the matching module is used to obtain the shaping mode adapted to the requested path according to the SDO information carried in the SDO object
  • the transmission module is used
  • the embodiment of the present application also provides a data modulation device, the data modulation device is used as a path calculation request client, including: a sending module, configured to send a path request message based on the PCEP protocol to the path calculation server PCE, the path request message
  • a sending module configured to send a path request message based on the PCEP protocol to the path calculation server PCE, the path request message
  • the SDO object of the software-defined optical module is carried in the SDO object, so that the PCE obtains the shaping mode adapted to the requested path based on the SDO information carried in the SDO object
  • the modulation module is used to receive the path response message based on the PCEP protocol , then obtain the request path according to the path response message; and modulate the service data sent to the request path according to the adapted shaping mode.
  • the embodiment of the present application also provides a network device, including: at least one processor; and a memory connected in communication with the at least one processor; wherein, the memory stores the information executable by the at least one processor Instructions, the instructions are executed by the at least one processor, so that the at least one processor can execute the above data modulation method.
  • the embodiment of the present application also provides a computer-readable storage medium storing a computer program, and implementing the above data modulation method when the computer program is executed by a processor.
  • FIG. 1 is a flowchart of a data modulation method applied to PCE according to an embodiment of the present application
  • FIG. 2 is a schematic diagram of a network topology according to an embodiment of the present application.
  • Fig. 3 is a schematic diagram of the frame structure of the SDO part according to the PCReq message format in an embodiment of the present application;
  • Fig. 4 is a schematic diagram according to a partial format definition of an SDO object in an embodiment of the present application.
  • FIG. 5 is a flowchart of a data modulation method applied to PCC according to an embodiment of the present application
  • Fig. 6 is an interaction flowchart according to a data modulation method provided in an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a PCE data modulation device according to an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a PCC data modulation device according to an embodiment of the present application.
  • Fig. 9 is a schematic structural diagram of a network device according to an embodiment of the present application.
  • the main purpose of the embodiments of the present application is to propose a data modulation method, device, network equipment, and storage medium, which can adaptively improve the transmission performance of data services at the optical layer, improve network survivability, reduce manual hardware installation, and waste labor costs and hardware costs occur.
  • optical transmission performance seriously affect optical transmission performance. For example, if the distance is too long, the optical transmission performance will be degraded, or the current signal degradation will cause the transmission capacity to be damaged, or the non-optimal transmission spectrum will lead to poor service quality, etc.
  • the traditional solution is to adjust optical transmission performance by replacing hardware optical modules, adding relay sites, and deleting services to adjust transmission channels. This will inevitably involve high labor and technical costs.
  • the embodiment of the present application provides a data modulation method, which can be applied to the path calculation server PCE.
  • the path calculation server can be a control plane, such as an SDN controller, but not limited thereto.
  • the data modulation method of this embodiment The method includes: receiving a path request message based on the PCEP protocol sent by the path calculation request client PCC; wherein, the path request message carries a software-defined optical module SDO object; Adapted shaping mode; transmit the request path to the PCC through the path response message based on the PCEP protocol, so that the PCC can modulate the service data sent to the request path according to the adapted shaping mode .
  • the PCEP protocol standard mainly covers the messages exchanged between the PCC and the PCE, mainly including the capability negotiation message between the PCC and the PCE, the path calculation request message sent by the PCC to the PCE, and the message returned by the PCE to the PCC.
  • the corresponding path calculation results and various error messages transmitted between PCC and PCE, etc., the content covered by the PCEP protocol standard message cannot meet the goal of optical layer intelligence in the true sense. Expand to meet the new requirements of network intelligent evolution from traditional network to autonomous network, and realize the intelligentization of the optical layer based on the addition of related new features in OTN equipment and management and control plane interaction protocol messages.
  • the PCEP protocol is adjusted and extended with new features, that is, adding SDO objects and carrying relevant parameters in the SDO objects, which can effectively improve the adaptive service transmission performance of the optical layer, and realize the optimal matching between capacity and distance , improve network survivability, and make it more industrially valuable.
  • this embodiment Compared with manually installing hardware to improve optical layer transmission performance, this embodiment extends the PCEP protocol, and extends the software-defined optical module SDO object in the PCEP protocol, so that the PCE can obtain the modulation command set of data according to the software-defined optical module object , generate different modulation command sets according to different software-defined module parameters, and then transmit the optical layer modulation command set to the PCC, and the PCC modulates the service data to be transmitted to the request path according to the optical layer modulation command set, realizing the service
  • the self-adaptive modulation of data makes it possible to reduce problems affecting optical transmission performance due to capacity, distance, and spectrum from a software perspective, and enhance transmission in the optical network layer to reduce manual hardware installation and waste labor and hardware costs.
  • Step 101 receiving a PCEP-based path request message sent by a path calculation request client PCC.
  • the path request message carries a software-defined optical module SDO object.
  • the path request message based on the PCEP protocol may be a PCReq message in the PCEP protocol.
  • This embodiment extends the PCEP protocol, and the PCReq message in the extended PCEP protocol of this embodiment carries an SDO object.
  • the PCC sends the PCReq message carrying the SDO object to the PCE based on the PCEP protocol, and the PCE receives the path request message.
  • FIG. 2 a schematic structural diagram of a communication system based on a PCE centralized computing model may refer to FIG. 2 .
  • the OTN management and control plane mainly consists of a centralized PCE dedicated server 202 , there are six PCC nodes 203 at the OTN equipment level, and the user equipment 201 communicates with the path calculation server 202 .
  • PCEP is a TCP-based application layer protocol.
  • PCEP is a southbound interface protocol.
  • the PCEP protocol defines the communication standard between PCE, PCC and PCE.
  • the PCEP protocol is mainly used to transfer LSP (Label Switching Path, Label Switching Path) information.
  • LSP Label Switching Path, Label Switching Path
  • SDN Software Defined Network
  • the process of establishing a PCEP session will carry out the PCEP initialization phase, the path calculation request/response phase, the request queuing phase, the error message phase, and the channel closing phase to ensure that the PCC and the PCE establish a PCEP protocol session.
  • Step 102 according to the SDO information carried in the SDO object, obtain the shaping mode adapted to the requested path.
  • the user equipment 201 may also set and adjust the SDO information in the SDO optical object. That is, if the SDO information change message carried in the SDO object is received from the user equipment, the SDO information carried in the SDO object is changed; and the shaping method matching the changed SDO information is obtained.
  • the PCE in this embodiment can acquire SDO objects based on bidirectional acquisition.
  • the format of the path request PCReq message carrying the software-defined optical module SDO object sent by the PCC to the PCE may be as follows:
  • this embodiment extends the PCEP protocol.
  • the path request PCReq message sent by the PCC can carry an SDO object. For example, as shown in FIG. Several bits are set in the bit Flags to identify the algorithm identifier "AlgorithmID" for different algorithms. If the bits in the flags are set to the SDO algorithm, the device can recognize that the frame carries SDO-related data, which can be determined by The software defines the optical module for processing.
  • the ⁇ SDO> object is a newly expanded object in the PCEP protocol in this embodiment, and is used to carry SDO information.
  • the format definition of the SDO object can be referred to as shown in Figure 4, where the value of type represents the type of the extended object, sub-type represents the community attribute of the extended object, Reserved is a reserved field, and SDO TLVs represent the SDO transmitted by the specific SDO Information, by extending the SDO object in the PCReq message and PCRep message of the PCEP protocol, the PCC can transmit the SDO information to the PCE, and the PCE calculates the request path, and calculates the shaping method according to the SDO information, so that the connection with the forwarding path can be obtained Shaping mode for optical layer transmission performance adaptation.
  • the format definition of the SDO object can be as follows:
  • SDO information can be defined in SDOTLVs shown in Figure 3, and SDO information can include signal type (signal-type), electrical modulation (modulation-type), forward error correction code type (Forward Error Correction , FEC) and slot width (slot-width), etc.
  • the signal type may be a supported service rate.
  • the field names, data types, and field descriptions of the SDO information can be referred to in Table 1.
  • the shaping manner may include any one or a combination of the following: coded modulation shaping, spectrum shaping, and dynamic impairment shaping.
  • coded modulation shaping coded modulation shaping
  • spectrum shaping spectrum shaping
  • dynamic impairment shaping Each shaping mode and its corresponding SDO information may exist in the PCE.
  • the combination of electrical modulation method, forward error correction code type and slot width, and the matching relationship with the shaping method search for the shaping method that matches the SDO information carried, and search
  • the obtained shaping mode is used as the shaping mode adapted to the requested path; wherein, the shaping mode adapted to the requested path is characterized by a modulation command set.
  • the SDO technology implements custom control of the optical module transmission/reception signal through the management and control system, and sets different shaping methods according to the SDO information, which can be divided into three categories: coding modulation shaping, spectrum shaping and dynamic damage shaping.
  • Coding modulation shaping is to select a more suitable modulation method and coding method to transmit effective information to achieve better transmission performance;
  • spectrum shaping mainly considers the mismatch between the physical bandwidth in the channel and the transmission signal, and through the spectral shaping of the transmitter , improve the high-frequency component of the signal spectrum or compress the spectral bandwidth to obtain better anti-filtering characteristics, pass-through ability or anti-crosstalk ability;
  • dynamic damage shaping is mainly to adjust the DSP parameters of the optical module transceiver to improve the dynamic damage of the optical module to the system, such as Tracking or compensation capabilities for polarization effects, nonlinear effects, etc.
  • spectrum shaping is taken as an example.
  • Spectrum shaping mainly takes into account the mismatch between the physical bandwidth in the channel and the transmission signal, resulting in severe signal attenuation, resulting in filter damage costs. Therefore, it is possible to increase the high-frequency component of the signal spectrum or compress the spectral bandwidth by shaping the spectrum at the transmitting end to obtain better anti-filtering characteristics, pass-through capabilities, or anti-crosstalk capabilities.
  • the main ways of spectrum shaping include spectrum pre-emphasis and Nyquist shaping.
  • the system may have serious optical filtering
  • spectral shaping will affect the Optical Signal Noise Ratio (OSNR) threshold of the optical module. Therefore, it is necessary to comprehensively consider the link filter bandwidth and transmission distance to select the optimal spectral shaping solution for the overall performance.
  • OSNR Optical Signal Noise Ratio
  • the SDO spectrum shaping solution is adopted to improve the service pass-through capability.
  • Table 2 for the corresponding relationship between each SDO information and the shaping mode.
  • the SDO spectrum shaping scheme in this embodiment is mainly Nyquist shaping , this method has high feasibility, simplicity and controllability.
  • Step 103 transmit the requested path to the PCC through a path response message based on the PCEP protocol, so that the PCC can modulate the service data sent to the requested path according to the adapted shaping mode.
  • the path response message based on the PCEP protocol may be a PCRep message of the PCEP protocol.
  • the format of the path request-based response message PCRep that the PCE responds to the PCC may be as follows:
  • the path response message PCRep carries the requested path and the SDO object
  • the optical layer modulation command set can also be carried in the path response message and transmitted to the PCC, or can be transmitted to the PCC separately, which is not limited in this embodiment.
  • the shaping method is spectrum shaping, and a specific optical layer modulation command set is generated according to the spectrum shaping.
  • Spectrum shaping is specifically Nai
  • the Nyquist shaping function can ensure the normal application status of the Nyquist shaping function in the hardware optical module.
  • the modulation result can be fed back to the PCE.
  • the PCE in this embodiment may include: a network topology management unit, used to manage the topology data of the current network and provide topology services for the algorithm module; a path calculation unit, used to calculate the forwarding path according to the network topology and tunnel constraint information; PCEP protocol The unit is used to analyze and process the PCEP protocol message, and sends the forwarding path calculated by the path calculation module to the PCC through the PCEP protocol; the SDO management unit is used to analyze the SDO information in the SDO object reported by the PCC.
  • the SDO information transmitted by the SDO object can also be specified by the user for the service type, and the PCE matches the appropriate shaping method according to the SDO information to obtain better transmission performance, and performs the lower light-emitting layer modulation command set based on the PCEP protocol.
  • the data modulation method of this embodiment is applied to the path calculation request client PCC, and OTN equipment can be used as the PCC.
  • the data modulation method of this embodiment includes: The path server PCE sends a path request message based on the PCEP protocol, and the path request message carries a software-defined optical module SDO object for the PCE to obtain a shaping method adapted to the request path based on the SDO information carried in the SDO object;
  • This embodiment extends the PCEP protocol.
  • the SDO object of the software-defined optical module is extended, so that the PCC can send and receive the SDO object, and the SDO object carries the corresponding SDO information, so that the shaping method can be obtained from the PCE.
  • PCC performs adaptive modulation, so that it can reduce the problems affecting optical transmission performance due to capacity, distance, spectrum, etc. from the software point of view, and enhance the transmission in the optical network layer to reduce manual hardware installation and waste labor and hardware costs. occur.
  • FIG. 5 is a flow chart of the data modulation method described in this embodiment. include:
  • Step 501 sending a path request message based on the PCEP protocol to the path calculation server PCE.
  • the path request message carries a software-defined optical module SDO object, so that the PCE can obtain a shaping mode adapted to the requested path based on the SDO information carried in the SDO object.
  • the path request message based on the PCEP protocol may be a PCReq message in the PCEP protocol.
  • the SDO object is an extended object of this embodiment, and is used to carry optional TLV parameters of SDO, that is, SDO information.
  • SDO information includes signal type, modulation code type, FEC coding error correction type, grid width, etc. .
  • SDO information includes: signal type, electrical modulation method, forward error correction code type and slot width.
  • Step 502 If a path response message based on the PCEP protocol is received, the request path is obtained according to the path response message, and the service data sent to the request path is modulated according to the adapted shaping mode.
  • the PCE can generate an optical layer modulation command set based on the shaping method, and send the optical layer modulation command set to the PCC based on the PCEP protocol, and the PCC sends the optical layer modulation command set to the The traffic data on the request path is modulated.
  • the SDO object is received from the forwarding device; the SDO object is associated with an optical layer modulation command set; and the service data sent to the request path is modulated according to the associated optical layer modulation command set.
  • the forwarding device can be other OTN devices connected to this device.
  • the PCC may include: a network topology management unit, used to collect the network topology and report it to the PCE; a PCEP protocol management unit, used to interact with the PCE through the PCEP protocol, send PCReq messages and receive PCRep messages;
  • the SDO management unit is used to correlate the SDO related parameters reported by the forwarding device and parse the coded modulation command set in the SDO object in the PCRep message, perform specific modulation execution work, and feed back the modulation result to the PCE.
  • step 501 and step 502 in this embodiment are substantially the same as those of the aforementioned PCE-based data modulation method, and will not be repeated here.
  • step 601 the PCC sends a path request message carrying an SDO object to the PCE.
  • the PCC establishes a communication link with the PCE based on the PCEP protocol, and the PCC sends the PCEP protocol PCReq message carrying the SDO object to the PCE.
  • Users can also establish services according to various link information of optical layer equipment to specify SDO information, such as signal type, modulation code type and other related content.
  • step 602 the PCE calculates the requested path according to the request message carrying the SDO path, and the shaping mode adapted to the requested path.
  • the PCE calculates the requested path for the PCC according to the purpose information of the PCReq message and the SDO information, and a shaping mode adapted to the optical layer transmission performance of the requested path.
  • the shaping method for example: Nyquist shaping lower light-emitting layer modulation command set.
  • step 603 the PCE sends a Path Response message carrying the SDO object to the PCC.
  • the PCE responds to the PCC through a PCRep message of the PCEP protocol.
  • the path response PCRep message carries the requested path information, and may also carry the optical layer modulation command set corresponding to the shaping mode, and the PCReq may also carry an identifier, indicating that the path response carries the SDO object.
  • the optical layer modulation command set can also be sent in another message, which is not limited in this embodiment.
  • the PCE can calculate the request path according to the network topology and tunnel constraint information, and the PCC can collect the network topology and report it to the PCE to manage the topology data of the current network. Parameters in the SDO object may also be specified by the user equipment.
  • step 604 the PCC acquires the requested path and the shaping mode adapted to the requested path according to the path response message.
  • the PCC After the PCC receives the PCRep message, it analyzes the path information and installs it in the forwarding table to optimize the transmission performance of the optical layer. After the PCC performs modulation, the modulation result can be transmitted to the PCE.
  • the PCEP protocol is extended based on the software-defined optical module (SDO) technology, which can effectively improve the adaptive service transmission performance of the optical layer, realize the optimal matching scheme between capacity and distance, and improve the network survivability. Reduce manual hardware installation, waste of labor costs and hardware costs.
  • SDO software-defined optical module
  • step division of the above various methods is only for the sake of clarity of description. During implementation, it can be combined into one step or some steps can be split and decomposed into multiple steps. As long as they include the same logical relationship, they are all within the scope of protection of this patent. ; Adding insignificant modifications or introducing insignificant designs to the algorithm or process, but not changing the core design of the algorithm and process are all within the scope of protection of this patent.
  • FIG. 7 Another embodiment of the present application relates to a data modulation device, as shown in FIG. 7 , including: a receiving module 701, configured to receive a path request message based on the PCEP protocol sent by the path calculation request client PCC; wherein, the path The request message carries a software-defined optical module SDO object; the matching module 702 is used to obtain the shaping mode adapted to the request path according to the SDO information carried in the SDO object; the transmission module 703 is used to pass the PCEP protocol-based The path response message transmits the requested path to the PCC, so that the PCC can modulate the service data sent to the requested path according to the adapted shaping mode.
  • a receiving module 701 configured to receive a path request message based on the PCEP protocol sent by the path calculation request client PCC; wherein, the path The request message carries a software-defined optical module SDO object; the matching module 702 is used to obtain the shaping mode adapted to the request path according to the SDO information carried in the SDO object; the transmission module 70
  • the SDO information in the matching module 702 includes: signal type, electrical modulation mode, forward error correction code type and slot width.
  • the matching module 702 is further configured to search for the carried SDO information according to the matching relationship between the preset signal type, the combination of the electrical modulation method, the forward error correction code type and the slot width, and the shaping method.
  • a matching shaping mode using the found shaping mode as the shaping mode adapted to the requested path; wherein the shaping mode adapted to the requested path is represented by an optical layer modulation command set.
  • the SDO object in the receiving module 701 includes: the type of the SDO object, the community attribute of the SDO object, reserved fields, and the SDO information.
  • the matching module 701 is further configured to change the SDO information carried in the SDO object if the SDO information change message carried in the SDO object is received from the user equipment;
  • the carried SDO information obtains the shaping method adapted to the request path.
  • FIG. 8 Another embodiment of the present application relates to a data modulation device, as shown in FIG. 8 , including: a sending module 801, configured to send a path request message based on the PCEP protocol to the path calculation server PCE, and the path request message carries The software defines the SDO object of the optical module, so that the PCE obtains a shaping mode adapted to the requested path based on the SDO information carried in the SDO object; the modulation module 802 is used to receive a path response message based on the PCEP protocol, then Acquire the request path according to the path response message; and modulate the service data sent to the request path according to the adapted shaping mode.
  • a sending module 801 configured to send a path request message based on the PCEP protocol to the path calculation server PCE, and the path request message carries
  • the software defines the SDO object of the optical module, so that the PCE obtains a shaping mode adapted to the requested path based on the SDO information carried in the SDO object
  • the modulation module 802
  • the SDO information of the sending module 801 includes: signal type, electrical modulation mode, forward error correction code type and slot width.
  • the SDO object in the sending module 801 includes: the type of the SDO object, the community attribute of the SDO object, reserved fields, and the SDO information.
  • this embodiment is a system embodiment corresponding to the above method embodiment, and this embodiment can be implemented in cooperation with the above method embodiment.
  • the relevant technical details and technical effects mentioned in the above embodiments are still valid in this embodiment, and will not be repeated here to reduce repetition.
  • the relevant technical details mentioned in this embodiment can also be applied in the above embodiments.
  • modules involved in this embodiment are logical modules.
  • a logical unit can be a physical unit, or a part of a physical unit, or multiple physical units. Combination of units.
  • units that are not closely related to solving the technical problem proposed in the present application are not introduced in this embodiment, but this does not mean that there are no other units in this embodiment.
  • FIG. 9 Another embodiment of the present application relates to a network device, as shown in FIG. 9 , including: at least one processor 901; and a memory 902 communicatively connected to the at least one processor 901; wherein, the memory 902 stores Instructions that can be executed by the at least one processor 901, the instructions are executed by the at least one processor 901, so that the at least one processor 901 can execute the data modulation methods in the foregoing embodiments.
  • the memory and the processor are connected by a bus
  • the bus may include any number of interconnected buses and bridges, and the bus connects one or more processors and various circuits of the memory together.
  • the bus may also connect together various other circuits, such as peripherals, voltage regulators, and power management circuits, etc., which are well known in the art and therefore will not be further described herein.
  • the bus interface provides an interface between the bus and the transceivers.
  • a transceiver may be a single element or multiple elements, such as multiple receivers and transmitters, providing means for communicating with various other devices over a transmission medium.
  • the data processed by the processor is transmitted on the wireless medium through the antenna, further, the antenna also receives the data and transmits the data to the processor.
  • the processor is responsible for managing the bus and general processing, and can also provide various functions, including timing, peripheral interface, voltage regulation, power management, and other control functions. Instead, memory can be used to store data that the processor uses when performing operations.
  • Another embodiment of the present application relates to a computer-readable storage medium storing a computer program.
  • the above method embodiments are implemented when the computer program is executed by the processor.
  • a storage medium includes several instructions to make a device ( It may be a single-chip microcomputer, a chip, etc.) or a processor (processor) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disk or optical disc, etc., which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本申请实施例涉及通信领域,特别涉及一种数据调制方法、装置、网络设备和存储介质。该数据调制方法,包括:接收算路请求客户端PCC发送的基于PCEP协议的路径请求消息;其中,路径请求消息携带软件定义光模块SDO对象;根据SDO对象中携带的SDO信息,获取与请求路径适配的整形方式;通过基于PCEP协议的路径响应消息将请求路径传输至所述PCC,以供PCC根据所述适配的整形方式对发送至请求路径上的业务数据进行调制。

Description

数据调制方法、装置、网络设备和存储介质
交叉引用
本申请基于申请号为“202110908711.9”、申请日为2021年8月9日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此以引入方式并入本申请。
技术领域
本申请实施例涉及通信领域,特别涉及一种数据调制方法、装置、网络设备和存储介质。
背景技术
路径计算单元通信协议(Path Computation Element Communication Protocol,PCEP)是一个基于传输控制协议(Transmission Control Protocol,TCP)的应用层协议,在软件定义光网络中,PCEP协议是南向接口协议的一种。PCEP协议中定义有算路服务器(Path Computation Element,PCE)、算路请求客户端PCC(Path Computation Client,PCC),以及PCC和PCE之间通信的标准。
在光网络通信中,管控平面可以作为PCE,基于网络拓扑来计算网络路径或者路由,光传送网络(OpticalTransport Network,OTN)设备可以作为PCC,向PCE发起路径计算请求。光传送网络设备从PCE中接收到路径信息后,针对于路径信息在光网络层,即光层上传输数据。
然而,在光网络层上进行数据传输,可能会存在因容量、距离、频谱严重影响光传输性能的问题,例如可能会出现因距离过长导致的光传输性能劣化、信号劣化导致的传输容量受损、非最佳传输频谱导致的业务质量较差等情况。当出现上述影响光传输性能的问题时,往往会通过更换硬件光模块、增加中继站点、删减业务、调整传输信道等来调整光传输性能,然而上述方法需要人工手动安装硬件或人工手动配置调整,浪费人力成本和硬件成本。
发明内容
本申请实施例提供了一种数据调制方法,应用于算路服务器PCE,所述数据调制方法包括:接收算路请求客户端PCC发送的基于PCEP协议的路径请求消息;其中,所述路径请求消息携带软件定义光模块SDO对象;根据所述SDO对象中携带的SDO信息,获取与请求路径适配的整形方式;通过所述基于PCEP协议的路径响应消息将所述请求路径传输至所述PCC,以供所述PCC根据所述适配的整形方式对发送至请求路径上的业务数据进行调制。
本申请实施例还提供一种数据调制方法,应用于算路请求客户端PCC,所述数据调制方法包括:向算路服务器PCE发送基于PCEP协议的路径请求消息,所述路径请求消息中携带有软件定义光模块SDO对象,以供所述PCE基于SDO对象中携带的SDO信息获取与请求路径适配的整形方式;若接收到基于所述PCEP协议的路径响应消息,则根据所述路径响应消息获取所述请求路径;根据所述适配的整形方式对发送至所述请求路径上的业务数据进行调制。
本申请实施例还提供一种数据调制装置,所述数据调制装置作为算路服务器,包括:接收模块,用于接收算路请求客户端PCC发送的基于PCEP协议的路径请求消息;其中,所述路径请求消息携带软件定义光模块SDO对象;匹配模块,用于根据所述SDO对象中携带的SDO信息,获取与请求路径适配的整形方式;传输模块,用于通过所述基于PCEP协议的路径响应消息将所述请求路径传输至所述PCC,以供所述PCC根据所述适配的整形方式对发送至请求路径上的业务数据进行调制。
本申请实施例还提供一种数据调制装置,所述数据调制装置作为算路请求客户端,包括:发送模块,用于向算路服务器PCE发送基于PCEP协议的路径请求消息,所述路径请求消息中携带有软件定义光模块SDO对象,以供所述PCE基于SDO对象中携带的SDO信息获取与请求路径适配的整形方式;调制模块,用于若接收到基于所述PCEP协议的路径响应消息,则根据所述路径响应消息获取所述请求路径;根据所述适配的整形方式对发送至所述请求路径上的业务数据进行调制。
本申请实施例还提供了一种网络设备,包括:至少一个处理器;以及,与 所述至少一个处理器通信连接的存储器;其中,所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行上述的数据调制方法。
本申请实施例还提供了一种计算机可读存储介质,存储有计算机程序,所述计算机程序被处理器执行时实现上述的数据调制方法。
附图说明
图1是根据本申请一实施例中的应用于PCE的数据调制方法的流程图;
图2是根据本申请一实施例中网络拓扑结构示意图;
图3是根据本申请一实施例中的PCReq消息格式的SDO部分的帧结构示意图;
图4是根据本申请一实施例中SDO对象的部分格式定义的示意图;
图5是根据本申请一实施例的应用于PCC的数据调制方法的流程图;
图6是根据本申请一实施例中提供的数据调制方法的交互流程图;
图7是根据本申请一实施例中的PCE数据调制装置的结构示意图;
图8是根据本申请一实施例中的PCC数据调制装置的结构示意图;
图9是根据本申请一实施例中的网络设备的结构示意图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合附图对本申请的各实施例进行详细的阐述。然而,本领域的普通技术人员可以理解,在本申请各实施例中,为了使读者更好地理解本申请而提出了许多技术细节。但是,即使没有这些技术细节和基于以下各实施例的种种变化和修改,也可以实现本申请所要求保护的技术方案。以下各个实施例的划分是为了描述方便,不应对本申请的具体实现方式构成任何限定,各个实施例在不矛盾的前提下可以相互结合相互引用。
本申请实施例的主要目的在于提出一种数据调制方法、装置、网络设备和存储介质,能够自适应提升光层的数据业务的传输性能,提高网络生存能力, 减少人工手动安装硬件,浪费人力成本和硬件成本的情况发生。
光层传输存在的容量、距离、频谱严重影响光传输性能问题,如距离过长,导致光传输性能劣化,或者当前信号劣化导致传输容量受损,或者非最佳传输频谱导致业务质量较差等情况,传统的解决思路是,通过更换硬件光模块、增加中继站点、删减业务调整传输信道来调整光传输性能,这势必有较高的人工和技术成本。
鉴于上述问题,本申请的实施例提供一种数据调制方法,可应用于算路服务器PCE,算路服务器可以为管控平面,如SDN控制器等,但不限于此,本实施例的数据调制方法包括:接收算路请求客户端PCC发送的基于PCEP协议的路径请求消息;其中,所述路径请求消息携带软件定义光模块SDO对象;根据所述SDO对象中携带的SDO信息,获取与请求路径适配的整形方式;通过所述基于PCEP协议的路径响应消息将所述请求路径传输至所述PCC,以供所述PCC根据所述适配的整形方式对发送至请求路径上的业务数据进行调制。
本实施例考虑到PCEP协议标准中主要涵盖PCC和PCE之间交互的报文,主要包括有PCC和PCE之间能力协商报文、PCC向PCE发送的路径计算请求报文、PCE向PCC返还的相应路径计算结果以及PCC和PCE之间传递各种错误报文等,PCEP协议标准报文涵盖的内容,无法满足真正意义上的光层智能化这一目标,因此,本实施例对PCEP协议标准进行扩展以适应传统网络到自治网络的网络智能化演进的新需求,基于OTN设备和管控平面交互协议消息中增加相关的新特性来实现光层的智能化。
在本实施例中,对PCEP协议进行新特性的调整和扩展,即增添SDO对象,并在SDO对象中携带相关参数,可效提升光层自适应的业务传输性能,实现容量与距离最优匹配,提高网络生存能力,使其更有产业上的价值。
相较于人工安装硬件以提高光层传输性能,本实施例对PCEP协议进行扩展,在PCEP协议中扩展了软件定义光模块SDO对象,使得PCE可以根据软件定义光模块对象获取数据的调制命令集,针对不同的软件定义模块参数生成不同的调制命令集,然后,将光层调制命令集传输至PCC,PCC针对光层调制命令集对要传输至请求路径上的业务数据进行调制,实现了业务数据的自适应调制,从而使得能够从软件角度减少因容量、距离、频谱等影响光传输性能的 问题,增强光网络层中传输进而减少人工手动安装硬件,浪费人力成本和硬件成本的情况发生。
下面对本实施例的数据调制方法的实现细节进行具体的说明,以下内容仅为方便理解提供的实现细节,并非实施本方案的必须。
本实施例的数据调制方法的具体流程可以如图1所示,包括:
步骤101,接收算路请求客户端PCC发送的基于PCEP协议的路径请求消息。其中,所述路径请求消息携带软件定义光模块SDO对象。基于PCEP协议的路径请求消息可以为PCEP协议中的PCReq报文消息。本实施例对PCEP协议进行扩展,本实施例扩展后的PCEP协议中的PCReq报文消息携带有SDO对象。
具体地,PCC基于PCEP协议发送携带SDO对象的PCReq报文消息给PCE,PCE接收路径请求消息。
示例性的,基于PCE集中式计算模型的通信系统的结构示意图可参照图2所示。OTN管控平面主要由一个集中的PCE专用服务器202,OTN设备层面有六个PCC节点203,用户设备201与算路服务器202通信连接。
PCEP是一个基于TCP的应用层协议,在OTN SDN解决方案中,PCEP协议是南向接口协议一种。PCEP协议定义PCE和PCC、PCE之间通信标等准。PCEP协议主要是用于传递LSP(Label Switching Path,标签交换路径)信息。软件定义网络(Software Defined Network,SDN)控制器计算完路径后,转换成分段路由(Segment Routing,SR)标签栈,并通过PCEP协议下发给OTN(optical transport network,光传送网)设备控制平面。PCEP协议就是作为OTN设备和管控平面之间进行交互的通信协议。PCEP会话的建立的过程,会进行PCEP初始化阶段、路径计算请求/响应阶段、请求排队阶段、错误消息阶段、通道关闭阶段,确保PCC与PCE建立PCEP协议会话。
步骤102,根据SDO对象中携带的SDO信息,获取与请求路径适配的整形方式。
在一些实施例中,参照图2所示,用户设备201也可对SDO光对象中的SDO信息进行设置,进行调整。即,若从用户设备接收到SDO对象中携带的SDO信息变更消息,则变更所述SDO对象中携带的SDO信息;获取与所述变 更后的SDO信息匹配的整形方式。本实施例的PCE可以基于双向获取SDO对象。
示例性的,PCC向PCE发送的携带有软件定义光模块SDO对象的路径请求PCReq消息格式可如下:
<PCReq Message>::=<Common Header>
[<svce-list>]
<request-list>
where:
<svce-list>::=<SVEC>[<svce-list>]
<request-list>::=<request>[<request-list>]
<request>::=<RP>
<END-POINTS>
[<LSPA>]
[<BANDWIDTH>]
[<METRIC>]
[<RRO>[<BANWIDTH>]]
[<IRO>]
[<LOAD-BALANCING>]
[<SDO>]
具体地,本实施例对PCEP协议进行扩展,PCC发送的路径请求PCReq报文中可携带有SDO对象,例如,可参照图3所示,为[<SDO>]部分的帧结构定义,在标志位Flags中设置了若干位用于对不同算法进行识别的算法标识“AlgorithmID”,若在flags中的该若干位被设置为SDO算法,则设备即可识别出该帧携带有SDO相关数据,可由软件定义光模块进行处理。
<SDO>对象为本实施例在PCEP协议中新扩展的对象,用于携带SDO信息。SDO的对象的格式定义可参照如图4所示,其中,type数值代表扩展对象的类型,sub-type代表该扩展对象的团体属性,Reserved是保留字段,SDO TLVs代表具体携带的SDO传输的SDO信息,通过在PCEP协议的PCReq消息和PCRep消息中扩展SDO对象,使PCC能够传递SDO信息到PCE,PCE计算 出请求路径,并根据SDO信息,计算出整形方式,从而能够获得与与转发路径的光层传输性能适配的整形方式。
示例性的,SDO对象的格式定义可如下:
typedefstruct_PcepObjectSDO{
structPcepObject Header header;//SDO对象公共头。
UINT16_T SDOFlags;//保留位,用于将来协议对象的扩展。
UINT8_T SDOType;//定义SDO对象的类型。
UINT8_T SDOReserverd;//保留字段,用于将来协议对象扩展。
UINT16_T signal-type;//信号类型。
UINT32_T modulation-type;//调制方式。
UINT32_T fec-type;//前向纠错码类型(Forward Error Correction,FEC)类型。
UINT32_T slot-width;//槽宽。
//可选TLVs。
}PcepObjectSDO。
在一些实施例中,SDO信息可以定义在图3所示的SDOTLVs中,SDO信息可以包括信号类型(signal-type),电调制方式(modulation-type)、前向纠错码类型(Forward Error Correction,FEC)和槽宽(slot-width)等。信号类型可以为支持的业务速率。
示例性的,SDO信息的字段名称,数据类型,字段描述可参见表一所示。
表一
Figure PCTCN2022103492-appb-000001
在一些实施例中,整形方式可以包括以下任一项或其组合:编码调制整形、 频谱整形和动态损伤整形。PCE中可与存在有各整形方式和其对应的SDO信息。
在一些实施例中根据预设的信号类型,电调制方式、前向纠错码类型和槽宽的组合,与整形方式的匹配关系,查找与所述携带的SDO信息匹配的整形方式,将查找到的所述整形方式作为所述与请求路径适配的整形方式;其中,所述与请求路径适配的整形方式以调制命令集表征。
具体而言,SDO技术通过管控系统实现对光模块发射/接收信号进行自定义控制,根据SDO信息设定不同的整形方式,可分为编码调制整形、频谱整形和动态损伤整形三大类。编码调制整形是选择更适配的调制方式和编码方式来传输有效信息,以实现更佳的传输性能;频谱整形主要是考虑到信道中物理带宽与传输信号失配问题,通过对发射端光谱整形,提高信号光谱高频分量或压缩光谱带宽,以获得更好抗滤波特性、穿通能力或抗串扰能力;动态损伤整形主要是调整光模块收发机DSP参数,提高光模块对系统中动态损伤,如偏振效应、非线性效应等的跟踪或补偿能力。
示例性的,以频谱整形为例。频谱整形主要是考虑到信道中物理带宽与传输信号失配,导致信号衰减严重,从而带来滤波损伤代价。因此,可以通过对发射端光谱整形,提高信号光谱高频分量或压缩光谱带宽,以获得更好抗滤波特性、穿通能力或抗串扰能力。目前频谱整形的主要方式包括光谱预加重和奈奎斯特整形。
在OADM/ROADM(Optical Add-Drop Multiplexer/Reconfigurable Optical Add-Drop Multiplexer,光分插复用器/可重构光分插复用器)级联场景下,系统可能存在严重的光滤波
效应。该场景下预加重程度越深或奈奎斯特整形压缩程度越高,信号光穿通性能越强。但光谱整形会影响光模块光信噪比(Optical Signal Noise Ratio,OSNR)门限,则需要综合考虑链路滤波器带宽和传输距离,来选择整体性能最佳的频谱整形方案。
本实施例在OADM/ROADM级联组网场景下,采用SDO频谱整形方案提升业务穿通能力。参见表二所示,为各SDO信息与整形方式的对应关系。
表二
Figure PCTCN2022103492-appb-000002
Figure PCTCN2022103492-appb-000003
对于上述场景下,根据对应关系实现了发送端频谱整形,获得更好的穿通性能,以此,实现了光层的自适应优化应用,本实施例的SDO频谱整形方案主要是奈奎斯特整形,该方式的可行性、简易可控性高。
步骤103,通过基于PCEP协议的路径响应消息将请求路径传输至PCC,以供PCC根据适配的整形方式对发送至请求路径上的业务数据进行调制。基于PCEP协议的路径响应消息可以为PCEP协议的PCRep报文消息。
在一些实施例中,PCE向PCC回应的基于路径请求的响应报文PCRep,格式可如下所示:
<PCRep Message>::=<Common Header>
<response-list>
where:
<response-list>::=<response>[<response-list>]
<response>::=<RP>
[<NO-PATH>]
[<attribute-list>]
[<path-list>]
<path-list>::=<path>[<path-list>]
<path>::=<ERO><attribute-list>
where:
<attribute-list>::=[<LSPA>]
[<BANDWIDTH>]
[<METRIC>]
[<IRO>]
[<SDO>]
其中,路径响应报文PCRep携带有请求路径以及SDO对象,光层调制命令集也可携带在路径响应报文中传输至PCC,也可单独传输至PCC,本实施例不对此进行限定。
例如:根据配置的信号类型,如业务速率、调制码型、FEC开销以及槽宽数据匹配得到的整形方式为频谱整形,根据频谱整形生成具体的光层调制命令集,其中,频谱整形具体为奈奎斯特整形功能,便可以保证硬件光模块中的奈奎斯特整形功能的正常应用状态。
在PCC执行光层调制命令集之后,可将调制结果反馈至PCE。
本实施例中的PCE可以包括:网络拓扑管理单元,用来管理当前网络的拓扑数据以及为算法模块提供拓扑服务;路径计算单元,用来根据网络拓扑和隧道约束信息,计算转发路径;PCEP协议单元,用来解析和处理PCEP协议报文,把路径计算模块计算的转发路径通过PCEP协议下发给PCC;SDO管理单元,用来解析PCC上报的SDO对象中的SDO信息。其中SDO对象传递的SDO信息也可以由用户进行业务类型指定,PCE根据SDO信息进行匹配适合的整形方式,以获得更好的传输性能,基于PCEP协议进行下发光层调制命令集。
本实施例中,通过对PCEP协议进行新特性的调整和扩展,增添SDO对象及相关参数,有效提升光层自适应的业务传输性能,实现容量与距离最优匹配,提高网络生存能力。
本申请的另一个实施例涉及一种数据调制方法,本实施例的数据调制方法应用于算路请求客户端PCC,OTN设备等均可作为PCC,本实施例的数据调制方法,包括:向算路服务器PCE发送基于PCEP协议的路径请求消息,所述路径请求消息中携带有软件定义光模块SDO对象,以供所述PCE基于SDO对象中携带的SDO信息获取与请求路径适配的整形方式;
若接收到基于所述PCEP协议的路径响应消息,则根据所述路径响应消息 获取所述请求路径;根据所述适配的整形方式对发送至所述请求路径上的业务数据进行调制。
本实施例对PCEP协议进行扩展,在PCEP协议中扩展了软件定义光模块SDO对象,使得PCC可以收发携带有SDO对象,SDO对象中携带有对应SDO信息,从而可以从PCE获取整形方式,以此,PCC进行自适应的调制,从而使得能够从软件角度减少因容量、距离、频谱等影响光传输性能的问题,增强光网络层中传输进而减少人工手动安装硬件,浪费人力成本和硬件成本的情况发生。
下面对本实施例的数据调制方法的实现细节进行具体的说明,以下内容仅为方便理解提供的实现细节,并非实施本方案的必须,图5是本实施例所述的数据调制方法的流程图,包括:
步骤501,向算路服务器PCE发送基于PCEP协议的路径请求消息。其中,所述路径请求消息中携带有软件定义光模块SDO对象,以供所述PCE基于SDO对象中携带的SDO信息获取与请求路径适配的整形方式。基于PCEP协议的路径请求消息可以为PCEP协议中的PCReq报文消息。
在一些实施例中,SDO对象为本实施例扩展的对象,用于携带SDO的可选TLV参数,即SDO信息,SDO信息有信号类型、调制码型、FEC编码纠错类型、栅格宽度等。SDO信息包括:信号类型,电调制方式、前向纠错码类型和槽宽。
步骤502,若接收到基于PCEP协议的路径响应消息,则根据路径响应消息获取请求路径,根据适配的整形方式对发送至请求路径上的业务数据进行调制。
在一些实施例中,PCE可以基于整形方式生成光层调制命令集,并基于PCEP协议将光层调制命令集发送至PCC,PCC根据与适配的整形方式对应的光层调制命令集对发送至请求路径上的业务数据进行调制。
在一些实施例中,从转发设备接收所述SDO对象;将SDO对象与光层调制命令集关联;根据关联的所述光层调制命令集对发送至请求路径上的业务数据进行调制。
转发设备可以为与本设备连接的其他OTN设备。
在本实施例中,PCC可以包括:网络拓扑管理单元,用来收集网络拓扑并且上报给PCE;PCEP协议管理单元,用来与PCE通过PCEP协议进行交互,发送PCReq报文和接收PCRep报文;SDO管理单元,用于关联转发设备上报的SDO相关参数以及解析PCRep报文中SDO对象中的编码调制命令集,并执行具体的调制执行工作,并把调制结果反馈PCE。
本实施例中步骤501与步骤502其余实现细节与上述基于PCE的数据调制方法的实现细节大致相同,此处不再赘述。
以下,结合流程图6,阐述PCC和PCE的交互过程。
步骤601,PCC向PCE发送携带有SDO对象的路径请求消息。
具体地,PCC基于PCEP协议同PCE建立通信链路,PCC发送携带SDO对象的PCEP协议PCReq报文消息给PCE。用户也可以根据光层设备的各种链路信息,进行建业务,来指定SDO信息,如信号类型、调制码型等相关内容。
步骤602,PCE根据携带有SDO路径请求消息计算请求路径,以及,与请求路径适配的整形方式。
具体地,PCE根据PCReq报文的目的信息、SDO信息为PCC计算请求路径,以及与请求路径的光层传输性能适配的整形方式。根据整形方式,例如:奈奎斯特整形下发光层调制命令集。
步骤603,PCE向PCC发送携带有SDO对象的路径响应消息。
具体地,PCE通过PCEP协议的PCRep报文消息回应给PCC。
路径响应PCRep消息中携带有请求路径信息,也可携带有整形方式对应的光层调制命令集,PCReq中也可携带有标识符,标识路径响应中携带有SDO对象。光层调制命令集也可以另外的消息发送,本实施例不对此进行限定。其中,PCE可以根据网络拓扑和隧道约束信息计算得到请求路径,PCC可以收集网络拓扑并且上报给PCE,管理当前网络的拓扑数据。SDO对象中的参数也可由用户设备指定。
步骤604,PCC根据路径响应消息获取请求路径,以及,与该请求路径适配的整形方式。
PCC收到PCRep报文后,解析路径信息,安装到转发表中,进行光层传输性能的最佳适配,PCC进行调制后,可将调制结果传输至PCE。
本实施例将PCEP协议进行基于软件定义光模块(SDO)技术的扩展,能够有效提升光层自适应的业务传输性能,实现容量与距离最优匹配方案,提高网络生存能力的方案,有效减少了减少人工手动安装硬件,浪费人力成本和硬件成本的情况发生。
上面各种方法的步骤划分,只是为了描述清楚,实现时可以合并为一个步骤或者对某些步骤进行拆分,分解为多个步骤,只要包括相同的逻辑关系,都在本专利的保护范围内;对算法中或者流程中添加无关紧要的修改或者引入无关紧要的设计,但不改变其算法和流程的核心设计都在该专利的保护范围内。
本申请的另一个实施例涉及一种数据调制装置,如图7所示,包括:接收模块701,用于接收算路请求客户端PCC发送的基于PCEP协议的路径请求消息;其中,所述路径请求消息携带软件定义光模块SDO对象;匹配模块702,用于根据所述SDO对象中携带的SDO信息,获取与请求路径适配的整形方式;传输模块703,用于通过所述基于PCEP协议的路径响应消息将所述请求路径传输至所述PCC,以供所述PCC根据所述适配的整形方式对发送至请求路径上的业务数据进行调制。
在一些实施例中,匹配模块702中的SDO信息包括:信号类型,电调制方式、前向纠错码类型和槽宽。
在一些实施例中,匹配模块702进一步用于根据预设的信号类型,电调制方式、前向纠错码类型和槽宽的组合,与整形方式的匹配关系,查找与所述携带的SDO信息匹配的整形方式,将查找到的所述整形方式作为所述与请求路径适配的整形方式;其中,所述与请求路径适配的整形方式以光层调制命令集表征。
在一些实施例中,接收模块701中的SDO对象包括:所述SDO对象的类型,所述SDO对象的团体属性,保留字段,所述SDO信息。
在一些实施例中,匹配模块701进一步用于若从用户设备接收到SDO对象中携带的SDO信息变更消息,则变更所述SDO对象中携带的SDO信息;获取与所述变更后的SDO对象中携带的SDO信息,获取与请求路径适配的整形方式。
本申请的另一个实施例涉及一种数据调制装置,如图8所示,包括:发送模块801,用于向算路服务器PCE发送基于PCEP协议的路径请求消息,所述路径请求消息中携带有软件定义光模块SDO对象,以供所述PCE基于SDO对象中携带的SDO信息获取与请求路径适配的整形方式;调制模块802,用于若接收到基于所述PCEP协议的路径响应消息,则根据所述路径响应消息获取所述请求路径;根据所述适配的整形方式对发送至所述请求路径上的业务数据进行调制。
在一些实施例中,发送模块801的SDO信息包括:信号类型,电调制方式、前向纠错码类型和槽宽。
在一些实施例中,发送模块801中的SDO对象包括:所述SDO对象的类型,所述SDO对象的团体属性,保留字段,所述SDO信息。
不难发现,本实施例为与上述方法实施例对应的系统实施例,本实施例可以与上述方法实施例互相配合实施。上述实施例中提到的相关技术细节和技术效果在本实施例中依然有效,为了减少重复,这里不再赘述。相应地,本实施例中提到的相关技术细节也可应用在上述实施例中。
值得一提的是,本实施例中所涉及到的各模块均为逻辑模块,在实际应用中,一个逻辑单元可以是一个物理单元,也可以是一个物理单元的一部分,还可以以多个物理单元的组合实现。此外,为了突出本申请的创新部分,本实施例中并没有将与解决本申请所提出的技术问题关系不太密切的单元引入,但这并不表明本实施例中不存在其它的单元。
本申请另一个实施例涉及一种网络设备,如图9所示,包括:至少一个处理器901;以及,与所述至少一个处理器901通信连接的存储器902;其中,所述存储器902存储有可被所述至少一个处理器901执行的指令,所述指令被所述至少一个处理器901执行,以使所述至少一个处理器901能够执行上述各实施例中的数据调制方法。
其中,存储器和处理器采用总线方式连接,总线可以包括任意数量的互联的总线和桥,总线将一个或多个处理器和存储器的各种电路连接在一起。总线还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路连接在 一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口在总线和收发机之间提供接口。收发机可以是一个元件,也可以是多个元件,比如多个接收器和发送器,提供用于在传输介质上与各种其他装置通信的单元。经处理器处理的数据通过天线在无线介质上进行传输,进一步,天线还接收数据并将数据传送给处理器。
处理器负责管理总线和通常的处理,还可以提供各种功能,包括定时,外围接口,电压调节、电源管理以及其他控制功能。而存储器可以被用于存储处理器在执行操作时所使用的数据。
本申请另一个实施例涉及一种计算机可读存储介质,存储有计算机程序。计算机程序被处理器执行时实现上述方法实施例。
即,本领域技术人员可以理解,实现上述实施例方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,该程序存储在一个存储介质中,包括若干指令用以使得一个设备(可以是单片机,芯片等)或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
本领域的普通技术人员可以理解,上述各实施方式是实现本申请的具体实施例,而在实际应用中,可以在形式上和细节上对其作各种改变,而不偏离本申请的精神和范围。

Claims (12)

  1. 一种数据调制方法,应用于算路服务器PCE,所述数据调制方法包括:
    接收算路请求客户端PCC发送的基于PCEP协议的路径请求消息;其中,所述路径请求消息携带软件定义光模块SDO对象;
    根据所述SDO对象中携带的SDO信息,获取与请求路径适配的整形方式;
    通过基于所述PCEP协议的路径响应消息将所述请求路径传输至所述PCC,以供所述PCC根据所述适配的整形方式对发送至所述请求路径上的业务数据进行调制。
  2. 根据权利要求1所述的数据调制方法,其中,所述SDO信息包括:信号类型,电调制方式、前向纠错码类型和槽宽。
  3. 根据权利要求1或2所述的数据调制方法,其中,所述SDO对象中包括:所述SDO对象的类型,所述SDO对象的团体属性,保留字段,所述SDO信息。
  4. 根据权利要求2所述的数据调制方法,其中,所述根据所述SDO对象中携带的SDO信息,获取与请求路径适配的整形方式,包括:
    根据预设的信号类型,电调制方式、前向纠错码类型和槽宽的组合,与整形方式的匹配关系,查找与所述携带的SDO信息匹配的整形方式,将查找到的所述整形方式作为所述与请求路径适配的整形方式;其中,所述与请求路径适配的整形方式以光层调制命令集表征。
  5. 根据权利要求1至4中任一项所述的数据调制方法,其中,所述根据所述SDO对象中携带的SDO信息,获取与请求路径适配的整形方式之前,还包括:
    若从用户设备接收到所述SDO对象中携带的SDO信息变更消息,则变更所述SDO对象中携带的SDO信息;
    所述根据所述SDO对象中携带的SDO信息,获取与请求路径适配的整形 方式,包括:
    根据所述变更后的SDO对象中携带的SDO信息,获取与请求路径适配的整形方式。
  6. 一种数据调制方法,应用于算路请求客户端PCC,所述数据调制方法包括:
    向算路服务器PCE发送基于PCEP协议的路径请求消息,所述路径请求消息中携带有软件定义光模块SDO对象,以供所述PCE基于SDO对象中携带的SDO信息获取与请求路径适配的整形方式;
    若接收到基于所述PCEP协议的路径响应消息,则根据所述路径响应消息获取所述请求路径;
    根据所述适配的整形方式对发送至所述请求路径上的业务数据进行调制。
  7. 根据权利要求6所述的数据调制方法,其中,所述SDO信息包括:信号类型,电调制方式、前向纠错码类型和槽宽。
  8. 根据权利要求6或7所述的数据调制方法,其中,所述SDO对象中包括:所述SDO对象的类型,所述SDO对象的团体属性,保留字段,所述SDO信息。
  9. 一种数据调制装置,所述数据调制装置作为算路服务器PCE,所述数据调制装置包括:
    接收模块,用于接收算路请求客户端PCC发送的基于PCEP协议的路径请求消息;其中,所述路径请求消息携带软件定义光模块SDO对象;
    匹配模块,用于根据所述SDO对象中携带的SDO信息,获取与请求路径适配的整形方式;
    传输模块,用于通过所述基于PCEP协议的路径响应消息将所述请求路径传输至所述PCC,以供所述PCC根据所述适配的整形方式对发送至请求路径上的业务数据进行调制。
  10. 一种数据调制装置,所述数据调制装置作为算路请求客户端,所述数据调制装置包括:
    发送模块,用于向算路服务器PCE发送基于PCEP协议的路径请求消息,所述路径请求消息中携带有软件定义光模块SDO对象,以供所述PCE基于所述SDO对象中携带的SDO信息获取与请求路径适配的整形方式;
    调制模块,用于若接收到基于所述PCEP协议的路径响应消息,则根据所述路径响应消息获取所述请求路径;根据所述适配的整形方式对发送至所述请求路径上的业务数据进行调制。
  11. 一种网络设备,包括:
    至少一个处理器;以及,
    与所述至少一个处理器通信连接的存储器;其中,
    所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行如权利要求1至5中任一项所述的数据调制方法,或者,执行如权利要求6至8中任一项所述的数据调制方法。
  12. 一种计算机可读存储介质,存储有计算机程序,所述计算机程序被处理器执行时实现权利要求1至5中任一项所述的数据调制方法,或者,执行如权利要求6至8中任一项所述的数据调制方法。
PCT/CN2022/103492 2021-08-09 2022-07-01 数据调制方法、装置、网络设备和存储介质 WO2023016139A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110908711.9A CN115706877A (zh) 2021-08-09 2021-08-09 数据调制方法、装置、网络设备和存储介质
CN202110908711.9 2021-08-09

Publications (1)

Publication Number Publication Date
WO2023016139A1 true WO2023016139A1 (zh) 2023-02-16

Family

ID=85179272

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/103492 WO2023016139A1 (zh) 2021-08-09 2022-07-01 数据调制方法、装置、网络设备和存储介质

Country Status (2)

Country Link
CN (1) CN115706877A (zh)
WO (1) WO2023016139A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101729401A (zh) * 2009-06-30 2010-06-09 中兴通讯股份有限公司 基于pce动态计算otn中te-lsp的方法
US20150103844A1 (en) * 2013-10-11 2015-04-16 Futurewei Technologies, Inc. Using PCE as SDN Controller
US20150229404A1 (en) * 2014-02-10 2015-08-13 Ciena Corporation Hitless modulation scheme change systems and methods in optical networks
US20150229424A1 (en) * 2014-02-10 2015-08-13 Ciena Corporation Otn rate adjustment systems and methods for control plane restoration, congestion control, and network utilization
US20200296485A1 (en) * 2016-03-11 2020-09-17 Zte Corporation Method and system for implementing sdo function, and sdon system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101729401A (zh) * 2009-06-30 2010-06-09 中兴通讯股份有限公司 基于pce动态计算otn中te-lsp的方法
US20150103844A1 (en) * 2013-10-11 2015-04-16 Futurewei Technologies, Inc. Using PCE as SDN Controller
US20150229404A1 (en) * 2014-02-10 2015-08-13 Ciena Corporation Hitless modulation scheme change systems and methods in optical networks
US20150229424A1 (en) * 2014-02-10 2015-08-13 Ciena Corporation Otn rate adjustment systems and methods for control plane restoration, congestion control, and network utilization
US20200296485A1 (en) * 2016-03-11 2020-09-17 Zte Corporation Method and system for implementing sdo function, and sdon system

Also Published As

Publication number Publication date
CN115706877A (zh) 2023-02-17

Similar Documents

Publication Publication Date Title
US10530490B1 (en) Probabilistic constellation shaping for optical networks with diverse transmission media
US20150215914A1 (en) Software-defined networking method
Elbers et al. From static to software-defined optical networks
US10461881B2 (en) Method and system for assigning modulation format in optical networks
CN101729401A (zh) 基于pce动态计算otn中te-lsp的方法
US11291005B2 (en) Traffic management technique for variable bandwidth networks using RSVP
US9768904B2 (en) Method and apparatus for allocating slots for transmission of data
EP1983712B1 (en) An automatic discovering method and device for client layer link
WO2020238190A1 (zh) 传输数据的方法、节点和存储介质
JP5682249B2 (ja) 光通信システム
US20240323117A1 (en) Interworking between variable capacity optical layer and Ethernet/IP/MPLS layer
CN111491330A (zh) Sdn网络与无线网络的融合组网方法
CN109274514B (zh) 一种网络端口的配置方法及相关设备
US20170126352A1 (en) Optical modem
CN107181680B (zh) 一种实现sdo功能的方法、系统及sdon系统
WO2023016139A1 (zh) 数据调制方法、装置、网络设备和存储介质
US20140219291A1 (en) Implementing a protocol adaptation layer over an internet protocol
WO2022143023A1 (zh) 路径计算方法、算路服务器及通信系统
CN116032377A (zh) 控制光网络系统功耗的方法、光网络系统及通信设备
CN114531392A (zh) 组播业务设计方法、服务器及存储介质
CN113873359A (zh) 光传送网路由计算方法、设备及计算机可读存储介质
Morea et al. Cost benefits of asymmetric IP-over-DWDM networks with elastic transceivers
WO2021260952A1 (ja) 通信システム、通信システムの通信設定方法、通信装置、および通信プログラム
US20230007563A1 (en) Route calculation method, device, and system
KR101435190B1 (ko) 멀티채널 멀티세션 무선 네트워크에서의 자원 할당 장치 및 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22855123

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE