WO2023015739A1 - 旋转驱动装置及旋转驱动装置系统误差的校正方法 - Google Patents

旋转驱动装置及旋转驱动装置系统误差的校正方法 Download PDF

Info

Publication number
WO2023015739A1
WO2023015739A1 PCT/CN2021/127461 CN2021127461W WO2023015739A1 WO 2023015739 A1 WO2023015739 A1 WO 2023015739A1 CN 2021127461 W CN2021127461 W CN 2021127461W WO 2023015739 A1 WO2023015739 A1 WO 2023015739A1
Authority
WO
WIPO (PCT)
Prior art keywords
assembly
torque
torque sensor
load
gear
Prior art date
Application number
PCT/CN2021/127461
Other languages
English (en)
French (fr)
Inventor
陈庆盈
杨桂林
王冲冲
张驰
王慰军
Original Assignee
中国科学院宁波材料技术与工程研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院宁波材料技术与工程研究所 filed Critical 中国科学院宁波材料技术与工程研究所
Publication of WO2023015739A1 publication Critical patent/WO2023015739A1/zh
Priority to US18/416,923 priority Critical patent/US20240160232A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D17/00Control of torque; Control of mechanical power
    • G05D17/02Control of torque; Control of mechanical power characterised by the use of electric means
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D27/00Simultaneous control of variables covered by two or more of main groups G05D1/00 - G05D25/00
    • G05D27/02Simultaneous control of variables covered by two or more of main groups G05D1/00 - G05D25/00 characterised by the use of electric means
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D13/00Control of linear speed; Control of angular speed; Control of acceleration or deceleration, e.g. of a prime mover
    • G05D13/62Control of linear speed; Control of angular speed; Control of acceleration or deceleration, e.g. of a prime mover characterised by the use of electric means, e.g. use of a tachometric dynamo, use of a transducer converting an electric value into a displacement

Definitions

  • the present application relates to the field of drive devices, in particular to a rotary drive device and a method for correcting system errors of the rotary drive device.
  • Rotary drives can be applied to some mechanical structures that perform circular work, such as crane slewing tables and robot joints.
  • some mechanical structures that perform circular work such as crane slewing tables and robot joints.
  • there is a blocking force in the driving process of the rotary driving device and the blocking force is likely to cause errors in the dynamic response process of the rotary driving device, which makes it difficult to accurately control the motion process of the rotary driving device .
  • the present application provides a rotary driving device for driving a load to rotate.
  • the rotary driving device includes a driven assembly, a driving assembly, a torque transmission member, a first torque sensor and a second torque sensor.
  • the driven component is used to drive the load to rotate.
  • the driving assembly is used to output torque, and the driving assembly includes a fixed assembly and a rotating assembly, and the rotating assembly is rotatably connected to the fixed assembly.
  • the torque transmission member connects the rotating assembly and the driven assembly, and the rotating assembly drives the driven assembly to rotate through the torque transmission member.
  • the first torque sensor is connected to the fixed assembly and the torque transmission member for detecting the torque of the torque transmission member acting on the first torque sensor.
  • the second torque sensor is arranged on the driven assembly for detecting the output torque of the driving assembly.
  • the fixed component includes a motor bracket and a motor stator
  • the rotating component includes a motor rotor
  • the motor bracket, the motor stator and the motor rotor form a rotating motor.
  • the motor stator is fixed on the motor bracket, the motor rotor is rotatably connected to the motor bracket through the first bearing, and the motor stator can rotate the motor rotor.
  • control assembly in one embodiment, it also includes a control assembly, the control assembly is electrically connected to the rotating electrical machine; the rotating electrical machine also includes an incremental encoder, and the incremental encoder is arranged at one end of the motor rotor, and the incremental encoder is used for measuring The speed of the motor rotor.
  • the fixed assembly further includes a mounting base, which is fixedly connected to the motor bracket;
  • the rotating drive device further includes a brake, which is mounted on the mounting base, and the brake is movably matched with the motor rotor to brake the motor rotor .
  • the rotating assembly includes a wave generator
  • the torque transmission member is a flexible gear
  • the driven assembly includes a rigid gear
  • the wave generator, flexible gear and rigid gear constitute a harmonic drive reducer.
  • the flexible gear is at least partially sleeved on the wave generator, and the part of the flexible gear sleeved on the wave generator cooperates with the wave generator to form an oval gear structure.
  • the long axis end of the oval gear structure meshes with the rigid gear, and one end of the flexible gear is fixedly connected to the first torque sensor.
  • the flexible gear includes a meshing portion and a connecting portion, the meshing portion is cylindrical, the meshing portion is at least partially sheathed on the wave generator, and the meshing portion is sheathed on the outer wall of the part of the wave generator and the rigid gear.
  • Inner wall engagement connection An end of the engaging portion away from the wave generator is turned outward to form a connecting portion.
  • the connection part is fixedly connected with the first torque sensor. Such setting facilitates the harmonic drive reducer to transmit the torque G1 to the first torque sensor through the flexible gear.
  • the driven assembly further includes an output flange, which is connected to the rigid gear and used for connecting a load, and the rigid gear can drive the load to rotate through the output flange.
  • the second torque sensor is arranged between the output flange and the rigid gear. In this way, the structural stability of the rotary drive is increased.
  • the output flange includes a support part and an assembly part, the support part is cylindrical, one end of the support part is folded outward to form the assembly part, one side of the assembly part is connected to the rigid gear, and the other side is used for
  • the rigid gear can drive the load to rotate through the assembly part
  • the second torque sensor is arranged between the assembly part and the rigid gear.
  • the rotary driving device further includes a second bearing, the second bearing is sleeved on the supporting part, and the supporting part is rotatably connected to the driving assembly through the second bearing.
  • it further includes a control assembly and an absolute encoder, the control assembly is electrically connected to the absolute encoder, and the absolute encoder is disposed at an end of the support part away from the assembly part.
  • the absolute encoder is used to measure the rotational position of the output flange, and the control assembly can control the variation of the output flange's rotational angle according to the measurement results of the absolute encoder.
  • the first torque sensor is any one of a strain gauge torque sensor, a capacitive torque sensor, a piezoelectric torque sensor and a piezoresistive torque sensor.
  • the second torque sensor is any one of strain gauge torque sensor, capacitive torque sensor, piezoelectric torque sensor and piezoresistive torque sensor.
  • the present application also provides a method for correcting the system error of the rotary drive device, which is used to correct the system error of the rotary drive device described in any one of the above embodiments.
  • the method for correcting the system error of the rotary drive device includes the following steps:
  • the rotating component drives the driven component to accelerate the rotation through the torque transmission part
  • the output torque G 2 of the driving assembly is measured by the second torque sensor arranged on the driven assembly,
  • the torque G 1 of the torque transmission member acting on the first torque sensor is measured through the first torque sensor connected to the torque transmission member
  • M is the moment of inertia of the load
  • a is the angular acceleration of the load.
  • the rotary drive device and the correction method for the system error of the rotary drive device provided by the present application start the drive assembly, the drive assembly drives the rotation assembly to accelerate the rotation, and the rotation assembly transmits the torque to the driven assembly through the torque transmission member, so that the driven assembly also accelerates Rotation, and the accelerated rotation of the driven component will drive the load to accelerate the rotation together.
  • the output torque G 2 of the driving assembly is decomposed into two parts, one part of the torque causes the load to generate an angular acceleration a, and the other part of the torque is offset by the reverse torque generated by the fixed assembly on the torque transmission member.
  • the output torque G2 of the driving assembly is used as the torque that causes the load to generate angular acceleration a
  • part of the output torque G2 of the driving assembly is the reverse torque generated by the fixed assembly to the torque transmission member Therefore, the torque that causes the load to generate angular acceleration a is not consistent with the output torque G2 of the drive assembly, resulting in a systematic error.
  • the output torque G 2 of the driving component can be directly measured by the second torque sensor, while the first torque sensor can measure the torque G 1 generated by the torque transmission member to the fixed component.
  • the torque G 1 that fails to cause the load to generate angular acceleration in the output torque G 2 of the drive component can be eliminated, so as to obtain the actual torque of the drive component that causes the load to generate angular acceleration, and then Corrects systematic errors of linear drives.
  • M is the moment of inertia of the load
  • a is the angular acceleration of the load.
  • the rotary drive device provided by the present application eliminates the systematic error existing in the dynamic response process of the rotary drive device, thereby facilitating the precise control of the motion process of the rotary drive device.
  • Fig. 1 is a cross-sectional view of a rotary drive device according to an embodiment of the present application.
  • first and second are used for descriptive purposes only, and cannot be interpreted as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features.
  • the features defined as “first” and “second” may explicitly or implicitly include at least one of these features.
  • “plurality” means at least two, such as two, three, etc., unless otherwise specifically defined.
  • a first feature being "on” or “under” a second feature may mean that the first and second features are in direct contact, or that the first and second features are indirect through an intermediary. touch.
  • “above”, “above” and “above” the first feature on the second feature may mean that the first feature is directly above or obliquely above the second feature, or simply means that the first feature is higher in level than the second feature.
  • “Below”, “beneath” and “beneath” the first feature may mean that the first feature is directly below or obliquely below the second feature, or simply means that the first feature is less horizontally than the second feature.
  • the rotary drive device is widely used.
  • the rotary drive device is used to drive the load 100 to perform rotary motion.
  • the present application provides a rotary drive device for driving a load 100 to rotate, and the rotary drive device includes a driven assembly 1 , a drive assembly 2 , a torque transmission member 3 , a first torque sensor 4 and a second torque sensor 5 .
  • the driving assembly 2 is used as a power source for outputting torque
  • the driving assembly 2 includes a fixed assembly 21 and a rotating assembly 22
  • the rotating assembly 22 is rotatably connected to the fixing assembly 21
  • the fixing assembly 21 can drive the rotating assembly 22 to rotate.
  • the rotating assembly 22 is connected to the driven assembly 1 through the torque transmission member 3 , so that the torque output by the driving assembly 2 is transmitted to the driven assembly 1 through the torque transmission member 3 .
  • the driven assembly 1 is connected to the load 100 and used to drive the load 100 to rotate. That is, the torque output by the driving assembly 2 is mainly used to drive the load 100 to rotate.
  • the first torque sensor 4 is connected to the fixing assembly 21 and the torque transmission member 3 for detecting the torque that the torque transmission member 3 acts on the first torque sensor 4 .
  • the second torque sensor 5 is disposed on the driven assembly 1 for detecting the output torque of the driving assembly 2 .
  • the first torque sensor 4 is any one of a strain gauge torque sensor, a capacitive torque sensor, a piezoelectric torque sensor and a piezoresistive torque sensor.
  • the second torque sensor 5 is any one of a strain gauge torque sensor, a capacitive torque sensor, a piezoelectric torque sensor and a piezoresistive torque sensor. Strain gauge torque sensors, capacitive torque sensors, piezoelectric torque sensors and piezoresistive torque sensors all have the advantages of fast strain response and high measurement accuracy, and can quickly and accurately measure the corresponding torque.
  • the driving assembly 2 is started, and the driving assembly 2 drives the rotating assembly 22 to accelerate the rotation, and the rotating assembly 22 transmits the torque to the driven assembly 1 through the torque transmission member 3, so that the driven assembly 1 also accelerates the rotation. , and the accelerated rotation of the driven assembly 1 will drive the load 100 to accelerate the rotation together.
  • the output torque G 2 of the driving assembly 2 is decomposed into two parts, one part of the torque causes the load 100 to generate an angular acceleration a, and the other part of the torque is offset by the reverse torque generated by the fixed assembly 21 on the torque transmission member 3 .
  • the first torque sensor 4 is not provided, and the output torque G 2 of the drive assembly 2 is used as the torque that causes the load 100 to generate the angular acceleration a, however, the output torque G 2 of the drive assembly 2 has a part
  • the torque is offset by the reverse torque generated by the fixed assembly 21 to the torque transmission member 3 , therefore, the torque that causes the load 100 to generate angular acceleration a is not consistent with the output torque G 2 of the drive assembly 2 , resulting in a systematic error.
  • the output torque G 2 of the driving assembly 2 can be directly measured by the second torque sensor 5 , and the first torque sensor 4 can measure the torque G 1 generated by the torque transmission member 3 to the fixing assembly 21 .
  • the torque G 1 that fails to cause the load 100 to generate angular acceleration in the output torque G 2 of the drive assembly 2 can be eliminated, so as to obtain the angular acceleration of the load 100 generated by the drive assembly 2
  • M is the moment of inertia of the load 100
  • a is the angular acceleration of the load 100 .
  • the rotary drive device provided by the present application eliminates the systematic error existing in the dynamic response process of the rotary drive device, thereby facilitating the precise control of the motion process of the rotary drive device.
  • the rotary drive device uses a rotary motor as a power source.
  • the fixed component 21 includes a motor bracket 211 and a motor stator 212
  • the rotating component 22 includes a motor rotor 221
  • the motor bracket 211 , the motor stator 212 and the motor rotor 221 constitute a rotating motor.
  • the motor stator 212 is fixed on the motor bracket 211
  • the motor rotor 221 is rotatably connected to the motor bracket 211 through the first bearing 71.
  • the motor stator 212 can rotate the motor rotor 221 under the action of the magnetic field. Rotate, so as to realize the output torque of the drive assembly 2.
  • the rotating electrical machine can be directly connected to the load 100, or can be connected to the load 100 through a reducer.
  • Such an arrangement fundamentally improves the reliability of the rotary drive device, reduces the maintenance cost of the rotary drive device, and improves the positioning accuracy of the rotary drive device.
  • the definition of the motor rotor 221 is relatively broad.
  • the rotating parts between the load 100 and the motor stator 212 can be defined as the motor rotor 221, and when the rotating motor is connected through a reducer
  • the rotating parts between the reducer and the motor stator 212 can be defined as the motor rotor 221 . Therefore, in order for the motor rotor 221 to transmit torque better, the motor rotor 221 will be designed in different shapes, so that the motor rotor 221 can be connected to the load 100 or the speed reducer.
  • the rotary drive device is also provided with a control assembly 6 and an incremental encoder 81, and the control assembly 6 is electrically connected to the rotary motor and Incremental encoder 81.
  • the incremental encoder 81 is located at one end of the motor rotor 221, and the incremental encoder 81 can measure the rotating speed of the rotating electrical machine rotor 221 in real time, and then, the incremental encoder 81 transmits the rotating speed data of the rotating electrical machine to the control component 6, and the control component 6 can control the variation of the rotational speed of the motor rotor 221 according to the measurement result of the incremental encoder 81, so that the rotational speed of the rotating electrical machine reaches the target rotational speed.
  • the control assembly 6 can be controllers such as industrial computers or microprocessors.
  • the rotary drive device is also provided with a brake 9 .
  • the fixing assembly 21 further includes a mounting base 213, which is fixedly connected to the motor bracket 211, and the brake 9 is mounted on the mounting base 213, and the brake 9 is movably matched with the motor rotor 221 to brake the motor rotor 221.
  • the brake 9 is attached to the motor rotor 221
  • the motor rotor 221 decelerates under the friction of the brake 9
  • the tighter the brake 9 is attached to the motor rotor 221 , the faster the speed of the motor rotor 221 drops.
  • the motor rotor 221 When the brake 9 is far away from the motor rotor 221 , the motor rotor 221 will not be subjected to the frictional force from the brake 9 . More specifically, one end of the motor rotor 221 forms a stepped structure, the brake 9 stops at the stepped structure, and the brake 9 movably cooperates with the stepped surface of the stepped structure.
  • the rotating speed of the rotating electrical machine is too fast.
  • reducing the rotating speed of the rotating electrical machine is beneficial to increasing the output torque of the rotating electrical machine, so as to realize the low-speed and high-torque transmission of the rotating electrical machine.
  • the rotary drive device is provided with a harmonic drive reducer between the load 100 and the rotary electric machine.
  • the rotating assembly 22 includes a wave generator 222
  • the torque transmission member 3 is a flexible gear 31
  • the driven assembly 1 includes a rigid gear 11
  • the wave generator 222 , flexible gear 31 and rigid gear 11 form a harmonic drive reducer.
  • the flexible gear 31 is at least partly sheathed in the wave generator 222, and the section of the part of the wave generator 222 sheathed by the flexible gear 31 is elliptical, therefore, the part of the flexible gear 31 sheathed in the wave generator 222 and the wave generator 222 cooperate to form an oval gear structure, and the teeth of the oval gear structure face to the side away from the wave generator 222 .
  • the long axis end of the oval gear structure is always in mesh with the rigid gear 11, while the short axis end of the oval gear structure is completely disengaged from the rigid gear 11, and the long axis end of the oval gear structure and The portion between the short shaft ends is in a transitional state of incomplete meshing with the rigid gear 11 .
  • the wave generator 222 rotates continuously under the drive of the motor rotor 221, the deformation of the flexible gear 31 is constantly changing, and the meshing state of the flexible gear 31 and the rigid gear 11 is also constantly changing, and the meshing state of the flexible gear 31 and the rigid gear 11 is repeated.
  • the rigid gear 11 slowly rotates in the same direction as the wave generator 222 relative to the flexible gear 31 .
  • the flexible gear 31 is fixedly connected to the fixed assembly 21, and the motor rotor 221 drives the wave generator 222 to rotate, and the rigid gear 11 acts as a driven wheel, outputting rotation, and then driving the load 100 turn.
  • the wave generator 222 makes one revolution, and the number of cycles of deformation of a certain point on the flexible gear 31 is called the wave number, expressed by n, usually n is 2 or 3.
  • n is 2
  • the harmonic drive reducer is a double-wave drive.
  • the structure of the harmonic drive reducer is relatively simple, and the harmonic drive reducer is easy to obtain a larger transmission ratio.
  • the flexible gear 31 in order to measure the torque G 1 generated by the torque transmission member 3 to the fixed assembly 21 , one end of the flexible gear 31 is fixedly connected to the first torque sensor 4 , and the first torque sensor 4 is fixedly connected to the motor bracket 211 .
  • the flexible gear 31 includes an engaging portion 311 and a connecting portion 312.
  • the engaging portion 311 is in a cylindrical shape.
  • the engaging portion 311 is at least partially sleeved on the wave generator 222, and the engaging portion 311 is sleeved on the wave generator 222.
  • the outer wall of the part is engaged with the inner wall of the rigid gear 11.
  • An end of the engaging portion 311 away from the wave generator 222 is folded outward to form a connecting portion 312 , and the connecting portion 312 is fixedly connected to the first torque sensor 4 .
  • Such setting facilitates the harmonic drive reducer to transmit the torque G 1 to the first torque sensor 4 through the flexible gear 31 .
  • an output flange 12 is provided between the harmonic drive reducer and the load 100 .
  • the driven assembly 1 also includes an output flange 12, the output flange 12 is fixedly connected to the rigid gear 11, and the load 100 is connected to the output flange 12, and the rigid gear 11 drives the load 100 to rotate through the output flange 12 .
  • the second torque sensor 5 is located between the output flange 12 and the rigid gear 11 .
  • the output flange 12 includes a support part 121 and an assembly part 122 which are fixedly connected.
  • the supporting part 121 is cylindrical, and the outer side of the supporting part 121 is sheathed with the second bearing 72, and the supporting part 121 is rotatably connected to the driving assembly 2 through the second bearing 72, specifically the supporting part 121 is connected to the driving assembly 2 through the second bearing 72. It is rotatably connected to the motor rotor 221, thus improving the structural stability of the rotary driving device.
  • one end of the support part 121 is folded outward to form an assembly part 122.
  • the rigid gear 11 can drive the load 100 to rotate through the assembly part 122, and the second torque
  • the sensor 5 is provided between the fitting part 122 and the rigid gear 11 .
  • the rigid gear 11 is covered with a third bearing 73, and the rigid gear 11 is rotatably connected to the motor bracket 211 through the third bearing 73, thus further improving the structural strength of the entire rotary driving device.
  • the rotary drive device is also provided with an absolute encoder 82, and the control assembly 6 is electrically connected device 82.
  • the absolute encoder 82 is disposed at an end of the support portion 121 away from the assembly portion 122 .
  • the absolute encoder 82 can measure the rotational position of the output flange 12 in real time, and then, the absolute encoder 82 transmits the position information of the output flange 12 to the control assembly 6, and the control assembly 6 can The measurement result of the device 82 controls the variation of the rotation angle of the output flange 12.
  • the present application also provides a method for correcting the system error of the rotary drive device, which is used to correct the system error of the rotary drive device described in any one of the above embodiments.
  • the method for correcting the system error of the rotary drive device includes the following steps:
  • the rotating component drives the driven component to accelerate the rotation through the torque transmission part
  • the output torque G 2 of the driving assembly is measured by the second torque sensor arranged on the driven assembly,
  • the torque G 1 of the torque transmission member acting on the first torque sensor is measured through the first torque sensor connected to the torque transmission member
  • M is the moment of inertia of the load
  • a is the angular acceleration of the load.
  • the method for correcting the system error of the rotary drive device specifically includes the following steps:
  • the load 100 is detachably installed on the output flange 12 through fasteners.
  • the control component 6 controls the rotation motor to start, the motor stator 212 drives the motor rotor 221 to rotate, and the motor rotor 221 drives the harmonic drive reducer to rotate.
  • the harmonic drive reducer converts the high-speed rotation output by the rotating electrical machine into low-speed rotation.
  • the output flange 12 connected to the harmonic drive reducer rotates following the rigid gear 11 , thereby driving the load 100 to rotate together.
  • the rotating speed of the rotating electrical machine increases from zero, therefore, both the rotating electrical machine and the load 100 rotate at an accelerated speed.
  • the second torque sensor 5 can measure the output torque G of the driving motor.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Manipulator (AREA)

Abstract

一种旋转驱动装置及旋转驱动装置系统误差的校正方法,旋转驱动装置包括从动组件(1)、驱动组件(2)、扭矩传动件(3)、第一扭矩传感器(4)和第二扭矩传感器(5)。驱动组件(2)包括固定组件(21)和转动组件(22),转动组件(22)可转动地连接于固定组件(21)。扭矩传动件(3)连接转动组件(22)和从动组件(1),转动组件(22)通过扭矩传动件(3)带动从动组件(1)转动。第一扭矩传感器(4)连接固定组件(21)和扭矩传动件(3),第二扭矩传感器(5)设于从动组件(1)。

Description

旋转驱动装置及旋转驱动装置系统误差的校正方法
相关申请
本申请要求2021年8月13日申请的,申请号为202110929177.X,发明名称为“旋转驱动装置及旋转驱动装置系统误差的校正方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及驱动装置领域,特别是涉及一种旋转驱动装置及旋转驱动装置系统误差的校正方法。
背景技术
旋转驱动装置可应用于起重机回转台和机器人关节等一些进行圆周工作的机械结构。但是,由于系统振动和摩擦力等因素,使得旋转驱动装置在驱动过程中存在阻滞力,且阻滞力容易造成旋转驱动装置的动态响应过程存在误差,进而难以精确控制旋转驱动装置的运动过程。
发明内容
有鉴于此,有必要提供一种旋转驱动装置及旋转驱动装置系统误差的校正方法,能够校正旋转驱动装置在动态响应过程中存在的误差。
本申请提供一种旋转驱动装置用于驱动负载转动,旋转驱动装置包括从动组件、驱动组件、扭矩传动件、第一扭矩传感器和第二扭矩传感器。从动组件用于带动负载转动。驱动组件用于输出扭矩,驱动组件包括固定组件和 转动组件,转动组件可转动地连接于固定组件。扭矩传动件连接转动组件和从动组件,转动组件通过扭矩传动件带动从动组件转动。第一扭矩传感器连接固定组件和扭矩传动件,以用于检测扭矩传动件作用于第一扭矩传感器的扭矩。第二扭矩传感器设于从动组件,以用于检测驱动组件的输出扭矩。
于本申请的一个实施例中,固定组件包括电机支架和电机定子,转动组件包括电机转子,电机支架、电机定子和电机转子构成旋转电机。电机定子固设于电机支架,电机转子通过第一轴承可转动地连接于电机支架,且电机定子能够旋转电机转子转动。如此设置,从根本上提高了旋转驱动装置的可靠性,降低了旋转驱动装置的维护成本,并且,提高了旋转驱动装置的定位精度。
于本申请的一个实施例中,还包括控制组件,控制组件电连接旋转电机;旋转电机还包括增量式编码器,增量式编码器设于电机转子的一端,增量式编码器用于测量电机转子的转速。通过增量式编码器测量并控制旋转电机的转速,可以精确地控制负载的转速。
于本申请的一个实施例中,固定组件还包括安装座,安装座与电机支架固定连接;旋转驱动装置还包括制动器,制动器装设于安装座,制动器与电机转子活动配合,以制动电机转子。如此设置,能够更好地实现旋转电机的制动,以便于随时控制旋转驱动装置停止运转。
于本申请的一个实施例中,转动组件包括波发生器,扭矩传动件为柔性齿轮,从动组件包括刚性齿轮,波发生器、柔性齿轮和刚性齿轮构成一谐波传动减速器。柔性齿轮至少部分套设于波发生器,柔性齿轮套设于波发生器的部分和波发生器配合形成椭圆齿轮结构,椭圆齿轮结构的长轴端与刚性齿轮啮合,且柔性齿轮一端固定连接第一扭矩传感器。
于本申请的一个实施例中,柔性齿轮包括啮合部和连接部,啮合部呈筒状,啮合部至少部分套设于波发生器,且啮合部套设于波发生器的部分的外壁与刚性齿轮的内壁啮合连接。啮合部远离波发生器的一端向外翻折形成连接部。连接部固定连接第一扭矩传感器。如此设置,便于谐波传动减速器通过柔性齿轮将扭矩G 1传递至第一扭矩传感器。
于本申请的一个实施例中,从动组件还包括输出法兰盘,输出法兰盘连接刚性齿轮,且用于连接负载,刚性齿轮能够通过输出法兰盘带动负载转动。第二扭矩传感器设于输出法兰盘与刚性齿轮之间。如此,提高了旋转驱动装置的结构稳定性。
于本申请的一个实施例中,输出法兰盘包括支撑部和装配部,支撑部呈筒状,支撑部一端向外翻折形成装配部,装配部一侧连接刚性齿轮,另一侧用于连接负载,刚性齿轮能够通过装配部带动负载转动,第二扭矩传感器设于装配部与刚性齿轮之间。旋转驱动装置还包括第二轴承,第二轴承套设于支撑部,且支撑部通过第二轴承可转动地连接于驱动组件。
于本申请的一个实施例中,还包括控制组件和绝对式编码器,控制组件电连接绝对式编码器,且绝对式编码器设于支撑部远离装配部的一端。绝对式编码器用于测量输出法兰盘转动时的转动位置,控制组件能够根据绝对式编码器的测量结果控制输出法兰盘的转动角度变化量。
于本申请的一个实施例中,第一扭矩传感器为应变片式扭矩传感器、电容式扭矩传感器、压电式扭矩传感器和压阻式扭矩传感器中的任意一种。
及/或,第二扭矩传感器为应变片式扭矩传感器、电容式扭矩传感器、压电式扭矩传感器和压阻式扭矩传感器中的任意一种。
本申请还提供一种旋转驱动装置系统误差的校正方法,用于校正以上任 意一个实施例所述的旋转驱动装置的系统误差,该旋转驱动装置系统误差的校正方法包括以下步骤:
将负载安装于从动组件,
启动驱动组件,以使转动组件加速转动,
转动组件通过扭矩传动件带动从动组件加速转动,
通过设于从动组件的第二扭矩传感器测出驱动组件的输出扭矩G 2
通过连接扭矩传动件的第一扭矩传感器测出扭矩传动件作用于第一扭矩传感器的扭矩G 1
通过公式:G 2-G 1=M*a,校正直线驱动装置的系统误差,上述公式中,M是负载的转动惯量,a是负载的角加速度。
本申请提供的旋转驱动装置及旋转驱动装置系统误差的校正方法,启动驱动组件,驱动组件带动转动组件加速转动,转动组件通过扭矩传动件将扭矩传递至从动组件,从而使从动组件也加速转动,而从动组件加速转动会带动负载一起加速转动。驱动组件的输出扭矩G 2分解为两部分,一部分扭矩使负载产生角加速度a,另一部分扭矩被固定组件对扭矩传动件产生的反向扭矩所抵消掉。在现有技术中,是以驱动组件的输出扭矩G 2作为使负载产生角加速度a的扭矩的,然而,驱动组件的输出扭矩G 2有一部分扭矩被固定组件对扭矩传动件产生的反向扭矩所抵消掉,因此,使负载产生角加速度a的扭矩与驱动组件的输出扭矩G 2并不一致,导致存在系统误差。驱动组件的输出扭 矩G 2可通过第二扭矩传感器直接被测出,而第一扭矩传感器可测出扭矩传动件对固定组件产生的扭矩G 1。通过公式:G 2-G 1=M*a,即可消除驱动组件的输出扭矩G 2中未能使负载产生角加速度的扭矩G 1,从而得到驱动组件使得负载产生角加速度的实际扭矩,进而校正直线驱动装置的系统误差。其中,M是负载的转动惯量,a是负载的角加速度。综上可知,本申请提供的旋转驱动装置消除了旋转驱动装置在动态响应过程中存在的系统误差,从而有利于旋转驱动装置运动过程的精确控制。
附图说明
图1为本申请一个实施例的旋转驱动装置的剖视图。
附图标记:100、负载;1、从动组件;11、刚性齿轮;12、输出法兰盘;121、支撑部;122、装配部;2、驱动组件;21、固定组件;211、电机支架;212、电机定子;213、安装座;22、转动组件;221、电机转子;222、波发生器;3、扭矩传动件;31、柔性齿轮;311、啮合部;312、连接部;4、第一扭矩传感器;5、第二扭矩传感器;6、控制组件;71、第一轴承;72、第二轴承;73、第三轴承;81、增量式编码器;82、绝对式编码器;9、制动器。
具体实施方式
下面将结合本申请实施方式中的附图,对本申请实施方式中的技术方案进行清楚、完整地描述,显然,所描述的实施方式仅仅是本申请一部分实施方式,而不是全部的实施方式。基于本申请中的实施方式,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施方式,都属于本申 请保护的范围。
在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本申请中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
需要说明的是,当元件被称为“固定于”或“设置于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“垂直的”、“水平的”、“上”、“下”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施方式。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施方式的目的,不是旨在于限制本申请。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
请参阅图1,起重机回转台和机器人关节等一些进行圆周工作的机械结构中,旋转驱动装置有着非常广泛的应用,通常,旋转驱动装置用于驱动负载100进行旋转运动。本申请提供一种旋转驱动装置,该旋转驱动装置用于驱动负载100转动,且旋转驱动装置包括从动组件1、驱动组件2、扭矩传动件3、第一扭矩传感器4和第二扭矩传感器5。其中,驱动组件2作为动力源用于输出扭矩,且驱动组件2包括固定组件21和转动组件22,转动组件22可转动地连接于固定组件21,固定组件21能够驱动转动组件22转动。而转动组件22通过扭矩传动件3连接从动组件1,从而将驱动组件2输出的扭矩通过扭矩传动件3传递至从动组件1。从动组件1连接负载100,用于带动负载100转动。也即,驱动组件2输出的扭矩主要用于带动负载100转动。
为了准确测出旋转驱动装置不同部分受到的扭矩作用大小,本申请在旋转驱动装置的不同部位设置了不同的扭矩传感器。其中,第一扭矩传感器4连接固定组件21和扭矩传动件3,以用于检测扭矩传动件3作用于第一扭矩 传感器4的扭矩。第二扭矩传感器5设于从动组件1,以用于检测驱动组件2的输出扭矩。
第一扭矩传感器4为应变片式扭矩传感器、电容式扭矩传感器、压电式扭矩传感器和压阻式扭矩传感器中的任意一种。同样地,第二扭矩传感器5为应变片式扭矩传感器、电容式扭矩传感器、压电式扭矩传感器和压阻式扭矩传感器中的任意一种。应变片式扭矩传感器、电容式扭矩传感器、压电式扭矩传感器和压阻式扭矩传感器均具有应变响应速度快以及测量精度高的优点,能够快速精确地测出相应的扭矩的大小。
具体地,如图1所示,启动驱动组件2,驱动组件2带动转动组件22加速转动,转动组件22通过扭矩传动件3将扭矩传递至从动组件1,从而使从动组件1也加速转动,而从动组件1加速转动会带动负载100一起加速转动。驱动组件2的输出扭矩G 2分解为两部分,一部分扭矩使负载100产生角加速度a,另一部分扭矩被固定组件21对扭矩传动件3产生的反向扭矩所抵消掉。在现有技术中,不设置有第一扭矩传感器4,其是以驱动组件2的输出扭矩G 2作为使负载100产生角加速度a的扭矩的,然而,驱动组件2的输出扭矩G 2有一部分扭矩被固定组件21对扭矩传动件3产生的反向扭矩所抵消掉,因此,使负载100产生角加速度a的扭矩与驱动组件2的输出扭矩G 2并不一致,导致存在系统误差。驱动组件2的输出扭矩G 2可通过第二扭矩传感器5直接被测出,而第一扭矩传感器4可测出扭矩传动件3对固定组件21产生的扭矩G 1。通过公式:G 2-G 1=M*a,即可消除驱动组件2的输出扭矩G 2中未能使负载100 产生角加速度的扭矩G 1,从而得到驱动组件2使得负载100产生角加速度的实际扭矩,进而校正直线驱动装置的系统误差。其中,M是负载100的转动惯量,a是负载100的角加速度。综上可知,本申请提供的旋转驱动装置消除了旋转驱动装置在动态响应过程中存在的系统误差,从而有利于旋转驱动装置运动过程的精确控制。
在一个实施例中,如图1所示,旋转驱动装置采用了旋转电机作为动力源。具体的,固定组件21包括电机支架211和电机定子212,转动组件22包括电机转子221,电机支架211、电机定子212和电机转子221构成一旋转电机。其中,电机定子212固设于电机支架211,而电机转子221通过第一轴承71可转动地连接于电机支架211,当旋转驱动装置启动时,电机定子212在磁场的作用下能够旋转电机转子221转动,从而实现驱动组件2输出扭矩。旋转电机可直接与负载100连接,也可通过减速器与负载100连接。如此设置,从根本上提高了旋转驱动装置的可靠性,降低了旋转驱动装置的维护成本,并且,提高了旋转驱动装置的定位精度。在本实施例中,电机转子221的定义比较广泛,当旋转电机直接连接负载100时,负载100与电机定子212之间的转动部件均可定义为电机转子221,而当旋转电机通过减速器连接负载100时,减速器与电机定子212之间的转动部件则均可定义为电机转子221。因此,为了电机转子221更好地传递扭矩,电机转子221会设计成不同的形状,以便于电机转子221连接负载100或者减速器。
为了更好地实现旋转电机的控制,在一实施例中,如图1所示,旋转驱动装置还设置有控制组件6和增量式编码器81,并且,控制组件6分别电连接旋转电机和增量式编码器81。具体地,增量式编码器81设于电机转子221的一端,且增量式编码器81能够实时测出旋转电机转子221的转速,然后, 增量式编码器81将旋转电机的转速数据传输给控制组件6,而控制组件6能够根据增量式编码器81的测量结果控制电机转子221的转速变化量,以使旋转电机的转速达到目标转速。通过增量式编码器81测量并控制旋转电机的转速,可以精确地控制负载100的转速。而控制组件6可以是工业电脑或者微处理器等控制器。
进一步地,如图1所示,为了更好地实现旋转电机的制动,以便于随时控制旋转驱动装置停止运转,旋转驱动装置还设置有制动器9。具体地,固定组件21还包括安装座213,安装座213固定连接于电机支架211,而制动器9装设于安装座213,且制动器9与电机转子221活动配合,以制动电机转子221。当制动器9贴设于电机转子221时,电机转子221在制动器9的摩擦作用下减速,制动器9与电机转子221贴合得越紧,电机转子221的速度下降得越快。当制动器9远离电机转子221时,电机转子221不会受到来自制动器9的摩擦力作用。更具体地,电机转子221的一端形成一台阶结构,制动器9止挡于台阶结构处,并且制动器9与台阶结构的台阶面活动配合。
但是,旋转电机的转速太快,在输出功率一定的情况下,降低旋转电机的转速有利于提高旋转电机的输出扭矩,从而实现旋转电机的低速大扭矩传动。而为了更好地降低旋转电机的输出转速。在一实施例中,如图1所示,旋转驱动装置在负载100与旋转电机之间设置了谐波传动减速器。具体地,转动组件22包括波发生器222,扭矩传动件3为柔性齿轮31,从动组件1包括刚性齿轮11,波发生器222、柔性齿轮31和刚性齿轮11构成一谐波传动减速器。其中,柔性齿轮31至少部分套设于波发生器222,而波发生器222被柔性齿轮31套设的部分的截面呈椭圆形,因此,柔性齿轮31套设于波发生器222的部分和波发生器222配合形成椭圆齿轮结构,且椭圆齿轮结构的 轮齿朝向背离波发生器222的一侧。谐波传动减速器在运转时,椭圆齿轮结构的长轴端始终与刚性齿轮11啮合,而椭圆齿轮结构的短轴端则与刚性齿轮11完全脱开,并且,椭圆齿轮结构的长轴端和短轴端之间的部分与刚性齿轮11处于不完全啮合的过渡状态。当波发生器222在电机转子221的驱动下连续转动时,柔性齿轮31的变形不断改变,柔性齿轮31与刚性齿轮11的啮合状态也不断改变,柔性齿轮31与刚性齿轮11的啮合状态重复啮入、完全啮合、啮出、完全脱开、再啮入的过程,从而实现刚性齿轮11相对柔性齿轮31沿波发生器222相同的方向缓慢旋转。在本实施例中,谐波传动减速器在工作时,柔性齿轮31固定连接于固定组件21,由电机转子221带动波发生器222转动,刚性齿轮11作为从动轮,输出转动,进而带动负载100转动。在谐波传动减速器的传动过程中,波发生器222转一周,柔性齿轮31上某一点变形的循环次数称为波数,以n表示,通常n为2或3。其中,n为2时,谐波传动减速器为双波传动,此时,谐波传动减速器的结构比较简单,且谐波传动减速器易于获得更大的传动比。
并且,为了测出扭矩传动件3对固定组件21产生的扭矩G 1,柔性齿轮31一端固定连接第一扭矩传感器4,而第一扭矩传感器4固定连接于电机支架211。具体地,如图1所示,柔性齿轮31包括啮合部311和连接部312,啮合部311呈筒状,啮合部311至少部分套设于波发生器222,且啮合部311套设于波发生器222的部分的外壁与刚性齿轮11的内壁啮合连接。啮合部311远离波发生器222的一端向外翻折形成连接部312,连接部312固定连接第一扭矩传感器4。如此设置,便于谐波传动减速器通过柔性齿轮31将扭矩G 1传递至第一扭矩传感器4。
而为了将负载100更好地连接于谐波传动减速器,在一个实施例中,如图1所示,在谐波传动减速器与负载100之间设置了输出法兰盘12。具体地,从动组件1还包括输出法兰盘12,输出法兰盘12固定连接刚性齿轮11,且负载100连接于输出法兰盘12,刚性齿轮11通过输出法兰盘12带动负载100转动。而第二扭矩传感器5设于输出法兰盘12与刚性齿轮11之间。
进一步地,为了旋转驱动装置的结构更加稳定,在一个实施例中,如图1所示,输出法兰盘12包括固定连接的支撑部121和装配部122。其中,支撑部121呈筒状,支撑部121的外侧套设有第二轴承72,且支撑部121通过第二轴承72可转动地连接于驱动组件2,具体地支撑部121通过第二轴承72可转动地连接于电机转子221,如此,提高了旋转驱动装置的结构稳定性。并且,支撑部121一端向外翻折形成装配部122,装配部122一侧连接刚性齿轮11,另一侧用于连接负载100,刚性齿轮11能够通过装配部122带动负载100转动,第二扭矩传感器5设于装配部122与刚性齿轮11之间。同样地,刚性齿轮11外套设有第三轴承73,刚性齿轮11通过第三轴承73可转动连接于电机支架211,如此,进一步提高了整个旋转驱动装置的结构强度。
同样地,为了更好地实现输出法兰盘12的控制,在一个实施例中,如图1所示,旋转驱动装置还设置有绝对式编码器82,并且,控制组件6电连接绝对式编码器82。具体地,绝对式编码器82设于支撑部121远离装配部122的一端。绝对式编码器82能够实时测出输出法兰盘12转动时的转动位置,然后,绝对式编码器82将输出法兰盘12的位置信息传输给控制组件6,控制组件6能够根据绝对式编码器82的测量结果控制输出法兰盘12的转动角度变化量。
本申请还提供一种旋转驱动装置系统误差的校正方法,用于校正以上任 意一个实施例所述的旋转驱动装置的系统误差,该旋转驱动装置系统误差的校正方法包括以下步骤:
将负载安装于从动组件,
启动驱动组件,以使转动组件加速转动,
转动组件通过扭矩传动件带动从动组件加速转动,
通过设于从动组件的第二扭矩传感器测出驱动组件的输出扭矩G 2
通过连接扭矩传动件的第一扭矩传感器测出扭矩传动件作用于第一扭矩传感器的扭矩G 1
通过公式:G 2-G 1=M*a,校正直线驱动装置的系统误差,上述公式中,M是负载的转动惯量,a是负载的角加速度。
本申请提供的旋转驱动装置系统误差的校正方法,具体包括以下步骤:
将负载100通过紧固件可拆卸安装于输出法兰盘12。然后控制组件6控制旋转电机启动,电机定子212驱动电机转子221转动,电机转子221驱动谐波传动减速器转动。并且,谐波传动减速器将旋转电机输出的高速转动转换为低速转动。之后,连接于谐波传动减速器的输出法兰盘12跟随刚性齿轮11发生转动,从而带动负载100一起转动。旋转电机的转速从零开始增加,因此,旋转电机以及负载100均为加速转动,在负载100和输出法兰盘12的加速过程中,第二扭矩传感器5能够测出驱动电机的输出扭矩G 2,而柔性齿轮31一端固定于第一扭矩传感器4,因此,柔性齿轮31是不发生转动的,第一扭矩传感器4能够测出柔性齿轮31传递至电机支架211处的扭矩G 1,而G 1是不能作用于负载100使负载100产生角加速度的。因此,通过公式: G 2-G 1=M*a,消除掉不能使负载100产生角加速度的G 1,从而校正直线驱动装置的系统误差。
以上所述实施方式的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施方式中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
本技术领域的普通技术人员应当认识到,以上的实施方式仅是用来说明本申请,而并非用作为对本申请的限定,只要在本申请的实质精神范围内,对以上实施方式所作的适当改变和变化都落在本申请要求保护的范围内。

Claims (11)

  1. 一种旋转驱动装置,用于驱动负载转动,其特征在于,包括:
    从动组件,用于带动负载转动;
    驱动组件,用于输出扭矩,所述驱动组件包括固定组件和转动组件,所述转动组件可转动地连接于所述固定组件;
    扭矩传动件,连接所述转动组件和所述从动组件,所述转动组件通过所述扭矩传动件带动所述从动组件转动;
    第一扭矩传感器,连接所述固定组件和所述扭矩传动件,以用于检测所述扭矩传动件作用于所述第一扭矩传感器的扭矩;以及,
    第二扭矩传感器,设于所述从动组件,以用于检测所述驱动组件的输出扭矩。
  2. 根据权利要求1所述的旋转驱动装置,其中,所述固定组件包括电机支架和电机定子,所述转动组件包括电机转子,所述电机支架、所述电机定子和所述电机转子构成一旋转电机;
    所述电机定子固设于所述电机支架,所述电机转子通过第一轴承可转动地连接于所述电机支架,且所述电机定子能够驱动所述电机转子转动。
  3. 根据权利要求2所述的旋转驱动装置,其中,还包括控制组件,所述控制组件电连接所述旋转电机;所述旋转电机还包括增量式编码器,所述增量式编码器设于所述电机转子的一端,所述增量式编码器用于测量所述电机转子的转速;所述控制组件能够根据所述增量式编码器的测量结果控制所述电机转子的转速变化量。
  4. 根据权利要求2所述的旋转驱动装置,其中,所述固定组件还包括安装座,所述安装座与所述电机支架固定连接;所述旋转驱动装置还包括制动 器,所述制动器装设于所述安装座,所述制动器与所述电机转子活动配合,以制动所述电机转子。
  5. 根据权利要求1所述的旋转驱动装置,其中,所述转动组件包括波发生器,所述扭矩传动件为柔性齿轮,所述从动组件包括刚性齿轮,所述波发生器、所述柔性齿轮和所述刚性齿轮构成谐波传动减速器;
    所述柔性齿轮至少部分套设于所述波发生器,所述柔性齿轮套设于所述波发生器的部分和波发生器配合形成一椭圆齿轮结构,所述椭圆齿轮结构的长轴端与所述刚性齿轮啮合,且所述柔性齿轮一端固定连接所述第一扭矩传感器。
  6. 根据权利要求5所述的旋转驱动装置,其中,所述柔性齿轮包括啮合部和连接部,所述啮合部呈筒状,所述啮合部至少部分套设于所述波发生器,且所述啮合部套设于波发生器的部分的外壁与所述刚性齿轮的内壁啮合连接;
    所述啮合部远离波发生器的一端向外翻折形成所述连接部;
    所述连接部固定连接所述第一扭矩传感器。
  7. 根据权利要求5所述的旋转驱动装置,其中,所述从动组件还包括输出法兰盘,所述输出法兰盘连接所述刚性齿轮,且用于连接负载,所述刚性齿轮能够通过所述输出法兰盘带动负载转动;
    所述第二扭矩传感器设于所述输出法兰盘与所述刚性齿轮之间。
  8. 根据权利要求7所述的旋转驱动装置,其中,所述输出法兰盘包括支撑部和装配部,所述支撑部呈筒状,所述支撑部一端向外翻折形成所述装配部,所述装配部一侧连接所述刚性齿轮,另一侧用于连接负载,所述刚性齿轮能够通过所述装配部带动负载转动,所述第二扭矩传感器设于所述装配部 与所述刚性齿轮之间,
    所述旋转驱动装置还包括第二轴承,所述第二轴承套设于所述支撑部,且所述支撑部通过所述第二轴承可转动地连接于所述驱动组件。
  9. 根据权利要求8所述的旋转驱动装置,其中,还包括控制组件和绝对式编码器,所述控制组件电连接所述绝对式编码器,且所述绝对式编码器设于所述支撑部远离所述装配部的一端;
    所述绝对式编码器用于测量所述输出法兰盘转动时的转动位置,所述控制组件能够根据所述绝对式编码器的测量结果控制所述输出法兰盘的转动角度变化量。
  10. 根据权利要求1所述的旋转驱动装置,其中,所述第一扭矩传感器为应变片式扭矩传感器、电容式扭矩传感器、压电式扭矩传感器和压阻式扭矩传感器中的任意一种;及/或,所述第二扭矩传感器为应变片式扭矩传感器、电容式扭矩传感器、压电式扭矩传感器和压阻式扭矩传感器中的任意一种。
  11. 一种旋转驱动装置系统误差的校正方法,用于校正如权利要求1-10任意一项所述的旋转驱动装置的系统误差,其特征在于,包括以下步骤:
    将负载安装于从动组件,
    启动所述驱动组件,以使所述转动组件加速转动,
    所述转动组件通过所述扭矩传动件带动所述从动组件加速转动,
    通过设于所述从动组件的所述第二扭矩传感器测出所述驱动组件的输出扭矩G 2
    通过连接所述扭矩传动件的所述第一扭矩传感器测出所述扭矩传动件作用于所述第一扭矩传感器的扭矩G 1
    通过公式:G 2-G 1=M*a,校正直线驱动装置的系统误差,上述公式中,M是负载的转动惯量,a是负载的角加速度。
PCT/CN2021/127461 2021-08-13 2021-10-29 旋转驱动装置及旋转驱动装置系统误差的校正方法 WO2023015739A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/416,923 US20240160232A1 (en) 2021-08-13 2024-01-19 Rotary driving device and method for correcting system error of rotary driving device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110929177.X 2021-08-13
CN202110929177.XA CN113760012B (zh) 2021-08-13 2021-08-13 旋转驱动装置及旋转驱动装置系统误差的校正方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/416,923 Continuation US20240160232A1 (en) 2021-08-13 2024-01-19 Rotary driving device and method for correcting system error of rotary driving device

Publications (1)

Publication Number Publication Date
WO2023015739A1 true WO2023015739A1 (zh) 2023-02-16

Family

ID=78789245

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/127461 WO2023015739A1 (zh) 2021-08-13 2021-10-29 旋转驱动装置及旋转驱动装置系统误差的校正方法

Country Status (3)

Country Link
US (1) US20240160232A1 (zh)
CN (2) CN115237186A (zh)
WO (1) WO2023015739A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017209420A1 (ko) * 2016-05-30 2017-12-07 한국기계연구원 순응형 구동모듈
CN109866866A (zh) * 2019-04-11 2019-06-11 舍弗勒技术股份两合公司 电动助力车及传动装置
CN110919688A (zh) * 2019-11-30 2020-03-27 北京思灵机器人科技有限责任公司 一种机械臂关节
CN111086022A (zh) * 2019-12-31 2020-05-01 深圳市优必选科技股份有限公司 集成关节及机器人
CN111113476A (zh) * 2019-12-31 2020-05-08 深圳市优必选科技股份有限公司 关节结构及机器人
CN111152258A (zh) * 2019-12-12 2020-05-15 中山市北京理工大学研究院 一种具有力感知功能的机械集成关节
CN212736068U (zh) * 2020-07-21 2021-03-19 尔智机器人(珠海)有限公司 一种带力矩传感器的关节

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1062814C (zh) * 1993-09-17 2001-03-07 卢克驱动系统有限公司 用于带变扭器的机动车的转矩传递系统
CN101587016A (zh) * 2009-07-07 2009-11-25 西安交通大学 谐波减速器动态性能综合检测系统
CN102626930B (zh) * 2012-04-28 2014-06-04 哈尔滨工业大学 具有失电制动与多种感知功能的机械臂模块化关节
CN103817694B (zh) * 2014-02-28 2016-04-20 浙江大学 一种混合控制的柔性关节
CN104568426B (zh) * 2014-07-08 2017-10-03 东莞市鑫拓智能机械科技有限公司 一种谐波减速器动态性能综合测试系统
KR101793141B1 (ko) * 2016-06-10 2017-11-03 한국기계연구원 관절구동모듈과 순응형 로봇의족
US10197146B2 (en) * 2016-12-28 2019-02-05 Precision Machinery Research & Development Center Reducer module with real-time torque sensing
KR102003906B1 (ko) * 2017-10-25 2019-07-25 고려대학교 산학협력단 관절토크센서를 구비하는 로봇 관절 유닛
CN108381598A (zh) * 2018-03-28 2018-08-10 中国科学院宁波材料技术与工程研究所 一种机器人智能驱动关节和机器人
CN108896304A (zh) * 2018-07-19 2018-11-27 中科新松有限公司 机器人谐波减速器测试装置及系统
US20200108514A1 (en) * 2018-10-09 2020-04-09 Flexiv Ltd. Actuator and robot with reliable torque sensor arrangement
CN209624050U (zh) * 2019-03-08 2019-11-12 广东省东莞市质量监督检测中心 一种机器人谐波减速器重复定位精度测量试验台
CN210061184U (zh) * 2019-04-30 2020-02-14 佛山华数机器人有限公司 一种简捷型的协作机器人关节模组
CN110861120B (zh) * 2019-12-24 2023-08-04 中国科学院宁波材料技术与工程研究所 基于双定子无框力矩电机的驱动关节及其应用
CN212543695U (zh) * 2020-09-21 2021-02-12 中国科学院宁波材料技术与工程研究所 一种双编码器柔性关节的振动抑制控制系统
CN113237652A (zh) * 2021-05-19 2021-08-10 武汉科技大学 关节测试实验平台

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017209420A1 (ko) * 2016-05-30 2017-12-07 한국기계연구원 순응형 구동모듈
CN109866866A (zh) * 2019-04-11 2019-06-11 舍弗勒技术股份两合公司 电动助力车及传动装置
CN110919688A (zh) * 2019-11-30 2020-03-27 北京思灵机器人科技有限责任公司 一种机械臂关节
CN111152258A (zh) * 2019-12-12 2020-05-15 中山市北京理工大学研究院 一种具有力感知功能的机械集成关节
CN111086022A (zh) * 2019-12-31 2020-05-01 深圳市优必选科技股份有限公司 集成关节及机器人
CN111113476A (zh) * 2019-12-31 2020-05-08 深圳市优必选科技股份有限公司 关节结构及机器人
CN212736068U (zh) * 2020-07-21 2021-03-19 尔智机器人(珠海)有限公司 一种带力矩传感器的关节

Also Published As

Publication number Publication date
CN115237186A (zh) 2022-10-25
CN113760012A (zh) 2021-12-07
US20240160232A1 (en) 2024-05-16
CN113760012B (zh) 2022-10-04

Similar Documents

Publication Publication Date Title
US10661398B2 (en) Link actuator to initially set position of origin
EP2492057B1 (en) Robot, robot system, and rotating electrical machine
JP4962488B2 (ja) トルク測定装置
JP4684330B2 (ja) ねじ締め装置
KR101141719B1 (ko) 로봇 관절의 토크 센서의 조정 장치 및 이에 의한 토크 센서의 조정 방법
US8616088B2 (en) Joint device and control method thereof
JP4693898B2 (ja) ねじ締め制御システムおよびねじ締め制御方法
US7540095B2 (en) Rotary position transducer
WO2019196723A1 (zh) 采用三级同步带减速器的机器人关节及其控制方法
JPWO2007099629A1 (ja) モータ制御装置およびモータ制御方法
JP5404540B2 (ja) ガルバノメータスキャナ
US20240058949A1 (en) Robot, drive unit for a robot and positioning method
WO2021095362A1 (ja) 駆動装置
JPWO2007105257A1 (ja) 同期制御システム
CN111458241B (zh) 一种伺服同轴双驱动惯性激振器
WO2023015739A1 (zh) 旋转驱动装置及旋转驱动装置系统误差的校正方法
WO2005095062A1 (ja) 衝撃式締付工具
JP4827678B2 (ja) アクチュエータの位置変動抑制方法
JPH06109565A (ja) モータのコギングトルク測定装置及び測定方法
CN217967079U (zh) 机器人关节及机器人
JP2009192022A (ja) 歯車装置
WO2024027172A1 (zh) 机器人关节、编码方法及机器人
JPH0727410B2 (ja) ダイレクト教示型工業用ロボットの制御装置
KR20150019343A (ko) 기어드 엔코더 모터 및 그 제어 시스템
CN219018696U (zh) 一种测绘仪器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21953345

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE