WO2023015418A1 - 最大mimo层数的配置或使用方法、装置、设备及介质 - Google Patents

最大mimo层数的配置或使用方法、装置、设备及介质 Download PDF

Info

Publication number
WO2023015418A1
WO2023015418A1 PCT/CN2021/111601 CN2021111601W WO2023015418A1 WO 2023015418 A1 WO2023015418 A1 WO 2023015418A1 CN 2021111601 W CN2021111601 W CN 2021111601W WO 2023015418 A1 WO2023015418 A1 WO 2023015418A1
Authority
WO
WIPO (PCT)
Prior art keywords
maximum number
mimo layers
system information
sib
short message
Prior art date
Application number
PCT/CN2021/111601
Other languages
English (en)
French (fr)
Inventor
李海涛
胡奕
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to CN202180098732.7A priority Critical patent/CN117397306A/zh
Priority to PCT/CN2021/111601 priority patent/WO2023015418A1/zh
Publication of WO2023015418A1 publication Critical patent/WO2023015418A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/10Access restriction or access information delivery, e.g. discovery data delivery using broadcasted information
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the field of wireless communication, and in particular to a method, device, device and medium for configuring or using the maximum number of MIMO layers.
  • the new air interface (New Radio, NR) system considers the energy saving enhancement of the terminal.
  • the base station may refer to the maximum number of multiple-input multiple-output (Multiple-Input Multiple-Output, MIMO) layers recommended by the terminal.
  • MIMO multiple-Input Multiple-Output
  • the parameter maxMIMO-Layers-r16 in the Physical Downlink Shared Channel (PDSCH) configuration configured on the current Band Width Part (BWP) is reconfigured through Radio Resource Control (RRC). configuration.
  • RRC Radio Resource Control
  • the embodiment of the present application provides a configuration method, usage method, device, equipment and medium of the maximum number of MIMO layers, which can provide a configuration scheme of the maximum number of MIMO layers for multiple terminals while considering the energy saving enhancement of the base station. Described technical scheme is as follows:
  • a method for configuring the maximum number of MIMO layers comprising:
  • the access network device broadcasts system information, where the system information includes the first maximum number of MIMO layers.
  • a method for using the maximum number of MIMO layers comprising:
  • the terminal receives system information, where the system information includes the first maximum number of MIMO layers;
  • the terminal determines the maximum number of MIMO layers used in the serving cell according to the first maximum number of MIMO layers.
  • a device for configuring the maximum number of MIMO layers comprising:
  • a sending module configured to broadcast system information, where the system information includes the first maximum number of MIMO layers.
  • a device for using the maximum number of MIMO layers includes:
  • a receiving module configured to receive system information, where the system information includes the first maximum number of MIMO layers;
  • a determining module configured to determine the maximum number of MIMO layers used in the serving cell according to the first maximum number of MIMO layers.
  • a terminal includes a processor and a memory, and a computer program is stored in the memory, and the processor executes the computer program to realize the above-mentioned maximum number of MIMO layers usage method.
  • an access network device includes a processor and a memory, a computer program is stored in the memory, and the processor executes the computer program to A configuration method for implementing the above-mentioned maximum number of MIMO layers.
  • a computer-readable storage medium is provided, and a computer program is stored in the computer-readable storage medium, and the computer program is used to be executed by a processor to realize the above-mentioned maximum MIMO layer How to use the number or how to configure the maximum number of MIMO layers.
  • a chip is provided, the chip includes a programmable logic circuit and/or program instructions, and when the chip is run on a computer device, it is used to realize the maximum The method of using the number of MIMO layers or the method of configuring the maximum number of MIMO layers.
  • a computer program product or computer program comprising computer instructions stored in a computer-readable storage
  • the readable storage medium reads and executes the computer instructions, so that the computer device executes the method for using the maximum number of MIMO layers or the method for configuring the maximum number of MIMO layers described in the above aspect.
  • the maximum number of MIMO layers of multiple UEs can be configured in batches through system information to avoid separate RRC reconfiguration for multiple UEs.
  • the problem is that the process is time-consuming and expensive.
  • FIG. 1 is a schematic diagram of a network architecture provided by an exemplary embodiment of the present application
  • FIG. 2 is a flowchart of a method for configuring the maximum number of MIMO layers provided by an exemplary embodiment of the present application
  • FIG. 3 is a flowchart of a method for configuring the maximum number of MIMO layers provided by an exemplary embodiment of the present application
  • Fig. 4 is a schematic diagram of a system information update cycle provided by an exemplary embodiment of the present application.
  • Fig. 5 is a schematic diagram of the first broadcast mode of the maximum number of MIMO layers provided by an exemplary embodiment of the present application
  • FIG. 6 is a schematic diagram of a second broadcast mode with the maximum number of MIMO layers provided by an exemplary embodiment of the present application
  • FIG. 7 is a schematic diagram of a third broadcast mode with the maximum number of MIMO layers provided by an exemplary embodiment of the present application.
  • FIG. 8 is a flowchart of a method for using the maximum number of MIMO layers provided by an exemplary embodiment of the present application.
  • FIG. 9 is a flowchart of a method for using the maximum number of MIMO layers provided by an exemplary embodiment of the present application.
  • FIG. 10 is a flowchart of a method for using the maximum number of MIMO layers provided by an exemplary embodiment of the present application.
  • FIG. 11 is a block diagram of an apparatus for configuring the maximum number of MIMO layers provided by an exemplary embodiment of the present application.
  • FIG. 12 is a block diagram of a device for using the maximum number of MIMO layers provided by an exemplary embodiment of the application.
  • Fig. 13 is a block diagram of a communication device provided by an exemplary embodiment of the present application.
  • the network architecture and business scenarios described in the embodiments of the present application are for more clearly illustrating the technical solutions of the embodiments of the present application, and do not constitute limitations on the technical solutions provided by the embodiments of the present application.
  • the evolution of the technology and the emergence of new business scenarios, the technical solutions provided in the embodiments of this application are also applicable to similar technical problems.
  • first, second, etc. may be used in the present disclosure to describe various information, the information should not be limited to these terms. These terms are only used to distinguish information of the same type from one another.
  • a first parameter may also be called a second parameter, and similarly, a second parameter may also be called a first parameter.
  • the word "if” as used herein may be interpreted as “at” or “when” or “in response to a determination.”
  • FIG. 1 shows a schematic structural diagram of a communication system 100 provided by an embodiment of the present application.
  • the communication system 100 may include: a terminal 10 , an access network device 20 and a core network device 30 .
  • the terminal 10 may refer to a UE (User Equipment, user equipment), an access terminal, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a wireless communication device, a user agent or a user device.
  • UE User Equipment
  • an access terminal a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a wireless communication device, a user agent or a user device.
  • the terminal can also be a cellular phone, a cordless phone, a SIP (Session Initiation Protocol, session initiation protocol) phone, a WLL (Wireless Local Loop, wireless local loop) station, a PDA (Personal Digital Assistant, personal digital processing), Handheld devices with wireless communication functions, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, terminals in 5GS or future evolutions in PLMN (Pub1ic Land Mobile Network, public land mobile communication network)
  • the terminal and the like are not limited in this embodiment of the present application.
  • the number of terminals 10 is generally multiple, and one or more terminals 10 may be distributed in a cell managed by each access network device 20 .
  • terminals 10 are classified into two types: first terminals and second terminals. The maximum transmit power of the second terminal is greater than the maximum transmit power of the first terminal.
  • the access network device 20 is a device deployed in an access network to provide a wireless communication function for the terminal 10 .
  • the access network device 20 may include various forms of macro base stations, micro base stations, relay stations, access points and so on.
  • the names of devices with access network device functions may be different.
  • they are called gNodeB or gNB.
  • access network equipment With the evolution of communication technology, the name "access network equipment" may change.
  • access network devices For the convenience of description, in the embodiment of the present application, the above-mentioned devices that provide the wireless communication function for the terminal 10 are collectively referred to as access network devices.
  • a communication relationship may be established between the terminal 10 and the core network device 30 through the access network device 20 .
  • the access network device 20 may be EUTRAN (Evolved Universal Terrestrial Radio Access Network, Evolved Universal Terrestrial Radio Network) or one or more eNodeBs in EUTRAN;
  • EUTRAN Evolved Universal Terrestrial Radio Access Network
  • eNodeB eNodeB
  • the access network device 20 may be a RAN (Radio Access Network, radio access network) or one or more gNBs in the RAN.
  • RAN Radio Access Network, radio access network
  • the functions of the core network device 30 are mainly to provide user connections, manage users, and carry out services, and provide an interface to external networks as a bearer network.
  • the core network equipment in the 5G NR system may include AMF entities, UPF (User Plane Function, user plane function) entities and SMF (Session Management Function, session management function) entities and other equipment.
  • the access network device 20 and the core network device 30 communicate with each other through some air technology, such as the NG interface in the 5G NR system.
  • the access network device 20 and the terminal 10 communicate with each other through a certain air technology, such as a Uu interface.
  • Fig. 2 shows a flowchart of a method for configuring the maximum number of MIMO layers provided by an exemplary embodiment of the present application. This embodiment is described by taking the method executed by the access network device as an example. The method includes:
  • Step 202 The access network device broadcasts system information (System Information, SI), and the system information includes the first maximum number of MIMO layers.
  • SI System Information
  • the access network equipment considering the energy saving of the base station, reducing the number of antenna ports of the base station can achieve the purpose of energy saving.
  • changing the number of antenna ports of the base station will affect the maximum number of MIMO layers of the terminal in the connected state. If RRC is used to reconfigure the maximum number of MIMO layers of each terminal, or downlink control information (DCI) is used to control each terminal to perform BWP switching, it will bring huge overhead and take a long time.
  • DCI downlink control information
  • the access network device broadcasts system information, where the system information includes the first maximum number of MIMO layers.
  • the access network device sets the first maximum number of MIMO layers according to (its own) energy saving situation. For example, if energy saving is required, set the first maximum number of MIMO layers according to the reduced number of antenna ports; for another example, if energy saving is not required, set the first maximum number of MIMO layers according to the increased number of antenna ports .
  • the access network device reduces the number of antenna ports on the access network device side from the first number to the second number when the average rate of multiple terminals in the serving cell is less than a threshold; according to the second number
  • the number of antenna ports sets the first maximum number of MIMO layers supported by the serving cell; when the average rate of multiple terminals in the serving cell of the access network device is greater than the threshold, the number of antenna ports on the access network device side is changed from the second number to Increase to the first number; set the first maximum number of MIMO layers supported by the serving cell according to the number of antenna ports of the first number.
  • the first maximum number of MIMO layers is provided to multiple terminals in the serving cell.
  • the first maximum number of MIMO layers is provided to multiple terminals or all terminals in the connected state in the serving cell.
  • the connected state is one of the RRC states of the terminal.
  • the RRC state of the terminal includes three: dormant state (RRC_IDLE), connected state (RRC_CONNECTED), and inactive state (RRC_INACTIVE).
  • the first maximum number of MIMO layers includes: the first maximum number of downlink MIMO layers; and/or, the first maximum number of uplink MIMO layers.
  • the system information includes multiple system information blocks (System Information Block, SIB), such as SIB1 to SIB14.
  • SIB System Information Block
  • the first maximum number of MIMO layers is carried in the target SIB, where the target SIB can be SIB1 or SIB X, where X is an integer greater than 1.
  • the energy-saving enhancement of the base station in the scenario where the energy-saving enhancement of the base station is considered, if the number of antenna ports of the base station is increased or decreased, the maximum number of MIMO layers of multiple UEs is configured in batches through system information , to avoid the problem of long time consumption and high overhead of performing a separate RRC reconfiguration process for multiple UEs.
  • Fig. 3 shows a flowchart of a method for configuring the maximum number of MIMO layers provided by an exemplary embodiment of the present application. This embodiment is described by taking the method executed by the access network device as an example. The method includes:
  • Step 201 the access network device sends a change instruction
  • the access network device sends a change indication to each terminal (in the connected state), where the change indication is used to indicate whether the first maximum number of MIMO layers in the system information has been updated.
  • the first maximum number of MIMO layers is the maximum number of MIMO layers currently supported by the serving cell.
  • Step 202 The access network device broadcasts system information, and the system information includes the first maximum number of MIMO layers.
  • the access network device broadcasts system information, where the system information includes the first maximum number of MIMO layers.
  • the concept of a system information update cycle is used in the related art.
  • the access network device when the access network device wants to update the system information, the access network device first repeatedly sends the system information change indication (the black block in the figure) in the nth system information update period, and then The updated system information is repeatedly sent within one system information update cycle (the oblique block in the figure).
  • m modificationPeriodCoeff*defaultPagingCycle.
  • modificationPeriodCoeff and defaultPagingCycle are the system information update cycle coefficient and the default paging cycle respectively, and these two parameters are determined through the broadcast of the access network device.
  • the system information change indication is carried in a short message (Short Message).
  • the system information includes multiple system information blocks (System Information Block, SIB), such as SIB1 to SIB14.
  • SIB System Information Block
  • the system information update period is applicable to the update of system information except SIB6, SIB7, SIB8, and positioning assistance data. That is:
  • systemInfoModification the system information modification indication (systemInfoModification) in the short message is 1, it means that the system information other than SIB6/SIB7/SIB8 needs to be updated, and the terminal obtains the updated system information in the next system information update period.
  • the first way (traditional change instructions):
  • the access network device sends a short message and a target SIB, the short message carries a system information change indication, and the system information change indication is used to indicate that there is an SIB update in the system information; the target SIB is the SIB carrying the first maximum number of MIMO layers.
  • the access network device sends a short message of the first version and SIB1, the short message carries a system information change indication, and the system information change indication is used to indicate that there is an SIB update in the system information; SIB1 is Carries the SIB with the first largest number of MIMO layers.
  • the first version of the short message is also called the traditional version of the short message, such as the short message defined by the communication protocol of the R16 version.
  • the short message carries a system information change instruction. When the value of the system information change indication is 1, it means that the existing system information has been updated; when the value of the system information change indication is 0, it means that the system information has not been updated.
  • the access network device In consideration of energy saving, if the number of antenna ports currently supported by the access network device changes, for example, some antenna ports enter an inactive state, the access network device generates the latest first maximum number of MIMO layers.
  • the access network device sends a short message of the first version in the system information update cycle n, and the system information change indication in the short message is 1, which means that there is an update of the SIB.
  • the access network device sends the SIB1 in the system information update period n+1, and the SIB1 carries the latest first maximum number of MIMO layers.
  • the access network device sends the first version of the short message and SIB1 and SIBx, the short message carries a system information change indication, and the system information change indication is used to indicate that there is an SIB update in the system information;
  • the value tag (Value Tag) corresponding to SIB X in SIB1 is used to indicate that SIB X is updated, and SIB X is the SIB carrying the first maximum number of MIMO layers.
  • the first maximum MIMO layer is carried in SIB X instead of SIB1.
  • the access network device sends a short message of the first version in the system information update cycle n, and the system information change indication in the short message is 1, which means that there is an update of the SIB.
  • the access network device sends SIB1 and SIBX in the system information update period n+1.
  • Value tags corresponding to different SIBs are carried in SIB1. For example, the value label corresponding to SIB2 is used to indicate whether SIB2 is updated; the value label corresponding to SIB3 is used to indicate whether SIB3 is updated; the value label corresponding to SIB4 is used to indicate whether SIB4 is updated.
  • SIB X is updated
  • SIB X is the SIB carrying the first maximum number of MIMO layers.
  • the access network device sends a short message and the target SIB, and the short message carries an instruction to change the maximum number of MIMO layers.
  • the target SIB carries the first maximum number of MIMO layers.
  • the target SIB is SIB1 or SIB X.
  • the access network device sends a short message of the second version, the short message carries a maximum MIMO layer change indication, and the maximum MIMO layer change indication is used to indicate whether the first maximum MIMO layer number in the system information has been updated;
  • the second version of the short message is also called a new version of the short message, which is a short message defined by a communication protocol of version R17 after updating based on the first version of the short message.
  • the short message carries an instruction to change the maximum number of MIMO layers.
  • the change indication of the maximum number of MIMO layers is obtained by multiplexing the reserved bits in the short message of the first version. That is to say, the change indication of the maximum number of MIMO layers in the short message of the second version corresponds to the reserved bit in the short message of the first version.
  • the access network device sends the second version of the short message in the system information update cycle n, and the maximum MIMO layer number change indication in the short message is 1, which represents the target SIB carrying the first maximum MIMO layer number An update occurs. Since the SIB is repeatedly sent in the same system information update period n, the access network device carries the latest first maximum number of MIMO layers in the target SIB sent subsequently in the system information update period n. In this way, the terminal re-reads the target SIB in the system information update period n to obtain the latest first maximum number of MIMO layers.
  • the target SIB can be either SIB1 or SIB X.
  • the access network device broadcasts the change instruction first, and then broadcasts the SIB carrying the first maximum MIMO layer, which can trigger the terminal to obtain the updated first maximum MIMO layer in time. , to maintain the timeliness of information acquisition.
  • the method provided in this embodiment can use the system information change indication in the related art as much as possible through the above first and second means, and can realize the change of the first maximum MIMO layer number without improving the system information change indication Notification, so it can reduce the modification of the communication protocol and improve the compatibility with the terminal using the traditional communication protocol.
  • the method provided in this embodiment uses the reserved bits of the short message in the related art to realize the change notification of the first maximum number of MIMO layers through the above third method, and can complete the first MIMO layer change in the same system information update period n.
  • the delivery or notification of the maximum number of MIMO layers further shortens the time-consuming delivery of the first maximum number of MIMO layers to multiple terminals, and maintains the timeliness of information acquisition.
  • Fig. 8 shows a flowchart of a method for using the maximum number of MIMO layers provided by an exemplary embodiment of the present application. This embodiment is described by taking the method executed by the terminal as an example. The method includes:
  • Step 402 The terminal receives system information, and the system information includes the first maximum number of MIMO layers;
  • the terminal in the connected state receives the system information broadcast by the access network device, where the system information includes the first maximum number of MIMO layers.
  • the system information includes multiple SIBs, such as SIB1 to SIB14.
  • the first maximum number of MIMO layers is carried in the target SIB, where the target SIB can be SIB1 or SIB X, where X is an integer greater than 1.
  • the first maximum number of MIMO layers is the maximum number of MIMO layers currently supported by the serving cell.
  • the first maximum number of MIMO layers is provided to multiple terminals in the serving cell.
  • the first maximum number of MIMO layers is provided to multiple terminals or all terminals in the connected state in the serving cell.
  • the first maximum number of MIMO layers includes: the first maximum number of downlink MIMO layers; and/or, the first maximum number of uplink MIMO layers.
  • Step 404 The terminal determines the maximum number of MIMO layers used in the serving cell according to the first maximum number of MIMO layers.
  • the terminal obtains the first maximum number of MIMO layers through system information, and then determines the maximum number of MIMO layers used in the serving cell by the first maximum number of MIMO layers in the system information, which can realize
  • the batch configuration of the maximum number of MIMO layers of multiple UEs avoids the time-consuming and expensive problems of separate RRC reconfiguration processes for multiple UEs.
  • Fig. 9 shows a flowchart of a method for using the maximum number of MIMO layers provided by an exemplary embodiment of the present application. This embodiment is described by taking the method executed by the terminal as an example. The method includes:
  • Step 400 the terminal receives the change instruction
  • the change indication is used to indicate whether the first maximum number of MIMO layers in the system information has been updated.
  • the first maximum number of MIMO layers is the maximum number of MIMO layers currently supported by the serving cell.
  • Step 402 The terminal receives system information, and the system information includes the first maximum number of MIMO layers;
  • the terminal in the connected state receives system information broadcast by the access network device, where the system information includes the first maximum number of MIMO layers.
  • the system information includes multiple SIBs, such as SIB1 to SIB14.
  • the first maximum number of MIMO layers is carried in the target SIB, where the target SIB can be SIB1 or SIB X, where X is an integer greater than 1.
  • the terminal receives a short message, and the short message carries a system information change indication; when the system information change indication is used to indicate that there is an SIB update in the system information, the target SIB is received, and the target SIB carries the first maximum MIMO layer Number of SIBs.
  • the terminal receives the short message of the first version and SIB1, the short message carries a system information change indication, and the system information change indication is used to indicate that there is an SIB update in the system information; SIB1 carries the first The SIB for the maximum number of MIMO layers.
  • the first version of the short message is also called the traditional version of the short message, such as the short message defined by the communication protocol of the R16 version.
  • the short message carries a system information change instruction. When the value of the system information change indication is 1, it means that the existing system information has been updated; when the value of the system information change indication is 0, it means that the system information has not been updated.
  • the terminal receives a short message of the first version in the system information update period n, and the system information change indication in the short message is 1, which means that there is an update of the SIB.
  • the terminal receives the SIB1 in the system information update period n+1, and the SIB1 carries the latest first maximum number of MIMO layers.
  • the terminal receives the short message of the first version, and the short message carries a system information change indication; in the case where the system information change indication is used to indicate that there is an SIB update in the system information , the terminal receives SIB1, and the value tag corresponding to SIB X in SIB1 is used to indicate that SIB X is updated, and SIB X is the SIB carrying the first maximum number of MIMO layers.
  • the first maximum MIMO layer is carried in SIB X instead of SIB1.
  • the terminal receives a short message of the first version at a system information update period n, and the system information change indication in the short message is 1, which means that there is an update of the SIB.
  • the terminal first receives SIB1 in the system information update period n+1.
  • Value tags corresponding to different SIBs are carried in SIB1. For example, the value label corresponding to SIB2 is used to indicate whether SIB2 is updated; the value label corresponding to SIB3 is used to indicate whether SIB3 is updated; the value label corresponding to SIB4 is used to indicate whether SIB4 is updated.
  • the terminal receives SIB X in the system information update period, and SIB X is the SIB carrying the first maximum number of MIMO layers.
  • the terminal receives a short message, and the short message carries a system information change indication; when the system information change indication is used to indicate that there is an SIB update in the system information, the target SIB is received, and the target SIB carries the first maximum number of MIMO layers SIB.
  • the terminal receives a short message of the second version, and the short message carries a change indication of the maximum number of MIMO layers, and the change indication of the maximum number of MIMO layers is used to indicate whether the first maximum number of MIMO layers in the system information has been updated.
  • the second version of the short message is also called a new version of the short message, which is an updated short message based on the first version of the short message, such as the short message defined by the communication protocol of the R17 version and subsequent versions.
  • the short message carries an instruction to change the maximum number of MIMO layers.
  • the change indication of the maximum number of MIMO layers is obtained by multiplexing the reserved bits in the short message of the first version. That is, the change indication of the maximum number of MIMO layers in the short message of the second version corresponds to the reserved bits in the short message of the first version.
  • the terminal receives the second version of the short message in the system information update period n, and the maximum MIMO layer number change indication in the short message is 1, which means that the target SIB carrying the first maximum MIMO layer number is updated. Since the SIB is repeatedly sent in the same system information update period n, the target SIB sent subsequently in the system information update period n carries the latest first maximum number of MIMO layers. In this way, the terminal re-reads the target SIB in the system information update period n to obtain the latest first maximum number of MIMO layers.
  • the target SIB can be either SIB1 or SIB X.
  • Step 404 The terminal determines the maximum number of MIMO layers used in the serving cell according to the first maximum number of MIMO layers.
  • the access network device broadcasts the change instruction first, and then broadcasts the SIB carrying the first maximum MIMO layer, which can trigger the terminal to obtain the updated first maximum MIMO layer in time. , to maintain the timeliness of information acquisition.
  • the method provided in this embodiment can use the system information change indication in the related art as much as possible through the above first and second means, and can realize the change of the first maximum MIMO layer number without improving the system information change indication Notification, so it can reduce the modification of the communication protocol and improve the compatibility with the terminal using the traditional communication protocol.
  • the method provided in this embodiment uses the reserved bits of the short message in the related art to realize the change notification of the first maximum number of MIMO layers through the above third method, and can complete the first MIMO layer change in the same system information update period n.
  • the delivery or notification of the maximum number of MIMO layers further shortens the time-consuming delivery of the first maximum number of MIMO layers to multiple terminals, and maintains the timeliness of information acquisition.
  • Fig. 10 shows a flowchart of a method for using the maximum number of MIMO layers provided by an exemplary embodiment of the present application. This embodiment is described by taking the method executed by the terminal as an example. The method includes:
  • Step 402 The terminal receives system information, and the system information includes the first maximum number of MIMO layers;
  • step 402 in FIG. 8 For the process of receiving system information by the terminal, refer to step 402 in FIG. 8 , or steps 400 to 402 in FIG. 9 , and details are not repeated here.
  • Step 404 The terminal determines the maximum number of MIMO layers used in the serving cell according to the first maximum number of MIMO layers and the second maximum number of MIMO layers;
  • the second maximum number of MIMO layers is the maximum number of MIMO layers configured for the serving cell through dedicated signaling.
  • the dedicated signaling refers to the signaling configured at the granularity of a terminal or a terminal group, and the dedicated signaling may be RRC or DCI.
  • the second maximum number of MIMO layers is configured to the terminal by the access network device through RRC dedicated signaling before step 402 .
  • the terminal will have two maximum MIMO layers at the same time, which come from dedicated signaling and system information respectively.
  • This step can be realized as any one of the following two steps:
  • the first maximum number of MIMO layers is configured and the second maximum number of MIMO layers is not configured, determine that the first maximum number of MIMO layers is the maximum number of MIMO layers used in the serving cell.
  • the second maximum number of MIMO layers is determined to be the maximum number of MIMO layers used in the serving cell.
  • Step 406 The terminal determines the maximum number of MIMO layers used on the target BWP in the serving cell according to the maximum number of MIMO layers used in the serving cell and the third maximum number of MIMO layers.
  • the terminal may also be configured with a third maximum number of MIMO layers for the target BWP.
  • the third maximum number of MIMO layers is the maximum number of MIMO layers configured for the target BWP through dedicated signaling.
  • the dedicated signaling refers to the signaling configured at the granularity of a terminal or a terminal group, and the dedicated signaling may be RRC or DCI.
  • the third maximum number of MIMO layers is configured to the terminal by the access network device through RRC dedicated signaling before step 406 .
  • the terminal will have two maximum MIMO layers at the same time, corresponding to the serving cell (determined by step 404) and the target BWP respectively.
  • This step can be realized as any one of the following two steps:
  • the method provided in this embodiment uses the first maximum MIMO layer and the second maximum MIMO layer when the terminal has two maximum MIMO layers at the same time, which come from proprietary signaling and system information respectively.
  • the minimum value of can ensure that after the maximum number of MIMO layers of the access network device is updated, the terminal will no longer use more than the maximum number of MIMO layers supported by the network device, ensuring the success rate of MIMO transmission between the terminal and the access network device at the granularity of the serving cell.
  • the terminal has two maximum MIMO layers at the same time, corresponding to the serving cell and the target BWP, ensure that the maximum number of MIMO layers used by the target BWP does not exceed the maximum number of MIMO layers supported by the serving cell, ensuring that the terminal and access MIMO transmission success rate of network devices at BWP granularity.
  • Fig. 11 shows a block diagram of an apparatus for configuring the maximum number of MIMO layers provided by an exemplary embodiment of the present application.
  • the devices include:
  • the sending module 1120 is configured to broadcast system information, where the system information includes the first maximum number of MIMO layers.
  • a setting module 1140 configured to set the first maximum number of MIMO layers according to energy saving conditions.
  • the setting module 1140 is configured to reduce the number of antenna ports on the access network device side from the first number to The second number; according to the second number of antenna ports, the first maximum number of MIMO layers supported by the serving cell is set; the setting module 1140 is used for when the average rate of multiple terminals in the serving cell is greater than the threshold, the access The number of antenna ports on the network device side is increased from the second number to the first number; and the first maximum number of MIMO layers supported by the serving cell is set according to the first number of antenna ports.
  • the first maximum number of MIMO layers includes: the first maximum number of downlink MIMO layers; and/or, the first maximum number of uplink MIMO layers.
  • the sending module 1120 is further configured to send a change indication, where the change indication is used to indicate whether the first maximum number of MIMO layers in the system information has been updated.
  • the sending module 1120 is also configured to send a short message and the target SIB, the short message carries a system information change indication, and the system information change indication is used to indicate that the system There is an SIB updated in the information; the target SIB is the SIB carrying the first maximum number of MIMO layers.
  • the sending module 1120 is also configured to send a short message and the target SIB, the short message carries a maximum MIMO layer number change indication, and the maximum MIMO layer number change indication is used to Indicates whether the first maximum number of MIMO layers in the system information has been updated.
  • the broadcasting manner of the first maximum number of MIMO layers may adopt any of the following three manners:
  • the sending module 1120 is configured to send a short message of the first version and SIB1, the short message carries a system information change indication, and the system information change indication is used to indicate the There is a SIB that is updated; the SIB1 is the SIB that carries the first maximum number of MIMO layers;
  • the sending module 1120 is configured to send the short message of the first version and SIB1 and SIBx, the short message carries a system information change indication, and the system information change indication is used to indicate that the system There is an update of the SIB in the information; the value tag corresponding to the SIB X in the SIB1 is used to indicate that the SIB X is updated, and the SIB X is the SIB that carries the first maximum number of MIMO layers;
  • the sending module 1120 is configured to send a short message of a second version, the short message carries a maximum MIMO layer number change indication, and the maximum MIMO layer number change indication is used to indicate that the system Whether the first maximum number of MIMO layers in the information has been updated;
  • the change indication of the maximum number of MIMO layers in the short message of the second version corresponds to a reserved bit in the short message of the first version.
  • the above-mentioned sending module 1120 is further configured to execute any sending step in the embodiment of FIG. 2 and FIG. 3
  • the above-mentioned setting module 1140 is also configured to execute any non-sending step in the embodiment of FIG. 2 and FIG. 3 .
  • the device provided by this embodiment can trigger the terminal to obtain the updated first maximum MIMO layer number in time by broadcasting the change instruction first, and then broadcasting the SIB carrying the first maximum MIMO layer number, keeping information acquisition timeliness.
  • the device provided in this embodiment can use the system information change indication in the related art as much as possible through the above first and second means, and can realize the change of the first maximum MIMO layer number without improving the system information change indication Notification, so it can reduce the modification of the communication protocol and improve the compatibility with the terminal using the traditional communication protocol.
  • the device provided in this embodiment uses the reserved bits of the short message in the related art to realize the change notification of the first maximum number of MIMO layers through the above third method, and can complete the first MIMO layer change in the same system information update period n.
  • the delivery or notification of the maximum number of MIMO layers further shortens the time-consuming delivery of the first maximum number of MIMO layers to multiple terminals, and maintains the timeliness of information acquisition.
  • Fig. 12 shows a block diagram of a device for using the maximum number of MIMO layers provided by an exemplary embodiment of the present application.
  • the devices include:
  • a receiving module 1220 configured to receive system information, where the system information includes the first maximum number of MIMO layers;
  • a determining module 1240 configured to determine the maximum number of MIMO layers used in the serving cell according to the first maximum number of MIMO layers.
  • the first maximum number of MIMO layers includes: a first maximum number of downlink MIMO layers; and/or, a first maximum number of uplink MIMO layers.
  • the receiving module 1220 is configured to receive a change indication, where the change indication is used to indicate whether the first maximum number of MIMO layers in the system information has been updated.
  • the receiving module 1220 is configured to receive a short message, the short message carrying a system information change indication; the system information change indication is used to indicate that there is a
  • SIB system information block
  • the receiving module 1220 is configured to receive a short message, the short message carries a change indication of the maximum number of MIMO layers, and the change indication of the maximum number of MIMO layers is used to indicate that the system Whether the first maximum number of MIMO layers in the information has been updated.
  • the broadcast receiving method of the first maximum number of MIMO layers may adopt any of the following three methods:
  • the receiving module 1220 is configured to receive a short message of a first version, the short message carrying a system information change indication; the system information change indication is used to indicate that there is a When an SIB is updated, receive SIB1, where the SIB1 is the SIB that carries the first maximum number of MIMO layers;
  • the receiving module 1220 is configured to receive a short message of the first version, the short message carrying a system information change indication; the system information change indication is used to indicate that there is a In the case that an SIB is updated, receive SIB1, and the value tag corresponding to SIB X in the SIB1 is used to indicate that the SIB X is updated, and the SIB X is the SIB that carries the first maximum number of MIMO layers;
  • the receiving module 1220 is configured to receive a short message of the second version, the short message carries a maximum MIMO layer number change indication, and the maximum MIMO layer number change indication is used to indicate that the system Whether the first maximum number of MIMO layers in the information has been updated;
  • the change indication of the maximum number of MIMO layers in the short message of the second version corresponds to a reserved bit in the short message of the first version.
  • the determining module 1240 is configured to determine the maximum number of MIMO layers used in the serving cell according to the first maximum number of MIMO layers and the second maximum number of MIMO layers;
  • the second maximum number of MIMO layers is the maximum number of MIMO layers configured for the serving cell through dedicated signaling.
  • the determining module 1240 is configured to determine the smaller value of the first maximum number of MIMO layers and the second maximum number of MIMO layers as the The maximum number of MIMO layers used; or, the determination module is configured to determine the first maximum MIMO number when the first maximum number of MIMO layers is configured and the second maximum number of MIMO layers is not configured The number of layers is the maximum number of MIMO layers used in the serving cell.
  • the determining module 1240 is configured to determine the number of MIMO layers used on the target BWP in the serving cell according to the maximum number of MIMO layers and the third maximum number of MIMO layers used in the serving cell. Maximum number of MIMO layers;
  • the third maximum number of MIMO layers is the maximum number of MIMO layers configured for the target BWP through dedicated signaling.
  • the determining module 1240 is configured to determine the smaller value of the maximum number of MIMO layers used in the serving cell and the third maximum number of MIMO layers as the The maximum number of MIMO layers used on the target BWP in the serving cell; or, the determining module, configured to determine the maximum number of MIMO layers used in the serving cell when the third maximum number of MIMO layers is not configured The number of layers is determined as the maximum number of MIMO layers used on the target BWP in the serving cell.
  • the above-mentioned receiving module 1220 is also used to execute any receiving step in the above-mentioned embodiment of FIG. 8 or FIG. 9 or FIG. Receive steps.
  • the device provided in this embodiment obtains the first maximum number of MIMO layers through system information, and then determines the maximum number of MIMO layers used in the serving cell by the first maximum number of MIMO layers in the system information, which can implement
  • the batch configuration of the maximum number of MIMO layers of multiple UEs avoids the time-consuming and expensive problems of separate RRC reconfiguration processes for multiple UEs.
  • the device provided in this embodiment can guarantee that After the maximum number of MIMO layers of the access network equipment is updated, the terminal will no longer use more than the maximum number of MIMO layers supported by the network equipment, ensuring the success rate of MIMO transmission between the terminal and the access network equipment at the granularity of the serving cell.
  • the device provided in this embodiment ensures that the maximum number of MIMO layers used by the target BWP does not exceed the maximum number of MIMO layers supported by the serving cell by ensuring that there are two maximum MIMO layers at the same time, respectively corresponding to the serving cell and the target BWP. MIMO transmission success rate of terminals and access network devices at BWP granularity.
  • FIG. 13 shows a schematic structural diagram of a communication device (terminal or access network device) provided by an exemplary embodiment of the present application.
  • the communication device 1300 includes: a processor 1301, a receiver 1302, a transmitter 1303, a memory 1304 and a bus 1305.
  • the processor 1301 includes one or more processing cores, and the processor 1301 executes various functional applications and information processing by running software programs and modules.
  • the receiver 1302 and the transmitter 1303 can be implemented as a communication component, which can be a communication chip.
  • the memory 1304 is connected to the processor 1301 through the bus 1305 .
  • the memory 1304 can be used to store at least one instruction, and the processor 1301 is used to execute the at least one instruction, so as to implement various steps in the above method embodiments. For example, performing the relevant steps of the above-mentioned method for using the maximum number of MIMO layers, or performing the relevant configuration of the above-mentioned parameter configuration method.
  • volatile or non-volatile storage devices include but not limited to: magnetic disk or optical disk, electrically erasable and programmable Read Only Memory (Erasable Programmable Read Only Memory, EEPROM), Erasable Programmable Read Only Memory (Erasable Programmable Read Only Memory, EPROM), Static Random Access Memory (SRAM), Read Only Memory (Read -Only Memory, ROM), magnetic memory, flash memory, programmable read-only memory (Programmable Read-Only Memory, PROM).
  • a computer-readable storage medium stores at least one instruction, at least one program, a code set or an instruction set, the at least one instruction, the At least one program, the code set or instruction set is loaded and executed by the processor to implement the method for using the communication device to execute the above-mentioned maximum number of MIMO layers provided by the above-mentioned method embodiments, or the above-mentioned method for configuring the above-mentioned maximum number of MIMO layers.
  • a chip is also provided, the chip includes a programmable logic circuit and/or program instructions, and when the chip is run on a communication device, it is used to realize the above method of using the maximum number of MIMO layers , or, the above configuration method for the maximum number of MIMO layers.
  • a computer program product is also provided.
  • the communication device executes the method for using the above-mentioned maximum number of MIMO layers, or the above-mentioned maximum number of MIMO layers configuration method.
  • the program can be stored in a computer-readable storage medium.
  • the above-mentioned The storage medium mentioned may be a read-only memory, a magnetic disk or an optical disk, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种最大MIMO层数的配置方法、使用方法、装置、设备及存储介质,涉及无线通信领域。该方法包括:接入网设备广播系统信息,终端接收系统信息,所述系统信息包括第一最大MIMO层数;所述终端根据所述第一最大MIMO层数,确定服务小区中使用的最大MIMO层数。本申请能够在考虑基站的节能需求的情况下,降低基站的天线端口数,进而使用系统信息来对多个UE的最大MIMO层数进行更新,避免单独的RRC重配置过程耗时长且开销大的问题。

Description

最大MIMO层数的配置或使用方法、装置、设备及介质 技术领域
本申请涉及无线通信领域,特别涉及一种最大MIMO层数的配置或使用方法、装置、设备及介质。
背景技术
新空口(New Radio,NR)系统考虑了终端的节能增强。对于有节能需求的终端,基站可以参考终端建议的最大多入多出(Multiple-Input Multiple-Output,MIMO)层数。比如,通过无线资源控制(Radio Resource Control,RRC)对当前带宽部分(Band Width Part,BWP)上配置的物理下行共享信道(Physical Downlink Shared Channel,PDSCH)配置中的参数maxMIMO-Layers-r16进行重配置。
发明内容
本申请实施例提供了一种最大MIMO层数的配置方法、使用方法、装置、设备及介质,可以在考虑基站的节能增强的情况下,提供对多个终端的最大MIMO层数的配置方案。所述技术方案如下:
根据本申请的一方面,提供了一种最大MIMO层数的配置方法,所述方法包括:
接入网设备广播系统信息,所述系统信息包括第一最大MIMO层数。
根据本申请的一方面,提供了一种最大MIMO层数的使用方法,所述方法包括:
终端接收系统信息,所述系统信息包括第一最大MIMO层数;
所述终端根据所述第一最大MIMO层数,确定服务小区中使用的最大MIMO层数。
根据本申请的另一方面,提供了一种最大MIMO层数的配置装置,所述装置包括:
发送模块,用于广播系统信息,所述系统信息包括第一最大MIMO层数。
根据本申请的一方面,提供了一种最大MIMO层数的使用装置,所述装置包括:
接收模块,用于接收系统信息,所述系统信息包括第一最大MIMO层数;
确定模块,用于根据所述第一最大MIMO层数,确定服务小区中使用的最大MIMO层数。
根据本申请实施例的另一方面,提供了一种终端,所述设备包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述计算机程序以实现上述最大MIMO层数的使用方法。
根据本申请实施例的另一方面,提供了一种接入网设备,所述接入网设备包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述 计算机程序以实现上述最大MIMO层数的配置方法。
根据本申请实施例的另一方面,提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机程序,所述计算机程序用于被处理器执行,以实现上述最大MIMO层数的使用方法或最大MIMO层数的配置方法。
根据本申请实施例的另一方面,提供了一种芯片,所述芯片包括可编程逻辑电路和/或程序指令,当所述芯片在计算机设备上运行时,用于实现上述方面所述的最大MIMO层数的使用方法或最大MIMO层数的配置方法。
根据本申请的另一方面,提供了一种计算机程序产品或计算机程序,所述计算机程序产品或计算机程序包括计算机指令,所述计算机指令存储在计算机可读存储介质中,处理器从所述计算机可读存储介质读取并执行所述计算机指令,使得计算机设备执行上述方面所述的最大MIMO层数的使用方法或最大MIMO层数的配置方法。
本申请实施例提供的技术方案至少包括如下有益效果:
在考虑基站的节能增强的场景下,若升高或降低基站的天线端口数,则通过系统信息来对多个UE的最大MIMO层数进行批量配置,避免对多个UE进行单独的RRC重配置过程耗时长且开销大的问题。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请一个示例性实施例提供的网络架构的示意图;
图2是本申请一个示例性实施例提供的最大MIMO层数的配置方法的流程图;
图3是本申请一个示例性实施例提供的最大MIMO层数的配置方法的流程图;
图4是本申请一个示例性实施例提供的系统信息更新周期的示意图;
图5是本申请一个示例性实施例提供的最大MIMO层数的第一种广播方式的示意图;
图6是本申请一个示例性实施例提供的最大MIMO层数的第二种广播方式的示意图;
图7是本申请一个示例性实施例提供的最大MIMO层数的第三种广播方式的示意图;
图8是本申请一个示例性实施例提供的最大MIMO层数的使用方法的流程图;
图9是本申请一个示例性实施例提供的最大MIMO层数的使用方法的流程图;
图10是本申请一个示例性实施例提供的最大MIMO层数的使用方法的流程图;
图11本申请一个示例性实施例提供的最大MIMO层数的配置装置的框图;
图12申请一个示例性实施例提供的最大MIMO层数的使用装置的框图;
图13本申请一个示例性实施例提供的通信设备的框图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施方式作进一步地详细描述。
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本申请相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本申请的一些方面相一致的装置和方法的例子。
本申请实施例描述的网络架构以及业务场景是为了更加清楚地说明本申请实施例的技术方案,并不构成对本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
在本公开使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开。在本公开和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开可能采用术语第一、第二等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开范围的情况下,第一参数也可以被称为第二参数,类似地,第二参数也可以被称为第一参数。取决于语境,如在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”。
图1示出了本申请一个实施例提供的通信系统100的架构示意图。该通信系统100可以包括:终端10、接入网设备20和核心网设备30。
终端10可以指UE(User Equipment,用户设备)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、无线通信设备、用户代理或用户装置。可选地,终端还可以是蜂窝电话、无绳电话、SIP(Session Initiation Protocol,会话启动协议)电话、WLL(Wireless Local Loop,无线本地环路)站、PDA(Personal Digita1 Assistant,个人数字处理)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,5GS中的终端或者未来演进的PLMN(Pub1ic Land Mobi1e Network,公用陆地移动通信网络)中的终端等,本申请实施例对此并不限定。终端10的数量通常为多个,每一个接入网设备20所管理的小区内可以分布一个或多个终端10。在本申请中,终端10分为第一终端和第二终端两种类型。第二终端的最大发射功率大于第一终端的最大发射功率。
接入网设备20是一种部署在接入网中用于为终端10提供无线通信功能的设备。接入网设备20可以包括各种形式的宏基站,微基站,中继站,接入点等 等。在采用不同的无线接入技术的系统中,具备接入网设备功能的设备的名称可能会有所不同,例如在5G NR系统中,称为gNodeB或者gNB。随着通信技术的演进,“接入网设备”这一名称可能会变化。为方便描述,本申请实施例中,上述为终端10提供无线通信功能的装置统称为接入网设备。可选地,通过接入网设备20,终端10和核心网设备30之间可以建立通信关系。示例性地,在长期演进(Long Term Evolution,LTE)系统中,接入网设备20可以是EUTRAN(Evolved Universal Terrestrial Radio Access Network,演进的通用陆地无线网)或者EUTRAN中的一个或者多个eNodeB;在5G NR(5G New Radio)系统中,接入网设备20可以是RAN(Radio Access Network,无线接入网)或者RAN中的一个或者多个gNB。
核心网设备30的功能主要是提供用户连接、对用户的管理以及对业务完成承载,作为承载网络提供到外部网络的接口。例如,5G NR系统中的核心网设备可以包括AMF实体、UPF(User Plane Function,用户平面功能)实体和SMF(Session Management Function,会话管理功能)实体等设备。
在一个示例中,接入网设备20与核心网设备30之间通过某种空中技术相互通信,例如5G NR系统中的NG接口。接入网设备20与终端10之间通过某种空中技术互相通信,例如Uu接口。
图2示出了本申请一个示例性实施例提供的最大MIMO层数的配置方法的流程图。本实施例以该方法由接入网设备执行来举例说明。该方法包括:
步骤202:接入网设备广播系统信息(System Information,SI),系统信息包括第一最大MIMO层数。
以接入网设备为基站为例,在考虑基站的节能情况下,降低基站的天线端口数能够达到节能的目的。但是更改基站的天线端口数,会影响到处于连接态的终端的最大MIMO层数。若采用RRC重配置各个终端的最大MIMO层数,或使用下行控制信息(Downlink Controllnformation,DCI)来控制各个终端进行BWP切换,则会带来巨大开销,且耗时很长。
在本实施例中,在接入网设备的天线端口数发生变更的情况下,接入网设备广播系统信息,系统信息包括第一最大MIMO层数。
可选地,接入网设备根据(自身的)节能情况,设置第一最大MIMO层数。比如,在需要节能的情况下,根据降低后的天线端口数设置第一最大MIMO层数;又比如,在不需要节能的情况下,根据升高后的天线端口数设置第一最大MIMO层数。
示例性的,接入网设备在服务小区内的多个终端的平均速率小于阈值的情况下,将接入网设备侧的天线端口数从第一数量降低为第二数量;根据第二数量的天线端口数设置服务小区支持的第一最大MIMO层数;接入网设备在服务小区内的多个终端的平均速率大于阈值的情况下,将接入网设备侧的天线端口数从第二数量升高为第一数量;根据第一数量的天线端口数设置服务小区支持的第一最大MIMO层数。
该第一最大MIMO层数是提供给服务小区中的多个终端的。示意性,该第一最大MIMO层数是提供给服务小区中处于连接态的多个终端或全部终端的。
其中,连接态是终端的RRC状态中的一种。示意性的,终端的RRC状态包括三个:休眠态(RRC_IDLE)、连接态(RRC_CONNECTED)、非激活态(RRC_INACTIVE)。
其中,第一最大MIMO层数包括:第一下行最大MIMO层数;和/或,第一上行最大MIMO层数。
示意性的,系统信息包括多个系统信息块(System Information Block,SIB),比如SIB1至SIB14。第一最大MIMO层数携带在目标SIB中,目标SIB可以是SIB1或SIB X,X为大于1的整数。
综上所述,本实施例提供的方法,在考虑基站的节能增强的场景下,若升高或降低基站的天线端口数,则通过系统信息来对多个UE的最大MIMO层数进行批量配置,避免对多个UE进行单独的RRC重配置过程耗时长且开销大的问题。
图3示出了本申请一个示例性实施例提供的最大MIMO层数的配置方法的流程图。本实施例以该方法由接入网设备执行来举例说明。该方法包括:
步骤201:接入网设备发送变更指示;
接入网设备向各个(处于连接态的)终端发送变更指示,该变更指示用于指示系统信息中的第一最大MIMO层数是否已更新。第一最大MIMO层数是服务小区当前支持的最大MIMO层数。
步骤202:接入网设备广播系统信息,系统信息包括第一最大MIMO层数。
在该变更指示用于指示最大MIMO层数已更新的情况下,接入网设备广播系统信息,系统信息包括第一最大MIMO层数。
在相关技术中使用了系统信息更新周期的概念。如图4所示,当接入网设备要更新系统信息时,接入网设备先在第n个系统信息更新周期内重复发送系统信息变更指示(图中的黑块),接着在第n+1个系统信息更新周期内重复发送更新后的系统信息(图中的斜线块)。系统信息更新周期的边界定义为满足SFN mod m=0的SFN,其中,SFN是系统帧号,m为一个系统信息更新周期包含的SFN个数。示意性的,m=modificationPeriodCoeff*defaultPagingCycle。
其中,modificationPeriodCoeff和defaultPagingCycle分别为系统信息更新周期系数和默认寻呼中周期,这2个参数都是通过接入网设备的广播确定。
其中,系统信息变更指示携带在短消息(Short Message)中。示意性的,系统信息包括多个系统信息块(System Information Block,SIB),比如SIB1至SIB14。系统信息更新周期适用于除了SIB6、SIB7、SIB8,以及定位辅助数据以外的系统信息的更新。也即:
如果短消息中的系统信息变更指示(systemInfoModification)取值为1,表示对于除了SIB6/SIB7/SIB8之外的其他系统信息要进行更新,则终端在下一个系统信息更新周期获取更新后的系统信息。
基于图4示出的系统信息更新周期,本实施例存在至少两种不同的实现方 式:
第一种方式(传统变更指示):
接入网设备发送短消息以及目标SIB,短消息携带有系统信息变更指示,系统信息变更指示用于指示系统信息中存在有SIB发生更新;目标SIB是携带有第一最大MIMO层数的SIB。
以目标SIB是SIB1为例,以接入网设备发送第一版本的短消息以及SIB1,短消息携带有系统信息变更指示,系统信息变更指示用于指示系统信息中存在有SIB发生更新;SIB1是携带有第一最大MIMO层数的SIB。
第一版本的短消息也称传统版本的短消息,比如R16版本的通信协议所定义的短消息。该短消息携带有系统信息变更指示。当系统信息变更指示的取值为1时,代表存在系统信息发生了更新;当系统信息变更指示的取值为0时,代表系统信息未发生更新。
出于节能考虑,若接入网设备当前支持的天线端口数发生改变,比如部分天线端口进入不活跃状态,接入网设备生成最新的第一最大MIMO层数。
如图5所示,接入网设备在系统信息更新周期n发送第一版本的短消息,该短消息中的系统信息变更指示为1,代表存在SIB发生更新。接入网设备在系统信息更新周期n+1发送SIB1,该SIB1中携带有最新的第一最大MIMO层数。
以目标SIB是SIB X为例,接入网设备发送第一版本的短消息以及SIB1和SIBx,短消息携带有系统信息变更指示,系统信息变更指示用于指示系统信息中存在有SIB发生更新;SIB1中与SIB X对应的值标签(Value Tag)用于指示SIB X发生更新,SIB X是携带有第一最大MIMO层数的SIB。X是大于1的整数,比如X=2或3或4或5,本实施例不限定X的任意可能取值。
相比于第一种方式,第一最大MIMO层数携带在SIB X,而非SIB1。
如图6所示,接入网设备在系统信息更新周期n发送第一版本的短消息,该短消息中的系统信息变更指示为1,代表存在SIB发生更新。接入网设备在系统信息更新周期n+1发送SIB1和SIBX。在SIB1中携带有与不同SIB对应的值标签。比如与SIB2对应的值标签,用于指示SIB2是否发生更新;与SIB3对应的值标签,用于指示SIB3是否发生更新;与SIB4对应的值标签,用于指示SIB4是否发生更新。
其中,与SIB X对应的值标签指示了SIBX发生更新,SIB X是携带有第一最大MIMO层数的SIB。
第二种方式(改进的变更指示):
接入网设备发送短消息和目标SIB,短消息携带有最大MIMO层数变更指示。目标SIB中携带有第一最大MIMO层数。目标SIB是SIB1或SIB X。
例如,接入网设备发送第二版本的短消息,短消息携带有最大MIMO层数变更指示,最大MIMO层数变更指示用于指示系统信息中的第一最大MIMO层数是否已更新;
第二版本的短消息也称新版本的短消息,是基于第一版本的短消息进行更新后的比如R17版本的通信协议所定义的短消息。该短消息携带有最大MIMO层数变更指示。该最大MIMO层数变更指示是复用第一版本的短消息中的预留比特得到的。也即,第二版本的短消息中的最大MIMO层数变更指示对应第一 版本的短消息中的预留比特。
如图7所示,接入网设备在系统信息更新周期n发送第二版本的短消息,该短消息中的最大MIMO层数变更指示为1,代表携带有第一最大MIMO层数的目标SIB发生更新。由于SIB在同一个系统信息更新周期n中是重复发送的,因此接入网设备在系统信息更新周期n中后续发送的目标SIB中携带最新的第一最大MIMO层数。这样,终端在系统信息更新周期n中重新读取目标SIB,即可获取到最新的第一最大MIMO层数。可选地,该目标SIB是SIB1或SIB X均可。
综上所述,本实施例提供的方法,接入网设备通过先广播发送变更指示,再广播携带有第一最大MIMO层数的SIB,能够触发终端及时获取更新后的第一最大MIMO层数,保持信息获取的及时性。
本实施例提供的方法,通过上述第一种方式和第二种方式,能够尽量沿用相关技术中的系统信息变更指示,无需对系统信息变更指示进行改进即可实现第一最大MIMO层数的变更通知,因此能够减少对通信协议的修改,提高对使用传统通信协议的终端的兼容性。
本实施例提供的方法,通过上述第三种方式,使用相关技术中的短消息的预留比特来实现第一最大MIMO层数的变更通知,能够在同一个系统信息更新周期n中完成第一最大MIMO层数的下发或通知,进一步缩短了对多个终端下发第一最大MIMO层数时的耗时,保持信息获取的及时性。
图8示出了本申请一个示例性实施例提供的最大MIMO层数的使用方法的流程图。本实施例以该方法由终端执行来举例说明。该方法包括:
步骤402:终端接收系统信息,系统信息包括第一最大MIMO层数;
处于连接态的终端接收接入网设备广播的系统信息,系统信息包括第一最大MIMO层数。示意性的,系统信息包括多个SIB,比如SIB1至SIB14。第一最大MIMO层数携带在目标SIB中,目标SIB可以是SIB1或SIB X,X为大于1的整数。
该第一最大MIMO层数是服务小区当前支持的最大MIMO层数。该第一最大MIMO层数是提供给服务小区中的多个终端的。示意性,该第一最大MIMO层数是提供给服务小区中处于连接态的多个终端或全部终端的。
其中,第一最大MIMO层数包括:第一下行最大MIMO层数;和/或,第一上行最大MIMO层数。
步骤404:终端根据第一最大MIMO层数,确定服务小区中使用的最大MIMO层数。
综上所述,本实施例提供的方法,终端通过系统信息来获取第一最大MIMO层数,进而系统信息中的第一最大MIMO层数来确定服务小区中使用的最大MIMO层数,能够实现对多个UE的最大MIMO层数的批量配置,避免对多个UE进行单独的RRC重配置过程耗时长且开销大的问题。
图9示出了本申请一个示例性实施例提供的最大MIMO层数的使用方法的流程图。本实施例以该方法由终端执行来举例说明。该方法包括:
步骤400:终端接收变更指示;
该变更指示用于指示系统信息中的第一最大MIMO层数是否已更新。第一最大MIMO层数是服务小区当前支持的最大MIMO层数。
步骤402:终端接收系统信息,系统信息包括第一最大MIMO层数;
在变更指示用于指示最大MIMO层数已更新的情况下,处于连接态的终端接收接入网设备广播的系统信息,系统信息包括第一最大MIMO层数。示意性的,系统信息包括多个SIB,比如SIB1至SIB14。第一最大MIMO层数携带在目标SIB中,目标SIB可以是SIB1或SIB X,X为大于1的整数。
基于图4示出的系统信息更新周期,本实施例存在至少两种不同的实现方式:
第一种方式:(传统变更指示):
终端接收短消息,短消息携带有系统信息变更指示;在系统信息变更指示用于指示系统信息中存在有SIB发生更新的情况下,接收目标SIB,目标SIB是携带有所述第一最大MIMO层数的SIB。
以目标SIB是SIB1为例,终端接收第一版本的短消息以及SIB1,短消息携带有系统信息变更指示,系统信息变更指示用于指示系统信息中存在有SIB发生更新;SIB1是携带有第一最大MIMO层数的SIB。
第一版本的短消息也称传统版本的短消息,比如R16版本的通信协议所定义的短消息。该短消息携带有系统信息变更指示。当系统信息变更指示的取值为1时,代表存在系统信息发生了更新;当系统信息变更指示的取值为0时,代表系统信息未发生更新。
如图5所示,终端在系统信息更新周期n接收第一版本的短消息,该短消息中的系统信息变更指示为1,代表存在SIB发生更新。终端在系统信息更新周期n+1接收SIB1,该SIB1中携带有最新的第一最大MIMO层数。
以目标SIB是SIB X为例,终端接收第一版本的短消息,所述短消息携带有系统信息变更指示;在所述系统信息变更指示用于指示系统信息中存在有SIB发生更新的情况下,终端接收SIB1,SIB1中与SIB X对应的值标签用于指示SIB X发生更新,SIB X是携带有第一最大MIMO层数的SIB。X是大于1的整数,比如X=2或3或4或5,本实施例不限定X的任意可能取值。
相比于第一种方式,第一最大MIMO层数携带在SIB X,而非SIB1。
如图6所示,终端在系统信息更新周期n接收第一版本的短消息,该短消息中的系统信息变更指示为1,代表存在SIB发生更新。终端在系统信息更新周期n+1先接收SIB1。在SIB1中携带有与不同SIB对应的值标签。比如与SIB2对应的值标签,用于指示SIB2是否发生更新;与SIB3对应的值标签,用于指示SIB3是否发生更新;与SIB4对应的值标签,用于指示SIB4是否发生更新。
在与SIB X对应的值标签指示了SIBX发生更新的情况下,终端在系统信息更新周期接收SIB X,SIB X是携带有第一最大MIMO层数的SIB。
第二种方式(改进的变更指示):
终端接收短消息,短消息携带有系统信息变更指示;在系统信息变更指示用于指示系统信息中存在有SIB发生更新的情况下,接收目标SIB,目标SIB是携带有第一最大MIMO层数的SIB。
例如:终端接收第二版本的短消息,短消息携带有最大MIMO层数变更指示,最大MIMO层数变更指示用于指示系统信息中的第一最大MIMO层数是否已更新。
第二版本的短消息也称新版本的短消息,是基于第一版本的短消息进行更新后的比如R17版本以及后续版本的通信协议所定义的短消息。该短消息携带有最大MIMO层数变更指示。该最大MIMO层数变更指示是复用第一版本的短消息中的预留比特得到的。也即,第二版本的短消息中的最大MIMO层数变更指示对应第一版本的短消息中的预留比特。
如图7所示,终端在系统信息更新周期n接收第二版本的短消息,该短消息中的最大MIMO层数变更指示为1,代表携带有第一最大MIMO层数的目标SIB发生更新。由于SIB在同一个系统信息更新周期n中是重复发送的,因此在系统信息更新周期n中后续发送的目标SIB中携带最新的第一最大MIMO层数。这样,终端在系统信息更新周期n中重新读取目标SIB,即可获取到最新的第一最大MIMO层数。可选地,该目标SIB是SIB1或SIB X均可。
步骤404:终端根据第一最大MIMO层数,确定服务小区中使用的最大MIMO层数。
综上所述,本实施例提供的方法,接入网设备通过先广播发送变更指示,再广播携带有第一最大MIMO层数的SIB,能够触发终端及时获取更新后的第一最大MIMO层数,保持信息获取的及时性。
本实施例提供的方法,通过上述第一种方式和第二种方式,能够尽量沿用相关技术中的系统信息变更指示,无需对系统信息变更指示进行改进即可实现第一最大MIMO层数的变更通知,因此能够减少对通信协议的修改,提高对使用传统通信协议的终端的兼容性。
本实施例提供的方法,通过上述第三种方式,使用相关技术中的短消息的预留比特来实现第一最大MIMO层数的变更通知,能够在同一个系统信息更新周期n中完成第一最大MIMO层数的下发或通知,进一步缩短了对多个终端下发第一最大MIMO层数时的耗时,保持信息获取的及时性。
图10示出了本申请一个示例性实施例提供的最大MIMO层数的使用方法的流程图。本实施例以该方法由终端执行来举例说明。该方法包括:
步骤402:终端接收系统信息,系统信息包括第一最大MIMO层数;
终端接收系统信息的过程,可以参考图8中的步骤402,或图9中的步骤400至402所示,不再赘述。
步骤404:终端根据第一最大MIMO层数和第二最大MIMO层数,确定服务小区中使用的最大MIMO层数;
其中,第二最大MIMO层数是通过专有信令为服务小区配置的最大MIMO层数。专有信令是指以终端或终端组为粒度进行配置的信令,专有信令可以是RRC或DCI。通常情况下,该第二最大MIMO层数是在步骤402之前,由接入网设备通过RRC专有信令向终端配置的。
在该情况下,终端会同时有两个最大MIMO层数,分别来自专有信令和系统信息。本步骤可实现成为如下两个步骤中的任意一种:
·将第一最大MIMO层数和第二最大MIMO层数中的较小值,确定为服务小区中使用的最大MIMO层数;
·在配置有第一最大MIMO层数且未配置有第二最大MIMO层数的情况下,确定第一最大MIMO层数为服务小区中使用的最大MIMO层数。
显然,在未配置有第一最大MIMO层数且配置有第二最大MIMO层数的情况下,确定第二最大MIMO层数为服务小区中使用的最大MIMO层数。
步骤406:终端根据服务小区中使用的最大MIMO层数和第三最大MIMO层数,确定服务小区中目标BWP上使用的最大MIMO层数。
本步骤为可选步骤。由于最大MIMO层数是与BWP有关的,终端可能还被配置有针对目标BWP的第三最大MIMO层数。
第三最大MIMO层数是通过专有信令为目标BWP配置的最大MIMO层数。专有信令是指以终端或终端组为粒度进行配置的信令,专有信令可以是RRC或DCI。通常情况下,该第三最大MIMO层数是在步骤406之前,由接入网设备通过RRC专有信令向终端配置的。
在该情况下,终端会同时有两个最大MIMO层数,分别对应服务小区(由步骤404确定)和目标BWP。本步骤可实现成为如下两个步骤中的任意一种:
·将服务小区中使用的最大MIMO层数和第三最大MIMO层数中的较小值,确定为服务小区中目标BWP上使用的最大MIMO层数;
·在未配置有第三最大MIMO层数的情况下,将服务小区中使用的最大MIMO层数,确定为服务小区中目标BWP上使用的最大MIMO层数。
综上所述,本实施例提供的方法,在终端同时有两个最大MIMO层数,分别来自专有信令和系统信息的情况下,使用第一最大MIMO层数和第二最大MIMO层数的最小值可以保证接入网设备的最大MIMO层数更新后,终端不再使用超过网络设备支持的最大MIMO层数,保证终端和接入网设备在服务小区粒度上的MIMO传输成功率。
同理,在终端同时有两个最大MIMO层数,分别对应服务小区和目标BWP的情况下,保证目标BWP使用的最大MIMO层数不超过服务小区支持的最大MIMO层数,保证终端和接入网设备在BWP粒度上的MIMO传输成功率。
图11示出了本申请一个示例性实施例提供的最大MIMO层数的配置装置的框图。所述装置包括:
发送模块1120,用于广播系统信息,所述系统信息包括第一最大MIMO层数。
设置模块1140,用于根据节能情况设置所述第一最大MIMO层数。
在本实施例的一个可选设计中,设置模块1140,用于在服务小区内的多个终端的平均速率小于阈值的情况下,将接入网设备侧的天线端口数从第一数量降低为第二数量;根据第二数量的天线端口数设置服务小区支持的第一最大MIMO层数;设置模块1140,用于在服务小区内的多个终端的平均速率大于阈值的情况下,将接入网设备侧的天线端口数从第二数量升高为第一数量;根据第一数量的天线端口数设置服务小区支持的第一最大MIMO层数。
在本实施例的一个可选设计中,所述第一最大MIMO层数包括:第一下行 最大MIMO层数;和/或,第一上行最大MIMO层数。
在本实施例的一个可选设计中,所述发送模块1120,还用于发送变更指示,所述变更指示用于指示所述系统信息中的所述第一最大MIMO层数是否已更新。
在本实施例的一个可选设计中,所述发送模块1120,还用于发送短消息以及目标SIB,所述短消息携带有系统信息变更指示,所述系统信息变更指示用于指示所述系统信息中存在有SIB发生更新;所述目标SIB是携带有所述第一最大MIMO层数的SIB。
在本实施例的一个可选设计中,所述发送模块1120,还用于发送短消息以及目标SIB,所述短消息携带有最大MIMO层数变更指示,所述最大MIMO层数变更指示用于指示所述系统信息中所述第一最大MIMO层数是否已更新。
在本实施例的一个可选设计中,所述第一最大MIMO层数的广播方式可以采用如下三种方式中的任意一种:
在第一种方式中,所述发送模块1120,用于发送第一版本的短消息以及SIB1,所述短消息携带有系统信息变更指示,所述系统信息变更指示用于指示所述系统信息中存在有SIB发生更新;所述SIB1是携带有所述第一最大MIMO层数的SIB;
在第二种方式中,所述发送模块1120,用于发送第一版本的短消息以及SIB1和SIBx,所述短消息携带有系统信息变更指示,所述系统信息变更指示用于指示所述系统信息中存在有SIB发生更新;所述SIB1中与所述SIB X对应的值标签用于指示所述SIB X发生更新,所述SIB X是携带有所述第一最大MIMO层数的SIB;
在第三种方式中,所述发送模块1120,用于发送第二版本的短消息,所述短消息携带有最大MIMO层数变更指示,所述最大MIMO层数变更指示用于指示所述系统信息中的所述第一最大MIMO层数是否已更新;
其中,所述第二版本的短消息中的所述最大MIMO层数变更指示对应所述第一版本的短消息中的预留比特。
其中,上述发送模块1120还用于执行上述图2和图3实施例中的任意发送步骤,上述设置模块1140还用于执行上述图2和图3实施例中的任意非发送步骤。
综上所述,本实施例提供的装置,通过先广播发送变更指示,再广播携带有第一最大MIMO层数的SIB,能够触发终端及时获取更新后的第一最大MIMO层数,保持信息获取的及时性。
本实施例提供的装置,通过上述第一种方式和第二种方式,能够尽量沿用相关技术中的系统信息变更指示,无需对系统信息变更指示进行改进即可实现第一最大MIMO层数的变更通知,因此能够减少对通信协议的修改,提高对使用传统通信协议的终端的兼容性。
本实施例提供的装置,通过上述第三种方式,使用相关技术中的短消息的预留比特来实现第一最大MIMO层数的变更通知,能够在同一个系统信息更新周期n中完成第一最大MIMO层数的下发或通知,进一步缩短了对多个终端下发第一最大MIMO层数时的耗时,保持信息获取的及时性。
图12示出了本申请一个示例性实施例提供的最大MIMO层数的使用装置的框图。所述装置包括:
接收模块1220,用于接收系统信息,所述系统信息包括第一最大MIMO层数;
确定模块1240,用于根据所述第一最大MIMO层数,确定服务小区中使用的最大MIMO层数。
在本实施例的一个可选设计中,所述第一最大MIMO层数包括:第一下行最大MIMO层数;和/或,第一上行最大MIMO层数。
在本实施例的一个可选设计中,所述接收模块1220,用于接收变更指示,所述变更指示用于指示所述系统信息中的所述第一最大MIMO层数是否已更新。
在本实施例的一个可选设计中,所述接收模块1220,用于接收短消息,所述短消息携带有系统信息变更指示;在所述系统信息变更指示用于指示所述系统信息中存在有系统信息块SIB发生更新的情况下,接收所述目标SIB,所述目标SIB是携带有所述第一最大MIMO层数的SIB。
在本实施例的一个可选设计中,所述接收模块1220,用于接收短消息,所述短消息携带有最大MIMO层数变更指示,所述最大MIMO层数变更指示用于指示所述系统信息中的所述第一最大MIMO层数是否已更新。
在本实施例的一个可选设计中,所述第一最大MIMO层数的广播接收方式可以采用如下三种方式中的任意一种:
在第一种方式中,所述接收模块1220,用于接收第一版本的短消息,所述短消息携带有系统信息变更指示;在所述系统信息变更指示用于指示所述系统信息中存在有SIB发生更新的情况下,接收SIB1,所述SIB1是携带有所述第一最大MIMO层数的SIB;
在第二种方式中,所述接收模块1220,用于接收第一版本的短消息,所述短消息携带有系统信息变更指示;在所述系统信息变更指示用于指示所述系统信息中存在有SIB发生更新的情况下,接收SIB1,所述SIB1中与SIB X对应的值标签用于指示所述SIB X发生更新,所述SIB X是携带有所述第一最大MIMO层数的SIB;
在第三种方式中,所述接收模块1220,用于接收第二版本的短消息,所述短消息携带有最大MIMO层数变更指示,所述最大MIMO层数变更指示用于指示所述系统信息中的所述第一最大MIMO层数是否已更新;
其中,所述第二版本的短消息中的所述最大MIMO层数变更指示对应所述第一版本的短消息中的预留比特。
在本实施例的一个可选设计中,所述确定模块1240,用于根据所述第一最大MIMO层数和第二最大MIMO层数,确定所述服务小区中使用的最大MIMO层数;
其中,所述第二最大MIMO层数是通过专有信令为服务小区配置的最大MIMO层数。
在本实施例的一个可选设计中,所述确定模块1240,用于将所述第一最大 MIMO层数和所述第二最大MIMO层数中的较小值,确定为所述服务小区中使用的最大MIMO层数;或,所述确定模块,用于在配置有所述第一最大MIMO层数且未配置有所述第二最大MIMO层数的情况下,确定所述第一最大MIMO层数为所述服务小区中使用的最大MIMO层数。
在本实施例的一个可选设计中,所述确定模块1240,用于根据所述服务小区中使用的最大MIMO层数和第三最大MIMO层数,确定所述服务小区中目标BWP上使用的最大MIMO层数;
其中,所述第三最大MIMO层数是通过专有信令为所述目标BWP配置的最大MIMO层数。
在本实施例的一个可选设计中,所述确定模块1240,用于将所述服务小区中使用的最大MIMO层数和所述第三最大MIMO层数中的较小值,确定为所述服务小区中所述目标BWP上使用的最大MIMO层数;或,所述确定模块,用于在未配置有所述第三最大MIMO层数的情况下,确定所述服务小区中使用的最大MIMO层数,确定为所述服务小区中所述目标BWP上使用的最大MIMO层数。
其中,上述接收模块1220还用于执行上述图8或图9或图10实施例中的任意接收步骤,上述确定模块1240还用于执行上述图8或图9或图10实施例中的任意非接收步骤。
综上所述,本实施例提供的装置,通过系统信息来获取第一最大MIMO层数,进而系统信息中的第一最大MIMO层数来确定服务小区中使用的最大MIMO层数,能够实现对多个UE的最大MIMO层数的批量配置,避免对多个UE进行单独的RRC重配置过程耗时长且开销大的问题。
本实施例提供的装置,通过在同时有两个最大MIMO层数,分别来自专有信令和系统信息的情况下,使用第一最大MIMO层数和第二最大MIMO层数的最小值可以保证接入网设备的最大MIMO层数更新后,终端不再使用超过网络设备支持的最大MIMO层数,保证终端和接入网设备在服务小区粒度上的MIMO传输成功率。
本实施例提供的装置,通过在同时有两个最大MIMO层数,分别对应服务小区和目标BWP的情况下,保证目标BWP使用的最大MIMO层数不超过服务小区支持的最大MIMO层数,保证终端和接入网设备在BWP粒度上的MIMO传输成功率。
图13示出了本申请一个示例性实施例提供的通信设备(终端或接入网设备)的结构示意图,该通信设备1300包括:处理器1301、接收器1302、发射器1303、存储器1304和总线1305。
处理器1301包括一个或者一个以上处理核心,处理器1301通过运行软件程序以及模块,从而执行各种功能应用以及信息处理。
接收器1302和发射器1303可以实现为一个通信组件,该通信组件可以是一块通信芯片。
存储器1304通过总线1305与处理器1301相连。
存储器1304可用于存储至少一个指令,处理器1301用于执行该至少一个 指令,以实现上述方法实施例中的各个步骤。比如,执行上述最大MIMO层数的使用方法的相关步骤,或者,执行上述参数配置方法的相关配置。
此外,存储器1104可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,易失性或非易失性存储设备包括但不限于:磁盘或光盘,电可擦除可编程只读存储器(Erasable Programmable Read Only Memory,EEPROM),可擦除可编程只读存储器(Erasable Programmable Read Only Memory,EPROM),静态随时存取存储器(Static Random Access Memory,SRAM),只读存储器(Read-Only Memory,ROM),磁存储器,快闪存储器,可编程只读存储器(Programmable Read-Only Memory,PROM)。
在示例性实施例中,还提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有至少一条指令、至少一段程序、代码集或指令集,所述至少一条指令、所述至少一段程序、所述代码集或指令集由处理器加载并执行以实现上述各个方法实施例提供的由通信设备执行上述最大MIMO层数的使用方法,或者,上述最大MIMO层数的配置方法。
在示例性实施例中,还提供了一种芯片,所述芯片包括可编程逻辑电路和/或程序指令,当所述芯片在通信设备上运行时,用于实现上述最大MIMO层数的使用方法,或者,上述最大MIMO层数的配置方法。
在示例性实施例中,还提供了一种计算机程序产品,该计算机程序产品在计算机设备的处理器上运行时,使得通信设备执行上述最大MIMO层数的使用方法,或者,上述最大MIMO层数的配置方法。
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来完成,也可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘或光盘等。
以上所述仅为本申请的可选实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (42)

  1. 一种最大MIMO层数的使用方法,其特征在于,所述方法包括:
    终端接收系统信息,所述系统信息包括第一最大多入多出MIMO层数;
    所述终端根据所述第一最大MIMO层数,确定服务小区中使用的最大MIMO层数。
  2. 根据权利要求1所述的方法,其特征在于,所述第一最大MIMO层数包括:
    第一下行最大MIMO层数;
    和/或,
    第一上行最大MIMO层数。
  3. 根据权利要求2所述的方法,其特征在于,所述方法还包括:
    所述终端接收变更指示,所述变更指示用于指示所述系统信息中的所述第一最大MIMO层数是否已更新。
  4. 根据权利要求3所述的方法,其特征在于,所述终端接收变更指示,包括:
    接收短消息,所述短消息携带有系统信息变更指示;
    在所述系统信息变更指示用于指示所述系统信息中存在有系统信息块SIB发生更新的情况下,接收所述目标SIB,所述目标SIB是携带有所述第一最大MIMO层数的SIB。
  5. 根据权利要求4所述的方法,其特征在于,所述接收短消息,所述短消息携带有系统信息变更指示;在所述系统信息变更指示用于指示所述系统信息中存在有系统信息块SIB发生更新的情况下,接收所述目标SIB,包括:
    接收第一版本的短消息,所述短消息携带有系统信息变更指示;在所述系统信息变更指示用于指示所述系统信息中存在有系统信息块SIB发生更新的情况下,接收SIB1,所述SIB1是携带有所述第一最大MIMO层数的SIB;
    或,
    接收第一版本的短消息,所述短消息携带有系统信息变更指示;在所述系统信息变更指示用于指示所述系统信息中存在有SIB发生更新的情况下,接收SIB1,所述SIB1中与SIB X对应的值标签用于指示所述SIB X发生更新,所述SIB X是携带有所述第一最大MIMO层数的SIB,X为大于1的整数。
  6. 根据权利要求3所述的方法,其特征在于,所述终端接收变更指示,包括:
    接收短消息,所述短消息携带有最大MIMO层数变更指示,所述最大MIMO层数变更指示用于指示所述系统信息中的所述第一最大MIMO层数是否已更新。
  7. 根据权利要求6所述的方法,其特征在于,所述接收短消息,包括:
    接收第二版本的短消息,所述第二版本的短消息中的所述最大MIMO层数变更指示对应第一版本的短消息中的预留比特。
  8. 根据权利要求1至7任一所述的方法,其特征在于,所述终端根据所述第一最大MIMO层数,确定服务小区中使用的最大MIMO层数,包括:
    根据所述第一最大MIMO层数和第二最大MIMO层数,确定所述服务小区中使用的最大MIMO层数;
    其中,所述第二最大MIMO层数是通过专有信令为服务小区配置的最大MIMO层数。
  9. 根据权利要求8所述的方法,其特征在于,所述根据所述第一最大MIMO层数和第二最大MIMO层数,确定所述服务小区中使用的最大MIMO层数,包括:
    将所述第一最大MIMO层数和所述第二最大MIMO层数中的较小值,确定为所述服务小区中使用的最大MIMO层数;
    或,
    在配置有所述第一最大MIMO层数且未配置有所述第二最大MIMO层数的情况下,确定所述第一最大MIMO层数为所述服务小区中使用的最大MIMO层数。
  10. 根据权利要求9所述的方法,其特征在于,所述方法还包括:
    根据所述服务小区中使用的最大MIMO层数和第三最大MIMO层数,确定所述服务小区中目标带宽部分BWP上使用的最大MIMO层数;
    其中,所述第三最大MIMO层数是通过专有信令为所述目标BWP配置的最大MIMO层数。
  11. 根据权利要求10所述的方法,其特征在于,所述根据所述服务小区中使用的最大MIMO层数和所述第三最大MIMO层数,确定使用的最大MIMO层数,包括:
    将所述服务小区中使用的最大MIMO层数和所述第三最大MIMO层数中的较小值,确定为所述服务小区中所述目标BWP上使用的最大MIMO层数;
    或,
    在未配置有所述第三最大MIMO层数的情况下,将所述服务小区中使用的最大MIMO层数,确定为所述服务小区中所述目标BWP上使用的最大MIMO层数。
  12. 一种最大MIMO层数的配置方法,其特征在于,所述方法包括:
    接入网设备广播系统信息,所述系统信息包括第一最大MIMO层数。
  13. 根据权利要求12所述的方法,其特征在于,所述方法还包括:
    所述接入网设备根据节能情况设置所述第一最大MIMO层数。
  14. 根据权利要求13所述的方法,其特征在于,所述第一最大MIMO层数包括:
    第一下行最大MIMO层数;
    和/或,
    第一上行最大MIMO层数。
  15. 根据权利要求9至11任一所述的方法,其特征在于,所述方法还包括:
    所述接入网设备发送变更指示,所述变更指示用于指示所述系统信息中的所述第一最大MIMO层数是否已更新。
  16. 根据权利要求15所述的方法,其特征在于,所述接入网设备发送变更指示,包括:
    发送短消息以及目标系统信息块SIB,所述短消息携带有系统信息变更指示,所述系统信息变更指示用于指示所述系统信息中存在有SIB发生更新;所述目标SIB是携带有所述第一最大MIMO层数的SIB。
  17. 根据权利要求16所述的方法,其特征在于,所述发送短消息以及目标SIB,包括:
    发送第一版本的短消息以及系统信息块SIB1,所述SIB1是携带有所述第一最大MIMO层数的SIB;
    或,
    发送第一版本的短消息以及SIB1和SIBx;所述SIB1中与所述SIB X对应的值标签用于指示所述SIB X发生更新,所述SIB X是携带有所述第一最大MIMO层数的SIB,X为大于1的整数。
  18. 根据权利要求15所述的方法,其特征在于,所述接入网设备发送变更指示,包括:
    发送短消息,所述短消息携带有最大MIMO层数变更指示,所述最大MIMO层数变更指示用于指示所述系统信息中所述第一最大MIMO层数是否已更新。
  19. 根据权利要求18所述的方法,其特征在于,所述发送短消息,包括:
    发送第二版本的短消息,所述第二版本的短消息中的所述最大MIMO层数变更指示对应所述第一版本的短消息中的预留比特。
  20. 一种最大MIMO层数的使用装置,其特征在于,所述装置包括:
    接收模块,用于接收系统信息,所述系统信息包括第一最大MIMO层数;
    确定模块,用于根据所述第一最大MIMO层数,确定服务小区中使用的最大MIMO层数。
  21. 根据权利要求20所述的装置,其特征在于,所述第一最大MIMO层数 包括:
    第一下行最大MIMO层数;
    和/或,
    第一上行最大MIMO层数。
  22. 根据权利要求21所述的装置,其特征在于,
    所述接收模块,用于接收变更指示,所述变更指示用于指示所述系统信息中的所述第一最大MIMO层数是否已更新。
  23. 根据权利要求22所述的装置,其特征在于,
    所述接收模块,用于接收短消息,所述短消息携带有系统信息变更指示;在所述系统信息变更指示用于指示所述系统信息中存在有系统信息块SIB发生更新的情况下,接收所述目标SIB,所述目标SIB是携带有所述第一最大MIMO层数的SIB。
  24. 根据权利要求23所述的装置,其特征在于,
    所述接收模块,用于接收第一版本的短消息,所述短消息携带有系统信息变更指示;在所述系统信息变更指示用于指示所述系统信息中存在有系统信息块SIB发生更新的情况下,接收SIB1,所述SIB1是携带有所述第一最大MIMO层数的SIB;
    或,
    所述接收模块,用于接收第一版本的短消息,所述短消息携带有系统信息变更指示;在所述系统信息变更指示用于指示所述系统信息中存在有SIB发生更新的情况下,接收SIB1,所述SIB1中与SIB X对应的值标签用于指示所述SIB X发生更新,所述SIB X是携带有所述第一最大MIMO层数的SIB,X为大于1的整数。
  25. 根据权利要求22所述的装置,其特征在于,
    所述接收模块,用于接收短消息,所述短消息携带有最大MIMO层数变更指示,所述最大MIMO层数变更指示用于指示所述系统信息中的所述第一最大MIMO层数是否已更新。
  26. 根据权利要求25所述的装置,其特征在于,
    所述接收模块,用于接收第二版本的短消息,所述第二版本的短消息中的所述最大MIMO层数变更指示对应所述第一版本的短消息中的预留比特。
  27. 根据权利要求20至26任一所述的装置,其特征在于,
    所述确定模块,用于根据所述第一最大MIMO层数和第二最大MIMO层数,确定所述服务小区中使用的最大MIMO层数;
    其中,所述第二最大MIMO层数是通过专有信令为服务小区配置的最大MIMO层数。
  28. 根据权利要求18所述的装置,其特征在于,
    所述确定模块,用于将所述第一最大MIMO层数和所述第二最大MIMO层数中的较小值,确定为所述服务小区中使用的最大MIMO层数;
    或,
    所述确定模块,用于在配置有所述第一最大MIMO层数且未配置有所述第二最大MIMO层数的情况下,确定所述第一最大MIMO层数为所述服务小区中使用的最大MIMO层数。
  29. 根据权利要求28所述的装置,其特征在于,
    所述确定模块,用于根据所述服务小区中使用的最大MIMO层数和第三最大MIMO层数,确定所述服务小区中目标带宽部分BWP上使用的最大MIMO层数;
    其中,所述第三最大MIMO层数是通过专有信令为所述目标BWP配置的最大MIMO层数。
  30. 根据权利要求29所述的装置,其特征在于,
    所述确定模块,用于将所述服务小区中使用的最大MIMO层数和所述第三最大MIMO层数中的较小值,确定为所述服务小区中所述目标BWP上使用的最大MIMO层数;
    或,
    所述确定模块,用于在未配置有所述第三最大MIMO层数的情况下,确定所述服务小区中使用的最大MIMO层数,确定为所述服务小区中所述目标BWP上使用的最大MIMO层数。
  31. 一种最大MIMO层数的配置装置,其特征在于,所述装置包括:
    发送模块,用于广播系统信息,所述系统信息包括第一最大MIMO层数。
  32. 根据权利要求31所述的装置,其特征在于,所述装置还包括:
    设置模块,用于根据节能情况设置所述第一最大MIMO层数。
  33. 根据权利要求32所述的装置,其特征在于,所述第一最大MIMO层数包括:
    第一下行最大MIMO层数;
    和/或,
    第一上行最大MIMO层数。
  34. 根据权利要求31至33任一所述的装置,其特征在于,所述发送模块,还用于发送变更指示,所述变更指示用于指示所述系统信息中的所述第一最大MIMO层数是否已更新。
  35. 根据权利要求34所述的装置,其特征在于,
    所述发送模块,用于发送短消息以及目标系统信息块SIB,所述短消息携带有系统信息变更指示,所述系统信息变更指示用于指示所述系统信息中存在有SIB发生更新;所述目标SIB是携带有所述第一最大MIMO层数的SIB。
  36. 根据权利要求35所述的装置,其特征在于,
    所述发送模块,用于发送第一版本的短消息以及系统信息块SIB1;所述SIB1是携带有所述第一最大MIMO层数的SIB;
    或,
    所述发送模块,用于发送第一版本的短消息以及SIB1和SIBx,所述SIB1中与所述SIB X对应的值标签用于指示所述SIB X发生更新,所述SIB X是携带有所述第一最大MIMO层数的SIB,X为大于1的整数。
  37. 根据权利要求34所述的装置,其特征在于,
    所述发送模块,用于发送短消息,所述短消息携带有最大MIMO层数变更指示,所述最大MIMO层数变更指示用于指示所述系统信息中所述第一最大MIMO层数是否已更新。
  38. 根据权利要求37所述的装置,其特征在于,
    所述发送模块,用于发送第二版本的短消息,所述第二版本的短消息中的所述最大MIMO层数变更指示对应所述第一版本的短消息中的预留比特。
  39. 一种终端,其特征在于,所述终端包括:处理器和存储器,所述存储器中存储有至少一段程序;所述处理器,用于执行所述存储器中的所述至少一段程序以实现上述如权利要求1至11任一所述的最大MIMO层数的使用方法。
  40. 一种接入网设备,其特征在于,所述接入网设备包括:处理器和存储器,所述存储器中存储有至少一段程序;所述处理器,用于执行所述存储器中的所述至少一段程序以实现上述如权利要求12至19任一所述的最大MIMO层数的配置方法。
  41. 一种计算机可读存储介质,其特征在于,所述可读存储介质中存储有可执行指令,所述可执行指令由处理器加载并执行以实现如权利要求1至11任一所述的最大MIMO层数的配置方法,或,如权利要求12至19任一所述的最大MIMO层数的使用方法。
  42. 一种芯片,其特征在于,所述芯片包括可编程逻辑电路或程序,所述芯片用于实现如权利要求1至11任一所述的最大MIMO层数的配置方法或上述如权利要求12至19任一所述的最大MIMO层数的使用方法。
PCT/CN2021/111601 2021-08-09 2021-08-09 最大mimo层数的配置或使用方法、装置、设备及介质 WO2023015418A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180098732.7A CN117397306A (zh) 2021-08-09 2021-08-09 最大mimo层数的配置或使用方法、装置、设备及介质
PCT/CN2021/111601 WO2023015418A1 (zh) 2021-08-09 2021-08-09 最大mimo层数的配置或使用方法、装置、设备及介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/111601 WO2023015418A1 (zh) 2021-08-09 2021-08-09 最大mimo层数的配置或使用方法、装置、设备及介质

Publications (1)

Publication Number Publication Date
WO2023015418A1 true WO2023015418A1 (zh) 2023-02-16

Family

ID=85200458

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/111601 WO2023015418A1 (zh) 2021-08-09 2021-08-09 最大mimo层数的配置或使用方法、装置、设备及介质

Country Status (2)

Country Link
CN (1) CN117397306A (zh)
WO (1) WO2023015418A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107645760A (zh) * 2016-07-22 2018-01-30 夏普株式会社 基站、用户设备和相关方法
US10623070B1 (en) * 2019-04-29 2020-04-14 Sprint Spectrum L.P. Base station selection based on quantity of MIMO layers supported
WO2021064975A1 (ja) * 2019-10-03 2021-04-08 株式会社Nttドコモ ユーザ装置及び通信方法
US20210136693A1 (en) * 2019-11-05 2021-05-06 Qualcomm Incorporated Power saving in new radio multicast
US20210242913A1 (en) * 2020-01-30 2021-08-05 Qualcomm Incorporated Maximum mimo layer aware dl positioning reference signal (prs) reception

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107645760A (zh) * 2016-07-22 2018-01-30 夏普株式会社 基站、用户设备和相关方法
US10623070B1 (en) * 2019-04-29 2020-04-14 Sprint Spectrum L.P. Base station selection based on quantity of MIMO layers supported
WO2021064975A1 (ja) * 2019-10-03 2021-04-08 株式会社Nttドコモ ユーザ装置及び通信方法
US20210136693A1 (en) * 2019-11-05 2021-05-06 Qualcomm Incorporated Power saving in new radio multicast
US20210242913A1 (en) * 2020-01-30 2021-08-05 Qualcomm Incorporated Maximum mimo layer aware dl positioning reference signal (prs) reception

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MEDIATEK INC.: "CR for 38.331 for Power Savings", 3GPP DRAFT; R2-2004943, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Online; 20200601 - 20200612, 23 June 2020 (2020-06-23), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051904135 *

Also Published As

Publication number Publication date
CN117397306A (zh) 2024-01-12

Similar Documents

Publication Publication Date Title
US11212784B2 (en) Apparatus and method for combined area update and request for on-demand system information in wireless communications
US11039418B2 (en) Method for processing system message, network device, and user terminal
US10798641B2 (en) System information transmission method and apparatus
WO2023130471A1 (zh) 小区接入方法、装置、设备及可读存储介质
CN111742518B (zh) 确定或指示网络中的服务小区操作状态的方法和设备
US10764861B2 (en) Area update procedure(s) for radio system
EP4280705A1 (en) Method for sending dci, method for receiving dci, apparatus, network side device, and terminal
RU2762158C2 (ru) Способ и аппаратура для управления функциональной возможностью ue ограниченного пользования и компьютерный носитель данных
US20240049281A1 (en) Mode indication method, terminal device and network device
US11290945B2 (en) Methods, apparatus and systems for indicating a configuration of access control information in a wireless communication
WO2023015418A1 (zh) 最大mimo层数的配置或使用方法、装置、设备及介质
EP4287667A1 (en) Information indication method and apparatus, and terminal
US20230262586A1 (en) Methods and apparatuses for access control of a small size and infrequent data transmission
CN117441381A (zh) 一种通知信息变更的方法及装置、终端设备、网络设备
WO2021087916A1 (zh) 必要系统信息获取失败时的处理方法及装置
WO2023130276A1 (zh) 确定可用参考信号配置的方法、装置、设备及介质
WO2024131397A1 (zh) 一种通信方法及相关装置
WO2023206304A1 (zh) 网络节能小区的配置方法和装置
WO2024061025A1 (zh) 信息传输方法、装置及存储介质
WO2024082144A1 (en) Non-cell-defining synchronization signal related methods and apparatus
US20240040483A1 (en) Method for system broadcast message update and terminal device
WO2022151079A1 (zh) 无线通信的方法、终端设备和网络设备
WO2022061605A1 (zh) 一种资源指示方法、电子设备及存储介质
CN111510265B (zh) 一种消息发送、接收方法及装置
WO2023072014A1 (zh) 相对定位方法、电子设备、装置及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21953056

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180098732.7

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE