WO2023015415A1 - 通信方法和通信装置 - Google Patents

通信方法和通信装置 Download PDF

Info

Publication number
WO2023015415A1
WO2023015415A1 PCT/CN2021/111593 CN2021111593W WO2023015415A1 WO 2023015415 A1 WO2023015415 A1 WO 2023015415A1 CN 2021111593 W CN2021111593 W CN 2021111593W WO 2023015415 A1 WO2023015415 A1 WO 2023015415A1
Authority
WO
WIPO (PCT)
Prior art keywords
connection
tdls
identify
identifier
anqp
Prior art date
Application number
PCT/CN2021/111593
Other languages
English (en)
French (fr)
Inventor
董贤东
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to EP21953053.2A priority Critical patent/EP4387381A1/en
Priority to CN202180002320.9A priority patent/CN115956393A/zh
Priority to PCT/CN2021/111593 priority patent/WO2023015415A1/zh
Publication of WO2023015415A1 publication Critical patent/WO2023015415A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • H04W76/16Involving different core network technologies, e.g. a packet-switched [PS] bearer in combination with a circuit-switched [CS] bearer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/11Allocation or use of connection identifiers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/12Setup of transport tunnels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/14Direct-mode setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections

Definitions

  • the present disclosure relates to the field of wireless communication, and more specifically, to a communication method and a communication device under multiple connections.
  • Wi-Fi technology 320MHz bandwidth transmission, aggregation and coordination of multiple frequency bands, etc. It is expected to increase the rate and throughput by at least four times compared with the existing standards. Its main application scenarios are Video transmission, AR (Augmented Reality, augmented reality), VR (Virtual Reality, virtual reality), etc.
  • the aggregation and coordination of multiple frequency bands refers to the simultaneous communication between devices in the 2.4GHz, 5GHz, and 6GHz frequency bands.
  • a new MAC Media Access Control
  • a new MAC Media Access Control
  • the current multi-band aggregation and system technology will support a maximum bandwidth of 320MHz (160MHz+160MHz), and may also support 240MHz (160MHz+80MHz) and other bandwidths.
  • the station (STA: Station) and the access point (AP: Access Point) can be a multi-connection device (MLD: multi-link device), that is, a device that supports sending and/or receiving under multiple connections Function. Therefore, in the current technology, there may be multiple connections between the STA and the AP, and the communication between the two devices under the multiple connections is being researched.
  • MLD multi-connection device
  • a communication method applied to an initiator of Tunneled Direct Link Setup may include: determining an Access Network Query Protocol (ANQP) request under one of a plurality of connections frame, wherein the ANQP request frame includes: first TDLS capability information for the initiator to implement TDLS functions under the multiple connections; and sends the ANQP request frame.
  • ANQP Access Network Query Protocol
  • a communication method which is applied to a TDLS responder, and may include: receiving an ANQP request frame under one of a plurality of connections, wherein the ANQP request frame includes: The initiator of the responder communication realizes the first TDLS capability information of the TDLS function under the plurality of connections; and executes the communication operation based on the ANQP request frame.
  • a communication device including: a processing module configured to: determine an ANQP request frame under one connection among a plurality of connections, wherein the ANQP request frame includes: the initiator in First TDLS capability information for implementing TDLS functions under the plurality of connections; a transceiver module configured to: send the ANQP request frame.
  • a communication device including: a transceiver module configured to: receive an ANQP request frame under one connection among multiple connections, wherein the ANQP request frame includes: communicating with the responder The initiator of the communication realizes the first TDLS capability information of the TDLS function under the plurality of connections; the processing module is configured to: control the execution of the communication operation based on the ANQP request frame.
  • an electronic device includes a memory, a processor, and a computer program stored on the memory and executable on the processor.
  • the processor implements the above method when executing the computer program.
  • a computer-readable storage medium storing instructions for performing various operations.
  • a computer program is stored on the computer readable storage medium.
  • the computer program is executed by the processor, the above-mentioned method is realized.
  • FIG. 1 is an exemplary diagram illustrating a communication scenario under multi-connection according to an embodiment.
  • FIG. 2 is an exemplary diagram illustrating tunnel direct link setup (TDLS) according to an embodiment.
  • TDLS tunnel direct link setup
  • FIG. 3 is a flowchart illustrating a communication method according to an embodiment.
  • FIG. 4 is a flowchart illustrating a communication method according to an embodiment.
  • FIG. 5 is a flowchart illustrating a communication device according to an embodiment.
  • FIG. 1 is an exemplary diagram illustrating a communication scenario under multi-connection according to an embodiment.
  • a basic service set (BSS, basis service set) can be composed of an AP and one or more stations (STA) communicating with the AP.
  • a basic service set can be connected to the distribution system DS (Distribution System) through its AP, and then connected to another basic service set to form an extended service set ESS (Extended Service Set).
  • DS Distribution System
  • ESS Extended Service Set
  • An AP is a wireless switch for a wireless network and also an access device for a wireless network.
  • AP equipment can be used as a wireless base station, mainly used as a bridge for connecting wireless networks and wired networks. With this access point AP, wired and wireless networks can be integrated.
  • the AP may include software applications and/or circuitry to enable other types of nodes in the wireless network to communicate with the outside and inside of the wireless network through the AP.
  • the AP may be a terminal device or a network device equipped with a Wi-Fi (Wireless Fidelity, wireless fidelity) chip.
  • Wi-Fi Wireless Fidelity, wireless fidelity
  • stations may include, but are not limited to: cellular phones, smart phones, wearable devices, computers, personal digital assistants (PDAs), personal communication system (PCS) devices, personal information managers (PIMs), personal navigation devices (PND), GPS, multimedia devices, Internet of Things (IoT) devices, etc.
  • PDAs personal digital assistants
  • PCS personal communication system
  • PIMs personal information managers
  • PND personal navigation devices
  • GPS GPS
  • multimedia devices Internet of Things (IoT) devices, etc.
  • IoT Internet of Things
  • APs and STAs may support multi-connected devices, for example, may be denoted as AP MLD and non-AP STA MLD, respectively.
  • AP MLD multi-connected devices
  • non-AP STA MLD multi-connected devices
  • the AP MLD may represent an access point supporting the multi-connection communication function
  • the non-AP STA MLD may represent a station supporting the multi-connection communication function.
  • AP MLD can work under three connections, such as the affiliated AP1, AP2 and AP3 shown in Figure 1
  • the non-AP STA MLD can also work under three connections, as shown in Figure 1, the affiliated STA1, STA2 and STA3.
  • AP1 and STA1 communicate through the corresponding first link Link 1.
  • AP2 and AP3 communicate with STA2 and STA3 through the second link Link 2 and the third link Link 3 respectively.
  • Link 1 to Link 3 can be multiple connections at different frequencies, for example, connections at 2.4GHz, 5GHz, and 6GHz, or several connections at the same or different bandwidths at 2.4GHz, 5GHz, and 6GHz. Additionally, multiple channels can exist under each connection.
  • an AP MLD may be connected to multiple non-AP STA MLDs, or under each connection, the AP Can communicate with several other types of sites.
  • non-AP STA MLD can support tunneled direct link setup (TDLS, tunneled direct link setup) function.
  • TDLS tunneled direct link setup
  • FIG. 2 an exemplary diagram of Tunnel Direct Link Setup (TDLS) according to an embodiment is shown.
  • tunnel direct link establishment can be realized between the first multi-connection site device non-AP STA MLD 1 and the second multi-connection site device non-AP STA MLD 2, so that direct connection between them can be performed.
  • Communication for example, data transmission
  • AP MLD multi-connection access point device
  • TDLS station discovery TDLS function
  • ANQP Access network query protocol
  • a first site device non-AP STA 1 attached to one multi-connection device non-AP STA MLD 1 can act as an initiating direction to a second site device attached to another multi-connection device non-AP STA MLD 2
  • the non-AP STA 2 sends an ANQP request frame
  • the second site device non-AP STA 2 can act as a responder, returning an ANQP response frame to the first site device non-AP STA 1.
  • a channel direct link is established between them through the process of TDLS establishment.
  • the process of TDLS establishment may include: TDLS establishment request (TDLS setup request), TDLS establishment response (TDLS setup response) and TDLS establishment confirmation (TDLS setup confirm).
  • stations working in the same BSS can establish TDLS, and it is suitable for stations with a single connection to establish TDLS.
  • stations attached to the same non-AP STA MLD establish an initial association with APs attached to the same AP MLD, and different APs have different BSSs.
  • TDLS is established between stations that support multi-connection communication (for example, multi-connection station device non-AP STA MLD 1 and multi-connection station device non-AP STA MLD 2), then the mechanism in the prior art cannot meet the requirements of multi-connection needs, and therefore enhancements to existing mechanisms are required.
  • FIG. 3 is a flowchart illustrating a communication method according to an embodiment.
  • the communication method shown in FIG. 3 can be applied to the initiator of Tunnel Direct Link Setup (TDLS).
  • the initiator may be at the MLD level, that is, a station supporting multi-connection communication (for example, the non-AP STA MLD 1 shown in FIG. 2 ).
  • an ANQP request frame is determined under one connection among a plurality of connections.
  • the ANQP request frame may include: first TDLS capability information for the initiator to implement the TDLS function under multiple connections.
  • multiple connections may refer to multiple connections supported by the MLD-level initiator for communication.
  • the ANQP request frame according to the embodiment of the present disclosure may identify TDLS functions under one connection under multiple connections, that is, the first TDLS capability information is at the MLD level.
  • the first message frame may be generated according to at least one of the following conditions: network conditions, load conditions, and hardware capabilities of sending/receiving devices , business type, and related agreement provisions; this embodiment of the present disclosure does not make specific limitations.
  • the first message frame may also be acquired from an external device, which is not specifically limited in this embodiment of the present disclosure.
  • the first TDLS capability information in the ANQP request frame may include at least one of the following:
  • the first information identifier is used to identify the support capability of the initiator for the TDLS function
  • the first address identification is used to identify the MAC address of the access point multi-connection device (AP MLD) associated with the initiator;
  • the first basic service set identifier is used to identify the corresponding basic service set identifier under each connection of the access point multi-connection device (AP MLD) that establishes an associated connection with the initiator;
  • AP MLD access point multi-connection device
  • the second address identifier is used to identify the initiator as a site supporting multiple connections
  • the first connection identifier is used to identify the connection to establish the TDLS.
  • the first connection address identifier is used to identify the MAC address of the TDLS connection.
  • the first TDLS capability information may be encapsulated/carried in the ANQP request frame by means of a capability information element.
  • the ANQP request frame includes a TDLS capability ANQP information element (TDLS Capability ANQP-element), and the first TDLS capability information may be included in the TDLS capability ANQP information element.
  • the TDLS capability ANQP information element may have a format as shown in Table 1 below.
  • the "Info ID" in Table 1 can be used as an example of the first information ID in the first TDLS capability information.
  • the information identifier (the first information identifier) is set to a specific value
  • the TDLS capability (TDLS Capability) can be identified, that is, the identification information element is the TDLS capability ANQP information element.
  • the initiator's ability to support the TDLS function can be identified by setting the information identifier (first information identifier) to a specific value.
  • “Length” in Table 1 can identify the length field (Length) of the length information of the TDLS capability ANQP information element
  • Peer Information in Table 1 may include information that can be used by the initiator to establish the TDLS connection.
  • peer information may include the elements shown in Table 2 below.
  • the AP MLD MAC address can be used as an example of the above-mentioned first address identification.
  • the peer-to-peer information includes the AP MLD MAC address, it can be identified that the initiator has established an associated connection with the AP MLD corresponding to the AP MLD MAC address.
  • non-AP MLD MAC address in Table 2 can be used as an example of the above-mentioned second address identification, and is used to identify the initiator as a station supporting multiple connections.
  • the non-AP MLD MAC address of the initiator may be at the MLD level, that is, a non-AP MLD MAC address (second address identifier) may identify the MAC address of the initiator's multi-connection device.
  • the initiator's non-AP MLD MAC address may be link (connection) level, that is, the second address identifier may include the MAC address of each affiliated site of the initiator under each connection .
  • Link set/Link ID1 to Link ID m in Table 2 can be used as an example of the above-mentioned first connection identifier, and is used to identify a connection to establish a TDLS.
  • the first connection identifier may be in the form of a Link set (connection group), which may include multiple bits (for example, but not limited to, two bytes), each bit corresponds to a connection, and when the corresponding bit is set When it is a specific value (such as but not limited to "1"), it indicates that TDLS is established under this connection.
  • the first connection identifier may be in the form of a Link ID (connection identifier), which may have multiple bits, to identify combination information of the working frequency spectrum, bandwidth/channel, and/or BSSID, and the like.
  • m may identify the number of TDLS connections to be established, and m may be an integer greater than or equal to 1.
  • Table 2 may include Link ID1 to Link ID m, and each Link ID may identify the working frequency spectrum, bandwidth/channel, and/or BSSID of the corresponding TDLS connection combination information, etc.
  • Expressing the first connection identifier in the form of a Link set can simplify the information carried in the ANQP request frame and reduce the power consumption and occupied resources in communication. Expressing the first connection identifier in the form of Link ID can more clearly identify each connection that needs to establish TDLS.
  • BSSID 1 to BSSID n can be used as an example of the above-mentioned first basic service set identifier (BSSID).
  • BSSID 1 to BSSID n can respectively identify the basic service set identifier corresponding to each connection of the AP MLD that establishes an association connection with the initiator.
  • n may represent the number of associated connections established between the initiator and the AP MLD, and n may be an integer greater than or equal to 2.
  • Table 3 may include BSSID 1 to BSSID 3 , and BSSID 1 to BSSID 3 identify the basic service set identifiers of AP 1 to AP3 respectively.
  • non-AP MLD MAC address in Table 3 may be the same as the embodiment in Table 2, and for the sake of brevity, repeated descriptions are omitted here.
  • Link MAC address 1 to Link MAC address m in Table 3 can be used as an example of the first connection address identification above, and is used to identify the MAC address of the TDLS connection.
  • the initiator non-AP STA MLD 1 wants to establish TDLS under the first connection (Link 1) and the third connection (Link 3) among multiple connections
  • Table 3 may include the MAC address of STA1 and the MAC address of STA3.
  • Table 2 and Table 3 can also be transformed into the forms shown in Table 4 and Table 5 below.
  • the first TDLS capability information in the ANQP request frame may include one of the following combinations: TDLS capability+MLD MAC address (AP MLD)+MAC address under each connection; TDLS capability+MLD MAC address (AP MLD) +Link ID+MAC address under each connection; TDLS capability+BSSID (AP under different connections)+Link ID+MAC address under each connection; TDLS capability+BSSID (AP under different connections)+MAC address under each connection .
  • TDLS capability+MLD MAC address AP MLD
  • AP MLD TDLS capability+MLD MAC address
  • TDLS capability+BSSID AP under different connections
  • TDLS capability+BSSID AP under different connections
  • one of the first address identification (AP MLD MAC address) and the first basic service set identification (BSSID 1 to BSSID n) is carried in the peer-to-peer information
  • the first One of a connection identifier (Link set/Link ID1 to Link ID m) and a first connection address identifier (Link MAC address 1 to Link MAC address m) is carried in the peer-to-peer information, but not limited thereto, for example, the first The address identifier (AP MLD MAC address) and the first basic service set identifier (BSSID 1 to BSSID n) can be carried in the ANQP request frame at the same time, the first connection identifier (Link set/Link ID1 to Link ID m) and the first connection Address identification (Link MAC address 1 to Link MAC address m) can be carried in the ANQP request frame at the same time.
  • the information about the AP MLD establishing the association connection with the initiator and the information about the connection establishing the TDLS are carried in the ANQP request frame in different ways, thereby increasing the flexibility of the system.
  • the capability (Capability) in the ANQP request frame is set to TDLS;
  • the ANQP request frame may contain the value of the AP MLD MAC address, indicating that it has established an association with the AP MLD identified by the AP MLD MAC address;
  • the ANQP request frame It can contain the non-AP STA MLD MAC address to identify the station as a station that supports multiple connections.
  • the ANQP request frame can contain: Link set, which can be two bytes, if the corresponding bit is set to "1", it indicates that TDLS is established under this connection, and optionally, this connection can be included under the MAC address.
  • the present disclosure is not limited thereto, and may be implemented in other ways (for example, different information elements or other encapsulation methods) to carry the first TDLS capability information.
  • an ANQP request frame may be sent.
  • ANQP request frames can be sent under any of multiple connections.
  • the connection for sending the ANQP request frame may be the same as or different from the connection used for determining the ANQP request frame in step 310, which is not specifically limited in this disclosure.
  • the communication method shown in FIG. 3 is only exemplary, and the present disclosure is not limited thereto.
  • the communication method shown in FIG. 3 may further include: receiving an ANQP response frame, wherein the ANQP response frame may include: indicating that the responder communicating with the initiator implements TDLS under multiple connections Second TDLS capability information of the function.
  • the responder may be at the MLD level, that is, a station supporting multi-connection communication (for example, the non-AP STA MLD 2 communicating with the non-AP STA MLD 1 as the initiator shown in FIG. 2 ).
  • the second TDLS capability information in the ANQP response frame may include at least one of the following:
  • the second information identifier is used to identify the support capability of the responder for the TDLS function
  • the third address identifier is used to identify the MAC address of the access point multi-connection device that establishes an associated connection with the responder;
  • the second basic service set identifier is used to identify the corresponding basic service set identifier under each connection of the access point multi-connection device that establishes an associated connection with the responder;
  • the fourth address identifier is used to identify the multi-connection device MAC address of the responder
  • the second connection identifier is used to identify the connection to establish the TDLS.
  • the second connection address identifier is used to identify the MAC address of the TDLS connection.
  • the second TDLS capability information may be encapsulated/carried in the ANQP response frame by means of a capability information element.
  • the ANQP response frame may include a TDLS Capability ANQP information element (TDLS Capability ANQP-element), and the second TDLS capability information may be included in the TDLS Capability ANQP information element.
  • the format of the TDLS capability ANQP information element may be the same as that shown in Table 1 above.
  • the received ANQP response frame may be an update to the TDLS capability ANQP information element in the ANQP request frame.
  • the information element (Info ID) in Table 1 can be an example of the above-mentioned second information identification, and its meaning is similar to the example of the first information identification in the ANQP request frame. For simplicity, here Duplicate descriptions are omitted.
  • the peer information (Peer Information) in Table 1 may contain information related to establishing a TDLS connection of the responder.
  • peer information (Peer Information) may contain the elements shown in Table 6 below.
  • the "AP MLD MAC address" in Table 6 can be used as an example of the above-mentioned third address identification, which is used to identify the MAC address of the access point multi-connection device (AP MLD) that establishes an associated connection with the responder.
  • AP MLD access point multi-connection device
  • the third address identifier is the same as the first address identifier. That is, the AP MLD MAC address in Table 6 is the same as the AP MLD MAC address in Table 2, that is, both the initiator and the responder have established an associated connection with the same AP MLD. In this case, a TDLS connection can be established between the initiator and the responder. For example, combining Figure 1 and Figure 2, similar to the example in Figure 3, the non-AP STA MLD 2 and AP MLD as the responder can establish an associated connection under three connections (Link1 to Link3), so Table 6 can be compared with Table 2 same AP MLD MAC address.
  • non-AP MLD MAC address can be used as an example of the above fourth address identification, which is used to identify the multi-connection device MAC address of the responder.
  • the non-AP MLD MAC address of the responder may be at the MLD level, that is, a non-AP MLD MAC address (the fourth address identifier) may identify the multi-connection device MAC address of the responder , and the non-AP MLD MAC address can be used to negotiate a session key in subsequent communication operations between the two.
  • the non-AP MLD MAC address may be link (connection) level, that is, the fourth address identifier may include the MAC address of each affiliated station of the responder under each connection.
  • Link set/Link ID1 to Link ID t in Table 6 may be an example of the above-mentioned second connection identifier, which is used to identify a connection for establishing TDLS.
  • the meaning of "Link set/Link ID1 to Link ID t" in Table 6 can be similar to the meaning of "Link set/Link ID1 to Link ID n" in Table 2, except that the connection and number of established TDLS may be different. This will be described later below.
  • BSSID 1 to BSSID n can be used as an example of the above-mentioned second basic service set identifier (BSSID).
  • BSSID 1 to BSSID n can respectively identify the basic service set identifier corresponding to each connection of the AP MLD that establishes an associated connection with the responder.
  • the second basic service set identifier is the same as the first basic service set identifier. That is, BSSID 1 to BSSID n in Table 7 are the same as BSSID 1 to BSSID n in Table 3, that is, both the initiator and the responder have established an association connection with the same AP MLD. In this case, a TDLS connection can be established between the initiator and the responder.
  • the non-AP STA MLD 2 and AP MLD as the responder can establish an associated connection under three connections (Link1 to Link3), so Table 7 can include The same BSSID 1 to BSSID 3 as in Table 3, and BSSID 1 to BSSID 3 identify the basic service set identifiers of AP 1 to AP3 respectively.
  • non-AP MLD MAC address in Table 7 may be the same as the embodiment in Table 6, and for the sake of brevity, repeated descriptions are omitted here.
  • Link MAC address 1 to Link MAC address t in Table 7 may be an example of the above-mentioned second connection address identification, and is used to identify the MAC address of the connection establishing TDLS.
  • the meaning of "Link MAC address 1 to Link MAC address t" in Table 7 can be similar to the meaning of "Link MAC address 1 to Link MAC address m" in Table 3, except that the connection and number of established TDLS may be different.
  • the second connection identifier and/or the second connection address identifier can also be omitted in the ANQP response frame, thereby reducing The power consumption of transmitting these information; if it is different, if it means that the responder does not agree with the initiator to establish the TDLS connection defined in Table 2 or Table 3, and carry the information of the updated TDLS connection in the ANQP response frame.
  • Table 6 and Table 7 can also be transformed into the forms shown in Table 8 and Table 9 below.
  • one of the third address identifier (AP MLD MAC address) and the second basic service set identifier (BSSID 1 to BSSID n), and the second connection identifier (Link set/ One of Link ID1 to Link ID t) and the second connection address identification (Link MAC address 1 to Link MAC address t) is included in the peer information of the ANQP response frame, but the present disclosure is not limited thereto.
  • the third address identifier (AP MLD MAC address) and the second basic service set identifier (BSSID 1 to BSSID n), and the second connection identifier (Link set/Link ID1 to Link ID t) and the second connection address identifier ( Link MAC address 1 to Link MAC address t) can be carried in the ANQP response frame at the same time.
  • the content of the peer-to-peer information carried in the ANQP response frame may be determined according to the content shown in one of Table 2 to Table 5 or other forms of peer-to-peer information carried in the ANQP request frame.
  • the capability (Capability) in the ANQP response frame is set to TDLS;
  • the ANQP response frame may contain the value of the AP MLD address, identifying that it has established an association with the same AP MLD in the ANQP request frame;
  • the ANQP response frame MAY contain the responder's non-AP STA MLD MAC address (used for negotiating session keys).
  • the ANQP response frame may contain: Link set, which may be, for example, two bytes, if the corresponding bit is set to "1", it identifies that TDLS is established under this connection, and optionally, the ANQP response frame Can contain the MAC address under this connection.
  • the second TDLS capability information carried in the ANQP response frame is described with reference to the TDLS capability ANQP information element and the information identification and peer information included therein, the present disclosure is not limited thereto, and may be implemented in other ways (for example, different information elements or other encapsulation methods) to carry the second TDLS capability information.
  • FIG. 4 is a flowchart illustrating a communication method according to an example embodiment.
  • the communication method shown in FIG. 4 can be applied to the responder of Tunnel Direct Link Setup (TDLS).
  • the responder can communicate with the initiator, and the responder can be at the MLD level, that is, support A station for multi-connection communication (for example, non-AP STA MLD 2 shown in Figure 2).
  • an ANQP request frame is received under one of the multiple connections, wherein the ANQP request frame includes: the initiator communicating with the responder realizes the first TDLS capability of the TDLS function under multiple connections information. Multiple Connections The responder may support multiple connections for communication.
  • Examples of the ANQP request frame and the first TDLS capability information may be similar to the above descriptions with reference to FIG. 3 and Tables 1 to 5. In order to avoid redundancy, repeated descriptions are omitted here.
  • a communication operation may be performed based on the ANQP request frame.
  • the ANQP response frame may be determined based on the ANQP request frame (for example, determine the second TDLS capability information), so as to facilitate proposing TDLS under multiple connections.
  • the communication method shown in FIG. 4 may further include: sending an ANQP response frame, wherein the ANQP response frame may include: second TDLS capability information for instructing the responder to implement the TDLS function under multiple connections.
  • the ANQP response frame may be sent under any connection among multiple connections, and the connection for sending the ANQP response frame may be the same as or different from the connection for receiving the ANQP request frame.
  • Embodiments of the ANQP response frame and the second TDLS capability information may be similar to the above descriptions with reference to FIG. 3 and Tables 1 and 6 to 9. For simplicity, repeated descriptions are omitted here.
  • the communication method can discover TDLS under multiple connections under one connection, that is, the TLDS capability is at the MLD level, so that the ANQP TDLS discovery (discovery) protocol can be applied to multi-connection devices.
  • FIG. 5 is a block diagram illustrating a communication device 500 according to an embodiment of the present disclosure.
  • a communication device 500 may include a processing module 510 and a transceiving module 520 .
  • the communication device shown in FIG. 5 can be applied to the TDLS initiator (MLD level).
  • the processing module 510 may be configured to: determine the ANQP request frame under one of the multiple connections, wherein the ANQP request frame includes: first TDLS capability information for the initiator to implement the TDLS function under multiple connections ;
  • the transceiver module 520 may be configured to: send an ANQP request frame.
  • Embodiments of the ANQP request frame and the first TDLS capability information may be similar to the above descriptions with reference to FIG. 3 and Tables 1 to 5. For simplicity, repeated descriptions are omitted here.
  • the transceiver module 520 may also be configured to: receive an ANQP response frame, wherein the ANQP response frame includes: second TDLS capability information for instructing the responder communicating with the initiator to implement the TDLS function under multiple connections.
  • the ANQP response frame and the second TDLS capability information may be similar to the above descriptions with reference to FIG. 3 and Tables 1 and 6 to 9. For simplicity, repeated descriptions are omitted here.
  • the communication device shown in FIG. 5 is applied to the TDLS responder (MLD level).
  • the transceiver module 520 may be configured to: receive the ANQP request frame under one of the multiple connections, wherein the ANQP request frame includes: the initiator communicating with the responder realizes the TDLS function under multiple connections
  • the processing module 510 is further configured to: control the execution of the communication operation based on the ANQP request frame.
  • Embodiments of the ANQP request frame and the first TDLS capability information may be similar to the above descriptions with reference to FIG. 3 and Tables 1 to 5. For simplicity, repeated descriptions are omitted here.
  • the processing module 510 may determine the ANQP response frame, and control the transceiving module 520 to send the ANQP response frame, wherein the ANQP response frame may include: second TDLS capability information for instructing the responder to implement the TDLS function under multiple connections.
  • the ANQP response frame and the second TDLS capability information may be similar to the above descriptions with reference to FIG. 3 and Tables 1 and 6 to 9. For simplicity, repeated descriptions are omitted here.
  • the communication device 500 shown in FIG. 5 is only exemplary, and embodiments of the present disclosure are not limited thereto.
  • the communication device 500 may also include other modules, such as a memory module.
  • various modules in the communication device 500 may be combined into more complex modules, or may be divided into more individual modules.
  • the embodiments of the present disclosure also provide an electronic device, which includes a processor and a memory; wherein, the memory stores machine-readable instructions (may also be referred to as the “computer program”); a processor for executing machine-readable instructions to implement the methods described with reference to FIGS. 3 and 4 .
  • the memory stores machine-readable instructions (may also be referred to as the “computer program”); a processor for executing machine-readable instructions to implement the methods described with reference to FIGS. 3 and 4 .
  • Embodiments of the present disclosure also provide a computer-readable storage medium, on which a computer program is stored.
  • a computer program is stored.
  • the methods described with reference to FIG. 3 and FIG. 4 are implemented.
  • a processor may be used to implement or execute various exemplary logical blocks, modules and circuits described in conjunction with the present disclosure, for example, CPU (Central Processing Unit, central processing unit), general processing DSP (Digital Signal Processor, Data Signal Processor), ASIC (Application Specific Integrated Circuit, Application Specific Integrated Circuit), FPGA (Field Programmable Gate Array, Field Programmable Gate Array) or other programmable logic devices, transistor logic devices, hardware components or any combination thereof.
  • the processor may also be a combination that realizes computing functions, for example, a combination of one or more microprocessors, a combination of DSP and a microprocessor, and the like.
  • the memory may be, for example, ROM (Read Only Memory, Read Only Memory), RAM (Random Access Memory, Random Access Memory), EEPROM (Electrically Erasable Programmable Read Only Memory, Electrically Erasable Programmable Only Memory) read memory), CD-ROM (Compact Disc Read Only Memory, read-only disc) or other optical disc storage, optical disc storage (including compact disc, laser disc, optical disc, digital versatile disc, Blu-ray disc, etc.), magnetic disk storage medium or other magnetic A storage device, or any other medium that can be used to carry or store program code in the form of instructions or data structures and that can be accessed by a computer, but is not limited thereto.
  • ROM Read Only Memory, Read Only Memory
  • RAM Random Access Memory
  • EEPROM Electrically Erasable Programmable Only Memory
  • CD-ROM Compact Disc Read Only Memory, read-only disc
  • optical disc storage including compact disc, laser disc, optical disc, digital versatile disc, Blu-ray disc, etc.
  • magnetic disk storage medium or other magnetic A storage device or any other medium that

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供一种通信方法和通信装置。所述通信方法可以包括:在多个连接中的一个连接下确定接入网络查询协议(ANQP)请求帧,其中,所述ANQP请求帧包括:所述发起方在所述多个连接下实现TDLS功能的第一TDLS能力信息;发送所述ANQP请求帧。

Description

通信方法和通信装置 技术领域
本公开涉及无线通信领域,更具体地说,涉及一种多连接下的通信方法和通信装置。
背景技术
目前的Wi-Fi技术所研究的范围为:320MHz的带宽传输、多个频段的聚合及协同等,期望能够相对于现有的标准提高至少四倍的速率以及吞吐量,其主要的应用场景为视频传输、AR(Augmented Reality,增强现实)、VR(Virtual Reality,虚拟现实)等。
多个频段的聚合及协同是指设备间同时在2.4GHz、5GHz及6GHz等的频段下进行通信,对于设备间同时在多个频段下通信需要定义新的MAC(Media Access Control,介质访问控制)机制来进行管理。此外,还期望多频段的聚合及协同能够支持低时延传输。
目前多频段的聚合及系统技术中将支持的最大带宽为320MHz(160MHz+160MHz),此外还可能会支持240MHz(160MHz+80MHz)及其它带宽。
在目前的技术中,站点(STA:Station)和接入点(AP:Access Point)可以是多连接设备(MLD:multi-link device),即,支持在在多连接下发送和/或接收的功能。因此,在目前的技术中,STA与AP之间可以存在多个连接,并且正在对这两种设备在多连接下的通信进行研究。
发明内容
本公开的各方面将至少解决上述问题和/或缺点。本公开的各种实施例提供以下技术方案:
根据本公开的示例实施例提供一种通信方法,应用于通道直接链路建 立(TDLS)的发起方,并且可以包括:在多个连接中的一个连接下确定接入网络查询协议(ANQP)请求帧,其中,所述ANQP请求帧包括:所述发起方在所述多个连接下实现TDLS功能的第一TDLS能力信息;发送所述ANQP请求帧。
根据本公开的示例实施例提供一种通信方法,应用于TDLS的响应方,并且可以包括:在多个连接中的一个连接下接收ANQP请求帧,其中,所述ANQP请求帧包括:与所述响应方通信的发起方在所述多个连接下实现TDLS功能的第一TDLS能力信息;基于所述ANQP请求帧执行通信操作。
根据本公开的示例实施例提供一种通信装置,包括:处理模块,被配置为:在多个连接中的一个连接下确定ANQP请求帧,其中,所述ANQP请求帧包括:所述发起方在所述多个连接下实现TDLS功能的第一TDLS能力信息;收发模块,被配置为:发送所述ANQP请求帧。
根据本公开的示例实施例提供一种通信装置,包括:收发模块,被配置为:在多个连接中的一个连接下接收ANQP请求帧,其中,所述ANQP请求帧包括:与所述响应方通信的发起方在所述多个连接下实现TDLS功能的第一TDLS能力信息;处理模块,被配置为:基于所述ANQP请求帧控制通信操作的执行。
根据本公开的示例实施例提供了一种电子装置。所述电子装置包括存储器、处理器及存储在所述存储器上并在所述处理器上可运行的计算机程序。所述处理器执行所述计算机程序时实现如上所述的方法。
根据本公开的示例实施例提供了一种计算机可读存储介质。所述计算机可读存储介质上存储有计算机程序。该计算机程序被处理器执行时实现如上所述的方法。
附图说明
通过参照附图详细描述本公开的示例实施例,本公开实施例的上述以及其他特征将更加明显,其中:
图1是示出根据实施例的多连接下的通信场景的示例性示图。
图2是示出根据实施例的通道直接链路建立(TDLS)的示例性示图。
图3是示出根据实施例的通信方法的流程图。
图4是示出根据实施例的通信方法的流程图。
图5是示出根据实施例的通信装置的流程图。
具体实施方式
提供以下参照附图的描述,以帮助全面理解由所附权利要求及其等同物限定的本公开的各种实施例。本公开的各种实施例包括各种具体细节,但是这些具体细节仅被认为是示例性的。此外,为了清楚和简洁,可以省略对公知的技术、功能和构造的描述。
在本公开中使用的术语和词语不限于书面含义,而是仅被发明人所使用,以能够清楚和一致的理解本公开。因此,对于本领域技术人员而言,提供本公开的各种实施例的描述仅是为了说明的目的,而不是为了限制的目的。
应当理解,除非上下文另外清楚地指出,否则这里使用的单数形式“一”、“一个”、“所述”和“该”也可以包括复数形式。应该进一步理解的是,本公开中使用的措辞“包括”是指存在所描述的特征、整数、步骤、操作、元件和/或组件,但是并不排除存在或添加一个或多个其他特征、整数、步骤、操作、元件、组件和/或它们的组。
将理解的是,尽管术语“第一”、“第二”等在本文中可以用于描述各种元素,但是这些元素不应受这些术语的限制。这些术语仅用于将一个元素与另一个元素区分开。因此,在不脱离示例实施例的教导的情况下,下面讨论的第一元素可以被称为第二元素。
应该理解,当元件被称为“连接”或“耦接”到另一元件时,它可以直接连接或耦接到其他元件,或者也可以存在中间元件。此外,这里使用的“连接”或“耦接”可以包括无线连接或无线耦接。这里使用的术语“和/或”或者表述“……中的至少一个/至少一者”包括一个或多个相关列出的项目的任何和所有组合。
除非另外定义,这里使用的所有术语(包括技术术语和科学术语),具有与本公开所属领域中的普通技术人员的一般理解相同的意义。
图1是示出根据实施例的多连接下的通信场景的示例性示图。
在无线局域网中,一个基本服务集(BSS,basis service set)可以由AP以及与AP通信的一个或多个站点(STA)构成。一个基本服务集可以通过其AP连接到分配系统DS(Distribution System),然后再接入到另一个基本服务集,构成扩展的服务集ESS(Extended Service Set)。
AP是用于无线网络的无线交换机,也是无线网络的接入设备。AP设备可以用作无线基站,主要是用来连接无线网络及有线网络的桥接器。利用这种接入点AP,可以整合有线及无线网络。
AP可以包括软件应用和/或电路,以使无线网络中的其他类型节点可以通过AP与无线网络外部及内部进行通信。在一些示例中,作为示例,AP可以是配备有Wi-Fi(Wireless Fidelity,无线保真)芯片的终端设备或网络设备。
作为示例,站点(STA)可以包括但不限于:蜂窝电话、智能电话、可穿戴设备、计算机、个人数字助理(PDA)、个人通信系统(PCS)设备、个人信息管理器(PIM)、个人导航设备(PND)、全球定位系统、多媒体设备、物联网(IoT)设备等。
在本公开的示例实施例中,AP和STA可以支持多连接的设备,例如,可以被分别表示为AP MLD和non-AP STA MLD。为了便于描述,在下文中,主要描述一个AP与一个STA在多连接下进行通信的示例,然而,本公开的示例实施例不限于此。
在图1中,仅作为示例性的,AP MLD可以表示支持多连接通信功能的接入点,non-AP STA MLD可以表示支持多连接通信功能的站点。参照图1,AP MLD可以工作在三个连接下,如图1所示的附属AP1、AP2和AP3,non-AP STA MLD也可以工作在三个连接下,如图1所示的附属STA1、STA2和STA3。在图1的示例中,假设AP1与STA1通过对应的第一连接Link 1进行通信,类似地,AP2和AP3分别通过第二连接Link 2和第三连接Link 3与STA2和STA3进行通信。此外,Link 1至Link 3可以是不同频率下的多个连接,例如,2.4GHz、5GHz、6GHz下的连接等,或2.4GHz、5GHz、6GHz下的几个相同或不同带宽的连接。此外,在每个连接下可以存在多个信道。然而,应该理解的是,图1所示的通信场景仅是示例性的,本发明构思不限于此,例如,AP MLD可以连接到多个non-AP STA MLD,或者在每个连接下,AP可以与多个其他类型的站点进 行通信。
为了提高传输效率,non-AP STA MLD可以支持通道直接链路建立(TDLS,tunneled direct link setup)功能。如图2所示,示出了根据实施例的通道直接链路建立(TDLS)的示例性示图。
参照图2,可以在第一多连接站点设备non-AP STA MLD 1与第二多连接站点设备non-AP STA MLD 2之间实现通道直接链路建立(TDLS),从而可以在他们之间直接进行通信(例如,数据的传输),而不需要经过多连接接入点设备AP MLD。
在本公开的实施例中,对于站点发现TDLS功能,可以采用,例如但不限于,接入网络查询协议(ANQP,Access network query protocol)机制。例如,参照图2,附属于一个多连接设备non-AP STA MLD 1的第一站点设备non-AP STA 1可以作为发起方向附属于另一个多连接设备non-AP STA MLD 2的第二站点设备non-AP STA 2发送ANQP请求帧,第二站点设备non-AP STA 2可以作为响应方,向第一站点设备non-AP STA 1返回ANQP响应帧。然后,经过TDLS建立的过程在他们之间建立通道直接链路,例如,TDLS建立的过程可以包括:TDLS建立请求(TDLS setup request)、TDLS建立响应(TDLS setup response)以及TDLS建立确认(TDLS setup confirm)。
在现有技术中,工作在同一个BSS中的站点可以建立TDLS,并且适用于单连接的站点建立TDLS。然而,在多连接通信中,附属于同一个non-AP STA MLD的站点与附属于同一个AP MLD的AP建立了初始关联,并且不同的AP具有不同的BSS,如果要在如图2所示的支持多连接通信的站点(例如,多连接站点设备non-AP STA MLD 1和多连接站点设备non-AP STA MLD 2)之间建立TDLS,则现有技术中的机制不能够满足多连接的需求,因此需要对现有机制进行增强。
图3是示出根据实施例的通信方法的流程图。图3所示的通信方法可以应用于通道直接链路建立(TDLS)的发起方。根据本公开的实施例,发起方可以为MLD级的,即,支持多连接通信的站点(例如,图2所示的non-AP STA MLD 1)。
参照图3,在步骤310中,在多个连接中的一个连接下确定ANQP请求帧。根据本公开实施例,ANQP请求帧可以包括:发起方在多个连接下实现TDLS功能的第一TDLS能力信息。
在本公开的实施例中,多个连接可以指作为MLD级的发起方所支持的用于通信的多个连接。根据本公开实施例的ANQP请求帧可以在一个连接下标识多个连接下的TDLS功能,也就是说,第一TDLS能力信息是MLD级的。
在本公开的实施例中,确定第一消息帧的方式可以有很多种,例如:可以根据以下的至少一种情况来生成第一消息帧:网络情况、负载情况、发送/接收设备的硬件能力、业务类型、相关协议规定;对此本公开实施例不作具体限制。在本公开的实施例中,还可以从外部设备获取该第一消息帧,对此本公开实施例不作具体限制。
根据本公开实施例,ANQP请求帧中的第一TDLS能力信息可以包括以下至少一项:
第一信息标识,用于标识发起方对于TDLS功能的支持能力;
第一地址标识,用于标识与发起方建立关联连接的接入点多连接设备(AP MLD)的MAC地址;
第一基本服务集标识,用于标识与发起方建立关联连接的接入点多连接设备(AP MLD)在每个连接下对应的基本服务集标识;
第二地址标识,用于标识发起方为支持多连接的站点;
第一连接标识,用于标识建立TDLS的连接;或
第一连接地址标识,用于标识建立TDLS的连接的MAC地址。
根据本公开的实施例,可以通过能力信息元素的方式将第一TDLS能力信息封装/携带在ANQP请求帧中。例如但不限于,ANQP请求帧包括TDLS能力ANQP信息元素(TDLS Capability ANQP-element),并且第一TDLS能力信息可以被包括在TDLS能力ANQP信息元素中。TDLS能力ANQP信息元素可以具有如下面的表1所示的格式。
表1.TDLS能力ANQP信息元素
Figure PCTCN2021111593-appb-000001
表1中的“信息标识(Info ID)”可以作为第一TDLS能力信息中的第一信息标识的示例。当该信息标识(第一信息标识)被设置为特定值时,可以标识TDLS能力(TDLS Capability),即,标识信息元素为TDLS能力ANQP信息元素。换言之,可以通过将该信息标识(第一信息标识)设置为特定值, 来标识发起方对于TDLS功能的支持能力。
表1中的“长度(Length)”可以标识TDLS能力ANQP信息元素的长度信息的长度域(Length)
表1中的“对等信息(Peer Information)”可以包含发起方建立TDLS连接能够使用的信息。例如,对等信息(Peer Information)可以包含下面表2所示的元素。
表2.对等信息
AP MLD MAC地址 non-AP MLD MAC地址(发起方) Link set/Link ID1至Link ID m
参照表2,AP MLD MAC地址可以作为上述第一地址标识的示例,当对等信息中包括AP MLD MAC地址时,可以标识发起方与AP MLD MAC地址对应的AP MLD建立了关联连接。
表2中的“non-AP MLD MAC地址”可以作为上述第二地址标识的示例,用于标识发起方为支持多连接的站点。在本公开的一个实施例中,发起方的non-AP MLD MAC地址可以是MLD级的,即,一个non-AP MLD MAC地址(第二地址标识)可以标识发起方的多连接设备MAC地址。在本公开的另一实施例中,发起方的non-AP MLD MAC地址可以是link(连接)级的,即,第二地址标识可以包含发起方在每个连接下的各个附属站点的MAC地址。
表2中的“Link set/Link ID1至Link ID m”可以作为上述第一连接标识的示例,用于标识建立TDLS的连接。例如,第一连接标识可以是Link set(连接组)的形式,其可以包括多个比特位(例如但不限于,两个字节),每个比特位对应于一个连接,当相应比特位设置为特定值(例如但不限于“1”)时,标识在这个连接下建立TDLS。例如,第一连接标识可以是Link ID(连接标识)的形式,其可以具有多个比特位,以标识工作频谱、带宽/信道、和/或BSSID的组合信息等。m可以标识要建立TDLS的连接的数量,并且m可以是大于或等于1的整数。例如,如果需要在m个连接下建立TDLS,则可选地,表2可以包括Link ID1至Link ID m,每个Link ID可以标识相应TDLS连接的工作频谱、带宽/信道、和/或BSSID的组合信息等。
以Link set的形式表示第一连接标识,可以精简ANQP请求帧中携带的信息,降低通信中的功耗和占用的资源。以Link ID的形式表示第一连接标识,可以更清楚地标识需要建立TDLS的每个连接。
将理解,表2所示的ANQP请求帧中的对等信息仅是示例性的,本公开 不限于此,例如,表2可以变形为下面的表3所示。
表3.对等信息的变型
BSSID 1至BSSID n non-AP MLD MAC地址(发起方) Link MAC地址1至Link MAC地址m
参照3,“BSSID 1至BSSID n”可以作为上述第一基本服务集标识(BSSID)的示例。BSSID 1至BSSID n可以分别标识与发起方建立关联连接的AP MLD在每个连接下对应的基本服务集标识。n可以表示发起方与AP MLD之间建立的关联连接的数量,并且n可以是大于等于2的整数。例如,参照图1和图2的示例,假如作为发起方的non-AP STA MLD 1与AP MLD在三个连接(Link1至Link3)下建立了关联连接,则表3可以包括BSSID 1至BSSID 3,并且BSSID 1至BSSID 3分别标识AP 1至AP3的基本服务集标识。
表3中的“non-AP MLD MAC地址”可以与表2的实施例相同,为了简明,在此省略重复的描述。
表3中的“Link MAC地址1至Link MAC地址m”可以作为上述第一连接地址标识的示例,用于标识建立TDLS的连接的MAC地址。例如,参照图1和图2的示例,如果发起方(non-AP STA MLD 1)要在多个连接中的第一连接(Link 1)和第三连接(Link 3)下建立TDLS,可选地,表3可以包括STA1的MAC地址和STA3的MAC地址。
在本公开的其他实施例中,表2和表3还可以变形为下面的表4和表5所示的形式。
表4.对等信息的变型
AP MLD MAC地址 non-AP MLD MAC地址(发起方) Link MAC地址1至Link MAC地址m
表5.对等信息的变型
BSSID 1至BSSID n non-AP MLD MAC地址(发起方) Link set/Link ID1至Link ID m
将理解,表2至表5中的对等信息所包括的内容仅是示例性的,本公开不限于此,其他用于TDLS通信或多连接通信的元素也可以包括在表2至表5中,或者从表2至表5省略部分元素。例如,ANQP请求帧中的第一TDLS能力信息可以包括以下组合中的一种:TDLS能力+MLD MAC地址(AP MLD)+每个连接下的MAC地址;TDLS能力+MLD MAC地址(AP MLD)+Link ID+每个连接下的MAC地址;TDLS能力+BSSID(不同连接下AP)+Link ID+每个连接下的MAC地址;TDLS能力+BSSID(不同连接下AP)+每个 连接下的MAC地址。然而,上述组合仅是示例性的,本公开的实施例不限于此。
此外,可以理解的是表2至表5所示的每一个元素都是独立存在的,这些元素被示例性的列在同一张表格中,但是并不代表表格中的所有元素必须根据表格中所示的同时存在。因此本领域内技术人员可以理解,本公开表格中的每一个元素的取值都是一个独立的实施例。
此外,虽然在表2至表5中示出了,第一地址标识(AP MLD MAC地址)和第一基本服务集标识(BSSID 1至BSSID n)之一被携带在对等信息中,以及第一连接标识(Link set/Link ID1至Link ID m)和第一连接地址标识(Link MAC地址1至Link MAC地址m)之一被携带在对等信息中,但是不限于此,例如,第一地址标识(AP MLD MAC地址)和第一基本服务集标识(BSSID 1至BSSID n)可以同时携带在ANQP请求帧中,第一连接标识(Link set/Link ID1至Link ID m)和第一连接地址标识(Link MAC地址1至Link MAC地址m)可以同时携带在ANQP请求帧中。
在本公开的实施例中,提供了以不同的方式在ANQP请求帧中携带关于与发起方建立关联连接的AP MLD的信息以及关于与建立TDLS的连接的信息,从而可以增加系统的灵活性。
根据本公开的实施例,ANQP请求帧中的能力(Capability)设置为TDLS;ANQP请求帧可以包含AP MLD MAC地址的值,标识其与AP MLD MAC地址标识的AP MLD建立了关联;ANQP请求帧可以包含non-AP STA MLD MAC地址,标识站点为支持多连接的站点。可选地,ANQP请求帧可以包含:Link set,其可以为两个字节,如果相应的比特位设置为“1”,标识其在这个连接下建立TDLS,并且可选地,可以包含这个连接下的MAC地址。
虽然参照TDLS能力ANQP信息元素及其包括的信息标识和对等信息描述了ANQP请求帧中携带的第一TDLS能力信息,然而本公开不限于此,可以通过其他方式(例如,不同的信息元素或其他封装方式)来携带第一TDLS能力信息。
继续参照图3,在步骤320中,可以发送ANQP请求帧。可以在多个连接中的任一连接下发送ANQP请求帧。例如,发送ANQP请求帧的连接可以与步骤310中用于确定ANQP请求帧的连接相同或者不同,对此,本公开不 做具体限定。
图3所示的通信方法仅是示例性的,本公开不限于此。例如,如图2中所示,图3所示的通信方法还可以包括:接收ANQP响应帧,其中,ANQP响应帧可以包括:用于指示与发起方通信的响应方在多个连接下实现TDLS功能的第二TDLS能力信息。
根据本公开的实施例,响应方可以为MLD级的,即,支持多连接通信的站点(例如,图2所示的与作为发起方的non-AP STA MLD 1通信的non-AP STA MLD 2)。
根据本公开的实施例,ANQP响应帧中的第二TDLS能力信息可以包括以下至少一项:
第二信息标识,用于标识响应方对于TDLS功能的支持能力;
第三地址标识,用于标识与响应方建立关联连接的接入点多连接设备的MAC地址;
第二基本服务集标识,用于标识与响应方建立关联连接的接入点多连接设备在每个连接下对应的基本服务集标识;
第四地址标识,用于标识响应方的多连接设备MAC地址;
第二连接标识,用于标识建立TDLS的连接;或
第二连接地址标识,用于标识建立TDLS的连接的MAC地址。
根据本公开的实施例,可以通过能力信息元素的方式将第二TDLS能力信息封装/携带在ANQP响应帧中。例如但不限于,ANQP响应帧可以包括TDLS能力ANQP信息元素(TDLS Capability ANQP-element),并且第二TDLS能力信息可以被包括在TDLS能力ANQP信息元素中。TDLS能力ANQP信息元素的格式可以与上述表1所示的格式相同。
仅作为示例性的,接收到的ANQP响应帧可以是对ANQP请求帧中的TDLS能力ANQP信息元素的更新。
例如,在ANQP响应帧中,表1中的信息元素(Info ID)可以是上述第二信息标识的示例,并且其含义与ANQP请求帧中的第一信息标识的示例类似,为了简明,在此省略重复的描述。
例如,在ANQP响应帧中,表1中的对等信息(Peer Information)可以包含响应方的与建立TDLS连接有关的信息。在ANQP响应帧中,对等信息 (Peer Information)可以包含下面表6所示的元素。
表6.对等信息
AP MLD MAC地址 non-AP MLD MAC地址(响应方) Link set/Link ID1至Link ID t
参照表6,表6中的“AP MLD MAC地址”可以作为上述第三地址标识的示例,用于标识与响应方建立关联连接的接入点多连接设备(AP MLD)的MAC地址。
根据本公开的实施例,第三地址标识与第一地址标识相同。即,表6中的AP MLD MAC地址与表2中的AP MLD MAC地址相同,也就是说,发起方和响应方均与同一AP MLD建立了关联连接。在此情况下,可以在发起方与响应方之间建立TDLS连接。例如,结合图1和图2,类似于图3的示例,作为响应方的non-AP STA MLD 2与AP MLD可以在三个连接(Link1至Link3)下建立了关联连接,因此表6可以与表2相同的AP MLD MAC地址。
参照表6,“non-AP MLD MAC地址”可以作为上述第四地址标识的示例,用于标识响应方的多连接设备MAC地址。在本公开的一个实施例中,作为响应方的non-AP MLD MAC地址可以是MLD级的,即,一个non-AP MLD MAC地址(第四地址标识)可以标识响应方的多连接设备MAC地址,并且该non-AP MLD MAC地址可以在二者之间的后续通信操作中用于协商会话密钥。在本公开的另一实施例中,non-AP MLD MAC地址可以是link(连接)级的,即,第四地址标识可以包含响应方的在每个连接下各个附属站点的MAC地址。
表6中的“Link set/Link ID1至Link ID t”可以是上述第二连接标识的示例,其用于标识建立TDLS的连接。表6中的“Link set/Link ID1至Link ID t”的含义可以类似于表2中的“Link set/Link ID1至Link ID n”的含义,除了建立TDLS的连接及数量可能存在不同。稍后将在下文对此进行描述。
将理解,表6所示的ANQP响应帧中的对等信息仅是示例性的,本公开不限于此,例如,表6可以变形为下面的表7所示。
表7.对等信息的变型
BSSID 1至BSSID n non-AP MLD MAC地址(响应方) Link MAC地址1至Link MAC地址t
参照表7,“BSSID 1至BSSID n”可以作为上述第二基本服务集标识(BSSID)的示例。BSSID 1至BSSID n可以分别标识与响应方建立关联连接 的AP MLD在每个连接下对应的基本服务集标识。
根据本公开的实施例,第二基本服务集标识与第一基本服务集标识相同。即,表7中的BSSID 1至BSSID n与表3中的BSSID 1至BSSID n相同,也就是说,发起方和响应方均与同一AP MLD建立了关联连接。在此情况下,可以在发起方与响应方之间建立TDLS连接。例如,结合图1和图2,类似于图3的示例,作为响应方的non-AP STA MLD 2与AP MLD可以在三个连接(Link1至Link3)下建立了关联连接,因此表7可以包括与表3相同的BSSID 1至BSSID 3,并且BSSID 1至BSSID 3分别标识AP 1至AP3的基本服务集标识。
表7中的“non-AP MLD MAC地址”可以与表6的实施例相同,为了简明,在此省略重复的描述。
表7中的“Link MAC地址1至Link MAC地址t”可以是上述第二连接地址标识的示例,用于标识建立TDLS的连接的MAC地址。表7中的“Link MAC地址1至Link MAC地址t”的含义可以类似于表3中的“Link MAC地址1至Link MAC地址m”的含义,除了建立TDLS的连接及数量可能存在不同。
结合表2和表3以及表6和表7,例如,如果发起方接收到ANQP响应帧中的第二连接标识(Link set/Link ID1至Link ID t)与ANQP请求帧中的第一连接标识(Link set/Link ID1至Link ID n)相同,和/或第二连接地址标识(Link MAC地址1至Link MAC地址t)与第一连接地址标识(Link MAC地址1至Link MAC地址m)相同,则表示响应方同意发起方在表2或表3中定义的建立TDLS的连接,在此情况下,也可以在ANQP响应帧中省略第二连接标识和/或第二连接地址标识,从而减少传输这些信息的功耗;如果不同,如果表示响应方不同意发起方在表2或表3中定义的建立TDLS的连接,并且将更新的TDLS连接的信息携带在ANQP响应帧中。
在本公开的其他实施例中,表6和表7还可以变形为下面的表8和表9所示的形式。
表8.对等信息的变型
AP MLD MAC地址 non-AP MLD MAC地址(响应方) Link MAC地址1至Link MAC地址t
表9.对等信息的变型
BSSID 1至BSSID n non-AP MLD MAC地址(响应方) Link set/Link ID1至Link ID t
将理解,表6至表9中的对等信息所包括的内容仅是示例性的,本公开不限于此,其他用于TDLS通信或多连接通信的元素也可以包括在表6至表9中,或者从表6至表9省略部分元素。此外,可以理解的是表6至表9所示的每一个元素都是独立存在的,这些元素被示例性的列在同一张表格中,但是并不代表表格中的所有元素必须根据表格中所示的同时存在。因此本领域内技术人员可以理解,本公开表格中的每一个元素的取值都是一个独立的实施例。
此外,虽然在表6至表9中示出了,第三地址标识(AP MLD MAC地址)和第二基本服务集标识(BSSID 1至BSSID n)之一,以及第二连接标识(Link set/Link ID1至Link ID t)和第二连接地址标识(Link MAC地址1至Link MAC地址t)之一包括在ANQP响应帧的对等信息中,然而本公开不限于此。例如,第三地址标识(AP MLD MAC地址)和第二基本服务集标识(BSSID 1至BSSID n),以及第二连接标识(Link set/Link ID1至Link ID t)和第二连接地址标识(Link MAC地址1至Link MAC地址t)可以同时携带在ANQP响应帧中。例如,可以根据ANQP请求帧中携带的如表2至表5之一所示的内容或其他形式的对等信息,来确定ANQP响应帧中携带的对等信息的内容。
根据本公开的实施例,ANQP响应帧中的能力(Capability)设置为TDLS;ANQP响应帧可以包含AP MLD地址的值,标识其与ANQP请求帧中的同一个AP MLD建立了关联;ANQP响应帧可以包含响应方的non-AP STA MLD MAC地址(用于协商会话密钥)。可选地,ANQP响应帧可以包含:Link set,其可以为例如两个字节,如果相应的比特位设置为“1”,标识其在这个连接下建立TDLS,并且可选地,ANQP响应帧可以包含这个连接下的MAC地址。
虽然参照TDLS能力ANQP信息元素及其包括的信息标识和对等信息描述了ANQP响应帧中携带的第二TDLS能力信息,然而本公开不限于此,可以通过其他方式(例如,不同的信息元素或其他封装方式)来携带第二TDLS能力信息。
图4是示出根据示例实施例的通信方法的流程图。图4所示的通信方法可以应用于通道直接链路建立(TDLS)的响应方,根据本公开的实施例, 响应方可以与发起方进行通信,并且响应方可以为MLD级的,即,支持多连接通信的站点(例如,图2所示的non-AP STA MLD 2)。
参照图4,在步骤410中,在多个连接中的一个连接下接收ANQP请求帧,其中,ANQP请求帧包括:与响应方通信的发起方在多个连接下实现TDLS功能的第一TDLS能力信息。多个连接可以响应方支持的用于通信的多个连接。
ANQP请求帧和第一TDLS能力信息的示例可以类似于上述参照图3以及表1至表5的描述,为了避免冗余,在此省略重复的描述。
在步骤420中,可以基于ANQP请求帧执行通信操作。例如,可以基于ANQP请求帧确定ANQP响应帧(例如,确定第二TDLS能力信息),以有助于在多个连接下建议TDLS。
结合图2进行描述,图4所示的通信方法还可以包括:发送ANQP响应帧,其中,ANQP响应帧可以包括:用于指示响应方在多个连接下实现TDLS功能的第二TDLS能力信息。在本公开的实施例中,可以在多个连接中的任意连接下发送ANQP响应帧,并且发送ANQP响应帧的连接与接收ANQP请求帧的连接可以相同或者不同。ANQP响应帧和第二TDLS能力信息的实施例可以类似于上述参照图3以及表1和表6至表9的描述,为了简明,在此省略重复的描述。
根据本公开的实施例的通信方法可以在一个连接下发现多个连接下的TDLS,即,TLDS能力为MLD级的,使得ANQP TDLS发现(discovery)协议能够适用于多连接设备。
图5是示出根据本公开的实施例的通信装置500的框图。
参照图5,通信装置500可以包括处理模块510和收发模块520。
在本公开的一个实施例中,图5所示的通信装置可以应用于TDLS发起方(MLD级)。在此情况下,处理模块510可以被配置为:在多个连接中的一个连接下确定ANQP请求帧,其中,ANQP请求帧包括:发起方在多个连接下实现TDLS功能的第一TDLS能力信息;收发模块520可以被配置为:发送ANQP请求帧。ANQP请求帧和第一TDLS能力信息的实施例可以类似于上述参照图3以及表1至表5的描述,为了简明,在此省 略重复的描述。进一步地,收发模块520还可以被配置为:接收ANQP响应帧,其中,ANQP响应帧包括:用于指示与发起方通信的响应方在多个连接下实现TDLS功能的第二TDLS能力信息。ANQP响应帧和第二TDLS能力信息的实施例可以类似于上述参照图3以及表1和表6至表9的描述,为了简明,在此省略重复的描述。
在本公开的另一实施例中,图5所示的通信装置应用于TDLS响应方(MLD级)。在此情况下,收发模块520可以被配置为:在多个连接中的一个连接下接收ANQP请求帧,其中,ANQP请求帧包括:与响应方通信的发起方在多个连接下实现TDLS功能的第一TDLS能力信息;处理模块510还被配置为:基于ANQP请求帧控制通信操作的执行。ANQP请求帧和第一TDLS能力信息的实施例可以类似于上述参照图3以及表1至表5的描述,为了简明,在此省略重复的描述。进一步地,处理模块510可以确定ANQP响应帧,并且控制收发模块520发送ANQP响应帧,其中,ANQP响应帧可以包括:用于指示响应方在多个连接下实现TDLS功能的第二TDLS能力信息。ANQP响应帧和第二TDLS能力信息的实施例可以类似于上述参照图3以及表1和表6至表9的描述,为了简明,在此省略重复的描述。
此外,图5所示的通信装置500仅是示例性的,本公开的实施例不限于此,例如,通信装置500还可以包括其他模块,例如,存储器模块等。此外,通信装置500中的各个模块可以组合成更复杂的模块,或者可以划分为更多单独的模块。
基于与本公开的实施例所提供的方法相同的原理,本公开的实施例还提供了一种电子装置,该电子装置包括处理器和存储器;其中,存储器中存储有机器可读指令(也可以称为“计算机程序”);处理器,用于执行机器可读指令以实现参照图3和图4描述的方法。
本公开的实施例还提供了一种计算机可读存储介质,该计算机可读存储介质上存储有计算机程序,计算机程序被处理器执行时实现参照图3和图4描述的方法。
在示例实施例中,处理器可以是用于实现或执行结合本公开内容所描 述的各种示例性的逻辑方框、模块和电路,例如,CPU(Central Processing Unit,中央处理器)、通用处理器、DSP(Digital Signal Processor,数据信号处理器)、ASIC(Application Specific Integrated Circuit,专用集成电路)、FPGA(Field Programmable Gate Array,现场可编程门阵列)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合、DSP和微处理器的组合等。
在示例实施例中,存储器可以是,例如,ROM(Read Only Memory,只读存储器)、RAM(Random Access Memory,随机存取存储器)、EEPROM(Electrically Erasable Programmable Read Only Memory,电可擦可编程只读存储器)、CD-ROM(Compact Disc Read Only Memory,只读光盘)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的程序代码并能够由计算机存取的任何其他介质,但不限于此。
应该理解的是,虽然附图的流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,其可以以其他的顺序执行。此外,附图的流程图中的至少一部分步骤可以包括多个子步骤或者多个阶段,这些子步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,其执行顺序也不必然是依次进行,而是可以与其他步骤或者其他步骤的子步骤或者阶段的至少一部分轮流或者交替地执行。
虽然已经参照本公开的某些实施例示出和描述了本公开,但是本领域技术人员将理解,在不脱离本公开的范围的情况下,可以在形式和细节上进行各种改变。因此,本公开的范围不应被限定为受限于实施例,而是应由所附权利要求及其等同物限定。

Claims (14)

  1. 一种通信方法,应用于通道直接链路建立TDLS的发起方,包括:
    在多个连接中的一个连接下确定接入网络查询协议ANQP请求帧,其中,所述ANQP请求帧包括:所述发起方在所述多个连接下实现TDLS功能的第一TDLS能力信息;
    发送所述ANQP请求帧。
  2. 根据权利要求1所述的通信方法,其中,所述第一TDLS能力信息包括以下至少一项:
    第一信息标识,用于标识所述发起方对于TDLS功能的支持能力;
    第一地址标识,用于标识与所述发起方建立关联连接的接入点多连接设备的MAC地址;
    第一基本服务集标识,用于标识与所述发起方建立关联连接的接入点多连接设备在每个连接下对应的基本服务集标识;
    第二地址标识,用于标识所述发起方为支持多连接的站点;
    第一连接标识,用于标识建立TDLS的连接;或
    第一连接地址标识,用于标识建立TDLS的连接的MAC地址。
  3. 根据权利要求1或2所述的通信方法,还包括:接收ANQP响应帧,
    其中,所述ANQP响应帧包括:用于指示与所述发起方通信的响应方在所述多个连接下实现TDLS功能的第二TDLS能力信息。
  4. 根据权利要求3所述的通信方法,其中,所述第二TDLS能力信息包括以下至少一项:
    第二信息标识,用于标识所述响应方对于TDLS功能的支持能力;
    第三地址标识,用于标识与所述响应方建立关联连接的接入点多连接设备的MAC地址;
    第二基本服务集标识,用于标识与所述响应方建立关联连接的接入点多连接设备在每个连接下对应的基本服务集标识;
    第四地址标识,用于标识所述响应方的多连接设备MAC地址;
    第二连接标识,用于标识建立TDLS的连接;或
    第二连接地址标识,用于标识建立TDLS的连接的MAC地址。
  5. 根据权利要求4所述的通信方法,其中,所述第三地址标识与所述第一地址标识相同。
  6. 一种通信方法,应用于通道直接链路建立TDLS的响应方,包括:
    在多个连接中的一个连接下接收接入网络查询协议ANQP请求帧,其中,所述ANQP请求帧包括:与所述响应方通信的发起方在所述多个连接下实现TDLS功能的第一TDLS能力信息;
    基于所述ANQP请求帧执行通信操作。
  7. 根据权利要求6所述的通信方法,其中,所述第一TDLS能力信息包括以下至少一项:
    第一信息标识,用于标识所述发起方对于TDLS功能的支持能力;
    第一地址标识,用于标识与所述发起方建立关联连接的接入点多连接设备的MAC地址;
    第一基本服务集标识,用于标识与所述发起方建立关联连接的接入点多连接设备在每个连接下对应的基本服务集标识;
    第二地址标识,用于标识所述发起方为支持多连接的站点;
    第一连接标识,用于标识建立TDLS的连接;或
    第一连接地址标识,用于标识建立TDLS的连接的MAC地址。
  8. 根据权利要求5或6所述的通信方法,还包括:发送ANQP响应帧,
    其中,所述ANQP响应帧包括:用于指示所述响应方在所述多个连接 下实现TDLS功能的第二TDLS能力信息。
  9. 根据权利要求8所述的通信方法,其中,所述第二TDLS能力信息包括以下至少一项:
    第二信息标识,用于标识所述响应方对于TDLS功能的支持能力;
    第三地址标识,用于标识与所述响应方建立关联连接的接入点多连接设备的MAC地址;
    第二基本服务集标识,用于标识与所述响应方建立关联连接的接入点多连接设备在每个连接下对应的基本服务集标识;
    第四地址标识,用于标识所述响应方的多连接设备MAC地址;
    第二连接标识,用于标识建立TDLS的连接;或
    第二连接地址标识,用于标识建立TDLS的连接的MAC地址。
  10. 根据权利要求9所述的通信方法,其中,所述第三地址标识与所述第一地址标识相同。
  11. 一种多连接下的通信装置,包括:
    处理模块,被配置为:在多个连接中的一个连接下确定接入网络查询协议ANQP请求帧,其中,所述ANQP请求帧包括:所述发起方在所述多个连接下实现TDLS功能的第一TDLS能力信息;
    收发模块,被配置为:发送所述ANQP请求帧。
  12. 一种多连接下的通信装置,包括:
    收发模块,被配置为:在多个连接中的一个连接下接收接入网络查询协议ANQP请求帧,其中,所述ANQP请求帧包括:与所述响应方通信的发起方在所述多个连接下实现TDLS功能的第一TDLS能力信息;
    处理模块,被配置为:基于所述ANQP请求帧控制通信操作的执行。
  13. 一种电子装置,包括存储器、处理器及存储在所述存储器上并在 所述处理器上可运行的计算机程序,其中,所述处理器执行所述计算机程序时实现权利要求1至5中的任一项或者6至10中的任一项所述的方法。
  14. 一种计算机可读存储介质,其中,所述计算机可读存储介质上存储有计算机程序,该计算机程序被处理器执行时实现权利要求1至5中的任一项或者6至10中的任一项所述的方法。
PCT/CN2021/111593 2021-08-09 2021-08-09 通信方法和通信装置 WO2023015415A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP21953053.2A EP4387381A1 (en) 2021-08-09 2021-08-09 Communication method and communication apparatus
CN202180002320.9A CN115956393A (zh) 2021-08-09 2021-08-09 通信方法和通信装置
PCT/CN2021/111593 WO2023015415A1 (zh) 2021-08-09 2021-08-09 通信方法和通信装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/111593 WO2023015415A1 (zh) 2021-08-09 2021-08-09 通信方法和通信装置

Publications (1)

Publication Number Publication Date
WO2023015415A1 true WO2023015415A1 (zh) 2023-02-16

Family

ID=85200484

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/111593 WO2023015415A1 (zh) 2021-08-09 2021-08-09 通信方法和通信装置

Country Status (3)

Country Link
EP (1) EP4387381A1 (zh)
CN (1) CN115956393A (zh)
WO (1) WO2023015415A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110082940A1 (en) * 2009-10-02 2011-04-07 Michael Peter Montemurro Methods and apparatus to establish peer-to-peer communications
WO2021011476A1 (en) * 2019-07-12 2021-01-21 Interdigital Patent Holdings, Inc. Methods for enabling multi-link wlans
CN112821996A (zh) * 2019-11-15 2021-05-18 华为技术有限公司 一种链路标识和收发能力指示方法及相关设备
CN112911728A (zh) * 2021-01-29 2021-06-04 成都极米科技股份有限公司 隧道直接链路建立中搜索对等终端的方法、终端及介质
CN112911729A (zh) * 2021-01-29 2021-06-04 成都极米科技股份有限公司 隧道直接链路建立的方法、终端及存储介质
US20210211871A1 (en) * 2020-01-04 2021-07-08 Nxp Usa, Inc. Apparatus and method for multi-link management in multi-link communication systems

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110082940A1 (en) * 2009-10-02 2011-04-07 Michael Peter Montemurro Methods and apparatus to establish peer-to-peer communications
WO2021011476A1 (en) * 2019-07-12 2021-01-21 Interdigital Patent Holdings, Inc. Methods for enabling multi-link wlans
CN112821996A (zh) * 2019-11-15 2021-05-18 华为技术有限公司 一种链路标识和收发能力指示方法及相关设备
US20210211871A1 (en) * 2020-01-04 2021-07-08 Nxp Usa, Inc. Apparatus and method for multi-link management in multi-link communication systems
CN112911728A (zh) * 2021-01-29 2021-06-04 成都极米科技股份有限公司 隧道直接链路建立中搜索对等终端的方法、终端及介质
CN112911729A (zh) * 2021-01-29 2021-06-04 成都极米科技股份有限公司 隧道直接链路建立的方法、终端及存储介质

Also Published As

Publication number Publication date
EP4387381A1 (en) 2024-06-19
CN115956393A (zh) 2023-04-11

Similar Documents

Publication Publication Date Title
WO2022205324A1 (zh) 多连接下的通信方法和通信装置
WO2023015415A1 (zh) 通信方法和通信装置
WO2022116150A1 (zh) 多连接下的通信方法和通信设备
WO2022116116A1 (zh) 多连接下的通信方法和通信设备
WO2022151485A1 (zh) 多连接下的通信方法和通信设备
WO2022094940A1 (zh) 通信方法和通信设备
WO2023004643A1 (zh) 多连接下的通信方法和通信装置
WO2023004644A1 (zh) 多连接下的通信方法和通信装置
WO2022151486A1 (zh) 通信方法和通信设备
WO2023023948A1 (zh) 通信方法和通信装置
WO2023019412A1 (zh) 通信方法和通信装置
WO2022198596A1 (zh) 多连接下的通信方法和通信装置
WO2023056637A1 (zh) 多连接下的通信方法和通信装置
WO2023056608A1 (zh) 通信方法和通信装置
WO2022241641A1 (zh) 通信方法和通信装置
WO2023065095A1 (zh) 多连接下的通信方法和通信装置
WO2022165680A1 (zh) 多连接下的通信方法和通信装置
WO2022133654A1 (zh) 多连接下的通信方法和通信设备
WO2022267033A1 (zh) 通信方法和通信装置
WO2023019406A1 (zh) 用于基本服务集切换的通信方法和通信装置
WO2022170448A1 (zh) 多连接下的通信方法和通信装置
WO2022217586A1 (zh) 多连接下的通信方法和通信装置
WO2022217587A1 (zh) 多连接下的通信方法和通信装置
WO2022094774A1 (zh) 多连接下的通信方法和通信设备
WO2023010345A1 (zh) 通信方法和通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21953053

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021953053

Country of ref document: EP

Effective date: 20240311