WO2023015821A1 - 组合式能量传输装置及风力发电机组 - Google Patents

组合式能量传输装置及风力发电机组 Download PDF

Info

Publication number
WO2023015821A1
WO2023015821A1 PCT/CN2021/141525 CN2021141525W WO2023015821A1 WO 2023015821 A1 WO2023015821 A1 WO 2023015821A1 CN 2021141525 W CN2021141525 W CN 2021141525W WO 2023015821 A1 WO2023015821 A1 WO 2023015821A1
Authority
WO
WIPO (PCT)
Prior art keywords
energy transmission
rotor
flange
stator
transmission component
Prior art date
Application number
PCT/CN2021/141525
Other languages
English (en)
French (fr)
Inventor
岑先富
刘河
褚建坤
Original Assignee
新疆金风科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新疆金风科技股份有限公司 filed Critical 新疆金风科技股份有限公司
Publication of WO2023015821A1 publication Critical patent/WO2023015821A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/25Wind motors characterised by the driven apparatus the apparatus being an electrical generator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D13/00Assembly, mounting or commissioning of wind motors; Arrangements specially adapted for transporting wind motor components
    • F03D13/20Arrangements for mounting or supporting wind motors; Masts or towers for wind motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • F03D80/30Lightning protection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • F03D80/80Arrangement of components within nacelles or towers
    • F03D80/82Arrangement of components within nacelles or towers of electrical components
    • F03D80/85Cabling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/728Onshore wind turbines

Definitions

  • the present application relates to the technical field of wind power, in particular to a combined energy transmission device and a wind power generating set.
  • the commonly used solutions are collector rings, smooth rings, electric slip rings, lightning protection slip rings, etc. All the above equipments meet the operating conditions of wind turbines to a certain extent, but when two or more equipments need to be installed in one system, due to the limited installation space, the installation structure is complicated and the construction is extremely difficult.
  • the embodiment of the present application provides a combined energy transmission device and a wind power generating set.
  • the combined energy transmission device can meet the transmission of at least one kind of energy such as mechanical energy, electrical energy, light energy and hydraulic energy, and can reduce or avoid the installation space Restrictions are good for construction.
  • a combined energy transmission device including: a plurality of coaxially arranged energy transmission components, among two adjacent energy transmission components, one of the energy transmission components is at least partially located in the other energy transmission component.
  • both the rotor and the stator of at least one energy transmission component are hollow, and one of the two adjacent energy transmission components is at least partially plugged into the hollow cavity of the rotor and stator of the other.
  • the combined energy transmission device further includes a magnetic shielding structure, and a magnetic shielding structure is provided between at least two adjacent energy transmission components.
  • a magnetic shielding structure By setting the magnetic shielding structure, it is possible to effectively prevent magnetic coupling between adjacent energy transmission components, and ensure the independence and stability of the respective performances of the energy transmission components.
  • the magnetic shielding structure is in the shape of a cylinder, and the magnetic shielding structure is placed on one of two adjacent energy transmission components and connected.
  • the magnetic shielding structure adopts the above-mentioned structural form and installation position, which can simplify the magnetic shielding structure on the basis of effectively avoiding the magnetic induction between the energy transmission components, and facilitate its forming and disassembly.
  • two adjacent energy transmission components are detachably connected.
  • the rotor of one is provided with a first flange
  • the rotor of the other is provided with a second flange
  • the first flange and the second flange are connected to each other.
  • the flanges are axially stacked on each other and are detachably connected to each other.
  • the stator of one of them is provided with a third flange
  • the stator of the other is provided with a fourth flange.
  • the third flange and the fourth flange are axially stacked and connected to each other. Detachable connection.
  • the detachable connection requirements between two adjacent energy transmission parts can be realized, and at the same time, the rotors of the energy transmission parts can be rotated synchronously, and the stators of the energy transmission parts can be rotated synchronously, which can reduce the The use of driving structures such as shift forks.
  • an extension rod is connected to the end of at least one rotor, and the rotor is connected to the opposite first flange and/or second flange through the extension rod . Since one of two adjacent energy transmission parts needs to be at least partly plugged into the other, there is a size difference between them, therefore, by connecting an extension rod at the end of at least one rotor, it is convenient for two adjacent
  • the lamination and connection between the first flange and the second flange of the energy transmission component facilitates the connection between the rotors of the energy transmission component and improves the adaptability of the energy transmission components when they are connected to each other.
  • an extension rod is connected to the end of at least one stator, and the stator is connected to the opposite third flange and/or fourth flange through the extension rod .
  • the length of the extension rod is adjustable in the axial direction of the energy transmission component.
  • the axial position of the flange connected to it can be adjusted by adjusting the length of the extension rod in the axial direction, which facilitates the lamination between the corresponding flanges of two adjacent energy transmission components, so as to facilitate are detachably connected to each other via flanges.
  • the multiple energy transmission components include one or a combination of slip rings, smooth rings, electrical slip rings, and lightning protection slip rings.
  • the rotor and the stator of the same energy transmission component are rotationally connected through bearings.
  • the plurality of coaxially arranged energy transmission components include a first energy transmission component, a second energy transmission component, and a third energy transmission component
  • the rotor of the first energy transmission component is provided with a first hollow cavity
  • the second energy transmission component is at least partially located in the first hollow cavity
  • the rotor of the second energy transmission component is provided with a second hollow cavity
  • the third energy transmission component is at least partially located in the second hollow cavity
  • the rotor of the second energy transmission component They are respectively connected to the rotor of the first energy transmission component and the rotor of the third energy transmission component
  • the stators of the second energy transmission component are respectively connected to the stator of the first energy transmission component and the stator of the third energy transmission component.
  • the second energy transmission component includes a control signal transmission channel and a power signal transmission channel, and the control signal transmission channel and the power signal transmission channel are axially stacked and insulated from each other.
  • the second energy transmission component can realize the transmission of the control signal and the power signal, and optimize the performance of the combined energy transmission device.
  • an embodiment of the present application provides a wind power generating set, including the above-mentioned combined energy transmission device.
  • the wind power generating set further includes: a tower; a nacelle, which is arranged on the tower and is rotatably connected to the tower; cables, including a first cable arranged on the nacelle and a first cable arranged on the tower The second cable; wherein, the energy transmission device is arranged on one of the tower and the nacelle and is arranged coaxially or eccentrically with the tower, and the rotor of each energy transmission component is connected to one of the first cable and the second cable Electrically connected, the stator of each energy transmission component is electrically connected to the other of the first cable and the second cable.
  • the combined energy transmission device includes a plurality of coaxially arranged energy transmission components, and each energy transmission component includes a rotor and a stator that are rotationally fitted and electrically connected to each other,
  • the rotor and the stator of the energy transmission component can realize the connection and energy transmission between the two relatively rotating components, and then use a plurality of energy transmission components to realize the transmission of at least one kind of energy such as mechanical energy, electrical energy, optical energy and hydraulic energy.
  • one of the energy transmission components is at least partly located inside the other energy transmission component, and the rotors of the energy transmission components are independently arranged and insulated from each other, and the stators of the energy transmission components are independently arranged and connected to each other.
  • the insulating connection can reduce the axial occupied space of multiple energy transmission components on the same shaft system, and reduce or avoid the limitation of the installation space of the combined energy transmission device on the basis of satisfying energy transmission, which is beneficial to construction.
  • Fig. 1 is a schematic structural view of a wind power generating set according to an embodiment of the present application
  • Fig. 2 is a schematic diagram of the overall structure of a combined energy transmission device according to an embodiment of the present application
  • Fig. 3 is an exploded schematic diagram of a combined energy transmission device according to an embodiment of the present application.
  • Fig. 4 is a schematic cross-sectional structure diagram of a combined energy transmission device according to an embodiment of the present application.
  • Fig. 5 is a structural schematic diagram of a rotor of an energy transmission component according to an embodiment of the present application
  • Fig. 6 is a schematic structural view of a stator of an energy transmission component according to an embodiment of the present application.
  • Fig. 7 is a schematic structural diagram of a ring assembly according to an embodiment of the present application.
  • 10-energy transmission part 10a-first energy transmission part; 10b-second energy transmission part; 10c-third energy transmission part;
  • 11-rotor 111-rotating shaft; 112-slip ring; 113-rotor bracket; 11a-first rotor; 11b-second rotor; 11c-third rotor;
  • 200-tower 300-nacelle; 400-generator; 500-impeller; 510-hub; 520-blade; 600-cable; 610-first cable; 620-second cable;
  • orientation words appearing in the following descriptions are all the directions shown in the figure, and do not limit the specific structure of the combined energy transmission device and wind power generating set of the present application.
  • the terms “installation” and “connection” should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection, or Connected integrally; either directly or indirectly.
  • the specific meanings of the above terms in this application can be understood according to specific situations.
  • the embodiment of the present application provides a wind power generating set, including a tower 200, a nacelle 300, an impeller 500 and functional devices, the tower 200 is connected to the fan foundation, the nacelle 300 is set on the tower 200, and the impeller 500 is set It is located on the nacelle 300 and can rotate relative to the nacelle 300 under the action of wind force.
  • the impeller 500 includes a hub 510 and blades 520 connected to the hub 510 .
  • the functional device may include at least one of a generator 400, a transformer and a converter.
  • the generator 400 can be connected between the impeller 500 and the base of the nacelle 300 , and the impeller 500 can drive the generator 400 to work under the action of wind force to convert wind energy into electrical energy.
  • the embodiment of the present application provides a combined energy transmission device 100 and a wind power generating set. Small or avoid being limited by the installation space, which is conducive to construction.
  • the combined energy transmission device 100 can be used as an independent component, and of course it can also be used in a wind power plant and as a component of a wind power plant.
  • a combined energy transmission device 100 proposed by the embodiment of the invention includes a plurality of coaxially arranged energy transmission components 10, and among two adjacent energy transmission components 10, one of the energy transmission components 10 is located at least partially inside another energy transmission component 10 .
  • Each energy transmission component 10 includes a rotor 11 and a stator 12 that are rotationally fitted and electrically connected to each other.
  • the rotors 11 of each energy transmission component 10 are independently arranged and insulated from each other, and the stators 12 of each energy transmission component 10 are independently arranged and insulated from each other. .
  • the energy transmission device 100 includes a plurality of coaxially arranged energy transmission components 10, and each energy transmission component 10 includes a rotor 11 and a stator 12 that are rotationally fitted and electrically connected to each other. 11 and the stator 12 can realize the connection between the relatively rotating parts and the transmission of energy, and then use the multiple energy transmission components 10 to realize the transmission of at least one kind of energy such as mechanical energy, electrical energy, optical energy and hydraulic energy.
  • one of the energy transmission components 10 is at least partly located inside the other energy transmission component 10
  • the rotors 11 of each energy transmission component 10 are independently arranged and insulated from each other, and each energy transmission component 10
  • the stators 12 are arranged independently of each other and connected in isolation.
  • a plurality of energy transmission components 10 can be arranged coaxially on the same shaft system and the space occupied by the axial direction X can be reduced, and on the basis of satisfying energy transmission, the combined energy transmission device 100 is reduced or avoided from being limited by the installation space, which is convenient for construction .
  • one of the energy transmission components 10 in order to facilitate two adjacent energy transmission components 10, one of the energy transmission components 10 can be at least partially located in the other energy transmission component 10
  • the interior of the interior can make the rotor 11 and the stator 12 of at least one energy transmission part 10 both hollow, and one of the two adjacent energy transmission parts 10 is at least partially plugged into the hollow cavity of the rotor 11 and the stator 12 of the other.
  • the radial dimensions of the two energy transmission components 10 can be successively reduced, and both energy transmission components 10 can be provided with hollow cavities, of course , the energy transmission component 10 with a larger radial dimension can be provided with a hollow cavity, so that the energy transmission component 10 with a smaller radial dimension is at least partially inserted into the cavity, which facilitates the cooperation between the energy transmission components 10 , The space occupied by the combination of different energy transmission components 10 is reduced.
  • each energy transmission component 10 runs through the energy transmission component 10 in the axial direction X, which facilitates the disassembly and assembly of another energy transmission component 10 and the connection between them.
  • two adjacent energy transmission components 10 are detachably connected.
  • the assembly and disassembly of the combined energy transmission device 100 is facilitated by detachably connecting two adjacent energy transmission components 10 to each other.
  • two adjacent energy transmission components 10 are detachably connected to each other.
  • only the corresponding damaged energy transmission components 10 need to be replaced without scrapping, which saves costs and improves the service life of the combined energy transmission device 100 .
  • the rotor 11 of one is provided with a first flange 20, and the rotor 11 of the other is provided with a second flange 30.
  • the first method The flange 20 and the second flange 30 are mutually axially stacked in X and are detachably connected to each other.
  • the first flange 20 and the second flange 30 are stacked on each other, and can be passed through by fasteners such as bolts.
  • the first flange 20 and the second flange 30 realize the detachable connection between the rotors 11 of two adjacent energy transmission components 10 .
  • the stator 12 of one of them may be provided with a third flange 40, and the stator 12 of the other may be provided with a fourth flange 50,
  • the third flange 40 and the fourth flange 50 are stacked in an axial direction X and are detachably connected to each other.
  • the third flange 40 and the fourth flange 50 are stacked on each other and can be passed through by fasteners such as bolts.
  • the third flange 40 and the fourth flange 50 realize the detachable connection between the rotors 11 of every two adjacent energy transmission components 10 .
  • the end of at least one rotor 11 is connected with an extension rod 70, and the rotor 11 passes through
  • the extension rod 70 is connected with the opposite first flange 20 and/or the second flange 30 . Since one of two adjacent energy transmission components 10 needs to be at least partially inserted into the other, there is a size difference between them.
  • an extension rod 70 may be connected to any end of the rotor 11.
  • two ends of the rotor 11 in the axial direction X may also be Both ends are provided with extension rods 70 to facilitate the connection between two adjacent energy transmission components 10 .
  • the number of extension rods 70 connected to each end of the rotor 11 may be more than two, and more than two extension rods 70 are arranged at intervals around the axis of the energy transmission component 10 to ensure that the rotor 11 and the corresponding first The connection and support strength between the flange 20 or the second flange 30 .
  • an extension rod 70 may also be connected to the end of at least one stator 12, and the stator 12 is connected to the opposite third method through the extension rod 70.
  • flange 40 and/or fourth flange 50 Due to the difference in the size of two adjacent energy transmission components 10, in the axial direction X of the energy transmission component 10, an extension rod 70 is connected to the end of at least one stator 12, and the extension rod 70 is connected to the corresponding The connection between the third flange 40 and the fourth flange 50 of two adjacent energy transmission components 10 facilitates the lamination and connection between the third flange 40 and the fourth flange 50 of two adjacent energy transmission components 10 .
  • an extension rod 70 may be connected to any end of the stator 12.
  • two ends of the stator 12 in the axial direction X may also be Both ends are provided with extension rods 70 to facilitate the connection between two adjacent energy transmission components 10 .
  • the number of extension rods 70 connected to the end of the stator 12 in the axial direction X may be more than two, and more than two extension rods 70 are arranged at intervals around the axis of the energy transmission component 10 to ensure that the stator 12 and Corresponding to the connection and support strength between the third flange 40 or the fourth flange 50 .
  • the length of the extension rod 70 is adjustable in the axial direction X of the energy transmission component 10.
  • the position of the flange connected to it in the axial direction X can be adjusted by adjusting the length of the extension rod 70 in the axial direction X, which facilitates the connection between the corresponding flanges of two adjacent energy transmission components 10 Stacked so as to be detachably connected to each other by flanges.
  • the extension rod 70 may include a first rod segment and a second rod segment, the second rod segment is inserted into the inside of the first rod segment, and the extension is realized by adjusting the insertion depth of the second rod segment into the first rod segment The length of the rod 70 is adjusted.
  • the locking pin between the first rod segment and the second rod segment is realized by inserting locking pins together on the sides of the first rod segment and the second rod segment. Relative position locking.
  • the combined energy transmission device 100 provided in the embodiment of the present application further includes a magnetic shielding structure 60, and the magnetic shielding structure 60 is arranged between at least two adjacent energy transmission components 10.
  • the magnetic shielding structure 60 By setting the magnetic shielding structure 60, when one of two adjacent energy transmission components 10 is at least partially plugged into the other, it is possible to avoid mutual inductance and crosstalk between each other, effectively avoiding the generation of magnetic flux between the energy transmission components 10.
  • the coupling ensures the independence and stability of the respective performances of the energy transmission components 10 .
  • the magnetic shielding structure 60 can be in the shape of a cylinder, and the magnetic shielding structure 60 is placed between two adjacent energy transmission components 10 and connected to one of the two adjacent energy transmission components 10 .
  • the magnetic shielding structure 60 adopts a cylindrical body, which can be arranged between two adjacent energy transmission components 10 and surrounds the energy transmission component 10 located on the inner side. On the basis of avoiding the magnetic induction between the energy transmission components 10, it can also The magnetic shielding structure 60 is simplified, which facilitates its forming and disassembly.
  • the rotor 11 and the stator 12 of the same energy transmission component 10 are rotatably connected through the bearing 13, and the above-mentioned configuration is adopted.
  • the components connected to the rotor 11 of the energy transmission part 10 and the components connected to the stator 12 are conducive to relative rotation and can satisfy energy transmission, and at the same time can effectively To avoid twisting cable phenomenon.
  • the number of energy transmission components 10 included in it is not specifically limited, and it may be two, three or even more. Specifically, it can be set according to the location of the energy transmission device 100 and the type of energy to be transmitted.
  • its multiple energy transmission components 10 may include one of a collector ring, a smooth ring, an electric slip ring and a lightning protection slip ring Or a combination of two or more.
  • the combined energy transmission device 100 can satisfy the transmission of at least one kind of energy such as mechanical energy, electrical energy, optical energy and hydraulic energy.
  • the plurality of energy transmission components 10 included in the combined energy transmission device 100 may be all collector rings, or all photoelectric rings, or all electric slip rings, or all lightning protection slip rings.
  • At least one of the plurality of energy transmission components 10 included in the combined energy transmission device 100 may be a slip ring, at least one of which may be a smooth ring, etc. Specifically, it can be set according to the location of the combined energy transmission device 100 and the type of energy to be transmitted.
  • the adjacent energy transmission components 10 are detachably connected in the form of stacking corresponding flanges and locking with fasteners. This is an optional implementation mode.
  • the rotors 11 of adjacent energy transmission components 10 can also be connected to each other by welding, and the stators 12 can be connected to each other by welding, so as to meet the connection requirements between the rotors 11 and the stators. 12 between connection requirements.
  • the combined energy transmission device 100 has a plurality of coaxially arranged energy transmission components 10 including a first energy transmission component 10a , the second energy transmission component 10b and the third energy transmission component 10c.
  • the rotor 11 and the stator 12 included in the first energy transmission component 10a are defined as the first rotor 11a and the first stator 12a
  • the rotor 11 and the stator 12 included in the second energy transmission component 10b are defined as the second rotor 11b and the second stator 12b
  • the rotor 11 and the stator 12 included in the third energy transmission component 10c are defined as the third rotor 11c and the third stator 12c.
  • a first hollow cavity may be provided in the first rotor 11a of the first energy transmission component 10a, the second energy transmission component 10b is at least partially located in the first hollow cavity, and the second rotor 11b of the second energy transmission component 10b
  • the third energy transmission part 10c is at least partly located in the second hollow cavity
  • the second rotor 11b of the second energy transmission part 10b is respectively connected with the first rotor 11a of the first energy transmission part 10a and the third energy
  • the third rotor 11c of the transmission part 10c is connected
  • the second stator 12b of the second energy transmission part 10b is respectively connected with the first stator 12a of the first energy transmission part 10a and the third stator 12c of the third energy transmission part 10c.
  • one of the three energy transmission components 10 may use a collector ring, one of them may use an electric slip ring, and the remaining one may use a smooth ring.
  • the collector ring can meet the high current transmission requirements
  • the electric slip ring can meet the low current transmission requirements
  • the smooth ring can meet the optical signal transmission requirements.
  • the first energy transmission component 10a may use a collector ring
  • the second energy transmission component 10b may use an electric slip ring
  • the third energy transmission component 10c may use a smooth ring , which can meet the transmission of electrical signals and optical signals.
  • the rotor 11 may include a rotating shaft 111 and a plurality of slip rings 112, and the plurality of slip rings 112
  • the axial direction X is spaced apart and insulated from the rotating shaft 111 .
  • the stator 12 includes a stator bracket 121 and a plurality of annular components 122 arranged on the stator bracket 121 and spaced along the axial direction X.
  • Each annular component 122 includes an annular plate 122a, a brush assembly 122b disposed on the annular plate 122a, and The bus bar 122c is electrically connected with the brush assemblies 122b, and each brush assembly 122b is in contact with and electrically connected with the corresponding slip ring 112 .
  • the energy transmission component 10 adopts the above form, which can facilitate the transmission of energy such as electric energy.
  • the interior of the rotating shaft 111 may be hollow to form a hollow chamber.
  • the rotating shaft 111 may be used as a magnetic shielding structure.
  • stator bracket 121 can be provided with the third flange 40 and/or the fourth flange 50, which can simplify the structure of the energy transmission component 10 on the basis of meeting the requirements for connecting adjacent energy transmission components 10 to each other. .
  • the rotor 11 may include a rotor bracket 113 , a plurality of slip rings 112 are connected to the rotor bracket 113 , and the rotor bracket 113 may be provided with the first flange 20 and/or the second flange 30 .
  • the structure of the energy transmission component 10 can be simplified on the basis of meeting the requirement of connecting adjacent energy transmission components 10 to each other.
  • the rotor bracket 113 is provided, the rotor 11 can include the rotating shaft 111 at the same time, and of course the rotating shaft 111 can also be removed, as long as the connection and relative position fixing requirements of multiple slip rings 112 can be ensured.
  • the first rotor 11a of the first energy transmission part 10a can be provided with the first flange 20
  • the second rotor 11b of the second energy transmission part 10b can be provided with the second flange 30, and the second method
  • the flange 30 is stacked with the first flange 20 in the axial direction X and is detachably connected by fasteners.
  • an extension rod 70 may be provided at one end of the second rotor 11 b of the second energy transmission part 10 b, and the second rotor 11 b is connected to the second flange 30 through the extension rod 70 .
  • the first stator 12a of the first energy transmission part 10a may be provided with a third flange 40
  • the second stator 12b of the second energy transmission part 10b may be provided with a fourth flange 50
  • the fourth flange 50 is connected to the first flange 50.
  • the three flanges 40 are stacked and connected by fasteners.
  • the second energy transmission component 10b includes a control signal transmission channel 141 and a power signal transmission channel 142, and the control signal transmission channel 141 and the power signal transmission channel 142 are axially X stacked and insulated from each other.
  • the transmission of control signals and power signals can be realized through the second energy transmission component 10b.
  • the third rotor 11c of the third energy transmission part 10c may be provided with a first flange 20, which may be directly connected to the second rotor 11b of the second energy transmission part 10b. Furthermore, the synchronous rotation of the rotors 11 of the energy transmission components 10 is realized.
  • the stator 12c of the third energy transmission part 10c may be provided with a third flange 40, and the fourth flange 50 provided on the second stator 12b of the second energy transmission part 10b is stacked and detachably connected through the third flange 40 .
  • the transmission of optical signals can be realized by using the principle of lenses.
  • the combined energy transmission device 100 when it is used in a wind power generating set, the combined energy transmission device 100 can be arranged in one of the tower 200 or the nacelle 300 . In some optional embodiments, it can be arranged in the tower 200, which can be arranged coaxially or eccentrically with the tower 200.
  • the wind turbine can also include a cable 600, and the cable 600 includes the first A cable 610 and a second cable 620 arranged on the tower 200, the rotor 11 of each energy transmission component 10 is connected to one of the first cable 610 and the second cable 620, the stator of each energy transmission component 10 12 is electrically connected to the other of the first cable 610 and the second cable 620 .
  • each energy transmission component 10 has independent functions and does not affect each other.
  • the combined form of the rotor 11 and the stator 12 of each energy transmission part 10 of the combined energy transmission device 100 enables the rotor 11 to be linked, reduces the use of driving structures such as shift forks, and satisfies the same energy transmission function requirements. structure and save costs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Wind Motors (AREA)

Abstract

本申请涉及一种组合式能量传输装置及风力发电机组,组合式能量传输装置包括:多个同轴设置的能量传输部件,相邻两个能量传输部件中,其中一个能量传输部件至少部分位于另一个能量传输部件的内部;每个能量传输部件包括转动配合且彼此电连接的转子以及定子,各能量传输部件的转子彼此独立设置并绝缘连接,各能量传输部件的定子彼此独立设置并绝缘连接。本申请实施例提供的组合式能量传输装置及风力发电机组,能够满足机械能、电能、光能以及液压能等至少一种能量的传递,且能够减小或者避免受安装空间限制,利于施工。

Description

组合式能量传输装置及风力发电机组
相关申请的交叉引用
本申请要求享有于2021年8月12日提交的名称为“组合式能量传输装置及风力发电机组”的中国专利申请202110926699.4的优先权,该申请的全部内容通过引用并入本文中。
技术领域
本申请涉及风电技术领域,特别是涉及一种组合式能量传输装置及风力发电机组。
背景技术
在风力发电机组运行过程中,存在多个系统的机电耦合能量传输。如叶片和轮毂、叶轮和机舱、机舱底座和塔筒等,既有机械能的转换,也有电能的传输,其中机械能还有液压的传递。
为了适应以上工况,常用的解决办法是采用集电环、光滑环、电滑环、防雷滑环等。以上各种设备一定程度上都满足了风力发电机机组的运行工况,但是当两种或者两种以上设备都需要安装在一个系统中时,受安装空间限制,安装结构复杂且施工极为困难。
因此,亟需一种新的组合式能量传输装置及风力发电机组。
发明内容
本申请实施例提供一种组合式能量传输装置及风力发电机组,组合式能量传输装置能够满足机械能、电能、光能以及液压能等至少一种能量的传递,且能够减小或者避免受安装空间限制,利于施工。
一方面,根据本申请实施例提出了一种组合式能量传输装置,包括:多个同轴设置的能量传输部件,相邻两个能量传输部件中,其中一个能量 传输部件至少部分位于另一个能量传输部件的内部;每个能量传输部件包括转动配合且彼此电连接的转子以及定子,各能量传输部件的转子彼此独立设置并绝缘连接,各能量传输部件的定子彼此独立设置并绝缘连接。
根据本申请实施例的一个方面,至少一个能量传输部件的转子以及定子均中空设置,相邻两个能量传输部件中的一者至少部分插接于另一者的转子以及定子的中空腔内。通过上述设置,利于能量传输部件彼此之间的配合,减少不同能量传输部件组合后的占用空间,同时不会对能量传输部件如集电环的电流传输产生影响,满足能量传输部件的电流等能量的传输能力要求。
根据本申请实施例的一个方面,组合式能量传输装置还包括磁屏蔽结构,至少两个相邻设置的能量传输部件之间设置有磁屏蔽结构。通过设置磁屏蔽结构,能够有效的防止相邻设置能量传输部件之间产生磁耦合,保证能量传输部件各自性能的独立性以及稳定性。
根据本申请实施例的一个方面,磁屏蔽结构呈筒状体,磁屏蔽结构置于相邻两个能量传输部件中的一者连接。磁屏蔽结构采用上述结构形式以及设置位置,在有效的避免能量传输部件彼此之间产生磁感应的基础上还能够简化磁屏蔽结构,利于其成型以及拆装。
根据本申请实施例的一个方面,相邻两个能量传输部件可拆卸连接。通过上述设置,当其中部分数量的能量传输部件发生损坏时,可以将损坏的能量传输部件拆卸并更换,方便对组合式能量传输装置进行维护。
根据本申请实施例的一个方面,相邻两个能量传输部件中,其中一者的转子设置有第一法兰,另一者的转子设置有第二法兰,第一法兰与第二法兰相互轴向层叠且彼此可拆卸连接,其中一者的定子设置有第三法兰,另一者的定子设置有第四法兰,第三法兰与第四法兰相互轴向层叠且彼此可拆卸连接。通过上述设置,既能够实现相邻两个能量传输部件彼此之间的可拆卸连接需求,同时,能够使得各能量传输部件的转子彼此同步转动,各能量传输部件的定子彼此同步转动,能够减小拨叉等驱动结构的使用。
根据本申请实施例的一个方面,在能量传输部件的轴向上,至少一个 转子的端部连接有延伸杆件,转子通过延伸杆件与相对的第一法兰和/或第二法兰连接。由于相邻两个能量传输部件中一者需要至少部分插接于另一者中,彼此之间存在尺寸差异,因此,通过在至少一个转子的端部连接有延伸杆件,便于相邻两个能量传输部件的第一法兰与第二法兰之间的层叠与连接,利于能量传输部件的转子之间的连接,提高各能量传输部件彼此在连接时的适配性。
根据本申请实施例的一个方面,在能量传输部件的轴向上,至少一个定子的端部连接有延伸杆件,定子通过延伸杆件与相对的第三法兰和/或第四法兰连接。通过上述设置,能够利于能量传输部件的定子之间的连接,提高各能量传输部件彼此在连接时的适配性。
根据本申请实施例的一个方面,在能量传输部件的轴向上,延伸杆件的长度可调。通过上述设置,能够通过调节延伸杆件在轴向上的长度来调节与之连接的法兰在轴向上的位置,利于相邻两个能量传输部件的对应法兰之间的层叠,以便于通过法兰彼此可拆卸连接。
根据本申请实施例的一个方面,多个能量传输部件包括集电环、光滑环、电滑环以及防雷滑环中的一者或者两者以上的组合。
根据本申请实施例的一个方面,同一能量传输部件的转子与定子通过轴承转动连接。通过上述设置,能够使得与能量传输部件的转子连接的构件以及与其定子连接的构件彼此之间利于相对转动且能够满足能量的传递,同时在转动的过程中能够有效的避免发生扭缆现象。
根据本申请实施例的一个方面,多个同轴设置的能量传输部件包括第一能量传输部件、第二能量传输部件以及第三能量传输部件,第一能量传输部件的转子内设置有第一中空腔,第二能量传输部件至少部分位于第一中空腔,第二能量传输部件的转子内设置有第二中空腔,第三能量传输部件至少部分位于第二中空腔,第二能量传输部件的转子分别与第一能量传输部件的转子以及第三能量传输部件的转子连接,第二能量传输部件的定子分别与第一能量传输部件的定子以及第三能量传输部件的定子连接。
根据本申请实施例的一个方面,第二能量传输部件包括控制信号传输通道以及动力信号传输通道,控制信号传输通道与动力信号传输通道轴向 层叠且彼此绝缘设置。通过上述设置,使得第二能量传输部件能够实现控制信号以及动力信号的传输,优化组合式能量传输装置的性能。
另一个方面,根据本申请实施例提供一种风力发电机组,包括上述的组合式能量传输装置。
根据本申请实施例的另一个方面,风力发电机组还包括:塔架;机舱,设置于塔架并与塔架转动连接;线缆,包括设置于机舱的第一线缆以及设置于塔架的第二线缆;其中,能量传输装置设置于塔架以及机舱中的一者并与塔架同轴或者偏心设置,各能量传输部件的转子与第一线缆以及第二线缆中的一者电连接,各能量传输部件的定子与第一线缆以及第二线缆中的另一者电连接。
根据本申请实施例提供的组合式能量传输装置及风力发电机组,组合式能量传输装置包括多个同轴设置的能量传输部件,每个能量传输部件包括转动配合且彼此电连接的转子以及定子,利用能量传输部件的转子以及定子能够实现相对转动的两个部件之间的连接以及能量的传递,进而利用多个能量传输部件实现机械能、电能、光能以及液压能等至少一种能量的传递。并且相邻两个能量传输部件中,其中一个能量传输部件至少部分位于另一个能量传输部件的内部,且各能量传输部件的转子彼此独立设置并绝缘连接,各能量传输部件的定子彼此独立设置并绝缘连接,能够使得多个能量传输部件在同一轴系上减少轴向占用空间,在满足能量传递的基础上减小或者避免组合式能量传输装置受安装空间限制,利于施工。
附图说明
下面将参考附图来描述本申请示例性实施例的特征、优点和技术效果。
图1是本申请一个实施例的风力发电机组的结构示意图;
图2是本申请一个实施例的组合式能量传输装置的整体结构示意图;
图3是本申请一个实施例的组合式能量传输装置分解示意图;
图4是本申请一个实施例组合式能量传输装置的剖视结构示意图;
图5是本申请一个实施例的能量传输部件的转子的结构示意图
图6是本申请一个实施例的能量传输部件的定子的结构示意图;
图7是本申请一个实施例的环状组件的结构示意图。
其中:
100-组合式能量传输装置;
10-能量传输部件;10a-第一能量传输部件;10b-第二能量传输部件;10c-第三能量传输部件;
11-转子;111-转轴;112-滑环;113-转子支架;11a-第一转子;11b-第二转子;11c-第三转子;
12-定子;121-定子支架;122-环状组件;122a-环形板;122b-电刷组件;122c-汇流排;12a-第一定子;12b-第二定子;12c-第三定子;
13-轴承;
141-控制信号传输通道;142-动力信号传输通道
20-第一法兰;30-第二法兰;40-第三法兰;50-第四法兰;
60-磁屏蔽结构;
70-延伸杆件;
200-塔架;300-机舱;400-发电机;500-叶轮;510-轮毂;520-叶片;600-线缆;610-第一线缆;620-第二线缆;
X-轴向。
在附图中,相同的部件使用相同的附图标记。附图并未按照实际的比例绘制。
具体实施方式
下面将详细描述本申请的各个方面的特征和示例性实施例。在下面的详细描述中,提出了许多具体细节,以便提供对本申请的全面理解。但是,对于本领域技术人员来说很明显的是,本申请可以在不需要这些具体细节中的一些细节的情况下实施。下面对实施例的描述仅仅是为了通过示出本申请的示例来提供对本申请的更好的理解。在附图和下面的描述中,至少部分的公知结构和技术没有被示出,以便避免对本申请造成不必要的模糊;并且,为了清晰,可能夸大了部分结构的尺寸。此外,下文中所描 述的特征、结构或特性可以以任何合适的方式结合在一个或更多实施例中。
下述描述中出现的方位词均为图中示出的方向,并不是对本申请的组合式能量传输装置及风力发电机组的具体结构进行限定。在本申请的描述中,还需要说明的是,除非另有明确的规定和限定,术语“安装”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以间接相连。对于本领域的普通技术人员而言,可视具体情况理解上述术语在本申请中的具体含义。
如图1所示,本申请实施例提供一种风力发电机组,包括塔架200、机舱300、叶轮500以及功能器件,塔架200连接于风机基础,机舱300设置于塔架200,叶轮500设置于机舱300且在风力的作用下能够相对机舱300转动。叶轮500包括轮毂510以及叶片520,叶片520连接于轮毂510。一些可选地实施例中,功能器件可以包括发电机400、变压器以及变流器中的至少一者。发电机400可以连接于叶轮500以及机舱300的底座之间,叶轮500在风力的作用下能够带动发电机400工作进而将风能转换为电能。
风力发电机组在运行的过程中,存在多个系统的机电耦合能量传输。例如:叶片520和轮毂510之间的变桨过程、叶轮500和机舱300相对转动实现风能转换、机舱300和塔架200的偏航过程等,既有机械能的转换,也有电能的传输,其中机械能还有液压的传递。为了避免在机械能的转换过程中,线缆存在扭缆的情况,常用的解决办法是采用电滑环、光滑环,集电环、防雷滑环等实现能量的传递。以上各种设备一定程度上都满足了风力发电机机组的运行工况,但是当两种或者两种以上设备都需要安装在一个系统中时,受安装空间限制,安装结构复杂且施工极为困难。
基于此,本申请实施例提供了一种组合式能量传输装置100及风力发电机组,组合式能量传输装置100能够满足机械能、电能、光能以及液压能等至少一种能量的传递,且能够减小或者避免受安装空间限制,利于施工。组合式能量传输装置100可以作为独立的构件,当然也可以用于风力发电机组并作为风力发电机组的组成部分。
为了更好地理解本申请,下面结合图2至图7根据本申请实施例的组 合式能量传输装置100进行详细描述。
如图2至图4所示,发明实施例提出的一种组合式能量传输装置100,包括多个同轴设置的能量传输部件10,相邻两个能量传输部件10中,其中一个能量传输部件10至少部分位于另一个能量传输部件10的内部。每个能量传输部件10包括转动配合且彼此电连接的转子11以及定子12,各能量传输部件10的转子11彼此独立设置并绝缘连接,各能量传输部件10的定子12彼此独立设置并彼此绝缘连接。
本申请实施例提供的能量传输装置100,包括多个同轴设置的能量传输部件10,每个能量传输部件10包括转动配合且彼此电连接的转子11以及定子12,利用能量传输部件10的转子11以及定子12能够实现相对转动的部件之间的连接以及能量的传递,进而利用多个能量传输部件10实现机械能、电能、光能以及液压能等至少一种能量的传递。而相邻两个能量传输部件10中,其中一个能量传输部件10至少部分位于另一个能量传输部件10的内部,且各能量传输部件10的转子11彼此独立设置并绝缘连接,各能量传输部件10的定子12彼此独立设置并绝缘连接。能够使得多个能量传输部件10在同一轴系上且同轴设置并能够减少轴向X占用空间,在满足能量传递的基础上减小或者避免组合式能量传输装置100受安装空间限制,利于施工。
在一些可选地实施例中,本申请实施例提供的组合式能量传输装置100,为了便于相邻两个能量传输部件10中,其中一个能量传输部件10能够至少部分位于另一个能量传输部件10的内部,可以使得至少一个能量传输部件10的转子11以及定子12均中空设置,相邻两个能量传输部件10中的一者至少部分插接于另一者的转子11以及定子12的中空腔内。
示例性的,以组合式能量传输装置100包括两个能量传输部件10为例,两个能量传输部件10的径向尺寸可以依次减小,两个能量传输部件10均可以设置有中空腔,当然,可以使得其中径向尺寸较大的能量传输部件10设置中空腔,使得径向尺寸较小的能量传输部件10至少部分插接于其中空腔内,利于能量传输部件10彼此之间的配合,减少不同能量传输部件10组合后的占用空间。
可选的,每个能量传输部件10上的中空腔在该能量传输部件10的轴向X上贯穿,利于另一能量传输部件10的拆装以及彼此之间的连接。
在一些可选地实施例中,本申请实施例提供的组合式能量传输装置100,相邻两个能量传输部件10可拆卸连接。通过使得相邻两个能量传输部件10彼此可拆卸连接,利于组合式能量传输装置100的装拆。同时,当其中部分数量的能量传输部件10损坏时只需更换相应损坏的能量传输部件10即可,无需报废处理,节约成本,提高组合式能量传输装置100的使用寿命。
作为一种可选地实施方式,相邻两个能量传输部件10中,其中一者的转子11设置有第一法兰20,另一者的转子11设置有第二法兰30,第一法兰20与第二法兰30相互轴向X层叠且彼此可拆卸连接。通过在相邻的能量传输部件10的转子11上对应设置第一法兰20或者第二法兰30,第一法兰20以及第二法兰30相互层叠,可以通过螺栓等紧固件穿过第一法兰20以及第二法兰30实现相邻两个能量传输部件10的转子11之间的可拆卸连接。
作为一种可选地实施方式,相邻两个能量传输部件10中,还可以使得其中一者的定子12设置有第三法兰40,另一者的定子12设置有第四法兰50,第三法兰40与第四法兰50相互轴向X层叠且彼此可拆卸连接。通过在相邻的能量传输部件10的定子12上对应设置第三法兰40或者第四法兰50,第三法兰40以及第四法兰50相互层叠,可以通过螺栓等紧固件穿过第三法兰40以及第四法兰50实现每相邻两个能量传输部件10的转子11之间的可拆卸连接。
在一些可选地实施例中,本申请实施例提供的组合式能量传输装置100,在能量传输部件10的轴向X上,至少一个转子11的端部连接有延伸杆件70,转子11通过延伸杆件70与相对的第一法兰20和/或第二法兰30连接。由于相邻两个能量传输部件10中一者需要至少部分插接于另一者中,彼此之间存在尺寸差异,因此,在能量传输部件10的轴向X上,通过在至少一个转子11的端部连接有延伸杆件70,通过延伸杆件70与相应的第一法兰20或者第二法兰30连接,便于相邻两个能量传输部件10的 第一法兰20与第二法兰30之间的层叠与连接。
可选的,在能量传输部件10的轴向X上,可以在转子11的任意端部连接有延伸杆件70,当然,在有些实施例中,也可以使得转子11在轴向X上的两端部均设置有延伸杆件70,以利于相邻两个能量传输部件10之间的连接。
可选的,转子11的每个端部连接的延伸杆件70的数量可以为两个以上,两个以上延伸杆件70围绕能量传输部件10的轴线间隔设置,以保证转子11与对应第一法兰20或者第二法兰30之间的连接与支撑强度。
作为一种可选地实施方式,在能量传输部件10的轴向X上,也可以使得至少一个定子12的端部连接有延伸杆件70,定子12通过延伸杆件70与相对的第三法兰40和/或第四法兰50连接。由于相邻两个能量传输部件10的尺寸存在差异,因此,在能量传输部件10的轴向X上,通过在至少一个定子12的端部连接有延伸杆件70,通过延伸杆件70与相应的第三法兰40或者第四法兰50连接,便于相邻两个能量传输部件10的第三法兰40与第四法兰50之间的层叠与连接。
可选的,在能量传输部件10的轴向X上,可以在定子12的任意端部连接有延伸杆件70,当然,在有些实施例中,也可以使得定子12在轴向X上的两端部均设置有延伸杆件70,以利于相邻两个能量传输部件10之间的连接。
可选的,定子12在轴向X上的端部连接的延伸杆件70的数量可以为两个以上,两个以上延伸杆件70围绕能量传输部件10的轴线间隔设置,以保证定子12与对应第三法兰40或者第四法兰50之间的连接与支撑强度。
作为一种可选地实施方式,在能量传输部件10的轴向X上,延伸杆件70的长度可调。通过上述设置,能够通过调节延伸杆件70在轴向X上的长度来调节与之连接的法兰在轴向X上的位置,利于相邻两个能量传输部件10的对应法兰之间的层叠,以便于通过法兰彼此可拆卸连接。
可选的,延伸杆件70可以包括第一杆段以及第二杆段,第二杆段插接于第一杆段的内部,通过调节第二杆段插入第一杆段内的深度实现延伸 杆件70的长度调整。可选的,当第一杆段以及第二杆段调节至合适位置时,通过在第一杆段以及第二杆段的侧部共同插入锁定销实现第一杆段与第二杆段之间相对位置的锁定。
作为一种可选的实施方式,本申请实施例提供的组合式能量传输装置100,还包括磁屏蔽结构60,至少两个相邻设置的能量传输部件10之间设置有磁屏蔽结构60。通过设置磁屏蔽结构60,使得相邻两个能量传输部件10中的一者至少部分插接于另一者时,能够避免彼此之间互感产生串扰,有效的避免能量传输部件10之间产生磁耦合,保证能量传输部件10各自性能的独立性以及稳定性。
作为一种可选地实施方式,磁屏蔽结构60可以呈筒状体,磁屏蔽结构60置于相邻两个能量传输部件10之间并与相邻两个能量传输部件10中的一者连接。磁屏蔽结构60采用筒状体,可以将其设置在相邻两个能量传输部件10之间并包围位于内侧的能量传输部件10,在避免能量传输部件10彼此之间产生磁感应的基础上还能够简化磁屏蔽结构60,利于其成型以及拆装。
在一些可选的实施例中,本申请实施例提供的组合式能量传输装置100,同一能量传输部件10的转子11以及定子12通过轴承13转动连接,通过上述设置。使得组合式能量传输装置100在使用时,与能量传输部件10的转子11连接的构件以及与其定子12连接的构件彼此之间利于相对转动且能够满足能量的传递,同时在转动的过程中能够有效的避免发生扭缆现象。
在一些可选的实施例中,本申请实施例提供的能量传输装置100,其所包括的能量传输部件10的数量不做具体限制,其可以为两个、三个甚至更多个。具体可以根据能量传输装置100所在位置以及需要传递的能量的种类进行设置。
作为一种可选的实施方式,本申请实施例提供的组合式能量传输装置100,其多个能量传输部件10可以包括集电环、光滑环、电滑环以及防雷滑环中的一者或者两者以上的组合。通过上述设置,能够利于组合式能量传输装置100能够满足机械能、电能、光能以及液压能等至少一种能量的 传递。
示例性的,可以使得组合式能量传输装置100所包括的多个能量传输部件10均为集电环、或者均为光电环、或者均为电滑环、或者均为防雷滑环。
当然,此为一种可选的实施方式,在有些示例中,也可以使得组合式能量传输装置100所包括的多个能量传输部件10中至少一个为集电环、至少一个为光滑环等,具体可以根据组合式能量传输装置100所在位置以及需要传递的能量的种类进行设置。
可以理解的是,本申请上述各实施例均是以相邻能量传输部件10通过对应的法兰层叠以及紧固件锁定的形式进行可拆卸连接,此为一种可选地实施方式,在一些其他的示例中,也可以使得相邻能量传输部件10的转子11之间通过焊接的方式相互连接,定子12之间通过焊接的方式相互连接,以满足各转子11之间的连接需求以及各定子12之间的连接需求。
为了更好的理解本申请实施提供的组合式能量传输装置100,以下将以其包括三个能量传输部件10为例进行举例说明。
继续参阅图3、图4所示,作为一种可选地实施方式,本申请实施例提供的组合式能量传输装置100,其多个同轴设置的能量传输部件10包括第一能量传输部件10a、第二能量传输部件10b以及第三能量传输部件10c。为了便于理解,将第一能量传输部件10a包括的转子11以及定子12限定为第一转子11a以及第一定子12a,第二能量传输部件10b包括的转子11以及定子12限定为第二转子11b以及第二定子12b,并且将第三能量传输部件10c包括的转子11以及定子12限定为第三转子11c以及第三定子12c。
可选的,可以在第一能量传输部件10a的第一转子11a内设置有第一中空腔,第二能量传输部件10b至少部分位于第一中空腔,第二能量传输部件10b的第二转子11b内设置有第二中空腔,第三能量传输部件10c至少部分位于第二中空腔,第二能量传输部件10b的第二转子11b分别与第一能量传输部件10a的第一转子11a以及第三能量传输部件10c的第三转子11c连接,第二能量传输部件10b的第二定子12b分别与第一能量传输 部件10a的第一定子12a以及第三能量传输部件10c的第三定子12c连接。
作为一种可选地实施方式,可以使得三个能量传输部件10中的一者采用集电环、一者采用电滑环、剩余一者采用光滑环。通过集电环能够满足高电流的传输需求,通过电滑环能够满足低电流的传输需求,而通过设置光滑环能够满足光信号的传输需求。
作为一种可选地实施方式,三个能量传输部件10中可以使得第一能量传输部件10a采用集电环,第二能量传输部件10b采用电滑环,而第三能量传输部件10c采用光滑环,能够满足电信号、光信号的传递。
如图5至图7所示,作为一种可选地实施方式,当能量传输部件10采用集电环时,可以使其转子11包括转轴111以及多个滑环112,多个滑环112在轴向X间隔并与转轴111绝缘连接。定子12包括定子支架121以及多个设置于定子支架121并沿着轴向X间隔分布的环状组件122,每个环状组件122包括环形板122a、设置于环形板122a的电刷组件122b以及与电刷组件122b电连接的汇流排122c,每个电刷组件122b与对应的滑环112接触并电连接。能量传输部件10采用上述形式,能够利于电能等能量的传递。其转轴111内部可以中空设置形成中空腔室,可选的,其转轴111可以用作磁屏蔽结构使用。
一些可选地实施例中,可以使得定子支架121设置第三法兰40和/或第四法兰50,在满足相邻能量传输部件10彼此连接需求的基础上能够简化能量传输部件10的结构。
作为一种可选地实施方式,可以使得转子11包括转子支架113,多个滑环112连接于转子支架113,可以使得转子支架113设置第一法兰20和/或第二法兰30。通过上述设置,在满足相邻能量传输部件10彼此连接需求的基础上能够简化能量传输部件10的结构。当设置转子支架113时,转子11可以同时包括转轴111,当然也可以去除转轴111,只要能够保证多个滑环112的连接以及相对位置固定需求均可。
在一些可选地实施例中,可以使得第一能量传输部件10a的第一转子11a设置第一法兰20,第二能量传输部件10b的第二转子11b设置第二法 兰30,第二法兰30在轴向X上与第一法兰20层叠设置并通过紧固件可拆卸连接。
可选的,可以在第二能量传输部件10b的第二转子11b的一个端部设置延伸杆件70,第二转子11b通过延伸杆件70与第二法兰30连接。
可选的,可以使得第一能量传输部件10a的第一定子12a设置第三法兰40,第二能量传输部件10b的第二定子12b设置第四法兰50,第四法兰50与第三法兰40层叠设置并通过紧固件连接。
如图4至图7所示,一些可选地实施例中,第二能量传输部件10b包括控制信号传输通道141以及动力信号传输通道142,控制信号传输通道141与动力信号传输通道142轴向X层叠且彼此绝缘设置。通过第二能量传输部件10b能够实现控制信号以及动力信号的传输。
一些可选的示例中,可以使得第三能量传输部件10c的第三转子11c上设置有第一法兰20,其可以直接与第二能量传输部件10b上的第二转子11b连接。进而实现各能量传输部件10的转子11的同步转动。第三能量传输部件10c的定子12c可以设置有第三法兰40,通过第三法兰40与第二能量传输部件10b的第二定子12b上设置的第四法兰50层叠设置并可拆卸连接。
一些可选的实施例中,第三能量传输部件10c采用光滑环形式时,可以利用透镜原理实现光信号的传递。
本申请实施例提供的组合式能量传输装置100,当其用于风力发电机组时,可以将组合式能量传输装置100设置在塔架200或者机舱300的一者内。一些可选的实施例中,可以将其设置在塔架200内,其可以与塔架200同轴或者偏心设置,风力发电机组还可以包括线缆600,线缆600包括设置于机舱300的第一线缆610以及设置于塔架200的第二线缆620,各能量传输部件10的转子11与第一线缆610以及第二线缆620中的一者连接,各能量传输部件10的定子12与第一线缆610以及第二线缆620中的另一者电连接。以实现风力发电机组中能量的传递,同时能够减少多个能量传输部件10整体在风力发电机组中轴向X上的占用空间,解决需要用到多个能量传输部件10而安装空间有限的问题。
并且,利用组合式能量传输装置100将集电环、光滑环、电滑环以及防雷滑环中至少一者的功能集成在一个部件中,能降低成本。各能量传输部件10具有独立的功能且互不影响。
同时,组合式能量传输装置100的各能量传输部件10的转子11、定子12的组合形式,使得转子11能够联动,减小拨叉等驱动结构的使用,满足同等能量传输功能需求下,能够简化结构,且节约成本。
虽然已经参考优选实施例对本申请进行了描述,但在不脱离本申请的范围的情况下,可以对其进行各种改进并且可以用等效物替换其中的部件。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (14)

  1. 一种组合式能量传输装置,其中,包括:
    多个同轴设置的能量传输部件,相邻两个所述能量传输部件中,其中一个所述能量传输部件至少部分位于另一个能量传输部件的内部;
    每个所述能量传输部件包括转动配合且彼此电连接的转子以及定子,各所述能量传输部件的所述转子彼此独立设置并绝缘连接,各所述能量传输部件的所述定子彼此独立设置并绝缘连接。
  2. 根据权利要求1所述的组合式能量传输装置,其中,至少一个所述能量传输部件的所述转子以及所述定子均中空设置,相邻两个所述能量传输部件中的一者至少部分插接于另一者的转子以及定子的中空腔内。
  3. 根据权利要求1所述的组合式能量传输装置,其中,所述组合式能量传输装置还包括磁屏蔽结构,至少两个相邻设置的所述能量传输部件之间设置有所述磁屏蔽结构。
  4. 根据权利要求3所述的组合式能量传输装置,其中,所述磁屏蔽结构呈筒状体,所述磁屏蔽结构置于相邻两个所述能量传输部件中的一者连接。
  5. 根据权利要求1所述的组合式能量传输装置,其中,相邻两个所述能量传输部件可拆卸连接。
  6. 根据权利要求1所述的组合式能量传输装置,其中,相邻两个所述能量传输部件中,其中一者的所述转子设置有第一法兰,另一者的所述转子设置有第二法兰,所述第一法兰与所述第二法兰相互轴向层叠且彼此可拆卸连接,其中一者的所述定子设置有第三法兰,另一者的所述定子设置有第四法兰,所述第三法兰与所述第四法兰相互轴向层叠且彼此可拆卸连接。
  7. 根据权利要求6所述的组合式能量传输装置,其中,在所述能量传输部件的轴向上,至少一个所述转子的端部连接有延伸杆件,所述转子 通过所述延伸杆件与相对的所述第一法兰和/或所述第二法兰连接;
    和/或,在所述能量传输部件的轴向上,至少一个所述定子的端部连接有延伸杆件,所述定子通过所述延伸杆件与相对的所述第三法兰和/或所述第四法兰连接。
  8. 根据权利要求7所述的组合式能量传输装置,其中,在所述能量传输部件的轴向上,所述延伸杆件的长度可调。
  9. 根据权利要求1所述的组合式能量传输装置,其中,所述能量传输部件包括集电环、光滑环、电滑环以及防雷滑环中的一者。
  10. 根据权利要求1所述的组合式能量传输装置,其中,同一所述能量传输部件的所述转子与所述定子通过轴承转动连接。
  11. 根据权利要求1至10任意一项所述的组合式能量传输装置,其中,多个同轴设置的所述能量传输部件包括第一能量传输部件、第二能量传输部件以及第三能量传输部件,所述第一能量传输部件的转子内设置有第一中空腔,所述第二能量传输部件至少部分位于所述第一中空腔,所述第二能量传输部件的转子内设置有第二中空腔,所述第三能量传输部件至少部分位于所述第二中空腔,所述第二能量传输部件的转子分别与所述第一能量传输部件的转子以及所述第三能量传输部件的转子连接,所述第二能量传输部件的定子分别与所述第一能量传输部件的定子以及所述第三能量传输部件的定子连接。
  12. 根据权利要求11所述的组合式能量传输装置,其中,所述第二能量传输部件包括控制信号传输通道以及动力信号传输通道,所述控制信号传输通道与所述动力信号传输通道轴向层叠且彼此绝缘设置。
  13. 一种风力发电机组,包括如权利要求1至12任意一项所述的组合式能量传输装置。
  14. 根据权利要求13所述的风力发电机组,其中,所述风力发电机组还包括:
    塔架;
    机舱,设置于所述塔架并与所述塔架转动连接;
    线缆,包括设置于所述机舱的第一线缆以及设置于所述塔架的第二线缆;
    其中,所述组合式能量传输装置设置于所述塔架以及所述机舱中的一者并与所述塔架同轴或者偏心设置,各所述能量传输部件的所述转子与所述第一线缆以及所述第二线缆中的一者电连接,各所述能量传输部件的所述定子与所述第一线缆以及所述第二线缆中的另一者电连接。
PCT/CN2021/141525 2021-08-12 2021-12-27 组合式能量传输装置及风力发电机组 WO2023015821A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110926699.4 2021-08-12
CN202110926699.4A CN113638843A (zh) 2021-08-12 2021-08-12 组合式能量传输装置及风力发电机组

Publications (1)

Publication Number Publication Date
WO2023015821A1 true WO2023015821A1 (zh) 2023-02-16

Family

ID=78421196

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/141525 WO2023015821A1 (zh) 2021-08-12 2021-12-27 组合式能量传输装置及风力发电机组

Country Status (2)

Country Link
CN (1) CN113638843A (zh)
WO (1) WO2023015821A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117767082A (zh) * 2024-02-05 2024-03-26 深圳市森瑞普电子有限公司 一种微型导电滑环

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113638843A (zh) * 2021-08-12 2021-11-12 新疆金风科技股份有限公司 组合式能量传输装置及风力发电机组

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2019460A2 (en) * 2007-07-24 2009-01-28 Ravioli S.P.A. Rotary electrical slip ring assembly
CN101931156A (zh) * 2010-08-12 2010-12-29 李冰 一种多层滑环系统
CN208299176U (zh) * 2017-12-29 2018-12-28 杭州驰宏科技有限公司 一种多层组合滑环
CN109737018A (zh) * 2018-12-29 2019-05-10 北京金风科创风电设备有限公司 滑环组件及风力发电机组
CN213878680U (zh) * 2020-10-22 2021-08-03 湖南世优电气股份有限公司 滑环结构及风力发电设备
CN113638843A (zh) * 2021-08-12 2021-11-12 新疆金风科技股份有限公司 组合式能量传输装置及风力发电机组

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10003900B4 (de) * 2000-01-29 2004-02-19 Schunk Metall Und Kunststoff Gmbh Stromübertragungsanordnung
DE102010050469A1 (de) * 2010-11-04 2012-05-10 Ltn Servotechnik Gmbh Schleifringeinheit und Verwendung der Schleifringeinheit in einer Windkraftanlage
CN105610024B (zh) * 2015-11-16 2018-12-04 西安交通大学 一种旋转导电连接器及导电设备
CN205212132U (zh) * 2015-12-18 2016-05-04 中能动力(北京)滑环设备制造有限公司 一种组合式风电变桨导电滑环
CN108011272A (zh) * 2017-11-30 2018-05-08 无锡市艾可密封技术有限公司 一种气液光电组合滑环
CN111162642A (zh) * 2020-03-02 2020-05-15 大连宜顺机电有限公司 一种偏航集电环转子结构
CN212435004U (zh) * 2020-06-11 2021-01-29 乌鲁木齐金风天翼风电有限公司 集电环和风力发电机组

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2019460A2 (en) * 2007-07-24 2009-01-28 Ravioli S.P.A. Rotary electrical slip ring assembly
CN101931156A (zh) * 2010-08-12 2010-12-29 李冰 一种多层滑环系统
CN208299176U (zh) * 2017-12-29 2018-12-28 杭州驰宏科技有限公司 一种多层组合滑环
CN109737018A (zh) * 2018-12-29 2019-05-10 北京金风科创风电设备有限公司 滑环组件及风力发电机组
CN213878680U (zh) * 2020-10-22 2021-08-03 湖南世优电气股份有限公司 滑环结构及风力发电设备
CN113638843A (zh) * 2021-08-12 2021-11-12 新疆金风科技股份有限公司 组合式能量传输装置及风力发电机组

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117767082A (zh) * 2024-02-05 2024-03-26 深圳市森瑞普电子有限公司 一种微型导电滑环
CN117767082B (zh) * 2024-02-05 2024-04-23 深圳市森瑞普电子有限公司 一种微型导电滑环

Also Published As

Publication number Publication date
CN113638843A (zh) 2021-11-12

Similar Documents

Publication Publication Date Title
WO2023015821A1 (zh) 组合式能量传输装置及风力发电机组
EP2102496B1 (en) Multiple generator wind turbine
CN201851280U (zh) 一种无刷双桨叶异向驱动永磁风力发电机
AU2009301109B2 (en) Wind turbine rotor and wind turbine
CN102005858B (zh) 一种无刷双桨叶异向驱动永磁风力发电机
EP2378117A1 (en) Wind turbine
AU2013265478B2 (en) Generator of a gearless wind power plant
US20200355159A1 (en) Vertical axis wind turbine apparatus and system
JP2006094645A (ja) 永久磁石を用いた回転界磁型の同期発電機および風力発電装置
CN1976178B (zh) 变速恒频励磁控制系统
WO2020005221A1 (en) Rotating armature for a wind turbine generator having a superconducting stator
CN201004589Y (zh) 串联式双转子风力发电机及其变速变频励磁系统
CN110601479B (zh) 一种双转子感应风力发电机及其工作方法
CN108683319B (zh) 低速高推力密度双层分数槽绕组圆筒型直线电机
CN105515280A (zh) 与风速匹配的低速永磁发电机组
CN102122869A (zh) 同心式双定子结构的直驱笼型异步风力发电机系统
CN100495899C (zh) 双转子变速变频发电机
CN200983569Y (zh) 串联双转子风力发电机变速变频励磁系统
CN1976180B (zh) 变速变频风电机及其励磁控制系统
CN200980032Y (zh) 串联双转子变速变频励磁风电机
CN201953572U (zh) 同心式双定子结构的直驱开关磁阻风力发电机系统
CN202094774U (zh) 同心式双定子结构的直驱实心转子异步风力发电机系统
CN219960253U (zh) 定子组件、发电机以及风力发电机组
CN112228279B (zh) 发电机及风力发电机组
CN200987111Y (zh) 串联永磁变速恒频励磁双转子风电机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21953422

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE