WO2023015264A1 - Immunothérapie anticancéreuse utilisant des cellules tueuses naturelles traitées avec des oligonucléotides chimiquement modifiés - Google Patents
Immunothérapie anticancéreuse utilisant des cellules tueuses naturelles traitées avec des oligonucléotides chimiquement modifiés Download PDFInfo
- Publication number
- WO2023015264A1 WO2023015264A1 PCT/US2022/074554 US2022074554W WO2023015264A1 WO 2023015264 A1 WO2023015264 A1 WO 2023015264A1 US 2022074554 W US2022074554 W US 2022074554W WO 2023015264 A1 WO2023015264 A1 WO 2023015264A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cell
- nucleic acid
- cells
- tigit
- immunogenic composition
- Prior art date
Links
- 206010028980 Neoplasm Diseases 0.000 title claims abstract description 44
- 201000011510 cancer Diseases 0.000 title claims abstract description 24
- 210000000822 natural killer cell Anatomy 0.000 title claims description 193
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Chemical class Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 title description 80
- 238000009169 immunotherapy Methods 0.000 title description 11
- 239000000203 mixture Substances 0.000 claims abstract description 198
- 238000000034 method Methods 0.000 claims abstract description 76
- 230000002163 immunogen Effects 0.000 claims abstract description 62
- 108090000623 proteins and genes Proteins 0.000 claims abstract description 62
- 210000004027 cell Anatomy 0.000 claims description 222
- 150000007523 nucleic acids Chemical class 0.000 claims description 164
- 102000039446 nucleic acids Human genes 0.000 claims description 163
- 108020004707 nucleic acids Proteins 0.000 claims description 163
- 125000003729 nucleotide group Chemical group 0.000 claims description 157
- 239000002773 nucleotide Substances 0.000 claims description 139
- 230000004048 modification Effects 0.000 claims description 109
- 238000012986 modification Methods 0.000 claims description 109
- 230000000692 anti-sense effect Effects 0.000 claims description 64
- 230000002209 hydrophobic effect Effects 0.000 claims description 63
- 108091081021 Sense strand Proteins 0.000 claims description 42
- RYYWUUFWQRZTIU-UHFFFAOYSA-K thiophosphate Chemical compound [O-]P([O-])([O-])=S RYYWUUFWQRZTIU-UHFFFAOYSA-K 0.000 claims description 37
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims description 21
- 210000003819 peripheral blood mononuclear cell Anatomy 0.000 claims description 19
- 210000001744 T-lymphocyte Anatomy 0.000 claims description 17
- 201000010099 disease Diseases 0.000 claims description 17
- 210000004263 induced pluripotent stem cell Anatomy 0.000 claims description 12
- 230000000735 allogeneic effect Effects 0.000 claims description 10
- 230000002062 proliferating effect Effects 0.000 claims description 10
- 238000004519 manufacturing process Methods 0.000 claims description 9
- 210000003954 umbilical cord Anatomy 0.000 claims description 8
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 claims description 7
- 108060003951 Immunoglobulin Proteins 0.000 claims description 7
- 102000018358 immunoglobulin Human genes 0.000 claims description 7
- 230000005764 inhibitory process Effects 0.000 claims description 7
- 229940126049 IMC-1 Drugs 0.000 claims description 6
- 102100024834 T-cell immunoreceptor with Ig and ITIM domains Human genes 0.000 claims description 5
- 101710090983 T-cell immunoreceptor with Ig and ITIM domains Proteins 0.000 claims description 5
- 210000000130 stem cell Anatomy 0.000 claims description 4
- 108700019146 Transgenes Proteins 0.000 claims description 3
- 108091034117 Oligonucleotide Proteins 0.000 abstract description 174
- 230000014509 gene expression Effects 0.000 abstract description 32
- 230000007246 mechanism Effects 0.000 abstract description 14
- 230000002401 inhibitory effect Effects 0.000 abstract description 7
- 230000028993 immune response Effects 0.000 abstract description 2
- 230000008629 immune suppression Effects 0.000 abstract description 2
- 230000001629 suppression Effects 0.000 abstract 1
- -1 viral transduction Proteins 0.000 description 145
- 102000040430 polynucleotide Human genes 0.000 description 84
- 108091033319 polynucleotide Proteins 0.000 description 84
- 239000002157 polynucleotide Substances 0.000 description 84
- 150000001875 compounds Chemical class 0.000 description 83
- 150000002632 lipids Chemical class 0.000 description 67
- 125000000217 alkyl group Chemical group 0.000 description 54
- 230000009368 gene silencing by RNA Effects 0.000 description 46
- 238000012228 RNA interference-mediated gene silencing Methods 0.000 description 44
- 125000002015 acyclic group Chemical group 0.000 description 41
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 40
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 description 40
- 238000007385 chemical modification Methods 0.000 description 34
- 230000008685 targeting Effects 0.000 description 32
- 125000001931 aliphatic group Chemical group 0.000 description 30
- 125000003342 alkenyl group Chemical group 0.000 description 29
- 125000000304 alkynyl group Chemical group 0.000 description 29
- 125000004122 cyclic group Chemical group 0.000 description 29
- 125000005647 linker group Chemical group 0.000 description 29
- 230000000694 effects Effects 0.000 description 28
- 108090000765 processed proteins & peptides Proteins 0.000 description 28
- 125000001424 substituent group Chemical group 0.000 description 26
- 230000007935 neutral effect Effects 0.000 description 25
- 229930182558 Sterol Natural products 0.000 description 24
- 150000003432 sterols Chemical class 0.000 description 24
- 235000003702 sterols Nutrition 0.000 description 24
- 235000014113 dietary fatty acids Nutrition 0.000 description 22
- 229930195729 fatty acid Natural products 0.000 description 22
- 239000000194 fatty acid Substances 0.000 description 22
- 238000009472 formulation Methods 0.000 description 22
- 239000002502 liposome Substances 0.000 description 22
- 125000002091 cationic group Chemical group 0.000 description 21
- 235000012000 cholesterol Nutrition 0.000 description 21
- 150000004665 fatty acids Chemical class 0.000 description 20
- 239000002679 microRNA Substances 0.000 description 20
- 125000003118 aryl group Chemical group 0.000 description 19
- 238000001727 in vivo Methods 0.000 description 19
- 125000006239 protecting group Chemical group 0.000 description 19
- 235000000346 sugar Nutrition 0.000 description 19
- 239000003925 fat Substances 0.000 description 18
- 235000019197 fats Nutrition 0.000 description 18
- 210000001519 tissue Anatomy 0.000 description 18
- 125000004432 carbon atom Chemical group C* 0.000 description 17
- 230000030279 gene silencing Effects 0.000 description 17
- 102000004169 proteins and genes Human genes 0.000 description 17
- 230000002829 reductive effect Effects 0.000 description 17
- 238000003786 synthesis reaction Methods 0.000 description 16
- 230000001965 increasing effect Effects 0.000 description 15
- 150000001413 amino acids Chemical class 0.000 description 14
- 229910052799 carbon Inorganic materials 0.000 description 14
- 230000004700 cellular uptake Effects 0.000 description 14
- 229910052736 halogen Inorganic materials 0.000 description 14
- 229910052739 hydrogen Inorganic materials 0.000 description 14
- 239000001257 hydrogen Substances 0.000 description 14
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 14
- 235000018102 proteins Nutrition 0.000 description 14
- 239000000126 substance Substances 0.000 description 14
- 210000004881 tumor cell Anatomy 0.000 description 14
- 108020004459 Small interfering RNA Proteins 0.000 description 13
- 239000003814 drug Substances 0.000 description 13
- 150000002367 halogens Chemical class 0.000 description 13
- 108091070501 miRNA Proteins 0.000 description 13
- 229910052757 nitrogen Inorganic materials 0.000 description 13
- 229940024606 amino acid Drugs 0.000 description 12
- 235000001014 amino acid Nutrition 0.000 description 12
- 230000015572 biosynthetic process Effects 0.000 description 12
- 125000001072 heteroaryl group Chemical group 0.000 description 12
- 238000001890 transfection Methods 0.000 description 12
- 125000003545 alkoxy group Chemical group 0.000 description 11
- 230000000295 complement effect Effects 0.000 description 11
- 125000000623 heterocyclic group Chemical group 0.000 description 11
- 238000000338 in vitro Methods 0.000 description 11
- 108020004999 messenger RNA Proteins 0.000 description 11
- 238000011282 treatment Methods 0.000 description 11
- 239000003981 vehicle Substances 0.000 description 11
- KDCGOANMDULRCW-UHFFFAOYSA-N 7H-purine Chemical compound N1=CNC2=NC=NC2=C1 KDCGOANMDULRCW-UHFFFAOYSA-N 0.000 description 10
- KXDHJXZQYSOELW-UHFFFAOYSA-M Carbamate Chemical compound NC([O-])=O KXDHJXZQYSOELW-UHFFFAOYSA-M 0.000 description 10
- 150000001412 amines Chemical class 0.000 description 10
- 230000008901 benefit Effects 0.000 description 10
- 238000012226 gene silencing method Methods 0.000 description 10
- 239000003446 ligand Substances 0.000 description 10
- 150000004713 phosphodiesters Chemical class 0.000 description 10
- 102000004196 processed proteins & peptides Human genes 0.000 description 10
- RWQNBRDOKXIBIV-UHFFFAOYSA-N thymine Chemical compound CC1=CNC(=O)NC1=O RWQNBRDOKXIBIV-UHFFFAOYSA-N 0.000 description 10
- 229910019142 PO4 Inorganic materials 0.000 description 9
- PYMYPHUHKUWMLA-LMVFSUKVSA-N Ribose Natural products OC[C@@H](O)[C@@H](O)[C@@H](O)C=O PYMYPHUHKUWMLA-LMVFSUKVSA-N 0.000 description 9
- DHKHKXVYLBGOIT-UHFFFAOYSA-N acetaldehyde Diethyl Acetal Natural products CCOC(C)OCC DHKHKXVYLBGOIT-UHFFFAOYSA-N 0.000 description 9
- 239000000074 antisense oligonucleotide Substances 0.000 description 9
- 238000012230 antisense oligonucleotides Methods 0.000 description 9
- 125000003917 carbamoyl group Chemical group [H]N([H])C(*)=O 0.000 description 9
- 239000000839 emulsion Substances 0.000 description 9
- 125000000524 functional group Chemical group 0.000 description 9
- 125000005842 heteroatom Chemical group 0.000 description 9
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 9
- 238000011068 loading method Methods 0.000 description 9
- 239000002777 nucleoside Substances 0.000 description 9
- 230000037361 pathway Effects 0.000 description 9
- 239000010452 phosphate Substances 0.000 description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 9
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 8
- 208000035473 Communicable disease Diseases 0.000 description 8
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 8
- 102000003812 Interleukin-15 Human genes 0.000 description 8
- 108091030071 RNAI Proteins 0.000 description 8
- 230000003213 activating effect Effects 0.000 description 8
- 239000003795 chemical substances by application Substances 0.000 description 8
- OPTASPLRGRRNAP-UHFFFAOYSA-N cytosine Chemical compound NC=1C=CNC(=O)N=1 OPTASPLRGRRNAP-UHFFFAOYSA-N 0.000 description 8
- 239000012636 effector Substances 0.000 description 8
- 230000006870 function Effects 0.000 description 8
- 230000001404 mediated effect Effects 0.000 description 8
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 8
- 239000000693 micelle Substances 0.000 description 8
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 8
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 8
- 150000003230 pyrimidines Chemical class 0.000 description 8
- 108020003175 receptors Proteins 0.000 description 8
- 102000005962 receptors Human genes 0.000 description 8
- 238000012546 transfer Methods 0.000 description 8
- 102000040650 (ribonucleotides)n+m Human genes 0.000 description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 7
- 102000004127 Cytokines Human genes 0.000 description 7
- 108090000695 Cytokines Proteins 0.000 description 7
- 108020004414 DNA Proteins 0.000 description 7
- CZPWVGJYEJSRLH-UHFFFAOYSA-N Pyrimidine Chemical compound C1=CN=CN=C1 CZPWVGJYEJSRLH-UHFFFAOYSA-N 0.000 description 7
- DRTQHJPVMGBUCF-XVFCMESISA-N Uridine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C=C1 DRTQHJPVMGBUCF-XVFCMESISA-N 0.000 description 7
- 230000004913 activation Effects 0.000 description 7
- HMFHBZSHGGEWLO-UHFFFAOYSA-N alpha-D-Furanose-Ribose Natural products OCC1OC(O)C(O)C1O HMFHBZSHGGEWLO-UHFFFAOYSA-N 0.000 description 7
- 239000000427 antigen Substances 0.000 description 7
- 108091007433 antigens Proteins 0.000 description 7
- 102000036639 antigens Human genes 0.000 description 7
- 125000003710 aryl alkyl group Chemical group 0.000 description 7
- 210000004369 blood Anatomy 0.000 description 7
- 239000008280 blood Substances 0.000 description 7
- 239000003153 chemical reaction reagent Substances 0.000 description 7
- 125000000753 cycloalkyl group Chemical group 0.000 description 7
- 238000009826 distribution Methods 0.000 description 7
- 238000000684 flow cytometry Methods 0.000 description 7
- 210000000987 immune system Anatomy 0.000 description 7
- 230000001976 improved effect Effects 0.000 description 7
- 210000004185 liver Anatomy 0.000 description 7
- 210000004962 mammalian cell Anatomy 0.000 description 7
- 239000012528 membrane Substances 0.000 description 7
- 125000004573 morpholin-4-yl group Chemical group N1(CCOCC1)* 0.000 description 7
- 210000004940 nucleus Anatomy 0.000 description 7
- 229920006395 saturated elastomer Polymers 0.000 description 7
- 125000006850 spacer group Chemical group 0.000 description 7
- 230000001988 toxicity Effects 0.000 description 7
- 231100000419 toxicity Toxicity 0.000 description 7
- GVJHHUAWPYXKBD-UHFFFAOYSA-N (±)-α-Tocopherol Chemical group OC1=C(C)C(C)=C2OC(CCCC(C)CCCC(C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-UHFFFAOYSA-N 0.000 description 6
- SNKAWJBJQDLSFF-NVKMUCNASA-N 1,2-dioleoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCC\C=C/CCCCCCCC SNKAWJBJQDLSFF-NVKMUCNASA-N 0.000 description 6
- HMFHBZSHGGEWLO-SOOFDHNKSA-N D-ribofuranose Chemical compound OC[C@H]1OC(O)[C@H](O)[C@@H]1O HMFHBZSHGGEWLO-SOOFDHNKSA-N 0.000 description 6
- 101001023379 Homo sapiens Lysosome-associated membrane glycoprotein 1 Proteins 0.000 description 6
- 102000002698 KIR Receptors Human genes 0.000 description 6
- 108010043610 KIR Receptors Proteins 0.000 description 6
- 102100035133 Lysosome-associated membrane glycoprotein 1 Human genes 0.000 description 6
- 108700011259 MicroRNAs Proteins 0.000 description 6
- 101710163270 Nuclease Proteins 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- RYYWUUFWQRZTIU-UHFFFAOYSA-N Thiophosphoric acid Chemical class OP(O)(S)=O RYYWUUFWQRZTIU-UHFFFAOYSA-N 0.000 description 6
- ISAKRJDGNUQOIC-UHFFFAOYSA-N Uracil Chemical compound O=C1C=CNC(=O)N1 ISAKRJDGNUQOIC-UHFFFAOYSA-N 0.000 description 6
- 125000004414 alkyl thio group Chemical group 0.000 description 6
- 125000005110 aryl thio group Chemical group 0.000 description 6
- 230000000903 blocking effect Effects 0.000 description 6
- 230000001413 cellular effect Effects 0.000 description 6
- 238000003776 cleavage reaction Methods 0.000 description 6
- 125000004093 cyano group Chemical group *C#N 0.000 description 6
- 125000000392 cycloalkenyl group Chemical group 0.000 description 6
- 230000003993 interaction Effects 0.000 description 6
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 6
- 230000000670 limiting effect Effects 0.000 description 6
- 239000002960 lipid emulsion Substances 0.000 description 6
- GTCAXTIRRLKXRU-UHFFFAOYSA-N methyl carbamate Chemical compound COC(N)=O GTCAXTIRRLKXRU-UHFFFAOYSA-N 0.000 description 6
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 6
- 150000003833 nucleoside derivatives Chemical class 0.000 description 6
- 229910052760 oxygen Inorganic materials 0.000 description 6
- 239000002245 particle Substances 0.000 description 6
- 150000003904 phospholipids Chemical class 0.000 description 6
- 229920001184 polypeptide Polymers 0.000 description 6
- 150000003212 purines Chemical class 0.000 description 6
- 230000007017 scission Effects 0.000 description 6
- 150000003384 small molecules Chemical class 0.000 description 6
- 239000000725 suspension Substances 0.000 description 6
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 description 6
- NRJAVPSFFCBXDT-HUESYALOSA-N 1,2-distearoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCCCCCCCCCCCC NRJAVPSFFCBXDT-HUESYALOSA-N 0.000 description 5
- 102000002627 4-1BB Ligand Human genes 0.000 description 5
- 108010082808 4-1BB Ligand Proteins 0.000 description 5
- 208000032791 BCR-ABL1 positive chronic myelogenous leukemia Diseases 0.000 description 5
- 206010006187 Breast cancer Diseases 0.000 description 5
- 208000026310 Breast neoplasm Diseases 0.000 description 5
- 208000010833 Chronic myeloid leukaemia Diseases 0.000 description 5
- 208000033761 Myelogenous Chronic BCR-ABL Positive Leukemia Diseases 0.000 description 5
- 108010043958 Peptoids Proteins 0.000 description 5
- 108010083644 Ribonucleases Proteins 0.000 description 5
- 102000006382 Ribonucleases Human genes 0.000 description 5
- 239000002253 acid Substances 0.000 description 5
- 125000002252 acyl group Chemical group 0.000 description 5
- 125000003282 alkyl amino group Chemical group 0.000 description 5
- 125000002877 alkyl aryl group Chemical group 0.000 description 5
- 238000013459 approach Methods 0.000 description 5
- 239000000969 carrier Substances 0.000 description 5
- 239000008139 complexing agent Substances 0.000 description 5
- 125000004663 dialkyl amino group Chemical group 0.000 description 5
- 229940079593 drug Drugs 0.000 description 5
- 238000004520 electroporation Methods 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- ZTWTYVWXUKTLCP-UHFFFAOYSA-L ethenyl-dioxido-oxo-$l^{5}-phosphane Chemical compound [O-]P([O-])(=O)C=C ZTWTYVWXUKTLCP-UHFFFAOYSA-L 0.000 description 5
- UHBYWPGGCSDKFX-VKHMYHEASA-N gamma-carboxy-L-glutamic acid Chemical group OC(=O)[C@@H](N)CC(C(O)=O)C(O)=O UHBYWPGGCSDKFX-VKHMYHEASA-N 0.000 description 5
- 210000005260 human cell Anatomy 0.000 description 5
- 210000002865 immune cell Anatomy 0.000 description 5
- 208000015181 infectious disease Diseases 0.000 description 5
- 229940028435 intralipid Drugs 0.000 description 5
- 125000004433 nitrogen atom Chemical group N* 0.000 description 5
- 150000008300 phosphoramidites Chemical class 0.000 description 5
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 5
- 230000009467 reduction Effects 0.000 description 5
- 230000001105 regulatory effect Effects 0.000 description 5
- 125000002652 ribonucleotide group Chemical group 0.000 description 5
- 229910052717 sulfur Inorganic materials 0.000 description 5
- 230000001225 therapeutic effect Effects 0.000 description 5
- 238000002560 therapeutic procedure Methods 0.000 description 5
- 230000032258 transport Effects 0.000 description 5
- 150000003626 triacylglycerols Chemical class 0.000 description 5
- 239000013598 vector Substances 0.000 description 5
- RFLVMTUMFYRZCB-UHFFFAOYSA-N 1-methylguanine Chemical compound O=C1N(C)C(N)=NC2=C1N=CN2 RFLVMTUMFYRZCB-UHFFFAOYSA-N 0.000 description 4
- FZWGECJQACGGTI-UHFFFAOYSA-N 2-amino-7-methyl-1,7-dihydro-6H-purin-6-one Chemical compound NC1=NC(O)=C2N(C)C=NC2=N1 FZWGECJQACGGTI-UHFFFAOYSA-N 0.000 description 4
- OVONXEQGWXGFJD-UHFFFAOYSA-N 4-sulfanylidene-1h-pyrimidin-2-one Chemical compound SC=1C=CNC(=O)N=1 OVONXEQGWXGFJD-UHFFFAOYSA-N 0.000 description 4
- OIVLITBTBDPEFK-UHFFFAOYSA-N 5,6-dihydrouracil Chemical compound O=C1CCNC(=O)N1 OIVLITBTBDPEFK-UHFFFAOYSA-N 0.000 description 4
- LRFVTYWOQMYALW-UHFFFAOYSA-N 9H-xanthine Chemical compound O=C1NC(=O)NC2=C1NC=N2 LRFVTYWOQMYALW-UHFFFAOYSA-N 0.000 description 4
- DLFVBJFMPXGRIB-UHFFFAOYSA-N Acetamide Chemical class CC(N)=O DLFVBJFMPXGRIB-UHFFFAOYSA-N 0.000 description 4
- 239000004475 Arginine Substances 0.000 description 4
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 4
- 241000196324 Embryophyta Species 0.000 description 4
- 102000004190 Enzymes Human genes 0.000 description 4
- 108090000790 Enzymes Proteins 0.000 description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 4
- 102100034343 Integrase Human genes 0.000 description 4
- 101710203526 Integrase Proteins 0.000 description 4
- ODKSFYDXXFIFQN-BYPYZUCNSA-P L-argininium(2+) Chemical compound NC(=[NH2+])NCCC[C@H]([NH3+])C(O)=O ODKSFYDXXFIFQN-BYPYZUCNSA-P 0.000 description 4
- HNDVDQJCIGZPNO-YFKPBYRVSA-N L-histidine Chemical compound OC(=O)[C@@H](N)CC1=CN=CN1 HNDVDQJCIGZPNO-YFKPBYRVSA-N 0.000 description 4
- OYHQOLUKZRVURQ-HZJYTTRNSA-N Linoleic acid Chemical compound CCCCC\C=C/C\C=C/CCCCCCCC(O)=O OYHQOLUKZRVURQ-HZJYTTRNSA-N 0.000 description 4
- 108010052285 Membrane Proteins Proteins 0.000 description 4
- 101100369641 Mus musculus Tigit gene Proteins 0.000 description 4
- 230000006051 NK cell activation Effects 0.000 description 4
- 108091028043 Nucleic acid sequence Proteins 0.000 description 4
- 125000004442 acylamino group Chemical group 0.000 description 4
- 229960000643 adenine Drugs 0.000 description 4
- 125000004453 alkoxycarbonyl group Chemical group 0.000 description 4
- 125000005194 alkoxycarbonyloxy group Chemical group 0.000 description 4
- 125000004457 alkyl amino carbonyl group Chemical group 0.000 description 4
- 125000004947 alkyl aryl amino group Chemical group 0.000 description 4
- 125000003806 alkyl carbonyl amino group Chemical group 0.000 description 4
- 125000004448 alkyl carbonyl group Chemical group 0.000 description 4
- 125000005196 alkyl carbonyloxy group Chemical group 0.000 description 4
- 125000004691 alkyl thio carbonyl group Chemical group 0.000 description 4
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 4
- 125000001769 aryl amino group Chemical group 0.000 description 4
- 125000004658 aryl carbonyl amino group Chemical group 0.000 description 4
- 125000005129 aryl carbonyl group Chemical group 0.000 description 4
- 125000005199 aryl carbonyloxy group Chemical group 0.000 description 4
- 125000005200 aryloxy carbonyloxy group Chemical group 0.000 description 4
- 125000004429 atom Chemical group 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 125000000852 azido group Chemical group *N=[N+]=[N-] 0.000 description 4
- PUJDIJCNWFYVJX-UHFFFAOYSA-N benzyl carbamate Chemical compound NC(=O)OCC1=CC=CC=C1 PUJDIJCNWFYVJX-UHFFFAOYSA-N 0.000 description 4
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 4
- DRTQHJPVMGBUCF-PSQAKQOGSA-N beta-L-uridine Natural products O[C@H]1[C@@H](O)[C@H](CO)O[C@@H]1N1C(=O)NC(=O)C=C1 DRTQHJPVMGBUCF-PSQAKQOGSA-N 0.000 description 4
- 125000001951 carbamoylamino group Chemical group C(N)(=O)N* 0.000 description 4
- 150000007942 carboxylates Chemical class 0.000 description 4
- 230000015556 catabolic process Effects 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 229940104302 cytosine Drugs 0.000 description 4
- 238000006731 degradation reaction Methods 0.000 description 4
- 238000011161 development Methods 0.000 description 4
- 230000018109 developmental process Effects 0.000 description 4
- 125000004473 dialkylaminocarbonyl group Chemical group 0.000 description 4
- 125000004986 diarylamino group Chemical group 0.000 description 4
- 239000003937 drug carrier Substances 0.000 description 4
- 238000012377 drug delivery Methods 0.000 description 4
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 4
- UYTPUPDQBNUYGX-UHFFFAOYSA-N guanine Chemical compound O=C1NC(N)=NC2=C1N=CN2 UYTPUPDQBNUYGX-UHFFFAOYSA-N 0.000 description 4
- 125000004446 heteroarylalkyl group Chemical group 0.000 description 4
- 238000004128 high performance liquid chromatography Methods 0.000 description 4
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 4
- 230000001506 immunosuppresive effect Effects 0.000 description 4
- 238000011534 incubation Methods 0.000 description 4
- 238000002347 injection Methods 0.000 description 4
- 239000007924 injection Substances 0.000 description 4
- 230000010468 interferon response Effects 0.000 description 4
- 208000032839 leukemia Diseases 0.000 description 4
- 235000020778 linoleic acid Nutrition 0.000 description 4
- OYHQOLUKZRVURQ-IXWMQOLASA-N linoleic acid Natural products CCCCC\C=C/C\C=C\CCCCCCCC(O)=O OYHQOLUKZRVURQ-IXWMQOLASA-N 0.000 description 4
- 239000002609 medium Substances 0.000 description 4
- 125000003835 nucleoside group Chemical group 0.000 description 4
- 238000002515 oligonucleotide synthesis Methods 0.000 description 4
- 150000002894 organic compounds Chemical class 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 125000002467 phosphate group Chemical group [H]OP(=O)(O[H])O[*] 0.000 description 4
- 230000026731 phosphorylation Effects 0.000 description 4
- 238000006366 phosphorylation reaction Methods 0.000 description 4
- 229940068065 phytosterols Drugs 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 150000003290 ribose derivatives Chemical class 0.000 description 4
- 238000012163 sequencing technique Methods 0.000 description 4
- 210000002966 serum Anatomy 0.000 description 4
- 150000003431 steroids Chemical group 0.000 description 4
- 125000005420 sulfonamido group Chemical group S(=O)(=O)(N*)* 0.000 description 4
- 150000003467 sulfuric acid derivatives Chemical group 0.000 description 4
- 230000004083 survival effect Effects 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 230000005909 tumor killing Effects 0.000 description 4
- DRTQHJPVMGBUCF-UHFFFAOYSA-N uracil arabinoside Natural products OC1C(O)C(CO)OC1N1C(=O)NC(=O)C=C1 DRTQHJPVMGBUCF-UHFFFAOYSA-N 0.000 description 4
- 229940045145 uridine Drugs 0.000 description 4
- 230000035899 viability Effects 0.000 description 4
- ASJSAQIRZKANQN-CRCLSJGQSA-N 2-deoxy-D-ribose Chemical compound OC[C@@H](O)[C@@H](O)CC=O ASJSAQIRZKANQN-CRCLSJGQSA-N 0.000 description 3
- 125000004105 2-pyridyl group Chemical group N1=C([*])C([H])=C([H])C([H])=C1[H] 0.000 description 3
- ZLAQATDNGLKIEV-UHFFFAOYSA-N 5-methyl-2-sulfanylidene-1h-pyrimidin-4-one Chemical compound CC1=CNC(=S)NC1=O ZLAQATDNGLKIEV-UHFFFAOYSA-N 0.000 description 3
- LRSASMSXMSNRBT-UHFFFAOYSA-N 5-methylcytosine Chemical compound CC1=CNC(=O)N=C1N LRSASMSXMSNRBT-UHFFFAOYSA-N 0.000 description 3
- MSSXOMSJDRHRMC-UHFFFAOYSA-N 9H-purine-2,6-diamine Chemical compound NC1=NC(N)=C2NC=NC2=N1 MSSXOMSJDRHRMC-UHFFFAOYSA-N 0.000 description 3
- 208000035657 Abasia Diseases 0.000 description 3
- GFFGJBXGBJISGV-UHFFFAOYSA-N Adenine Chemical compound NC1=NC=NC2=C1N=CN2 GFFGJBXGBJISGV-UHFFFAOYSA-N 0.000 description 3
- 229930024421 Adenine Natural products 0.000 description 3
- 102000008682 Argonaute Proteins Human genes 0.000 description 3
- 108010088141 Argonaute Proteins Proteins 0.000 description 3
- 229940045513 CTLA4 antagonist Drugs 0.000 description 3
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 3
- 108091007741 Chimeric antigen receptor T cells Proteins 0.000 description 3
- 102100039498 Cytotoxic T-lymphocyte protein 4 Human genes 0.000 description 3
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 3
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 3
- NYHBQMYGNKIUIF-UUOKFMHZSA-N Guanosine Chemical class C1=NC=2C(=O)NC(N)=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O NYHBQMYGNKIUIF-UUOKFMHZSA-N 0.000 description 3
- 101000889276 Homo sapiens Cytotoxic T-lymphocyte protein 4 Proteins 0.000 description 3
- 101001137987 Homo sapiens Lymphocyte activation gene 3 protein Proteins 0.000 description 3
- 206010021143 Hypoxia Diseases 0.000 description 3
- 102000037982 Immune checkpoint proteins Human genes 0.000 description 3
- 108091008036 Immune checkpoint proteins Proteins 0.000 description 3
- UGQMRVRMYYASKQ-KQYNXXCUSA-N Inosine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C2=NC=NC(O)=C2N=C1 UGQMRVRMYYASKQ-KQYNXXCUSA-N 0.000 description 3
- 229930010555 Inosine Natural products 0.000 description 3
- 108010002350 Interleukin-2 Proteins 0.000 description 3
- 102000000588 Interleukin-2 Human genes 0.000 description 3
- XUJNEKJLAYXESH-REOHCLBHSA-N L-Cysteine Chemical compound SC[C@H](N)C(O)=O XUJNEKJLAYXESH-REOHCLBHSA-N 0.000 description 3
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical compound NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 description 3
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 3
- 102100020862 Lymphocyte activation gene 3 protein Human genes 0.000 description 3
- 239000004472 Lysine Substances 0.000 description 3
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 3
- 102000043129 MHC class I family Human genes 0.000 description 3
- 108091054437 MHC class I family Proteins 0.000 description 3
- 102000018697 Membrane Proteins Human genes 0.000 description 3
- 241000699670 Mus sp. Species 0.000 description 3
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 3
- 102100040678 Programmed cell death protein 1 Human genes 0.000 description 3
- 101710089372 Programmed cell death protein 1 Proteins 0.000 description 3
- 230000007022 RNA scission Effects 0.000 description 3
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 3
- 108091023040 Transcription factor Proteins 0.000 description 3
- 102000040945 Transcription factor Human genes 0.000 description 3
- DTQVDTLACAAQTR-UHFFFAOYSA-M Trifluoroacetate Chemical compound [O-]C(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-M 0.000 description 3
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 3
- 241000700605 Viruses Species 0.000 description 3
- 229930003427 Vitamin E Natural products 0.000 description 3
- 239000004480 active ingredient Substances 0.000 description 3
- ORILYTVJVMAKLC-UHFFFAOYSA-N adamantane Chemical compound C1C(C2)CC3CC1CC2C3 ORILYTVJVMAKLC-UHFFFAOYSA-N 0.000 description 3
- 125000002723 alicyclic group Chemical group 0.000 description 3
- 125000004644 alkyl sulfinyl group Chemical group 0.000 description 3
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 3
- 150000001408 amides Chemical class 0.000 description 3
- 125000003277 amino group Chemical group 0.000 description 3
- 230000000259 anti-tumor effect Effects 0.000 description 3
- 210000000612 antigen-presenting cell Anatomy 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 3
- 239000000872 buffer Substances 0.000 description 3
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 3
- 230000010261 cell growth Effects 0.000 description 3
- 230000022534 cell killing Effects 0.000 description 3
- 229960001231 choline Drugs 0.000 description 3
- OEYIOHPDSNJKLS-UHFFFAOYSA-N choline Chemical compound C[N+](C)(C)CCO OEYIOHPDSNJKLS-UHFFFAOYSA-N 0.000 description 3
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 235000018417 cysteine Nutrition 0.000 description 3
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 3
- 230000001419 dependent effect Effects 0.000 description 3
- 208000035475 disorder Diseases 0.000 description 3
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 3
- 230000000799 fusogenic effect Effects 0.000 description 3
- WIGCFUFOHFEKBI-UHFFFAOYSA-N gamma-tocopherol Natural products CC(C)CCCC(C)CCCC(C)CCCC1CCC2C(C)C(O)C(C)C(C)C2O1 WIGCFUFOHFEKBI-UHFFFAOYSA-N 0.000 description 3
- 238000012239 gene modification Methods 0.000 description 3
- 235000011187 glycerol Nutrition 0.000 description 3
- 125000005843 halogen group Chemical group 0.000 description 3
- 238000009396 hybridization Methods 0.000 description 3
- 150000002430 hydrocarbons Chemical group 0.000 description 3
- 230000002519 immonomodulatory effect Effects 0.000 description 3
- 239000002955 immunomodulating agent Substances 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 230000001939 inductive effect Effects 0.000 description 3
- 229960003786 inosine Drugs 0.000 description 3
- 230000002452 interceptive effect Effects 0.000 description 3
- 230000002147 killing effect Effects 0.000 description 3
- 235000018977 lysine Nutrition 0.000 description 3
- 230000003211 malignant effect Effects 0.000 description 3
- YACKEPLHDIMKIO-UHFFFAOYSA-N methylphosphonic acid Chemical compound CP(O)(O)=O YACKEPLHDIMKIO-UHFFFAOYSA-N 0.000 description 3
- 238000007911 parenteral administration Methods 0.000 description 3
- GJVFBWCTGUSGDD-UHFFFAOYSA-L pentamethonium bromide Chemical compound [Br-].[Br-].C[N+](C)(C)CCCCC[N+](C)(C)C GJVFBWCTGUSGDD-UHFFFAOYSA-L 0.000 description 3
- 229910052698 phosphorus Inorganic materials 0.000 description 3
- 239000011574 phosphorus Substances 0.000 description 3
- 229920000962 poly(amidoamine) Polymers 0.000 description 3
- 230000003389 potentiating effect Effects 0.000 description 3
- 230000035755 proliferation Effects 0.000 description 3
- 125000004368 propenyl group Chemical group C(=CC)* 0.000 description 3
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 3
- 125000000714 pyrimidinyl group Chemical group 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 239000003549 soybean oil Substances 0.000 description 3
- 235000012424 soybean oil Nutrition 0.000 description 3
- 230000004936 stimulating effect Effects 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 150000008163 sugars Chemical class 0.000 description 3
- 239000011593 sulfur Substances 0.000 description 3
- 238000001308 synthesis method Methods 0.000 description 3
- 229960004799 tryptophan Drugs 0.000 description 3
- 229940035893 uracil Drugs 0.000 description 3
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 3
- 229930003231 vitamin Natural products 0.000 description 3
- 239000011782 vitamin Substances 0.000 description 3
- 235000013343 vitamin Nutrition 0.000 description 3
- 229940088594 vitamin Drugs 0.000 description 3
- 235000019165 vitamin E Nutrition 0.000 description 3
- 229940046009 vitamin E Drugs 0.000 description 3
- 239000011709 vitamin E Substances 0.000 description 3
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 2
- 125000003088 (fluoren-9-ylmethoxy)carbonyl group Chemical group 0.000 description 2
- WJNGQIYEQLPJMN-IOSLPCCCSA-N 1-methylinosine Chemical compound C1=NC=2C(=O)N(C)C=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O WJNGQIYEQLPJMN-IOSLPCCCSA-N 0.000 description 2
- FPIPGXGPPPQFEQ-UHFFFAOYSA-N 13-cis retinol Natural products OCC=C(C)C=CC=C(C)C=CC1=C(C)CCCC1(C)C FPIPGXGPPPQFEQ-UHFFFAOYSA-N 0.000 description 2
- LJCZNYWLQZZIOS-UHFFFAOYSA-N 2,2,2-trichlorethoxycarbonyl chloride Chemical compound ClC(=O)OCC(Cl)(Cl)Cl LJCZNYWLQZZIOS-UHFFFAOYSA-N 0.000 description 2
- HLYBTPMYFWWNJN-UHFFFAOYSA-N 2-(2,4-dioxo-1h-pyrimidin-5-yl)-2-hydroxyacetic acid Chemical compound OC(=O)C(O)C1=CNC(=O)NC1=O HLYBTPMYFWWNJN-UHFFFAOYSA-N 0.000 description 2
- ICSNLGPSRYBMBD-UHFFFAOYSA-N 2-aminopyridine Chemical compound NC1=CC=CC=N1 ICSNLGPSRYBMBD-UHFFFAOYSA-N 0.000 description 2
- XMSMHKMPBNTBOD-UHFFFAOYSA-N 2-dimethylamino-6-hydroxypurine Chemical compound N1C(N(C)C)=NC(=O)C2=C1N=CN2 XMSMHKMPBNTBOD-UHFFFAOYSA-N 0.000 description 2
- SMADWRYCYBUIKH-UHFFFAOYSA-N 2-methyl-7h-purin-6-amine Chemical compound CC1=NC(N)=C2NC=NC2=N1 SMADWRYCYBUIKH-UHFFFAOYSA-N 0.000 description 2
- LSBDFXRDZJMBSC-UHFFFAOYSA-N 2-phenylacetamide Chemical class NC(=O)CC1=CC=CC=C1 LSBDFXRDZJMBSC-UHFFFAOYSA-N 0.000 description 2
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 2
- 125000001494 2-propynyl group Chemical group [H]C#CC([H])([H])* 0.000 description 2
- KOLPWZCZXAMXKS-UHFFFAOYSA-N 3-methylcytosine Chemical compound CN1C(N)=CC=NC1=O KOLPWZCZXAMXKS-UHFFFAOYSA-N 0.000 description 2
- GJAKJCICANKRFD-UHFFFAOYSA-N 4-acetyl-4-amino-1,3-dihydropyrimidin-2-one Chemical compound CC(=O)C1(N)NC(=O)NC=C1 GJAKJCICANKRFD-UHFFFAOYSA-N 0.000 description 2
- 125000004172 4-methoxyphenyl group Chemical group [H]C1=C([H])C(OC([H])([H])[H])=C([H])C([H])=C1* 0.000 description 2
- JOOXCMJARBKPKM-UHFFFAOYSA-M 4-oxopentanoate Chemical compound CC(=O)CCC([O-])=O JOOXCMJARBKPKM-UHFFFAOYSA-M 0.000 description 2
- 125000000339 4-pyridyl group Chemical group N1=C([H])C([H])=C([*])C([H])=C1[H] 0.000 description 2
- LQLQRFGHAALLLE-UHFFFAOYSA-N 5-bromouracil Chemical compound BrC1=CNC(=O)NC1=O LQLQRFGHAALLLE-UHFFFAOYSA-N 0.000 description 2
- KELXHQACBIUYSE-UHFFFAOYSA-N 5-methoxy-1h-pyrimidine-2,4-dione Chemical compound COC1=CNC(=O)NC1=O KELXHQACBIUYSE-UHFFFAOYSA-N 0.000 description 2
- DCPSTSVLRXOYGS-UHFFFAOYSA-N 6-amino-1h-pyrimidine-2-thione Chemical compound NC1=CC=NC(S)=N1 DCPSTSVLRXOYGS-UHFFFAOYSA-N 0.000 description 2
- HBAQYPYDRFILMT-UHFFFAOYSA-N 8-[3-(1-cyclopropylpyrazol-4-yl)-1H-pyrazolo[4,3-d]pyrimidin-5-yl]-3-methyl-3,8-diazabicyclo[3.2.1]octan-2-one Chemical class C1(CC1)N1N=CC(=C1)C1=NNC2=C1N=C(N=C2)N1C2C(N(CC1CC2)C)=O HBAQYPYDRFILMT-UHFFFAOYSA-N 0.000 description 2
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 2
- 108091032955 Bacterial small RNA Proteins 0.000 description 2
- KXDAEFPNCMNJSK-UHFFFAOYSA-N Benzamide Chemical compound NC(=O)C1=CC=CC=C1 KXDAEFPNCMNJSK-UHFFFAOYSA-N 0.000 description 2
- DWRXFEITVBNRMK-UHFFFAOYSA-N Beta-D-1-Arabinofuranosylthymine Natural products O=C1NC(=O)C(C)=CN1C1C(O)C(O)C(CO)O1 DWRXFEITVBNRMK-UHFFFAOYSA-N 0.000 description 2
- 108010017384 Blood Proteins Proteins 0.000 description 2
- 102000004506 Blood Proteins Human genes 0.000 description 2
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 2
- 108091033409 CRISPR Proteins 0.000 description 2
- 108010019670 Chimeric Antigen Receptors Proteins 0.000 description 2
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 2
- 206010009944 Colon cancer Diseases 0.000 description 2
- 229920002307 Dextran Polymers 0.000 description 2
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 2
- 108060002716 Exonuclease Proteins 0.000 description 2
- 208000014197 Fetal anticonvulsant syndrome Diseases 0.000 description 2
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 2
- GHASVSINZRGABV-UHFFFAOYSA-N Fluorouracil Chemical compound FC1=CNC(=O)NC1=O GHASVSINZRGABV-UHFFFAOYSA-N 0.000 description 2
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical class NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 2
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 2
- 101000868279 Homo sapiens Leukocyte surface antigen CD47 Proteins 0.000 description 2
- 101000581981 Homo sapiens Neural cell adhesion molecule 1 Proteins 0.000 description 2
- 102000014150 Interferons Human genes 0.000 description 2
- 108010050904 Interferons Proteins 0.000 description 2
- 102000013462 Interleukin-12 Human genes 0.000 description 2
- 102000003810 Interleukin-18 Human genes 0.000 description 2
- 102100030703 Interleukin-22 Human genes 0.000 description 2
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 description 2
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 description 2
- AYFVYJQAPQTCCC-GBXIJSLDSA-N L-threonine Chemical compound C[C@@H](O)[C@H](N)C(O)=O AYFVYJQAPQTCCC-GBXIJSLDSA-N 0.000 description 2
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 2
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical compound CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-M Lactate Chemical compound CC(O)C([O-])=O JVTAAEKCZFNVCJ-UHFFFAOYSA-M 0.000 description 2
- 102100032913 Leukocyte surface antigen CD47 Human genes 0.000 description 2
- 241000124008 Mammalia Species 0.000 description 2
- 206010027476 Metastases Diseases 0.000 description 2
- 241001465754 Metazoa Species 0.000 description 2
- AFVFQIVMOAPDHO-UHFFFAOYSA-N Methanesulfonic acid Chemical compound CS(O)(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-N 0.000 description 2
- SGSSKEDGVONRGC-UHFFFAOYSA-N N(2)-methylguanine Chemical compound O=C1NC(NC)=NC2=C1N=CN2 SGSSKEDGVONRGC-UHFFFAOYSA-N 0.000 description 2
- HYVABZIGRDEKCD-UHFFFAOYSA-N N(6)-dimethylallyladenine Chemical compound CC(C)=CCNC1=NC=NC2=C1N=CN2 HYVABZIGRDEKCD-UHFFFAOYSA-N 0.000 description 2
- OVRNDRQMDRJTHS-CBQIKETKSA-N N-Acetyl-D-Galactosamine Chemical compound CC(=O)N[C@H]1[C@@H](O)O[C@H](CO)[C@H](O)[C@@H]1O OVRNDRQMDRJTHS-CBQIKETKSA-N 0.000 description 2
- MBLBDJOUHNCFQT-UHFFFAOYSA-N N-acetyl-D-galactosamine Natural products CC(=O)NC(C=O)C(O)C(O)C(O)CO MBLBDJOUHNCFQT-UHFFFAOYSA-N 0.000 description 2
- 229910002651 NO3 Inorganic materials 0.000 description 2
- 108010069196 Neural Cell Adhesion Molecules Proteins 0.000 description 2
- 102100027347 Neural cell adhesion molecule 1 Human genes 0.000 description 2
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 2
- 102000007327 Protamines Human genes 0.000 description 2
- 108010007568 Protamines Proteins 0.000 description 2
- 108020004511 Recombinant DNA Proteins 0.000 description 2
- 108091027568 Single-stranded nucleotide Proteins 0.000 description 2
- 108091060271 Small temporal RNA Proteins 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 2
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 2
- 239000004473 Threonine Substances 0.000 description 2
- 239000007983 Tris buffer Substances 0.000 description 2
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Natural products CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 description 2
- FPIPGXGPPPQFEQ-BOOMUCAASA-N Vitamin A Natural products OC/C=C(/C)\C=C\C=C(\C)/C=C/C1=C(C)CCCC1(C)C FPIPGXGPPPQFEQ-BOOMUCAASA-N 0.000 description 2
- HMNZFMSWFCAGGW-XPWSMXQVSA-N [3-[hydroxy(2-hydroxyethoxy)phosphoryl]oxy-2-[(e)-octadec-9-enoyl]oxypropyl] (e)-octadec-9-enoate Chemical compound CCCCCCCC\C=C\CCCCCCCC(=O)OCC(COP(O)(=O)OCCO)OC(=O)CCCCCCC\C=C\CCCCCCCC HMNZFMSWFCAGGW-XPWSMXQVSA-N 0.000 description 2
- 230000001594 aberrant effect Effects 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 2
- ZSLZBFCDCINBPY-ZSJPKINUSA-N acetyl-CoA Chemical compound O[C@@H]1[C@H](OP(O)(O)=O)[C@@H](COP(O)(=O)OP(O)(=O)OCC(C)(C)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)C)O[C@H]1N1C2=NC=NC(N)=C2N=C1 ZSLZBFCDCINBPY-ZSJPKINUSA-N 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- OIRDTQYFTABQOQ-KQYNXXCUSA-N adenosine Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O OIRDTQYFTABQOQ-KQYNXXCUSA-N 0.000 description 2
- 238000011467 adoptive cell therapy Methods 0.000 description 2
- FPIPGXGPPPQFEQ-OVSJKPMPSA-N all-trans-retinol Chemical group OC\C=C(/C)\C=C\C=C(/C)\C=C\C1=C(C)CCCC1(C)C FPIPGXGPPPQFEQ-OVSJKPMPSA-N 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 150000001450 anions Chemical class 0.000 description 2
- 230000010056 antibody-dependent cellular cytotoxicity Effects 0.000 description 2
- PYMYPHUHKUWMLA-UHFFFAOYSA-N arabinose Natural products OCC(O)C(O)C(O)C=O PYMYPHUHKUWMLA-UHFFFAOYSA-N 0.000 description 2
- SCJNCDSAIRBRIA-DOFZRALJSA-N arachidonyl-2'-chloroethylamide Chemical compound CCCCC\C=C/C\C=C/C\C=C/C\C=C/CCCC(=O)NCCCl SCJNCDSAIRBRIA-DOFZRALJSA-N 0.000 description 2
- 125000004104 aryloxy group Chemical group 0.000 description 2
- 238000003556 assay Methods 0.000 description 2
- 239000011324 bead Substances 0.000 description 2
- SRBFZHDQGSBBOR-UHFFFAOYSA-N beta-D-Pyranose-Lyxose Natural products OC1COC(O)C(O)C1O SRBFZHDQGSBBOR-UHFFFAOYSA-N 0.000 description 2
- 230000004071 biological effect Effects 0.000 description 2
- 210000000988 bone and bone Anatomy 0.000 description 2
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 2
- 229910052794 bromium Inorganic materials 0.000 description 2
- 125000004369 butenyl group Chemical group C(=CCC)* 0.000 description 2
- VHRGRCVQAFMJIZ-UHFFFAOYSA-N cadaverine Chemical compound NCCCCCN VHRGRCVQAFMJIZ-UHFFFAOYSA-N 0.000 description 2
- 239000001506 calcium phosphate Substances 0.000 description 2
- 229910000389 calcium phosphate Inorganic materials 0.000 description 2
- 235000011010 calcium phosphates Nutrition 0.000 description 2
- 238000002619 cancer immunotherapy Methods 0.000 description 2
- 238000005251 capillar electrophoresis Methods 0.000 description 2
- 150000001721 carbon Chemical group 0.000 description 2
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 2
- 210000000170 cell membrane Anatomy 0.000 description 2
- 239000006285 cell suspension Substances 0.000 description 2
- 230000007960 cellular response to stress Effects 0.000 description 2
- 239000013522 chelant Substances 0.000 description 2
- 239000000460 chlorine Substances 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- 150000001841 cholesterols Chemical class 0.000 description 2
- 230000021615 conjugation Effects 0.000 description 2
- 230000000139 costimulatory effect Effects 0.000 description 2
- 238000012258 culturing Methods 0.000 description 2
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 2
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 2
- 125000001559 cyclopropyl group Chemical group [H]C1([H])C([H])([H])C1([H])* 0.000 description 2
- 238000002784 cytotoxicity assay Methods 0.000 description 2
- 231100000263 cytotoxicity test Toxicity 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000001627 detrimental effect Effects 0.000 description 2
- 239000003085 diluting agent Substances 0.000 description 2
- PSLWZOIUBRXAQW-UHFFFAOYSA-M dimethyl(dioctadecyl)azanium;bromide Chemical compound [Br-].CCCCCCCCCCCCCCCCCC[N+](C)(C)CCCCCCCCCCCCCCCCCC PSLWZOIUBRXAQW-UHFFFAOYSA-M 0.000 description 2
- 125000005982 diphenylmethyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])(*)C1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 description 2
- ZGSPNIOCEDOHGS-UHFFFAOYSA-L disodium [3-[2,3-di(octadeca-9,12-dienoyloxy)propoxy-oxidophosphoryl]oxy-2-hydroxypropyl] 2,3-di(octadeca-9,12-dienoyloxy)propyl phosphate Chemical compound [Na+].[Na+].CCCCCC=CCC=CCCCCCCCC(=O)OCC(OC(=O)CCCCCCCC=CCC=CCCCCC)COP([O-])(=O)OCC(O)COP([O-])(=O)OCC(OC(=O)CCCCCCCC=CCC=CCCCCC)COC(=O)CCCCCCCC=CCC=CCCCCC ZGSPNIOCEDOHGS-UHFFFAOYSA-L 0.000 description 2
- 239000000975 dye Substances 0.000 description 2
- 230000008030 elimination Effects 0.000 description 2
- 238000003379 elimination reaction Methods 0.000 description 2
- 238000005538 encapsulation Methods 0.000 description 2
- 230000012202 endocytosis Effects 0.000 description 2
- 230000002255 enzymatic effect Effects 0.000 description 2
- 210000003527 eukaryotic cell Anatomy 0.000 description 2
- 102000013165 exonuclease Human genes 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000001943 fluorescence-activated cell sorting Methods 0.000 description 2
- 239000011737 fluorine Substances 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 229960002949 fluorouracil Drugs 0.000 description 2
- 239000012737 fresh medium Substances 0.000 description 2
- 238000003197 gene knockdown Methods 0.000 description 2
- 230000002068 genetic effect Effects 0.000 description 2
- 230000005017 genetic modification Effects 0.000 description 2
- 235000013617 genetically modified food Nutrition 0.000 description 2
- 239000001963 growth medium Substances 0.000 description 2
- 125000004405 heteroalkoxy group Chemical group 0.000 description 2
- 125000005553 heteroaryloxy group Chemical group 0.000 description 2
- 125000005368 heteroarylthio group Chemical group 0.000 description 2
- 150000002402 hexoses Chemical class 0.000 description 2
- FDGQSTZJBFJUBT-UHFFFAOYSA-N hypoxanthine Chemical compound O=C1NC=NC2=C1NC=N2 FDGQSTZJBFJUBT-UHFFFAOYSA-N 0.000 description 2
- 230000007954 hypoxia Effects 0.000 description 2
- 239000012642 immune effector Substances 0.000 description 2
- 229940121354 immunomodulator Drugs 0.000 description 2
- 238000010348 incorporation Methods 0.000 description 2
- 125000001041 indolyl group Chemical group 0.000 description 2
- 238000001802 infusion Methods 0.000 description 2
- 239000003112 inhibitor Substances 0.000 description 2
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 2
- 229940079322 interferon Drugs 0.000 description 2
- 230000003834 intracellular effect Effects 0.000 description 2
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 description 2
- 229960000310 isoleucine Drugs 0.000 description 2
- FZWBNHMXJMCXLU-BLAUPYHCSA-N isomaltotriose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1OC[C@@H]1[C@@H](O)[C@H](O)[C@@H](O)[C@@H](OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C=O)O1 FZWBNHMXJMCXLU-BLAUPYHCSA-N 0.000 description 2
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 201000001441 melanoma Diseases 0.000 description 2
- 230000009401 metastasis Effects 0.000 description 2
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 2
- QCAWEPFNJXQPAN-UHFFFAOYSA-N methoxyfenozide Chemical compound COC1=CC=CC(C(=O)NN(C(=O)C=2C=C(C)C=C(C)C=2)C(C)(C)C)=C1C QCAWEPFNJXQPAN-UHFFFAOYSA-N 0.000 description 2
- 125000000325 methylidene group Chemical group [H]C([H])=* 0.000 description 2
- 125000004092 methylthiomethyl group Chemical group [H]C([H])([H])SC([H])([H])* 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 238000010369 molecular cloning Methods 0.000 description 2
- 125000001624 naphthyl group Chemical group 0.000 description 2
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 2
- 231100000252 nontoxic Toxicity 0.000 description 2
- 230000003000 nontoxic effect Effects 0.000 description 2
- 150000002905 orthoesters Chemical class 0.000 description 2
- 125000004430 oxygen atom Chemical group O* 0.000 description 2
- 235000016236 parenteral nutrition Nutrition 0.000 description 2
- 238000005192 partition Methods 0.000 description 2
- 210000005259 peripheral blood Anatomy 0.000 description 2
- 239000011886 peripheral blood Substances 0.000 description 2
- 239000008194 pharmaceutical composition Substances 0.000 description 2
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 description 2
- WTJKGGKOPKCXLL-RRHRGVEJSA-N phosphatidylcholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCCC=CCCCCCCCC WTJKGGKOPKCXLL-RRHRGVEJSA-N 0.000 description 2
- 229920000729 poly(L-lysine) polymer Polymers 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- OLBCVFGFOZPWHH-UHFFFAOYSA-N propofol Chemical compound CC(C)C1=CC=CC(C(C)C)=C1O OLBCVFGFOZPWHH-UHFFFAOYSA-N 0.000 description 2
- 229940048914 protamine Drugs 0.000 description 2
- 235000004252 protein component Nutrition 0.000 description 2
- ZCCUUQDIBDJBTK-UHFFFAOYSA-N psoralen Chemical compound C1=C2OC(=O)C=CC2=CC2=C1OC=C2 ZCCUUQDIBDJBTK-UHFFFAOYSA-N 0.000 description 2
- KIDHWZJUCRJVML-UHFFFAOYSA-N putrescine Chemical compound NCCCCN KIDHWZJUCRJVML-UHFFFAOYSA-N 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- 125000000548 ribosyl group Chemical group C1([C@H](O)[C@H](O)[C@H](O1)CO)* 0.000 description 2
- DWRXFEITVBNRMK-JXOAFFINSA-N ribothymidine Chemical compound O=C1NC(=O)C(C)=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](CO)O1 DWRXFEITVBNRMK-JXOAFFINSA-N 0.000 description 2
- 150000004671 saturated fatty acids Chemical class 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- ATHGHQPFGPMSJY-UHFFFAOYSA-N spermidine Chemical compound NCCCCNCCCN ATHGHQPFGPMSJY-UHFFFAOYSA-N 0.000 description 2
- PFNFFQXMRSDOHW-UHFFFAOYSA-N spermine Chemical compound NCCCNCCCCNCCCN PFNFFQXMRSDOHW-UHFFFAOYSA-N 0.000 description 2
- 230000006641 stabilisation Effects 0.000 description 2
- 238000011105 stabilization Methods 0.000 description 2
- 238000010186 staining Methods 0.000 description 2
- 238000007920 subcutaneous administration Methods 0.000 description 2
- 125000005017 substituted alkenyl group Chemical group 0.000 description 2
- 125000005415 substituted alkoxy group Chemical group 0.000 description 2
- 125000000547 substituted alkyl group Chemical group 0.000 description 2
- 125000004426 substituted alkynyl group Chemical group 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 238000007910 systemic administration Methods 0.000 description 2
- 108091035539 telomere Proteins 0.000 description 2
- 102000055501 telomere Human genes 0.000 description 2
- 210000003411 telomere Anatomy 0.000 description 2
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 2
- 125000001412 tetrahydropyranyl group Chemical group 0.000 description 2
- 125000003396 thiol group Chemical group [H]S* 0.000 description 2
- 229940113082 thymine Drugs 0.000 description 2
- 239000012096 transfection reagent Substances 0.000 description 2
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 2
- 125000000025 triisopropylsilyl group Chemical group C(C)(C)[Si](C(C)C)(C(C)C)* 0.000 description 2
- 125000005454 tryptophanyl group Chemical group 0.000 description 2
- 210000003171 tumor-infiltrating lymphocyte Anatomy 0.000 description 2
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 2
- 150000004670 unsaturated fatty acids Chemical class 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 239000004474 valine Substances 0.000 description 2
- 230000003612 virological effect Effects 0.000 description 2
- 235000019155 vitamin A Nutrition 0.000 description 2
- 239000011719 vitamin A Substances 0.000 description 2
- 229940045997 vitamin a Drugs 0.000 description 2
- 239000008215 water for injection Substances 0.000 description 2
- 229940075420 xanthine Drugs 0.000 description 2
- FTVXFBJENACRRL-UHFFFAOYSA-N (1-hydroxypiperidin-2-yl) carbamate Chemical compound NC(=O)OC1CCCCN1O FTVXFBJENACRRL-UHFFFAOYSA-N 0.000 description 1
- KLWCNEYVHPBUNM-UHFFFAOYSA-N (1-methylcyclobutyl) carbamate Chemical compound NC(=O)OC1(C)CCC1 KLWCNEYVHPBUNM-UHFFFAOYSA-N 0.000 description 1
- AKIHTGIGOHBKGE-UHFFFAOYSA-N (1-methylcyclohexyl) carbamate Chemical compound NC(=O)OC1(C)CCCCC1 AKIHTGIGOHBKGE-UHFFFAOYSA-N 0.000 description 1
- KJOPTLWVYZCJBX-UHFFFAOYSA-N (2,4,6-trimethylphenyl)methyl carbamate Chemical class CC1=CC(C)=C(COC(N)=O)C(C)=C1 KJOPTLWVYZCJBX-UHFFFAOYSA-N 0.000 description 1
- IUZVXNNZBSTDJT-UHFFFAOYSA-N (2,4,6-tritert-butylphenyl) carbamate Chemical compound CC(C)(C)C1=CC(C(C)(C)C)=C(OC(N)=O)C(C(C)(C)C)=C1 IUZVXNNZBSTDJT-UHFFFAOYSA-N 0.000 description 1
- LZZRHUUMSXNYBI-UHFFFAOYSA-N (2,4-dichlorophenyl)methyl carbamate Chemical compound NC(=O)OCC1=CC=C(Cl)C=C1Cl LZZRHUUMSXNYBI-UHFFFAOYSA-N 0.000 description 1
- LEDMDNAHWYVAPC-UHFFFAOYSA-N (2-carbamoylphenyl)methyl benzoate Chemical compound NC(=O)C1=CC=CC=C1COC(=O)C1=CC=CC=C1 LEDMDNAHWYVAPC-UHFFFAOYSA-N 0.000 description 1
- SWHAGWLVMRLFKO-UHFFFAOYSA-N (2-nitrophenyl)methyl carbamate Chemical compound NC(=O)OCC1=CC=CC=C1[N+]([O-])=O SWHAGWLVMRLFKO-UHFFFAOYSA-N 0.000 description 1
- MTCFGRXMJLQNBG-REOHCLBHSA-N (2S)-2-Amino-3-hydroxypropansäure Chemical compound OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 description 1
- OVTLOLNDKQUMRH-QMMMGPOBSA-N (2r)-2-[(2-methylpropan-2-yl)oxycarbonylamino]-3-[(3-nitropyridin-2-yl)disulfanyl]propanoic acid Chemical group CC(C)(C)OC(=O)N[C@H](C(O)=O)CSSC1=NC=CC=C1[N+]([O-])=O OVTLOLNDKQUMRH-QMMMGPOBSA-N 0.000 description 1
- HIPYHINICCKLGX-UHFFFAOYSA-N (3,5-dimethoxyphenyl)methyl carbamate Chemical compound COC1=CC(COC(N)=O)=CC(OC)=C1 HIPYHINICCKLGX-UHFFFAOYSA-N 0.000 description 1
- YVOBGLMMNWZYCL-UHFFFAOYSA-N (3-nitrophenyl) carbamate Chemical compound NC(=O)OC1=CC=CC([N+]([O-])=O)=C1 YVOBGLMMNWZYCL-UHFFFAOYSA-N 0.000 description 1
- WTKQMHWYSBWUBE-UHFFFAOYSA-N (3-nitropyridin-2-yl) thiohypochlorite Chemical compound [O-][N+](=O)C1=CC=CN=C1SCl WTKQMHWYSBWUBE-UHFFFAOYSA-N 0.000 description 1
- BHQCQFFYRZLCQQ-UHFFFAOYSA-N (3alpha,5alpha,7alpha,12alpha)-3,7,12-trihydroxy-cholan-24-oic acid Natural products OC1CC2CC(O)CCC2(C)C2C1C1CCC(C(CCC(O)=O)C)C1(C)C(O)C2 BHQCQFFYRZLCQQ-UHFFFAOYSA-N 0.000 description 1
- AWOKSNNHYRGYIA-UHFFFAOYSA-N (4,5-dimethoxy-2-nitrophenyl)methyl carbamate Chemical compound COC1=CC(COC(N)=O)=C([N+]([O-])=O)C=C1OC AWOKSNNHYRGYIA-UHFFFAOYSA-N 0.000 description 1
- XHTUZBFAOYRMHI-UHFFFAOYSA-N (4-bromophenyl)methyl carbamate Chemical compound NC(=O)OCC1=CC=C(Br)C=C1 XHTUZBFAOYRMHI-UHFFFAOYSA-N 0.000 description 1
- SODPIMGUZLOIPE-UHFFFAOYSA-N (4-chlorophenoxy)acetic acid Chemical compound OC(=O)COC1=CC=C(Cl)C=C1 SODPIMGUZLOIPE-UHFFFAOYSA-N 0.000 description 1
- HIIOEWGKFCWTJU-UHFFFAOYSA-N (4-chlorophenyl)methyl carbamate Chemical compound NC(=O)OCC1=CC=C(Cl)C=C1 HIIOEWGKFCWTJU-UHFFFAOYSA-N 0.000 description 1
- NULWVEYYQSYAHP-UHFFFAOYSA-N (4-cyanophenyl)methyl carbamate Chemical compound NC(=O)OCC1=CC=C(C#N)C=C1 NULWVEYYQSYAHP-UHFFFAOYSA-N 0.000 description 1
- OKLFHGKWEQKSDZ-UHFFFAOYSA-N (4-methoxyphenyl)methanimine Chemical compound COC1=CC=C(C=N)C=C1 OKLFHGKWEQKSDZ-UHFFFAOYSA-N 0.000 description 1
- SDEOSHAQCMPJIJ-UHFFFAOYSA-N (4-methoxyphenyl)methyl carbamate Chemical compound COC1=CC=C(COC(N)=O)C=C1 SDEOSHAQCMPJIJ-UHFFFAOYSA-N 0.000 description 1
- WNNZAHBBDIVWBB-UHFFFAOYSA-N (4-methylsulfanylphenyl) carbamate Chemical compound CSC1=CC=C(OC(N)=O)C=C1 WNNZAHBBDIVWBB-UHFFFAOYSA-N 0.000 description 1
- RZTAQRMRWPYVRR-UHFFFAOYSA-N (4-methylsulfinylphenyl)methyl carbamate Chemical compound CS(=O)C1=CC=C(COC(N)=O)C=C1 RZTAQRMRWPYVRR-UHFFFAOYSA-N 0.000 description 1
- LRJOVUGHUMSKFA-UHFFFAOYSA-N (4-nitrophenyl)methanimine Chemical compound [O-][N+](=O)C1=CC=C(C=N)C=C1 LRJOVUGHUMSKFA-UHFFFAOYSA-N 0.000 description 1
- HQNKOEZESXBYJA-UHFFFAOYSA-N (4-phenyldiazenylphenyl)methyl carbamate Chemical compound C1=CC(COC(=O)N)=CC=C1N=NC1=CC=CC=C1 HQNKOEZESXBYJA-UHFFFAOYSA-N 0.000 description 1
- QGKMIGUHVLGJBR-UHFFFAOYSA-M (4z)-1-(3-methylbutyl)-4-[[1-(3-methylbutyl)quinolin-1-ium-4-yl]methylidene]quinoline;iodide Chemical compound [I-].C12=CC=CC=C2N(CCC(C)C)C=CC1=CC1=CC=[N+](CCC(C)C)C2=CC=CC=C12 QGKMIGUHVLGJBR-UHFFFAOYSA-M 0.000 description 1
- XIIAYQZJNBULGD-UHFFFAOYSA-N (5alpha)-cholestane Natural products C1CC2CCCCC2(C)C2C1C1CCC(C(C)CCCC(C)C)C1(C)CC2 XIIAYQZJNBULGD-UHFFFAOYSA-N 0.000 description 1
- 125000003837 (C1-C20) alkyl group Chemical group 0.000 description 1
- 125000006527 (C1-C5) alkyl group Chemical group 0.000 description 1
- 125000004169 (C1-C6) alkyl group Chemical group 0.000 description 1
- 125000004209 (C1-C8) alkyl group Chemical group 0.000 description 1
- 125000006729 (C2-C5) alkenyl group Chemical group 0.000 description 1
- 125000006730 (C2-C5) alkynyl group Chemical group 0.000 description 1
- HEVMDQBCAHEHDY-UHFFFAOYSA-N (Dimethoxymethyl)benzene Chemical compound COC(OC)C1=CC=CC=C1 HEVMDQBCAHEHDY-UHFFFAOYSA-N 0.000 description 1
- YWOLNFOHNPSSOE-GORDUTHDSA-N (e)-2-methyl-1,4-dinitrobut-2-ene Chemical compound [O-][N+](=O)CC(/C)=C/C[N+]([O-])=O YWOLNFOHNPSSOE-GORDUTHDSA-N 0.000 description 1
- RASLWNGTMHFPIQ-AATRIKPKSA-N (e)-3-(2-nitrophenyl)prop-2-enamide Chemical compound NC(=O)\C=C\C1=CC=CC=C1[N+]([O-])=O RASLWNGTMHFPIQ-AATRIKPKSA-N 0.000 description 1
- ZOJKRWXDNYZASL-NSCUHMNNSA-N (e)-4-methoxybut-2-enoic acid Chemical compound COC\C=C\C(O)=O ZOJKRWXDNYZASL-NSCUHMNNSA-N 0.000 description 1
- TTXKLVVJWALEOY-UHFFFAOYSA-N 1,2-benzoxazol-5-ylmethyl carbamate Chemical compound NC(=O)OCC1=CC=C2ON=CC2=C1 TTXKLVVJWALEOY-UHFFFAOYSA-N 0.000 description 1
- FVXDQWZBHIXIEJ-LNDKUQBDSA-N 1,2-di-[(9Z,12Z)-octadecadienoyl]-sn-glycero-3-phosphocholine Chemical compound CCCCC\C=C/C\C=C/CCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCC\C=C/C\C=C/CCCCC FVXDQWZBHIXIEJ-LNDKUQBDSA-N 0.000 description 1
- MLKLDGSYMHFAOC-AREMUKBSSA-N 1,2-dicapryl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCCCC MLKLDGSYMHFAOC-AREMUKBSSA-N 0.000 description 1
- KILNVBDSWZSGLL-KXQOOQHDSA-N 1,2-dihexadecanoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCCCCCCCCCC KILNVBDSWZSGLL-KXQOOQHDSA-N 0.000 description 1
- PORPENFLTBBHSG-MGBGTMOVSA-N 1,2-dihexadecanoyl-sn-glycerol-3-phosphate Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP(O)(O)=O)OC(=O)CCCCCCCCCCCCCCC PORPENFLTBBHSG-MGBGTMOVSA-N 0.000 description 1
- MWRBNPKJOOWZPW-NYVOMTAGSA-N 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine zwitterion Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OC[C@H](COP(O)(=O)OCCN)OC(=O)CCCCCCC\C=C/CCCCCCCC MWRBNPKJOOWZPW-NYVOMTAGSA-N 0.000 description 1
- 150000000185 1,3-diols Chemical class 0.000 description 1
- VAYTZRYEBVHVLE-UHFFFAOYSA-N 1,3-dioxol-2-one Chemical compound O=C1OC=CO1 VAYTZRYEBVHVLE-UHFFFAOYSA-N 0.000 description 1
- IDPURXSQCKYKIJ-UHFFFAOYSA-N 1-(4-methoxyphenyl)methanamine Chemical compound COC1=CC=C(CN)C=C1 IDPURXSQCKYKIJ-UHFFFAOYSA-N 0.000 description 1
- GRJDAVSXJPWJNJ-RCYBNZJXSA-N 1-[(2r,3r,4s,5s)-5-[bromo(hydroxy)methyl]-3,4-dihydroxyoxolan-2-yl]pyrimidine-2,4-dione Chemical compound O[C@@H]1[C@H](O)[C@@H](C(Br)O)O[C@H]1N1C(=O)NC(=O)C=C1 GRJDAVSXJPWJNJ-RCYBNZJXSA-N 0.000 description 1
- FJANNOJSTOGZHK-UHFFFAOYSA-N 1-adamantyl carbamate Chemical compound C1C(C2)CC3CC2CC1(OC(=O)N)C3 FJANNOJSTOGZHK-UHFFFAOYSA-N 0.000 description 1
- MNCMBBIFTVWHIP-UHFFFAOYSA-N 1-anthracen-9-yl-2,2,2-trifluoroethanone Chemical group C1=CC=C2C(C(=O)C(F)(F)F)=C(C=CC=C3)C3=CC2=C1 MNCMBBIFTVWHIP-UHFFFAOYSA-N 0.000 description 1
- UHDGCWIWMRVCDJ-UHFFFAOYSA-N 1-beta-D-Xylofuranosyl-NH-Cytosine Natural products O=C1N=C(N)C=CN1C1C(O)C(O)C(CO)O1 UHDGCWIWMRVCDJ-UHFFFAOYSA-N 0.000 description 1
- XIUQHVQLGXTGGN-UHFFFAOYSA-N 1-cyclopropylethyl carbamate Chemical compound NC(=O)OC(C)C1CC1 XIUQHVQLGXTGGN-UHFFFAOYSA-N 0.000 description 1
- CWLUFVAFWWNXJZ-UHFFFAOYSA-N 1-hydroxypyrrolidine Chemical group ON1CCCC1 CWLUFVAFWWNXJZ-UHFFFAOYSA-N 0.000 description 1
- SATCOUWSAZBIJO-UHFFFAOYSA-N 1-methyladenine Natural products N=C1N(C)C=NC2=C1NC=N2 SATCOUWSAZBIJO-UHFFFAOYSA-N 0.000 description 1
- IIZPXYDJLKNOIY-JXPKJXOSSA-N 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC IIZPXYDJLKNOIY-JXPKJXOSSA-N 0.000 description 1
- 125000000530 1-propynyl group Chemical group [H]C([H])([H])C#C* 0.000 description 1
- TZMSYXZUNZXBOL-UHFFFAOYSA-N 10H-phenoxazine Chemical compound C1=CC=C2NC3=CC=CC=C3OC2=C1 TZMSYXZUNZXBOL-UHFFFAOYSA-N 0.000 description 1
- RFCQJGFZUQFYRF-UHFFFAOYSA-N 2'-O-Methylcytidine Natural products COC1C(O)C(CO)OC1N1C(=O)N=C(N)C=C1 RFCQJGFZUQFYRF-UHFFFAOYSA-N 0.000 description 1
- SXUXMRMBWZCMEN-UHFFFAOYSA-N 2'-O-methyl uridine Natural products COC1C(O)C(CO)OC1N1C(=O)NC(=O)C=C1 SXUXMRMBWZCMEN-UHFFFAOYSA-N 0.000 description 1
- RFCQJGFZUQFYRF-ZOQUXTDFSA-N 2'-O-methylcytidine Chemical compound CO[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)N=C(N)C=C1 RFCQJGFZUQFYRF-ZOQUXTDFSA-N 0.000 description 1
- UPQQXPKAYZYUKO-UHFFFAOYSA-N 2,2,2-trichloroacetamide Chemical class OC(=N)C(Cl)(Cl)Cl UPQQXPKAYZYUKO-UHFFFAOYSA-N 0.000 description 1
- QPLJYAKLSCXZSF-UHFFFAOYSA-N 2,2,2-trichloroethyl carbamate Chemical compound NC(=O)OCC(Cl)(Cl)Cl QPLJYAKLSCXZSF-UHFFFAOYSA-N 0.000 description 1
- 125000000453 2,2,2-trichloroethyl group Chemical group [H]C([H])(*)C(Cl)(Cl)Cl 0.000 description 1
- NRKYWOKHZRQRJR-UHFFFAOYSA-N 2,2,2-trifluoroacetamide Chemical class NC(=O)C(F)(F)F NRKYWOKHZRQRJR-UHFFFAOYSA-N 0.000 description 1
- XNMOEWPBTNQAQB-UHFFFAOYSA-N 2,2,5,7,8-pentamethyl-3,4-dihydrochromene-6-sulfonamide Chemical compound C1CC(C)(C)OC2=C1C(C)=C(S(N)(=O)=O)C(C)=C2C XNMOEWPBTNQAQB-UHFFFAOYSA-N 0.000 description 1
- RSMRWWHFJMENJH-LQDDAWAPSA-M 2,3-bis[[(z)-octadec-9-enoyl]oxy]propyl-trimethylazanium;methyl sulfate Chemical compound COS([O-])(=O)=O.CCCCCCCC\C=C/CCCCCCCC(=O)OCC(C[N+](C)(C)C)OC(=O)CCCCCCC\C=C/CCCCCCCC RSMRWWHFJMENJH-LQDDAWAPSA-M 0.000 description 1
- PXVUDLXXKGSXHH-UHFFFAOYSA-N 2,4,6-trimethoxybenzenesulfonamide Chemical compound COC1=CC(OC)=C(S(N)(=O)=O)C(OC)=C1 PXVUDLXXKGSXHH-UHFFFAOYSA-N 0.000 description 1
- YECJUZIGFPJWGQ-UHFFFAOYSA-N 2,4,6-trimethylbenzenesulfonamide Chemical compound CC1=CC(C)=C(S(N)(=O)=O)C(C)=C1 YECJUZIGFPJWGQ-UHFFFAOYSA-N 0.000 description 1
- FFFIRKXTFQCCKJ-UHFFFAOYSA-M 2,4,6-trimethylbenzoate Chemical compound CC1=CC(C)=C(C([O-])=O)C(C)=C1 FFFIRKXTFQCCKJ-UHFFFAOYSA-M 0.000 description 1
- 125000001917 2,4-dinitrophenyl group Chemical group [H]C1=C([H])C(=C([H])C(=C1*)[N+]([O-])=O)[N+]([O-])=O 0.000 description 1
- YJRISODHEYGPEL-UHFFFAOYSA-N 2,6-dimethoxy-4-methylbenzenesulfonamide Chemical compound COC1=CC(C)=CC(OC)=C1S(N)(=O)=O YJRISODHEYGPEL-UHFFFAOYSA-N 0.000 description 1
- RAZYITMMROGJHO-UHFFFAOYSA-N 2-(2,5-dioxopyrrolidin-1-yl)-4-[2-(2,5-dioxopyrrol-1-yl)phenyl]-2-sulfobutanoic acid Chemical compound O=C1CCC(=O)N1C(S(O)(=O)=O)(C(=O)O)CCC1=CC=CC=C1N1C(=O)C=CC1=O RAZYITMMROGJHO-UHFFFAOYSA-N 0.000 description 1
- YURLCYGZYWDCHL-UHFFFAOYSA-N 2-(2,6-dichloro-4-methylphenoxy)acetic acid Chemical compound CC1=CC(Cl)=C(OCC(O)=O)C(Cl)=C1 YURLCYGZYWDCHL-UHFFFAOYSA-N 0.000 description 1
- DVCVYHFEWYAJCP-UHFFFAOYSA-N 2-(2-nitrophenoxy)acetamide Chemical compound NC(=O)COC1=CC=CC=C1[N+]([O-])=O DVCVYHFEWYAJCP-UHFFFAOYSA-N 0.000 description 1
- JTQUNAJHSFYGSN-UHFFFAOYSA-N 2-(4-methylphenyl)sulfonylethyl carbamate Chemical compound CC1=CC=C(S(=O)(=O)CCOC(N)=O)C=C1 JTQUNAJHSFYGSN-UHFFFAOYSA-N 0.000 description 1
- RHTMIQNZSGHFCN-UHFFFAOYSA-N 2-(4-phenyldiazenylphenyl)propan-2-yl carbamate Chemical compound C1=CC(C(C)(OC(N)=O)C)=CC=C1N=NC1=CC=CC=C1 RHTMIQNZSGHFCN-UHFFFAOYSA-N 0.000 description 1
- KXKIBGGGFMXVBJ-UHFFFAOYSA-N 2-(4-phenylphenyl)propan-2-yl carbamate Chemical compound C1=CC(C(C)(OC(N)=O)C)=CC=C1C1=CC=CC=C1 KXKIBGGGFMXVBJ-UHFFFAOYSA-N 0.000 description 1
- TYYAMZMDZWXHHA-UHFFFAOYSA-N 2-(dibromomethyl)benzoic acid Chemical compound OC(=O)C1=CC=CC=C1C(Br)Br TYYAMZMDZWXHHA-UHFFFAOYSA-N 0.000 description 1
- JGYNXZIYXGSEJH-UHFFFAOYSA-N 2-(methylsulfanylmethoxymethyl)benzoic acid Chemical compound CSCOCC1=CC=CC=C1C(O)=O JGYNXZIYXGSEJH-UHFFFAOYSA-N 0.000 description 1
- YHHSONZFOIEMCP-UHFFFAOYSA-N 2-(trimethylazaniumyl)ethyl hydrogen phosphate Chemical class C[N+](C)(C)CCOP(O)([O-])=O YHHSONZFOIEMCP-UHFFFAOYSA-N 0.000 description 1
- 125000003821 2-(trimethylsilyl)ethoxymethyl group Chemical group [H]C([H])([H])[Si](C([H])([H])[H])(C([H])([H])[H])C([H])([H])C(OC([H])([H])[*])([H])[H] 0.000 description 1
- SGAKLDIYNFXTCK-UHFFFAOYSA-N 2-[(2,4-dioxo-1h-pyrimidin-5-yl)methylamino]acetic acid Chemical compound OC(=O)CNCC1=CNC(=O)NC1=O SGAKLDIYNFXTCK-UHFFFAOYSA-N 0.000 description 1
- YSAJFXWTVFGPAX-UHFFFAOYSA-N 2-[(2,4-dioxo-1h-pyrimidin-5-yl)oxy]acetic acid Chemical compound OC(=O)COC1=CNC(=O)NC1=O YSAJFXWTVFGPAX-UHFFFAOYSA-N 0.000 description 1
- SVBOROZXXYRWJL-UHFFFAOYSA-N 2-[(4-oxo-2-sulfanylidene-1h-pyrimidin-5-yl)methylamino]acetic acid Chemical compound OC(=O)CNCC1=CNC(=S)NC1=O SVBOROZXXYRWJL-UHFFFAOYSA-N 0.000 description 1
- QXQMENSTZKYZCE-UHFFFAOYSA-N 2-[2,4-bis(2-methylbutan-2-yl)phenoxy]acetic acid Chemical compound CCC(C)(C)C1=CC=C(OCC(O)=O)C(C(C)(C)CC)=C1 QXQMENSTZKYZCE-UHFFFAOYSA-N 0.000 description 1
- XTRFZKJEMAVUIK-UHFFFAOYSA-N 2-[2,6-dichloro-4-(2,4,4-trimethylpentan-2-yl)phenoxy]acetic acid Chemical compound CC(C)(C)CC(C)(C)C1=CC(Cl)=C(OCC(O)=O)C(Cl)=C1 XTRFZKJEMAVUIK-UHFFFAOYSA-N 0.000 description 1
- JRYMOPZHXMVHTA-DAGMQNCNSA-N 2-amino-7-[(2r,3r,4s,5r)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-1h-pyrrolo[2,3-d]pyrimidin-4-one Chemical compound C1=CC=2C(=O)NC(N)=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O JRYMOPZHXMVHTA-DAGMQNCNSA-N 0.000 description 1
- UJRMHFPTLFNSTA-UHFFFAOYSA-N 2-chloro-2,2-diphenylacetic acid Chemical compound C=1C=CC=CC=1C(Cl)(C(=O)O)C1=CC=CC=C1 UJRMHFPTLFNSTA-UHFFFAOYSA-N 0.000 description 1
- SHHKMWMIKILKQW-UHFFFAOYSA-N 2-formylbenzenesulfonic acid Chemical compound OS(=O)(=O)C1=CC=CC=C1C=O SHHKMWMIKILKQW-UHFFFAOYSA-N 0.000 description 1
- CJNZAXGUTKBIHP-UHFFFAOYSA-M 2-iodobenzoate Chemical compound [O-]C(=O)C1=CC=CC=C1I CJNZAXGUTKBIHP-UHFFFAOYSA-M 0.000 description 1
- UYCIUCIKUGYNBR-UHFFFAOYSA-N 2-iodoethyl carbamate Chemical compound NC(=O)OCCI UYCIUCIKUGYNBR-UHFFFAOYSA-N 0.000 description 1
- LPUAWADEOBHDIP-UHFFFAOYSA-N 2-methyl-2-(2-nitrophenoxy)propanamide Chemical compound NC(=O)C(C)(C)OC1=CC=CC=C1[N+]([O-])=O LPUAWADEOBHDIP-UHFFFAOYSA-N 0.000 description 1
- OBEJXZIQPCOKSK-UHFFFAOYSA-N 2-methyl-2-(2-phenyldiazenylphenoxy)propanamide Chemical compound NC(=O)C(C)(C)OC1=CC=CC=C1N=NC1=CC=CC=C1 OBEJXZIQPCOKSK-UHFFFAOYSA-N 0.000 description 1
- SDJNOBUNFYNROE-UHFFFAOYSA-N 2-methylbut-3-yn-2-yl carbamate Chemical compound C#CC(C)(C)OC(N)=O SDJNOBUNFYNROE-UHFFFAOYSA-N 0.000 description 1
- BRUZQRBVNRKLJG-UHFFFAOYSA-N 2-methylpropyl carbamate Chemical compound CC(C)COC(N)=O BRUZQRBVNRKLJG-UHFFFAOYSA-N 0.000 description 1
- OWXVECVXBTWHPP-UHFFFAOYSA-N 2-methylsulfanylethyl carbamate Chemical compound CSCCOC(N)=O OWXVECVXBTWHPP-UHFFFAOYSA-N 0.000 description 1
- IXTODZAWAAKENF-UHFFFAOYSA-N 2-methylsulfonylethyl carbamate Chemical compound CS(=O)(=O)CCOC(N)=O IXTODZAWAAKENF-UHFFFAOYSA-N 0.000 description 1
- KLGQWSOYKYFBTR-UHFFFAOYSA-N 2-nitrobenzamide Chemical compound NC(=O)C1=CC=CC=C1[N+]([O-])=O KLGQWSOYKYFBTR-UHFFFAOYSA-N 0.000 description 1
- MUAUTBNKPSNTFM-UHFFFAOYSA-N 2-phenylethyl carbamate Chemical compound NC(=O)OCCC1=CC=CC=C1 MUAUTBNKPSNTFM-UHFFFAOYSA-N 0.000 description 1
- UCZSGRLQZLKLCQ-UHFFFAOYSA-N 2-phenylpropan-2-yl carbamate Chemical compound NC(=O)OC(C)(C)C1=CC=CC=C1 UCZSGRLQZLKLCQ-UHFFFAOYSA-N 0.000 description 1
- FCOXSVSQGYUZTB-UHFFFAOYSA-N 2-phosphanylethyl carbamate Chemical compound NC(=O)OCCP FCOXSVSQGYUZTB-UHFFFAOYSA-N 0.000 description 1
- WYECGUSLBPACPT-UHFFFAOYSA-N 2-pyridin-4-ylpropan-2-yl carbamate Chemical compound NC(=O)OC(C)(C)C1=CC=NC=C1 WYECGUSLBPACPT-UHFFFAOYSA-N 0.000 description 1
- QWYTUBPAXJYCTH-UHFFFAOYSA-N 2-trimethylsilylethyl carbamate Chemical compound C[Si](C)(C)CCOC(N)=O QWYTUBPAXJYCTH-UHFFFAOYSA-N 0.000 description 1
- LDZNCSVWVMBVST-UHFFFAOYSA-N 2-trimethylsilylethyl hydrogen carbonate Chemical compound C[Si](C)(C)CCOC(O)=O LDZNCSVWVMBVST-UHFFFAOYSA-N 0.000 description 1
- GPVOTFQILZVCFP-UHFFFAOYSA-N 2-trityloxyacetic acid Chemical compound C=1C=CC=CC=1C(C=1C=CC=CC=1)(OCC(=O)O)C1=CC=CC=C1 GPVOTFQILZVCFP-UHFFFAOYSA-N 0.000 description 1
- 125000002774 3,4-dimethoxybenzyl group Chemical group [H]C1=C([H])C(=C([H])C(OC([H])([H])[H])=C1OC([H])([H])[H])C([H])([H])* 0.000 description 1
- GOLORTLGFDVFDW-UHFFFAOYSA-N 3-(1h-benzimidazol-2-yl)-7-(diethylamino)chromen-2-one Chemical compound C1=CC=C2NC(C3=CC4=CC=C(C=C4OC3=O)N(CC)CC)=NC2=C1 GOLORTLGFDVFDW-UHFFFAOYSA-N 0.000 description 1
- KADQHJDUFKAUEB-UHFFFAOYSA-N 3-(2-nitrophenyl)propanamide Chemical compound NC(=O)CCC1=CC=CC=C1[N+]([O-])=O KADQHJDUFKAUEB-UHFFFAOYSA-N 0.000 description 1
- OEHZEBOCZWCVMK-UHFFFAOYSA-N 3-(4-hydroxyphenyl)propanamide Chemical compound NC(=O)CCC1=CC=C(O)C=C1 OEHZEBOCZWCVMK-UHFFFAOYSA-N 0.000 description 1
- NRZLJLXOGSCRAO-UHFFFAOYSA-N 3-(4-nitrophenyl)prop-2-enyl carbamate Chemical compound NC(=O)OCC=CC1=CC=C([N+]([O-])=O)C=C1 NRZLJLXOGSCRAO-UHFFFAOYSA-N 0.000 description 1
- MTZNODTZOSBYJW-UHFFFAOYSA-N 3-amino-5,5-dimethylcyclohex-2-en-1-one Chemical compound CC1(C)CC(N)=CC(=O)C1 MTZNODTZOSBYJW-UHFFFAOYSA-N 0.000 description 1
- SCLGGNBFBLJQFU-UHFFFAOYSA-N 3-aminopropyl acetate Chemical compound CC(=O)OCCCN SCLGGNBFBLJQFU-UHFFFAOYSA-N 0.000 description 1
- UVODFYVXDPJZFJ-UHFFFAOYSA-N 3-methyl-3-nitrobutanamide Chemical compound [O-][N+](=O)C(C)(C)CC(N)=O UVODFYVXDPJZFJ-UHFFFAOYSA-N 0.000 description 1
- VYIBCOSBNVFEIW-UHFFFAOYSA-N 3-phenylpropanamide Chemical class NC(=O)CCC1=CC=CC=C1 VYIBCOSBNVFEIW-UHFFFAOYSA-N 0.000 description 1
- XMIIGOLPHOKFCH-UHFFFAOYSA-M 3-phenylpropionate Chemical compound [O-]C(=O)CCC1=CC=CC=C1 XMIIGOLPHOKFCH-UHFFFAOYSA-M 0.000 description 1
- VXGRJERITKFWPL-UHFFFAOYSA-N 4',5'-Dihydropsoralen Natural products C1=C2OC(=O)C=CC2=CC2=C1OCC2 VXGRJERITKFWPL-UHFFFAOYSA-N 0.000 description 1
- UBARRNXCKBFUEN-UHFFFAOYSA-N 4,5-diphenyl-5h-1,3-oxazol-2-one Chemical compound N=1C(=O)OC(C=2C=CC=CC=2)C=1C1=CC=CC=C1 UBARRNXCKBFUEN-UHFFFAOYSA-N 0.000 description 1
- NDRAHSMAGKWWFZ-UHFFFAOYSA-N 4-(methylsulfanylmethoxy)butanoic acid Chemical compound CSCOCCCC(O)=O NDRAHSMAGKWWFZ-UHFFFAOYSA-N 0.000 description 1
- BLEFBWAGWNSEGB-UHFFFAOYSA-N 4-[(4,8-dimethoxynaphthalen-1-yl)methyl]benzenesulfonamide Chemical compound C12=C(OC)C=CC=C2C(OC)=CC=C1CC1=CC=C(S(N)(=O)=O)C=C1 BLEFBWAGWNSEGB-UHFFFAOYSA-N 0.000 description 1
- WAGMYTXJRVPMGW-UHFFFAOYSA-N 4-azidobutanoic acid Chemical compound OC(=O)CCCN=[N+]=[N-] WAGMYTXJRVPMGW-UHFFFAOYSA-N 0.000 description 1
- XYOXIERJKILWCG-UHFFFAOYSA-N 4-chlorobutanamide Chemical compound NC(=O)CCCCl XYOXIERJKILWCG-UHFFFAOYSA-N 0.000 description 1
- UZOVYGYOLBIAJR-UHFFFAOYSA-N 4-isocyanato-4'-methyldiphenylmethane Chemical compound C1=CC(C)=CC=C1CC1=CC=C(N=C=O)C=C1 UZOVYGYOLBIAJR-UHFFFAOYSA-N 0.000 description 1
- UHAAUDAFKLCPEA-UHFFFAOYSA-N 4-methoxy-2,3,5,6-tetramethylbenzenesulfonamide Chemical compound COC1=C(C)C(C)=C(S(N)(=O)=O)C(C)=C1C UHAAUDAFKLCPEA-UHFFFAOYSA-N 0.000 description 1
- ZJJLGMUSGUYZQP-UHFFFAOYSA-N 4-methoxy-2,6-dimethylbenzenesulfonamide Chemical compound COC1=CC(C)=C(S(N)(=O)=O)C(C)=C1 ZJJLGMUSGUYZQP-UHFFFAOYSA-N 0.000 description 1
- MSFQEZBRFPAFEX-UHFFFAOYSA-N 4-methoxybenzenesulfonamide Chemical compound COC1=CC=C(S(N)(=O)=O)C=C1 MSFQEZBRFPAFEX-UHFFFAOYSA-N 0.000 description 1
- KHKJLJHJTQRHSA-UHFFFAOYSA-N 4-methyl-4-nitropentanoic acid Chemical compound [O-][N+](=O)C(C)(C)CCC(O)=O KHKJLJHJTQRHSA-UHFFFAOYSA-N 0.000 description 1
- NNJMFJSKMRYHSR-UHFFFAOYSA-M 4-phenylbenzoate Chemical compound C1=CC(C(=O)[O-])=CC=C1C1=CC=CC=C1 NNJMFJSKMRYHSR-UHFFFAOYSA-M 0.000 description 1
- MQJSSLBGAQJNER-UHFFFAOYSA-N 5-(methylaminomethyl)-1h-pyrimidine-2,4-dione Chemical compound CNCC1=CNC(=O)NC1=O MQJSSLBGAQJNER-UHFFFAOYSA-N 0.000 description 1
- WPYRHVXCOQLYLY-UHFFFAOYSA-N 5-[(methoxyamino)methyl]-2-sulfanylidene-1h-pyrimidin-4-one Chemical compound CONCC1=CNC(=S)NC1=O WPYRHVXCOQLYLY-UHFFFAOYSA-N 0.000 description 1
- VKLFQTYNHLDMDP-PNHWDRBUSA-N 5-carboxymethylaminomethyl-2-thiouridine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C(=S)NC(=O)C(CNCC(O)=O)=C1 VKLFQTYNHLDMDP-PNHWDRBUSA-N 0.000 description 1
- ZFTBZKVVGZNMJR-UHFFFAOYSA-N 5-chlorouracil Chemical compound ClC1=CNC(=O)NC1=O ZFTBZKVVGZNMJR-UHFFFAOYSA-N 0.000 description 1
- KSNXJLQDQOIRIP-UHFFFAOYSA-N 5-iodouracil Chemical compound IC1=CNC(=O)NC1=O KSNXJLQDQOIRIP-UHFFFAOYSA-N 0.000 description 1
- UJBCLAXPPIDQEE-UHFFFAOYSA-N 5-prop-1-ynyl-1h-pyrimidine-2,4-dione Chemical compound CC#CC1=CNC(=O)NC1=O UJBCLAXPPIDQEE-UHFFFAOYSA-N 0.000 description 1
- UDZRZGNQQSUDNP-UHFFFAOYSA-N 6-(aminomethyl)-5-methoxy-2-sulfanylidene-1H-pyrimidin-4-one Chemical compound COC=1C(NC(NC=1CN)=S)=O UDZRZGNQQSUDNP-UHFFFAOYSA-N 0.000 description 1
- SXQMWXNOYLLRBY-UHFFFAOYSA-N 6-(methylamino)purin-8-one Chemical compound CNC1=NC=NC2=NC(=O)N=C12 SXQMWXNOYLLRBY-UHFFFAOYSA-N 0.000 description 1
- GTSVFOOLVUMMCX-UHFFFAOYSA-N 6-(methylaminomethyl)-2,4-dioxo-1H-pyrimidine-5-carboxylic acid Chemical compound C(=O)(O)C=1C(NC(NC=1CNC)=O)=O GTSVFOOLVUMMCX-UHFFFAOYSA-N 0.000 description 1
- QNNARSZPGNJZIX-UHFFFAOYSA-N 6-amino-5-prop-1-ynyl-1h-pyrimidin-2-one Chemical compound CC#CC1=CNC(=O)N=C1N QNNARSZPGNJZIX-UHFFFAOYSA-N 0.000 description 1
- LZRCZVZMOAAFDC-UHFFFAOYSA-N 6-methyl-5-(methylamino)-1h-pyrimidine-2,4-dione Chemical compound CNC1=C(C)NC(=O)NC1=O LZRCZVZMOAAFDC-UHFFFAOYSA-N 0.000 description 1
- CKOMXBHMKXXTNW-UHFFFAOYSA-N 6-methyladenine Chemical compound CNC1=NC=NC2=C1N=CN2 CKOMXBHMKXXTNW-UHFFFAOYSA-N 0.000 description 1
- 108010042833 7,8-diaminopelargonic acid aminotransferase Proteins 0.000 description 1
- OGHAROSJZRTIOK-KQYNXXCUSA-O 7-methylguanosine Chemical compound C1=2N=C(N)NC(=O)C=2[N+](C)=CN1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O OGHAROSJZRTIOK-KQYNXXCUSA-O 0.000 description 1
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- VKKXEIQIGGPMHT-UHFFFAOYSA-N 7h-purine-2,8-diamine Chemical compound NC1=NC=C2NC(N)=NC2=N1 VKKXEIQIGGPMHT-UHFFFAOYSA-N 0.000 description 1
- ASUCSHXLTWZYBA-UMMCILCDSA-N 8-Bromoguanosine Chemical compound C1=2NC(N)=NC(=O)C=2N=C(Br)N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O ASUCSHXLTWZYBA-UMMCILCDSA-N 0.000 description 1
- HDZZVAMISRMYHH-UHFFFAOYSA-N 9beta-Ribofuranosyl-7-deazaadenin Natural products C1=CC=2C(N)=NC=NC=2N1C1OC(CO)C(O)C1O HDZZVAMISRMYHH-UHFFFAOYSA-N 0.000 description 1
- GDXXYJRQFQZYNL-UHFFFAOYSA-N 9h-fluoren-1-ylmethyl carbamate Chemical compound C1C2=CC=CC=C2C2=C1C(COC(=O)N)=CC=C2 GDXXYJRQFQZYNL-UHFFFAOYSA-N 0.000 description 1
- ZZOKVYOCRSMTSS-UHFFFAOYSA-N 9h-fluoren-9-ylmethyl carbamate Chemical compound C1=CC=C2C(COC(=O)N)C3=CC=CC=C3C2=C1 ZZOKVYOCRSMTSS-UHFFFAOYSA-N 0.000 description 1
- 102100031260 Acyl-coenzyme A thioesterase THEM4 Human genes 0.000 description 1
- 102100027211 Albumin Human genes 0.000 description 1
- 108010088751 Albumins Proteins 0.000 description 1
- 108700031308 Antennapedia Homeodomain Proteins 0.000 description 1
- 108020000948 Antisense Oligonucleotides Proteins 0.000 description 1
- 241000238421 Arthropoda Species 0.000 description 1
- DCXYFEDJOCDNAF-UHFFFAOYSA-N Asparagine Natural products OC(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-N 0.000 description 1
- 108090001008 Avidin Proteins 0.000 description 1
- 208000004736 B-Cell Leukemia Diseases 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- KHBQMWCZKVMBLN-UHFFFAOYSA-N Benzenesulfonamide Chemical compound NS(=O)(=O)C1=CC=CC=C1 KHBQMWCZKVMBLN-UHFFFAOYSA-N 0.000 description 1
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- 102100021936 C-C motif chemokine 27 Human genes 0.000 description 1
- 239000002126 C01EB10 - Adenosine Substances 0.000 description 1
- 125000003358 C2-C20 alkenyl group Chemical group 0.000 description 1
- QWOJMRHUQHTCJG-UHFFFAOYSA-N CC([CH2-])=O Chemical compound CC([CH2-])=O QWOJMRHUQHTCJG-UHFFFAOYSA-N 0.000 description 1
- ZRVIHIHTDPBEDE-UHFFFAOYSA-N CCOBO Chemical compound CCOBO ZRVIHIHTDPBEDE-UHFFFAOYSA-N 0.000 description 1
- 238000010354 CRISPR gene editing Methods 0.000 description 1
- DCERHCFNWRGHLK-UHFFFAOYSA-N C[Si](C)C Chemical compound C[Si](C)C DCERHCFNWRGHLK-UHFFFAOYSA-N 0.000 description 1
- 241000282472 Canis lupus familiaris Species 0.000 description 1
- 208000005623 Carcinogenesis Diseases 0.000 description 1
- 108010012236 Chemokines Proteins 0.000 description 1
- 102000019034 Chemokines Human genes 0.000 description 1
- 239000004380 Cholic acid Substances 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 101150065749 Churc1 gene Proteins 0.000 description 1
- MIKUYHXYGGJMLM-GIMIYPNGSA-N Crotonoside Natural products C1=NC2=C(N)NC(=O)N=C2N1[C@H]1O[C@@H](CO)[C@H](O)[C@@H]1O MIKUYHXYGGJMLM-GIMIYPNGSA-N 0.000 description 1
- 229920000858 Cyclodextrin Polymers 0.000 description 1
- UHDGCWIWMRVCDJ-PSQAKQOGSA-N Cytidine Natural products O=C1N=C(N)C=CN1[C@@H]1[C@@H](O)[C@@H](O)[C@H](CO)O1 UHDGCWIWMRVCDJ-PSQAKQOGSA-N 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- NYHBQMYGNKIUIF-UHFFFAOYSA-N D-guanosine Natural products C1=2NC(N)=NC(=O)C=2N=CN1C1OC(CO)C(O)C1O NYHBQMYGNKIUIF-UHFFFAOYSA-N 0.000 description 1
- 102000053602 DNA Human genes 0.000 description 1
- 238000001712 DNA sequencing Methods 0.000 description 1
- GZDFHIJNHHMENY-UHFFFAOYSA-N Dimethyl dicarbonate Chemical compound COC(=O)OC(=O)OC GZDFHIJNHHMENY-UHFFFAOYSA-N 0.000 description 1
- 239000006145 Eagle's minimal essential medium Substances 0.000 description 1
- LVGKNOAMLMIIKO-UHFFFAOYSA-N Elaidinsaeure-aethylester Natural products CCCCCCCCC=CCCCCCCCC(=O)OCC LVGKNOAMLMIIKO-UHFFFAOYSA-N 0.000 description 1
- 241000283086 Equidae Species 0.000 description 1
- 108090000371 Esterases Proteins 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- 108090000379 Fibroblast growth factor 2 Proteins 0.000 description 1
- 102100024785 Fibroblast growth factor 2 Human genes 0.000 description 1
- 206010016654 Fibrosis Diseases 0.000 description 1
- 229920001917 Ficoll Polymers 0.000 description 1
- BDAGIHXWWSANSR-UHFFFAOYSA-M Formate Chemical compound [O-]C=O BDAGIHXWWSANSR-UHFFFAOYSA-M 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 229940126656 GS-4224 Drugs 0.000 description 1
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- 229930186217 Glycolipid Natural products 0.000 description 1
- 208000009329 Graft vs Host Disease Diseases 0.000 description 1
- 102100028970 HLA class I histocompatibility antigen, alpha chain E Human genes 0.000 description 1
- 206010066476 Haematological malignancy Diseases 0.000 description 1
- 239000012981 Hank's balanced salt solution Substances 0.000 description 1
- 208000002250 Hematologic Neoplasms Diseases 0.000 description 1
- 241000238631 Hexapoda Species 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 101000638510 Homo sapiens Acyl-coenzyme A thioesterase THEM4 Proteins 0.000 description 1
- 101000897494 Homo sapiens C-C motif chemokine 27 Proteins 0.000 description 1
- 101000986085 Homo sapiens HLA class I histocompatibility antigen, alpha chain E Proteins 0.000 description 1
- 101000617130 Homo sapiens Stromal cell-derived factor 1 Proteins 0.000 description 1
- 102000004286 Hydroxymethylglutaryl CoA Reductases Human genes 0.000 description 1
- 108090000895 Hydroxymethylglutaryl CoA Reductases Proteins 0.000 description 1
- UGQMRVRMYYASKQ-UHFFFAOYSA-N Hypoxanthine nucleoside Natural products OC1C(O)C(CO)OC1N1C(NC=NC2=O)=C2N=C1 UGQMRVRMYYASKQ-UHFFFAOYSA-N 0.000 description 1
- XQFRJNBWHJMXHO-RRKCRQDMSA-N IDUR Chemical compound C1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C(I)=C1 XQFRJNBWHJMXHO-RRKCRQDMSA-N 0.000 description 1
- HEFNNWSXXWATRW-UHFFFAOYSA-N Ibuprofen Chemical compound CC(C)CC1=CC=C(C(C)C(O)=O)C=C1 HEFNNWSXXWATRW-UHFFFAOYSA-N 0.000 description 1
- 201000009794 Idiopathic Pulmonary Fibrosis Diseases 0.000 description 1
- 206010062016 Immunosuppression Diseases 0.000 description 1
- SIKJAQJRHWYJAI-UHFFFAOYSA-N Indole Chemical compound C1=CC=C2NC=CC2=C1 SIKJAQJRHWYJAI-UHFFFAOYSA-N 0.000 description 1
- 102000004877 Insulin Human genes 0.000 description 1
- 108090001061 Insulin Proteins 0.000 description 1
- 102000003814 Interleukin-10 Human genes 0.000 description 1
- 108090000174 Interleukin-10 Proteins 0.000 description 1
- 108090001005 Interleukin-6 Proteins 0.000 description 1
- 101150069255 KLRC1 gene Proteins 0.000 description 1
- ONIBWKKTOPOVIA-BYPYZUCNSA-N L-Proline Chemical compound OC(=O)[C@@H]1CCCN1 ONIBWKKTOPOVIA-BYPYZUCNSA-N 0.000 description 1
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 1
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 description 1
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 1
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 1
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 1
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 1
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 1
- 108010063045 Lactoferrin Proteins 0.000 description 1
- 102100032241 Lactotransferrin Human genes 0.000 description 1
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 1
- 239000000232 Lipid Bilayer Substances 0.000 description 1
- SMEROWZSTRWXGI-UHFFFAOYSA-N Lithocholsaeure Natural products C1CC2CC(O)CCC2(C)C2C1C1CCC(C(CCC(O)=O)C)C1(C)CC2 SMEROWZSTRWXGI-UHFFFAOYSA-N 0.000 description 1
- 206010058467 Lung neoplasm malignant Diseases 0.000 description 1
- 101100404845 Macaca mulatta NKG2A gene Proteins 0.000 description 1
- UEZVMMHDMIWARA-UHFFFAOYSA-N Metaphosphoric acid Chemical compound OP(=O)=O UEZVMMHDMIWARA-UHFFFAOYSA-N 0.000 description 1
- FNJSWIPFHMKRAT-UHFFFAOYSA-N Monomethyl phthalate Chemical compound COC(=O)C1=CC=CC=C1C(O)=O FNJSWIPFHMKRAT-UHFFFAOYSA-N 0.000 description 1
- YNAVUWVOSKDBBP-UHFFFAOYSA-N Morpholine Chemical group C1COCCN1 YNAVUWVOSKDBBP-UHFFFAOYSA-N 0.000 description 1
- 108010085220 Multiprotein Complexes Proteins 0.000 description 1
- 102000007474 Multiprotein Complexes Human genes 0.000 description 1
- 241000699666 Mus <mouse, genus> Species 0.000 description 1
- 101100170604 Mus musculus Dmap1 gene Proteins 0.000 description 1
- VQAYFKKCNSOZKM-IOSLPCCCSA-N N(6)-methyladenosine Chemical compound C1=NC=2C(NC)=NC=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O VQAYFKKCNSOZKM-IOSLPCCCSA-N 0.000 description 1
- OVRNDRQMDRJTHS-UHFFFAOYSA-N N-acelyl-D-glucosamine Natural products CC(=O)NC1C(O)OC(CO)C(O)C1O OVRNDRQMDRJTHS-UHFFFAOYSA-N 0.000 description 1
- XUYPXLNMDZIRQH-LURJTMIESA-N N-acetyl-L-methionine Chemical class CSCC[C@@H](C(O)=O)NC(C)=O XUYPXLNMDZIRQH-LURJTMIESA-N 0.000 description 1
- MBLBDJOUHNCFQT-LXGUWJNJSA-N N-acetylglucosamine Natural products CC(=O)N[C@@H](C=O)[C@@H](O)[C@H](O)[C@H](O)CO MBLBDJOUHNCFQT-LXGUWJNJSA-N 0.000 description 1
- 108010049175 N-substituted Glycines Proteins 0.000 description 1
- 230000006042 NK cell recruitment Effects 0.000 description 1
- 102100022682 NKG2-A/NKG2-B type II integral membrane protein Human genes 0.000 description 1
- VQAYFKKCNSOZKM-UHFFFAOYSA-N NSC 29409 Natural products C1=NC=2C(NC)=NC=NC=2N1C1OC(CO)C(O)C1O VQAYFKKCNSOZKM-UHFFFAOYSA-N 0.000 description 1
- 206010061309 Neoplasm progression Diseases 0.000 description 1
- 102000001068 Neural Cell Adhesion Molecules Human genes 0.000 description 1
- 102100023616 Neural cell adhesion molecule L1-like protein Human genes 0.000 description 1
- 208000007125 Neurotoxicity Syndromes Diseases 0.000 description 1
- DFPAKSUCGFBDDF-UHFFFAOYSA-N Nicotinamide Chemical class NC(=O)C1=CC=CN=C1 DFPAKSUCGFBDDF-UHFFFAOYSA-N 0.000 description 1
- IOVCWXUNBOPUCH-UHFFFAOYSA-M Nitrite anion Chemical compound [O-]N=O IOVCWXUNBOPUCH-UHFFFAOYSA-M 0.000 description 1
- 108020005497 Nuclear hormone receptor Proteins 0.000 description 1
- REYJJPSVUYRZGE-UHFFFAOYSA-N Octadecylamine Chemical compound CCCCCCCCCCCCCCCCCCN REYJJPSVUYRZGE-UHFFFAOYSA-N 0.000 description 1
- 206010033128 Ovarian cancer Diseases 0.000 description 1
- 206010061535 Ovarian neoplasm Diseases 0.000 description 1
- 206010061902 Pancreatic neoplasm Diseases 0.000 description 1
- 206010033661 Pancytopenia Diseases 0.000 description 1
- 108090001050 Phosphoric Diester Hydrolases Proteins 0.000 description 1
- 102000004861 Phosphoric Diester Hydrolases Human genes 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 229920002873 Polyethylenimine Polymers 0.000 description 1
- 108010039918 Polylysine Proteins 0.000 description 1
- 241000288906 Primates Species 0.000 description 1
- ONIBWKKTOPOVIA-UHFFFAOYSA-N Proline Natural products OC(=O)C1CCCN1 ONIBWKKTOPOVIA-UHFFFAOYSA-N 0.000 description 1
- 206010060862 Prostate cancer Diseases 0.000 description 1
- 208000000236 Prostatic Neoplasms Diseases 0.000 description 1
- 102100027378 Prothrombin Human genes 0.000 description 1
- 108010094028 Prothrombin Proteins 0.000 description 1
- 201000004681 Psoriasis Diseases 0.000 description 1
- 239000005700 Putrescine Substances 0.000 description 1
- 239000012979 RPMI medium Substances 0.000 description 1
- 241000269435 Rana <genus> Species 0.000 description 1
- 241000700159 Rattus Species 0.000 description 1
- 108091028664 Ribonucleotide Proteins 0.000 description 1
- 241000283984 Rodentia Species 0.000 description 1
- 239000006146 Roswell Park Memorial Institute medium Substances 0.000 description 1
- 235000019485 Safflower oil Nutrition 0.000 description 1
- 206010039710 Scleroderma Diseases 0.000 description 1
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical group [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 206010041067 Small cell lung cancer Diseases 0.000 description 1
- 108091027967 Small hairpin RNA Proteins 0.000 description 1
- 102100021669 Stromal cell-derived factor 1 Human genes 0.000 description 1
- 241000282887 Suidae Species 0.000 description 1
- 230000024932 T cell mediated immunity Effects 0.000 description 1
- WBWWGRHZICKQGZ-UHFFFAOYSA-N Taurocholic acid Natural products OC1CC2CC(O)CCC2(C)C2C1C1CCC(C(CCC(=O)NCCS(O)(=O)=O)C)C1(C)C(O)C2 WBWWGRHZICKQGZ-UHFFFAOYSA-N 0.000 description 1
- 101710192266 Tegument protein VP22 Proteins 0.000 description 1
- GNVMUORYQLCPJZ-UHFFFAOYSA-M Thiocarbamate Chemical compound NC([S-])=O GNVMUORYQLCPJZ-UHFFFAOYSA-M 0.000 description 1
- 206010044221 Toxic encephalopathy Diseases 0.000 description 1
- 239000006035 Tryptophane Substances 0.000 description 1
- 108020004417 Untranslated RNA Proteins 0.000 description 1
- 102000039634 Untranslated RNA Human genes 0.000 description 1
- 241000251539 Vertebrata <Metazoa> Species 0.000 description 1
- 108010067390 Viral Proteins Proteins 0.000 description 1
- 229930003316 Vitamin D Natural products 0.000 description 1
- QYSXJUFSXHHAJI-XFEUOLMDSA-N Vitamin D3 Natural products C1(/[C@@H]2CC[C@@H]([C@]2(CCC1)C)[C@H](C)CCCC(C)C)=C/C=C1\C[C@@H](O)CCC1=C QYSXJUFSXHHAJI-XFEUOLMDSA-N 0.000 description 1
- 208000027418 Wounds and injury Diseases 0.000 description 1
- CLPYVPMXLNNKLB-UHFFFAOYSA-N [(2-nitrophenyl)-phenylmethyl] carbamate Chemical compound C=1C=CC=C([N+]([O-])=O)C=1C(OC(=O)N)C1=CC=CC=C1 CLPYVPMXLNNKLB-UHFFFAOYSA-N 0.000 description 1
- HIHOWBSBBDRPDW-PTHRTHQKSA-N [(3s,8s,9s,10r,13r,14s,17r)-10,13-dimethyl-17-[(2r)-6-methylheptan-2-yl]-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1h-cyclopenta[a]phenanthren-3-yl] n-[2-(dimethylamino)ethyl]carbamate Chemical compound C1C=C2C[C@@H](OC(=O)NCCN(C)C)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HIHOWBSBBDRPDW-PTHRTHQKSA-N 0.000 description 1
- LXKLUWFIBVXFGX-QPJJXVBHSA-N [(e)-3-phenylprop-2-enyl] carbamate Chemical compound NC(=O)OC\C=C\C1=CC=CC=C1 LXKLUWFIBVXFGX-QPJJXVBHSA-N 0.000 description 1
- MQLDYIKXBMSDCL-UHFFFAOYSA-N [2,4-bis(methylsulfanyl)phenyl] carbamate Chemical compound CSC1=CC=C(OC(N)=O)C(SC)=C1 MQLDYIKXBMSDCL-UHFFFAOYSA-N 0.000 description 1
- OJUHIDQVEFLXSE-UHFFFAOYSA-N [2-(4-methoxyphenyl)-2-oxoethyl] carbamate Chemical compound COC1=CC=C(C(=O)COC(N)=O)C=C1 OJUHIDQVEFLXSE-UHFFFAOYSA-N 0.000 description 1
- SNKAWJBJQDLSFF-YEUCEMRASA-N [2-({2,3-bis[(9z)-octadec-9-enoyloxy]propyl phosphonato}oxy)ethyl]trimethylazanium Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OCC(COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCC\C=C/CCCCCCCC SNKAWJBJQDLSFF-YEUCEMRASA-N 0.000 description 1
- XSXGGUVGOHDUPF-UHFFFAOYSA-N [4-(carbamoyloxymethyl)phenyl]boronic acid Chemical compound NC(=O)OCC1=CC=C(B(O)O)C=C1 XSXGGUVGOHDUPF-UHFFFAOYSA-N 0.000 description 1
- XLLNINGEDIOQGQ-UHFFFAOYSA-N [acetyloxy(hydroxy)phosphoryl] acetate Chemical compound CC(=O)OP(O)(=O)OC(C)=O XLLNINGEDIOQGQ-UHFFFAOYSA-N 0.000 description 1
- 239000003070 absorption delaying agent Substances 0.000 description 1
- 150000001241 acetals Chemical class 0.000 description 1
- 229940022663 acetate Drugs 0.000 description 1
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 1
- GCPWJFKTWGFEHH-UHFFFAOYSA-N acetoacetamide Chemical compound CC(=O)CC(N)=O GCPWJFKTWGFEHH-UHFFFAOYSA-N 0.000 description 1
- 229940100228 acetyl coenzyme a Drugs 0.000 description 1
- 150000001251 acridines Chemical class 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- 229910001573 adamantine Inorganic materials 0.000 description 1
- 125000005585 adamantoate group Chemical group 0.000 description 1
- 229960005305 adenosine Drugs 0.000 description 1
- 150000003838 adenosines Chemical class 0.000 description 1
- 230000001464 adherent effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 235000004279 alanine Nutrition 0.000 description 1
- 125000002009 alkene group Chemical group 0.000 description 1
- 125000004183 alkoxy alkyl group Chemical group 0.000 description 1
- 125000006177 alkyl benzyl group Chemical group 0.000 description 1
- 230000029936 alkylation Effects 0.000 description 1
- 238000005804 alkylation reaction Methods 0.000 description 1
- VVJKKWFAADXIJK-UHFFFAOYSA-N allylamine Natural products NCC=C VVJKKWFAADXIJK-UHFFFAOYSA-N 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 125000000539 amino acid group Chemical group 0.000 description 1
- 229940035674 anesthetics Drugs 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- DQEFBVRIBYYPLE-UHFFFAOYSA-N anthracen-9-ylmethyl carbamate Chemical compound C1=CC=C2C(COC(=O)N)=C(C=CC=C3)C3=CC2=C1 DQEFBVRIBYYPLE-UHFFFAOYSA-N 0.000 description 1
- FKFZOFZWJNHJDE-UHFFFAOYSA-N anthracene-9-sulfonamide Chemical compound C1=CC=C2C(S(=O)(=O)N)=C(C=CC=C3)C3=CC2=C1 FKFZOFZWJNHJDE-UHFFFAOYSA-N 0.000 description 1
- 125000005428 anthryl group Chemical group [H]C1=C([H])C([H])=C2C([H])=C3C(*)=C([H])C([H])=C([H])C3=C([H])C2=C1[H] 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 230000003466 anti-cipated effect Effects 0.000 description 1
- 229940121375 antifungal agent Drugs 0.000 description 1
- 239000003429 antifungal agent Substances 0.000 description 1
- 230000006907 apoptotic process Effects 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- PYMYPHUHKUWMLA-WDCZJNDASA-N arabinose Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)C=O PYMYPHUHKUWMLA-WDCZJNDASA-N 0.000 description 1
- 235000009582 asparagine Nutrition 0.000 description 1
- 229960001230 asparagine Drugs 0.000 description 1
- 235000003704 aspartic acid Nutrition 0.000 description 1
- 238000011914 asymmetric synthesis Methods 0.000 description 1
- 238000011130 autologous cell therapy Methods 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- DUXANUSOCMOJSI-UHFFFAOYSA-N benzhydryl carbamate Chemical compound C=1C=CC=CC=1C(OC(=O)N)C1=CC=CC=C1 DUXANUSOCMOJSI-UHFFFAOYSA-N 0.000 description 1
- 125000004604 benzisothiazolyl group Chemical group S1N=C(C2=C1C=CC=C2)* 0.000 description 1
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 1
- 125000000649 benzylidene group Chemical group [H]C(=[*])C1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 description 1
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 1
- XMIIGOLPHOKFCH-UHFFFAOYSA-N beta-phenylpropanoic acid Natural products OC(=O)CCC1=CC=CC=C1 XMIIGOLPHOKFCH-UHFFFAOYSA-N 0.000 description 1
- 230000001588 bifunctional effect Effects 0.000 description 1
- 239000003613 bile acid Substances 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 239000000227 bioadhesive Substances 0.000 description 1
- 230000008436 biogenesis Effects 0.000 description 1
- 230000008827 biological function Effects 0.000 description 1
- 229960002685 biotin Drugs 0.000 description 1
- 235000020958 biotin Nutrition 0.000 description 1
- 239000011616 biotin Substances 0.000 description 1
- JKJWYKGYGWOAHT-UHFFFAOYSA-N bis(prop-2-enyl) carbonate Chemical compound C=CCOC(=O)OCC=C JKJWYKGYGWOAHT-UHFFFAOYSA-N 0.000 description 1
- 239000010836 blood and blood product Substances 0.000 description 1
- 229940125691 blood product Drugs 0.000 description 1
- CDQSJQSWAWPGKG-UHFFFAOYSA-N butane-1,1-diol Chemical compound CCCC(O)O CDQSJQSWAWPGKG-UHFFFAOYSA-N 0.000 description 1
- 125000000480 butynyl group Chemical group [*]C#CC([H])([H])C([H])([H])[H] 0.000 description 1
- 210000004899 c-terminal region Anatomy 0.000 description 1
- 230000036952 cancer formation Effects 0.000 description 1
- 125000002837 carbocyclic group Chemical group 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 230000021523 carboxylation Effects 0.000 description 1
- 238000006473 carboxylation reaction Methods 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 231100000504 carcinogenesis Toxicity 0.000 description 1
- 210000004413 cardiac myocyte Anatomy 0.000 description 1
- 239000006143 cell culture medium Substances 0.000 description 1
- 230000011712 cell development Effects 0.000 description 1
- 230000003915 cell function Effects 0.000 description 1
- 239000013592 cell lysate Substances 0.000 description 1
- 230000011748 cell maturation Effects 0.000 description 1
- 230000006041 cell recruitment Effects 0.000 description 1
- 238000002659 cell therapy Methods 0.000 description 1
- 230000003833 cell viability Effects 0.000 description 1
- 230000007541 cellular toxicity Effects 0.000 description 1
- 210000001175 cerebrospinal fluid Anatomy 0.000 description 1
- 238000002144 chemical decomposition reaction Methods 0.000 description 1
- 229910052729 chemical element Inorganic materials 0.000 description 1
- 150000005829 chemical entities Chemical class 0.000 description 1
- 238000002512 chemotherapy Methods 0.000 description 1
- VXIVSQZSERGHQP-UHFFFAOYSA-N chloroacetamide Chemical class NC(=O)CCl VXIVSQZSERGHQP-UHFFFAOYSA-N 0.000 description 1
- FOCAUTSVDIKZOP-UHFFFAOYSA-M chloroacetate Chemical compound [O-]C(=O)CCl FOCAUTSVDIKZOP-UHFFFAOYSA-M 0.000 description 1
- 229940089960 chloroacetate Drugs 0.000 description 1
- XIIAYQZJNBULGD-LDHZKLTISA-N cholestane Chemical compound C1CC2CCCC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 XIIAYQZJNBULGD-LDHZKLTISA-N 0.000 description 1
- BHQCQFFYRZLCQQ-OELDTZBJSA-N cholic acid Chemical compound C([C@H]1C[C@H]2O)[C@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@@H](CCC(O)=O)C)[C@@]2(C)[C@@H](O)C1 BHQCQFFYRZLCQQ-OELDTZBJSA-N 0.000 description 1
- 235000019416 cholic acid Nutrition 0.000 description 1
- 229960002471 cholic acid Drugs 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 230000007882 cirrhosis Effects 0.000 description 1
- 208000019425 cirrhosis of liver Diseases 0.000 description 1
- 238000010367 cloning Methods 0.000 description 1
- 238000003501 co-culture Methods 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 208000029742 colonic neoplasm Diseases 0.000 description 1
- 239000002299 complementary DNA Substances 0.000 description 1
- 230000009918 complex formation Effects 0.000 description 1
- 230000000536 complexating effect Effects 0.000 description 1
- 230000001268 conjugating effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 239000003431 cross linking reagent Substances 0.000 description 1
- LDHQCZJRKDOVOX-NSCUHMNNSA-N crotonic acid Chemical compound C\C=C\C(O)=O LDHQCZJRKDOVOX-NSCUHMNNSA-N 0.000 description 1
- 125000006165 cyclic alkyl group Chemical group 0.000 description 1
- 150000005676 cyclic carbonates Chemical class 0.000 description 1
- LWABFMLTBBNLTA-UHFFFAOYSA-N cyclobutyl carbamate Chemical compound NC(=O)OC1CCC1 LWABFMLTBBNLTA-UHFFFAOYSA-N 0.000 description 1
- 125000001995 cyclobutyl group Chemical group [H]C1([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 229940097362 cyclodextrins Drugs 0.000 description 1
- 125000001162 cycloheptenyl group Chemical group C1(=CCCCCC1)* 0.000 description 1
- 125000000582 cycloheptyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 125000000596 cyclohexenyl group Chemical group C1(=CCCCC1)* 0.000 description 1
- AUELWJRRASQDKI-UHFFFAOYSA-N cyclohexyl carbamate Chemical compound NC(=O)OC1CCCCC1 AUELWJRRASQDKI-UHFFFAOYSA-N 0.000 description 1
- FNIATMYXUPOJRW-UHFFFAOYSA-N cyclohexylidene Chemical group [C]1CCCCC1 FNIATMYXUPOJRW-UHFFFAOYSA-N 0.000 description 1
- 125000000522 cyclooctenyl group Chemical group C1(=CCCCCCC1)* 0.000 description 1
- 125000000640 cyclooctyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C([H])([H])C1([H])[H] 0.000 description 1
- 125000002433 cyclopentenyl group Chemical group C1(=CCCC1)* 0.000 description 1
- JMFVWNKPLURQMI-UHFFFAOYSA-N cyclopentyl carbamate Chemical compound NC(=O)OC1CCCC1 JMFVWNKPLURQMI-UHFFFAOYSA-N 0.000 description 1
- PWAPCRSSMCLZHG-UHFFFAOYSA-N cyclopentylidene Chemical group [C]1CCCC1 PWAPCRSSMCLZHG-UHFFFAOYSA-N 0.000 description 1
- 125000000298 cyclopropenyl group Chemical group [H]C1=C([H])C1([H])* 0.000 description 1
- UWYRVVJXSNXVAI-UHFFFAOYSA-N cyclopropylmethyl carbamate Chemical compound NC(=O)OCC1CC1 UWYRVVJXSNXVAI-UHFFFAOYSA-N 0.000 description 1
- UHDGCWIWMRVCDJ-ZAKLUEHWSA-N cytidine Chemical compound O=C1N=C(N)C=CN1[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O1 UHDGCWIWMRVCDJ-ZAKLUEHWSA-N 0.000 description 1
- 206010052015 cytokine release syndrome Diseases 0.000 description 1
- 230000009089 cytolysis Effects 0.000 description 1
- 208000024389 cytopenia Diseases 0.000 description 1
- 210000000805 cytoplasm Anatomy 0.000 description 1
- 231100000433 cytotoxic Toxicity 0.000 description 1
- 210000001151 cytotoxic T lymphocyte Anatomy 0.000 description 1
- 230000001472 cytotoxic effect Effects 0.000 description 1
- 230000003013 cytotoxicity Effects 0.000 description 1
- 231100000135 cytotoxicity Toxicity 0.000 description 1
- 230000002498 deadly effect Effects 0.000 description 1
- 230000034994 death Effects 0.000 description 1
- 231100000517 death Toxicity 0.000 description 1
- 125000003493 decenyl group Chemical group [H]C([*])=C([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000002704 decyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000005070 decynyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C#C* 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 210000004443 dendritic cell Anatomy 0.000 description 1
- 229940009976 deoxycholate Drugs 0.000 description 1
- KXGVEGMKQFWNSR-LLQZFEROSA-N deoxycholic acid Chemical compound C([C@H]1CC2)[C@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@@H](CCC(O)=O)C)[C@@]2(C)[C@@H](O)C1 KXGVEGMKQFWNSR-LLQZFEROSA-N 0.000 description 1
- KXGVEGMKQFWNSR-UHFFFAOYSA-N deoxycholic acid Natural products C1CC2CC(O)CCC2(C)C2C1C1CCC(C(CCC(O)=O)C)C1(C)C(O)C2 KXGVEGMKQFWNSR-UHFFFAOYSA-N 0.000 description 1
- 239000005549 deoxyribonucleoside Substances 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- ANCLJVISBRWUTR-UHFFFAOYSA-N diaminophosphinic acid Chemical compound NP(N)(O)=O ANCLJVISBRWUTR-UHFFFAOYSA-N 0.000 description 1
- 229940120124 dichloroacetate Drugs 0.000 description 1
- JXTHNDFMNIQAHM-UHFFFAOYSA-N dichloroacetic acid Chemical compound OC(=O)C(Cl)Cl JXTHNDFMNIQAHM-UHFFFAOYSA-N 0.000 description 1
- 235000005911 diet Nutrition 0.000 description 1
- 230000037213 diet Effects 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- DCYUBZJZSBAWEZ-UHFFFAOYSA-N dimethyl 2-(carbamoyloxymethylidene)propanedioate Chemical compound COC(=O)C(C(=O)OC)=COC(N)=O DCYUBZJZSBAWEZ-UHFFFAOYSA-N 0.000 description 1
- NAGJZTKCGNOGPW-UHFFFAOYSA-K dioxido-sulfanylidene-sulfido-$l^{5}-phosphane Chemical compound [O-]P([O-])([S-])=S NAGJZTKCGNOGPW-UHFFFAOYSA-K 0.000 description 1
- 229940072271 diprivan Drugs 0.000 description 1
- SEBARIVPCNBHKO-UHFFFAOYSA-N dipyridin-2-ylmethyl carbamate Chemical compound C=1C=CC=NC=1C(OC(=O)N)C1=CC=CC=N1 SEBARIVPCNBHKO-UHFFFAOYSA-N 0.000 description 1
- 208000037765 diseases and disorders Diseases 0.000 description 1
- 239000002612 dispersion medium Substances 0.000 description 1
- 230000002222 downregulating effect Effects 0.000 description 1
- 230000003828 downregulation Effects 0.000 description 1
- 230000002500 effect on skin Effects 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 125000005610 enamide group Chemical group 0.000 description 1
- 239000008393 encapsulating agent Substances 0.000 description 1
- 230000008290 endocytic mechanism Effects 0.000 description 1
- 208000023965 endometrium neoplasm Diseases 0.000 description 1
- 210000002889 endothelial cell Anatomy 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 125000001301 ethoxy group Chemical group [H]C([H])([H])C([H])([H])O* 0.000 description 1
- LVGKNOAMLMIIKO-QXMHVHEDSA-N ethyl oleate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OCC LVGKNOAMLMIIKO-QXMHVHEDSA-N 0.000 description 1
- 229940093471 ethyl oleate Drugs 0.000 description 1
- 125000005469 ethylenyl group Chemical group 0.000 description 1
- 239000013604 expression vector Substances 0.000 description 1
- 238000009313 farming Methods 0.000 description 1
- 238000010265 fast atom bombardment Methods 0.000 description 1
- 239000010685 fatty oil Substances 0.000 description 1
- 210000002950 fibroblast Anatomy 0.000 description 1
- FGIVSGPRGVABAB-UHFFFAOYSA-N fluoren-9-ylmethyl hydrogen carbonate Chemical compound C1=CC=C2C(COC(=O)O)C3=CC=CC=C3C2=C1 FGIVSGPRGVABAB-UHFFFAOYSA-N 0.000 description 1
- GNBHRKFJIUUOQI-UHFFFAOYSA-N fluorescein Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 GNBHRKFJIUUOQI-UHFFFAOYSA-N 0.000 description 1
- 229960002143 fluorescein Drugs 0.000 description 1
- MHMNJMPURVTYEJ-UHFFFAOYSA-N fluorescein-5-isothiocyanate Chemical compound O1C(=O)C2=CC(N=C=S)=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 MHMNJMPURVTYEJ-UHFFFAOYSA-N 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- 125000004785 fluoromethoxy group Chemical group [H]C([H])(F)O* 0.000 description 1
- 238000001640 fractional crystallisation Methods 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 238000007306 functionalization reaction Methods 0.000 description 1
- RGEAONPOJJBMHO-UHFFFAOYSA-N furan-2-ylmethyl carbamate Chemical compound NC(=O)OCC1=CC=CO1 RGEAONPOJJBMHO-UHFFFAOYSA-N 0.000 description 1
- 238000005227 gel permeation chromatography Methods 0.000 description 1
- 230000037440 gene silencing effect Effects 0.000 description 1
- 239000003193 general anesthetic agent Substances 0.000 description 1
- 238000003144 genetic modification method Methods 0.000 description 1
- 235000013922 glutamic acid Nutrition 0.000 description 1
- 239000004220 glutamic acid Substances 0.000 description 1
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 1
- 108010013113 glutamyl carboxylase Proteins 0.000 description 1
- 208000024908 graft versus host disease Diseases 0.000 description 1
- 230000012010 growth Effects 0.000 description 1
- 229940029575 guanosine Drugs 0.000 description 1
- 125000001475 halogen functional group Chemical group 0.000 description 1
- 210000003494 hepatocyte Anatomy 0.000 description 1
- 125000003187 heptyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000006038 hexenyl group Chemical group 0.000 description 1
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000005980 hexynyl group Chemical group 0.000 description 1
- 239000000017 hydrogel Substances 0.000 description 1
- 125000001165 hydrophobic group Chemical group 0.000 description 1
- HSNUXDIQZKIQRR-UHFFFAOYSA-N hydroxy-imino-bis(phenylmethoxy)-$l^{5}-phosphane Chemical compound C=1C=CC=CC=1COP(=O)(N)OCC1=CC=CC=C1 HSNUXDIQZKIQRR-UHFFFAOYSA-N 0.000 description 1
- QWMUDOFWQWBHFI-UHFFFAOYSA-N hydroxy-imino-diphenoxy-$l^{5}-phosphane Chemical compound C=1C=CC=CC=1OP(=O)(N)OC1=CC=CC=C1 QWMUDOFWQWBHFI-UHFFFAOYSA-N 0.000 description 1
- RIGIWEGXTTUCIQ-UHFFFAOYSA-N hydroxy-imino-diphenyl-$l^{5}-phosphane Chemical compound C=1C=CC=CC=1P(=O)(N)C1=CC=CC=C1 RIGIWEGXTTUCIQ-UHFFFAOYSA-N 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 229960001680 ibuprofen Drugs 0.000 description 1
- 230000005746 immune checkpoint blockade Effects 0.000 description 1
- 108091008915 immune receptors Proteins 0.000 description 1
- 102000027596 immune receptors Human genes 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 108091008042 inhibitory receptors Proteins 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 229910052816 inorganic phosphate Inorganic materials 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 229940125396 insulin Drugs 0.000 description 1
- 229940076144 interleukin-10 Drugs 0.000 description 1
- 208000036971 interstitial lung disease 2 Diseases 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- 238000007919 intrasynovial administration Methods 0.000 description 1
- 238000001990 intravenous administration Methods 0.000 description 1
- PNDPGZBMCMUPRI-UHFFFAOYSA-N iodine Chemical compound II PNDPGZBMCMUPRI-UHFFFAOYSA-N 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 239000002563 ionic surfactant Substances 0.000 description 1
- KQNPFQTWMSNSAP-UHFFFAOYSA-N isobutyric acid Chemical compound CC(C)C(O)=O KQNPFQTWMSNSAP-UHFFFAOYSA-N 0.000 description 1
- 125000001972 isopentyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000003253 isopropoxy group Chemical group [H]C([H])([H])C([H])(O*)C([H])([H])[H] 0.000 description 1
- 239000007951 isotonicity adjuster Substances 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- CSSYQJWUGATIHM-IKGCZBKSSA-N l-phenylalanyl-l-lysyl-l-cysteinyl-l-arginyl-l-arginyl-l-tryptophyl-l-glutaminyl-l-tryptophyl-l-arginyl-l-methionyl-l-lysyl-l-lysyl-l-leucylglycyl-l-alanyl-l-prolyl-l-seryl-l-isoleucyl-l-threonyl-l-cysteinyl-l-valyl-l-arginyl-l-arginyl-l-alanyl-l-phenylal Chemical compound C([C@H](N)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CS)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(C)C)C(=O)NCC(=O)N[C@@H](C)C(=O)N1CCC[C@H]1C(=O)N[C@@H](CO)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CS)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(O)=O)C1=CC=CC=C1 CSSYQJWUGATIHM-IKGCZBKSSA-N 0.000 description 1
- 229940078795 lactoferrin Drugs 0.000 description 1
- 235000021242 lactoferrin Nutrition 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- 238000004989 laser desorption mass spectroscopy Methods 0.000 description 1
- 229940067606 lecithin Drugs 0.000 description 1
- 239000000787 lecithin Substances 0.000 description 1
- 235000010445 lecithin Nutrition 0.000 description 1
- 210000000265 leukocyte Anatomy 0.000 description 1
- 229940058352 levulinate Drugs 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000006193 liquid solution Substances 0.000 description 1
- 239000006194 liquid suspension Substances 0.000 description 1
- 210000005229 liver cell Anatomy 0.000 description 1
- 210000004072 lung Anatomy 0.000 description 1
- 201000005202 lung cancer Diseases 0.000 description 1
- 208000020816 lung neoplasm Diseases 0.000 description 1
- 210000004698 lymphocyte Anatomy 0.000 description 1
- 208000015486 malignant pancreatic neoplasm Diseases 0.000 description 1
- 125000002960 margaryl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 210000001939 mature NK cell Anatomy 0.000 description 1
- 230000010534 mechanism of action Effects 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 239000002207 metabolite Substances 0.000 description 1
- HNQIVZYLYMDVSB-UHFFFAOYSA-N methanesulfonimidic acid Chemical compound CS(N)(=O)=O HNQIVZYLYMDVSB-UHFFFAOYSA-N 0.000 description 1
- 229930182817 methionine Natural products 0.000 description 1
- RMIODHQZRUFFFF-UHFFFAOYSA-M methoxyacetate Chemical compound COCC([O-])=O RMIODHQZRUFFFF-UHFFFAOYSA-M 0.000 description 1
- IZAGSTRIDUNNOY-UHFFFAOYSA-N methyl 2-[(2,4-dioxo-1h-pyrimidin-5-yl)oxy]acetate Chemical compound COC(=O)COC1=CNC(=O)NC1=O IZAGSTRIDUNNOY-UHFFFAOYSA-N 0.000 description 1
- HPZMWTNATZPBIH-UHFFFAOYSA-N methyl adenine Natural products CN1C=NC2=NC=NC2=C1N HPZMWTNATZPBIH-UHFFFAOYSA-N 0.000 description 1
- 125000000250 methylamino group Chemical group [H]N(*)C([H])([H])[H] 0.000 description 1
- NYEBKUUITGFJAK-UHFFFAOYSA-N methylsulfanylmethanethioic s-acid Chemical compound CSC(O)=S NYEBKUUITGFJAK-UHFFFAOYSA-N 0.000 description 1
- 239000004005 microsphere Substances 0.000 description 1
- 230000003278 mimic effect Effects 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 238000001823 molecular biology technique Methods 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 210000005087 mononuclear cell Anatomy 0.000 description 1
- 150000002772 monosaccharides Chemical class 0.000 description 1
- 230000035772 mutation Effects 0.000 description 1
- BAYDZXVPEQFLCZ-UHFFFAOYSA-N n-(2-trimethylsilylethoxy)methanamine Chemical compound CNOCC[Si](C)(C)C BAYDZXVPEQFLCZ-UHFFFAOYSA-N 0.000 description 1
- GMPAHNFBSGCUHV-UHFFFAOYSA-N n-(3-aminopropyl)-n'-[3-(ethylamino)propyl]butane-1,4-diamine Chemical compound CCNCCCNCCCCNCCCN GMPAHNFBSGCUHV-UHFFFAOYSA-N 0.000 description 1
- XJVXMWNLQRTRGH-UHFFFAOYSA-N n-(3-methylbut-3-enyl)-2-methylsulfanyl-7h-purin-6-amine Chemical compound CSC1=NC(NCCC(C)=C)=C2NC=NC2=N1 XJVXMWNLQRTRGH-UHFFFAOYSA-N 0.000 description 1
- YNTOKMNHRPSGFU-UHFFFAOYSA-N n-Propyl carbamate Chemical compound CCCOC(N)=O YNTOKMNHRPSGFU-UHFFFAOYSA-N 0.000 description 1
- 229950006780 n-acetylglucosamine Drugs 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000001280 n-hexyl group Chemical group C(CCCCC)* 0.000 description 1
- 125000000740 n-pentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 239000002088 nanocapsule Substances 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 229930014626 natural product Natural products 0.000 description 1
- 210000005170 neoplastic cell Anatomy 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- 108091027963 non-coding RNA Proteins 0.000 description 1
- 102000042567 non-coding RNA Human genes 0.000 description 1
- 125000005187 nonenyl group Chemical group C(=CCCCCCCC)* 0.000 description 1
- 231100000956 nontoxicity Toxicity 0.000 description 1
- 125000001400 nonyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000005071 nonynyl group Chemical group C(#CCCCCCCC)* 0.000 description 1
- 229940064696 nutrilipid Drugs 0.000 description 1
- 125000004365 octenyl group Chemical group C(=CCCCCCC)* 0.000 description 1
- 125000002347 octyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000005069 octynyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C#C* 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 235000019198 oils Nutrition 0.000 description 1
- 229940033080 omega-6 fatty acid Drugs 0.000 description 1
- 235000020665 omega-6 fatty acid Nutrition 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- AHLPHDHHMVZTML-BYPYZUCNSA-N ornithyl group Chemical group N[C@@H](CCCN)C(=O)O AHLPHDHHMVZTML-BYPYZUCNSA-N 0.000 description 1
- 230000003204 osmotic effect Effects 0.000 description 1
- 230000002018 overexpression Effects 0.000 description 1
- 125000006503 p-nitrobenzyl group Chemical group [H]C1=C([H])C(=C([H])C([H])=C1[N+]([O-])=O)C([H])([H])* 0.000 description 1
- 238000010979 pH adjustment Methods 0.000 description 1
- 230000020477 pH reduction Effects 0.000 description 1
- 125000000913 palmityl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 201000002528 pancreatic cancer Diseases 0.000 description 1
- 208000008443 pancreatic carcinoma Diseases 0.000 description 1
- 244000045947 parasite Species 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 244000052769 pathogen Species 0.000 description 1
- 230000001575 pathological effect Effects 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 125000002255 pentenyl group Chemical group C(=CCCC)* 0.000 description 1
- 150000002972 pentoses Chemical class 0.000 description 1
- 125000004115 pentoxy group Chemical group [*]OC([H])([H])C([H])([H])C([H])([H])C(C([H])([H])[H])([H])[H] 0.000 description 1
- 125000001147 pentyl group Chemical group C(CCCC)* 0.000 description 1
- 125000005981 pentynyl group Chemical group 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000002688 persistence Effects 0.000 description 1
- 239000000825 pharmaceutical preparation Substances 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- LCPDWSOZIOUXRV-UHFFFAOYSA-N phenoxyacetic acid Chemical compound OC(=O)COC1=CC=CC=C1 LCPDWSOZIOUXRV-UHFFFAOYSA-N 0.000 description 1
- DKTXXUNXVCHYDO-UHFFFAOYSA-N phenoxyborinic acid Chemical compound OBOC1=CC=CC=C1 DKTXXUNXVCHYDO-UHFFFAOYSA-N 0.000 description 1
- BSCCSDNZEIHXOK-UHFFFAOYSA-N phenyl carbamate Chemical compound NC(=O)OC1=CC=CC=C1 BSCCSDNZEIHXOK-UHFFFAOYSA-N 0.000 description 1
- FAQJJMHZNSSFSM-UHFFFAOYSA-N phenylglyoxylic acid Chemical compound OC(=O)C(=O)C1=CC=CC=C1 FAQJJMHZNSSFSM-UHFFFAOYSA-N 0.000 description 1
- ABOYDMHGKWRPFD-UHFFFAOYSA-N phenylmethanesulfonamide Chemical compound NS(=O)(=O)CC1=CC=CC=C1 ABOYDMHGKWRPFD-UHFFFAOYSA-N 0.000 description 1
- NIXKBAZVOQAHGC-UHFFFAOYSA-N phenylmethanesulfonic acid Chemical compound OS(=O)(=O)CC1=CC=CC=C1 NIXKBAZVOQAHGC-UHFFFAOYSA-N 0.000 description 1
- UEZVMMHDMIWARA-UHFFFAOYSA-M phosphonate Chemical compound [O-]P(=O)=O UEZVMMHDMIWARA-UHFFFAOYSA-M 0.000 description 1
- 150000008298 phosphoramidates Chemical class 0.000 description 1
- SXADIBFZNXBEGI-UHFFFAOYSA-N phosphoramidous acid Chemical compound NP(O)O SXADIBFZNXBEGI-UHFFFAOYSA-N 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 230000004962 physiological condition Effects 0.000 description 1
- 235000017807 phytochemicals Nutrition 0.000 description 1
- INAAIJLSXJJHOZ-UHFFFAOYSA-N pibenzimol Chemical compound C1CN(C)CCN1C1=CC=C(N=C(N2)C=3C=C4NC(=NC4=CC=3)C=3C=CC(O)=CC=3)C2=C1 INAAIJLSXJJHOZ-UHFFFAOYSA-N 0.000 description 1
- IBBMAWULFFBRKK-UHFFFAOYSA-N picolinamide Chemical class NC(=O)C1=CC=CC=N1 IBBMAWULFFBRKK-UHFFFAOYSA-N 0.000 description 1
- 125000005547 pivalate group Chemical group 0.000 description 1
- 229930000223 plant secondary metabolite Natural products 0.000 description 1
- 235000002378 plant sterols Nutrition 0.000 description 1
- 238000002264 polyacrylamide gel electrophoresis Methods 0.000 description 1
- 229920000768 polyamine Polymers 0.000 description 1
- 229920000447 polyanionic polymer Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920000656 polylysine Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 230000001124 posttranscriptional effect Effects 0.000 description 1
- 230000001323 posttranslational effect Effects 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000000770 proinflammatory effect Effects 0.000 description 1
- 210000001236 prokaryotic cell Anatomy 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- OCAAZRFBJBEVPS-UHFFFAOYSA-N prop-2-enyl carbamate Chemical compound NC(=O)OCC=C OCAAZRFBJBEVPS-UHFFFAOYSA-N 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 229960004134 propofol Drugs 0.000 description 1
- 125000002568 propynyl group Chemical group [*]C#CC([H])([H])[H] 0.000 description 1
- 229940039716 prothrombin Drugs 0.000 description 1
- 230000002685 pulmonary effect Effects 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 125000000561 purinyl group Chemical group N1=C(N=C2N=CNC2=C1)* 0.000 description 1
- 150000003220 pyrenes Chemical class 0.000 description 1
- RWUGBYOALBYTGU-UHFFFAOYSA-N pyridin-4-ylmethyl carbamate Chemical compound NC(=O)OCC1=CC=NC=C1 RWUGBYOALBYTGU-UHFFFAOYSA-N 0.000 description 1
- 239000002719 pyrimidine nucleotide Substances 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 150000003242 quaternary ammonium salts Chemical class 0.000 description 1
- FLCPORVHXQFBHT-UHFFFAOYSA-N quinolin-8-yl carbamate Chemical compound C1=CN=C2C(OC(=O)N)=CC=CC2=C1 FLCPORVHXQFBHT-UHFFFAOYSA-N 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 150000003254 radicals Chemical class 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000008261 resistance mechanism Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 206010039073 rheumatoid arthritis Diseases 0.000 description 1
- PYWVYCXTNDRMGF-UHFFFAOYSA-N rhodamine B Chemical compound [Cl-].C=12C=CC(=[N+](CC)CC)C=C2OC2=CC(N(CC)CC)=CC=C2C=1C1=CC=CC=C1C(O)=O PYWVYCXTNDRMGF-UHFFFAOYSA-N 0.000 description 1
- 239000002342 ribonucleoside Substances 0.000 description 1
- 239000002336 ribonucleotide Substances 0.000 description 1
- YBKWIGSMABMNJZ-UHFFFAOYSA-N s-(2,3,4,5,6-pentachlorophenyl)thiohydroxylamine Chemical compound NSC1=C(Cl)C(Cl)=C(Cl)C(Cl)=C1Cl YBKWIGSMABMNJZ-UHFFFAOYSA-N 0.000 description 1
- RTKRAORYZUBVGQ-UHFFFAOYSA-N s-(2,4-dinitrophenyl)thiohydroxylamine Chemical compound NSC1=CC=C([N+]([O-])=O)C=C1[N+]([O-])=O RTKRAORYZUBVGQ-UHFFFAOYSA-N 0.000 description 1
- LOVVSIULYJABJF-UHFFFAOYSA-N s-(2-nitrophenyl)thiohydroxylamine Chemical compound NSC1=CC=CC=C1[N+]([O-])=O LOVVSIULYJABJF-UHFFFAOYSA-N 0.000 description 1
- DAXSYWBYJZACTA-UHFFFAOYSA-N s-(4-methoxy-2-nitrophenyl)thiohydroxylamine Chemical compound COC1=CC=C(SN)C([N+]([O-])=O)=C1 DAXSYWBYJZACTA-UHFFFAOYSA-N 0.000 description 1
- MAGSSGQAJNNDLU-UHFFFAOYSA-N s-phenylthiohydroxylamine Chemical compound NSC1=CC=CC=C1 MAGSSGQAJNNDLU-UHFFFAOYSA-N 0.000 description 1
- PIDYQAYNSQSDQY-UHFFFAOYSA-N s-tritylthiohydroxylamine Chemical compound C=1C=CC=CC=1C(C=1C=CC=CC=1)(SN)C1=CC=CC=C1 PIDYQAYNSQSDQY-UHFFFAOYSA-N 0.000 description 1
- 239000003813 safflower oil Substances 0.000 description 1
- 235000005713 safflower oil Nutrition 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000007480 sanger sequencing Methods 0.000 description 1
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 125000003548 sec-pentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 239000008159 sesame oil Substances 0.000 description 1
- 235000011803 sesame oil Nutrition 0.000 description 1
- 230000019491 signal transduction Effects 0.000 description 1
- 239000002924 silencing RNA Substances 0.000 description 1
- 230000001743 silencing effect Effects 0.000 description 1
- 239000004055 small Interfering RNA Substances 0.000 description 1
- 208000000587 small cell lung carcinoma Diseases 0.000 description 1
- 235000019812 sodium carboxymethyl cellulose Nutrition 0.000 description 1
- 229920001027 sodium carboxymethylcellulose Polymers 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 238000010532 solid phase synthesis reaction Methods 0.000 description 1
- 210000001082 somatic cell Anatomy 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 229940063673 spermidine Drugs 0.000 description 1
- 229940063675 spermine Drugs 0.000 description 1
- 150000003408 sphingolipids Chemical class 0.000 description 1
- 108010068698 spleen exonuclease Proteins 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 125000002345 steroid group Chemical group 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 210000002536 stromal cell Anatomy 0.000 description 1
- 125000005346 substituted cycloalkyl group Chemical group 0.000 description 1
- 125000004434 sulfur atom Chemical group 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 238000004114 suspension culture Methods 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
- 238000010189 synthetic method Methods 0.000 description 1
- WBWWGRHZICKQGZ-GIHLXUJPSA-N taurocholic acid Chemical compound C([C@@H]1C[C@H]2O)[C@@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@@H]([C@@H](CCC(=O)NCCS(O)(=O)=O)C)[C@@]2(C)[C@H](O)C1 WBWWGRHZICKQGZ-GIHLXUJPSA-N 0.000 description 1
- 150000003505 terpenes Chemical class 0.000 description 1
- ILMRJRBKQSSXGY-UHFFFAOYSA-N tert-butyl(dimethyl)silicon Chemical group C[Si](C)C(C)(C)C ILMRJRBKQSSXGY-UHFFFAOYSA-N 0.000 description 1
- 125000001981 tert-butyldimethylsilyl group Chemical group [H]C([H])([H])[Si]([H])(C([H])([H])[H])[*]C(C([H])([H])[H])(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 125000001973 tert-pentyl group Chemical group [H]C([H])([H])C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 125000003718 tetrahydrofuranyl group Chemical group 0.000 description 1
- 125000004632 tetrahydrothiopyranyl group Chemical group S1C(CCCC1)* 0.000 description 1
- MPLHNVLQVRSVEE-UHFFFAOYSA-N texas red Chemical compound [O-]S(=O)(=O)C1=CC(S(Cl)(=O)=O)=CC=C1C(C1=CC=2CCCN3CCCC(C=23)=C1O1)=C2C1=C(CCC1)C3=[N+]1CCCC3=C2 MPLHNVLQVRSVEE-UHFFFAOYSA-N 0.000 description 1
- 231100001274 therapeutic index Toxicity 0.000 description 1
- 230000004797 therapeutic response Effects 0.000 description 1
- 150000003573 thiols Chemical class 0.000 description 1
- LMYRWZFENFIFIT-UHFFFAOYSA-N toluene-4-sulfonamide Chemical compound CC1=CC=C(S(N)(=O)=O)C=C1 LMYRWZFENFIFIT-UHFFFAOYSA-N 0.000 description 1
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 230000002110 toxicologic effect Effects 0.000 description 1
- 238000010361 transduction Methods 0.000 description 1
- 230000026683 transduction Effects 0.000 description 1
- 230000009261 transgenic effect Effects 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 238000002054 transplantation Methods 0.000 description 1
- 150000003918 triazines Chemical class 0.000 description 1
- 229940066528 trichloroacetate Drugs 0.000 description 1
- YNJBWRMUSHSURL-UHFFFAOYSA-N trichloroacetic acid Chemical compound OC(=O)C(Cl)(Cl)Cl YNJBWRMUSHSURL-UHFFFAOYSA-N 0.000 description 1
- 125000004784 trichloromethoxy group Chemical group ClC(O*)(Cl)Cl 0.000 description 1
- ZIBGPFATKBEMQZ-UHFFFAOYSA-N triethylene glycol Chemical compound OCCOCCOCCO ZIBGPFATKBEMQZ-UHFFFAOYSA-N 0.000 description 1
- KAKQVSNHTBLJCH-UHFFFAOYSA-N trifluoromethanesulfonimidic acid Chemical compound NS(=O)(=O)C(F)(F)F KAKQVSNHTBLJCH-UHFFFAOYSA-N 0.000 description 1
- 125000000026 trimethylsilyl group Chemical group [H]C([H])([H])[Si]([*])(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 125000002221 trityl group Chemical group [H]C1=C([H])C([H])=C([H])C([H])=C1C([*])(C1=C(C(=C(C(=C1[H])[H])[H])[H])[H])C1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 description 1
- HDZZVAMISRMYHH-KCGFPETGSA-N tubercidin Chemical compound C1=CC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O HDZZVAMISRMYHH-KCGFPETGSA-N 0.000 description 1
- 230000004614 tumor growth Effects 0.000 description 1
- 230000005751 tumor progression Effects 0.000 description 1
- 230000002100 tumorsuppressive effect Effects 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 230000007306 turnover Effects 0.000 description 1
- 125000004417 unsaturated alkyl group Chemical group 0.000 description 1
- NQPDZGIKBAWPEJ-UHFFFAOYSA-N valeric acid Chemical compound CCCCC(O)=O NQPDZGIKBAWPEJ-UHFFFAOYSA-N 0.000 description 1
- LVLANIHJQRZTPY-UHFFFAOYSA-N vinyl carbamate Chemical compound NC(=O)OC=C LVLANIHJQRZTPY-UHFFFAOYSA-N 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 235000019166 vitamin D Nutrition 0.000 description 1
- 239000011710 vitamin D Substances 0.000 description 1
- 150000003710 vitamin D derivatives Chemical class 0.000 description 1
- 229940046008 vitamin d Drugs 0.000 description 1
- 150000003722 vitamin derivatives Chemical class 0.000 description 1
- 230000003442 weekly effect Effects 0.000 description 1
- WCNMEQDMUYVWMJ-JPZHCBQBSA-N wybutoxosine Chemical compound C1=NC=2C(=O)N3C(CC([C@H](NC(=O)OC)C(=O)OC)OO)=C(C)N=C3N(C)C=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O WCNMEQDMUYVWMJ-JPZHCBQBSA-N 0.000 description 1
- 125000001834 xanthenyl group Chemical group C1=CC=CC=2OC3=CC=CC=C3C(C12)* 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/70—Carbohydrates; Sugars; Derivatives thereof
- A61K31/7088—Compounds having three or more nucleosides or nucleotides
- A61K31/713—Double-stranded nucleic acids or oligonucleotides
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/46—Cellular immunotherapy
- A61K39/461—Cellular immunotherapy characterised by the cell type used
- A61K39/4613—Natural-killer cells [NK or NK-T]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/46—Cellular immunotherapy
- A61K39/464—Cellular immunotherapy characterised by the antigen targeted or presented
- A61K39/4643—Vertebrate antigens
- A61K39/4644—Cancer antigens
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/51—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
- A61K47/54—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound
- A61K47/55—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound the modifying agent being also a pharmacologically or therapeutically active agent, i.e. the entire conjugate being a codrug, i.e. a dimer, oligomer or polymer of pharmacologically or therapeutically active compounds
- A61K47/551—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound the modifying agent being also a pharmacologically or therapeutically active agent, i.e. the entire conjugate being a codrug, i.e. a dimer, oligomer or polymer of pharmacologically or therapeutically active compounds one of the codrug's components being a vitamin, e.g. niacinamide, vitamin B3, cobalamin, vitamin B12, folate, vitamin A or retinoic acid
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
- C12N15/113—Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
- C12N15/1138—Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing against receptors or cell surface proteins
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/10—Type of nucleic acid
- C12N2310/14—Type of nucleic acid interfering N.A.
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/30—Chemical structure
- C12N2310/31—Chemical structure of the backbone
- C12N2310/312—Phosphonates
- C12N2310/3125—Methylphosphonates
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/30—Chemical structure
- C12N2310/31—Chemical structure of the backbone
- C12N2310/315—Phosphorothioates
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/30—Chemical structure
- C12N2310/32—Chemical structure of the sugar
- C12N2310/321—2'-O-R Modification
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/30—Chemical structure
- C12N2310/32—Chemical structure of the sugar
- C12N2310/322—2'-R Modification
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/30—Chemical structure
- C12N2310/33—Chemical structure of the base
- C12N2310/334—Modified C
- C12N2310/3341—5-Methylcytosine
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/30—Chemical structure
- C12N2310/33—Chemical structure of the base
- C12N2310/335—Modified T or U
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/30—Chemical structure
- C12N2310/34—Spatial arrangement of the modifications
- C12N2310/343—Spatial arrangement of the modifications having patterns, e.g. ==--==--==--
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/30—Chemical structure
- C12N2310/34—Spatial arrangement of the modifications
- C12N2310/344—Position-specific modifications, e.g. on every purine, at the 3'-end
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/30—Chemical structure
- C12N2310/34—Spatial arrangement of the modifications
- C12N2310/345—Spatial arrangement of the modifications having at least two different backbone modifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/30—Chemical structure
- C12N2310/34—Spatial arrangement of the modifications
- C12N2310/346—Spatial arrangement of the modifications having a combination of backbone and sugar modifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/30—Chemical structure
- C12N2310/35—Nature of the modification
- C12N2310/351—Conjugate
- C12N2310/3515—Lipophilic moiety, e.g. cholesterol
Definitions
- the invention pertains to the field of Adoptive Cell Transfer (ACT).
- ACT Adoptive Cell Transfer
- the invention more specifically relates to natural killer (NK) cells that are modified using nucleic acid molecules with improved delivery properties to enhance the cells’ tumor killing activity in the immunosuppressive tumor microenvironment.
- NK natural killer
- Cancer is one of the leading deadly diseases globally and requires great investigational efforts to understand the mechanism of tumorigenesis and find better effective regimens to control it (1).
- the statistical data on global cancer diseases estimated about 19.3 million newly diagnosed cancer cases and 10 million cancer deaths (1).
- Tumors consist of groups of heterogeneous cells derived from normal cells and express various atypical antigens (2).
- Malignant cells show key hallmarks that include extensive growth potential and the ability to invade surrounding tissues and metastasize to distal organs (2,3).
- Metastasis a primary cause of mortality in cancer patients, is a complicated process and remains one of the least understood profiles of cancer biology (4).
- NK cells that are modified with nucleic acid molecules (e.g., INTASYLTM molecules) targeting T-cell Immunoreceptor with Ig and ITIM domains (TIGIT).
- nucleic acid molecules e.g., INTASYLTM molecules
- TAGIT T-cell Immunoreceptor with Ig and ITIM domains
- the disclosure relates to compositions and methods for immunotherapy of diseases characterized by aberrant immune checkpoint function (e.g., cancer and certain infectious diseases).
- the disclosure is based, in part, on the discovery of immunomodulatory (e.g., immunogenic) compositions comprising a host cell (e.g., an NK cell) comprising oligonucleotide molecules that target genes associated with tumor or infectious disease resistance mechanisms, as well as methods of producing such compositions.
- the disclosure provides chemically-modified oligonucleotide molecules used in methods of producing immunogenic compositions.
- methods and compositions described by the disclosure are useful for treating a subject having a proliferative or infectious disease.
- the disclosure provides NK cells modified with chemically-modified double stranded nucleic acid molecules that target T-cell Immunoreceptor with Ig and ITIM domains (TIGIT).
- TAGIT T-cell Immunoreceptor with Ig and ITIM domains
- the chemically-modified double stranded nucleic acid molecule is directed against a sequence comprising at least 12 contiguous nucleotides selected from the sequences within Table 1.
- the disclosure provides a self-delivering RNA (INTASYLTM) that is directed against a gene encoding TIGIT, wherein the INTASYLTM comprises at least 12 contiguous nucleotides of a sequence selected from the sequences within Table 2.
- the disclosure provides a chemically-modified double stranded nucleic acid molecule that is directed against a sequence comprising at least 12 contiguous nucleotides of a sequence selected from the sequences within Table 1.
- the chemically-modified double stranded nucleic acid molecule is an INTASYLTM compound (self-delivering RNA, or sd-rxRNA).
- the INTASYLTM is hydrophobically modified.
- the INTASYLTM is linked to one or more hydrophobic conjugates, for example cholesterol.
- the chemically-modified double stranded nucleic acid molecule comprises at least one 2’-O-methyl modification and/or at least one 2’-O- Fluoro modification, and at least one phosphorothioate modification.
- the first nucleotide relative to the 5’end of the guide strand has a 2'-O-methyl modification, optionally wherein the 2'-O-methyl modification is a 5P-2'O- methyl U modification, or a 5’ vinyl phosphonate 2’-O-methyl U modification.
- the NK cell is derived from a healthy donor. In some embodiments, the NK cell is derived from a human NK cell line. In some embodiments, the human NK cell line is selected from the group consisting of: KHYG-1, NK92, NK101, YT, NKL, HANK1, NK-YS, SNK-6, SNK-8, and IMC-1. In some embodiments, the human NK cell line is KHYG-1. In some embodiments, the human NK cell line is NK92. In some embodiments, the NK cell is a primary NK cell. In some embodiments, the NK cell is isolated or expanded from peripheral blood mononuclear cells (PBMCs).
- PBMCs peripheral blood mononuclear cells
- the NK cell is differentiated and expanded from umbilical cord (stem) cells (UBCs). In some embodiments, the NK cell is differentiated and expanded from induced pluripotent stem cells (iPSCs). In some embodiments, the NK cell is an allogeneic NK cell. In some embodiments, the NK cell is an autologous NK cell.
- the chemically-modified nucleic acid molecule comprises a sequence selected from TIGIT 1 (SEQ ID NO: 7), TIGIT 6 (SEQ ID NO: 12), TIGIT 21 (SEQ ID NO: 27), TIGIT 22 (SEQ ID NO: 2), TIGIT 23 (SEQ ID NO: 4) and TIGIT 24 (SEQ ID NO: 6).
- an INTASYLTM comprises a sense strand having the sequence set forth in SEQ ID NO: 1 and/or an antisense strand having the sequence set forth in SEQ ID NO: 2.
- an INTASYLTM comprises a sense strand having the sequence set forth in SEQ ID NO: 3 and an antisense strand having the sequence set forth in SEQ ID NO: 4.
- an INTASYLTM comprises a sense strand having the sequence set forth in SEQ ID NO: 5 and/or an antisense strand having the sequence set forth in SEQ ID NO: 6.
- the disclosure provides an immunogenic composition comprising a NK cell comprising a chemically-modified double stranded nucleic acid molecule that is directed against a TIGIT sequence comprising at least 12 contiguous nucleotides of a sequence selected from the sequences within Table 1.
- the disclosure provides an immunogenic composition comprising a NK cell comprising a chemically-modified double stranded nucleic acid molecule that comprises a sequence selected from the sequences within Table 1.
- the disclosure provides an immunogenic composition comprising a NK cell comprising an INTASYLTM that is directed against a gene encoding TIGIT, wherein the sd- rxRNA (INTASYLTM) comprises at least 12 contiguous nucleotides of a sequence selected from the sequences within Table 2.
- the disclosure provides an immunogenic composition comprising a NK cell comprising a chemically-modified double stranded nucleic acid molecule that comprises a sequence selected from the sequences within Table 2.
- a chemically- modified double stranded nucleic acid molecule is an INTASYLTM.
- the INTASYLTM is hydrophobically modified.
- the INTASYLTM is linked to one or more hydrophobic conjugates, for example cholesterol.
- the chemically- modified double stranded nucleic acid molecule comprises at least one 2’-O-methyl modification and/or at least one 2’-O- Fluoro modification, and at least one phosphorothioate modification.
- a NK cell comprises a chemically-modified double stranded nucleic acid molecule targeting TIGIT.
- the NK cell is an NK-cell
- the NK-cell comprises one or more transgenes expressing a high affinity chimeric antibody receptor (CAR).
- a NK cell is derived from a healthy donor.
- the NK cell is derived from a human NK cell line.
- the human NK cell line is selected from the group consisting of: KHYG-1, NK92, NK101, YT, NKL, HANK1, NK-YS, SNK-6, SNK-8, and IMC-1.
- the human NK cell line is KHYG-1.
- the human NK cell line is NK92.
- the NK cell is a primary NK cell.
- the NK cell is isolated or expanded from peripheral blood mononuclear cells (PBMCs).
- PBMCs peripheral blood mononuclear cells
- UBCs umbilical cord (stem) cells
- iPSCs induced pluripotent stem cells
- the NK cell is an allogeneic NK cell.
- the NK cell is an autologous NK cell.
- the NK cells are expanded by culturing the cells in various cytokines mixtures (IL-2, IL-12, IL-15, IL-18 and/or IL-21), cell based cytokine transfected cells (e.g. K562 with IL-15 or IL-21 or other cytokines) in combination with other ligands (e.g., 4-1 BBL), or autologous PBMC stimulated cells.
- cytokines mixtures IL-2, IL-12, IL-15, IL-18 and/or IL-21
- cell based cytokine transfected cells e.g. K562 with IL-15 or IL-21 or other cytokines
- other ligands e.g., 4-1 BBL
- autologous PBMC stimulated cells e.g., 4-1 BBL
- the NK cells are expanded with MHC low or non-expressing cell lines are chosen as feeder cells after modification with one or more costimulatory molecules, like IL-15, IL-21, 4-1BBL, and OX-40, expressed on their surface.
- costimulatory molecules like IL-15, IL-21, 4-1BBL, and OX-40, expressed on their surface.
- the NK cells are expanded with K562 cells with membrane bound IL-15 (mbIL15), or mbIL-21 in combination with 4-1BBL as feeder cells and have been used to expand NK cells from about 12 to 20 days.
- mbIL15 membrane bound IL-15
- 4-1BBL 4-1BBL
- a chemically-modified double stranded nucleic acid molecule or sd-rxRNA induces at least 50% inhibition of TIGIT in a NK cell.
- the disclosure provides a method for producing an immunogenic composition, the method comprising introducing into a cell one or more chemically-modified double stranded nucleic acid molecules, wherein the one or more chemically-modified double stranded nucleic acid molecules target TIGIT, thereby producing an immunogenic composition comprising a NK cell.
- the one or more chemically modified double stranded nucleic acid molecules is a chemically-modified double stranded nucleic acid molecule as described by the disclosure, or an INTASYLTM as described by the disclosure.
- the disclosure in some aspects, provides a method for producing an immunogenic composition, the method comprising introducing into an NK cell a chemically-modified double stranded nucleic acid molecule that is directed against a T cell immunoglobulin and ITIM domain (TIGIT) gene, wherein the chemically-modified double stranded nucleic acid molecule comprises at least 12 contiguous nucleotides of a sequence selected from SEQ ID NOs: 1-6 and 27.
- TAGIT T cell immunoglobulin and ITIM domain
- an immunogenic composition comprising a natural killer (NK) cell comprising a chemically-modified double stranded nucleic acid molecule that is directed against a T cell immunoglobulin and ITIM domain (TIGIT) gene, wherein the double stranded nucleic acid molecule comprises at least 12 contiguous nucleotides of a sequence selected from SEQ ID NOs: 1-6 and 27, and wherein the NK cell comprises a primary NK cell, a NK cell isolated and /or expanded from PBMCs, differentiated from umbilical cord cells or from induced pluripotent stem cells, an allogeneic NK cell, or an NK cell from the KHYG-1 cell line.
- NK natural killer
- TAGIT T cell immunoglobulin and ITIM domain
- the chemically-modified double stranded nucleic acid molecule comprises a sense strand having the sequence set forth in SEQ ID NO: 1 (TIGIT 22 sense strand) and/or an antisense strand having the sequence set forth in SEQ ID NO: 2 (TIGIT 22 antisense strand).
- the chemically-modified double stranded nucleic acid molecule comprises a sense strand having the sequence set forth in SEQ ID NO: 3 (TIGIT 23 sense strand) and/or an antisense strand having the sequence set forth in SEQ ID NO: 4 (TIGIT
- the chemically-modified double stranded nucleic acid molecule comprises a sense strand having the sequence set forth in SEQ ID NO: 5 (TIGIT
- the disclosure provides a method for treating a subject suffering from a proliferative disease or infectious disease, the method comprising administering to the subject an immunogenic composition as described by the disclosure.
- the proliferative disease is cancer.
- FIG. 1 provides an overview of the experimental setup utilized to test the ability of INTASYLTM compounds targeting TIGIT to enhance the activity of NK cells.
- FIGs. 2A-2B demonstrate the concentration dependent reduction of surface TIGIT protein expression in NK cells treated with the TIGIT-targ eting INTASYLTM compound.
- FACS data FIG. 2A
- MFI mean fluorescence intensity
- FIG. 3 demonstrates activation of NK cells treated with the TIGIT-targeting INTASYLTM compound as measured by CD107a expression, from a first donor (top two captions) and a second donor (bottom two captions), using the K562 leukemia cell line (left) or the MCF-7 breast cancer cell line (right).
- “+” indicates coculture of NK cells with K562 or MCF-7.
- UTC un-transfected control
- NTC non-targeting control. Percentage of activated NK cells, CD107a+ NK cells.
- FIG. 4 shows tumor cell killing by NK cells treated with the TIGIT-targeting INTASYLTM compound. TIGIT mRNA levels are shown on the left and percent specific lysis is shown on the right.
- FIGs. 5A-5D demonstrate characteristics of NK cells treated with a TIGIT-targeting INTASYLTM compound as measured by cytotoxic effects (FIG. 5A), TIGIT mRNA levels (FIG. 5B), surface protein expression (FIG. 5C), and IFNy release (FIG. 5D).
- the disclosure relates to compositions and methods for improved natural killer (NK) cell therapeutics by treatment of nucleic acid molecules (e.g., INTASYLTM compounds) targeting TIGIT.
- nucleic acid molecules e.g., INTASYLTM compounds
- the disclosure is based, in part, on chemically modified doublestranded nucleic acid molecules (e.g., INTASYLTM), targeting TIGIT to enhance and/or improve the activation of NK cells.
- the disclosure relates to compositions and methods for immunotherapy.
- the disclosure is based, in part, on chemically modified double- stranded nucleic acid molecules (e.g., INTASYLTM) targeting TIGIT to enhance the killing activity of NK cells against cancer cells as described in more detail below.
- chemically modified double- stranded nucleic acid molecules e.g., INTASYLTM
- PD1 Programmed cell Death protein 1
- CTL4 Cytotoxic T-Lymphocyte- Associated protein 4
- TIM3 T cell Immunoglobulin and Mucin domain-3
- TAGIT T cell Immunoreceptor with Ig and ITIM domains
- LAG3 Lymphocyte-activation gene 3
- the tumor microenvironment is comprised of cancer cells, fibroblasts, stromal cells, endothelial cells, regulatory immune cells (e.g., Treg), small molecules (lactate, CD47, HLA-E, etc.) or conditions (hypoxia, low pH) that promote tumor progression but is detrimental for immune cells (12).
- Hypoxia is a common feature of solid tumors, and tumor cells adapt to this condition by upregulating the transcription factor Hypoxia- Inducible Factor (HIF)-la.
- HIF Hypoxia- Inducible Factor
- Immunomodulatory monoclonal antibodies As immune cells are dysregulated in a tumor suppressive microenvironment, immunomodulatory monoclonal antibodies (mAbs) have been applied to block the inhibitory signals or activate the co- stimulatory pathway, thereby aiming to enhance the persistence and activity of immune cells.
- Immunomodulatory mAbs interact with soluble or cellular components of the immune system.
- Blockade of immunosuppressive receptors expressed on NK cells or T cells also known as Checkpoint blockade mAbs
- NK cells or T cells also known as Checkpoint blockade mAbs
- KIR killer cell immunoglobulin-like receptor
- NKG2A 13,14
- CTLA4, PD-1, TIM3, TIGIT, and LAG3 has become a mainstream treatment and are now even offered as first line treatment. Still, only a limited number of patients react well to these drugs resulting in complete remissions and extended survival and cure.
- Adoptive cell therapy is a “living cell” drug remedy that involves the procedure of obtaining anti-tumor effector cells (mostly T cell, NK cells or dendritic cells) from the patient itself (autologous) or from a donor (allogeneic), followed by expansion and/or engineering these effector cells in vitro and infusion of such cells into patients suffering from malignant diseases (16).
- TIL tumor-infiltrating lymphocytes
- CR complete regression
- effector cells In vitro activation of the effector cells allows these cells to be released from the suppressive microenvironment existing in the tumor, boosts their cytotoxicity, and expanding them in numbers over 3E10 cells (18). During the expansion period, effector cells can be further tailored or customized towards specific tumors by genetic modification methods, including but not limited to CRISPR/Cas9, viral transduction, mRNA electroporation, (5,16,18,19).
- NK Natural Killer
- CAR-NK cells have been developed to be used for adoptive transfer into patients to act as direct anti-tumor killing effector cells.
- the first clinical trials show the potency of these cells (22, 23), but also some challenges. Therefore, more potent combinations are needed to make NK cells a real effective ACT.
- T cells the genetic modification and expansion of Natural Killer cells are more challenging (24, 25).
- NK cells are innate immune effector cell that can rapidly identify and kill abnormal cells, virally infected cells and tumor cells (26).
- NK cells are lymphocytes that lack antigen- specific receptors, while abundantly expressing neural cell adhesion molecule (NCAM; also known as CD56).
- NCAM neural cell adhesion molecule
- the unique mechanism of NK to distinguish pathologic cells from normal tissue cells is determined by the combination of surface stimulatory and inhibitory receptors that recognize a wide range of ligands on target cells (27).
- T cells recognize peptide in the MHC (in human called human leukocyte antigen, HLA) molecules on an antigen presenting cell (APC) and after receiving the proper danger signals, APC activate T cells that can kill MHC class Lexpressing tumor cells.
- MHC human called human leukocyte antigen, HLA
- APC antigen presenting cell
- MHC class I molecules bind a suite of inhibitory killer cell immunoglobulin-like receptors (KIRs).
- KIRs inhibitory killer cell immunoglobulin-like receptors
- the KIR cluster restrains NK cell activity and thereby prevents the damage to normal “self ’-cells (29).
- NK cell licensing This process is part of a sophisticated mechanism known as NK cell education, in which NK cells obtain functional competence and adapt to the host where they develop (29,31).
- NK cells unlike T cells, can also become activated after antibody binding to the CD 16 surface receptor.
- an antibody binds to a specific tumor antigen, this complex is bound via the Fc tail to CD 16 molecules on NK cells that become activated and will eliminate the tumor cells.
- ADCC antibody dependent cellular cytotoxicity
- NK cells for adoptive cell therapy can be transplanted into a new surrounding with different MHC expression patterns without losing their function (32,33).
- allogeneic NK cells do not induce graft-versus-host disease but rather play a regulatory role in most cases (reviewed in (34)).
- NK cells comprise a population of 5-15% in human peripheral blood and can be isolated, but yielding too low numbers for a direct transfer, hence the great necessity to be able to expand the population by inducing proliferation to obtain the big cell numbers needed to treat.
- NK cell expansion can be achieved culturing the cells in various cytokines mixtures (IL- 2, IL-12, IL-15, IL-18 and/or IL-21), K562 cell-based cytokine transfected cells (e.g., with IL-15 or IL-21 in combination with 4-1BBL), or autologous PBMC stimulated cells.
- cytokines mixtures IL- 2, IL-12, IL-15, IL-18 and/or IL-21
- K562 cell-based cytokine transfected cells e.g., with IL-15 or IL-21 in combination with 4-1BBL
- autologous PBMC stimulated cells autologous PBMC stimulated cells.
- MHC low or non-expressing cell lines are chosen as feeder cells after modification with one or more costimulatory molecules, like IL-15, IL-21, 4-1BBL, and OX-40, expressed on their surface.
- costimulatory molecules like IL-15, IL-21, 4-1BBL, and OX-40, expressed on their surface.
- MHC molecules will dampen the killing capacity of NK cells.
- the MHC class I deficient K562 cell line seems the ideal cell line to activate signal transduction in NK cells resulting in their expansion, whereas these feeder cells will be killed by the NK cells.
- NK cells expanded with mbIL15 showed reduced telomere lengths, however, propagated with mbIL21 they had more elongated telomere lengths than freshly isolated peripheral blood NK cells, relevant for the expansion opportunity (37).
- NK cells are used as ACT they land in an immunosuppressive microenvironment and their function will be hampered.
- Degos et al. showed that in the endometrial tumor microenvironment, concentrations of both chemokines (CXCL12, IP-1, and CCL27) and proinflammatory cytokines (IL-ip and IL-6) were increased that might inhibit NK cell function and recruitment to the tumor site (38).
- Harmon et al. reported that lactate-mediated acidification of tumor microenvironment promotes apoptosis of liver-resident NK cells in a colorectal liver metastasis model (39).
- Nath et al. found that NK cell recruitment and activation are regulated by CD47 expression in the tumor microenvironment (40).
- the tumor microenvironment is an obstacle that constrains the anti-tumor activity of NK cells.
- NK cells Gene modification of NK cells has shown its merits.
- conditional knockout of HIF-la in NK cells of mice resulted in reduced tumor growth, up-regulated expression or activation of phenotypic markers, effector molecules, and an enriched NF-KB pathway in tumor- infiltrating NK cells (41).
- RNA interference RNA interference
- INTASYLTM technology is particularly suitable for modulating genes of interest in NK cells and result in enhanced NK cell activity.
- INTASYLTM can be developed in a short period of time and can silence virtually any target including “non-druggable” targets, e.g., those that are difficult to inhibit by small molecules, e.g., transcription factors;
- INTASYLTM can transfect a variety of cell types, including T cells with high transfection efficiency retaining a high cell viability;
- INTASYLTM compounds when added to cell culture media at an early expansion stage, INTASYLTM compounds provide transient silencing of targets of interest during 8-10 division cycles;
- INTASYLTM can be used in combination to simultaneously silence multiple targets, thus providing considerable flexibility for the use in different types of cell treatment protocols.
- INTASYLTM compounds directed to TIGIT in NK cells, and the beneficial effect of such INTASYLTM on the phenotype of NK cells during and or following ex vivo expansion.
- nucleic acid molecule includes but is not limited to: INTASYLTM, sd- rxRNA, rxRNAori, oligonucleotides, ASO, siRNA, shRNA, miRNA, ncRNA, cp-lasiRNA, aiRNA, single-stranded nucleic acid molecules, double-stranded nucleic acid molecules, RNA and DNA.
- the nucleic acid molecule is a chemically-modified nucleic acid molecule, such as a chemically-modified oligonucleotide.
- the nucleic acid molecule is double stranded.
- chemically-modified double stranded nucleic acid molecules as described herein are INTASYLTM (also known as sd-rxRNA) molecules.
- an INTASYLTM molecule described herein comprises or consists of, or is targeted to or directed against, a sequence set forth in Table 1, or a fragment thereof.
- an “sd-rxRNA” or an “sd-rxRNA molecule” or an “INTASYLTM” or an “INTASYLTM molecule” or an “INTASYLTM compound” refers to a self-delivering RNA molecule such as those described in, and incorporated by reference from, US Patent No.
- an INTASYLTM (also referred to as an sd-rxRNA nano ) is an isolated asymmetric double stranded nucleic acid molecule comprising a guide strand, with a minimal length of 16 nucleotides, and a passenger strand of 8-18 nucleotides in length, wherein the double stranded nucleic acid molecule has a double stranded region and a single stranded region, the single stranded region having 4-12 nucleotides in length and having at least three nucleotide backbone modifications.
- the double stranded nucleic acid molecule has one end that is blunt or includes a one or two nucleotide overhang.
- INTASYLTM molecules can be optimized through chemical modification, and in some instances through attachment of hydrophobic conjugates.
- an INTASYLTM comprises an isolated double stranded nucleic acid molecule comprising a guide strand and a passenger strand, wherein the region of the molecule that is double stranded is from 8-15 nucleotides long, wherein the guide strand contains a single stranded region that is 4-12 nucleotides long, wherein the single stranded region of the guide strand contains 3, 4, 5, 6, 7, 8, 9, 10, 11 or 12 phosphorothioate modifications, and wherein at least 40% of the nucleotides of the double stranded nucleic acid are modified.
- an INTASYLTM comprises an isolated double stranded nucleic acid molecule comprising a guide strand and a passenger strand, wherein the region of the molecule that is double stranded is from 8-15 nucleotides long, wherein the guide strand contains a single stranded region that is 4-12 nucleotides long, wherein the single stranded region of the guide strand contains 3, 4, 5, 6, 7, 8, 9, 10, 11 or 12 phosphorothioate modifications, and wherein at least 40% of the nucleotides of the double stranded nucleic acid are modified, wherein one strand, is conjugated to cholesterol at the 5’ or 3’ end of the strand. In some embodiments, the passenger strand is conjugated cholesterol at the 5’ or 3’ end of the strand.
- an INTASYLTM comprises an isolated double stranded nucleic acid molecule comprising a guide strand and a passenger strand, wherein the region of the molecule that is double stranded is from 8-15 nucleotides long, wherein the guide strand contains a single stranded region that is 4-12 nucleotides long, wherein the single stranded region of the guide strand contains 3, 4, 5, 6, 7, 8, 9, 10, 11 or 12 phosphorothioate modifications, and wherein at least 40% of the nucleotides of the double stranded nucleic acid are modified, wherein one strand, e.g., the passenger strand, contains a hydrophobic moiety conjugated to the 3’ end of the passenger strand, wherein the hydrophobic moiety is cholesterol.
- Nucleic acid molecules associated with the invention are referred to herein as isolated double stranded or duplex nucleic acids, chemically-modified double stranded or duplex nucleic acids, oligonucleotides, polynucleotides, nano molecules, nano RNA, sd-rxRNA nano , sd-rxRNA, INTASYLTM or RNA molecules of the invention.
- INTASYLTM molecules are much more effectively taken up by cells compared to conventional siRNAs. These molecules are highly efficient in silencing of target gene expression and offer significant advantages over previously described RNAi molecules including high activity in the presence of serum, efficient self-delivery, compatibility with a wide variety of linkers, and reduced presence or complete absence of chemical modifications that are associated with toxicity.
- duplex polynucleotides In contrast to single- stranded polynucleotides, duplex polynucleotides have traditionally been difficult to deliver to a cell as they have rigid structures and a large number of negative charges which makes membrane transfer difficult.
- INTASYLTM molecules although partially double-stranded, are recognized in vivo as single- stranded and, as such, are capable of efficiently being delivered across cell membranes.
- the polynucleotides of the invention are capable in many instances of self-delivery.
- the polynucleotides of the invention may be formulated in a manner similar to conventional RNAi agents or they may be delivered to the cell or subject alone (or with non-delivery type carriers) and allowed to selfdeliver.
- RNA molecules in which one portion of the molecule resembles a conventional RNA duplex and a second portion of the molecule is single stranded.
- the oligonucleotides of the invention in some aspects have a combination of asymmetric structures including a double stranded region and a single stranded region of 5 nucleotides or longer, specific chemical modification patterns and are conjugated to lipophilic or hydrophobic molecules.
- this class of RNAi like compounds have superior efficacy in vitro and in vivo. It is believed that the reduction in the size of the rigid duplex region in combination with phosphorothioate modifications applied to a single stranded region contribute to the observed superior efficacy.
- the RNAi compounds of the invention comprise an asymmetric compound comprising a duplex region (required for efficient RISC entry) of 8-15 bases long and a single stranded region of 4-12 nucleotides long.
- the duplex region is 13 or 14 nucleotides long, and in some embodiments, the since stranded region is 6-7 nucleotides long.
- the single stranded region of the RNAi compounds e.g., INTAS YLTM molecules
- the single stranded region comprises 6-8 phosphorothioate internucleotide linkages.
- the RNAi compounds of the invention also include a unique chemical modification pattern, which provides stability and is compatible with RISC entry. In some embodiments, the combination of these elements has resulted in unexpected properties which are highly useful for delivery of RNAi reagents in vitro and in vivo.
- the chemical modification pattern which provides stability and is compatible with RISC entry can include modifications to the sense, or passenger, strand as well as the antisense, or guide, strand.
- the passenger strand can be modified with any chemical entities which confirm stability and do not interfere with activity.
- modifications include 2’ ribo modifications (O-methyl, 2’ F, 2 deoxy and others) and backbone modifications, such as phosphorothioate modifications.
- the chemical modification pattern in the passenger strand includes O-methyl modification of C and U nucleotides within the passenger strand or alternatively, the passenger strand may be completely O-methyl modified.
- the guide strand may also be modified by any chemical modification which confirms stability without interfering with RISC entry.
- the chemical modification pattern in the guide strand includes the majority of C and U nucleotides being 2’ F modified and the 5’ end being phosphorylated.
- a chemical modification pattern in the guide strand includes 2’ O-methyl modification of position 1 and C/U in positions 11-18 and 5’ end chemical phosphorylation.
- a chemical modification pattern in the guide strand includes 2’O-methyl modification of position 1 and C/U in positions 11-18 and 5’ end chemical phosphorylation and 2’F modification of C/U in positions 2-10.
- the passenger strand and/or the guide strand contains at least one 5-methyl C or U modification.
- At least 30% of the nucleotides in the sd-rxRNA are modified. For example, at least 30%, 31%, 32%, 33%, 34%, 35%, 36%, 37%, 38%, 39%, 40%, 41%, 42%, 43%, 44%, 45%, 46%, 47%, 48%, 49%, 50%, 51%,
- nucleotides in the INTASYLTM compound are modified. In some embodiments, 100% of the nucleotides in the INTASYLTM compound are modified.
- RNAi compounds of the invention are well tolerated and improve efficacy of asymmetric RNAi compounds.
- elimination of any of the described components can result in sub-optimal efficacy and, in some instances, complete loss of efficacy.
- the combination of elements results in development of a compound, which is fully active following passive delivery to cells.
- the INTASYLTM can be further improved in some instances by improving the hydrophobicity of compounds using novel types of chemistries.
- one chemistry is related to use of hydrophobic base modifications. Any base in any position might be modified, as long as modification results in an increase of the partition coefficient of the base.
- the preferred locations for modification chemistries are positions 4 and 5 of the pyrimidines. The major advantage of these positions is (a) ease of synthesis and (b) lack of interference with basepairing and A form helix formation, which are essential for RISC complex loading and target recognition.
- INTASYLTM compounds where multiple deoxy uridines are present without interfering with overall compound efficacy are used.
- tissue distribution and cellular uptake might be obtained by modifying the structure of the hydrophobic conjugate.
- the structure of sterol is modified to alter (increase/decrease) C17 attached chain. This type of modification results in significant increase in cellular uptake and improvement of tissue uptake prosperities in vivo.
- a chemically-modified double stranded nucleic acid molecule is a hydrophobically modified siRNA-antisense hybrid molecule, comprising a double- stranded region of about 13-22 base pairs, with or without a 3’- overhang on each of the sense and antisense strands, and a 3’ single- stranded tail on the antisense strand of about 2-9 nucleotides.
- the chemically-modified double stranded nucleic acid molecule contains at least one 2’-O-Methyl modification, at least one 2’-Fluoro modification, and at least one phosphorothioate modification, as well as at least one hydrophobic modification selected from sterol, cholesterol, vitamin D, napthyl, isobutyl, benzyl, indol, tryptophane, phenyl, and the like hydrophobic modifiers.
- a chemically-modified double stranded nucleic acid molecule comprises a plurality of such modifications.
- a chemically-modified double stranded nucleic acid targets a gene encoding TIGIT.
- TIGIT refers to T-cell Immunoreceptor with Ig and ITIM domains, which is an immune receptor that down-regulates T-cell mediated immunity via the CD226/TIGIT-PVR pathway, for example by increasing interleukin 10 (IL- 10) production.
- TIGIT is encoded by a nucleic acid sequence represented by NCBI Reference Sequence Number NM_173799.3.
- Non-limiting examples of TIGIT sequences that may be targeted by chemically-modified double stranded nucleic acid molecules of the disclosure are listed in Tables 1-2.
- a chemically-modified double stranded nucleic acid molecule such as an INTASYLTM, targets any one of SEQ ID NOs: 28-48 or a portion thereof.
- a chemically-modified double stranded nucleic acid molecule such as an INTASYLTM, comprises at least 12 contiguous nucleotides of a sequence within Table 1 or 2. In some embodiments, a chemically-modified double stranded nucleic acid molecule, such as an INTASYLTM, comprises at least one sequence within Table 1 or 2. In some embodiments a chemically-modified double stranded nucleic acid molecule, such as an INTASYLTM, comprises at least 12 contiguous nucleotides of a sequence selected from SEQ ID NOs: 1-48.
- a chemically-modified double stranded nucleic acid molecule such as an INTASYLTM, comprises a sequence selected from SEQ ID NOs: 1-48. In some embodiments a chemically-modified double stranded nucleic acid molecule comprises at least 12 contiguous nucleotides of a sequence selected from SEQ ID NOs: 1-27. In some embodiments, a chemically-modified double stranded nucleic acid molecule comprises a sense strand having the sequence set forth in SEQ ID NO: 1 and/or an antisense strand having the sequence set forth in SEQ ID NO: 2.
- a chemically-modified double stranded nucleic acid molecule comprises a sense strand having the sequence set forth in SEQ ID NO: 3 and/or an antisense strand having the sequence set forth in SEQ ID NO: 4. In some embodiments, a chemically-modified double stranded nucleic acid molecule comprises a sense strand having the sequence set forth in SEQ ID NO: 5 and/or an antisense strand having the sequence set forth in SEQ ID NO: 6.
- aspects of the invention relate to isolated double stranded nucleic acid molecules comprising a guide (antisense) strand and a passenger (sense) strand.
- double-stranded refers to one or more nucleic acid molecules in which at least a portion of the nucleomonomers is complementary and hydrogen bond to form a double- stranded region.
- the length of the guide strand ranges from 16-29 nucleotides long.
- the guide strand is 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, or 29 nucleotides long.
- the guide strand has complementarity to a target gene.
- Complementarity between the guide strand and the target gene may exist over any portion of the guide strand.
- Complementarity as used herein may be perfect complementarity or less than perfect complementarity as long as the guide strand is sufficiently complementary to the target that it mediates RNAi.
- complementarity refers to less than 25%, 20%, 15%, 10%, 5%, 4%, 3%, 2%, or 1% mismatch between the guide strand and the target. Perfect complementarity refers to 100% complementarity.
- siRNA sequences with insertions, deletions, and single point mutations relative to the target sequence have also been found to be effective for inhibition. Moreover, not all positions of a siRNA contribute equally to target recognition.
- Mismatches in the center of the siRNA are most critical and essentially abolish target RNA cleavage. Mismatches upstream of the center or upstream of the cleavage site referencing the antisense strand are tolerated but significantly reduce target RNA cleavage. Mismatches downstream of the center or cleavage site referencing the antisense strand, preferably located near the 3' end of the antisense strand, e.g., 1, 2, 3, 4, 5 or 6 nucleotides from the 3' end of the antisense strand, are tolerated and reduce target RNA cleavage only slightly.
- the guide strand is at least 16 nucleotides in length and anchors the Argonaute protein in RISC.
- the guide strand loads into RISC it has a defined seed region and target mRNA cleavage takes place across from position 10-11 of the guide strand.
- the 5’ end of the guide strand is or is able to be phosphorylated.
- the nucleic acid molecules described herein may be referred to as minimum trigger RNA.
- the length of the passenger strand ranges from 8-15 nucleotides long. In some embodiments of double stranded nucleic acid molecules described herein, the length of the passenger strand ranges from 8-16 nucleotides long. In certain embodiments, the passenger strand is 8, 9, 10, 11, 12, 13, 14, 15, or 16 nucleotides long.
- the passenger strand has complementarity to the guide strand. Complementarity between the passenger strand and the guide strand can exist over any portion of the passenger or guide strand. In some embodiments, there is 100% complementarity between the guide and passenger strands within the double stranded region of the molecule.
- aspects of the invention relate to double stranded nucleic acid molecules with minimal double stranded regions.
- the region of the molecule that is double stranded ranges from 8-15 nucleotides long. In some embodiments the region of the molecule that is double stranded ranges from 8-16 nucleotides long. In certain embodiments, the region of the molecule that is double stranded is 8, 9, 10, 11, 12, 13, 14, 15, or 16 nucleotides long. In certain embodiments the double stranded region is 13 or 14 nucleotides long. In some embodiments, the region of the molecule that is double stranded is 13-22 nucleotides long. In certain embodiments, the region of the molecule that is double stranded is 16, 17, 18, 19, 20, 21 or 22 nucleotides long.
- the molecule is either blunt-ended or has a one-nucleotide overhang.
- the single stranded region of the molecule is in some embodiments between 4-12 nucleotides long.
- the single stranded region can be 4, 5, 6, 7, 8, 9, 10, 11 or 12 nucleotides long.
- the single stranded region can also be less than 4 or greater than 12 nucleotides long.
- the single stranded region is at least 6 or at least 7 nucleotides long.
- the single stranded region is 2-9 nucleotides long, including 2 or 3 nucleotides long.
- RNAi constructs associated with the invention can have a thermodynamic stability (AG) of less than -13 kkal/mol. In some embodiments, the thermodynamic stability (AG) is less than - 20 kkal/mol. In some embodiments there is a loss of efficacy when (AG) goes below -21 kkal/mol. In some embodiments a (AG) value higher than -13 kkal/mol is compatible with aspects of the invention. Without wishing to be bound by any theory, in some embodiments a molecule with a relatively higher (AG) value may become active at a relatively higher concentration, while a molecule with a relatively lower (AG) value may become active at a relatively lower concentration. In some embodiments, the (AG) value may be higher than -9 kkcal/mol.
- the gene silencing effects mediated by the RNAi constructs associated with the invention, containing minimal double stranded regions, are unexpected because molecules of almost identical design but lower thermodynamic stability have been demonstrated to be inactive (Rana et al 2004).
- results described herein suggest that a stretch of 8-10 bp of dsRNA or dsDNA will be structurally recognized by protein components of RISC or co-factors of RISC. Additionally, there is a free energy requirement for the triggering compound that it may be either sensed by the protein components and/or stable enough to interact with such components so that it may be loaded into the Argonaute protein. If acceptable thermodynamics are present and there is a double stranded portion that is preferably at least 8 nucleotides, then the duplex will be recognized and loaded into the RNAi machinery.
- thermodynamic stability is increased through the use of LNA bases.
- additional chemical modifications are introduced.
- chemical modifications include: 5’ Phosphate, 5 ’Phosphonate, 5’ Vinyl Phosphonate, 2’-O-methyl, 2’-O-ethyl, 2’ -fluoro, ribothymidine, C-5 propynyl-dC (pdC) and C- 5 propynyl-dU (pdU); C-5 propynyl-C (pC) and C-5 propynyl-U (pU); 5-methyl C, 5-methyl U, 5-methyl dC, 5-methyl dU methoxy, (2,6-diaminopurine), 5'-Dimethoxytrityl-N4-ethyl-2'- deoxyCytidine and MGB (minor groove binder). It should be appreciated that more than one chemical modification can be combined within the same molecule.
- Molecules associated with the invention are optimized for increased potency and/or reduced toxicity.
- nucleotide length of the guide and/or passenger strand, and/or the number of phosphorothioate modifications in the guide and/or passenger strand can in some aspects influence potency of the RNA molecule
- replacing 2’-fluoro (2’F) modifications with 2’-O-methyl (2’0Me) modifications can in some aspects influence toxicity of the molecule.
- reduction in 2’F content of a molecule is predicted to reduce toxicity of the molecule.
- RNA molecules can influence the uptake of the molecule into a cell, for example the efficiency of passive uptake of the molecule into a cell.
- Preferred embodiments of molecules described herein have no 2’F modification and yet are characterized by equal efficacy in cellular uptake and tissue penetration. Such molecules represent a significant improvement over prior art, such as molecules described by Accell and Wolfrum, which are heavily modified with extensive use of 2’F.
- a guide strand is approximately 18-20 nucleotides in length and has approximately 2-14 phosphate modifications.
- a guide strand can contain 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 or more than 14 nucleotides that are phosphate-modified.
- the guide strand may contain one or more modifications that confer increased stability without interfering with RISC entry.
- the phosphate modified nucleotides such as phosphorothioate modified nucleotides, can be at the 3’ end, 5’ end or spread throughout the guide strand.
- the 3’ terminal 10 nucleotides of the guide strand contain 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 phosphorothioate modified nucleotides.
- the guide strand can also contain 2’F and/or 2’0Me modifications, which can be located throughout the molecule.
- the nucleotide in position one of the guide strand (the nucleotide in the most 5’ position of the guide strand) is 2’OMe modified and/or phosphorylated and/or contains a vinyl phosphonate.
- C and U nucleotides within the guide strand can be 2’F modified.
- C and U nucleotides in positions 2-10 of a 20 nucleotide guide strand (or corresponding positions in a guide strand of a different length) can be 2’F modified.
- C and U nucleotides within the guide strand can also be 2’0Me modified.
- C and U nucleotides in positions 11-18 of a 19 nucleotide guide strand can be 2’0Me modified.
- the nucleotide at the most 3’ end of the guide strand is unmodified.
- the majority of Cs and Us within the guide strand are 2’F modified and the 5’ end of the guide strand is phosphorylated.
- position 1 and the Cs or Us in positions 11-18 are 2’0Me modified and the 5’ end of the guide strand is phosphorylated.
- position 1 and the Cs or Us in positions 11-18 are 2’0Me modified, the 5’ end of the guide strand is phosphorylated, and the Cs or Us in position 2-10 are 2’F modified.
- a passenger strand is approximately 11-14 nucleotides in length.
- the passenger strand may contain modifications that confer increased stability.
- One or more nucleotides in the passenger strand can be 2’0Me modified.
- one or more of the C and/or U nucleotides in the passenger strand is 2’0Me modified, or all of the C and U nucleotides in the passenger strand are 2’0Me modified.
- all of the nucleotides in the passenger strand are 2’0Me modified.
- One or more of the nucleotides on the passenger strand can also be phosphate-modified such as phosphorothioate modified.
- the passenger strand can also contain 2’ ribo, 2’F and 2 deoxy modifications or any combination of the above.
- Chemical modification patterns on both the guide and passenger strand can be well tolerated and a combination of chemical modifications can lead to increased efficacy and selfdelivery of RNA molecules.
- RNAi constructs that have extended single- stranded regions relative to double stranded regions, as compared to molecules that have been used previously for RNAi.
- the single stranded region of the molecules may be modified to promote cellular uptake or gene silencing.
- phosphorothioate modification of the single stranded region influences cellular uptake and/or gene silencing.
- the region of the guide strand that is phosphorothioate modified can include nucleotides within both the single stranded and double stranded regions of the molecule.
- the single stranded region includes 2-12 phosphorothioate modifications.
- the single stranded region can include 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, or 12 phosphorothioate modifications. In some instances, the single stranded region contains 6-8 phosphorothioate modifications.
- Molecules associated with the invention are also designed for cellular uptake.
- the guide and/or passenger strands can be attached to a conjugate.
- the conjugate is hydrophobic.
- the hydrophobic conjugate can be a small molecule with a partition coefficient that is higher than 10.
- the conjugate can be a sterol- type molecule such as cholesterol, or a molecule with an increased length polycarbon chain attached to C17, and the presence of a conjugate can influence the ability of an RNA molecule to be taken into a cell with or without a lipid transfection reagent.
- the conjugate can be attached to the passenger or guide strand through a hydrophobic linker.
- a hydrophobic linker is 5-12C in length, and/or is hydroxypyrrolidine-based.
- a hydrophobic conjugate is attached to the passenger strand and the CU residues of either the passenger and/or guide strand are modified.
- molecules associated with the invention are self-delivering (sd).
- self-delivery refers to the ability of a molecule to be delivered into a cell without the need for an additional delivery vehicle such as a transfection reagent.
- molecules associated with the disclosure are designed for targeted delivery to the liver.
- the guide and/or passenger strands can be attached to a conjugate.
- the conjugate is a targeting ligand.
- the targeting ligand conjugate can be a saccharide such as N-acetyl galactosamine (GalNac) moieties and derivatives thereof.
- the RNA molecules in some embodiments, may comprise 1, 2, 3, 4, 5 or more GalNac moieties.
- the targeting ligand conjugate(s) can be attached to the passenger or guide strand through a linker or incorporated into the passenger or guide strand as a phosphoramidite, for example.
- RNAi RNA-binding polypeptide
- molecules that have a double stranded region of 8-15 nucleotides can be selected for use in RNAi.
- molecules are selected based on their thermodynamic stability (AG).
- AG thermodynamic stability
- molecules will be selected that have a (AG) of less than - 13 kkal/mol.
- the (AG) value may be -13, -14, -15, -16, -17, -18, -19, -21, -22 or less than -22 kkal/mol.
- the (AG) value may be higher than -13 kkal/mol.
- the (AG) value may be -12, -11, -10, -9, -8, -7 or more than -7 kkal/mol.
- AG can be calculated using any method known in the art.
- AG is calculated using Mfold, available through the Mfold internet site (mfold.bioinfo.rpi.edu/cgi-bin/rna-forml.cgi). Methods for calculating AG are described in, and are incorporated by reference from, the following references: Zuker, M. (2003) Nucleic Acids Res., 31(13):3406- 15; Mathews, D. H., Sabina, J., Zuker, M. and Turner, D. H. (1999) J. Mol. Biol.
- the polynucleotide contains 5'- and/or 3'-end overhangs.
- the number and/or sequence of nucleotides overhang on one end of the polynucleotide may be the same or different from the other end of the polynucleotide.
- one or more of the overhang nucleotides may contain chemical modification(s), such as phosphorothioate or 2’-0Me modification.
- the polynucleotide is unmodified. In other embodiments, at least one nucleotide is modified. In further embodiments, the modification includes a 2’-H or 2’-modified ribose sugar at the 2nd nucleotide from the 5’-end of the guide sequence.
- the “2nd nucleotide” is defined as the second nucleotide from the 5'-end of the polynucleotide.
- 2’-modified ribose sugar includes those ribose sugars that do not have a 2’ -OH group. “2’ -modified ribose sugar” does not include 2’ -deoxyribose (found in unmodified canonical DNA nucleotides).
- the 2’ -modified ribose sugar may be 2'- O-alkyl nucleotides, 2 '-deoxy-2 '-fluoro nucleotides, 2'-deoxy nucleotides, or combination thereof.
- the 2’ -modified nucleotides are pyrimidine nucleotides (e.g., C /U).
- Examples of 2’-O-alkyl nucleotides include 2’-O-methyl nucleotides, or 2'-O-allyl nucleotides.
- the sd-rxRNA polynucleotide of the invention with the abovereferenced 5'-end modification exhibits significantly (e.g., at least about 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90% or more) less “off-target” gene silencing when compared to similar constructs without the specified 5'-end modification, thus greatly improving the overall specificity of the RNAi reagent or therapeutics.
- off-target gene silencing refers to unintended gene silencing due to, for example, spurious sequence homology between the antisense (guide) sequence and the unintended target mRNA sequence.
- certain guide strand modifications further increase nuclease stability, and/or lower interferon induction, without significantly decreasing RNAi activity (or no decrease in RNAi activity at all).
- the guide strand comprises a 2’-O-methyl modified nucleotide at the 2 nd nucleotide on the 5 ’-end of the guide strand and no other modified nucleotides.
- the chemically modified double stranded nucleic acid molecule structures of the present invention mediate sequence-dependent gene silencing by a microRNA mechanism.
- microRNA microRNA
- miRNA also referred to in the art as “small temporal RNAs” (“stRNAs”), refers to a small (10-50 nucleotide) RNA which are genetically encoded (e.g., by viral, mammalian, or plant genomes) and are capable of directing or mediating RNA silencing.
- miRNA disorder shall refer to a disease or disorder characterized by an aberrant expression or activity of an miRNA.
- microRNAs are involved in down-regulating target genes in critical pathways, such as development and cancer, in mice, worms and mammals. Gene silencing through a microRNA mechanism is achieved by specific yet imperfect base-pairing of the miRNA and its target messenger RNA (mRNA). Various mechanisms may be used in microRNA-mediated downregulation of target mRNA expression. miRNAs are noncoding RNAs of approximately 22 nucleotides which can regulate gene expression at the post transcriptional or translational level during plant and animal development. One common feature of miRNAs is that they are all excised from an approximately 70 nucleotide precursor RNA stem-loop termed pre-miRNA, probably by Dicer, an RNase Ill-type enzyme, or a homolog thereof.
- miRNAs are expressed by endogenous genes in vivo and are processed from a hairpin or stem-loop precursor (pre-miRNA or pri- miRNAs) by Dicer or other RNAses. miRNAs can exist transiently in vivo as a double- stranded duplex but only one strand is taken up by the RISC complex to direct gene silencing.
- a version of chemically modified double stranded nucleic acid compounds which are effective in cellular uptake and inhibition of miRNA activity, are described.
- the compounds are similar to RISC entering versions, but large strand chemical modification patterns are made to block cleavage and act as an effective inhibitor of the RISC action.
- the compound might be completely or mostly O-methyl modified with the phosphorothioate content described previously.
- the 5’ phosphorylation is not necessary in some embodiments.
- the presence of a double stranded region is preferred as it promotes cellular uptake and efficient RISC loading.
- RNA interference pathway Another pathway that uses small RNAs as sequence- specific regulators is the RNA interference (RNAi) pathway, which is an evolutionarily conserved response to the presence of double-stranded RNA (dsRNA) in the cell.
- dsRNA double-stranded RNA
- the dsRNAs are cleaved into ⁇ 20-base pair (bp) duplexes of small-interfering RNAs (siRNAs) by Dicer. These small RNAs get assembled into multiprotein effector complexes called RNA-induced silencing complexes (RISCs).
- RISCs RNA-induced silencing complexes
- Single-stranded polynucleotides may mimic the dsRNA in the siRNA mechanism, or the microRNA in the miRNA mechanism.
- the modified RNAi constructs may have improved stability in serum and/or cerebral spinal fluid compared to an unmodified RNAi constructs having the same sequence.
- the structure of the RNAi construct does not induce interferon response in primary cells, such as mammalian primary cells, including primary cells from human, mouse and other rodents, and other non-human mammals.
- primary cells such as mammalian primary cells, including primary cells from human, mouse and other rodents, and other non-human mammals.
- the RNAi construct may also be used to inhibit expression of a target gene in an invertebrate organism.
- the 3 ’-end of the structure may be blocked by protective group(s).
- protective groups such as inverted nucleotides, inverted abasic moieties, or amino-end modified nucleotides may be used.
- Inverted nucleotides may comprise an inverted deoxy nucleotide.
- Inverted abasic moieties may comprise an inverted deoxyabasic moiety, such as a 3',3'-linked or 5',5'-linked deoxyabasic moiety.
- RNAi constructs of the invention are capable of inhibiting the synthesis of any target protein encoded by target gene(s).
- the invention includes methods to inhibit expression of a target gene either in a cell in vitro, or in vivo.
- the RNAi constructs of the invention are useful for treating a patient with a disease characterized by the overexpression of a target gene.
- the target gene can be endogenous or exogenous (e.g., introduced into a cell by a virus or using recombinant DNA technology) to a cell.
- Such methods may include introduction of RNA into a cell in an amount sufficient to inhibit expression of the target gene.
- such an RNA molecule may have a guide strand that is complementary to the nucleotide sequence of the target gene, such that the composition inhibits expression of the target gene.
- the invention also relates to vectors expressing the nucleic acids of the invention, and cells comprising such vectors or the nucleic acids.
- the cell may be a mammalian cell in vivo or in culture, such as a human cell.
- the invention further relates to compositions comprising the subject RNAi constructs, and a pharmaceutically acceptable carrier or diluent.
- the method may be carried out in vitro, ex vivo, or in vivo, in, for example, mammalian cells in culture, such as a human cell in culture.
- the target cells may be contacted in the presence of a delivery reagent, such as a lipid (e.g., a cationic lipid) or a liposome.
- a delivery reagent such as a lipid (e.g., a cationic lipid) or a liposome.
- Another aspect of the invention provides a method for inhibiting the expression of a target gene in a mammalian cell, comprising contacting the mammalian cell with a vector expressing the subject RNAi constructs.
- a longer duplex polynucleotide including a first polynucleotide that ranges in size from about 16 to about 30 nucleotides; a second polynucleotide that ranges in size from about 26 to about 46 nucleotides, wherein the first polynucleotide (the antisense strand) is complementary to both the second polynucleotide (the sense strand) and a target gene, and wherein both polynucleotides form a duplex and wherein the first polynucleotide contains a single stranded region longer than 6 bases in length and is modified with alternative chemical modification pattern, and/or includes a conjugate moiety that facilitates cellular delivery.
- between about 40% to about 90% of the nucleotides of the passenger strand between about 40% to about 90% of the nucleotides of the guide strand, and between about 40% to about 90% of the nucleotides of the single stranded region of the first polynucleotide are chemically modified nucleotides.
- the chemically modified nucleotide in the polynucleotide duplex may be any chemically modified nucleotide known in the art, such as those discussed in detail above.
- the chemically modified nucleotide is selected from the group consisting of 2’ F modified nucleotides, 2'-O-methyl modified and 2’deoxy nucleotides.
- the chemically modified nucleotides results from “hydrophobic modifications” of the nucleotide base.
- the chemically modified nucleotides are phosphorothioates.
- chemically modified nucleotides are combination of phosphorothioates, 2’-O-methyl, 2’deoxy, hydrophobic modifications and phosphorothioates.
- these groups of modifications refer to modification of the ribose ring, back bone and nucleotide, it is feasible that some modified nucleotides will carry a combination of all three modification types.
- the chemical modification is not the same across the various regions of the duplex.
- the first polynucleotide (the passenger strand), has a large number of diverse chemical modifications in various positions. For this polynucleotide up to 90% of nucleotides might be chemically modified and/or have mismatches introduced.
- chemical modifications of the first or second polynucleotide include, but not limited to, 5’ position modification of Uridine and Cytosine (4-pyridyl, 2- pyridyl, indolyl, phenyl (CeHsOH); tryptophanyl (CsH6N)CH2CH(NH2)CO), isobutyl, butyl, aminobenzyl; phenyl; naphthyl, etc.), where the chemical modification might alter base pairing capabilities of a nucleotide.
- 5’ position modification of Uridine and Cytosine (4-pyridyl, 2- pyridyl, indolyl, phenyl (CeHsOH); tryptophanyl (CsH6N)CH2CH(NH2)CO), isobutyl, butyl, aminobenzyl; phenyl; naphthyl, etc.
- the chemical modification might alter base pairing capabilities of a nucleotide.
- a unique feature of this aspect of the invention involves the use of hydrophobic modification on the bases.
- the hydrophobic modifications are preferably positioned near the 5’ end of the guide strand, in other embodiments, they localized in the middle of the guides strand, in other embodiment they localized at the 3 ’ end of the guide strand and yet in another embodiment they are distributed thought the whole length of the polynucleotide.
- the same type of patterns is applicable to the passenger strand of the duplex.
- the other part of the molecule is a single stranded region.
- the single stranded region is expected to range from 7 to 40 nucleotides.
- the single stranded region of the first polynucleotide contains modifications selected from the group consisting of between 40% and 90% hydrophobic base modifications, between 40%-90% phosphorothioates, between 40% -90% modification of the ribose moiety, and any combination of the preceding.
- the duplex polynucleotide includes a mismatch between nucleotide 9, 11, 12, 13, or 14 on the guide strand (first polynucleotide) and the opposite nucleotide on the sense strand (second polynucleotide) to promote efficient guide strand loading.
- Double-stranded oligonucleotides of the invention may be formed by two separate complementary nucleic acid strands. Duplex formation can occur either inside or outside the cell containing the target gene.
- double-stranded oligonucleotides of the invention may comprise a nucleotide sequence that is sense to a target gene and a complementary sequence that is antisense to the target gene.
- the sense and antisense nucleotide sequences correspond to the target gene sequence, e.g., are identical or are sufficiently identical to effect target gene inhibition (e.g., are about at least about 98% identical, 96% identical, 94%, 90% identical, 85% identical, or 80% identical) to the target gene sequence.
- the double- stranded oligonucleotide of the invention is doublestranded over its entire length, i.e., with no overhanging single- stranded sequence at either end of the molecule, i.e., is blunt-ended.
- the individual nucleic acid molecules can be of different lengths.
- a double- stranded oligonucleotide of the invention is not double-stranded over its entire length.
- one of the molecules e.g., the first molecule comprising an antisense sequence
- the second molecule hybridizing thereto leaving a portion of the molecule single-stranded.
- a single nucleic acid molecule is used a portion of the molecule at either end can remain single- stranded.
- a double- stranded oligonucleotide of the invention contains mismatches and/or loops or bulges, but is double- stranded over at least about 70% of the length of the oligonucleotide. In another embodiment, a double- stranded oligonucleotide of the invention is double- stranded over at least about 80% of the length of the oligonucleotide. In another embodiment, a double-stranded oligonucleotide of the invention is double-stranded over at least about 90%-95% of the length of the oligonucleotide.
- a doublestranded oligonucleotide of the invention is double- stranded over at least about 96%-98% of the length of the oligonucleotide.
- the double- stranded oligonucleotide of the invention contains at least or up to 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, or 15 mismatches.
- nucleotides of the invention may be modified at various locations, including the sugar moiety, the phosphodiester linkage, and/or the base.
- the base moiety of a nucleoside may be modified.
- a pyrimidine base may be modified at the 2, 3, 4, 5, and/or 6 position of the pyrimidine ring.
- the exocyclic amine of cytosine may be modified.
- a purine base may also be modified.
- a purine base may be modified at the 1, 2, 3, 6, 7, or 8 position.
- the exocyclic amine of adenine may be modified.
- a nitrogen atom in a ring of a base moiety may be substituted with another atom, such as carbon.
- a modification to a base moiety may be any suitable modification. Examples of modifications are known to those of ordinary skill in the art.
- the base modifications include alkylated purines or pyrimidines, acylated purines or pyrimidines, or other heterocycles.
- a pyrimidine may be modified at the 5 position.
- the 5 position of a pyrimidine may be modified with an alkyl group, an alkynyl group, an alkenyl group, an acyl group, or substituted derivatives thereof.
- the 5 position of a pyrimidine may be modified with a hydroxyl group or an alkoxyl group or substituted derivative thereof.
- the N 4 position of a pyrimidine may be alkylated.
- the pyrimidine 5-6 bond may be saturated, a nitrogen atom within the pyrimidine ring may be substituted with a carbon atom, and/or the O 2 and O 4 atoms may be substituted with sulfur atoms. It should be understood that other modifications are possible as well.
- N 1 position and/or N 2 and/or N 3 position of a purine may be modified with an alkyl group or substituted derivative thereof.
- a third ring may be fused to the purine bicyclic ring system and/or a nitrogen atom within the purine ring system may be substituted with a carbon atom. It should be understood that other modifications are possible as well.
- Non-limiting examples of pyrimidines modified at the 5 position are disclosed in U.S. Patent 5591843, U.S. Patent 7,205,297, U.S. Patent 6,432,963, and U.S. Patent 6,020,483; nonlimiting examples of pyrimidines modified at the N 4 position are disclosed in U.S. Patent 5,580,731; non-limiting examples of purines modified at the 8 position are disclosed in U.S. Patent 6,355,787 and U.S. Patent 5,580,972; non-limiting examples of purines modified at the N 6 position are disclosed in U.S. Patent 4,853,386, U.S. Patent 5,789,416, and U.S. Patent 7,041,824; and non-limiting examples of purines modified at the 2 position are disclosed in U.S. Patent 4,201,860 and U.S. Patent 5,587,469, all of which are incorporated herein by reference.
- Non-limiting examples of modified bases include A 4 ,A 4 -cthanocytosinc, 7- deazaxanthosine, 7-deazaguanosine, 8-oxo-A 6 -mcthyladcninc, 4-acetylcytosine, 5- (carboxy hydroxylmethyl) uracil, 5-fluorouracil, 5-bromouracil, 5-carboxymethylaminomethyl- 2-thiouracil, 5 -carboxy methylaminomethyl uracil, dihydrouracil, inosine, A 6 -isopcntcnyl- adenine, 1 -methyladenine, 1 -methylpseudouracil, 1-methylguanine, 1 -methylinosine, 2,2- dimethylguanine, 2-methyladenine, 2-methylguanine, 3-methylcytosine, 5-methylcytosine, N 6 - methyladenine, 7-methylguanine, 5-methylamino
- the base moiety may be a heterocyclic base other than a purine or pyrimidine.
- the heterocyclic base may be optionally modified and/or substituted.
- Sugar moieties include natural, unmodified sugars, e.g., monosaccharide (such as pentose, e.g., ribose, deoxyribose), modified sugars and sugar analogs.
- possible modifications of nucleo monomers, particularly of a sugar moiety include, for example, replacement of one or more of the hydroxyl groups with a halogen, a heteroatom, an aliphatic group, or the functionalization of the hydroxyl group as an ether, an amine, a thiol, or the like.
- modified nucleomonomers are 2’-O-methyl nucleotides. Such 2’-O- methyl nucleotides may be referred to as “methylated,” and the corresponding nucleotides may be made from unmethylated nucleotides followed by alkylation or directly from methylated nucleotide reagents. Modified nucleomonomers may be used in combination with unmodified nucleomonomers. For example, an oligonucleotide of the invention may contain both methylated and unmethylated nucleomonomers.
- modified nucleomonomers include sugar- or backbone-modified ribonucleotides.
- Modified ribonucleotides may contain a non-naturally occurring base (instead of a naturally occurring base), such as uridines or cytidines modified at the 5’-position, e.g., 5’- (2-amino)propyl uridine and 5 ’-bromo uridine; adenosines and guanosines modified at the 8- position, e.g., 8-bromo guanosine; deaza nucleotides, e.g., 7-deaza- adenosine; and N-alkylated nucleotides, e.g., N6-methyl adenosine.
- sugar-modified ribonucleotides may have the 2’- OH group replaced by a H, alxoxy (or OR), R or alkyl, halogen, SH, SR, amino (such as NH2, NHR, NR2,), or CN group, wherein R is lower alkyl, alkenyl, or alkynyl.
- Modified ribonucleotides may also have the phosphodiester group connecting to adjacent ribonucleotides replaced by a modified group, e.g., of phosphorothioate group. More generally, the various nucleotide modifications may be combined.
- the antisense (guide) strand may be substantially identical to at least a portion of the target gene (or genes), at least with respect to the base pairing properties, the sequence need not be perfectly identical to be useful, e.g., to inhibit expression of a target gene's phenotype. Generally, higher homology can be used to compensate for the use of a shorter antisense gene. In some cases, the antisense strand generally will be substantially identical (although in antisense orientation) to the target gene.
- RNA having 2'-O-methyl nucleomonomers may not be recognized by cellular machinery that is thought to recognize unmodified RNA.
- the use of 2'-O-methylated or partially 2'-O-methylated RNA may avoid the interferon response to double-stranded nucleic acids, while maintaining target RNA inhibition. This may be useful, for example, for avoiding the interferon or other cellular stress responses, both in short RNAi (e.g., siRNA) sequences that induce the interferon response, and in longer RNAi sequences that may induce the interferon response.
- the sugar moiety can be a hexose and incorporated into an oligonucleotide as described (Augustyns, K., el al., Nucl. Acids. Res. 18:4711 (1992)).
- Exemplary nucleomonomers can be found, e.g., in U.S. Pat. No. 5,849,902, incorporated by reference herein.
- Certain compounds of the present invention may exist in particular geometric or stereoisomeric forms.
- the present invention contemplates all such compounds, including cis- and Zrans-isomers, R- and S-enantiomers, diastereomers, (D)-isomers, (L)-isomers, the racemic mixtures thereof, and other mixtures thereof, as falling within the scope of the invention.
- Additional asymmetric carbon atoms may be present in a substituent such as an alkyl group. All such isomers, as well as mixtures thereof, are intended to be included in this invention.
- Isomeric mixtures containing any of a variety of isomer ratios may be utilized in accordance with the present invention. For example, where only two isomers are combined, mixtures containing 50:50, 60:40, 70:30, 80:20, 90:10, 95:5, 96:4, 97:3, 98:2, 99:1, or 100:0 isomer ratios are all contemplated by the present invention. Those of ordinary skill in the art will readily appreciate that analogous ratios are contemplated for more complex isomer mixtures.
- a particular enantiomer of a compound of the present invention may be prepared by asymmetric synthesis, or by derivation with a chiral auxiliary, where the resulting diastereomeric mixture is separated and the auxiliary group cleaved to provide the pure desired enantiomers.
- the molecule contains a basic functional group, such as amino, or an acidic functional group, such as carboxyl, diastereomeric salts are formed with an appropriate optically-active acid or base, followed by resolution of the diastereomers thus formed by fractional crystallization or chromatographic means well known in the art, and subsequent recovery of the pure enantiomers.
- oligonucleotides of the invention comprise 3' and 5' termini (except for circular oligonucleotides).
- the 3' and 5' termini of an oligonucleotide can be substantially protected from nucleases e.g., by modifying the 3' or 5' linkages (e.g., U.S. Pat. No. 5,849,902 and WO 98/13526).
- oligonucleotides can be made resistant by the inclusion of a “blocking group.”
- blocking group refers to substituents (e.g., other than OH groups) that can be attached to oligonucleotides or nucleomonomers, either as protecting groups or coupling groups for synthesis (e.g., FITC, propyl (CH2-CH2-CH3), glycol (-O-CH2-CH2-O-) phosphate (PO3 2 ), hydrogen phosphonate, or phosphoramidite).
- Blocking groups also include “end blocking groups” or “exonuclease blocking groups” which protect the 5' and 3' termini of the oligonucleotide, including modified nucleotides and non-nucleotide exonuclease resistant structures.
- Exemplary end-blocking groups include cap structures (e.g., a 7-methylguanosine cap), inverted nucleomonomers, e.g., with 3 '-3 ' or 5 '-5' end inversions (see, e.g., Ortiagao et al. 1992. Antisense Res. Dev. 2:129), methylphosphonate, phosphoramidite, non-nucleotide groups (e.g., non-nucleotide linkers, amino linkers, conjugates) and the like.
- the 3' terminal nucleomonomer can comprise a modified sugar moiety.
- the 3' terminal nucleomonomer comprises a 3'-0 that can optionally be substituted by a blocking group that prevents 3 '-exonuclease degradation of the oligonucleotide.
- the 3 '-hydroxyl can be esterified to a nucleotide through a 3 '— 3 ' internucleotide linkage.
- the alkyloxy radical can be methoxy, ethoxy, or isopropoxy, and preferably, ethoxy.
- the 3'— >3 'linked nucleotide at the 3' terminus can be linked by a substitute linkage.
- the 5' most 3 ' — 5' linkage can be a modified linkage, e.g., a phosphorothioate or a P-alkyloxyphosphotriester linkage.
- the two 5' most 3 '—>5' linkages are modified linkages.
- the 5' terminal hydroxy moiety can be esterified with a phosphorus containing moiety, e.g., phosphate, phosphorothioate, or P-ethoxyphosphate.
- protecting group it is meant that a particular functional moiety, e.g., O, S, or N, is temporarily blocked so that a reaction can be carried out selectively at another reactive site in a multifunctional compound.
- a protecting group reacts selectively in good yield to give a protected substrate that is stable to the projected reactions; the protecting group should be selectively removable in good yield by readily available, preferably non-toxic reagents that do not attack the other functional groups; the protecting group forms an easily separable derivative (more preferably without the generation of new stereogenic centers); and the protecting group has a minimum of additional functionality to avoid further sites of reaction.
- oxygen, sulfur, nitrogen, and carbon protecting groups may be utilized.
- Hydroxyl protecting groups include methyl, methoxylmethyl (MOM), methylthiomethyl (MTM), /-butylthiomethyl, (phenyldimethylsilyl)methoxymethyl (SMOM), benzyloxymethyl (BOM), p- methoxybenzyloxymethyl (PMBM), (4-methoxyphenoxy)methyl (p-AOM), guaiacolmethyl (GUM), /-butoxymethyl, 4-pentenyloxymethyl (POM), siloxymethyl, 2-methoxyethoxymethyl (MEM), 2,2,2-trichloroethoxymethyl, bis(2-chloroethoxy)methyl, 2- (trimethylsilyl)ethoxymethyl (SEMOR), tetrahydropyranyl (THP), 3 -bromotetrahydropyranyl, tetrahydrothiopyranyl, 1-methoxycyclohexyl, 4-methoxytetrahydropyranyl (MTHP), 4- methoxyte
- the protecting groups include methylene acetal, ethylidene acetal, 1-Z-butylethylidene ketal, 1-phenylethylidene ketal, (4-methoxyphenyl)ethylidene acetal, 2,2,2-trichloroethylidene acetal, acetonide, cyclopentylidene ketal, cyclohexylidene ketal, cycloheptylidene ketal, benzylidene acetal, p- methoxybenzylidene acetal, 2,4-dimethoxybenzylidene ketal, 3,4-dimethoxybenzylidene acetal, 2-nitrobenzylidene acetal, methoxymethylene acetal, ethoxymethylene acetal, dimethoxymethylene ortho ester, 1 -methoxy ethylidene ortho
- Amino-protecting groups include methyl carbamate, ethyl carbamante, 9-fluorenylmethyl carbamate (Fmoc), 9-(2-sulfo)fluorenylmethyl carbamate, 9-(2,7-dibromo)fluoroenylmethyl carbamate, 2,7-di-/-butyl-[9-(10,10-dioxo-10,10,10,10-tetrahydrothioxanthyl)]methyl carbamate (DBD-Tmoc), 4-methoxyphenacyl carbamate (Phenoc), 2,2,2-trichloroethyl carbamate (Troc), 2-trimethylsilylethyl carbamate (Teoc), 2-phenylethyl carbamate (hZ), l-(l-adamantyl)-l- methylethyl carbamate (Adpoc), l,l-dimethyl-2-haloethyl carba
- protecting groups are detailed herein. However, it will be appreciated that the present invention is not intended to be limited to these protecting groups; rather, a variety of additional equivalent protecting groups can be readily identified using the above criteria and utilized in the method of the present invention. Additionally, a variety of protecting groups are described in Protective Groups in Organic Synthesis, Third Ed. Greene, T.W. and Wuts, P.G., Eds., John Wiley & Sons, New York: 1999, the entire contents of which are hereby incorporated by reference. It will be appreciated that the compounds, as described herein, may be substituted with any number of substituents or functional moieties.
- substituted refers to the replacement of hydrogen radicals in a given structure with the radical of a specified substituent.
- substituents contained in formulas of this invention refer to the replacement of hydrogen radicals in a given structure with the radical of a specified substituent.
- the substituent may be either the same or different at every position.
- substituted is contemplated to include all permissible substituents of organic compounds.
- the permissible substituents include acyclic and cyclic, branched and unbranched, carbocyclic and heterocyclic, aromatic and nonaromatic substituents of organic compounds.
- Heteroatoms such as nitrogen may have hydrogen substituents and/or any permissible substituents of organic compounds described herein which satisfy the valencies of the heteroatoms.
- this invention is not intended to be limited in any manner by the permissible substituents of organic compounds.
- Combinations of substituents and variables envisioned by this invention are preferably those that result in the formation of stable compounds useful in the treatment, for example, of infectious diseases or proliferative disorders.
- the term “stable”, as used herein, preferably refers to compounds which possess stability sufficient to allow manufacture and which maintain the integrity of the compound for a sufficient period of time to be detected and preferably for a sufficient period of time to be useful for the purposes detailed herein.
- aliphatic includes both saturated and unsaturated, straight chain (z.e., unbranched), branched, acyclic, cyclic, or polycyclic aliphatic hydrocarbons, which are optionally substituted with one or more functional groups.
- aliphatic is intended herein to include, but is not limited to, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, and cycloalkynyl moieties.
- alkyl includes straight, branched and cyclic alkyl groups.
- alkyl alkenyl
- alkynyl alkynyl
- the terms “alkyl,” “alkenyl,” “alkynyl,” and the like encompass both substituted and unsubstituted groups.
- lower alkyl is used to indicate those alkyl groups (cyclic, acyclic, substituted, unsubstituted, branched, or unbranched) having 1-6 carbon atoms.
- the alkyl, alkenyl, and alkynyl groups employed in the invention contain 1-20 aliphatic carbon atoms. In certain other embodiments, the alkyl, alkenyl, and alkynyl groups employed in the invention contain 1-10 aliphatic carbon atoms. In yet other embodiments, the alkyl, alkenyl, and alkynyl groups employed in the invention contain 1-8 aliphatic carbon atoms. In still other embodiments, the alkyl, alkenyl, and alkynyl groups employed in the invention contain 1-6 aliphatic carbon atoms. In yet other embodiments, the alkyl, alkenyl, and alkynyl groups employed in the invention contain 1-4 carbon atoms.
- Illustrative aliphatic groups thus include, but are not limited to, for example, methyl, ethyl, n- propyl, isopropyl, cyclopropyl, -Ctk-cyclopropyl, vinyl, allyl, n-butyl, sec -butyl, isobutyl, tert- butyl, cyclobutyl, -Ctk-cyclobutyl, n-pentyl, sec-pentyl, isopentyl, tert-pentyl, cyclopentyl, - CH2-cyclopentyl, n-hexyl, sec -hexyl, cyclohexyl, -Ctk-cyclohexyl moieties and the like, which again, may bear one or more substituents.
- Alkenyl groups include, but are not limited to, for example, ethenyl, propenyl, butenyl, l-methyl-2-buten-l-yl, and the like.
- Representative alkynyl groups include, but are not limited to, ethynyl, 2-propynyl (propargyl), 1-propynyl, and the like.
- substituents of the above-described aliphatic (and other) moieties of compounds of the invention include, but are not limited to aliphatic; hetero aliphatic; aryl; heteroaryl; arylalkyl; heteroarylalkyl; alkoxy; aryloxy; heteroalkoxy; heteroaryloxy; alkylthio; arylthio; heteroalkylthio; heteroarylthio; -F; -Cl; -Br; -I; -OH; -NO2; -CN; -CF3; -CH2CF3; - CHCh; -CH2OH; -CH2CH2OH; -CH2NH2; -CH2SO2CH3; -C(O)R X ; -CO 2 (R X ); -CON(R X ) 2 ; - OC(O)R X ; -OCO 2 R X ; -OCON(R X )
- heteroaliphatic refers to aliphatic moieties that contain one or more oxygen, sulfur, nitrogen, phosphorus, or silicon atoms, e.g., in place of carbon atoms. Heteroaliphatic moieties may be branched, unbranched, cyclic or acyclic and include saturated and unsaturated heterocycles such as morpholino, pyrrolidinyl, etc.
- heteroaliphatic moieties are substituted by independent replacement of one or more of the hydrogen atoms thereon with one or more moieties including, but not limited to aliphatic; heteroaliphatic; aryl; heteroaryl; arylalkyl; heteroarylalkyl; alkoxy; aryloxy; heteroalkoxy; heteroaryloxy; alkylthio; arylthio; heteroalkylthio; heteroarylthio; -F; -Cl; -Br; -I; -OH; -NO2; - CN; -CF 3 ; -CH2CF3; -CHCh; -CH 2 OH; -CH2CH2OH; -CH2NH2; -CH2SO2CH3; -C(O)R X ; - CO 2 (R X ); -CON(R X ) 2 ; -OC(O)R X ; -OCO 2 R X ; ;
- halo and “halogen” as used herein refer to an atom selected from fluorine, chlorine, bromine, and iodine.
- alkyl includes saturated aliphatic groups, including straight-chain alkyl groups (e.g., methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, etc.), branched-chain alkyl groups (isopropyl, tert-butyl, isobutyl, etc.), cycloalkyl (alicyclic) groups (cyclopropyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl), alkyl substituted cycloalkyl groups, and cycloalkyl substituted alkyl groups.
- straight-chain alkyl groups e.g., methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl,
- a straight chain or branched chain alkyl has 6 or fewer carbon atoms in its backbone (e.g., Ci-Ce for straight chain, C3-C6 for branched chain), and more preferably 4 or fewer.
- preferred cycloalkyls have from 3-8 carbon atoms in their ring structure, and more preferably have 5 or 6 carbons in the ring structure.
- Ci-Ce includes alkyl groups containing 1 to 6 carbon atoms.
- alkyl includes both “unsubstituted alkyls” and “substituted alkyls,” the latter of which refers to alkyl moieties having independently selected substituents replacing a hydrogen on one or more carbons of the hydrocarbon backbone.
- substituents can include, for example, alkenyl, alkynyl, halogen, hydroxyl, alkylcarbonyloxy, arylcarbonyloxy, alkoxycarbonyloxy, aryloxycarbonyloxy, carboxylate, alkylcarbonyl, arylcarbonyl, alkoxycarbonyl, aminocarbonyl, alkylaminocarbonyl, dialkylaminocarbonyl, alkylthiocarbonyl, alkoxyl, phosphate, phosphonato, phosphinato, cyano, amino (including alkyl amino, dialkylamino, arylamino, diarylamino, and alkylarylamino), acylamino (including alkylcarbonylamino, arylcarbonylamino, carbamoyl and ureido), amidino, imino, sulfhydryl, alkylthio, arylthio, thiocarboxylate, sul
- Cycloalkyls can be further substituted, e.g., with the substituents described above.
- An “alkylaryl” or an “arylalkyl” moiety is an alkyl substituted with an aryl (e.g., phenylmethyl (benzyl)).
- the term “alkyl” also includes the side chains of natural and unnatural amino acids.
- n-alkyl means a straight chain (/'. ⁇ ?., unbranched) unsubstituted alkyl group.
- alkenyl includes unsaturated aliphatic groups analogous in length and possible substitution to the alkyls described above, but that contain at least one double bond.
- alkenyl includes straight-chain alkenyl groups (e.g., ethylenyl, propenyl, butenyl, pentenyl, hexenyl, heptenyl, octenyl, nonenyl, decenyl, etc.), branched-chain alkenyl groups, cycloalkenyl (alicyclic) groups (cyclopropenyl, cyclopentenyl, cyclohexenyl, cycloheptenyl, cyclooctenyl), alkyl or alkenyl substituted cycloalkenyl groups, and cycloalkyl or cycloalkenyl substituted alkenyl groups.
- a straight chain or branched chain alkenyl group has 6 or fewer carbon atoms in its backbone (e.g., C2-C6 for straight chain, C3-C6 for branched chain).
- cycloalkenyl groups may have from 3-8 carbon atoms in their ring structure, and more preferably have 5 or 6 carbons in the ring structure.
- C2- Ce includes alkenyl groups containing 2 to 6 carbon atoms.
- alkenyl includes both “unsubstituted alkenyls” and “substituted alkenyls,” the latter of which refers to alkenyl moieties having independently selected substituents replacing a hydrogen on one or more carbons of the hydrocarbon backbone.
- substituents can include, for example, alkyl groups, alkynyl groups, halogens, hydroxyl, alkylcarbonyloxy, arylcarbonyloxy, alkoxycarbonyloxy, aryloxycarbonyloxy, carboxylate, alkylcarbonyl, arylcarbonyl, alkoxycarbonyl, aminocarbonyl, alkylaminocarbonyl, dialkylaminocarbonyl, alkylthiocarbonyl, alkoxyl, phosphate, phosphonato, phosphinato, cyano, amino (including alkyl amino, dialkylamino, arylamino, diarylamino, and alkylarylamino), acylamino (including alkylcarbonylamino, arylcarbonylamino, carbamoyl and ureido), amidino, imino, sulfhydryl, alkylthio, arylthio, thiocarboxylate,
- alkynyl includes unsaturated aliphatic groups analogous in length and possible substitution to the alkyls described above, but which contain at least one triple bond.
- alkynyl includes straight-chain alkynyl groups (e.g., ethynyl, propynyl, butynyl, pentynyl, hexynyl, heptynyl, octynyl, nonynyl, decynyl, etc.), branched-chain alkynyl groups, and cycloalkyl or cycloalkenyl substituted alkynyl groups.
- a straight chain or branched chain alkynyl group has 6 or fewer carbon atoms in its backbone (e.g., C2-C6 for straight chain, C3-C6 for branched chain).
- C2-C6 includes alkynyl groups containing 2 to 6 carbon atoms.
- alkynyl includes both “unsubstituted alkynyls” and “substituted alkynyls,” the latter of which refers to alkynyl moieties having independently selected substituents replacing a hydrogen on one or more carbons of the hydrocarbon backbone.
- substituents can include, for example, alkyl groups, alkynyl groups, halogens, hydroxyl, alkylcarbonyloxy, arylcarbonyloxy, alkoxycarbonyloxy, aryloxycarbonyloxy, carboxylate, alkylcarbonyl, arylcarbonyl, alkoxycarbonyl, aminocarbonyl, alkylaminocarbonyl, dialkylaminocarbonyl, alkylthiocarbonyl, alkoxyl, phosphate, phosphonato, phosphinato, cyano, amino (including alkyl amino, dialkylamino, arylamino, diarylamino, and alkylarylamino), acylamino (including alkylcarbonylamino, arylcarbonylamino, carbamoyl and ureido), amidino, imino, sulfhydryl, alkylthio, arylthio, thiocarboxylate,
- lower alkyl as used herein means an alkyl group, as defined above, but having from one to five carbon atoms in its backbone structure. “Lower alkenyl” and “lower alkynyl” have chain lengths of, for example, 2-5 carbon atoms.
- alkoxy includes substituted and unsubstituted alkyl, alkenyl, and alkynyl groups covalently linked to an oxygen atom.
- alkoxy groups include methoxy, ethoxy, isopropyloxy, propoxy, butoxy, and pentoxy groups.
- substituted alkoxy groups include halogenated alkoxy groups.
- the alkoxy groups can be substituted with independently selected groups such as alkenyl, alkynyl, halogen, hydroxyl, alkylcarbonyloxy, arylcarbonyloxy, alkoxycarbonyloxy, aryloxycarbonyloxy, carboxylate, alkylcarbonyl, arylcarbonyl, alkoxycarbonyl, aminocarbonyl, alkylaminocarbonyl, dialkylaminocarbonyl, alkylthiocarbonyl, alkoxyl, phosphate, phosphonato, phosphinato, cyano, amino (including alkyl amino, dialkylamino, arylamino, diarylamino, and alkylarylamino), acylamino (including alkylcarbonylamino, arylcarbonylamino, carbamoyl and ureido), amidino, imino, sulffiydryl, alkylthio, arylthio, thio
- heteroatom includes atoms of any element other than carbon or hydrogen. Preferred heteroatoms are nitrogen, oxygen, sulfur and phosphorus.
- hydroxy or “hydroxyl” includes groups with an -OH or -O" (with an appropriate counterion).
- halogen includes fluorine, bromine, chlorine, iodine, etc.
- perhalogenated generally refers to a moiety wherein all hydrogens are replaced by halogen atoms.
- substituted includes independently selected substituents which can be placed on the moiety and which allow the molecule to perform its intended function.
- substituents include alkyl, alkenyl, alkynyl, aryl, (CR'R")o-3NR'R", (CR'R")o-3CN, NO2, halogen, (CR'R")o-3C(halogen) 3 , (CR'R")o-3CH(halogen) 2 , (CR'R")o-3CH 2 (halogen), (CR'R")o- 3 CONR'R", (CR'R")O-3S(0)I- 2 NR'R", (CR'R")O- 3 CHO, (CR'R")O-30(CR'R")O-3H, (CR'R")O-3S(0)O- 2 R', (CR'R")O-30(CR'R")O-3H, (CR'R")O-3COR', (CR'R")O-3C0 2 R', or (CR'R")o.
- each R' and R" are each independently hydrogen, a C1-C5 alkyl, C2-C5 alkenyl, C2-C5 alkynyl, or aryl group, or R' and R" taken together are a benzylidene group or a — (CH2)2O(CH2)2- group.
- amine or “amino” includes compounds or moieties in which a nitrogen atom is covalently bonded to at least one carbon or heteroatom.
- alkyl amino includes groups and compounds wherein the nitrogen is bound to at least one additional alkyl group.
- dialkyl amino includes groups wherein the nitrogen atom is bound to at least two additional alkyl groups.
- ether includes compounds or moieties which contain an oxygen bonded to two different carbon atoms or heteroatoms.
- alkoxyalkyl refers to an alkyl, alkenyl, or alkynyl group covalently bonded to an oxygen atom which is covalently bonded to another alkyl group.
- polynucleotide refers to a polymer of two or more nucleotides.
- the polynucleotides can be DNA, RNA, or derivatives or modified versions thereof.
- the polynucleotide may be single- stranded or double-stranded.
- the polynucleotide can be modified at the base moiety, sugar moiety, or phosphate backbone, for example, to improve stability of the molecule, its hybridization parameters, etc.
- the polynucleotide may comprise a modified base moiety which is selected from the group including but not limited to 5-fluorouracil, 5-bromouracil, 5-chlorouracil, 5-iodouracil, hypoxanthine, xanthine, 4- acetylcytosine, 5-(carboxyhydroxylmethyl) uracil, 5-carboxymethylaminomethyl-2-thiouridine, 5- carboxymethylaminomethyluracil, dihydrouracil, beta-D-galactosylqueosine, inosine, N6- isopentenyladenine, 1-methylguanine, 1 -methylinosine, 2,2- dimethylguanine, 2-methyladenine, 2-methylguanine, 3-methylcytosine, 5- methylcytosine, N6-adenine, 7-methylguanine, 5- methylaminomethyluracil, 5- methoxyaminomethyl-2-thiouracil, beta-D-mannosylqueosine
- the olynucleotide may comprise a modified sugar moiety (e.g., 2'-fluororibose, ribose, 2'- deoxyribose, 2'-O-methylcytidine, arabinose, and hexose), and/or a modified phosphate moiety (e.g., phosphorothioates and 5' -N-phosphoramidite linkages).
- a nucleotide sequence typically carries genetic information, including the information used by cellular machinery to make proteins and enzymes. These terms include double- or single- stranded genomic and cDNA, RNA, any synthetic and genetically manipulated polynucleotide, and both sense and antisense polynucleotides. This includes single- and double-stranded molecules, i.e., DNA-DNA, DNA- RNA, and RNA-RNA hybrids, as well as “protein nucleic acids” (PNA) formed by conjugating bases to an amino acid backbone.
- targeting moiety or “targeting ligand” includes, but is not limited to, N- acetylglucosamine acetyl or N-acetyl galactosamine (GalNac).
- base includes the known purine and pyrimidine heterocyclic bases, deazapurines, and analogs (including heterocyclic substituted analogs, e.g., aminoethyoxy phenoxazine), derivatives (e.g., 1-alkyl-, 1-alkenyl-, heteroaromatic- and 1-alkynyl derivatives) and tautomers thereof.
- purines include adenine, guanine, inosine, diaminopurine, and xanthine and analogs (e.g., 8-oxo-N 6 -methyladenine or 7-diazaxanthine) and derivatives thereof.
- Pyrimidines include, for example, thymine, uracil, and cytosine, and their analogs (e.g., 5-methylcytosine, 5-methyluracil, 5-(l-propynyl)uracil, 5-(l-propynyl)cytosine and 4,4- ethanocytosine).
- suitable bases include non-purinyl and non-pyrimidinyl bases such as 2-aminopyridine and triazines.
- the nucleomonomers of an oligonucleotide of the invention are RNA nucleotides.
- the nucleomonomers of an oligonucleotide of the invention are modified RNA nucleotides.
- the oligonucleotides contain modified RNA nucleotides.
- nucleoside includes bases which are covalently attached to a sugar moiety, preferably ribose or deoxyribose.
- examples of preferred nucleosides include ribonucleosides and deoxyribonucleosides.
- Nucleosides also include bases linked to amino acids or amino acid analogs which may comprise free carboxyl groups, free amino groups, or protecting groups. Suitable protecting groups are well known in the art (see P. G. M. Wuts and T. W. Greene, “Protective Groups in Organic Synthesis”, 2 nd Ed., Wiley-Interscience, New York, 1999).
- nucleotide includes nucleosides which further comprise a phosphate group or a phosphate analog.
- the nucleic acid molecules may be associated with a hydrophobic moiety for targeting and/or delivery of the molecule to a cell.
- the hydrophobic moiety is associated with the nucleic acid molecule through a linker.
- the association is through non-covalent interactions.
- the association is through a covalent bond.
- the nucleic acid molecules may be associated with a targeting ligand moiety for targeting and/or delivery of the molecule to a cell.
- the targeting ligand moiety is associated with the nucleic acid molecule as a phosphoroamidite or alternatively through a linker.
- the association is through non-covalent interactions.
- the association is through a covalent bond.
- linker known in the art may be used to associate the nucleic acid with the hydrophobic moiety.
- Linkers known in the art are described in published international PCT applications, WO 92/03464, WO 95/23162, WO 2008/021157, WO 2009/021157, WO 2009/134487, WO 2009/126933, U.S. Patent Application Publication 2005/0107325, U.S. Patent 5,414,077, U.S. Patent 5,419,966, U.S. Patent 5,512,667, U.S. Patent 5,646,126, and U.S. Patent 5,652,359, which are incorporated herein by reference.
- the linker may be as simple as a covalent bond to a multi-atom linker.
- the linker may be cyclic or acyclic.
- the linker may be optionally substituted.
- the linker is capable of being cleaved from the nucleic acid.
- the linker is capable of being hydrolyzed under physiological conditions.
- the linker is capable of being cleaved by an enzyme (e.g., an esterase or phosphodiesterase).
- the linker comprises a spacer element to separate the nucleic acid from the hydrophobic moiety.
- the spacer element may include one to thirty carbon or heteroatoms.
- the linker and/or spacer element comprises protonatable functional groups.
- Such protonatable functional groups may promote the endosomal escape of the nucleic acid molecule.
- the protonatable functional groups may also aid in the delivery of the nucleic acid to a cell, for example, neutralizing the overall charge of the molecule.
- the linker and/or spacer element is biologically inert (that is, it does not impart biological activity or function to the resulting nucleic acid molecule).
- nucleic acid molecule with a targeting moiety and/or a linker and hydrophobic moiety is of the formulae described herein. In certain embodiments, the nucleic acid molecule is of the formula: wherein
- X is N or CH
- A is a bond; substituted or unsubstituted, cyclic or acyclic, branched or unbranched aliphatic; or substituted or unsubstituted, cyclic or acyclic, branched or unbranched heteroaliphatic;
- R 1 is a hydrophobic moiety
- R 2 is hydrogen; an oxygen-protecting group; cyclic or acyclic, substituted or unsubstituted, branched or unbranched aliphatic; cyclic or acyclic, substituted or unsubstituted, branched or unbranched heteroaliphatic; substituted or unsubstituted, branched or unbranched acyl; substituted or unsubstituted, branched or unbranched aryl; substituted or unsubstituted, branched or unbranched heteroaryl; and
- R 3 is a nucleic acid.
- the molecule is of the formula:
- the molecule is of the formula:
- the molecule is of the formula:
- the molecule is of the formula:
- X is N. In certain embodiments, X is CH. In certain embodiments, A is a bond. In certain embodiments, A is substituted or unsubstituted, cyclic or acyclic, branched or unbranched aliphatic. In certain embodiments, A is acyclic, substituted or unsubstituted, branched or unbranched aliphatic. In certain embodiments, A is acyclic, substituted, branched or unbranched aliphatic. In certain embodiments, A is acyclic, substituted, unbranched aliphatic. In certain embodiments, A is acyclic, substituted, unbranched alkyl.
- A is acyclic, substituted, unbranched Ci-20 alkyl. In certain embodiments, A is acyclic, substituted, unbranched Ci-12 alkyl. In certain embodiments, A is acyclic, substituted, unbranched Ci-10 alkyl. In certain embodiments, A is acyclic, substituted, unbranched C1-8 alkyl. In certain embodiments, A is acyclic, substituted, unbranched C1-6 alkyl. In certain embodiments, A is substituted or unsubstituted, cyclic or acyclic, branched or unbranched heteroaliphatic.
- A is acyclic, substituted or unsubstituted, branched or unbranched heteroaliphatic. In certain embodiments, A is acyclic, substituted, branched or unbranched heteroaliphatic. In certain embodiments, A is acyclic, substituted, unbranched heteroaliphatic. In certain embodiments, A is of the formula:
- A is of one of the formulae:
- A is of one of the formulae:
- A is of one of the formulae:
- A is of the formula: In certain embodiments, A is of the formula:
- A is of the formula: wherein each occurrence of R is independently the side chain of a natural or unnatural amino acid; and n is an integer between 1 and 20, inclusive. In certain embodiments, A is of the formula:
- each occurrence of R is independently the side chain of a natural amino acid.
- n is an integer between 1 and 15, inclusive. In certain embodiments, n is an integer between 1 and 10, inclusive. In certain embodiments, n is an integer between 1 and 5, inclusive.
- A is of the formula: wherein n is an integer between 1 and 20, inclusive. In certain embodiments, A is of the formula:
- n is an integer between 1 and 15, inclusive. In certain embodiments, n is an integer between 1 and 10, inclusive. In certain embodiments, n is an integer between 1 and 5, inclusive.
- A is of the formula: wherein n is an integer between 1 and 20, inclusive. In certain embodiments, A is of the formula: In certain embodiments, n is an integer between 1 and 15, inclusive. In certain embodiments, n is an integer between 1 and 10, inclusive. In certain embodiments, n is an integer between 1 and 5, inclusive.
- the molecule is of the formula: wherein X, R 1 , R 2 , and R 3 are as defined herein; and
- A' is substituted or unsubstituted, cyclic or acyclic, branched or unbranched aliphatic; or substituted or unsubstituted, cyclic or acyclic, branched or unbranched heteroaliphatic.
- A' is of one of the formulae:
- A is of one of the formulae:
- A is of one of the formulae:
- A is of the formula: In certain embodiments, A is of the formula:
- R 1 is a steroid. In certain embodiments, R 1 is a cholesterol. In certain embodiments, R 1 is a lipophilic vitamin. In certain embodiments, R 1 is a vitamin A. In certain embodiments, R 1 is a vitamin E. In certain embodiments, R 1 is of the formula: wherein R A is substituted or unsubstituted, cyclic or acyclic, branched or unbranched aliphatic; or substituted or unsubstituted, cyclic or acyclic, branched or unbranched heteroaliphatic.
- R 1 is of the formula:
- the nucleic acid molecule is of the formula: wherein
- X is N or CH
- A is a bond; substituted or unsubstituted, cyclic or acyclic, branched or unbranched aliphatic; or substituted or unsubstituted, cyclic or acyclic, branched or unbranched heteroaliphatic;
- R 1 is a hydrophobic moiety
- R 2 is hydrogen; an oxygen-protecting group; cyclic or acyclic, substituted or unsubstituted, branched or unbranched aliphatic; cyclic or acyclic, substituted or unsubstituted, branched or unbranched heteroaliphatic; substituted or unsubstituted, branched or unbranched acyl; substituted or unsubstituted, branched or unbranched aryl; substituted or unsubstituted, branched or unbranched heteroaryl; and
- R 3 is a nucleic acid.
- the nucleic acid molecule is of the formula: wherein
- X is N or CH
- A is a bond; substituted or unsubstituted, cyclic or acyclic, branched or unbranched aliphatic; or substituted or unsubstituted, cyclic or acyclic, branched or unbranched heteroaliphatic; R 1 is a hydrophobic moiety;
- R 2 is hydrogen; an oxygen-protecting group; cyclic or acyclic, substituted or unsubstituted, branched or unbranched aliphatic; cyclic or acyclic, substituted or unsubstituted, branched or unbranched heteroaliphatic; substituted or unsubstituted, branched or unbranched acyl; substituted or unsubstituted, branched or unbranched aryl; substituted or unsubstituted, branched or unbranched heteroaryl; and
- R 3 is a nucleic acid.
- the nucleic acid molecule is of the formula: wherein
- X is N or CH
- A is a bond; substituted or unsubstituted, cyclic or acyclic, branched or unbranched aliphatic; or substituted or unsubstituted, cyclic or acyclic, branched or unbranched heteroaliphatic;
- R 1 is a hydrophobic moiety
- R 2 is hydrogen; an oxygen-protecting group; cyclic or acyclic, substituted or unsubstituted, branched or unbranched aliphatic; cyclic or acyclic, substituted or unsubstituted, branched or unbranched heteroaliphatic; substituted or unsubstituted, branched or unbranched acyl; substituted or unsubstituted, branched or unbranched aryl; substituted or unsubstituted, branched or unbranched heteroaryl; and
- R 3 is a nucleic acid.
- the nucleic acid molecule is of the formula:
- nucleic acid molecule is of the formula: In certain embodiments, the nucleic acid molecule is of the formula:
- the nucleic acid molecule is of the formula: wherein R 3 is a nucleic acid; and n is an integer between 1 and 20, inclusive.
- the nucleic acid molecule is of the formula:
- the nucleic acid molecule is of the formula:
- the nucleic acid molecule is of the formula:
- the nucleic acid molecule is of the formula:
- the nucleic acid molecule is of the formula:
- linkage includes a naturally occurring, unmodified phosphodiester moiety (-O-(PO 2- )-O-) that covalently couples adjacent nucleomonomers.
- substitute linkage includes any analog or derivative of the native phosphodiester group that covalently couples adjacent nucleomonomers. Substitute linkages include phosphodiester analogs, e.g., phosphorothioate, phosphorodithioate, and P- ethyoxyphosphodiester, P-ethoxyphosphodiester, P-alkyloxyphosphotriester, methylphosphonate, and nonphosphorus containing linkages, e.g., acetals and amides.
- oligonucleotides of the invention comprise hydrophobically modified nucleotides or “hydrophobic modifications.” As used herein “hydrophobic modifications” refers to bases that are modified such that (1) overall hydrophobicity of the base is significantly increased, and/or (2) the base is still capable of forming close to regular Watson -Crick interaction.
- base modifications include 5-position uridine and cytidine modifications such as phenyl, 4-pyridyl, 2-pyridyl, indolyl, and isobutyl, phenyl (C6H5OH); tryptophanyl (CsH6N)CH2CH(NH2)CO), Isobutyl, butyl, aminobenzyl; phenyl; and naphthyl.
- conjugates that can be attached to the end (3’ or 5’ end), a loop region, or any other parts of a chemically modified double stranded nucleic acid molecule include a sterol, sterol type molecule, peptide, small molecule, protein, etc.
- a chemically modified double stranded nucleic acid molecule such as an sd-rxRNA (INTASYLTM) may contain more than one conjugate (same or different chemical nature).
- the conjugate is cholesterol.
- the conjugate is GalNac
- the first nucleotide relative to the 5 ’end of the guide strand has a 2'-O-methyl modification, optionally wherein the 2'-O-methyl modification is a 5P-2'O-methyl U modification, or a 5’ vinyl phosphonate 2’-O-methyl U modification.
- Another way to increase target gene specificity, or to reduce off-target silencing effect is to introduce a 2’- modification (such as the 2’-0 methyl modification) at a position corresponding to the second 5 ’-end nucleotide of the guide sequence.
- Antisense (guide) sequences of the invention can be “chimeric oligonucleotides” which comprise an RNA-like and a DNA-like region.
- RNase H activating region includes a region of an oligonucleotide, e.g., a chimeric oligonucleotide that is capable of recruiting RNase H to cleave the target RNA strand to which the oligonucleotide binds.
- the RNase activating region contains a minimal core (of at least about 3-5, typically between about 3-12, more typically, between about 5-12, and more preferably between about 5-10 contiguous nucleomonomers) of DNA or DNA-like nucleomonomers. (See, e.g., U.S. Pat. No. 5,849,902).
- the RNase H activating region comprises about nine contiguous deoxyribose containing nucleomonomers.
- non-activating region includes a region of an antisense sequence, e.g., a chimeric oligonucleotide that does not recruit or activate RNase H.
- a non-activating region does not comprise phosphorothioate DNA.
- the oligonucleotides of the invention comprise at least one non-activating region.
- the non-activating region can be stabilized against nucleases or can provide specificity for the target by being complementary to the target and forming hydrogen bonds with the target nucleic acid molecule, which is to be bound by the oligonucleotide.
- at least a portion of the contiguous polynucleotides are linked by a substitute linkage, e.g., a phosphorothioate linkage.
- nucleotides beyond the guide sequence (2’- modified or not) are linked by phosphorothioate linkages.
- Such constructs tend to have improved pharmacokinetics due to their higher affinity for serum proteins.
- the phosphorothioate linkages in the non-guide sequence portion of the polynucleotide generally do not interfere with guide strand activity, once the latter is loaded into RISC.
- high levels of phosphorothioate modification can lead to improved delivery.
- the guide and/or passenger strand is completely phosphorothioated.
- Antisense (guide) sequences of the present invention may include “morpholino oligonucleotides.” Morpholino oligonucleotides are non-ionic and function by an RNase H- independent mechanism. Each of the 4 genetic bases (Adenine, Cytosine, Guanine, and Thymine/Uracil) of the morpholino oligonucleotides is linked to a 6-membered morpholine ring. Morpholino oligonucleotides are made by joining the 4 different subunit types by, e.g., nonionic phosphorodiamidate inter-subunit linkages.
- Morpholino oligonucleotides have many advantages including: complete resistance to nucleases (Antisense & Nucl. Acid Drug Dev. 1996. 6:267); predictable targeting (Biochemica Biophysica Acta. 1999. 1489:141); reliable activity in cells (Antisense & Nucl. Acid Drug Dev. 1997. 7:63); excellent sequence specificity (Antisense & Nucl. Acid Drug Dev. 1997. 7:151); minimal non-antisense activity (Biochemica Biophysica Acta. 1999. 1489:141); and simple osmotic or scrape delivery (Antisense & Nucl. Acid Drug Dev. 1997. 7:291).
- Morpholino oligonucleotides are also preferred because of their non-toxicity at high doses. A discussion of the preparation of morpholino oligonucleotides can be found in Antisense & Nucl. Acid Drug Dev. 1997. 7:187.
- the present invention provides a description of the chemical modification patterns, which may (a) significantly increase stability of the single stranded polynucleotide (b) promote efficient loading of the polynucleotide into the RISC complex and (c) improve uptake of the single stranded nucleotide by the cell.
- the chemical modification patterns may include a combination of ribose, backbone, hydrophobic nucleoside and conjugate type of modifications.
- the 5’ end of the single polynucleotide may be chemically phosphorylated.
- the present invention provides a description of the chemical modification patterns, which improve functionality of RISC inhibiting polynucleotides.
- the present invention provides a description of the chemical modification patterns, which may (a) significantly increase stability of the single stranded polynucleotide (b) promote efficient recognition of the polynucleotide by the RISC as a substrate and/or (c) improve uptake of the single stranded nucleotide by the cell.
- the chemical modification patterns may include a combination of ribose, backbone, hydrophobic nucleoside and conjugate type of modifications.
- the modifications provided by the present invention are applicable to all polynucleotides. This includes single stranded RISC entering polynucleotides, single stranded RISC inhibiting polynucleotides, conventional duplexed polynucleotides of variable length (15- 40 bp), asymmetric duplexed polynucleotides, and the like. Polynucleotides may be modified with wide variety of chemical modification patterns, including 5’ end, ribose, backbone and hydrophobic nucleoside modifications.
- Oligonucleotides of the invention can be synthesized by any method known in the art, e.g., using enzymatic synthesis and/or chemical synthesis.
- the oligonucleotides can be synthesized in vitro (e.g., using enzymatic synthesis and chemical synthesis) or in vivo (using recombinant DNA technology well known in the art).
- chemical synthesis is used for modified polynucleotides.
- Chemical synthesis of linear oligonucleotides is well known in the art and can be achieved by solution or solid phase techniques. Preferably, synthesis is by solid phase methods.
- Oligonucleotides can be made by any of several different synthetic procedures including the phosphoramidite, phosphite triester, H-phosphonate, and phosphotriester methods, typically by automated synthesis methods.
- Oligonucleotide synthesis protocols are well known in the art and can be found, e.g., in U.S. Pat. No. 5,830,653; WO 98/13526; Stec et al. 1984. J. Am. Chem. Soc. 106:6077; Stec et al. 1985. J. Org. Chem. 50:3908; Stec et al. J. Chromatog. 1985. 326:263; LaPlanche et al. 1986. Nucl. Acid. Res. 1986. 14:9081; Fasman G. D., 1989. Practical Handbook of Biochemistry and Molecular Biology. 1989. CRC Press, Boca Raton, Fla.; Lamone. 1993. Biochem. Soc. Trans.
- the synthesis method selected can depend on the length of the desired oligonucleotide and such choice is within the skill of the ordinary artisan.
- the phosphoramidite and phosphite triester method can produce oligonucleotides having 175 or more nucleotides, while the H-phosphonate method works well for oligonucleotides of less than 100 nucleotides. If modified bases are incorporated into the oligonucleotide, and particularly if modified phosphodiester linkages are used, then the synthetic procedures are altered as needed according to known procedures. In this regard, Uhlmann et al.
- oligonucleotides may be purified by polyacrylamide gel electrophoresis, or by any of a number of chromatographic methods, including gel chromatography and high pressure liquid chromatography.
- oligonucleotides may be subjected to DNA sequencing by any of the known procedures, including Maxam and Gilbert sequencing, Sanger sequencing, capillary electrophoresis sequencing, the wandering spot sequencing procedure, or by using selective chemical degradation of oligonucleotides bound to Hybond paper.
- Sequences of short oligonucleotides can also be analyzed by laser desorption mass spectroscopy or by fast atom bombardment (McNeal, et al., 1982, J. Am. Chem. Soc. 104:976; Viari, et al., 1987, Biomed. Environ. Mass Spectrom. 14:83; Grotjahn et a/., 1982, Nuc. Acid Res. 10:4671). Sequencing methods are also available for RNA oligonucleotides.
- oligonucleotides synthesized can be verified by testing the oligonucleotide by capillary electrophoresis and denaturing strong anion HPLC (SAX-HPLC) using, e.g., the method of Bergot and Egan. 1992. J. Chrom. 599:35.
- SAX-HPLC denaturing strong anion HPLC
- the subject RNAi constructs or at least portions thereof are transcribed from expression vectors encoding the subject constructs. Any art recognized vectors may be use for this purpose.
- the transcribed RNAi constructs may be isolated and purified, before desired modifications (such as replacing an unmodified sense strand with a modified one, etc.) are carried out.
- the inventors believe that the particular patterns of modifications on the passenger strand and guide strand of the double stranded nucleic acid molecules described herein (e.g.. INTAS YLTM) facilitate entry of the guide strand into the nucleus, where the guide strand mediates gene silencing (e.g.. silencing of target genes, such as TIGIT).
- INTAS YLTM double stranded nucleic acid molecules described herein
- the guide strand e.g.. antisense strand of the nucleic acid molecule (e.g.. INTAS YLTM) may dissociate from the passenger strand and enter into the nucleus as a single strand. Once in the nucleus the single stranded guide strand may associate with RNAse H or another ribonuclease and cleave the target (e.g., TIGIT) (“Antisense mechanism of action”).
- the target e.g., TIGIT
- the guide strand (e.g., antisense strand) of the nucleic acid molecule may associate with an Argonaute (Ago) protein in the cytoplasm or outside the nucleus, forming a loaded Ago complex.
- This loaded Ago complex may translocate into the nucleus and then cleave the target (e.g., TIGIT).
- both strands e.g.
- a duplex) of the nucleic acid molecule may enter the nucleus and the guide strand may associate with RNAse H, an Ago protein or another ribonuclease and cleaves the target (e.g., TGIT).
- the sense strand of the double stranded molecules described herein is not limited to delivery of a guide strand of the double stranded nucleic acid molecule described herein. Rather, in some embodiments, a passenger strand described herein is joined (e.g., covalently bound, non-covalently bound, conjugated, hybridized via a region of complementarity, etc.) to certain molecules (e.g., antisense oligonucleotides, ASO) for the purpose of targeting said other molecule to the nucleus of a cell.
- certain molecules e.g., antisense oligonucleotides, ASO
- the molecule joined to a sense strand described herein is a synthetic antisense oligonucleotide (ASO).
- ASO synthetic antisense oligonucleotide
- the sense strand joined to an anti-sense oligonucleotide is between 8-15 nucleotides long, chemically modified, and comprises a hydrophobic conjugate.
- an ASO can be joined to a complementary passenger strand by hydrogen bonding.
- the disclosure provides a method of delivering a nucleic acid molecule to a cell, the method comprising administering an isolated nucleic acid molecule to a cell, wherein the isolated nucleic acid comprises a sense strand which is complementary to an anti-sense oligonucleotide (ASO), wherein the sense strand is between 8-15 nucleotides in length, comprises at least two phosphorothioate modifications, at least 50% of the pyrimidines in the sense strand are modified, and wherein the molecule comprises a hydrophobic conjugate.
- ASO anti-sense oligonucleotide
- Oligonucleotides and oligonucleotide compositions are contacted with (/'. ⁇ ?., brought into contact with, also referred to herein as administered or delivered to) and taken up by one or more cells or a cell lysate.
- the term “cells” includes prokaryotic and eukaryotic cells, preferably vertebrate cells, and, more preferably, mammalian cells.
- the oligonucleotide compositions of the invention are contacted with bacterial cells.
- the oligonucleotide compositions of the invention are contacted with eukaryotic cells (e.g., plant cell, mammalian cell, arthropod cell, such as insect cell).
- the oligonucleotide compositions of the invention are contacted with stem cells. In some embodiments, the oligonucleotide compositions of the invention are contacted with liver cells, such as hepatocytes and are taken up via receptor mediated uptake.
- the oligonucleotide compositions of the invention are contacted with human cells (e.g., NK cells) or cell lines (e.g., NK cell lines, such as KHYG-1, NK92; NK101 (Yang et al., J for Immunotherapy of Cancer, 2019, 7:138); YT, including subclones YT2C2 and YTC3; NKL, HANK1, NK-YS, SNK-6; SNK-8; IMC-1 (Zhang et al., Int. J. Mol. Sci. 2019, 20, 317)).
- the oligonucleotide compositions of the disclosure are contacted with primary NK cells.
- the oligonucleotide compositions of the disclosure are contacted with NK cells isolated from peripheral blood mononuclear cells (PBMCs). In some embodiments, the oligonucleotide compositions of the disclosure are contacted with NK cells expanded from peripheral blood mononuclear cells (PBMCs). In some embodiments, the oligonucleotide compositions of the disclosure are contacted with NK cells isolated and expanded from peripheral blood mononuclear cells (PBMCs). Methods of isolating NK cells from PBMCs are known in the art and can include a combination of cell selection and depletion using immunomagnetic beads.
- the oligonucleotide compositions of the disclosure are contacted with NK cells differentiated from umbilical cord cells (UBCs) (e.g., umbilical cord stem cells).
- UBCs umbilical cord cells
- the oligonucleotide compositions of the disclosure are contacted with NK cells differentiated and expanded from UBCs (e.g., umbilical cord stem cells).
- the oligonucleotide compositions of the disclosure are contacted with NK cells differentiated from induced pluripotent stem cells (iPSCs).
- iPSCs induced pluripotent stem cells
- the oligonucleotide compositions of the disclosure are contacted with NK cells differentiated and expanded from iPSCs.
- the oligonucleotide compositions of the disclosure are contacted with an allogeneic NK cell; that is, a NK cell from a blood-related family member.
- an allogeneic NK cell that is, a NK cell from a blood-related family member.
- allogeneic NK cells are more easily activated when stress ligands are recognized because they have a partial mismatch with respect to killer inhibitor receptors relative to subject NK cells.
- the oligonucleotide compositions of the disclosure are contacted with an autologous NK cell.
- Oligonucleotide compositions of the invention can be contacted with cells in vitro, e.g., in a test tube or culture dish, (and may or may not be introduced into a subject) or in vivo, e.g., in a subject such as a mammalian subject, or ex vivo.
- oligonucleotides are administered topically or through electroporation.
- Oligonucleotides are taken up by cells at a slow rate by endocytosis, but endocytosed oligonucleotides are generally sequestered and not available, e.g., for hybridization to a target nucleic acid molecule.
- cellular uptake can be facilitated by electroporation or calcium phosphate precipitation.
- these procedures are only useful for in vitro or ex vivo embodiments, are not convenient and, in some cases, are associated with cell toxicity.
- delivery of oligonucleotides into cells can be enhanced by suitable art recognized methods including calcium phosphate, DMSO, glycerol or dextran, electroporation, or by transfection, e.g., using cationic, anionic, or neutral lipid compositions or liposomes using methods known in the art (see e.g., WO 90/14074; WO 91/16024; WO 91/17424; U.S. Pat. No. 4,897,355; Bergan et al. 1993. Nucleic Acids Research. 21:3567).
- Enhanced delivery of oligonucleotides can also be mediated by the use of vectors (See e.g., Shi, Y. 2003.
- the protocol used for uptake of oligonucleotides will depend upon a number of factors, the most crucial being the type of cells that are being used. Other factors that are important in uptake include, but are not limited to, the nature and concentration of the oligonucleotide, the confluence of the cells, the type of culture the cells are in (e.g., a suspension culture or plated) and the type of media in which the cells are grown.
- compositions comprising RNAi constructs as described herein, and a pharmaceutically acceptable carrier or diluent.
- the disclosure relates to immunogenic compositions comprising the RNAi constructs described herein, and a pharmaceutically acceptable carrier.
- “pharmaceutically acceptable carrier” includes appropriate solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents, and the like.
- suitable solvents dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents, and the like.
- the use of such media and agents for pharmaceutical active substances is well known in the art. Except insofar as any conventional media or agent is incompatible with the active ingredient, it can be used in the therapeutic compositions. Supplementary active ingredients can also be incorporated into the compositions.
- oligonucleotides may be incorporated into liposomes or liposomes modified with polyethylene glycol or admixed with cationic lipids for parenteral administration. Incorporation of additional substances into the liposome, for example, antibodies reactive against membrane proteins found on specific target cells, can help target the oligonucleotides to specific cell types (e.g., immune cells, such as NK-cells).
- additional substances for example, antibodies reactive against membrane proteins found on specific target cells, can help target the oligonucleotides to specific cell types (e.g., immune cells, such as NK-cells).
- Encapsulating agents entrap oligonucleotides within vesicles.
- an oligonucleotide may be associated with a carrier or vehicle, e.g., liposomes or micelles, although other carriers could be used, as would be appreciated by one skilled in the art.
- Liposomes are vesicles made of a lipid bilayer having a structure similar to biological membranes. Such carriers are used to facilitate the cellular uptake or targeting of the oligonucleotide, or improve the oligonucleotide's pharmacokinetic or toxicologic properties.
- the oligonucleotides of the present invention may also be administered encapsulated in liposomes, pharmaceutical compositions wherein the active ingredient is contained either dispersed or variously present in corpuscles consisting of aqueous concentric layers adherent to lipidic layers.
- the oligonucleotides depending upon solubility, may be present both in the aqueous layer and in the lipidic layer, or in what is generally termed a liposomic suspension.
- the hydrophobic layer generally but not exclusively, comprises phospholipids such as lecithin and sphingomyelin, steroids such as cholesterol, more or less ionic surfactants such as diacetylphosphate, stearylamine, or phosphatidic acid, or other materials of a hydrophobic nature.
- the diameters of the liposomes generally range from about 15 nm to about 5 microns.
- the use of liposomes as drug delivery vehicles offers several advantages. Liposomes increase intracellular stability, increase uptake efficiency and improve biological activity. Liposomes are hollow spherical vesicles composed of lipids arranged in a similar fashion as those lipids which make up the cell membrane.
- liposomes can deliver nucleic acids to cells and that the nucleic acids remain biologically active.
- a lipid delivery vehicle originally designed as a research tool such as Lipofectin or LIPOFECT AMINETM 2000, can deliver intact nucleic acid molecules to cells.
- liposomes are non-toxic and biodegradable in composition; they display long circulation half-lives; and recognition molecules can be readily attached to their surface for targeting to tissues. Finally, cost-effective manufacture of liposome -based pharmaceuticals, either in a liquid suspension or lyophilized product, has demonstrated the viability of this technology as an acceptable drug delivery system.
- formulations associated with the invention might be selected for a class of naturally occurring or chemically synthesized or modified saturated and unsaturated fatty acid residues.
- Fatty acids might exist in a form of triglycerides, diglycerides or individual fatty acids.
- the use of well-validated mixtures of fatty acids and/or fat emulsions currently used in pharmacology for parenteral nutrition may be utilized.
- Liposome based formulations are widely used for oligonucleotide delivery.
- most of commercially available lipid or liposome formulations contain at least one positively charged lipid (e.g., a cationic lipid).
- the presence of this positively charged lipid is believed to be essential for obtaining a high degree of oligonucleotide loading and for enhancing liposome fusogenic properties.
- Several methods have been performed and published to identify functional positively charged lipid chemistries.
- the commercially available liposome formulations containing cationic lipids are characterized by a high level of toxicity. In vivo limited therapeutic indexes have revealed that liposome formulations containing positive charged lipids are associated with toxicity (e.g., elevation in liver enzymes) at concentrations only slightly higher than concentration required to achieve RNA silencing.
- Nucleic acids associated with the invention can be hydrophobically modified and can be encompassed within neutral nanotransporters. Further description of neutral nanotransporters is incorporated by reference from PCT Application PCT/US2009/005251, filed on September 22, 2009, and entitled “Neutral Nanotransporters.” Such particles enable quantitative oligonucleotide incorporation into non-charged lipid mixtures. The lack of toxic levels of cationic lipids in such neutral nanotransporter compositions is an important feature. As demonstrated in PCT/US2009/005251, oligonucleotides can effectively be incorporated into a lipid mixture that is free of cationic lipids and such a composition can effectively deliver a therapeutic oligonucleotide to a cell in a manner that it is functional.
- a high level of activity was observed when the fatty mixture was composed of a phosphatidylcholine base fatty acid and a sterol such as a cholesterol.
- a sterol such as a cholesterol.
- one preferred formulation of neutral fatty mixture is composed of at least 20% of DOPC or DSPC and at least 20% of sterol such as cholesterol. Even as low as 1:5 lipid to oligonucleotide ratio was shown to be sufficient to get complete encapsulation of the oligonucleotide in a noncharged formulation.
- the neutral nanotransporters compositions enable efficient loading of oligonucleotide into neutral fat formulation.
- the composition includes an oligonucleotide that is modified in a manner such that the hydrophobicity of the molecule is increased (for example a hydrophobic molecule is attached (covalently or no-covalently) to a hydrophobic molecule on the oligonucleotide terminus or a non-terminal nucleotide, base, sugar, or backbone), the modified oligonucleotide being mixed with a neutral fat formulation (for example containing at least 25 % of cholesterol and 25% of DOPC or analogs thereof).
- a cargo molecule such as another lipid can also be included in the composition.
- stable particles ranging in size from 50 to 140 nm can be formed upon complexing of hydrophobic oligonucleotides with preferred formulations.
- the formulation by itself typically does not form small particles, but rather, forms agglomerates, which are transformed into stable 50-120 nm particles upon addition of the hydrophobic modified oligonucleotide.
- neutral nanotransporter compositions include a hydrophobic modified polynucleotide, a neutral fatty mixture, and optionally a cargo molecule.
- a “hydrophobic modified polynucleotide” as used herein is a polynucleotide of the invention (e.g., sd-rxRNA) that has at least one modification that renders the polynucleotide more hydrophobic than the polynucleotide was prior to modification. The modification may be achieved by attaching (covalently or non-covalently) a hydrophobic molecule to the polynucleotide. In some instances the hydrophobic molecule is or includes a lipophilic group.
- lipophilic group means a group that has a higher affinity for lipids than its affinity for water.
- lipophilic groups include, but are not limited to, cholesterol, a cholesteryl or modified cholesteryl residue, adamantine, dihydrotesterone, long chain alkyl, long chain alkenyl, long chain alkynyl, olely-lithocholic, cholenic, oleoyl-cholenic, palmityl, heptadecyl, myrisityl, bile acids, cholic acid or taurocholic acid, deoxy cholate, oleyl litocholic acid, oleoyl cholenic acid, glycolipids, phospholipids, sphingolipids, isoprenoids, such as steroids, vitamins, such as vitamin E, fatty acids either saturated or unsaturated, fatty acid esters, such as triglycerides, pyrenes, porphyrines, Texaphyrine,
- the hydrophobic molecule may be attached at various positions of the polynucleotide. As described above, the hydrophobic molecule may be linked to the terminal residue of the polynucleotide such as the 3’ of 5’-end of the polynucleotide. Alternatively, it may be linked to an internal nucleotide or a nucleotide on a branch of the polynucleotide. The hydrophobic molecule may be attached, for instance to a 2'-position of the nucleotide. The hydrophobic molecule may also be linked to the heterocyclic base, the sugar or the backbone of a nucleotide of the polynucleotide.
- the hydrophobic molecule may be connected to the polynucleotide by a linker moiety.
- the linker moiety is a non-nucleotidic linker moiety.
- Non-nucleotidic linkers are e.g. abasic residues (dSpacer), oligoethyleneglycol, such as triethyleneglycol (spacer 9) or hexaethylenegylcol (spacer 18), or alkane-diol, such as butanediol.
- the spacer units are preferably linked by phosphodiester or phosphorothioate bonds.
- the linker units may appear just once in the molecule or may be incorporated several times, e.g., via phosphodiester, phosphorothioate, methylphosphonate, or amide linkages.
- Typical conjugation protocols involve the synthesis of polynucleotides bearing an aminolinker at one or more positions of the sequence, however, a linker is not required.
- the amino group is then reacted with the molecule being conjugated using appropriate coupling or activating reagents.
- the conjugation reaction may be performed either with the polynucleotide still bound to a solid support or following cleavage of the polynucleotide in solution phase. Purification of the modified polynucleotide by HPLC typically results in a pure material.
- the hydrophobic molecule is a sterol type conjugate, a PhytoSterol conjugate, cholesterol conjugate, sterol type conjugate with altered side chain length, fatty acid conjugate, any other hydrophobic group conjugate, and/or hydrophobic modifications of the internal nucleoside, which provide sufficient hydrophobicity to be incorporated into micelles.
- sterols refers or steroid alcohols are a subgroup of steroids with a hydroxyl group at the 3-position of the A-ring. They are amphipathic lipids synthesized from acetyl-coenzyme A via the HMG-CoA reductase pathway. The overall molecule is quite flat. The hydroxyl group on the A ring is polar. The rest of the aliphatic chain is non-polar. Usually sterols are considered to have an 8 carbon chain at position 17.
- sterol type molecules refers to steroid alcohols, which are similar in structure to sterols. The main difference is the structure of the ring and number of carbons in a position 21 attached side chain.
- PhytoSterols also called plant sterols
- Plant sterols are a group of steroid alcohols, phytochemicals naturally occurring in plants. There are more than 200 different known PhytoSterols.
- sterol side chain refers to a chemical composition of a side chain attached at the position 17 of sterol-type molecule.
- sterols are limited to a 4 ring structure carrying an 8 carbon chain at position 17.
- the sterol type molecules with side chain longer and shorter than conventional are described.
- the side chain may branched or contain double back bones.
- sterols useful in the invention include cholesterols, as well as unique sterols in which position 17 has attached side chain of 2-7 or longer than 9 carbons.
- the length of the polycarbon tail is varied between 5 and 9 carbons.
- Such conjugates may have significantly better in vivo efficacy, in particular delivery to liver. These types of molecules are expected to work at concentrations 5 to 9 fold lower then oligonucleotides conjugated to conventional cholesterols.
- polynucleotide may be bound to a protein, peptide or positively charged chemical that functions as the hydrophobic molecule.
- the proteins may be selected from the group consisting of protamine, dsRNA binding domain, and arginine rich peptides.
- exemplary positively charged chemicals include spermine, spermidine, cadaverine, and putrescine.
- hydrophobic molecule conjugates may demonstrate even higher efficacy when it is combined with specific chemical modification patterns of the polynucleotide (as described herein in detail), containing but not limited to hydrophobic modifications, phosphorothioate modifications, and 2’ ribo modifications.
- the sterol type molecule may be a naturally occurring PhytoSterols.
- the polycarbon chain may be longer than 9 and may be linear, branched and/or contain double bonds.
- Some PhytoSterol-containing polynucleotide conjugates may be significantly more potent and active in delivery of polynucleotides to various tissues.
- Some PhytoSterols may demonstrate tissue preference and thus be used as a way to delivery RNAi specifically to particular tissues.
- the hydrophobic modified polynucleotide is mixed with a neutral fatty mixture to form a micelle.
- the neutral fatty acid mixture is a mixture of fats that has a net neutral or slightly net negative charge at or around physiological pH that can form a micelle with the hydrophobic modified polynucleotide.
- the term “micelle” refers to a small nanoparticle formed by a mixture of non-charged fatty acids and phospholipids.
- the neutral fatty mixture may include cationic lipids as long as they are present in an amount that does not cause toxicity.
- the neutral fatty mixture is free of cationic lipids.
- a mixture that is free of cationic lipids is one that has less than 1% and preferably 0% of the total lipid being cationic lipid.
- the term “cationic lipid” includes lipids and synthetic lipids having a net positive charge at or around physiological pH.
- the term “anionic lipid” includes lipids and synthetic lipids having a net negative charge at or around physiological pH.
- the neutral fats bind to the oligonucleotides of the invention by a strong but non- covalent attraction (e.g.. an electrostatic, van der Waals, pi-stacking, etc. interaction).
- a strong but non- covalent attraction e.g. an electrostatic, van der Waals, pi-stacking, etc. interaction.
- the neutral fat mixture may include formulations selected from a class of naturally occurring or chemically synthesized or modified saturated and unsaturated fatty acid residues.
- Fatty acids might exist in a form of triglycerides, diglycerides or individual fatty acids.
- the use of well-validated mixtures of fatty acids and/or fat emulsions currently used in pharmacology for parenteral nutrition may be utilized.
- the neutral fatty mixture is preferably a mixture of a choline based fatty acid and a sterol.
- Choline based fatty acids include for instance, synthetic phosphocholine derivatives such as DDPC, DLPC, DMPC, DPPC, DSPC, DOPC, POPC, and DEPC.
- DOPC (chemical registry number 4235-95-4) is dioleoylphosphatidylcholine (also known as dielaidoylphosphatidylcholine, dioleoyl-PC, dioleoylphosphocholine, dioleoyl-sn-glycero-3- phosphocholine, dioleylphosphatidylcholine).
- DSPC (chemical registry number 816-94-4) is distearoylphosphatidylcholine (also known as l,2-Distearoyl-sn-Glycero-3-phosphocholine).
- the sterol in the neutral fatty mixture may be for instance cholesterol.
- the neutral fatty mixture may be made up completely of a choline based fatty acid and a sterol or it may optionally include a cargo molecule.
- the neutral fatty mixture may have at least 20% or 25% fatty acid and 20% or 25% sterol.
- fatty acids relates to conventional description of fatty acid. They may exist as individual entities or in a form of two-and triglycerides.
- fat emulsions refers to safe fat formulations given intravenously to subjects who are unable to get enough fat in their diet. It is an emulsion of soybean oil (or other naturally occurring oils) and egg phospholipids. Fat emulsions are being used for formulation of some insoluble anesthetics.
- fat emulsions might be part of commercially available preparations like Intralipid, Liposyn, Nutrilipid, modified commercial preparations, where they are enriched with particular fatty acids or fully de novo- formulated combinations of fatty acids and phospholipids.
- the cells to be contacted with an oligonucleotide composition of the invention are contacted with a mixture comprising the oligonucleotide and a mixture comprising a lipid, e.g., one of the lipids or lipid compositions described supra for between about 12 hours to about 24 hours.
- the cells to be contacted with an oligonucleotide composition are contacted with a mixture comprising the oligonucleotide and a mixture comprising a lipid, e.g., one of the lipids or lipid compositions described supra for between about 1 and about five days.
- the cells are contacted with a mixture comprising a lipid and the oligonucleotide for between about three days to as long as about 30 days.
- a mixture comprising a lipid is left in contact with the cells for at least about five to about 20 days.
- a mixture comprising a lipid is left in contact with the cells for at least about seven to about 15 days.
- lipid or molecule can optionally be any other lipid or molecule.
- a lipid or molecule is referred to herein as a cargo lipid or cargo molecule.
- Cargo molecules include but are not limited to intralipid, small molecules, fusogenic peptides or lipids or other small molecules might be added to alter cellular uptake, endosomal release or tissue distribution properties. The ability to tolerate cargo molecules is important for modulation of properties of these particles, if such properties are desirable. For instance the presence of some tissue specific metabolites might drastically alter tissue distribution profiles. For example use of Intralipid type formulation enriched in shorter or longer fatty chains with various degrees of saturation affects tissue distribution profiles of these type of formulations (and their loads).
- a cargo lipid useful according to the invention is a fusogenic lipid.
- the zwiterionic lipid DOPE (chemical registry number 4004-5-1, 1,2-Dioleoyl-sn- Glycero-3-phosphoethanolamine) is a preferred cargo lipid.
- Intralipid may be comprised of the following composition: 1 000 mL contain: purified soybean oil 90 g, purified egg phospholipids 12 g, glycerol anhydrous 22 g, water for injection q.s. ad 1 000 mL. pH is adjusted with sodium hydroxide to pH approximately 8. Energy content/L: 4.6 MJ (190 kcal). Osmolality (approx.): 300 mOsm/kg water.
- fat emulsion is Liposyn that contains 5% safflower oil, 5% soybean oil, up to 1.2% egg phosphatides added as an emulsifier and 2.5% glycerin in water for injection. It may also contain sodium hydroxide for pH adjustment.
- Liposyn has an osmolarity of 276 m Osmol/liter (actual). Variation in the identity, amounts and ratios of cargo lipids affects the cellular uptake and tissue distribution characteristics of these compounds. For example, the length of lipid tails and level of saturability will affect differential uptake to liver, lung, fat and cardiomyocytes. Addition of special hydrophobic molecules like vitamins or different forms of sterols can favor distribution to special tissues which are involved in the metabolism of particular compounds. In some embodiments, vitamin A or E is used. Complexes are formed at different oligonucleotide concentrations, with higher concentrations favoring more efficient complex formation.
- the fat emulsion is based on a mixture of lipids. Such lipids may include natural compounds, chemically synthesized compounds, purified fatty acids or any other lipids.
- the composition of fat emulsion is entirely artificial.
- the fat emulsion is more than 70% linoleic acid.
- the fat emulsion is at least 1% of cardiolipin.
- Linoleic acid (LA) is an unsaturated omega-6 fatty acid. It is a colorless liquid made of a carboxylic acid with an 18-carbon chain and two cis double bonds.
- the alteration of the composition of the fat emulsion is used as a way to alter tissue distribution of hydrophobically modified polynucleotides.
- This methodology provides for the specific delivery of the polynucleotides to particular tissues.
- the fat emulsions of the cargo molecule contain more than 70% of Linoleic acid (C18H32O2) and/or cardiolipin.
- Fat emulsions like intralipid have been used before as a delivery formulation for some non-water soluble drugs (such as Propofol, re-formulated as Diprivan).
- Unique features of the present invention include (a) the concept of combining modified polynucleotides with the hydrophobic compound(s), so it can be incorporated in the fat micelles and (b) mixing it with the fat emulsions to provide a reversible carrier.
- micelles After injection into a blood stream, micelles usually bind to serum proteins, including albumin, HDL, LDL and other. This binding is reversible and eventually the fat is absorbed by cells.
- the polynucleotide, incorporated as a part of the micelle will then be delivered closely to the surface of the cells. After that cellular uptake might be happening though variable mechanisms, including but not limited to sterol type delivery.
- oligonucleotides of the invention can be complexed with a complexing agent to increase cellular uptake of oligonucleotides.
- a complexing agent includes cationic lipids. Cationic lipids can be used to deliver oligonucleotides to cells. However, as discussed above, formulations free in cationic lipids are preferred in some embodiments.
- cationic lipid includes lipids and synthetic lipids having both polar and nonpolar domains and which are capable of being positively charged at or around physiological pH and which bind to poly anions, such as nucleic acids, and facilitate the delivery of nucleic acids into cells.
- cationic lipids include saturated and unsaturated alkyl and alicyclic ethers and esters of amines, amides, or derivatives thereof.
- Straight-chain and branched alkyl and alkenyl groups of cationic lipids can contain, e.g., from 1 to about 25 carbon atoms.
- Preferred straight chain or branched alkyl or alkene groups have six or more carbon atoms.
- Alicyclic groups include cholesterol and other steroid groups.
- Cationic lipids can be prepared with a variety of counterions (anions) including, e.g., Cl-, Br-, I-, F-, acetate, trifluoroacetate, sulfate, nitrite, and nitrate.
- counterions e.g., Cl-, Br-, I-, F-, acetate, trifluoroacetate, sulfate, nitrite, and nitrate.
- cationic lipids examples include polyethylenimine, polyamidoamine (PAMAM) starburst dendrimers, Lipofectin (a combination of DOTMA and DOPE), Lipofectase, LIPOFECT AMINETM (e.g., LIPOFECTAMINETM 2000), DOPE, Cytofectin (Gilead Sciences, Foster City, Calif.), and Eufectins (JBL, San Luis Obispo, Calif.).
- Exemplary cationic liposomes can be made from N-[l-(2,3-dioleoloxy)-propyl]-N,N,N-trimethylammonium chloride (DOTMA), N-[l -(2, 3-dioleoloxy)-propyl]-N,N,N-trimethylammonium methylsulfate (DOTAP), 3P-[N-(N',N'-dimethylaminoethane)carbamoyl]cholesterol (DC-Chol), 2,3,- dioleyloxy-N-[2(sperminecarboxamido)ethyl]-N,N-dimethyl-l-propanaminium trifluoroacetate (DOSPA), l,2-dimyristyloxypropyl-3-dimethyl-hydroxyethyl ammonium bromide; and dimethyldioctadecylammonium bromide (DDAB).
- DOTMA N-[l
- DOTMA cationic lipid N-(l-(2,3- dioleyloxy)propyl)-N,N,N-trimethylammonium chloride
- Cationic lipids have been used in the art to deliver oligonucleotides to cells (see, e.g., U.S. Pat. Nos. 5,855,910; 5,851,548; 5,830,430; 5,780,053; 5,767,099; Lewis et al. 1996. Proc. Natl. Acad. Sci. USA 93:3176; Hope et al. 1998. Molecular Membrane Biology 15:1).
- Other lipid compositions which can be used to facilitate uptake of the instant oligonucleotides can be used in connection with the claimed methods.
- other lipid compositions are also known in the art and include, e.g., those taught in U.S. Pat. No.
- lipid compositions can further comprise agents, e.g., viral proteins to enhance lipid-mediated transfections of oligonucleotides (Kamata, et al., 1994. Nucl. Acids. Res. 22:536).
- agents e.g., viral proteins to enhance lipid-mediated transfections of oligonucleotides (Kamata, et al., 1994. Nucl. Acids. Res. 22:536).
- oligonucleotides are contacted with cells as part of a composition comprising an oligonucleotide, a peptide, and a lipid as taught, e.g., in U.S. patent 5,736,392.
- Improved lipids have also been described which are serum resistant (Lewis, et al., 1996. Proc. Natl. Acad. Sci. 93:3176).
- Cationic lipids and other complexing agents act to increase the number of oligonucle
- N-substituted glycine oligonucleotides can be used to improve uptake of oligonucleotides.
- Peptoids have been used to create cationic lipid-like compounds for transfection (Murphy, et al., 1998. Proc. Natl. Acad. Sci. 95:1517).
- Peptoids can be synthesized using standard methods (e.g., Zuckermann, R. N., et al. 1992. J. Am. Chem. Soc. 114:10646; Zuckermann, R. N., et al. 1992. Int. J. Peptide Protein Res. 40:497).
- Combinations of cationic lipids and peptoids, liptoids can also be used to improve uptake of the subject oligonucleotides (Hunag, et al., 1998. Chemistry and Biology. 5:345).
- Liptoids can be synthesized by elaborating peptoid oligonucleotides and coupling the amino terminal submonomer to a lipid via its amino group (Hunag, et al., 1998. Chemistry and Biology. 5:345).
- a composition for delivering oligonucleotides of the invention comprises a number of arginine, lysine, histidine or ornithine residues linked to a lipophilic moiety (see e.g., U.S. Pat. No. 5,777,153).
- a composition for delivering oligonucleotides of the invention comprises a peptide having from between about one to about four basic residues. These basic residues can be located, e.g., on the amino terminal, C-terminal, or internal region of the peptide. Families of amino acid residues having similar side chains have been defined in the art.
- amino acids with basic side chains e.g., lysine, arginine, histidine
- acidic side chains e.g., aspartic acid, glutamic acid
- uncharged polar side chains e.g., glycine (can also be considered non-polar
- asparagine, glutamine, serine, threonine, tyrosine, cysteine nonpolar side chains
- nonpolar side chains e.g., alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan
- beta-branched side chains e.g., threonine, valine, isoleucine
- aromatic side chains e.g., tyrosine, phenylalanine, tryptophan, histidine
- a majority or all of the other residues of the peptide can be selected from the non-basic amino acids, e.g., amino acids other than lysine, arginine, or histidine.
- a preponderance of neutral amino acids with long neutral side chains is used.
- a composition for delivering oligonucleotides of the invention comprises a natural or synthetic polypeptide having one or more gamma carboxyglutamic acid residues, or y-Gla residues. These gamma carboxyglutamic acid residues may enable the polypeptide to bind to each other and to membrane surfaces.
- a polypeptide having a series of y-Gla may be used as a general delivery modality that helps an RNAi construct to stick to whatever membrane to which it comes in contact. This may slow RNAi constructs from being cleared from the blood stream and enhance their chance of homing to the target.
- the gamma carboxy glutamic acid residues may exist in natural proteins (for example, prothrombin has 10 y-Gla residues). Alternatively, they can be introduced into the purified, recombinantly produced, or chemically synthesized polypeptides by carboxylation using, for example, a vitamin K-dependent carboxylase.
- the gamma carboxyglutamic acid residues may be consecutive or non-consecutive, and the total number and location of such gamma carboxyglutamic acid residues in the polypeptide can be regulated / fine-tuned to achieve different levels of "stickiness" of the polypeptide.
- the cells to be contacted with an oligonucleotide composition of the invention are contacted with a mixture comprising the oligonucleotide and a mixture comprising a lipid, e.g., one of the lipids or lipid compositions described supra for between about 12 hours to about 24 hours.
- the cells to be contacted with an oligonucleotide composition are contacted with a mixture comprising the oligonucleotide and a mixture comprising a lipid, e.g., one of the lipids or lipid compositions described supra for between about 1 and about five days.
- the cells are contacted with a mixture comprising a lipid and the oligonucleotide for between about three days to as long as about 30 days.
- a mixture comprising a lipid is left in contact with the cells for at least about five to about 20 days.
- a mixture comprising a lipid is left in contact with the cells for at least about seven to about 15 days.
- an oligonucleotide composition can be contacted with cells in the presence of a lipid such as cytofectin CS or GSV (available from Glen Research; Sterling, Va.), GS3815, GS2888 for prolonged incubation periods as described herein.
- a lipid such as cytofectin CS or GSV (available from Glen Research; Sterling, Va.), GS3815, GS2888 for prolonged incubation periods as described herein.
- the incubation of the cells with the mixture comprising a lipid and an oligonucleotide composition does not reduce the viability of the cells.
- the cells are substantially viable.
- the cells are between at least about 70% and at least about 100% viable.
- the cells are between at least about 80% and at least about 95% viable.
- the cells are between at least about 85% and at least about 90% viable.
- oligonucleotides are modified by attaching a peptide sequence that transports the oligonucleotide into a cell, referred to herein as a “transporting peptide.”
- the composition includes an oligonucleotide which is complementary to a target nucleic acid molecule encoding the protein, and a covalently attached transporting peptide.
- transporting peptide includes an amino acid sequence that facilitates the transport of an oligonucleotide into a cell.
- Exemplary peptides which facilitate the transport of the moieties to which they are linked into cells are known in the art, and include, e.g., HIV TAT transcription factor, lactoferrin, Herpes VP22 protein, and fibroblast growth factor 2 (Pooga et al. 1998. Nature Biotechnology. 16:857; and Derossi et al. 1998. Trends in Cell Biology. 8:84; Elliott and O'Hare. 1997. Cell 88:223).
- Oligonucleotides can be attached to the transporting peptide using known techniques, e.g., (Prochiantz, A. 1996. Curr. Opin. Neurobiol. 6:629; Derossi et al. 1998. Trends Cell Biol. 8:84; Troy et al. 1996. J. Neurosci. 16:253), Vives et al. 1997. J. Biol. Chem. 272:16010).
- oligonucleotides bearing an activated thiol group are linked via that thiol group to a cysteine present in a transport peptide (e.g., to the cysteine present in the P turn between the second and the third helix of the antennapedia homeodomain as taught, e.g., in Derossi et al. 1998. Trends Cell Biol. 8:84; Prochiantz. 1996. Current Opinion in Neurobiol. 6:629; Allinquant et al. 1995. J Cell Biol. 128:919).
- a transport peptide e.g., to the cysteine present in the P turn between the second and the third helix of the antennapedia homeodomain as taught, e.g., in Derossi et al. 1998. Trends Cell Biol. 8:84; Prochiantz. 1996. Current Opinion in Neurobiol. 6:629; Allinquant et al. 1995. J Cell Biol. 128:91
- a Boc-Cys- (Npys)OH group can be coupled to the transport peptide as the last (N-terminal) amino acid and an oligonucleotide bearing an SH group can be coupled to the peptide (Troy et al. 1996. J. Neurosci. 16:253).
- a linking group can be attached to a nucleomonomer and the transporting peptide can be covalently attached to the linker.
- a linker can function as both an attachment site for a transporting peptide and can provide stability against nucleases. Examples of suitable linkers include substituted or unsubstituted C1-C20 alkyl chains, C2-C20 alkenyl chains, C2-C20 alkynyl chains, peptides, and heteroatoms (e.g., S, O, NH, etc.).
- linkers include bifunctional crosslinking agents such as sulfosuccinimidyl-4- (maleimidophenyl) -butyrate (SMPB) (see, e.g., Smith et al. Biochem J 1991.276: 417-2).
- SMPB sulfosuccinimidyl-4- (maleimidophenyl) -butyrate
- oligonucleotides of the invention are synthesized as molecular conjugates which utilize receptor-mediated endocytotic mechanisms for delivering genes into cells (see, e.g., Bunnell et al. 1992. Somatic Cell and Molecular Genetics. 18:559, and the references cited therein).
- RNAi reagents for in vitro and/or in vivo delivery of RNAi reagents are known in the art, and can be used to deliver the subject RNAi constructs (e.g., to an NK cell). See, for example, U.S. patent application publications 20080152661, 20080112916, 20080107694, 20080038296, 20070231392, 20060240093, 20060178327, 20060008910, 20050265957, 20050064595, 20050042227, 20050037496, 20050026286, 20040162235, 20040072785, 20040063654, 20030157030, WO 2008/036825, W004/065601, and AU2004206255B2, just to name a few (all incorporated by reference).
- the disclosure provides methods of treating a proliferative disease or an infectious disease by administering to a subject (e.g., a subject having or suspected of having a proliferative disease or an infectious disease) an immunogenic composition as described by the disclosure.
- a subject e.g., a subject having or suspected of having a proliferative disease or an infectious disease
- immunogenic compositions as described herein are characterized, in some embodiments, by reduced expression of immune checkpoint proteins and are thus useful for stimulating the immune system of a subject having certain proliferative diseases or infectious diseases characterized by increased expression of immune checkpoint proteins.
- a “proliferative disease” refers to diseases and disorders characterized by excessive proliferation of cells and turnover of cellular matrix, including cancer, atherlorosclerosis, rheumatoid arthritis, psoriasis, idiopathic pulmonary fibrosis, scleroderma, cirrhosis of the liver, etc.
- cancers include but are not limited to small cell lung cancer, colon cancer, breast cancer, lung cancer, prostate cancer, ovarian cancer, pancreatic cancer, melanoma, hematological malignancy such as chronic myeloid leukemia (CML), etc.
- subjects include mammals, e.g., humans and other primates; cows, pigs, horses, and farming (agricultural) animals; dogs, cats, and other domesticated pets; mice, rats, and transgenic non-human animals.
- immunogenic compositions as described by the disclosure are administered to a subject by adoptive cell transfer (ACT) therapeutic methods.
- ACT adoptive cell transfer
- ACT modalities include but are not limited to autologous cell therapy (e.g., a subject’s own cells are removed, genetically-modified, and returned to the subject) and heterologous cell therapy (e.g., cells are removed from a donor, genetically-modified, and placed into a recipient).
- the ACT is performed with human cell lines (e.g., NK cell lines, such as KHYG-1, NK92; NK101 (Yang et al., J for Immunotherapy of Cancer, 2019, 7:138); YT, including subclones YT2C2 and YTC3; NKL, HANK1, NK-YS, SNK-6; SNK-8; IMC-1 (Zhang et al., Int. J. Mol. Sci. 2019, 20, 317)).
- cells utilized in ACT therapeutic methods may be genetically-modified to express chimeric antigen receptors (CARs), which are engineered cell receptors displaying specificity against a target antigen based on a selected antibody moiety.
- CAR NK-cells e.g. CAR-NKs
- CAR-NKs may be transfected with a chemically-modified double stranded nucleic acid using methods described herein for the purpose of ACT therapy.
- the formulations of the present invention can be administered to a patient in a variety of forms adapted to the chosen route of administration, e.g., parenterally, orally, or intraperitoneally.
- Parenteral administration which is preferred, includes administration by the following routes: intravenous; intramuscular; interstitially; intraarterially; subcutaneous; intra ocular; intrasynovial; trans epithelial, including transdermal; pulmonary via inhalation; ophthalmic; sublingual and buccal; topically, including ophthalmic; dermal; ocular; rectal; and nasal inhalation via insufflation.
- compositions for parenteral administration include aqueous solutions of the active compounds in water-soluble or water-dispersible form.
- suspensions of the active compounds as appropriate oily injection suspensions may be administered.
- Suitable lipophilic solvents or vehicles include fatty oils, for example, sesame oil, or synthetic fatty acid esters, for example, ethyl oleate or triglycerides.
- Aqueous injection suspensions may contain substances which increase the viscosity of the suspension include, for example, sodium carboxymethyl cellulose, sorbitol, or dextran, optionally, the suspension may also contain stabilizers.
- the oligonucleotides of the invention can be formulated in liquid solutions, preferably in physiologically compatible buffers such as Hank's solution or Ringer's solution.
- the oligonucleotides may be formulated in solid form and redissolved or suspended immediately prior to use. Lyophilized forms are also included in the invention.
- Drug delivery vehicles can be chosen e.g., for in vitro, for systemic administration. These vehicles can be designed to serve as a slow release reservoir or to deliver their contents directly to the target cell.
- An advantage of using some direct delivery drug vehicles is that multiple molecules are delivered per uptake. Such vehicles have been shown to increase the circulation half-life of drugs that would otherwise be rapidly cleared from the blood stream.
- Some examples of such specialized drug delivery vehicles which fall into this category are liposomes, hydrogels, cyclodextrins, biodegradable nanocapsules, and bioadhesive microspheres.
- an active amount of an oligonucleotide of the present invention is defined as an amount effective, at dosages and for periods of time necessary to achieve the desired result.
- an active amount of an oligonucleotide may vary according to factors such as the type of cell, the oligonucleotide used, and for in vivo uses the disease state, age, sex, and weight of the individual, and the ability of the oligonucleotide to elicit a desired response in the individual.
- Establishment of therapeutic levels of oligonucleotides within the cell is dependent upon the rates of uptake and efflux or degradation. Decreasing the degree of degradation prolongs the intracellular half-life of the oligonucleotide.
- chemically- modified oligonucleotides e.g., with modification of the phosphate backbone, may require different dosing.
- an immunogenic composition and number of doses administered will depend upon the data generated experimentally and in clinical trials. Several factors such as the desired effect, the delivery vehicle, disease indication, and the route of administration, will affect the dosage. Dosages can be readily determined by one of ordinary skill in the art and formulated into the subject pharmaceutical compositions. Preferably, the duration of treatment will extend at least through the course of the disease symptoms.
- Dosage regimens may be adjusted to provide the optimum therapeutic response.
- the immunogenic composition may be repeatedly administered, e.g., several doses may be administered daily or the dose may be proportionally reduced as indicated by the exigencies of the therapeutic situation.
- One of ordinary skill in the art will readily be able to determine appropriate doses and schedules of administration of the subject chemically-modified double stranded nucleic acid molecules or immunogenic compositions, whether they are to be administered to cells or to subjects.
- compositions such as through intradermal injection or subcutaneous delivery, can be optimized through testing of dosing regimens. In some embodiments, a single administration is sufficient. To further prolong the effect of the administered immunogenic compositions, the compositions can be administered in a slow- release formulation or device, as would be familiar to one of ordinary skill in the art.
- the chemically-modified double stranded nucleic acid molecules or immunogenic compositions is administered multiple times. In some instances it is administered daily, bi-weekly, weekly, every two weeks, every three weeks, monthly, every two months, every three months, every four months, every five months, every six months or less frequently than every six months. In some instances, it is administered multiple times per day, week, month and/or year. For example, it can be administered approximately every hour, 2 hours, 3 hours, 4 hours, 5 hours, 6 hours, 7 hours, 8 hours, 9 hours 10 hours, 12 hours or more than twelve hours. It can be administered 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more than 10 times per day.
- aspects of the invention relate to administering immunogenic compositions to a subject.
- the subject is a patient and administering the immunogenic composition involves administering the composition in a doctor’s office.
- more than one immunogenic composition is administered simultaneously.
- a composition may be administered that contains 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more than 10 different compositions.
- a composition comprises 2 or 3 different immunogenic compositions.
- immunotherapeutic agents were produced by treating cells with particular INTASYLTM agents designed to target and knock down specific genes involved in immune suppression mechanisms.
- INTASYLTM agents designed to target and knock down specific genes involved in immune suppression mechanisms.
- Several cells and cell lines have been successfully treated with INTASYLTM compounds and have been shown to knock down at least 70% of targeted gene expression in the specified human cells.
- ranges may be expressed herein as from “about” one particular value, and/or to “about” another particular value. When such a range is expressed, another embodiment includes from the one particular value and/or to the other particular value. Similarly, when values are expressed as approximations, by use of the antecedent "about,” it will be understood that the particular value forms another embodiment. It will be further understood that the endpoints of each of the ranges are significant both in relation to the other endpoint, and independently of the other endpoint.
- a or “an” entity refers to one or more of that entity; for example, “a protein” or “a nucleic acid molecule” refers to one or more of those compounds or at least one compound.
- the terms “a” (or “an”), “one or more” and “at least one” can be used interchangeably herein.
- the terms “comprising”, “including”, and “having” can be used interchangeably.
- a compound “selected from the group consisting of’ refers to one or more of the compounds in the list that follows, including mixtures (/'. ⁇ ?., combinations) of two or more of the compounds.
- an isolated, or biologically pure, protein or nucleic acid molecule is a compound that has been removed from its natural milieu.
- isolated and biologically pure do not necessarily reflect the extent to which the compound has been purified.
- An isolated compound of the present invention can be obtained from its natural source, can be produced using molecular biology techniques or can be produced by chemical synthesis.
- compositions and methods described herein are further illustrated by the following Examples, which in no way should be construed as further limiting.
- the entire contents of all of the references (including literature references, issued patents, published patent applications, and co-pending patent applications) cited throughout this application are hereby expressly incorporated by reference.
- Example 1 Self-delivering RNAi Immunotherapeutic Agents
- TIGIT NCBI GenBank Accession No. NM_173799
- INTASYLTM targeting sequences and target regions for prevention of immunosuppression of NK-cells were analyzed using a proprietary algorithm to identify preferred INTASYLTM targeting sequences and target regions for prevention of immunosuppression of NK-cells. (Table 1.)
- Tigit 21 was identified herein as an additional preferred INTASYLTM targeting sequence.
- INTASYLTM compounds were designed and synthesized to evaluate their ability to reduce gene expression levels in the liver following systemic administration.
- Non-limiting examples of INTASYLTM sequences are shown in Table 2.
- A adenosine
- G guanosine
- TEG-Chl cholesterol-TEG-Glyceryl
- KHYG1 cells were cultured in RPMI + 10% FBS + 100 lU/mL rhIL-2 (Peprotech). Cells were collected for transfection at a density of 0.3e6 cells/mL in culture media. Cells were added directly to a 24-well plate containing INTASYLTM compounds for final concentration of 2 pM, 1 pM, 0.5 pM, and 0.25 pM. Plates were rocked gently to ensure thorough mixing of cells and compound. Transfections were performed in duplicate for each condition. Cells were kept at 37 °C and 5% CO2 for the duration of the experiment. After 96 hours, cells were collected for analysis of surface TIGIT protein by flow cytometry.
- Cells were collected for flow cytometry analysis in 96-well V-bottom plates and stained at 4°C following manufacturer’s recommendations. Briefly, 30pL of cell suspension for each condition was pelleted in a 96-well V-bottom plate. Cells were resuspended in cell staining buffer containing the TIGIT-APC antibody (R&D Systems) and incubated for 1 hour on ice. Cells were washed twice with cell staining buffer and resuspended in a final volume of 80pL. Cells were analyzed using a NovoCyte flow cytometer (ACEA) and analyzed using NovoExpress software (ACEA). A cell suspension of 25pL was collected for each sample.
- TIGIT-APC antibody R&D Systems
- TIGIT expression was downregulated on KHYG-1 cells after incubation with INTAS YLTM-Tigit (UTC represents an untreated control).
- Blood products were obtained from selected HLA-typed haploidentical donors through a blood donation (100-250 ml). Mononuclear cells were Ficoll separated and CD3 depleted by magnetic bead sorting on a CliniMACS Prodigy (Miltenyi). The remaining cells were incubated with high dose irradiated K562/mIL21/4-lBBL feeder cells in SCGM medium in the presence IL-2 to stimulate proliferation. After reaching the maximum capacity of the bioreactor, NK cells were harvested and used in experiments.
- the K562 cells were maintained in IMDM medium supplemented with 10% FBS, 1% Penn/Strep.
- the MCF-7 cells were maintained EMEM medium supplemented with 10% FBS, 1% Penn/Strep and 0.1 % (w/v) insulin. Cells were routinely cultured up to passage 25, before a new vial was used.
- INTASYLTM compounds targeting TIGIT were prepared by separately diluting the compounds to 0.5 - 40 pM in PBS per sample (well) and aliquoted at 20- 40 pl/well of 24-well plate.
- Cells were prepared in RPMI medium containing 10% FBS and 500 U/ml IL-2 at 2e6 cells/ml and seeded at 1 ml/well into the 24-well plate with pre-diluted INTASYLTM compounds.
- the compositions were cultured for 72 hours at 37°C and 5% CO2 before analysis. Examples of INTASYLTM compounds targeting TIGIT are provided in Table 2.
- Example 5 Reduction of surface TIGIT protein levels in NK cells treated with TIGIT targeting INTASYLTM compounds
- Transfected cells were harvested after 72 hours for flow cytometric analysis. First, cells were concentrated to le6 cells in 1 ml culture medium. Cells were then washed with PBS and taken up in 200 pl and first stained with Live/Dead Fixable Aqua Dead Cell Stain Kit (Thermo Fisher Scientific) on ice for 30 minutes in the dark. After a wash with PBS, cells were stained for 30 minutes on ice in the dark with mAb-mix (anti-CD3-APC-Vio (BW264/56, Miltenyi Biotec), anti-CD56-PerCP-Vio700 (REA196, Miltenyi Biotec), and anti-TIGIT-PE (MBSA43, eBioscience)), all at the proper dilution.
- mAb-mix anti-CD3-APC-Vio (BW264/56, Miltenyi Biotec), anti-CD56-PerCP-Vio700 (REA196, Miltenyi Biotec), and anti-TIGIT-PE (MBSA
- the primary FACS data is provided in FIG. 2A, and the quantification of the data is shown in FIG. 2B.
- the data show significant silencing of TIGIT with administration of TIGIT- targeting INTASYLTM agent Tigit 22 delivered to NK-cells, as indicated by a greater inhibition of TIGIT surface protein expression with increasing dose levels of sd-rxRNA, reaching a 94% reduction of protein expression with 10 pM sd-rxRNA. Viability of the cells was reduced when using higher concentrations.
- Example 6 Activation ofNK Cells treated with TIGIT targeting INTASYLTM compounds as measured by CD107a levels
- NK cell activation by tumor cells was analyzed using flow cytometry.
- NK cell line KHYG-1 or expanded pNKs were incubated with different concentrations of TIGIT INTASYLTM for 72 hours.
- NK cells were incubated with different concentrations of non-targeting siRNA control (NTC), PBS as un-transfected control (UTC) or no addition (Medium Control).
- NTC non-targeting siRNA control
- PBS un-transfected control
- UTC un-transfected control
- TIGIT expression levels on NK cells were measured by flow cytometry.
- the effect on NK cell activation was investigated by CD107a degranulation assays with K562 (chronic myeloid leukemia, CML) and MCF-7 (breast cancer) cell lines as targets.
- NK cell activation was investigated by CD107a degranulation assays with K562 (CML) and MCF-7 (breast cancer) cell line as targets.
- CML CML
- MCF-7 breast cancer
- Example 7 Enhanced Tumor Cell Killing by TIGIT-treated Natural Killer Cells
- KHYG1 natural killer (NK) cells were treated with the TIGIT-22 INTASYLTM compound for 72 hours in culture. After 72 hours, the cells were pelleted and resuspended in fresh media in the absence of the INTASYLTM compound for an additional 48 hours. The KHYG1 cells were then analyzed for TIGIT mRNA levels (FIG. 4, left graph) and their tumor killing activity (K562 cells) determined using the DELFIA cytotoxicity assay (at a 5:1 E:T ratio) (FIG. 4, right graph). The KHYG1 cells treated with the TIGIT-22 INTASYLTM compound demonstrated enhanced tumor cell activity compared to controls.
- Expanded CD56+ primary natural killer (NK) cells were treated with TIGIT-22 INTASYLTM compound for 72 hours in culture. After 72 hours, the cells were pelleted and resuspended in fresh media in the absence of the TIGIT-22 INTASYLTM compound for an additional 72 hours. The NK cells were then analyzed for TIGIT mRNA levels (FIG. 5B) and surface protein expression (FIG. 5C). The tumor killing activity of the NK cells against K562 cells was determined using the DELFIA cytotoxicity assay at a 2: 1 E:T ratio (FIG. 5A). IFNy release following the co-culture was also measured (FIG. 5D). The NK cells treated with the TIGIT-22 INTASYLTM compound demonstrated enhanced tumor cell killing activity compared to controls.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Pharmacology & Pharmacy (AREA)
- Engineering & Computer Science (AREA)
- Medicinal Chemistry (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Epidemiology (AREA)
- Microbiology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Genetics & Genomics (AREA)
- Immunology (AREA)
- Mycology (AREA)
- Cell Biology (AREA)
- Molecular Biology (AREA)
- Biomedical Technology (AREA)
- Organic Chemistry (AREA)
- Oncology (AREA)
- Biochemistry (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Physics & Mathematics (AREA)
- Biophysics (AREA)
- Plant Pathology (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
Abstract
La présente divulgation concerne, selon certains aspects, des compositions comprenant des agents oligonucléotidiques capables d'inhiber la suppression d'une réponse immunitaire en réduisant l'expression d'un ou plusieurs gènes impliqués dans un mécanisme de suppression immunitaire dans les cellules tueuses naturelles (NK), et des procédés pour les utiliser. Dans certains modes de réalisation, les compositions et les procédés de la présente divulgation sont utiles comme modulateurs immunogènes pour le traitement anticancéreux.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US202163229428P | 2021-08-04 | 2021-08-04 | |
US63/229,428 | 2021-08-04 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023015264A1 true WO2023015264A1 (fr) | 2023-02-09 |
Family
ID=83149041
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2022/074554 WO2023015264A1 (fr) | 2021-08-04 | 2022-08-04 | Immunothérapie anticancéreuse utilisant des cellules tueuses naturelles traitées avec des oligonucléotides chimiquement modifiés |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2023015264A1 (fr) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023015265A3 (fr) * | 2021-08-04 | 2023-07-13 | Phio Pharmaceuticals Corp. | Oligonucléotides chimiquement modifiés |
US11926828B2 (en) | 2014-09-05 | 2024-03-12 | Phio Pharmaceuticals Corp. | Methods for treating aging and skin disorders using nucleic acids targeting TYR or MMP1 |
Citations (66)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4201860A (en) | 1978-05-09 | 1980-05-06 | Bristol-Myers Company | Purine derivatives |
US4235871A (en) | 1978-02-24 | 1980-11-25 | Papahadjopoulos Demetrios P | Method of encapsulating biologically active materials in lipid vesicles |
US4501728A (en) | 1983-01-06 | 1985-02-26 | Technology Unlimited, Inc. | Masking of liposomes from RES recognition |
US4737323A (en) | 1986-02-13 | 1988-04-12 | Liposome Technology, Inc. | Liposome extrusion method |
US4837028A (en) | 1986-12-24 | 1989-06-06 | Liposome Technology, Inc. | Liposomes with enhanced circulation time |
US4853386A (en) | 1985-08-17 | 1989-08-01 | Boehringer Mannheim Gmbh | N6 -disubstituted purine derivatives, and pharmaceutical compositions containing them, useful for treating allergic diseases, bronchospastic and bronchoconstrictory conditions |
US4897355A (en) | 1985-01-07 | 1990-01-30 | Syntex (U.S.A.) Inc. | N[ω,(ω-1)-dialkyloxy]- and N-[ω,(ω-1)-dialkenyloxy]-alk-1-yl-N,N,N-tetrasubstituted ammonium lipids and uses therefor |
WO1990014074A1 (fr) | 1989-05-22 | 1990-11-29 | Vical, Inc. | Formulations liposomiques ameliorees de nucleotides et d'analogues de nucleotides |
US5013830A (en) | 1986-09-08 | 1991-05-07 | Ajinomoto Co., Inc. | Compounds for the cleavage at a specific position of RNA, oligomers employed for the formation of said compounds, and starting materials for the synthesis of said oligomers |
WO1991016024A1 (fr) | 1990-04-19 | 1991-10-31 | Vical, Inc. | Lipides cationiques servant a l'apport intracellulaire de molecules biologiquement actives |
WO1991017424A1 (fr) | 1990-05-03 | 1991-11-14 | Vical, Inc. | Acheminement intracellulaire de substances biologiquement actives effectue a l'aide de complexes de lipides s'auto-assemblant |
WO1992003464A1 (fr) | 1990-08-28 | 1992-03-05 | Microprobe Corporation | Synthese sur support solide d'oligonucleotides places en queue en position 3' par l'intermediaire d'une molecule de liaison |
WO1992003568A1 (fr) | 1990-08-13 | 1992-03-05 | Isis Pharmaceuticals, Inc. | Oligonucleotides modifies par du sucre, detectant et modulant l'expression de genes |
US5214135A (en) | 1991-08-30 | 1993-05-25 | Chemgenes Corporation | N-protected-2'-O-methyl-ribonucleosides and N-protected 2'-O-methyl-3'-cyanoethyl-N-,N-diisopropyl phosphoramidite ribonucleosides |
US5264423A (en) | 1987-03-25 | 1993-11-23 | The United States Of America As Represented By The Department Of Health And Human Services | Inhibitors for replication of retroviruses and for the expression of oncogene products |
US5276019A (en) | 1987-03-25 | 1994-01-04 | The United States Of America As Represented By The Department Of Health And Human Services | Inhibitors for replication of retroviruses and for the expression of oncogene products |
US5414077A (en) | 1990-02-20 | 1995-05-09 | Gilead Sciences | Non-nucleoside linkers for convenient attachment of labels to oligonucleotides using standard synthetic methods |
US5419966A (en) | 1991-06-10 | 1995-05-30 | Microprobe Corporation | Solid support for synthesis of 3'-tailed oligonucleotides |
WO1995023162A1 (fr) | 1994-02-28 | 1995-08-31 | Microprobe Corporation | Duplex d'oligonucleotides modifies a activite anticancereuse |
US5512667A (en) | 1990-08-28 | 1996-04-30 | Reed; Michael W. | Trifunctional intermediates for preparing 3'-tailed oligonucleotides |
US5525719A (en) | 1991-08-30 | 1996-06-11 | Chemgenes Corporation | N-protected-2'-O-methyl-and N-protected-3'-O-methyl-ribonucleosides and their phosphoramidite derivatives |
US5580972A (en) | 1993-06-14 | 1996-12-03 | Nexstar Pharmaceuticals, Inc. | Purine nucleoside modifications by palladium catalyzed methods |
US5580731A (en) | 1994-08-25 | 1996-12-03 | Chiron Corporation | N-4 modified pyrimidine deoxynucleotides and oligonucleotide probes synthesized therewith |
US5587469A (en) | 1990-01-11 | 1996-12-24 | Isis Pharmaceuticals, Inc. | Oligonucleotides containing N-2 substituted purines |
US5591843A (en) | 1993-06-14 | 1997-01-07 | Eaton; Bruce | 5-modified pyrimidines from palladium catalyzed carbon-carbon coupling |
US5652359A (en) | 1993-12-02 | 1997-07-29 | Epoch Pharmaceuticals, Inc. | Oligonucleotides containing n-methyl thiolated bases having antiviral activity |
WO1998013526A1 (fr) | 1996-09-26 | 1998-04-02 | Oligos Etc. Inc. | Oligonucleotides antisens chimeres a trois composants |
US5736392A (en) | 1995-06-07 | 1998-04-07 | Life Technologies, Inc. | Peptide-enhanced cationic lipid transfections |
US5767099A (en) | 1994-12-09 | 1998-06-16 | Genzyme Corporation | Cationic amphiphiles containing amino acid or dervatized amino acid groups for intracellular delivery of therapeutic molecules |
US5777153A (en) | 1994-07-08 | 1998-07-07 | Gilead Sciences, Inc. | Cationic lipids |
US5780053A (en) | 1994-03-29 | 1998-07-14 | Northwestern University | Cationic phospholipids for transfection |
US5789416A (en) | 1996-08-27 | 1998-08-04 | Cv Therapeutics | N6 mono heterocyclic substituted adenosine derivatives |
US5830653A (en) | 1991-11-26 | 1998-11-03 | Gilead Sciences, Inc. | Methods of using oligomers containing modified pyrimidines |
US5830430A (en) | 1995-02-21 | 1998-11-03 | Imarx Pharmaceutical Corp. | Cationic lipids and the use thereof |
US5851548A (en) | 1995-06-07 | 1998-12-22 | Gen-Probe Incorporated | Liposomes containing cationic lipids and vitamin D |
US6020483A (en) | 1998-09-25 | 2000-02-01 | Nexstar Pharmaceuticals, Inc. | Nucleoside modifications by palladium catalyzed methods |
US6432963B1 (en) | 1997-12-15 | 2002-08-13 | Yamanouchi Pharmaceutical Co., Ltd. | Pyrimidine-5-carboxamide derivatives |
US20030157030A1 (en) | 2001-11-02 | 2003-08-21 | Insert Therapeutics, Inc. | Methods and compositions for therapeutic use of rna interference |
US20040063654A1 (en) | 2001-11-02 | 2004-04-01 | Davis Mark E. | Methods and compositions for therapeutic use of RNA interference |
US20040072785A1 (en) | 1999-11-23 | 2004-04-15 | Wolff Jon A. | Intravascular delivery of non-viral nucleic acid |
WO2004065601A2 (fr) | 2003-01-21 | 2004-08-05 | Alnylam Europe Ag | Derives lipophiles d'acide ribonucleique a double brin |
US20040162235A1 (en) | 2003-02-18 | 2004-08-19 | Trubetskoy Vladimir S. | Delivery of siRNA to cells using polyampholytes |
US20050026286A1 (en) | 2003-03-05 | 2005-02-03 | Jen-Tsan Chi | Methods and compositions for selective RNAi mediated inhibition of gene expression in mammal cells |
US20050037496A1 (en) | 1999-12-31 | 2005-02-17 | Rozema David B. | Polyampholytes for delivering polyions to a cell |
US20050042227A1 (en) | 2003-06-20 | 2005-02-24 | Todd Zankel | Megalin-based delivery of therapeutic compounds to the brain and other tissues |
US20050064595A1 (en) | 2003-07-16 | 2005-03-24 | Protiva Biotherapeutics, Inc. | Lipid encapsulated interfering RNA |
US20050107325A1 (en) | 2003-04-17 | 2005-05-19 | Muthiah Manoharan | Modified iRNA agents |
US20050265957A1 (en) | 2004-04-08 | 2005-12-01 | Monahan Sean D | Polymerized formamides for use in delivery of compounds to cells |
US20060008910A1 (en) | 2004-06-07 | 2006-01-12 | Protiva Biotherapeuties, Inc. | Lipid encapsulated interfering RNA |
US7041824B2 (en) | 2000-12-26 | 2006-05-09 | Aventis Pharma S.A. | Purine derivatives, preparation method and use as medicines |
US20060178327A1 (en) | 2003-05-30 | 2006-08-10 | Yeung Wah Hin A | Inhibition of gene expression by delivery of specially selected double stranded or other forms of small interfering RNA precursors enabling the formation and function of small interfering RNA in vivo and in vitro |
US7205297B2 (en) | 2000-07-24 | 2007-04-17 | Krenitsky Pharmaceuticals, Inc. | Substituted 5-alkynyl pyrimidines having neurotrophic activity |
US20070231392A1 (en) | 2006-01-23 | 2007-10-04 | Ernst Wagner | CHEMICALLY MODIFIED POLYCATION POLYMER FOR siRNA DELIVERY |
US20080038296A1 (en) | 2006-06-23 | 2008-02-14 | Engeneic Gene Therapy Pty Limited | Targeted delivery of drugs, therapeutic nucleic acids and functional nucleic acids to mammalian cells via intact killed bacterial cells |
WO2008021157A1 (fr) | 2006-08-11 | 2008-02-21 | Medtronic, Inc. | TRANSPORT EN SENS RÉTROGRADE D'ARNsi ET UTILISATIONS THÉRAPEUTIQUES POUR TRAITER DES TROUBLES NEUROLOGIQUES |
WO2008036825A2 (fr) | 2006-09-22 | 2008-03-27 | Dharmacon, Inc. | Complexes d'oligonucléotides bicaténaires et procédés de silençage de gènes par interférence arn |
US20080107694A1 (en) | 2006-11-03 | 2008-05-08 | Allergan, Inc. | Sustained release intraocular drug delivery systems comprising a water soluble therapeutic agent and a release modifier |
US20080152661A1 (en) | 2006-08-18 | 2008-06-26 | Rozema David B | Polyconjugates for In Vivo Delivery of Polynucleotides |
WO2009021157A1 (fr) | 2007-08-09 | 2009-02-12 | Bioness Inc. | Appareil et procédés permettant le retrait d'un implant électronique d'un corps |
WO2009126933A2 (fr) | 2008-04-11 | 2009-10-15 | Alnylam Pharmaceuticals, Inc. | Délivrance spécifique à un site d'acides nucléiques en combinant des ligands de ciblage avec des composants endosomolytiques |
WO2009134487A2 (fr) | 2008-01-31 | 2009-11-05 | Alnylam Pharmaceuticals, Inc. | Procédés optimisés d'administration d'arnds ciblant le gène pcsk9 |
WO2010033247A2 (fr) | 2008-09-22 | 2010-03-25 | Rxi Pharmaceuticals Corporation | Composés d'arni de taille réduite à auto-délivrance |
WO2011119852A1 (fr) | 2010-03-24 | 2011-09-29 | Rxi Pharmaceuticals Corporation | Composés d'arni de taille réduite s'auto-administrant |
WO2019032619A1 (fr) * | 2017-08-07 | 2019-02-14 | Phio Pharmaceuticals Corp. | Oligonucléotides chimiquement modifiés |
WO2020163222A1 (fr) * | 2019-02-04 | 2020-08-13 | Promab Biotechnologies, Inc. | Séquence d'acide nucléique codant pour un récepteur d'antigène chimérique et séquence d'arn en épingle à cheveux courte d'il-6 ou inhibiteur de point de contrôle |
US10934550B2 (en) | 2013-12-02 | 2021-03-02 | Phio Pharmaceuticals Corp. | Immunotherapy of cancer |
-
2022
- 2022-08-04 WO PCT/US2022/074554 patent/WO2023015264A1/fr active Application Filing
Patent Citations (81)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4235871A (en) | 1978-02-24 | 1980-11-25 | Papahadjopoulos Demetrios P | Method of encapsulating biologically active materials in lipid vesicles |
US4201860A (en) | 1978-05-09 | 1980-05-06 | Bristol-Myers Company | Purine derivatives |
US4501728A (en) | 1983-01-06 | 1985-02-26 | Technology Unlimited, Inc. | Masking of liposomes from RES recognition |
US4897355A (en) | 1985-01-07 | 1990-01-30 | Syntex (U.S.A.) Inc. | N[ω,(ω-1)-dialkyloxy]- and N-[ω,(ω-1)-dialkenyloxy]-alk-1-yl-N,N,N-tetrasubstituted ammonium lipids and uses therefor |
US4853386A (en) | 1985-08-17 | 1989-08-01 | Boehringer Mannheim Gmbh | N6 -disubstituted purine derivatives, and pharmaceutical compositions containing them, useful for treating allergic diseases, bronchospastic and bronchoconstrictory conditions |
US4737323A (en) | 1986-02-13 | 1988-04-12 | Liposome Technology, Inc. | Liposome extrusion method |
US5013830A (en) | 1986-09-08 | 1991-05-07 | Ajinomoto Co., Inc. | Compounds for the cleavage at a specific position of RNA, oligomers employed for the formation of said compounds, and starting materials for the synthesis of said oligomers |
US4837028A (en) | 1986-12-24 | 1989-06-06 | Liposome Technology, Inc. | Liposomes with enhanced circulation time |
US5264423A (en) | 1987-03-25 | 1993-11-23 | The United States Of America As Represented By The Department Of Health And Human Services | Inhibitors for replication of retroviruses and for the expression of oncogene products |
US5276019A (en) | 1987-03-25 | 1994-01-04 | The United States Of America As Represented By The Department Of Health And Human Services | Inhibitors for replication of retroviruses and for the expression of oncogene products |
WO1990014074A1 (fr) | 1989-05-22 | 1990-11-29 | Vical, Inc. | Formulations liposomiques ameliorees de nucleotides et d'analogues de nucleotides |
US5587469A (en) | 1990-01-11 | 1996-12-24 | Isis Pharmaceuticals, Inc. | Oligonucleotides containing N-2 substituted purines |
US5414077A (en) | 1990-02-20 | 1995-05-09 | Gilead Sciences | Non-nucleoside linkers for convenient attachment of labels to oligonucleotides using standard synthetic methods |
WO1991016024A1 (fr) | 1990-04-19 | 1991-10-31 | Vical, Inc. | Lipides cationiques servant a l'apport intracellulaire de molecules biologiquement actives |
WO1991017424A1 (fr) | 1990-05-03 | 1991-11-14 | Vical, Inc. | Acheminement intracellulaire de substances biologiquement actives effectue a l'aide de complexes de lipides s'auto-assemblant |
WO1992003568A1 (fr) | 1990-08-13 | 1992-03-05 | Isis Pharmaceuticals, Inc. | Oligonucleotides modifies par du sucre, detectant et modulant l'expression de genes |
WO1992003464A1 (fr) | 1990-08-28 | 1992-03-05 | Microprobe Corporation | Synthese sur support solide d'oligonucleotides places en queue en position 3' par l'intermediaire d'une molecule de liaison |
US5512667A (en) | 1990-08-28 | 1996-04-30 | Reed; Michael W. | Trifunctional intermediates for preparing 3'-tailed oligonucleotides |
US5419966A (en) | 1991-06-10 | 1995-05-30 | Microprobe Corporation | Solid support for synthesis of 3'-tailed oligonucleotides |
US5525719A (en) | 1991-08-30 | 1996-06-11 | Chemgenes Corporation | N-protected-2'-O-methyl-and N-protected-3'-O-methyl-ribonucleosides and their phosphoramidite derivatives |
US5214135A (en) | 1991-08-30 | 1993-05-25 | Chemgenes Corporation | N-protected-2'-O-methyl-ribonucleosides and N-protected 2'-O-methyl-3'-cyanoethyl-N-,N-diisopropyl phosphoramidite ribonucleosides |
US5830653A (en) | 1991-11-26 | 1998-11-03 | Gilead Sciences, Inc. | Methods of using oligomers containing modified pyrimidines |
US5580972A (en) | 1993-06-14 | 1996-12-03 | Nexstar Pharmaceuticals, Inc. | Purine nucleoside modifications by palladium catalyzed methods |
US5591843A (en) | 1993-06-14 | 1997-01-07 | Eaton; Bruce | 5-modified pyrimidines from palladium catalyzed carbon-carbon coupling |
US5652359A (en) | 1993-12-02 | 1997-07-29 | Epoch Pharmaceuticals, Inc. | Oligonucleotides containing n-methyl thiolated bases having antiviral activity |
WO1995023162A1 (fr) | 1994-02-28 | 1995-08-31 | Microprobe Corporation | Duplex d'oligonucleotides modifies a activite anticancereuse |
US5646126A (en) | 1994-02-28 | 1997-07-08 | Epoch Pharmaceuticals | Sterol modified oligonucleotide duplexes having anticancer activity |
US5780053A (en) | 1994-03-29 | 1998-07-14 | Northwestern University | Cationic phospholipids for transfection |
US5855910A (en) | 1994-03-29 | 1999-01-05 | Northwestern University | Cationic phospholipids for transfection |
US5777153A (en) | 1994-07-08 | 1998-07-07 | Gilead Sciences, Inc. | Cationic lipids |
US5580731A (en) | 1994-08-25 | 1996-12-03 | Chiron Corporation | N-4 modified pyrimidine deoxynucleotides and oligonucleotide probes synthesized therewith |
US5767099A (en) | 1994-12-09 | 1998-06-16 | Genzyme Corporation | Cationic amphiphiles containing amino acid or dervatized amino acid groups for intracellular delivery of therapeutic molecules |
US5830430A (en) | 1995-02-21 | 1998-11-03 | Imarx Pharmaceutical Corp. | Cationic lipids and the use thereof |
US5736392A (en) | 1995-06-07 | 1998-04-07 | Life Technologies, Inc. | Peptide-enhanced cationic lipid transfections |
US5851548A (en) | 1995-06-07 | 1998-12-22 | Gen-Probe Incorporated | Liposomes containing cationic lipids and vitamin D |
US5789416A (en) | 1996-08-27 | 1998-08-04 | Cv Therapeutics | N6 mono heterocyclic substituted adenosine derivatives |
US5789416B1 (en) | 1996-08-27 | 1999-10-05 | Cv Therapeutics Inc | N6 mono heterocyclic substituted adenosine derivatives |
US5849902A (en) | 1996-09-26 | 1998-12-15 | Oligos Etc. Inc. | Three component chimeric antisense oligonucleotides |
WO1998013526A1 (fr) | 1996-09-26 | 1998-04-02 | Oligos Etc. Inc. | Oligonucleotides antisens chimeres a trois composants |
US6432963B1 (en) | 1997-12-15 | 2002-08-13 | Yamanouchi Pharmaceutical Co., Ltd. | Pyrimidine-5-carboxamide derivatives |
US6020483A (en) | 1998-09-25 | 2000-02-01 | Nexstar Pharmaceuticals, Inc. | Nucleoside modifications by palladium catalyzed methods |
US6355787B1 (en) | 1998-09-25 | 2002-03-12 | Gilead Sciences, Inc. | Purine nucleoside modifications by palladium catalyzed methods and compounds produced |
US20040072785A1 (en) | 1999-11-23 | 2004-04-15 | Wolff Jon A. | Intravascular delivery of non-viral nucleic acid |
US20050037496A1 (en) | 1999-12-31 | 2005-02-17 | Rozema David B. | Polyampholytes for delivering polyions to a cell |
US7205297B2 (en) | 2000-07-24 | 2007-04-17 | Krenitsky Pharmaceuticals, Inc. | Substituted 5-alkynyl pyrimidines having neurotrophic activity |
US7041824B2 (en) | 2000-12-26 | 2006-05-09 | Aventis Pharma S.A. | Purine derivatives, preparation method and use as medicines |
US20030157030A1 (en) | 2001-11-02 | 2003-08-21 | Insert Therapeutics, Inc. | Methods and compositions for therapeutic use of rna interference |
US20040063654A1 (en) | 2001-11-02 | 2004-04-01 | Davis Mark E. | Methods and compositions for therapeutic use of RNA interference |
WO2004065601A2 (fr) | 2003-01-21 | 2004-08-05 | Alnylam Europe Ag | Derives lipophiles d'acide ribonucleique a double brin |
AU2004206255B2 (en) | 2003-01-21 | 2008-05-08 | Alnylam Europe Ag | Lipophilic derivatives of double-stranded ribonucleic acid |
US20040162235A1 (en) | 2003-02-18 | 2004-08-19 | Trubetskoy Vladimir S. | Delivery of siRNA to cells using polyampholytes |
US20050026286A1 (en) | 2003-03-05 | 2005-02-03 | Jen-Tsan Chi | Methods and compositions for selective RNAi mediated inhibition of gene expression in mammal cells |
US20050107325A1 (en) | 2003-04-17 | 2005-05-19 | Muthiah Manoharan | Modified iRNA agents |
US20060178327A1 (en) | 2003-05-30 | 2006-08-10 | Yeung Wah Hin A | Inhibition of gene expression by delivery of specially selected double stranded or other forms of small interfering RNA precursors enabling the formation and function of small interfering RNA in vivo and in vitro |
US20050042227A1 (en) | 2003-06-20 | 2005-02-24 | Todd Zankel | Megalin-based delivery of therapeutic compounds to the brain and other tissues |
US20060240093A1 (en) | 2003-07-16 | 2006-10-26 | Protiva Biotherapeutics, Inc. | Lipid encapsulated interfering rna |
US20050064595A1 (en) | 2003-07-16 | 2005-03-24 | Protiva Biotherapeutics, Inc. | Lipid encapsulated interfering RNA |
US20050265957A1 (en) | 2004-04-08 | 2005-12-01 | Monahan Sean D | Polymerized formamides for use in delivery of compounds to cells |
US20060008910A1 (en) | 2004-06-07 | 2006-01-12 | Protiva Biotherapeuties, Inc. | Lipid encapsulated interfering RNA |
US20080112916A1 (en) | 2006-01-23 | 2008-05-15 | Ernst Wagner | CHEMICALLY MODIFIED POLYCATION POLYMER FOR siRNA DELIVERY |
US20070231392A1 (en) | 2006-01-23 | 2007-10-04 | Ernst Wagner | CHEMICALLY MODIFIED POLYCATION POLYMER FOR siRNA DELIVERY |
US20080038296A1 (en) | 2006-06-23 | 2008-02-14 | Engeneic Gene Therapy Pty Limited | Targeted delivery of drugs, therapeutic nucleic acids and functional nucleic acids to mammalian cells via intact killed bacterial cells |
WO2008021157A1 (fr) | 2006-08-11 | 2008-02-21 | Medtronic, Inc. | TRANSPORT EN SENS RÉTROGRADE D'ARNsi ET UTILISATIONS THÉRAPEUTIQUES POUR TRAITER DES TROUBLES NEUROLOGIQUES |
US20080152661A1 (en) | 2006-08-18 | 2008-06-26 | Rozema David B | Polyconjugates for In Vivo Delivery of Polynucleotides |
WO2008036825A2 (fr) | 2006-09-22 | 2008-03-27 | Dharmacon, Inc. | Complexes d'oligonucléotides bicaténaires et procédés de silençage de gènes par interférence arn |
US20080107694A1 (en) | 2006-11-03 | 2008-05-08 | Allergan, Inc. | Sustained release intraocular drug delivery systems comprising a water soluble therapeutic agent and a release modifier |
WO2009021157A1 (fr) | 2007-08-09 | 2009-02-12 | Bioness Inc. | Appareil et procédés permettant le retrait d'un implant électronique d'un corps |
WO2009134487A2 (fr) | 2008-01-31 | 2009-11-05 | Alnylam Pharmaceuticals, Inc. | Procédés optimisés d'administration d'arnds ciblant le gène pcsk9 |
WO2009126933A2 (fr) | 2008-04-11 | 2009-10-15 | Alnylam Pharmaceuticals, Inc. | Délivrance spécifique à un site d'acides nucléiques en combinant des ligands de ciblage avec des composants endosomolytiques |
US9175289B2 (en) | 2008-09-22 | 2015-11-03 | Rxi Pharmaceuticals Corporation | Reduced size self-delivering RNAi compounds |
US8796443B2 (en) | 2008-09-22 | 2014-08-05 | Rxi Pharmaceuticals Corporation | Reduced size self-delivering RNAi compounds |
WO2010033247A2 (fr) | 2008-09-22 | 2010-03-25 | Rxi Pharmaceuticals Corporation | Composés d'arni de taille réduite à auto-délivrance |
US10774330B2 (en) | 2008-09-22 | 2020-09-15 | Phio Pharmaceuticals Corp. | Reduced size self-delivering RNAI compounds |
WO2011119852A1 (fr) | 2010-03-24 | 2011-09-29 | Rxi Pharmaceuticals Corporation | Composés d'arni de taille réduite s'auto-administrant |
US9080171B2 (en) | 2010-03-24 | 2015-07-14 | RXi Parmaceuticals Corporation | Reduced size self-delivering RNAi compounds |
US10240149B2 (en) | 2010-03-24 | 2019-03-26 | Phio Pharmaceuticals Corp. | Reduced size self-delivering RNAi compounds |
US11118178B2 (en) | 2010-03-24 | 2021-09-14 | Phio Pharmaceuticals Corp. | Reduced size self-delivering RNAI compounds |
US10934550B2 (en) | 2013-12-02 | 2021-03-02 | Phio Pharmaceuticals Corp. | Immunotherapy of cancer |
WO2019032619A1 (fr) * | 2017-08-07 | 2019-02-14 | Phio Pharmaceuticals Corp. | Oligonucléotides chimiquement modifiés |
US20200215113A1 (en) | 2017-08-07 | 2020-07-09 | Phio Pharmaceuticals Corp. | Chemically modified oligonucleotides |
WO2020163222A1 (fr) * | 2019-02-04 | 2020-08-13 | Promab Biotechnologies, Inc. | Séquence d'acide nucléique codant pour un récepteur d'antigène chimérique et séquence d'arn en épingle à cheveux courte d'il-6 ou inhibiteur de point de contrôle |
Non-Patent Citations (101)
Title |
---|
"DNA Cloning", vol. 1, 2, 1985 |
AGRAWAL, METHODS IN MOLECULAR BIOLOGY, vol. 26, pages 1 |
ALLINQUANT ET AL., J CELL BIOL., vol. 128, 1995, pages 919 |
ANTISENSE & NUCL. ACID DRUG DEV., vol. 6, 1996, pages 267 |
ANTISENSE & NUCL. ACID DRUG DEV., vol. 7, 1997, pages 187 |
AUGUSTYNS, K. ET AL., NUCL. ACIDS. RES., vol. 18, 1992, pages 4711 |
BARI RGRANZIN MTSANG KSROY AKRUEGER WORENTAS R ET AL.: "A distinct subset of highly proliferative and lentiviral vector (lv)-transducible nk cells define a readily engineered subset for adoptive cellular therapy", FRONT IMMUNOL, vol. 10, 2019, pages 2001 |
BARTZATT, R ET AL., BIOTECHNOL. APPL. BIOCHEM., vol. 11, 1989, pages 133 |
BERGAN ET AL., NUCLEIC ACIDS RESEARCH, vol. 21, 1993, pages 3567 |
BERGOTEGAN, J. CHROM., vol. 599, 1992, pages 35 |
BINNEWIES MROBERTS EWKERSTEN KCHAN VFEARON DFMERAD M ET AL.: "Understanding the tumor immune microenvironment (time) for effective therapy", NAT MED, vol. 24, 2018, pages 541 - 550, XP036901046, DOI: 10.1038/s41591-018-0014-x |
BIOCHEMICA BIOPHYSICA ACTA, vol. 1489, 1999, pages 141 |
BIOCHEMICA BIOPHYSICA ACTA., vol. 1489, 1999, pages 141 |
BJERGARDE ET AL., NUCLEIC ACIDS RES., vol. 19, 1991, pages 5843 |
BUNNELL ET AL., SOMATIC CELL AND MOLECULAR GENETICS, vol. 18, 1992, pages 559 |
CAROTTA S: "Targeting NK Cells for Anticancer Immunotherapy: Clinical and Preclinical Approaches", FRONT IMMUNOL, vol. 7, 2016, pages 152, XP055711730, DOI: 10.3389/fimmu.2016.00152 |
CARUTHERS ET AL., NUCLEOSIDES NUCLEOTIDES, vol. 10, 1991, pages 47 |
CIUREA ET AL., BLOOD, vol. 130, no. 16, 19 October 2017 (2017-10-19), pages 1857 - 1868 |
CIUREA ET AL., LEUKEMIA, 26 July 2021 (2021-07-26) |
CIUREA SOZHANG MJBACIGALUPO AA ET AL.: "Haploidentical transplant with posttransplant cyclophosphamide vs matched unrelated donor transplant for acute myeloid leukemia", BLOOD, vol. 126, no. 8, 20 August 2015 (2015-08-20), pages 1033 - 40, XP086694203, DOI: 10.1182/blood-2015-04-639831 |
COUZIN-FRANKEL J: "Breakthrough of the year 2013. Cancer immunotherapy", SCIENCE, vol. 342, 2013, pages 1432 - 1433 |
DARVIN PTOOR SMSASIDHARAN NAIR VELKORD E: "Immune checkpoint inhibitors: Recent progress and potential biomarkers", EXP MOL MED, vol. 50, 2018, pages 1 - 11, XP055615613, DOI: 10.1038/s12276-018-0191-1 |
DEGOS CHEINEMANN MBARROU JBOUCHERIT NLAMBAUDIE ESAVINA A ET AL.: "Endometrial tumor microenvironment alters human nk cell recruitment, and resident nk cell phenotype and function", FRONT IMMUNOL, vol. 10, 2019, pages 877 |
DENMAN CJSENYUKOV VVSOMANCHI SS ET AL.: "Membrane-Bound IL-21 Promotes Sustained Ex Vivo Proliferation of Human Natural Killer Cells", PLOS ONE, vol. 7, no. 1, 2017, pages e30264 |
DEROSSI ET AL., TRENDS CELL BIOL, vol. 8, 1998, pages 84 |
DEROSSI ET AL., TRENDS CELL BIOL., vol. 8, 1998, pages 84 |
DEROSSI ET AL., TRENDS IN CELL BIOLOGY, vol. 8, 1998, pages 84 |
DERYNCK RTURLEY SJAKHURST RJ: "Tgfp biology in cancer progression and immunotherapy", NAT REV CLIN ONCOL, vol. 18, 2021, pages 9 - 34 |
DUAN, S.MATHEWS, D. H.TURNER, D. H., BIOCHEMISTRY, vol. 45, 2006, pages 9819 - 9832 |
DUNBAR CEHIGH KAJOUNG JKKOHN DBOZAWA KSADELAIN M: "Gene therapy comes of age", SCIENCE, vol. 359, 2018, pages eaan4672, XP055658806, DOI: 10.1126/science.aan4672 |
ELLIOTTO'HARE, CELL, vol. 88, 1997, pages 223 |
FANG FXIAO WTIAN Z: "Challenges of NK cell-based immunotherapy in the new era", J FRONTIERS OF MEDICINE, vol. 12, no. 4, 2018, pages 440 - 450, XP036629112, DOI: 10.1007/s11684-018-0653-9 |
GAIT, M. J.: "Oligonucleotide Synthesis - A Practical Approach", 1984, IRL PRESS AT OXFORD UNIVERSITY PRESS |
GALLUZZI LVACCHELLI EBRAVO-SAN PEDRO JMBUQUE ASENOVILLA LBARACCO EE ET AL.: "Classification of current anticancer immunotherapies", ONCOTARGET, vol. 5, 2014, pages 12472 - 12508, XP055421618, DOI: 10.18632/oncotarget.2998 |
GROTJAHN ET AL., NUC. ACID RES., vol. 10, 1982, pages 4671 |
GUEDAN SRUELLA MJUNE CH: "Emerging cellular therapies for cancer", ANNU REV IMMUNOL, vol. 37, 2019, pages 145 - 171 |
HARMON CROBINSON MWHAND FALMUAILI DMENTOR KHOULIHAN DD ET AL.: "Lactate-mediated acidification of tumor microenvironment induces apoptosis of liver-resident nk cells in colorectal liver metastasis", CANCER IMMUNOL RES, vol. 7, 2019, pages 335 - 346 |
HE YTIAN Z: "NK cell education via nonclassical MHC and non-MHC ligands", CELL MOL IMMUNOL, vol. 14, no. 4, 2017, pages 321 - 330 |
HINSHAW DCSHEVDE LA: "The tumor microenvironment innately modulates cancer progression", CANCER RES, vol. 79, 2019, pages 4557 - 4566 |
HOPE ET AL., MOLECULAR MEMBRANE BIOLOGY, vol. 15, 1998, pages 1 |
HU YTIAN ZZHANG C: "Natural Killer Cell-Based Immunotherapy for Cancer: Advances and Prospects", ENGINEERING, vol. 5, no. 1, 2019, pages 106 - 114 |
HUNAG ET AL., CHEMISTRY AND BIOLOGY, vol. 5, 1998, pages 345 |
JIANG WGSANDERS AJKATOH MUNGEFROREN HGIESELER FPRINCE M ET AL.: "Tissue invasion and metastasis: Molecular, biological and clinical perspectives", SEMINARS IN CANCER BIOLOGY, vol. 35, 2015, pages S244 - S275, XP029303925, DOI: 10.1016/j.semcancer.2015.03.008 |
JUNE CHSADELAIN M: "Chimeric antigen receptor therapy", N ENGL J MED, vol. 379, 2018, pages 64 - 73, XP009535763, DOI: 10.1056/NEJMra1706169 |
KAMATA ET AL., NUCL. ACIDS. RES., vol. 22, 1994, pages 536 |
KAWASAKI ET AL., J. MED. CHEM., vol. 36, 1993, pages 831 |
LAMBERT AWPATTABIRAMAN DRWEINBERG RA: "Emerging biological principles of metastasis", CELL, vol. 168, 2017, pages 670 - 691, XP029935380, DOI: 10.1016/j.cell.2016.11.037 |
LAMONE, BIOCHEM. SOC. TRANS., vol. 21, 1993, pages 1 |
LAPLANCHE ET AL., NUCL. ACID. RES., vol. 14, 1986, pages 9081 |
LAPTEVA NSZMANIA SMVAN RHEE FROONEY CM: "Clinical grade purification and expansion of natural killer cells", CRIT REV ONCOG, vol. 19, no. 1-2, 2014, pages 121 - 32 |
LEE DA: "Cellular therapy: Adoptive immunotherapy with expanded natural killer cells", IMMUNOL REV, vol. 290, no. l, July 2019 (2019-07-01), pages 85 - 99, XP055767870, DOI: 10.1111/imr.12793 |
LEWIS ET AL., PROC. NATL. ACAD. SCI. U.S.A., vol. 93, 1996, pages 3176 |
LEWIS ET AL., PROC. NATL. ACAD. SCI. USA, vol. 93, 1996, pages 3176 |
LEWIS ET AL., PROC. NATL. ACAD. SCI., vol. 93, 1996, pages 3176 |
LIU DZHAO J: "Cytokine release syndrome: Grading, modeling, and new therapy", J HEMATOL ONCOL, vol. 11, 2018, pages 121 |
LIU EMARIN DBANERJEE P ET AL.: "Use of CAR-Transduced Natural Killer Cells in CD19-Positive Lymphoid Tumors", N ENGL J MED, vol. 382, no. 6, 6 February 2020 (2020-02-06), pages 545 - 553, XP055800844, DOI: 10.1056/NEJMoa1910607 |
MATHEWS, D. H.DISNEY, M. D.CHILDS, J. L.SCHROEDER, S. J.ZUKER, M.TURNER, D. H., PROC. NATL. ACAD. SCI., vol. 101, 2004, pages 7287 - 7292 |
MATHEWS, D. H.SABINA, J.ZUKER, M.TURNER, D. H., J. MOL. BIOL., vol. 288, 1999, pages 911 - 940 |
MCNEAL ET AL., J. AM. CHEM. SOC., vol. 104, 1982, pages 976 |
MILLER JSLANIER LL: "Natural killer cells in cancer immunotherapy", ANNU REV CANCER BIOL., vol. 3, 2019, pages 77 - 103 |
MILLER JSSOIGNIER YPANOSKALTSIS-MORTARI A ET AL.: "Successful adoptive transfer and in vivo expansion of human haploidentical NK cells in patients with cancer", BLOOD, vol. 105, no. 8, 2005, pages 3051 - 3057, XP002452476, DOI: 10.1182/blood-2004-07-2974 |
MURPHY ET AL., PROC. NATL. ACAD. SCI., vol. 95, 1998, pages 1517 |
NATH PRPAL-NATH DMANDAL ACAM MCSCHWARTZ ALROBERTS DD: "Natural killer cell recruitment and activation are regulated by cd47 expression in the tumor microenvironment", CANCER IMMUNOL RES, vol. 7, 2019, pages 1547 - 1561 |
ORR MTLANIER LL: "Natural Killer Cell Education and Tolerance", CELL, vol. 142, no. 6, 2010, pages 847 - 856 |
ORTIAGAO ET AL., ANTISENSE RES. DEV., vol. 2, 1992, pages 129 |
PARKIN JCOHEN B: "An overview of the immune system", LANCET, vol. 357, 2001, pages 1777 - 1789, XP004800525, DOI: 10.1016/S0140-6736(00)04904-7 |
POOGA ET AL., NATURE BIOTECHNOLOGY, vol. 16, 1998, pages 857 |
PROCHIANTZ, A., CURR. OPIN. NEUROBIOL., vol. 6, 1996, pages 629 |
PROCHIANTZ, CURRENT OPINION IN NEUROBIOL, vol. 6, 1996, pages 629 |
REICHHART J M ET AL., GENESIS, vol. 34, no. 1-2, 2002, pages 1604 |
REYA TMORRISON SJCLARKE MFWEISSMAN IL: "Stem cells, cancer, and cancer stem cells", NATURE, vol. 414, 2001, pages 105 - 111, XP002206733, DOI: 10.1038/35102167 |
ROSENBERG SAPACKARD BSAEBERSOLD PMSOLOMON DTOPALIAN SLTOY ST ET AL.: "Use of tumor-infiltrating lymphocytes and interleukin-2 in the immunotherapy of patients with metastatic melanoma. A preliminary report", N ENGL J MED, vol. 319, 1988, pages 1676 - 1680, XP009032797 |
ROSENBERG SARESTIFO NP: "Adoptive cell transfer as personalized immunotherapy for human cancer", SCIENCE, vol. 348, 2015, pages 62 - 68, XP055256712, DOI: 10.1126/science.aaa4967 |
RUGGERI LCAPANNI MURBANI E ET AL.: "Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants", SCIENCE, vol. 295, no. 5562, 2002, pages 2097 - 2100, XP002382437, DOI: 10.1126/science.1068440 |
SCHUBERT MLSCHMITT MWANG LRAMOS CAJORDAN KMIILLER-TIDOW C ET AL.: "Side-effect management of chimeric antigen receptor (car) t-cell therapy", ANN ONCOL, vol. 32, 2021, pages 34 - 48 |
SHI, Y., TRENDS GENET, vol. 19, January 2003 (2003-01-01), pages 9 |
SHIMASAKI NJAIN ACAMPANA D: "NK cells for cancer immunotherapy", NAT REV DRUG DISCOV, vol. 19, no. 3, 2020, pages 200 - 218, XP037049358, DOI: 10.1038/s41573-019-0052-1 |
SIMONETTA FALVAREZ MNEGRIN RS: "Natural Killer Cells in Graft-versus-Host-Disease after Allogeneic Hematopoietic Cell Transplantation", FRONT IMMUNOL, vol. 8, 2017, pages 465 |
SMITH ET AL., BIOCHEM J, vol. 276, 1991, pages 417 - 2 |
SONVEAUX, PROTECTING GROUPS IN OLIGONUCLEOTIDE SYNTHESIS, 1994 |
SORDO-BAHAMONDE CVITALE MLORENZO-HERRERO SLOPEZ-SOTO AGONZALEZ S: "Mechanisms of resistance to NK cell immunotherapy", CANCERS (BASEL, vol. 12, 2020, pages 893, XP055939209, DOI: 10.3390/cancers12040893 |
STEC ET AL., J. AM. CHEM. SOC., vol. 106, 1984, pages 6077 |
STEC ET AL., J. CHROMATOG., vol. 326, 1985, pages 263 |
STEC ET AL., J. ORG. CHEM., vol. 50, 1985, pages 3908 |
SUI ET AL., PROC. NATL. ACAD SCI. USA, vol. 99, 2002, pages 5515 |
SUNG HFERLAY JSIEGEL RLLAVERSANNE MSOERJOMATARAM IJEMAL A ET AL.: "Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries", CA CANCER J CLIN, vol. 71, no. 3, May 2021 (2021-05-01), pages 209 - 249 |
TROY ET AL., J. NEUROSCI., vol. 16, 1996, pages 253 |
UHLMANN ET AL., CHEMICAL REVIEWS, vol. 90, 1990, pages 543 - 584 |
VIARI ET AL., BIOMED. ENVIRON. MASS SPECTROM., vol. 14, 1987, pages 83 |
VIVES ET AL., J. BIOL. CHEM., vol. 272, 1997, pages 16010 |
VLASSOV ET AL., BIOCHIMICA ET BIOPHYSICA ACTA, vol. 1197, 1994, pages 95 - 108 |
WAGNER E. ET AL., PROC. NATL. ACAD. SCI., vol. 88, 1992, pages 4255 |
WALDMAN AD, FRITZ JM, LENARDO MJ: "A guide to cancer immunotherapy:From T cell basic science to clinical practice", NAT REV IMMUNOL, vol. 20, 2020, pages 651 - 668, XP037277893, DOI: 10.1038/s41577-020-0306-5 |
WANG MLIU YCHENG YWEI YWEI X: "Immune checkpoint blockade and its combination therapy with small-molecule inhibitors for cancer treatment", BIOCHIM BIOPHYS ACTA REV CANCER, vol. 1871, 2019, pages 199 - 224, XP085692939, DOI: 10.1016/j.bbcan.2018.12.002 |
WUCHTY, S.FONTANA, W.HOFACKER, I. L.SCHUSTER, P., BIOPOLYMERS, vol. 49, 1999, pages 145 - 165 |
XU XLI TSHEN SWANG JABDOU PGU Z ET AL.: "Advances in engineering cells for cancer immunotherapy", THERANOSTICS, vol. 9, 2019, pages 7889 - 7905 |
YANG ET AL., J FOR IMMUNOTHERAPY OF CANCER, vol. 7, 2019, pages 138 |
ZHANG ET AL., INT. J. MOL. SCI., vol. 20, 2019, pages 317 |
ZUCKERMANN, R. N. ET AL., INT. J. PEPTIDE PROTEIN RES., vol. 40, 1992, pages 497 |
ZUCKERMANN, R. N. ET AL., J. AM. CHEM. SOC., vol. 114, 1992, pages 10646 |
ZUKER, M, NUCLEIC ACIDS RES., vol. 31, no. 13, 2003, pages 3406 - 15 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11926828B2 (en) | 2014-09-05 | 2024-03-12 | Phio Pharmaceuticals Corp. | Methods for treating aging and skin disorders using nucleic acids targeting TYR or MMP1 |
WO2023015265A3 (fr) * | 2021-08-04 | 2023-07-13 | Phio Pharmaceuticals Corp. | Oligonucléotides chimiquement modifiés |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20200215113A1 (en) | Chemically modified oligonucleotides | |
US9963702B2 (en) | RNA interference in dermal and fibrotic indications | |
US11001845B2 (en) | Nucleic acid molecules targeting superoxide dismutase 1 (SOD1) | |
EP3077050B1 (fr) | Méthodes de traitement de cicatrisation à l'aide d'oligonucléotides chimiquement modifiés | |
US10808247B2 (en) | Methods for treating neurological disorders using a synergistic small molecule and nucleic acids therapeutic approach | |
JP2020114866A (ja) | 遺伝子調節アプローチを用いた円形脱毛症の処置方法 | |
EP3365446A1 (fr) | Composés d'acides nucléiques de taille réduite à auto-administration ciblant des longs arn non codants | |
EP3137118A1 (fr) | Méthodes destinées à traiter les troubles affectant l'avant de l' il faisant appel à des molécules d'acide nucléique | |
US20230002766A1 (en) | Chemically modified oligonucleotides targeting bromodomain containing protein 4 (brd4) for immunotherapy | |
WO2023015264A1 (fr) | Immunothérapie anticancéreuse utilisant des cellules tueuses naturelles traitées avec des oligonucléotides chimiquement modifiés | |
US20230089478A1 (en) | Chemically modified oligonucleotides with improved systemic delivery | |
US20240301430A1 (en) | Chemically modified oligonucleotides | |
WO2023130021A1 (fr) | Oligonucléotides chimiquement modifiés présentant des propriétés de distribution améliorées | |
WO2024064769A1 (fr) | Induction de lymphocytes t activés de type souche |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22761908 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22761908 Country of ref document: EP Kind code of ref document: A1 |