WO2023015717A1 - 一种用于肘部运动功能康复的软体可穿戴机器人 - Google Patents

一种用于肘部运动功能康复的软体可穿戴机器人 Download PDF

Info

Publication number
WO2023015717A1
WO2023015717A1 PCT/CN2021/124307 CN2021124307W WO2023015717A1 WO 2023015717 A1 WO2023015717 A1 WO 2023015717A1 CN 2021124307 W CN2021124307 W CN 2021124307W WO 2023015717 A1 WO2023015717 A1 WO 2023015717A1
Authority
WO
WIPO (PCT)
Prior art keywords
elbow
layer
soft
wearable robot
sleeve
Prior art date
Application number
PCT/CN2021/124307
Other languages
English (en)
French (fr)
Inventor
徐宝国
王嘉津
王欣
汪逸飞
宋爱国
Original Assignee
东南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东南大学 filed Critical 东南大学
Publication of WO2023015717A1 publication Critical patent/WO2023015717A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H1/00Apparatus for passive exercising; Vibrating apparatus; Chiropractic devices, e.g. body impacting devices, external devices for briefly extending or aligning unbroken bones
    • A61H1/02Stretching or bending or torsioning apparatus for exercising
    • A61H1/0274Stretching or bending or torsioning apparatus for exercising for the upper limbs
    • A61H1/0277Elbow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/12Driving means
    • A61H2201/1238Driving means with hydraulic or pneumatic drive
    • A61H2201/1246Driving means with hydraulic or pneumatic drive by piston-cylinder systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/16Physical interface with patient
    • A61H2201/1602Physical interface with patient kind of interface, e.g. head rest, knee support or lumbar support
    • A61H2201/1635Hand or arm, e.g. handle
    • A61H2201/1638Holding means therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/50Control means thereof
    • A61H2201/5058Sensors or detectors
    • A61H2201/5069Angle sensors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2205/00Devices for specific parts of the body
    • A61H2205/06Arms

Definitions

  • the invention belongs to the field of medical rehabilitation equipment, and in particular relates to a soft wearable robot used for rehabilitation of elbow motor function.
  • the rehabilitation robot directly interacts with the patient's limbs, and ensuring the safety and compliance of the interaction is the first element in the development of the rehabilitation robot.
  • Traditional rehabilitation robots usually adopt a rigid structure, but its high rigidity may cause secondary damage to the patient, while the soft rehabilitation robot with a flexible structure as the main body has inherent compliance characteristics, which can effectively improve the safe interaction performance of rehabilitation robots .
  • Soft rehabilitation robots are usually composed of soft actuators and wearable fabrics, forming a soft and wearable structure.
  • the soft actuator In the existing soft wearable robots for the rehabilitation of elbow motor function, the soft actuator usually achieves semicircular bending motion by fully constraining the elongation of one side, and its kinematic characteristics are different from those of human elbows. If it is too large, forcible attachment will cause tangential sliding between the soft actuator and the patient's skin, and the distribution of auxiliary force will be uneven.
  • the skin at the elbow joint of the human body will have a certain degree of axial extension when it is bent, but the constrained side of the existing soft actuators does not have axial extensibility, and the constrained side is in direct contact with the patient's skin, which will also cause the soft A tangential force is generated between the actuator and the patient's skin. Although it is a flexible structure, it still increases the user's discomfort.
  • the present invention discloses a soft wearable robot for the rehabilitation of elbow motor function, which is used to assist patients to successfully complete elbow rehabilitation training. Its motion characteristics are basically consistent with those of human elbows.
  • the interface with the patient's skin has a certain degree of axial extensibility, which can eliminate the discomfort of the user and prevent secondary damage.
  • a soft wearable robot for elbow motor function rehabilitation including a cylinder, an electromagnetic proportional valve, a soft wearable robot body component and a controller.
  • the cylinder is used as a power source to provide driving force for the body assembly of the soft wearable robot;
  • the electromagnetic proportional valve is respectively airtightly connected with the cylinder and the body assembly of the soft wearable robot through an air duct, and is used to adjust the The internal air pressure of the soft wearable robot body assembly;
  • the soft wearable robot body assembly is composed of an outer elbow sleeve, an inner elbow sleeve, a flexible bending sensor and a soft actuator assembly;
  • the outer elbow sleeve is a fabric non-closed cylindrical structure, which has no ductility, and its lower side is fixed to the upper side of the soft actuator assembly by gluing;
  • the inner elbow sleeve is a fabric closed cylinder structure, has ductility, and directly covers the elbow of the human body, and the outer surface of the inner elbow sleeve is fixed to the inner surface of the outer elbow sleeve by Velcro to form a sleeve structure;
  • the flexible bending sensor has no extension property, the lower side thereof is fixed to the upper side of the outer elbow cuff by means of gluing;
  • the soft actuator assembly includes a flexible tube, a first end seal, a second end seal, an airway tube, a braided mesh sleeve, a first end fastener, a second end fastener, a first end limit screw, The first end nut, the second end stop screw, the second end nut, the first restricting layer, the second restricting layer, the joint extension layer and the third restricting layer;
  • the flexible tube includes a first end and a second end, which The first end and the second end are respectively airtightly connected to the first end seal and the second end seal;
  • the first end seal is provided with a through hole communicating with the inside of the flexible pipe;
  • the air guide tube is airtightly connected to the through hole of the first end seal;
  • the braided mesh sleeve is covered on the outer surface of the flexible tube, including a first end and a second end, and the first end passes through the first end.
  • One end fastener is fixed to the first end of the flexible pipe, and its second end is fixed to the second end of the flexible pipe by the second end fastener;
  • the first end limit screw and the first end nut adjust the degree of tightening;
  • the second end fastener adjusts the degree of fastening through the second end limit screw and the second end nut;
  • the first restrictive layer, the joint extension layer and the second restrictive layer are sequentially arranged on the upper side of the braided net from the first end to the second end;
  • the first restrictive layer has no ductility, It includes a first end and a second end, and its first end is close to the fastener at the first end;
  • the joint extension layer has a certain axial ductility, and includes a first end and a second end, and its first end is tight Paste the second end of the first restrictive layer;
  • the second restrictive layer has no ductility, including a first end and a second end, the first end of which is close to the second end of the joint extension layer, and
  • the controller solves the control command based on the reference angle information and the real-time angle information fed back by the flexible bending sensor, and outputs a control voltage to the electromagnetic proportional valve, and realizes that the software can be controlled by controlling the internal air pressure of the soft actuator assembly. Tracking of preset training trajectories by wearable robot body components.
  • the first restricting layer, the second restricting layer and the third restricting layer constitute a restricting structure with gradual elastic modulus on both sides. Basically consistent, effectively reducing the tangential sliding between the soft actuator component and the skin of the human elbow joint, and the distribution of the auxiliary force is more uniform;
  • the joint extension layer of the soft actuator assembly has a certain axial ductility, which can be used to adapt to the axial extension of the skin at the elbow joint of the human body when it is bent, and reduce the thickness of the joint between the soft actuator assembly and the elbow joint of the human body.
  • the tangential force between the skins reduces the discomfort of the user.
  • the outer elbow sleeve and the inner elbow sleeve constitute a double-layer elbow sleeve design, which can not only ensure the close fit between the soft actuator assembly and the elbow of the human body, ensure the power transmission efficiency, but also improve the overall reliability of the equipment. Wearability.
  • Figure 5a is a schematic right side view of a first end seal of the present invention.
  • FIG. 8b is a schematic cross-sectional view of Fig. 8a taken along the right reference plane.
  • FIG. 1 This example describes a soft wearable robot for the rehabilitation of elbow motor function. Its overall structure diagram is shown in Figure 1, which includes a soft wearable robot body component 1, cylinder 2, electromagnetic proportional valve 3 and controller 4 .
  • the soft wearable robot body assembly 1 is tightly covered on the elbow of the human body; the cylinder 2 is used as a power source to provide driving force for the soft wearable robot body assembly 1; the electromagnetic proportional valve 3 communicates with the The soft wearable robot body assembly 1 is airtightly connected with the cylinder 2 for adjusting the internal air pressure of the soft wearable robot body assembly 1; the controller 4 is based on the reference angle information and the soft wearable robot body assembly 1
  • the real-time angle information fed back solves the control command, and outputs the control voltage to the electromagnetic proportional valve 3, and realizes the tracking of the preset training track by the software wearable robot body component 1 by controlling the air pressure, and assists the user to complete the elbow rehabilitation train.
  • FIG. 2 is a schematic right view of the body assembly 1 of the soft wearable robot when it is stretched.
  • the soft wearable robot body component 1 is composed of a soft actuator component 5 , an outer elbow sleeve 6 , an inner elbow sleeve 7 and a flexible bending sensor 8 .
  • the soft actuator assembly 5 can achieve different degrees of bending movement by adjusting the internal air pressure. For details, please refer to the detailed description of Figures 4a-4c below.
  • the upper side of the soft actuator assembly 5 is glued to the outer elbow sleeve 6
  • the method is tightly connected and fixed, and the outer elbow sleeve 6 does not have ductility, so as to ensure that the soft actuator component 5 and the outer elbow sleeve 6 are closely attached;
  • the inner surface of the outer layer elbow sleeve 6 and the outer surface of the inner layer elbow sleeve 7 are passed through Velcro Connect to form a sleeve structure, wherein the inner surface of the outer elbow sleeve 6 is a barbed surface, and the outer surface of the inner layer elbow sleeve 7 is a hairy surface, ensuring that the outer layer elbow sleeve 6 and the inner layer elbow sleeve 7 are closely fitted;
  • the outer layer elbow sleeve 6 is a fabric non-closed cylindrical structure as a whole, and retains a slender rectangular open area in the radial direction, which is convenient for wrapping the inner elbow sleeve 7 in
  • This double-layer sleeve elbow structure composed of the outer elbow sleeve 6 and the inner elbow sleeve 7 can ensure that the soft actuator 5 and the The elbow of the human body fits together to ensure the power transmission efficiency, and it can also improve the wearability of the soft wearable robot body component 1; the flexible bending sensor 8 does not have ductility, because the soft wearable robot body component 1 can only move outward when it bends.
  • the upper side of the layer elbow sleeve 6 will not produce obvious extension features, so the lower side of the flexible bending sensor 8 and the upper side of the outer layer elbow sleeve 6 are connected and fixed by adhesive means, which can ensure its angle measurement function and signal transmission function normal work.
  • the soft actuator assembly 5 adjusts the air pressure to achieve different degrees of bending movement, it will drive the human elbow together with the outer elbow sleeve 6 and the inner elbow sleeve 7 to achieve coordinated bending, and the flexible bending sensor 8 will detect the elbow of the human body in real time.
  • the bending angle is fed back to the controller 4, and the internal air pressure of the soft actuator assembly 5 is further adjusted through the electromagnetic proportional valve 3, so as to realize the tracking of the preset training track.
  • the schematic diagram of the body component 1 of the soft wearable robot when it is bent at 90 degrees is shown in FIG. 3 .
  • Figure 4a is a schematic right side view when the soft actuator assembly 5 is stretched
  • Figure 4b is a schematic upper view when the soft actuator assembly 5 is stretched
  • Figure 4c is along the line in Figure 4b Schematic cross-sectional view taken by line A-A.
  • the soft actuator assembly 5 includes a flexible tube 9, a first end seal 10, a second end seal 11, an airway tube 12, a braided mesh sleeve 13, a first end fastener 14, and a second end fastener 15 , the first end limit screw 16, the second end limit screw 17, the first end nut 18, the second end nut 19, the first limit layer 20, the second limit layer 21, the joint extension layer 22 and the third limit layer twenty three.
  • the flexible tube 9 is an elongated tubular structure that can be extended in the axial direction, and is usually made of an airtight elastic material (rubber products such as silica gel and latex), including a first end and a second end; the first end seal 10 is airtightly connected with the first end of the flexible pipe 9, the schematic diagram of the first end seal 10 is shown in Figure 5a, 5b, Figure 5a is a schematic right view of the first end seal 10, Figure 5b is along Figure 5a The schematic cross-sectional view made by the line B-B in , wherein the first end seal 10 is roughly a cylindrical structure, the end radius of the right extension part is slightly larger than the inner diameter of the flexible pipe 9, and the outer diameter of the right extension part Two annular bosses are arranged on the surface to enhance the airtightness when connecting with the first end of the flexible pipe 9, and a thin and short cylindrical structure protrudes from the left extension part of the first end seal 10, which The outer surface of the left side of the shaped structure is provided with a wedge-shaped
  • the first end seal 10 is provided with a through hole from the left side to the right side and runs through the short and thin tube from the axis. Cylindrical structure, the through hole communicates with the inside of the flexible pipe 9; the second end seal 11 is airtightly connected with the second end of the flexible pipe 9, and Fig. 6 is a schematic right view of the second end seal 11, the second end
  • the seal 11 is roughly cylindrical in shape, and the radius of the end of the extended part on the left is slightly larger than the inner diameter of the flexible pipe 9, which is similar to the extended part on the right of the first end seal 10, and the left end of the second end seal 11
  • the outer surface of the side extension part is provided with two annular bosses to enhance the airtightness when it is connected to the second end of the flexible tube 9.
  • the second end seal 11 does not need to be connected with the airway tube. It is a solid structure; the braided mesh sleeve 13 is a slender tubular mesh sleeve with axial ductility, covering the outer surface of the flexible pipe 9, including a first end and a second end, and the first end of the braided mesh sleeve 13 passes through the second end.
  • One end fastener 14 is fixed with the first end of flexible pipe 9, and the second end of braided mesh cover 13 is fixed with the second end of flexible pipe 9 by second end fastener 15, thereby guarantees that braided mesh cover 13 can be completely Cover the flexible pipe 9 and not fall off during the bending process;
  • the first end fastener 14 and the second end fastener 15 adopt exactly the same structure, and the first end limit screw 16 and the first end nut 18 are used for Adjust the tightening degree of the first end fastener 14, the second end limit screw 17 and the second end nut 19 are used to adjust the tightening degree of the second end fastener 15, and its schematic right view is shown in Figure 7 Show; when the soft actuator assembly 5 is not pressurized, the flexible tube 9 is in a horizontally stretched state, and the braided mesh sleeve 13 is in an axial limit compression state.
  • the flexible tube 9 When the soft actuator assembly 5 is pressurized, the flexible tube 9 will Elastic extension occurs in the direction, at this time, the braided mesh cover 13 will be attached to the outer surface of the flexible pipe 9 and extend axially, and hinder the radial expansion of the flexible pipe 9; the upper side of the braided mesh cover 13 is from the first end to the second
  • the first restrictive layer 20, the joint extension layer 22 and the second restrictive layer 21 are sequentially arranged by gluing; the first restrictive layer 20 does not have ductility, including a first end and a second end, and its first end is close to the second end.
  • the joint extension layer 22 has a certain axial ductility, including a first end and a second end, which The first end is close to the second end of the first limiting layer 20, and the position of the joint extension layer 22 corresponds to the skin of the elbow joint of the human body, and its axial extensibility is used to adapt to the axial extension of the skin of the elbow joint of the human body;
  • the second The restrictive layer 21 has no ductility, including a first end and a second end, the first end of which is close to the second end of the joint extension layer 20, and the second end is close to the second end fastener 15;
  • the third The limiting layer 23 is made of a material with a gradual elastic modulus, including a first end and a second end, and the elastic modulus gradually increases from the first end to the second end, and the third limiting layer 23 is fixed to the braided layer by gluing.
  • the restrictive structure its working principle is as follows: when the soft actuator assembly 5 is not pressurized, the flexible tube 9, the braided mesh cover 13, the joint extension layer 22 and the third restrictive layer 23 all maintain the initial state without elastic extension, and the soft actuator The assembly 5 is in a horizontally stretched state, as shown in Figures 4a-4c; when the soft actuator assembly 5 is pressurized, the flexible tube 9 is axially extended under the radial constraints of the braided mesh sleeve 13, but the first restrictive layer 20 and The second restrictive layer 21 will have a greater hindering effect on the axial extension of the two ends of the upper side of the flexible pipe 9, while the axial extension of the lower side of the flexible pipe 9 close to the first end is not hindered, so the flexible pipe 9 will A larger bending angle
  • Figure 8a is a schematic right view when the soft actuator assembly 5 is bent by 90°
  • Fig. 8b is a schematic cross-sectional view of Fig. 8a taken along a right-view reference plane.
  • the bending motion characteristics of the soft actuator assembly 5 are basically in line with the human elbow motion characteristics, unlike the previously designed soft actuator that bends in a semicircle, which will effectively reduce the tension between the soft actuator assembly 5 and the elbow joint of the human body.
  • the third restriction layer 23 is designed as a fully constrained structure without ductility, the second end portion of the flexible tube 9 will not produce bending movement, which The bending motion characteristics of the soft actuator assembly 5 will be more compatible with the motion characteristics of the human elbow, but the user will lose the auxiliary function at the forearm, which may lead to insufficient driving force, so the third limitation in the present invention
  • Layer 23 is made of a material with a gradual modulus of elasticity.
  • the joint extension layer 22 has a certain degree of axial extensibility, which can adapt to the axial extension of the skin of the elbow joint of the human body without loss of driving force, and reduce the distance between the soft actuator assembly 5 and the skin of the elbow joint of the human body. The tangential force reduces the user's discomfort.

Landscapes

  • Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Pain & Pain Management (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Rehabilitation Therapy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Rehabilitation Tools (AREA)

Abstract

一种用于肘部运动功能康复的软体可穿戴机器人,包括软体可穿戴机器人本体组件(1)、气缸(2)、电磁比例阀(3)和控制器(4),软体可穿戴机器人本体组件(1)由外层肘套(6)、内层肘套(7)、柔性弯曲传感器(8)和软体执行器组件(5)组成;软体执行器组件(5)包括柔性管(9)、第一端密封件(10)、第二端密封件(11)、导气管(12)、编织网套(13)、第一端紧固件(14)、第二端紧固件(15)、第一限制层(20)、第二限制层(21)、关节延展层(22)和第三限制层(23);三层限制层组成了双侧渐变弹性模量的限制结构,使得软体执行器组件(5)的运动特性与人体肘部的运动特性相符,减轻了软体执行器组件(5)与人体肘关节处皮肤之间的切向滑动,辅助力分布更加均匀;软体执行器组件(5)的关节延展层(22)具有一定的轴向延展性,降低了使用者的不舒适感。

Description

一种用于肘部运动功能康复的软体可穿戴机器人 技术领域
本发明属于医疗康复器械领域,具体涉及一种用于肘部运动功能康复的软体可穿戴机器人。
背景技术
医学理论与实践证明,对于脑卒中导致的偏瘫患者,通过大量的、重复的运动功能导向训练可以在一定程度上恢复肢体的运动功能。使用康复机器人辅助患者进行康复训练可以节省大量的人力物力资源,并且能够实时量化评估患者的康复状态,对整个康复行业产生了十分积极的影响。
在机器人辅助训练疗法中,康复机器人与患者肢体直接交互,确保交互的安全性与柔顺性是开发康复机器人的第一要素。传统的康复机器人通常采用刚性结构,但其本身的高刚度特性有可能对患者造成二次损伤,而以柔性结构为主体的软体康复机器人具备固有的柔顺特性,可以有效提升康复机器人的安全交互性能。
软体康复机器人通常由软体执行器和穿戴性织物组合而成,构成为软体可穿戴结构。在现有的用于肘部运动功能康复的软体可穿戴机器人中,软体执行器通常是靠完全约束一侧的伸长实现半圆形的弯曲运动,其运动特性与人体肘部的运动特性差异较大,强行贴附则会导致软体执行器与患者皮肤之间产生切向滑动,且辅助力分布不均匀。此外,人体肘关节处的皮肤在弯曲时会有一定程度的轴向延展,而现 有的软体执行器的约束侧不具有轴向延展性,该约束侧与患者皮肤直接接触,也会导致软体执行器与患者皮肤之间产生切向力,虽然是柔性结构,但仍会增加使用者的不舒适感。
发明内容
为解决上述问题,本发明公开了一种用于肘部运动功能康复的软体可穿戴机器人,用于辅助患者顺利完成肘部康复训练,其运动特性与人体肘部的运动特性基本相符,且在与患者皮肤的交互处具有一定的轴向延展性,可去除使用者的不舒适感,防止二次损伤。
为达到上述目的,本发明的技术方案如下:
一种用于肘部运动功能康复的软体可穿戴机器人,包括气缸、电磁比例阀、软体可穿戴机器人本体组件和控制器。所述气缸作为动力源为所述软体可穿戴机器人本体组件提供驱动力;所述电磁比例阀通过导气管分别与所述气缸和所述软体可穿戴机器人本体组件气密连接,用于调节所述软体可穿戴机器人本体组件的内部气压;所述软体可穿戴机器人本体组件由外层肘套、内层肘套、柔性弯曲传感器和软体执行器组件组成;
所述外层肘套为织物性非闭合圆筒结构,不具有延展性,其下侧与所述软体执行器组件上侧通过胶粘方式固定;所述内层肘套为织物性闭合圆筒结构,具有延展性,且直接套覆与人体肘部,所述内层肘套外表面通过魔术贴与所述外层肘套内表面固定,形成套筒结构;所述柔性弯曲传感器不具有延展性,其下侧通过胶粘方式与所述外层肘 套上侧固定;
所述软体执行器组件包括柔性管、第一端密封件、第二端密封件、导气管、编织网套、第一端紧固件、第二端紧固件、第一端限位螺钉、第一端螺母、第二端限位螺钉、第二端螺母、第一限制层、第二限制层、关节延展层和第三限制层;所述柔性管包括第一端和第二端,其第一端和第二端分别与所述第一端密封件和所述第二端密封件气密连接;所述第一端密封件设有与所述柔性管内部联通的通孔;所述导气管与所述第一端密封件的通孔气密连接;所述编制网套包覆在所述柔性管的外表面,包括第一端和第二端,其第一端通过所述第一端紧固件与所述柔性管的第一端固定,其第二端通过所述第二端紧固件与所述柔性管的第二端固定;所述第一端紧固件通过所述第一端限位螺钉与所述第一端螺母调节紧固程度;所述第二端紧固件通过所述第二端限位螺钉与所述第二端螺母调节紧固程度;所述编制网套上侧从第一端至第二端通过胶粘方式依次布置所述第一限制层、所述关节延展层和所述第二限制层;所述第一限制层不具有延展性,包括第一端和第二端,其第一端紧贴所述第一端紧固件;所述关节延展层具有一定轴向延展性,包括第一端和第二端,其第一端紧贴所述第一限制层的第二端;所述第二限制层不具有延展性,包括第一端和第二端,其第一端紧贴所述关节延展层的第二端,其第二端紧贴所述第二端紧固件;所述第三限制层采用具有渐变弹性模量的材料,包括第一端和第二端,且弹性模量从第一端至第二端逐渐增大,所述第三限制层上侧通过胶粘方式与所述编制网套下侧固定,且所述第三限制层的第二端 紧贴所述第二端紧固件;
所述控制器基于参考角度信息和所述柔性弯曲传感器反馈的实时角度信息求解控制指令,并输出控制电压至所述电磁比例阀,通过控制所述软体执行器组件的内部气压实现所述软体可穿戴机器人本体组件对预设训练轨迹的跟踪。
本发明的有益效果为:
1、在本发明中,第一限制层、第二限制层和第三限制层组成了双侧渐变弹性模量的限制结构,该设计使得软体执行器组件的运动特性与人体肘部的运动特性基本相符,有效减轻了软体执行器组件与人体肘关节皮肤之间的切向滑动,且辅助力分布更加均匀;
2、在本发明中,软体执行器组件的关节延展层具有一定的轴向延展性,可用于适应人体肘关节处皮肤在弯曲时的轴向延展,减小软体执行器组件与人体肘关节处皮肤之间的切向力,降低使用者的不舒适感。
3、在本发明中,外层肘套和内层肘套构成双层肘套设计,既可以确保软体执行器组件与人体肘部紧密贴合,保证动力传输效率,也可以提升设备整体的可穿戴性。
附图说明
附图1是本发明的整体结构示意图;
附图2是本发明的软体可穿戴机器人本体组件伸展时的示意性右视图;
附图3是本发明的软体可穿戴机器人本体组件90度弯曲时的示意性右视图;
附图4a是本发明的软体执行器组件伸展时的示意性右视图;
附图4b是本发明的软体执行器组件伸展时的示意性上视图;
附图4c是沿图4b中的线A-A所作的示意性截面图;
附图5a是本发明的第一端密封件的示意性右视图;
附图5b是沿图5a中的线B-B所作的示意性截面图;
附图6是本发明的第二端密封件的示意性右视图;
附图7是本发明的第一端紧固件、第一端限位螺钉、第一端螺母的示意性右视图;
附图8a是本发明的软体执行器组件90°弯曲时的示意性右视图;
附图8b是图8a沿右视基准面所作的示意性截面图。
附图标识列表:1、软体可穿戴机器人本体组件;2、气缸;3、电磁比例阀;4、控制器;5、软体执行器组件;6、外层肘套;7、内层肘套;8、柔性弯曲传感器;9、柔性管;10、第一端密封件;11、第二端密封件;12、导气管;13、编织网套;14、第一端紧固件;15、第二端紧固件;16、第一端限位螺钉;17、第一端螺母;18、第二端限位螺钉;19、第二端螺母;20、第一限制层;21、第二限制层;22、关节延展层;23、第三限制层。
具体实施方式
下面结合附图和具体实施方式,进一步阐明本发明,应理解下述 具体实施方式仅用于说明本发明而不用于限制本发明的范围。
本实例描述了一种用于肘部运动功能康复的软体可穿戴机器人,其整体结构示意图如图1所示,它包括软体可穿戴机器人本体组件1、气缸2、电磁比例阀3和控制器4。所述软体可穿戴机器人本体组件1紧密套覆于人体肘部;所述气缸2作为动力源为所述软体可穿戴机器人本体组件1提供驱动力;所述电磁比例阀3通过导气管与所述软体可穿戴机器人本体组件1和所述气缸2气密连接,用于调节所述软体可穿戴机器人本体组件1的内部气压;所述控制器4基于参考角度信息和所述软体可穿戴机器人本体组件1反馈的实时角度信息求解控制指令,并输出控制电压至所述电磁比例阀3,通过控制气压实现所述软体可穿戴机器人本体组件1对预设训练轨迹的跟踪,辅助使用者完成肘部康复训练。
参照图2,图2为所述软体可穿戴机器人本体组件1伸展时的示意性右视图。软体可穿戴机器人本体组件1由软体执行器组件5、外层肘套6、内层肘套7和柔性弯曲传感器8组成。软体执行器组件5可通过调节内部气压实现不同程度的弯曲运动,其具体细节可参照下文中关于图4a-4c的详细描述,软体执行器组件5的上侧与外层肘套6通过胶粘方式紧密连接固定,且外层肘套6不具备延展性,确保软体执行器组件5与外层肘套6紧密贴合;外层肘套6内表面与内层肘套7外表面通过魔术贴连接形成套筒结构,其中外层肘套6内表面为带刺面,内层肘套7外表面为带毛面,确保外层肘套6与内层肘套7紧密贴合;外层肘套6整体为织物性非闭合圆筒结构,沿径向保留细 长矩形开放区域,方便以圆周形式包覆内层肘套7;内层肘套7整体为织物性闭合圆筒结构,且具有一定的延展性,可直接方便地套覆与人体肘部;外层肘套6与内层肘套7中部靠左侧均设置截面为三角形的开放区域,该开放区域对应于人体肘关节处皮肤,其作用在于防止弯曲运动时阻碍人体肘关节皮肤处的轴向延展,这种由外层肘套6和内层肘套7构成的双层套筒肘套结构,既可以确保软体执行器5与人体肘部贴合,保证动力传输效率,又可以提升软体可穿戴机器人本体组件1的可穿戴性;柔性弯曲传感器8不具有延展性,由于软体可穿戴机器人本体组件1在发生弯曲运动时仅外层肘套6的上侧不会产生明显的延展特征,因此将柔性弯曲传感器8的下侧与外层肘套6的上侧通过胶粘方式连接固定,可以保证其角度测量功能与信号传输功能的正常工作。当软体执行器组件5调节气压实现不同程度的弯曲运动时,将会与外层肘套6、内层肘套7一起带动人体肘部实现协同弯曲,柔性弯曲传感器8将实时检测人体肘部的弯曲角度并将角度信息反馈至控制器4,并通过电磁比例阀3进一步调节软体执行器组件5的内部气压,实现对预设训练轨迹的跟踪。软体可穿戴机器人本体组件1实现90度弯曲时的示意图如图3所示。
参照图4a-4c,图4a为所述软体执行器组件5伸展时的示意性右视图,图4b为所述软体执行器组件5伸展时的示意性上视图,图4c是沿图4b中的线A-A所作的示意性截面图。所述软体执行器组件5包括柔性管9、第一端密封件10、第二端密封件11、导气管12、编织网套13、第一端紧固件14、第二端紧固件15、第一端限位螺钉 16、第二端限位螺钉17、第一端螺母18、第二端螺母19、第一限制层20、第二限制层21、关节延展层22和第三限制层23。柔性管9是可沿轴向延申的细长管状结构,通常由具有气密性的弹性材料(硅胶、乳胶等橡胶制品)制成,包括第一端和第二端;第一端密封件10与柔性管9的第一端气密连接,第一端密封件10的示意图如图5a、5b所示,图5a为第一端密封件10的示意性右视图,图5b是沿图5a中的线B-B所作的示意性截面图,其中第一端密封件10大致为圆柱状结构,其右侧延申部分的端部半径稍大于柔性管9的内径,且右侧延申部分的外表面设有两个环形凸台,以增强与柔性管9的第一端连接时的气密性,第一端密封件10的左侧延申部分凸出一个细短的圆柱状结构,该圆柱状结构的左侧外表面设有楔形凸台,以增强与导气管12连接时的气密性,第一端密封件10的左侧到右侧设置通孔并从轴心贯穿该细短的圆柱状结构,通孔与柔性管9的内部联通;第二端密封件11与柔性管9的第二端气密连接,图6为第二端密封件11的示意性右视图,第二端密封件11大致为圆柱状结构,其左侧延申部分的端部半径稍大于柔性管9的内径,与第一端密封件10的右侧延申部分类似,第二端密封件11的左侧延申部分的外表面设有两个环形凸台,以增强与柔性管9的第二端连接时的气密性,不同的是,第二端密封件11不需要与导气管连接,整体为实体结构;编织网套13是具有轴向延展性的细长管状网套,套覆于柔性管9的外表面,包括第一端和第二端,编织网套13的第一端通过第一端紧固件14与柔性管9的第一端固定,编织网套13的第二端通过第二端紧固件15与柔 性管9的第二端固定,从而保证编织网套13能够完全包覆柔性管9并在弯曲过程中不发生脱落;第一端紧固件14与第二端紧固件15采用完全相同的结构,第一端限位螺钉16与第一端螺母18用于调整第一端紧固件14的紧固程度,第二端限位螺钉17与第二端螺母19用于调整第二端紧固件15的紧固程度,其示意性右视图如图7所示;当软体执行器组件5未加压时,柔性管9为水平伸展状态,此时编织网套13处于轴向极限压缩状态,当软体执行器组件5加压时,柔性管9会沿轴向发生弹性延展,此时编织网套13将会附着在柔性管9的外表面沿轴向延展,并阻碍柔性管9的径向扩张;编织网套13的上侧从第一端至第二端通过胶粘方式依次布置第一限制层20、关节延展层22和第二限制层21;第一限制层20不具有延展性,包括第一端和第二端,其第一端紧贴第一端紧固件14;关节延展层22具有一定轴向延展性,包括第一端和第二端,其第一端紧贴第一限制层20的第二端,关节延展层22所处位置对应于人体肘关节皮肤处,其轴向延展性用以适应人体肘关节皮肤处的轴向延展;第二限制层21不具有延展性,包括第一端和第二端,其第一端紧贴关节延展层20的第二端,其第二端紧贴所述第二端紧固件15;第三限制层23采用具有渐变弹性模量的材料,包括第一端和第二端,且从其第一端至第二端的弹性模量逐渐增大,第三限制层23通过胶粘方式固定于编织网套13下侧,且第三限制层的第二端紧贴第二端紧固件15;第一限制层20、第二限制层21和第三限制层23共同构成双侧渐变弹性模量限制结构,其工作原理如下:当软体执行器组件5未加压时,柔性 管9、编织网套13、关节延展层22和第三限制层23均保持初始状态不发生弹性延展,软体执行器组件5处于水平伸展状态,如图4a-4c所示;当软体执行器组件5加压时,柔性管9在编织网套13的径向约束下发生轴向延展,但第一限制层20与第二限制层21将对柔性管9上侧两端部分的轴向延展产生较大的阻碍作用,而柔性管9下侧靠近第一端部分的轴向延展未受到阻碍,因此柔性管9会在靠近第一端部分产生较大的弯曲角度,而柔性管9下侧靠近第二端部分受到第三限制层23的约束,且约束作用从第三限制层23第一端至第二端逐渐减小,因此柔性管9靠近第二端部分产生的弯曲角度较小,且逐渐减小,如图8a、8b所示,图8a为软体执行器组件5弯曲90°时的示意性右视图,图8b是图8a沿右视基准面所作的示意性截面图。此时,软体执行器组件5的弯曲运动特性与人体肘部运动特性基本相符,而不像之前设计的软体执行器成半圆形弯曲,这将有效减轻软体执行器组件5与人体肘关节处皮肤之间的切向滑动,且使辅助力的分布更加均匀;若第三限制层23设计为不具有延展性的完全约束结构,则柔性管9的第二端部分不会产生弯曲运动,这会使软体执行器组件5的弯曲运动特性与人体肘部的运动特性更加贴合,但使用者将会失去在前臂处的辅助作用,可能会导致驱动力不足,因此本发明中的第三限制层23采用具有渐变弹性模量的材料,这种非完全约束结构虽然会使得软体执行器组件5的弯曲运动特性与人体肘部的运动特性产生微小偏差,但柔性管9的第二端部分仍会产生弯曲力矩,即可以为使用者的前臂提供辅助作用,保证使用者顺利完成肘部康复训练。此外, 关节延展层22具有一定的轴向延展性,能够在几乎不损失驱动力的前提下,适应人体肘关节皮肤处的轴向延展,减小软体执行器组件5与人体肘关节皮肤之间的切向力,降低使用者的不舒适感。
尽管本发明就优选实施方式进行了示意和描述,但本领域的技术人员应当理解,只要不超出本发明的权利要求所限定的范围,可以对本发明进行各种变化和修改。

Claims (10)

  1. 一种用于肘部运动功能康复的软体可穿戴机器人,其特征在于:包括软体可穿戴机器人本体组件、气缸、电磁比例阀和控制器;所述气缸作为动力源为所述软体可穿戴机器人本体组件提供驱动力;所述电磁比例阀通过导气管分别与所述气缸和所述软体可穿戴机器人本体组件气密连接,用于调节所述软体可穿戴机器人本体组件的内部气压,所述控制器基于参考角度信息和所述软体可穿戴机器人本体组件反馈的实时角度信息求解控制指令,并输出控制电压至所述电磁比例阀,通过控制气压实现所述软体可穿戴机器人本体组件对预设训练轨迹的跟踪,辅助使用者完成肘部康复训练。
  2. 根据权利要求1所述的一种用于肘部运动功能康复的软体可穿戴机器人,其特征在于:所述软体可穿戴机器人本体组件由外层肘套、内层肘套、柔性弯曲传感器和软体执行器组件组成;所述外层肘套为非延展性的织物制成的非闭合圆筒结构,其下侧与所述软体执行器组件上侧固定;所述内层肘套为具有延展性的织物制成的闭合圆筒结构,且直接套覆与人体肘部,所述内层肘套设置在外层肘套内部形成套筒结构;所述柔性弯曲传感器具有非延展性,其下侧与所述外层肘套上侧固定。
  3. 根据权利要求2所述的一种用于肘部运动功能康复的软体可穿戴机器人,其特征在于:所述软体执行器组件包括柔性管、第一端密封件、第二端密封件、导气管、编织网套、第一端紧固件、第二端紧固件、第一限制层、第二限制层、关节延展层和第三限制层;所述柔性 管包括第一端和第二端,其第一端和第二端分别与所述第一端密封件和所述第二端密封件气密连接;所述第一端密封件设有与所述柔性管内部联通的通孔;所述导气管与所述第一端密封件的通孔气密连接;所述编制网套包覆在所述柔性管的外表面,包括第一端和第二端,其第一端通过所述第一端紧固件与所述柔性管的第一端固定,其第二端通过所述第二端紧固件与所述柔性管的第二端固定;所述编制网套上侧从第一端至第二端通过胶粘方式依次布置所述第一限制层、所述关节延展层和所述第二限制层;所述第一限制层不具有延展性,包括第一端和第二端,其第一端紧贴所述第一端紧固件;所述关节延展层具有轴向延展性,包括第一端和第二端,其第一端紧贴所述第一限制层的第二端;所述第二限制层不具有延展性,包括第一端和第二端,其第一端紧贴所述关节延展层的第二端,其第二端紧贴所述第二端紧固件;所述第三限制层采用具有渐变弹性模量的材料,包括第一端和第二端,且弹性模量从第一端至第二端逐渐增大,所述第三限制层上侧通过胶粘方式与所述编制网套下侧固定,且所述第三限制层的第二端紧贴所述第二端紧固件。
  4. 根据权利要求2所述的一种用于肘部运动功能康复的软体可穿戴机器人,其特征在于:所述控制器基于参考角度信息和所述柔性弯曲传感器反馈的实时角度信息求解控制指令,并输出控制电压至所述电磁比例阀,通过控制所述软体执行器组件的内部气压实现所述软体可穿戴机器人本体组件对预设训练轨迹的跟踪。
  5. 根据权利要求2所述的一种用于肘部运动功能康复的软体可穿戴 机器人,其特征在于:所述外层肘套的下侧与所述软体执行器组件上侧通过胶粘方式固定。
  6. 根据权利要求2所述的一种用于肘部运动功能康复的软体可穿戴机器人,其特征在于:所述内层肘套外表面通过魔术贴与所述外层肘套内表面固定,形成套筒结构。
  7. 根据权利要求2所述的一种用于肘部运动功能康复的软体可穿戴机器人,其特征在于:所述柔性弯曲传感器下侧通过胶粘方式与所述外层肘套上侧固定。
  8. 根据权利要求3所述的一种用于肘部运动功能康复的软体可穿戴机器人,其特征在于:所述第一端紧固件通过第一端限位螺钉与第一端螺母进行连接。
  9. 根据权利要求3所述的一种用于肘部运动功能康复的软体可穿戴机器人,其特征在于:所述第二端紧固件通过第二端限位螺钉与第二端螺母进行连接。
  10. 根据权利要求3所述的一种用于肘部运动功能康复的软体可穿戴机器人,其特征在于:其使用方法是:
    当软体执行器组件未加压时,柔性管、编织网套、关节延展层和第三限制层均保持初始状态不发生弹性延展,软体执行器组件处于水平伸展状态;
    当软体执行器组件加压时,柔性管在编织网套的径向约束下发生轴向延展,但第一限制层与第二限制层将对柔性管上侧两端部分的轴向延展产生较大的阻碍作用,而柔性管下侧靠近第一端部分的轴向延 展未受到阻碍,因此柔性管会在靠近第一端部分产生较大的弯曲角度,而柔性管下侧靠近第二端部分受到第三限制层的约束,且约束作用从第三限制层第一端至第二端逐渐减小,因此柔性管靠近第二端部分产生的弯曲角度较小,且逐渐减小,此时,软体执行器组件的弯曲运动特性与人体肘部运动特性基本相符,保证使用者顺利完成肘部康复训练。
PCT/CN2021/124307 2021-08-09 2021-10-18 一种用于肘部运动功能康复的软体可穿戴机器人 WO2023015717A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110906095.3 2021-08-09
CN202110906095.3A CN113633512B (zh) 2021-08-09 2021-08-09 一种用于肘部运动功能康复的软体可穿戴机器人

Publications (1)

Publication Number Publication Date
WO2023015717A1 true WO2023015717A1 (zh) 2023-02-16

Family

ID=78420069

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/124307 WO2023015717A1 (zh) 2021-08-09 2021-10-18 一种用于肘部运动功能康复的软体可穿戴机器人

Country Status (2)

Country Link
CN (1) CN113633512B (zh)
WO (1) WO2023015717A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116678350B (zh) * 2023-07-28 2023-10-13 常熟理工学院 应用于外骨骼柔性套索结构的弯曲传感器及测量方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107088884A (zh) * 2017-05-19 2017-08-25 南京理工大学 一种可穿戴式加箍型气动充气弯曲柔性驱动器
CN107961139A (zh) * 2018-01-05 2018-04-27 东北大学 一种气动软体康复护肘系统
CN110497396A (zh) * 2019-08-29 2019-11-26 南京理工大学 一种可变刚度增强型气动软体驱动器
US20200003088A1 (en) * 2018-06-28 2020-01-02 Board Of Regents, The University Of Texas System Electromagnetic soft actuators
CN111920649A (zh) * 2020-02-24 2020-11-13 合肥工业大学 一种整体式软体助力装置及肢体助力训练器
CN112022623A (zh) * 2020-09-14 2020-12-04 北京航空航天大学 一种基于软体驱动器的可穿戴式柔性上肢助力外骨骼机构

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG103371A1 (en) * 2001-12-28 2004-04-29 Matsushita Electric Works Ltd Wearable human motion applicator
US20120004586A1 (en) * 2010-06-30 2012-01-05 Martino Stephen J Elbow Brace
JP2014121508A (ja) * 2012-12-24 2014-07-03 Yoshinori Wada 膝関節の引き伸し器具
CN104490562B (zh) * 2014-12-10 2016-08-24 大连理工大学 可穿戴式u型肢体助力气囊及其制作方法
CN106625733A (zh) * 2017-02-24 2017-05-10 张帆 一种新型柔性手指
JP6860743B2 (ja) * 2018-03-30 2021-04-21 圭治郎 山本 関節運動アシスト装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107088884A (zh) * 2017-05-19 2017-08-25 南京理工大学 一种可穿戴式加箍型气动充气弯曲柔性驱动器
CN107961139A (zh) * 2018-01-05 2018-04-27 东北大学 一种气动软体康复护肘系统
US20200003088A1 (en) * 2018-06-28 2020-01-02 Board Of Regents, The University Of Texas System Electromagnetic soft actuators
CN110497396A (zh) * 2019-08-29 2019-11-26 南京理工大学 一种可变刚度增强型气动软体驱动器
CN111920649A (zh) * 2020-02-24 2020-11-13 合肥工业大学 一种整体式软体助力装置及肢体助力训练器
CN112022623A (zh) * 2020-09-14 2020-12-04 北京航空航天大学 一种基于软体驱动器的可穿戴式柔性上肢助力外骨骼机构

Also Published As

Publication number Publication date
CN113633512A (zh) 2021-11-12
CN113633512B (zh) 2022-04-29

Similar Documents

Publication Publication Date Title
CN108578173B (zh) 一种柔性上肢助力外骨骼
US8425438B2 (en) Motion assist apparatus
Yap et al. A fully fabric-based bidirectional soft robotic glove for assistance and rehabilitation of hand impaired patients
WO2019007312A1 (zh) 一种手指关节康复器
WO2018188480A1 (en) Flexibly driven robotic hands
WO2019184589A1 (zh) 外骨骼康复助力装置
CN110236880A (zh) 一种用户自定义被动式气动软体机械手
CN109481236B (zh) 柔性材料3d打印制造的刚柔结合外骨骼手功能康复装置
WO2023015717A1 (zh) 一种用于肘部运动功能康复的软体可穿戴机器人
CN110303479B (zh) 一种可穿戴柔性膝关节外骨骼及其控制方法
WO2019134202A1 (zh) 一种负压收缩弹性体驱动的柔性膝关节外骨骼
CN110497395B (zh) 一种双向运动气动柔性驱动器及其工作方法
CN210056675U (zh) 一种肘关节康复训练装置
WO2022057818A1 (zh) 一种用于患者手部助力训练的方法及装置
CN112060114B (zh) 一种可双向弯曲的模块化多功能软体灵巧手
WO2019007314A1 (zh) 一种手指关节康复运动辅助件
CN209422384U (zh) 一种气动关节结构及关节训练器
Wang et al. Design and development of a glove for post-stroke hand rehabilitation
CN214318518U (zh) 一种气动式手部关节康复仪
CN112022623A (zh) 一种基于软体驱动器的可穿戴式柔性上肢助力外骨骼机构
CN109938968A (zh) 基于层状气室的仿生气动拮抗肌设计
Zhang et al. Design of a soft robot using pneumatic muscles for elbow rehabilitation
Tsukagoshi et al. Wearable fluid power composed of transformed flat tube actuators
CN109363886B (zh) 一种肘关节康复训练装置及实现方法
Ma et al. A soft wearable exoskeleton with pneumatic actuator for assisting upper limb

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21953323

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE