WO2023015064A1 - Diffusion d'un bloc d'informations de système de réseau non terrestre - Google Patents

Diffusion d'un bloc d'informations de système de réseau non terrestre Download PDF

Info

Publication number
WO2023015064A1
WO2023015064A1 PCT/US2022/072980 US2022072980W WO2023015064A1 WO 2023015064 A1 WO2023015064 A1 WO 2023015064A1 US 2022072980 W US2022072980 W US 2022072980W WO 2023015064 A1 WO2023015064 A1 WO 2023015064A1
Authority
WO
WIPO (PCT)
Prior art keywords
ntn
information
sibs
timing advance
feeder link
Prior art date
Application number
PCT/US2022/072980
Other languages
English (en)
Inventor
Xiao Feng Wang
Liangping Ma
Bharat Shrestha
Umesh PHUYAL
Alberto Rico Alvarino
Ayan SENGUPTA
Peter Gaal
Wanshi Chen
Juan Montojo
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US17/661,996 external-priority patent/US11589292B1/en
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to KR1020247003460A priority Critical patent/KR20240036019A/ko
Priority to EP22743691.2A priority patent/EP4381828A1/fr
Priority to CN202280050138.5A priority patent/CN117643115A/zh
Publication of WO2023015064A1 publication Critical patent/WO2023015064A1/fr
Priority to CONC2024/0000524A priority patent/CO2024000524A2/es

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/004Synchronisation arrangements compensating for timing error of reception due to propagation delay
    • H04W56/0045Synchronisation arrangements compensating for timing error of reception due to propagation delay compensating for timing error by altering transmission time
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1853Satellite systems for providing telephony service to a mobile station, i.e. mobile satellite service

Definitions

  • NTN non-terrestrial network
  • SIB system information block
  • Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, and broadcasts.
  • Typical wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources (e.g., bandwidth, transmit power, or the like).
  • multipleaccess technologies include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency division multiple access (FDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, singlecarrier frequency division multiple access (SC-FDMA) systems, time division synchronous code division multiple access (TD-SCDMA) systems, and Long Term Evolution (LTE).
  • LTE/LTE-Advanced is a set of enhancements to the Universal Mobile Telecommunications System (UMTS) mobile standard promulgated by the Third Generation Partnership Project (3 GPP).
  • UMTS Universal Mobile Telecommunications System
  • a wireless network may include one or more base stations that support communication for a user equipment (UE) or multiple UEs.
  • a UE may communicate with a base station via downlink communications and uplink communications.
  • Downlink (or “DL”) refers to a communication link from the base station to the UE
  • uplink (or “UL”) refers to a communication link from the UE to the base station.
  • NR New Radio
  • 5G is a set of enhancements to the LTE mobile standard promulgated by the 3GPP.
  • NR is designed to better support mobile broadband internet access by improving spectral efficiency, lowering costs, improving services, making use of new spectrum, and better integrating with other open standards using orthogonal frequency division multiplexing (OFDM) with a cyclic prefix (CP) (CP- OFDM) on the downlink, using CP-OFDM and/or single-carrier frequency division multiplexing (SC-FDM) (also known as discrete Fourier transform spread OFDM (DFT-s-OFDM)) on the uplink, as well as supporting beamforming, multiple-input multiple-output (MIMO) antenna technology, and carrier aggregation.
  • OFDM orthogonal frequency division multiplexing
  • SC-FDM single-carrier frequency division multiplexing
  • MIMO multiple-input multiple-output
  • the method may include receiving, from an entity of a nonterrestrial network (NTN), a system information block (SIB) that indicates information relating to one or more NTN SIBs that are to include at least one of ephemeris information or feeder link timing advance information.
  • SIB system information block
  • the method may include receiving, from the entity of the NTN, the one or more NTN SIBs based at least in part on the information.
  • Some aspects described herein relate to a method of wireless communication at an entity of an NTN.
  • the method may include transmitting, to a UE, a SIB that indicates information relating to one or more NTN SIBs that are to include at least one of ephemeris information or feeder link timing advance information.
  • the method may include transmitting, to the UE, the one or more NTN SIBs based at least in part on the information.
  • the apparatus may include a memory comprising instructions and one or more processors configured to execute the instructions.
  • the one or more processors may be configured to execute the instructions and cause the apparatus to obtain, from an entity of an NTN, a SIB that indicates information relating to one or more NTN SIBs that are to include at least one of ephemeris information or feeder link timing advance information.
  • the one or more processors may be configured to execute the instructions and cause the apparatus to obtain, from the entity of the NTN, the one or more NTN SIBs based at least in part on the information.
  • the apparatus may include a memory comprising instructions and one or more processors configured to execute the instructions.
  • the one or more processors may be configured to execute the instructions and cause the apparatus to output for transmission to a UE a SIB that indicates information relating to one or more NTN SIBs that are to include at least one of ephemeris information or feeder link timing advance information.
  • the one or more processors may be configured to execute the instructions and cause the apparatus to output for transmission to the UE the one or more NTN SIBs based at least in part on the information.
  • Some aspects described herein relate to a non-transitory computer-readable medium comprising instructions.
  • the instructions when executed by one or more processors of an apparatus, may cause the apparatus to obtain, from an entity of an NTN, a SIB that indicates information relating to one or more NTN SIBs that are to include at least one of ephemeris information or feeder link timing advance information.
  • the instructions when executed by one or more processors of the apparatus, may cause the apparatus to obtain, from the entity of the NTN, the one or more NTN SIBs based at least in part on the information.
  • Some aspects described herein relate to a non-transitory computer-readable medium comprising instructions.
  • the instructions when executed by one or more processors of an apparatus, may cause the apparatus to output for transmission to a UE a SIB that indicates information relating to one or more NTN SIBs that are to include at least one of ephemeris information or feeder link timing advance information.
  • the instructions when executed by one or more processors of the apparatus, may cause the apparatus to output for transmission to the UE the one or more NTN SIBs based at least in part on the information.
  • the apparatus may include means for obtaining, from an entity of an NTN, a SIB that indicates information relating to one or more NTN SIBs that are to include at least one of ephemeris information or feeder link timing advance information.
  • the apparatus may include means for obtaining, from the entity of the NTN, the one or more NTN SIBs based at least in part on the information.
  • the apparatus may include means for outputting for transmission to a UE a SIB that indicates information relating to one or more NTN SIBs that are to include at least one of ephemeris information or feeder link timing advance information.
  • the apparatus may include means for outputting for transmission to the UE the one or more NTN SIBs based at least in part on the information.
  • aspects generally include a method, apparatus, system, computer program product, non-transitory computer-readable medium, user equipment, base station, wireless communication device, and/or processing system as substantially described herein with reference to and as illustrated by the drawings and specification.
  • aspects are described in the present disclosure by illustration to some examples, those skilled in the art will understand that such aspects may be implemented in many different arrangements and scenarios.
  • Techniques described herein may be implemented using different platform types, devices, systems, shapes, sizes, and/or packaging arrangements.
  • some aspects may be implemented via integrated chip embodiments or other non-module-component based devices (e.g., enduser devices, vehicles, communication devices, computing devices, industrial equipment, retail/purchasing devices, medical devices, and/or artificial intelligence devices).
  • Aspects may be implemented in chip-level components, modular components, non-modular components, non-chip-level components, device-level components, and/or system-level components.
  • Devices incorporating described aspects and features may include additional components and features for implementation and practice of claimed and described aspects.
  • transmission and reception of wireless signals may include one or more components for analog and digital purposes (e.g., hardware components including antennas, radio frequency (RF) chains, power amplifiers, modulators, buffers, processors, interleavers, adders, and/or summers).
  • RF radio frequency
  • aspects described herein may be practiced in a wide variety of devices, components, systems, distributed arrangements, and/or end-user devices of varying size, shape, and constitution.
  • Fig. l is a diagram illustrating an example of a wireless network, in accordance with the present disclosure.
  • FIG. 2 is a diagram illustrating an example of a base station in communication with a user equipment (UE) in a wireless network, in accordance with the present disclosure.
  • UE user equipment
  • Fig. 3 is a diagram illustrating an example of a regenerative satellite deployment and an example of a transparent satellite deployment in a non-terrestrial network (NTN), in accordance with the present disclosure.
  • Fig. 4 is a diagram illustrating an example of system information scheduling, in accordance with the present disclosure.
  • Fig. 5 is a diagram illustrating an example of transmission of an NTN-specific system information block (SIB), in accordance with the present disclosure.
  • SIB system information block
  • Fig. 6 is a diagram illustrating an example associated with broadcasting of an NTN SIB, in accordance with the present disclosure.
  • Figs. 7-8 are diagrams illustrating example processes associated with broadcasting of an NTN SIB, in accordance with the present disclosure.
  • Figs. 9-10 are diagrams of example apparatuses for wireless communication, in accordance with the present disclosure.
  • aspects may be described herein using terminology commonly associated with a 5G or New Radio (NR) radio access technology (RAT), aspects of the present disclosure can be applied to other RATs, such as a 3G RAT, a 4G RAT, and/or a RAT subsequent to 5G (e.g., 6G).
  • NR New Radio
  • Fig. 1 is a diagram illustrating an example of a wireless network 100, in accordance with the present disclosure.
  • the wireless network 100 may be or may include elements of a 5G (e.g., NR) network and/or a 4G (e.g., Long Term Evolution (LTE)) network, among other examples.
  • 5G e.g., NR
  • 4G e.g., Long Term Evolution (LTE) network
  • the wireless network 100 may include one or more base stations 110 (shown as a BS 110a, a BS 110b, a BS 110c, and a BS 1 lOd), a user equipment (UE) 120 or multiple UEs 120 (shown as a UE 120a, a UE 120b, a UE 120c, a UE 120d, and a UE 120e), and/or other network entities.
  • a base station 110 is an entity that communicates with UEs 120.
  • a base station 110 may include, for example, an NR base station, an LTE base station, a Node B, an eNB (e.g., in 4G), a gNB (e.g., in 5G), an access point, and/or a transmission reception point (TRP).
  • Each base station 110 may provide communication coverage for a particular geographic area.
  • the term “cell” can refer to a coverage area of a base station 110 and/or a base station subsystem serving this coverage area, depending on the context in which the term is used.
  • a base station 110 may provide communication coverage for a macro cell, a pico cell, a femto cell, and/or another type of cell.
  • a macro cell may cover a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs 120 with service subscriptions.
  • a pico cell may cover a relatively small geographic area and may allow unrestricted access by UEs 120 with service subscription.
  • a femto cell may cover a relatively small geographic area (e.g., a home) and may allow restricted access by UEs 120 having association with the femto cell (e.g., UEs 120 in a closed subscriber group (CSG)).
  • CSG closed subscriber group
  • a base station 110 for a macro cell may be referred to as a macro base station.
  • a base station 110 for a pico cell may be referred to as a pico base station.
  • a base station 110 for a femto cell may be referred to as a femto base station or an in-home base station.
  • the BS 110a may be a macro base station for a macro cell 102a
  • the BS 110b may be a pico base station for a pico cell 102b
  • the BS 110c may be a femto base station for a femto cell 102c.
  • a base station may support one or multiple (e.g., three) cells.
  • a cell may not necessarily be stationary, and the geographic area of the cell may move according to the location of a base station 110 that is mobile (e.g., a mobile base station).
  • the base stations 110 may be interconnected to one another and/or to one or more other base stations 110 or network nodes (not shown) in the wireless network 100 through various types of backhaul interfaces, such as a direct physical connection or a virtual network, using any suitable transport network.
  • a cell may be provided by a base station 110 of a non-terrestrial network.
  • non-terrestrial network may refer to a network for which access is provided by a non-terrestrial base station, such as a base station carried by an NTN entity (e.g., satellite, a balloon, a dirigible, an airplane, an unmanned aerial vehicle, a high altitude platform station).
  • a base station of the NTN may be a base station carried by the NTN entity (regenerative deployment) or a base station on the ground that communicates via the NTN entity (bent-pipe or transparent deployment).
  • the wireless network 100 may include one or more relay stations.
  • a relay station is an entity that can receive a transmission of data from an upstream station (e.g., a base station 110 or a UE 120) and send a transmission of the data to a downstream station (e.g., a UE 120 or a base station 110).
  • a relay station may be a UE 120 that can relay transmissions for other UEs 120.
  • the BS 1 lOd e.g., a relay base station
  • the BS 110a e.g., a macro base station
  • a base station 110 that relays communications may be referred to as a relay station, a relay base station, a relay, or the like.
  • the wireless network 100 may be a heterogeneous network that includes base stations 110 of different types, such as macro base stations, pico base stations, femto base stations, relay base stations, or the like. These different types of base stations 110 may have different transmit power levels, different coverage areas, and/or different impacts on interference in the wireless network 100.
  • macro base stations may have a high transmit power level (e.g., 5 to 40 watts) whereas pico base stations, femto base stations, and relay base stations may have lower transmit power levels (e.g., 0.1 to 2 watts).
  • a network controller 130 may couple to or communicate with a set of base stations 110 and may provide coordination and control for these base stations 110.
  • the network controller 130 may communicate with the base stations 110 via a backhaul communication link.
  • the base stations 110 may communicate with one another directly or indirectly via a wireless or wireline backhaul communication link.
  • the UEs 120 may be dispersed throughout the wireless network 100, and each UE 120 may be stationary or mobile.
  • a UE 120 may include, for example, an access terminal, a terminal, a mobile station, and/or a subscriber unit.
  • a UE 120 may be a cellular phone (e.g., a smart phone), a personal digital assistant (PDA), a wireless modem, a wireless communication device, a handheld device, a laptop computer, a cordless phone, a wireless local loop (WLL) station, a tablet, a camera, a gaming device, a netbook, a smartbook, an ultrabook, a medical device, a biometric device, a wearable device (e.g., a smart watch, smart clothing, smart glasses, a smart wristband, smart jewelry (e.g., a smart ring or a smart bracelet)), an entertainment device (e.g., a music device, a video device, and/or a satellite radio), a vehicular component or sensor,
  • Some UEs 120 may be considered machine-type communication (MTC) or evolved or enhanced machine-type communication (eMTC) UEs.
  • An MTC UE and/or an eMTC UE may include, for example, a robot, a drone, a remote device, a sensor, a meter, a monitor, and/or a location tag, that may communicate with a base station, another device (e.g., a remote device), or some other entity.
  • Some UEs 120 may be considered Internet-of-Things (loT) devices, and/or may be implemented as NB-IoT (narrowband loT) devices.
  • Some UEs 120 may be considered a Customer Premises Equipment.
  • a UE 120 may be included inside a housing that houses components of the UE 120, such as processor components and/or memory components.
  • the processor components and the memory components may be coupled together.
  • the processor components e.g., one or more processors
  • the memory components e.g., a memory
  • the processor components and the memory components may be operatively coupled, communicatively coupled, electronically coupled, and/or electrically coupled.
  • any number of wireless networks 100 may be deployed in a given geographic area.
  • Each wireless network 100 may support a particular RAT and may operate on one or more frequencies.
  • a RAT may be referred to as a radio technology, an air interface, or the like.
  • a frequency may be referred to as a carrier, a frequency channel, or the like.
  • Each frequency may support a single RAT in a given geographic area in order to avoid interference between wireless networks of different RATs.
  • NR or 5G RAT networks may be deployed.
  • two or more UEs 120 may communicate directly using one or more sidelink channels (e.g., without using a base station 110 as an intermediary to communicate with one another).
  • the UEs 120 may communicate using peer-to-peer (P2P) communications, device-to-device (D2D) communications, a vehicle-to-everything (V2X) protocol (e.g., which may include a vehicle-to-vehicle (V2V) protocol, a vehicle-to-infrastructure (V2I) protocol, or a vehicle-to-pedestrian (V2P) protocol), and/or a mesh network.
  • V2X vehicle-to-everything
  • a UE 120 may perform scheduling operations, resource selection operations, and/or other operations described elsewhere herein as being performed by the base station 110.
  • Devices of the wireless network 100 may communicate using the electromagnetic spectrum, which may be subdivided by frequency or wavelength into various classes, bands, channels, or the like. For example, devices of the wireless network 100 may communicate using one or more operating bands.
  • 5GNR two initial operating bands have been identified as frequency range designations FR1 (410 MHz - 7.125 GHz) and FR2 (24.25 GHz - 52.6 GHz). It should be understood that although a portion of FR1 is greater than 6 GHz, FR1 is often referred to (interchangeably) as a “Sub-6 GHz” band in various documents and articles.
  • FR2 which is often referred to (interchangeably) as a “millimeter wave” band in documents and articles, despite being different from the extremely high frequency (EHF) band (30 GHz - 300 GHz) which is identified by the International Telecommunications Union (ITU) as a “millimeter wave” band.
  • EHF extremely high frequency
  • ITU International Telecommunications Union
  • FR3 7.125 GHz - 24.25 GHz
  • FR3 7.125 GHz - 24.25 GHz
  • Frequency bands falling within FR3 may inherit FR1 characteristics and/or FR2 characteristics, and thus may effectively extend features of FR1 and/or FR2 into midband frequencies.
  • higher frequency bands are currently being explored to extend 5GNR operation beyond 52.6 GHz.
  • FR4a or FR4-1 52.6 GHz - 71 GHz
  • FR4 52.6 GHz - 114.25 GHz
  • FR5 114.25 GHz - 300 GHz.
  • Each of these higher frequency bands falls within the EHF band.
  • sub-6 GHz may broadly represent frequencies that may be less than 6 GHz, may be within FR1, or may include mid-band frequencies.
  • millimeter wave may broadly represent frequencies that may include mid-band frequencies, may be within FR2, FR4, FR4-a or FR4-1, and/or FR5, or may be within the EHF band.
  • frequencies included in these operating bands may be modified, and techniques described herein are applicable to those modified frequency ranges.
  • the UE 120 may include a communication manager 140.
  • the communication manager 140 may obtain, from an entity of an NTN, a system information block (SIB) that indicates information relating to one or more NTN SIBs that are to include at least one of ephemeris information or feeder link timing advance information; and obtain, from the entity of the NTN, the one or more NTN SIBs based at least in part on the information.
  • SIB system information block
  • the communication manager 140 may perform one or more other operations described herein.
  • the base station 110 may include a communication manager 150.
  • the communication manager 150 may output for transmission to a UE a SIB that indicates information relating to one or more NTN SIBs that are to include at least one of ephemeris information or feeder link timing advance information; and output for transmission to the UE the one or more NTN SIBs based at least in part on the information. Additionally, or alternatively, the communication manager 150 may perform one or more other operations described herein.
  • Fig. 1 is provided as an example. Other examples may differ from what is described with regard to Fig. 1.
  • Fig. 2 is a diagram illustrating an example 200 of a base station 110 in communication with a UE 120 in a wireless network 100, in accordance with the present disclosure.
  • the base station 110 may be equipped with a set of antennas 234a through 234t, such as T antennas (Z> 1).
  • the UE 120 may be equipped with a set of antennas 252a through 252r, such as R antennas (R > 1).
  • a transmit processor 220 may receive data, from a data source 212, intended for the UE 120 (or a set of UEs 120).
  • the transmit processor 220 may select one or more modulation and coding schemes (MCSs) for the UE 120 based at least in part on one or more channel quality indicators (CQIs) received from that UE 120.
  • MCSs modulation and coding schemes
  • CQIs channel quality indicators
  • the base station 110 may process (e.g., encode and modulate) the data for the UE 120 based at least in part on the MCS(s) selected for the UE 120 and may provide data symbols for the UE 120.
  • the transmit processor 220 may process system information (e.g., for semi-static resource partitioning information (SRPI)) and control information (e.g., CQI requests, grants, and/or upper layer signaling) and provide overhead symbols and control symbols.
  • the transmit processor 220 may generate reference symbols for reference signals (e.g., a cell-specific reference signal (CRS) or a demodulation reference signal (DMRS)) and synchronization signals (e.g., a primary synchronization signal (PSS) or a secondary synchronization signal (SSS)).
  • reference signals e.g., a cell-specific reference signal (CRS) or a demodulation reference signal (DMRS)
  • synchronization signals e.g., a primary synchronization signal (PSS) or a secondary synchronization signal (SSS)
  • a transmit (TX) multipleinput multiple-output (MIMO) processor 230 may perform spatial processing (e.g., precoding) on the data symbols, the control symbols, the overhead symbols, and/or the reference symbols, if applicable, and may provide a set of output symbol streams (e.g., T output symbol streams) to a corresponding set of modems 232 (e.g., T modems), shown as modems 232a through 232t.
  • each output symbol stream may be provided to a modulator component (shown as MOD) of a modem 232.
  • Each modem 232 may use a respective modulator component to process a respective output symbol stream (e.g., for OFDM) to obtain an output sample stream.
  • Each modem 232 may further use a respective modulator component to process (e.g., convert to analog, amplify, filter, and/or upconvert) the output sample stream to obtain a downlink signal.
  • the modems 232a through 232t may transmit a set of downlink signals (e.g., T downlink signals) via a corresponding set of antennas 234 (e.g., T antennas), shown as antennas 234a through 234t.
  • a set of antennas 252 may receive the downlink signals from the base station 110 and/or other base stations 110 and may provide a set of received signals (e.g., R received signals) to a set of modems 254 (e.g., R modems), shown as modems 254a through 254r.
  • R received signals e.g., R received signals
  • each received signal may be provided to a demodulator component (shown as DEMOD) of a modem 254.
  • DEMOD demodulator component
  • Each modem 254 may use a respective demodulator component to condition (e.g., filter, amplify, downconvert, and/or digitize) a received signal to obtain input samples.
  • Each modem 254 may use a demodulator component to further process the input samples (e.g., for OFDM) to obtain received symbols.
  • a MIMO detector 256 may obtain received symbols from the modems 254, may perform MIMO detection on the received symbols if applicable, and may provide detected symbols.
  • a receive processor 258 may process (e.g., demodulate and decode) the detected symbols, may provide decoded data for the UE 120 to a data sink 260, and may provide decoded control information and system information to a controller/processor 280.
  • controller/processor may refer to one or more controllers, one or more processors, or a combination thereof.
  • a channel processor may determine a reference signal received power (RSRP) parameter, a received signal strength indicator (RS SI) parameter, a reference signal received quality (RSRQ) parameter, and/or a CQI parameter, among other examples.
  • RSRP reference signal received power
  • RS SI received signal strength indicator
  • RSRQ reference signal received quality
  • CQI CQI parameter
  • the network controller 130 may include a communication unit 294, a controller/processor 290, and a memory 292.
  • the network controller 130 may include, for example, one or more devices in a core network.
  • the network controller 130 may communicate with the base station 110 via the communication unit 294.
  • One or more antennas may include, or may be included within, one or more antenna panels, one or more antenna groups, one or more sets of antenna elements, and/or one or more antenna arrays, among other examples.
  • An antenna panel, an antenna group, a set of antenna elements, and/or an antenna array may include one or more antenna elements (within a single housing or multiple housings), a set of coplanar antenna elements, a set of non-coplanar antenna elements, and/or one or more antenna elements coupled to one or more transmission and/or reception components, such as one or more components of Fig. 2.
  • a transmit processor 264 may receive and process data from a data source 262 and control information (e.g., for reports that include RSRP, RSSI, RSRQ, and/or CQI) from the controller/processor 280.
  • the transmit processor 264 may generate reference symbols for one or more reference signals.
  • the symbols from the transmit processor 264 may be precoded by a TX MIMO processor 266 if applicable, further processed by the modems 254 (e.g., for DFT-s- OFDM or CP-OFDM), and transmitted to the base station 110.
  • the modem 254 of the UE 120 may include a modulator and a demodulator.
  • the UE 120 includes a transceiver.
  • the transceiver may include any combination of the antenna(s) 252, the modem(s) 254, the MIMO detector 256, the receive processor 258, the transmit processor 264, and/or the TX MIMO processor 266.
  • the transceiver may be used by a processor (e.g., the controller/processor 280) and the memory 282 to perform aspects of any of the methods described herein (e.g., with reference to Figs. 6-10).
  • the uplink signals from UE 120 and/or other UEs may be received by the antennas 234, processed by the modem 232 (e.g., a demodulator component, shown as DEMOD, of the modem 232), detected by a MEMO detector 236 if applicable, and further processed by a receive processor 238 to obtain decoded data and control information sent by the UE 120.
  • the receive processor 238 may provide the decoded data to a data sink 239 and provide the decoded control information to the controller/processor 240.
  • the base station 110 may include a communication unit 244 and may communicate with the network controller 130 via the communication unit 244.
  • the base station 110 may include a scheduler 246 to schedule one or more UEs 120 for downlink and/or uplink communications.
  • the modem 232 of the base station 110 may include a modulator and a demodulator.
  • the base station 110 includes a transceiver.
  • the transceiver may include any combination of the antenna(s) 234, the modem(s) 232, the MIMO detector 236, the receive processor 238, the transmit processor 220, and/or the TX MIMO processor 230.
  • the transceiver may be used by a processor (e.g., the controller/processor 240) and the memory 242 to perform aspects of any of the methods described herein (e.g., with reference to Figs. 6- 10).
  • the controller/processor 240 of the base station 110, the controller/processor 280 of the UE 120, and/or any other component(s) of Fig. 2 may perform one or more techniques associated with broadcasting of an NTN SIB, as described in more detail elsewhere herein.
  • the NTN entity described herein is the base station 110, is included in the base station 110, or includes one or more components of the base station 110 shown in Fig. 2.
  • the controller/processor 240 of the base station 110, the controller/processor 280 of the UE 120, and/or any other component(s) of Fig. 2 may perform or direct operations of, for example, process 700 of Fig. 7, process 800 of Fig. 8, and/or other processes as described herein.
  • the memory 242 and the memory 282 may store data and program codes for the base station 110 and the UE 120, respectively.
  • the memory 242 and/or the memory 282 may include a non-transitory computer-readable medium storing one or more instructions (e.g., code and/or program code) for wireless communication.
  • the one or more instructions when executed (e.g., directly, or after compiling, converting, and/or interpreting) by one or more processors of the base station 110 and/or the UE 120, may cause the one or more processors, the UE 120, and/or the base station 110 to perform or direct operations of, for example, process 700 of Fig. 7, process 800 of Fig. 8, and/or other processes as described herein.
  • executing instructions may include running the instructions, converting the instructions, compiling the instructions, and/or interpreting the instructions, among other examples.
  • the UE 120 includes means for obtaining, from an entity of an NTN, a SIB that indicates information relating to one or more NTN SIBs that are to include at least one of ephemeris information or feeder link timing advance information; and/or means for obtaining, from the entity of the NTN, the one or more NTN SIBs based at least in part on the information.
  • the means for the UE 120 to perform operations described herein may include, for example, one or more of communication manager 140, antenna 252, modem 254, MIMO detector 256, receive processor 258, transmit processor 264, TX MIMO processor 266, controller/processor 280, or memory 282.
  • the base station 110 includes means for outputting for transmission to a UE a SIB that indicates information relating to one or more NTN SIBs that are to include at least one of ephemeris information or feeder link timing advance information; and/or means for outputting for transmission to the UE the one or more NTN SIBs based at least in part on the information.
  • the means for the base station 110, or another NTN entity, to perform operations described herein may include, for example, one or more of communication manager 150, transmit processor 220, TX MIMO processor 230, modem 232, antenna 234, MIMO detector 236, receive processor 238, controller/processor 240, memory 242, or scheduler 246.
  • While blocks in Fig. 2 are illustrated as distinct components, the functions described above with respect to the blocks may be implemented in a single hardware, software, or combination component or in various combinations of components.
  • the functions described with respect to the transmit processor 264, the receive processor 258, and/or the TX MIMO processor 266 may be performed by or under the control of the controller/processor 280.
  • Fig. 2 is provided as an example. Other examples may differ from what is described with regard to Fig. 2.
  • FIG. 3 is a diagram illustrating an example 300 of a regenerative satellite deployment and an example 310 of a transparent satellite deployment in an NTN, in accordance with the present disclosure.
  • Example 300 shows a regenerative satellite deployment.
  • a UE 120 is served by a satellite 320 via a service link 330.
  • the satellite 320 may include a base station 110 (e.g., base station 110a) or a gNB.
  • the satellite 320 may be referred to as a non-terrestrial base station, a regenerative repeater, or an on-board processing repeater.
  • the satellite 320 may demodulate an uplink radio frequency signal, and may modulate a baseband signal derived from the uplink radio signal to produce a downlink radio frequency transmission.
  • the satellite 320 may transmit the downlink radio frequency signal on the service link 330.
  • the satellite 320 may provide a cell that covers the UE 120.
  • Example 310 shows a transparent satellite deployment, which may also be referred to as a bent-pipe satellite deployment.
  • a UE 120 is served by a satellite 340 via the service link 330.
  • the satellite 340 may be a transparent satellite.
  • the satellite 340 may relay a signal received from gateway 350 via a feeder link 360.
  • the satellite may receive an uplink radio frequency transmission, and may transmit a downlink radio frequency transmission without demodulating the uplink radio frequency transmission.
  • the satellite may frequency convert the uplink radio frequency transmission received on the service link 330 to a frequency of the uplink radio frequency transmission on the feeder link 360, and may amplify and/or filter the uplink radio frequency transmission.
  • the UEs 120 shown in example 300 and example 310 may be associated with a Global Navigation Satellite System (GNSS) capability or a Global Positioning System (GPS) capability, though not all UEs have such capabilities.
  • GNSS Global Navigation Satellite System
  • GPS Global Positioning System
  • the satellite 340 may provide a cell that covers the UE 120.
  • the service link 330 may include a link between the satellite 340 and the UE 120, and may include one or more of an uplink or a downlink.
  • the feeder link 360 may include a link between the satellite 340 and the gateway 350, and may include one or more of an uplink (e.g., from the UE 120 to the gateway 350) or a downlink (e.g., from the gateway 350 to the UE 120).
  • An uplink of the service link 330 may be indicated by reference number 330-U (not shown in Fig. 3) and a downlink of the service link 330 may be indicated by reference number 330-D (not shown in Fig. 3).
  • an uplink of the feeder link 360 may be indicated by reference number 360-U (not shown in Fig. 3) and a downlink of the feeder link 360 may be indicated by reference number 360-D (not shown in Fig. 3).
  • the feeder link 360 and the service link 330 may each experience Doppler effects due to the movement of the satellites 320 and 340, and potentially movement of a UE 120. These Doppler effects may be significantly larger than in a terrestrial network.
  • the Doppler effect on the feeder link 360 may be compensated for to some degree, but may still be associated with some amount of uncompensated frequency error.
  • the gateway 350 may be associated with a residual frequency error, and/or the satellite 320/340 may be associated with an on-board frequency error. These sources of frequency error may cause a received downlink frequency at the UE 120 to drift from a target downlink frequency.
  • Fig. 3 is provided as an example. Other examples may differ from what is described with regard to Fig. 3.
  • Fig. 4 is a diagram illustrating an example 400 of system information scheduling, in accordance with the present disclosure.
  • a base station may provide system information (SI) for UEs covered by the base station.
  • SI may include physical layer information (e.g., in a master information block), access information (e.g., in a SIB type 1 (SIB1)), and/or other information for communication between UEs and the base station (e.g., in one or more other types of SIBs).
  • SIBs may be carried in an SI message.
  • SIB1 may be carried alone in an SI message, and one or more other SIBs may be carried in another SI message.
  • An SI message carrying SIB 1 may be transmitted at fixed time locations, which may facilitate identification of SIB1.
  • SIB1 carries scheduling information for other SI messages, and the other SI messages are transmitted in nonoverlapping scheduling windows (e.g., scheduling windows that do not overlap each other or the window of SIB 1).
  • DCI downlink control information
  • the UE may know which SI message is being scheduled based at least in part on the scheduling windows as indicated by the scheduling information of SIB 1.
  • the scheduling information of SIB1 may indicate an SI window length (e.g., si-Window Length), which is a common parameter for SI messages. That is, the SI window length is the same for all scheduled SI messages.
  • the SI window length may define the length of an SI window in which a UE can expect a SIB message (e.g., which may carry one or multiple SIBs) to be transmitted.
  • a UE may use a particular formula to determine a time location of the start of an SI window.
  • a UE may search a PDCCH (e.g., perform decoding of control communications using an SI radio network temporary identifier (SI-RNTI)) to receive an SI message.
  • SI-RNTI SI radio network temporary identifier
  • the scheduling information in SIB1 also may indicate an SI periodicity (e.g., si-Periodicity), per SI message, that identifies a time gap between consecutive SI windows (e.g., each SI message may have a separately configured SI periodicity).
  • a change to the information in an SI message may occur only after an upcoming boundary of an SI modification period (unless the SI message is for an earthquake and tsunami warning system (ETWS), a commercial mobile alert system (CMAS), positioning assistance data, a SIB type 9 (SIB9), or the like).
  • Multiple SI windows may occur between SI modification boundaries for repetitions or retransmissions of an SI message (e.g., without change to the information in the SI message).
  • the value of m may be determined based on a configured coefficient value (e.g., modificationPeriodCoeff), which may have a value of 2, 4, 8, or 16, and a default paging cycle (e.g., PagingCycle), which may have a value of 32, 64, 128, or 256 radio frames.
  • the SI modification period may include 128 radio frames (e.g., corresponding to 1.28 seconds).
  • a UE may acquire a new SIB1, after an SI modification period boundary, if the UE receives an SI update notification prior to the SI modification period boundary. If the UE receives the SI update notification, the UE may receive SIB 1 after the SI modification period to check for a change to SI scheduling information and/or a value tag (e.g., valueTag') parameter.
  • a value tag e.g., valueTag'
  • SIB1 stored by a UE is valid (i.e., a SIB1 change notification is not received)
  • all other SIBs e.g., for scheduling and/or content
  • all other SIBs also may be considered as valid (e.g., not changed).
  • an SI period may include three non-overlapping SI windows.
  • SI may also be transmitted on demand of a UE, in which case an SI window may be present, but the SI message is not broadcast.
  • an SI message may be transmitted one or more times.
  • a SIB is included in only a single SI message, and the SIB is included within the SI message at most once.
  • Fig. 4 is provided as an example. Other examples may differ from what is described with respect to Fig. 4.
  • Fig. 5 is a diagram illustrating an example 500 of transmission of an NTN- specific SIB, in accordance with the present disclosure.
  • the NTN-specific SIB (which may be referred to herein as an NTN SIB) is a SIB that carries information for communication in an NTN.
  • the NTN SIB may carry ephemeris information and/or feeder link timing advance information.
  • the feeder link timing advance information may indicate a round trip delay of a whole or a part of a feeder link that is common to multiple UEs.
  • An NTN SIB may be a new SIB type that can be indicated by a SIB type information parameter (e.g., SIB-Typelnfo) of SIB1.
  • SIB type information parameter e.g., SIB-Typelnfo
  • An SI periodicity (7) may be configured as a value from 80 milliseconds (ms) to 5.12 seconds.
  • the NTN SIB may have updated ephemeris information and/or updated feeder link timing advance information every 640 ms.
  • updated ephemeris information and/or feeder link timing advance information e.g., an updated NTN SIB
  • feeder link timing advance information e.g., an updated NTN SIB
  • an update of the NTN SIB every 640 ms is not possible in current wireless networks.
  • a network should be enabled to update an NTN SIB without notifying a UE (e.g., via a SI update notification paging message).
  • the NTN SIB may change without a change to a scheduling parameter for SI or a change to the version (e.g., systemlnfoValueTag) of SIB1.
  • Fig. 5 is provided as an example. Other examples may differ from what is described with respect to Fig. 5.
  • Ephemeris information may describe a trajectory of a satellite in an NTN (e.g., the ephemeris information may include parameters such as a reference time, or so-called “epoch time,” that specifies the time at which orbital parameters are taken, Keplerian orbital parameters such as a square root of a semi-major axis, an eccentricity, and/or an inclination angle, and/or perturbation parameters such as a mean motion difference from a computed value, a rate of change of right ascension and/or inclination, and/or amplitudes of one or more sine or cosine harmonic correction terms, among other examples).
  • epoch time e.g., the ephemeris information may include parameters such as a reference time, or so-called “epoch time,” that specifies the time at which orbital parameters are taken, Keplerian orbital parameters such as a square root of a semi-major axis, an eccentricity, and/or an inclination angle, and
  • ephemeris information may indicate a formula that can be used by a UE to predict a position of the satellite over time.
  • a maximum modification periodicity for ephemeris information may be from 10 seconds to 60 seconds, and a transmission periodicity for ephemeris information may be less than one second (e.g., which may be determined based at least in part on an initial access delay).
  • a UE may determine when to read ephemeris information based at least in part on an uplink timing error budget of the UE and/or an ephemeris prediction error associated with the UE.
  • Feeder link timing advance information may indicate a timing advance to be used by a UE due to a delay associated with a feeder link between a gateway and a satellite of an NTN.
  • Feeder link timing advance information may indicate a feeder link timing advance without timing drift (e.g., a timing advance value that does not account for timing drift over time) or a feeder link timing advance with timing drift (e.g., a timing advance formula that accounts for timing drift over time).
  • a modification periodicity for a feeder link timing advance without timing drift may be greater than 20 seconds (e.g., assuming a 0.5 ms granularity), and a transmission periodicity for a feeder link timing advance without timing drift may be less than one second (e.g., which may be determined based at least in part on an initial access delay).
  • a UE may read feeder link timing advance information, for a timing advance without timing drift, before an effective time of the information (e.g., which may be delayed relative to a signaling time of the information).
  • feeder link timing advance information for a timing advance without timing drift, may indicate a formula that a UE can use to determine a timing advance, thereby reducing reading of feeder link timing advance information by the UE (e.g., the formula may indicate an increase from a common offset by one slot every 30 seconds).
  • a maximum modification periodicity for a feeder link timing advance with timing drift may be from 10 seconds to 20 seconds in FR1 or from 2 seconds to 5 seconds in FR2, and a transmission periodicity for a feeder link timing advance with timing drift may be less than one second (e.g., which may be determined based at least in part on an initial access delay).
  • a UE may read feeder link timing advance information immediately upon an update of the information if a common timing advance offset (e.g., without timing drift) is used. Otherwise, if timing drift is used, the UE may delay reading the information for a time period after the update of the information (however, prediction error of the UE may deteriorate quickly beyond the time period).
  • an NTN SIB carrying ephemeris information and/or timing advance information should be updated periodically.
  • An update periodicity for the NTN SIB may be constrained by a need for a reference time (e.g., epoch time) update, which also may lead to an update of the contents of the NTN SIB.
  • a reference time used by a UE should be a latest time relative to reception of a message in order to reduce prediction error (ephemeris prediction performed by a network may be more accurate than ephemeris prediction performed by a UE due to the network’s use of sophisticated prediction models).
  • a reference time (e.g., epoch time) may be implicitly indicated to a UE in order to reduce signaling overhead.
  • the reference time may be based at least in part on a boundary of a downlink signal (e.g., for an NTN SIB).
  • repetitions of the NTN SIB may be transmitted within an SI period.
  • the repetitions of the NTN SIB within the SI period may be associated with the same reference time. That is, a single reference time may be used per SI period.
  • a network may predict a position and/or a velocity of the satellite of the NTN at the reference time (e.g., a time at an end of a slot of a first transmission within a period leaving the satellite) based at least in part on a latest GNSS read.
  • a feeder link timing advance also may be based at least in part on a position of the satellite, whereas a timing advance used in a terrestrial network does not need to account for movement of a satellite.
  • a UE when one or more SI parameters are updated, a UE is typically notified via a paging message, and the UE is then expected to reacquire one or more SIBs to refresh the one or more SI parameters.
  • transmitting a paging message to inform the UE when SI parameters need to be updated may lead to signaling overhead, which may be particularly problematic in an NTN due to large propagation delays and/or satellite motion potentially resulting in frequent changes to the SI parameters.
  • SI parameters for an NTN such as ephemeris information and feeder link timing advance information, may need to be updated more frequently than an SI modification period permits. If such SI parameters are not updated with the requisite frequency, a UE may lose synchronization with a base station or a satellite, communications to or from the UE may fail, or the like.
  • scheduling information for an NTN SIB may be provided in a SIB (e.g., SIB1).
  • SIB1 may include an indication of a validity duration and/or an accuracy of an NTN SIB.
  • SIB1 may include a resource allocation and/or an MCS for an NTN SIB to avoid a need to schedule an NTN SIB via a PDCCH.
  • Techniques described herein enable updating of ephemeris information and/or feeder link timing advance information without triggering an SI update procedure via a paging message.
  • a UE may acquire updated ephemeris information and/or feeder link timing advance information in accordance with the scheduling information in SIB1 and without notification to the UE via paging. In this way, signaling overhead is reduced.
  • a UE may receive a resource allocation for an NTN SIB in SIB1, rather than via a PDCCH, thereby further reducing signaling overhead.
  • Fig. 6 is a diagram illustrating an example 600 associated with broadcasting of an NTN SIB, in accordance with the present disclosure.
  • example 600 includes communication between an NTN entity 605 and a UE 120.
  • the NTN entity 605 and the UE 120 may be included in a wireless network, such as wireless network 100 (e.g., an NTN).
  • the NTN entity 605 may be a base station 110 of the NTN, a gateway 350 of the NTN, a satellite 320 of the NTN, a satellite 340 of the NTN, or the like.
  • the NTN entity 605 may transmit, and the UE 120 may receive, a SIB that indicates information relating to one or more NTN SIBs.
  • the NTN SIB(s) may include at least one of ephemeris information or feeder link timing advance information (e.g., for a timing advance with timing drift or a timing advance without timing drift).
  • the SIB that indicates the information also may carry access information.
  • the SIB that indicates the information may be a SIB 1.
  • the information relating to the one or more NTN SIBs may indicate an update periodicity for the one or more NTN SIBs (e.g., for an SI message that includes the one or more NTN SIBs) and/or may indicate one or more transmission windows (also referred to herein as scheduling windows or SI windows) within an update period for the one or more NTN SIBs (e.g., for an SI message that includes the one or more NTN SIBs).
  • the update periodicity may be an SI periodicity, as described herein, at which the ephemeris information and/or the feeder link timing advance information is updated.
  • An update period may be an SI period, as described herein, that is defined by the update periodicity and that includes one or more transmission windows for repetitions or retransmissions of the one or more NTN SIBs (e.g., of an SI message that includes the one or more NTN SIBs).
  • the SIB may indicate the information relating to the one or more NTN SIBs (e.g., the update periodicity and/or the transmission windows) separately from (e.g., using different parameter types than) information relating to one or more non-NTN SIBs (e.g., an update periodicity and/or transmission windows) indicated in the SIB.
  • a transmission window may be for the NTN entity 605 to transmit, and the UE 120 to receive, a PDCCH communication that schedules the PDSCH communication (e.g., the transmission window is for PDCCH decoding).
  • a transmission window may be for the NTN entity 605 to transmit, and the UE 120 to receive, the PDSCH communication of the NTN SIB(s) (e.g., a PDSCH communication of the ephemeris information and/or the feeder link timing advance information).
  • a default update periodicity (e.g., used if an update periodicity is not indicated) for the one or more NTN SIBs may be the same as a periodicity (e.g., a default periodicity or an indicated periodicity in SIB1) for one or more non-NTN SIBs (e.g., a SIB type 2 (SIB2), a SIB type 3 (SIB3), and so forth).
  • a periodicity e.g., a default periodicity or an indicated periodicity in SIB1
  • one or more non-NTN SIBs e.g., a SIB type 2 (SIB2), a SIB type 3 (SIB3), and so forth.
  • SIB2 SIB type 2
  • SIB3 SIB type 3
  • one or more repetitions of an NTN SIB, within an update period may be associated with the same reference time (e.g., an epoch time, or the like).
  • a reference time for the NTN SIB(s) may be based at least in part on a particular downlink transmit timepoint (e.g., with respect to a satellite) within an update period.
  • a reference time for SI messages of ephemeris information may be a particular downlink timepoint, within an update period, at a satellite of the NTN.
  • the downlink transmit timepoint used for the reference time may be configured, specified, or otherwise provisioned for the UE 120 to thereby enable implicit indication of the reference time to the UE 120, as described herein.
  • the downlink transmit timepoint may be an end of a last downlink slot of a PDSCH carrying an NTN SIB (e.g., carrying the ephemeris information and/or the feeder link timing advance information) of a first transmission window of an update period at the satellite.
  • the downlink transmit timepoint for example if a transmission window is not specified, may be an end of a first downlink slot of an update period at the satellite.
  • the information relating to the one or more NTN SIBs may indicate a resource allocation and/or an MCS for reception of the NTN SIB(s) at the UE 120.
  • the UE 120 can receive a PDSCH communication of the NTN SIB(s) based at least in part on the resource allocation and/or the MCS indicated in the information, and a PDCCH does not need to be used to schedule the PDSCH communication.
  • a time domain resource allocation, of the resource allocation may be with respect to (e.g., referenced to) a start of a transmission window for the one or more NTN SIBs.
  • the information relating to the one or more NTN SIBs may indicate a message size of the one or more NTN SIBs.
  • the information may include an indication of the message size if an NTN SIB may use a variable message size.
  • the information relating to the one or more NTN SIBs may indicate a validity duration and/or an accuracy (e.g., referenced to a particular accuracy per sub-carrier spacing) of the one or more NTN SIBs.
  • the validity duration and/or the accuracy may be indicated in a unit of the update period (e.g., indicated as a multiplier of the update period).
  • the information may indicate a first validity duration and/or a first accuracy of the ephemeris information and a second validity duration and/or a second accuracy of the feeder link timing advance information.
  • a mechanism for indicating scheduling information for one or more non-NTN SIBs (e.g., SIB2, SIB3, and so forth), as described herein, may also be used to indicate scheduling information for one or more NTN SIBs.
  • the information relating to the one or more NTN SIBs may indicate an update periodicity for the one or more NTN SIBs using a parameter type (e.g., an si-Periodicity parameter type) of the SIB that is also used to indicate a periodicity for one or more non-NTN SIBs.
  • an update period for an NTN SIB may be defined (e.g., in SIB1) the same way as an SI period for another SIB.
  • An update period may have a size that is small enough to accommodate a random access channel (RACH) delay.
  • one or more SI windows e.g., a first SI window and a third SI window of an SI period
  • the information relating to the one or more NTN SIBs may indicate an identifier of an entry in a table stored by the UE 120.
  • the table e.g., a lookup table
  • the table may identify various combinations of an update periodicity for an NTN SIB, transmission windows within an update period for an NTN SIB (e.g., a PDCCH or a PDSCH of the NTN SIB), a time domain resource allocation for an NTN SIB, a frequency domain resource allocation for an NTN SIB, an MCS for an NTN SIB, and/or a message size of an NTN SIB.
  • the identifier may indicate, according to the table, a particular combination of an update periodicity for an NTN SIB, transmission windows within an update period for an NTN SIB, a time domain resource allocation for an NTN SIB, a frequency domain resource allocation for an NTN SIB, an MCS for an NTN SIB, and/or a message size of an NTN SIB.
  • the one or more NTN SIBs may include a single NTN SIB that includes the ephemeris information and the feeder link timing advance information (e.g., the ephemeris information and the feeder link timing advance information may be sent together in one NTN SIB).
  • the one or more NTN SIBs may include multiple NTN SIBs that respectively include the ephemeris information and the feeder link timing advance information (e.g., the ephemeris information may be sent in a first NTN SIB and the feeder link timing advance information may be sent in a second NTN SIB).
  • the information relating to the one or more NTN SIBs may provide respective indications of a validity duration and/or an accuracy for the ephemeris information and the feeder link timing advance information (e.g., when the ephemeris information and the feeder link timing advance information are sent together in one NTN SIB).
  • the information may indicate a first validity duration and/or a first accuracy of the ephemeris information and a second validity duration and/or a second accuracy of the feeder link timing advance information, as described above.
  • an update periodicity for the feeder link timing advance information may be based at least in part on an update periodicity for the ephemeris information (e.g., when the ephemeris information and the feeder link timing advance information are sent together in one NTN SIB).
  • the update periodicity for the feeder link timing advance information may be indicated in a unit of the update periodicity for the ephemeris information.
  • the information relating to the one or more NTN SIBs may indicate the feeder link timing advance information (e.g., SIB1 indicates the feeder link timing advance information, rather than such information being indicated in an NTN SIB).
  • an update to the feeder link timing advance information may use a system information update procedure, as described herein.
  • the information relating to the one or more NTN SIBs may indicate an update periodicity for the feeder link timing advance information and/or an update period for the feeder link timing advance information (e.g., but may not indicate a validity duration and/or an accuracy for the feeder link timing advance information).
  • an application time (e.g., by the UE 120) of the feeder link timing advance information may be based at least in part on a last slot number (/??) of a first PDSCH communication of the one or more NTN SIBs in an update period, or a last slot number (/??) of a first transmission window, of the one or more transmission windows, in an update period, and a system scheduling offset value (Koffset).
  • Koffset a system scheduling offset value
  • an application time of the feeder link timing advance e.g., a common offset
  • Koffset + x where is a constant value, such as 1 or 2.
  • an update periodicity for an NTN SIB may indicate a periodicity at which the ephemeris information and/or the feeder link timing advance information is updated.
  • an update to the one or more NTN SIBs may include the (updated) ephemeris information and/or the feeder link timing advance information without triggering (e.g., is independent of triggering) a system information update procedure. That is, the update does not trigger SIB modification and associated paging, as described herein.
  • the NTN entity 605 may transmit, and the UE 120 may receive, the one or more NTN SIBs based at least in part on the information relating to the one or more NTN SIBs in the SIB (e.g., in SIB1).
  • the UE 120 may receive the one or more NTN SIBs in accordance with an indicated update periodicity (e.g., within an update period according to the update periodicity), one or more indicated transmission windows, an indicated resource allocation and/or MCS, or the like.
  • the UE 120 may receive one or more updated NTN SIBs that include updated ephemeris information and/or updated feeder link timing advance information.
  • the UE 120 and the NTN entity 605 may communicate based at least in part on the one or more NTN SIBs. That is, the UE 120 and the NTN entity 605 may communicate based at least in part on the ephemeris information and/or the feeder link timing advance information. For example, the UE 120 may communicate with the NTN entity 605 using the ephemeris information and/or the feeder link timing advance information (e.g., in accordance with a reference time, a validity duration, and/or an accuracy, as described herein).
  • Fig. 6 is provided as an example. Other examples may differ from what is described with respect to Fig. 6.
  • Fig. 7 is a diagram illustrating an example process 700 performed, for example, by a UE, in accordance with the present disclosure.
  • Example process 700 is an example where the UE (e.g., UE 120) performs operations associated with broadcasting of an NTN SIB.
  • process 700 may include receiving, from an entity of an NTN, a SIB that indicates information relating to one or more NTN SIBs that are to include at least one of ephemeris information or feeder link timing advance information (block 710).
  • the UE e.g., using communication manager 140 and/or reception component 902, depicted in Fig. 9
  • Fig. As further shown in Fig.
  • process 700 may include receiving, from the entity of the NTN, the one or more NTN SIBs based at least in part on the information (block 720).
  • the UE e.g., using communication manager 140 and/or reception component 902, depicted in Fig. 9 may receive, from the entity of the NTN, the one or more NTN SIBs based at least in part on the information, as described above.
  • Process 700 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
  • the information indicates at least one of an update periodicity for the one or more NTN SIBs or one or more transmission windows within an update period for the one or more NTN SIBs.
  • the one or more transmission windows are for reception of a PDCCH communication that schedules the one or more NTN SIBs.
  • the one or more transmission windows are for reception of a PDSCH communication of the one or more NTN SIBs.
  • a default update periodicity for the one or more NTN SIBs is the same as a periodicity for one or more non-NTN SIBs.
  • one or more repetitions of an NTN SIB, of the one or more NTN SIBs, within an update period are associated with a same reference time.
  • a reference time for the one or more NTN SIBs is based at least in part on a particular downlink transmit timepoint within an update period.
  • the information indicates at least one of a resource allocation or an MCS for reception of the one or more NTN SIBs.
  • a time domain resource allocation of the resource allocation is with respect to a start of a transmission window for the one or more NTN SIBs.
  • the information further indicates a message size of the one or more NTN SIBs.
  • the information indicates at least one of a validity duration or an accuracy of the one or more NTN SIBs.
  • the information indicates an update periodicity for the one or more NTN SIBs using a parameter type of the SIB that is also used to indicate a periodicity for one or more non-NTN SIBs.
  • an update to the one or more NTN SIBs includes at least one of the ephemeris information or the feeder link timing advance information without triggering a system information update procedure.
  • the information indicates an identifier that indicates, according to a table, one or more of an update periodicity for the one or more NTN SIBs, one or more transmission windows within an update period for the one or more NTN SIBs, a time domain resource allocation for the one or more NTN SIBs, a frequency domain resource allocation for the one or more NTN SIBs, an MCS, or a message size of the one or more NTN SIBs.
  • the one or more NTN SIBs include a single NTN SIB that includes the ephemeris information and the feeder link timing advance information.
  • the feeder link timing advance information indicates a feeder link timing advance with timing drift, and the information indicates at least one of a first validity duration or a first accuracy of the ephemeris information and at least one of a second validity duration or a second accuracy of the feeder link timing advance information.
  • the feeder link timing advance information indicates a feeder link timing advance without timing drift
  • an update periodicity for the feeder link timing advance information is based at least in part on an update periodicity for the ephemeris information.
  • the one or more NTN SIBs include multiple NTN SIBs that respectively include the ephemeris information and the feeder link timing advance information.
  • the information indicates the feeder link timing advance information
  • the feeder link timing advance information indicates a feeder link timing advance without timing drift.
  • the feeder link timing advance information indicates a feeder link timing advance without timing drift, and the information indicates at least one of an update periodicity for the feeder link timing advance information or an update period for the feeder link timing advance information.
  • the feeder link timing advance information indicates a feeder link timing advance without timing drift
  • an application time of the feeder link timing advance information is based at least in part on a last slot number of a first PDSCH communication of the one or more NTN SIBs or a last slot number of a first transmission window in an update period, and a system scheduling offset value.
  • process 700 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 7. Additionally, or alternatively, two or more of the blocks of process 700 may be performed in parallel.
  • Fig. 8 is a diagram illustrating an example process 800 performed, for example, by an NTN entity, in accordance with the present disclosure.
  • Example process 800 is an example where the NTN entity (e.g., base station 110, satellite 320, satellite 340, gateway 350, or the like) performs operations associated with broadcasting of an NTN SIB.
  • the NTN entity e.g., base station 110, satellite 320, satellite 340, gateway 350, or the like
  • the NTN entity e.g., base station 110, satellite 320, satellite 340, gateway 350, or the like
  • process 800 may include transmitting, to a UE, a SIB that indicates information relating to one or more NTN SIBs that are to include at least one of ephemeris information or feeder link timing advance information (block 810).
  • the NTN entity e.g., using communication manager 150 and/or transmission component 1004, depicted in Fig. 10) may transmit, to a UE, a SIB that indicates information relating to one or more NTN SIBs that are to include at least one of ephemeris information or feeder link timing advance information, as described above.
  • process 800 may include transmitting, to the UE, the one or more NTN SIBs based at least in part on the information (block 820).
  • the NTN entity e.g., using communication manager 150 and/or transmission component 1004, depicted in Fig. 10
  • Process 800 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
  • the information indicates at least one of an update periodicity for the one or more NTN SIBs or one or more transmission windows within an update period for the one or more NTN SIBs.
  • the one or more transmission windows are for transmission of a PDCCH communication that schedules the one or more NTN SIBs.
  • the one or more transmission windows are for transmission of a PDSCH communication of the one or more NTN SIBs.
  • a default update periodicity for the one or more NTN SIBs is the same as a periodicity for one or more non-NTN SIBs.
  • one or more repetitions of an NTN SIB, of the one or more NTN SIBs, within an update period are associated with a same reference time.
  • a reference time for the one or more NTN SIBs is based at least in part on a particular downlink transmit timepoint within an update period.
  • the information indicates at least one of a resource allocation or an MCS for reception of the one or more NTN SIBs.
  • a time domain resource allocation of the resource allocation is with respect to a start of a transmission window for the one or more NTN SIBs.
  • the information further indicates a message size of the one or more NTN SIBs.
  • the information indicates at least one of a validity duration or an accuracy of the one or more NTN SIBs.
  • the information indicates an update periodicity for the one or more NTN SIBs using a parameter type of the SIB that is also used to indicate a periodicity for one or more non-NTN SIBs.
  • an update to the one or more NTN SIBs includes at least one of the ephemeris information or the feeder link timing advance information without triggering a system information update procedure.
  • the information indicates an identifier that indicates, according to a table, one or more of an update periodicity for the one or more NTN SIBs, one or more transmission windows within an update period for the one or more NTN SIBs, a time domain resource allocation for the one or more NTN SIBs, a frequency domain resource allocation for the one or more NTN SIBs, an MCS, or a message size of the one or more NTN SIBs.
  • the one or more NTN SIBs include a single NTN SIB that includes the ephemeris information and the feeder link timing advance information.
  • the feeder link timing advance information indicates a feeder link timing advance with timing drift, and the information indicates at least one of a first validity duration or a first accuracy of the ephemeris information and at least one of a second validity duration or a second accuracy of the feeder link timing advance information.
  • the feeder link timing advance information indicates a feeder link timing advance without timing drift
  • an update periodicity for the feeder link timing advance information is based at least in part on an update periodicity for the ephemeris information.
  • the one or more NTN SIBs include multiple NTN SIBs that respectively include the ephemeris information and the feeder link timing advance information.
  • the information indicates the feeder link timing advance information
  • the feeder link timing advance information indicates a feeder link timing advance without timing drift.
  • the feeder link timing advance information indicates a feeder link timing advance without timing drift, and the information indicates at least one of an update periodicity for the feeder link timing advance information or an update period for the feeder link timing advance information.
  • the feeder link timing advance information indicates a feeder link timing advance without timing drift
  • an application time of the feeder link timing advance information is based at least in part on a last slot number of a first PDSCH communication of the one or more NTN SIBs or a last slot number of a first transmission window in an update period, and a system scheduling offset value.
  • process 800 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 8. Additionally, or alternatively, two or more of the blocks of process 800 may be performed in parallel.
  • Fig. 9 is a diagram of an example apparatus 900 for wireless communication.
  • the apparatus 900 may be a UE, or a UE may include the apparatus 900.
  • the apparatus 900 includes a reception component 902 and a transmission component 904, which may be in communication with one another (for example, via one or more buses and/or one or more other components).
  • the apparatus 900 may communicate with another apparatus 906 (such as a UE, a base station, or another wireless communication device) using the reception component 902 and the transmission component 904.
  • the apparatus 900 may include the communication manager 140.
  • the communication manager 140 may include an SI component 908, among other examples.
  • the apparatus 900 may be configured to perform one or more operations described herein in connection with Fig. 6. Additionally, or alternatively, the apparatus 900 may be configured to perform one or more processes described herein, such as process 700 of Fig. 7, or a combination thereof.
  • the apparatus 900 and/or one or more components shown in Fig. 9 may include one or more components of the UE described in connection with Fig. 2. Additionally, or alternatively, one or more components shown in Fig. 9 may be implemented within one or more components described in connection with Fig. 2. Additionally, or alternatively, one or more components of the set of components may be implemented at least in part as software stored in a memory. For example, a component (or a portion of a component) may be implemented as instructions or code stored in a non-transitory computer-readable medium and executable by a controller or a processor to perform the functions or operations of the component.
  • the reception component 902 may receive communications, such as reference signals, control information, data communications, or a combination thereof, from the apparatus 906.
  • the reception component 902 may provide received communications to one or more other components of the apparatus 900.
  • the reception component 902 may perform signal processing on the received communications (such as filtering, amplification, demodulation, analog-to-digital conversion, demultiplexing, deinterleaving, de-mapping, equalization, interference cancellation, or decoding, among other examples), and may provide the processed signals to the one or more other components of the apparatus 900.
  • the reception component 902 may include one or more antennas, a modem, a demodulator, a MIMO detector, a receive processor, a controller/processor, a memory, or a combination thereof, of the UE described in connection with Fig. 2.
  • the transmission component 904 may transmit communications, such as reference signals, control information, data communications, or a combination thereof, to the apparatus 906.
  • one or more other components of the apparatus 900 may generate communications and may provide the generated communications to the transmission component 904 for transmission to the apparatus 906.
  • the transmission component 904 may perform signal processing on the generated communications (such as filtering, amplification, modulation, digital-to-analog conversion, multiplexing, interleaving, mapping, or encoding, among other examples), and may transmit the processed signals to the apparatus 906.
  • the transmission component 904 may include one or more antennas, a modem, a modulator, a transmit MIMO processor, a transmit processor, a controller/processor, a memory, or a combination thereof, of the UE described in connection with Fig. 2. In some aspects, the transmission component 904 may be co-located with the reception component 902 in a transceiver.
  • the reception component 902 may receive, from an entity of an NTN (e.g., apparatus 906), a SIB that indicates information relating to one or more NTN SIBs that are to include at least one of ephemeris information or feeder link timing advance information.
  • the reception component 902 may receive, from the entity of the NTN, the one or more NTN SIBs based at least in part on the information.
  • the reception component 902 and/or the transmission component 904 may communicate with the NTN entity based at least in part on the one or more NTN SIBs.
  • the SI component 908 may process, store, apply, or the like, SI (e.g., the ephemeris information and/or the feeder link timing advance information) in the one or more NTN SIBs.
  • means for transmitting, outputting, or sending may include one or more antennas, a modulator, a transmit MIMO processor, a transmit processor, or a combination thereof, of the UE described above in connection with Fig. 2.
  • means for receiving may include one or more antennas, a demodulator, a MIMO detector, a receive processor, or a combination thereof, of the UE described above in connection with Fig. 2.
  • a device may have an interface to output signals and/or data for transmission (a means for outputting). For example, a processor may output signals and/or data, via a bus interface, to an RF front end for transmission. Similarly, rather than actually receiving signals and/or data, a device may have an interface to obtain the signals and/or data received from another device (a means for obtaining). For example, a processor may obtain (or receive) the signals and/or data, via a bus interface, from an RF front end for reception.
  • an RF front end may include various components, including transmit and receive processors, transmit and receive MIMO processors, modulators, demodulators, and the like, such as depicted in the examples in Fig. 2.
  • means for determining, means for obtaining, or means for sending may include various processing system components, such as a receive processor, a transmit processor, a controller/processor, a memory, or a combination thereof, of the UE described above in connection with Fig. 2.
  • Fig. 9 The number and arrangement of components shown in Fig. 9 are provided as an example. In practice, there may be additional components, fewer components, different components, or differently arranged components than those shown in Fig. 9. Furthermore, two or more components shown in Fig. 9 may be implemented within a single component, or a single component shown in Fig. 9 may be implemented as multiple, distributed components. Additionally, or alternatively, a set of (one or more) components shown in Fig. 9 may perform one or more functions described as being performed by another set of components shown in Fig. 9.
  • Fig. 10 is a diagram of an example apparatus 1000 for wireless communication.
  • the apparatus 1000 may be a base station or another NTN entity, or a base station or another NTN entity may include the apparatus 1000.
  • the apparatus 1000 includes a reception component 1002 and a transmission component 1004, which may be in communication with one another (for example, via one or more buses and/or one or more other components).
  • the apparatus 1000 may communicate with another apparatus 1006 (such as a UE, a base station, or another wireless communication device) using the reception component 1002 and the transmission component 1004.
  • the apparatus 1000 may include the communication manager 150.
  • the communication manager 150 may include an SI component 1008, among other examples.
  • the apparatus 1000 may be configured to perform one or more operations described herein in connection with Fig. 6. Additionally, or alternatively, the apparatus 1000 may be configured to perform one or more processes described herein, such as process 800 of Fig. 8, or a combination thereof.
  • the apparatus 1000 and/or one or more components shown in Fig. 10 may include one or more components of the base station described in connection with Fig. 2. Additionally, or alternatively, one or more components shown in Fig. 10 may be implemented within one or more components described in connection with Fig. 2. Additionally, or alternatively, one or more components of the set of components may be implemented at least in part as software stored in a memory. For example, a component (or a portion of a component) may be implemented as instructions or code stored in a non-transitory computer-readable medium and executable by a controller or a processor to perform the functions or operations of the component.
  • the reception component 1002 may receive communications, such as reference signals, control information, data communications, or a combination thereof, from the apparatus 1006.
  • the reception component 1002 may provide received communications to one or more other components of the apparatus 1000.
  • the reception component 1002 may perform signal processing on the received communications (such as filtering, amplification, demodulation, analog-to-digital conversion, demultiplexing, deinterleaving, de-mapping, equalization, interference cancellation, or decoding, among other examples), and may provide the processed signals to the one or more other components of the apparatus 1000.
  • the reception component 1002 may include one or more antennas, a modem, a demodulator, a MIMO detector, a receive processor, a controller/processor, a memory, or a combination thereof, of the base station described in connection with Fig. 2.
  • the transmission component 1004 may transmit communications, such as reference signals, control information, data communications, or a combination thereof, to the apparatus 1006.
  • one or more other components of the apparatus 1000 may generate communications and may provide the generated communications to the transmission component 1004 for transmission to the apparatus 1006.
  • the transmission component 1004 may perform signal processing on the generated communications (such as filtering, amplification, modulation, digital-to- analog conversion, multiplexing, interleaving, mapping, or encoding, among other examples), and may transmit the processed signals to the apparatus 1006.
  • the transmission component 1004 may include one or more antennas, a modem, a modulator, a transmit MIMO processor, a transmit processor, a controller/processor, a memory, or a combination thereof, of the base station described in connection with Fig. 2. In some aspects, the transmission component 1004 may be co-located with the reception component 1002 in a transceiver.
  • the transmission component 1004 may transmit, to a UE (e.g., apparatus 1006), a SIB that indicates information relating to one or more NTN SIBs that are to include at least one of ephemeris information or feeder link timing advance information.
  • the transmission component 1004 may transmit, to the UE, the one or more NTN SIBs based at least in part on the information.
  • the reception component 1002 and/or the transmission component 1004 may communicate with the UE based at least in part on the one or more NTN SIBs.
  • the SI component 1008 may generate, process, store, or the like SI (e.g., the ephemeris information and/or the feeder link timing advance information) for the one or more NTN SIBs.
  • means for transmitting, outputting, or sending may include one or more antennas, a modulator, a transmit MIMO processor, a transmit processor, or a combination thereof, of the base station or another NTN entity described above in connection with Fig. 2.
  • means for receiving may include one or more antennas, a demodulator, a MIMO detector, a receive processor, or a combination thereof, of the base station or another NTN entity described above in connection with Fig. 2.
  • a device may have an interface to output signals and/or data for transmission (a means for outputting).
  • a processor may output signals and/or data, via a bus interface, to an RF front end for transmission.
  • a device may have an interface to obtain the signals and/or data received from another device (a means for obtaining).
  • a processor may obtain (or receive) the signals and/or data, via a bus interface, from an RF front end for reception.
  • an RF front end may include various components, including transmit and receive processors, transmit and receive MIMO processors, modulators, demodulators, and the like, such as depicted in the examples in Fig. 2.
  • means for determining, means for obtaining, or means for sending may include various processing system components, such as a receive processor, a transmit processor, a controller/processor, a memory, or a combination thereof, of the base station or another NTN entity described above in connection with Fig. 2.
  • Fig. 10 The number and arrangement of components shown in Fig. 10 are provided as an example. In practice, there may be additional components, fewer components, different components, or differently arranged components than those shown in Fig. 10. Furthermore, two or more components shown in Fig. 10 may be implemented within a single component, or a single component shown in Fig. 10 may be implemented as multiple, distributed components. Additionally, or alternatively, a set of (one or more) components shown in Fig. 10 may perform one or more functions described as being performed by another set of components shown in Fig. 10.
  • a method of wireless communication at a user equipment comprising: obtaining, from an entity of a non-terrestrial network (NTN), a system information block (SIB) that indicates information relating to one or more NTN SIBs that are to include at least one of ephemeris information or feeder link timing advance information; and obtaining, from the entity of the NTN, the one or more NTN SIBs based at least in part on the information.
  • NTN non-terrestrial network
  • SIB system information block
  • Aspect 2 The method of Aspect 1, wherein the information indicates at least one of an update periodicity for the one or more NTN SIBs or one or more transmission windows within an update period for the one or more NTN SIBs.
  • Aspect 3 The method of Aspect 2, wherein the one or more transmission windows are for reception of a physical downlink control channel communication that schedules the one or more NTN SIBs.
  • Aspect 4 The method of Aspect 2, wherein the one or more transmission windows are for reception of a physical downlink shared channel communication of the one or more NTN SIBs.
  • Aspect 5 The method of any of Aspects 1-4, wherein a default update periodicity for the one or more NTN SIBs is the same as a periodicity for one or more non-NTN SIBs.
  • Aspect 6 The method of any of Aspects 1-5, wherein one or more repetitions of an NTN SIB, of the one or more NTN SIBs, within an update period, are associated with a same reference time.
  • Aspect 7 The method of any of Aspects 1-6, wherein a reference time for the at least one of the ephemeris information or the feeder link timing advance information of the one or more NTN SIBs is based at least in part on a particular downlink transmit timepoint within an update period.
  • Aspect 8 The method of any of Aspects 1-7, wherein the information indicates at least one of a resource allocation or a modulation and coding scheme for reception of the one or more NTN SIBs.
  • Aspect 9 The method of Aspect 8, wherein a time domain resource allocation of the resource allocation is with respect to a start of a transmission window for the one or more NTN SIBs.
  • Aspect 10 The method of any of Aspects 8-9, wherein the information further indicates a message size of the one or more NTN SIBs.
  • Aspect 11 The method of any of Aspects 1-10, wherein the information indicates at least one of a validity duration or an accuracy of the one or more NTN SIBs.
  • Aspect 12 The method of any of Aspects 1 or 5-11, wherein the information indicates an update periodicity for the one or more NTN SIBs using a parameter type of the SIB that is also used to indicate a periodicity for one or more non-NTN SIBs.
  • Aspect 13 The method of any of Aspects 1-11, wherein an update to the at least one of the ephemeris information or the feeder link timing advance information is independent of triggering a system information update procedure.
  • Aspect 14 The method of any of Aspects 1, 5-11, or 13, wherein the information indicates an identifier that indicates, according to a table, one or more of an update periodicity for the one or more NTN SIBs, one or more transmission windows within an update period for the one or more NTN SIBs, a time domain resource allocation for the one or more NTN SIBs, a frequency domain resource allocation for the one or more NTN SIBs, a modulation and coding scheme, or a message size of the one or more NTN SIBs.
  • Aspect 15 The method of any of Aspects 1-14, wherein the one or more NTN SIBs include a single NTN SIB that includes the ephemeris information and the feeder link timing advance information.
  • Aspect 16 The method of Aspect 15, wherein the feeder link timing advance information indicates a feeder link timing advance with timing drift, and wherein the information indicates at least one of a first validity duration or a first accuracy of the ephemeris information and at least one of a second validity duration or a second accuracy of the feeder link timing advance information.
  • Aspect 17 The method of Aspect 15, wherein the feeder link timing advance information indicates a feeder link timing advance without timing drift, and wherein an update periodicity for the feeder link timing advance information is based at least in part on an update periodicity for the ephemeris information.
  • Aspect 18 The method of any of Aspects 1-14, wherein the one or more NTN SIBs include multiple NTN SIBs that respectively include the ephemeris information and the feeder link timing advance information.
  • Aspect 19 The method of any of Aspects 1-14, wherein the information indicates the feeder link timing advance information, and the feeder link timing advance information indicates a feeder link timing advance without timing drift.
  • Aspect 20 The method of any of Aspects 1-15 or 17-18, wherein the feeder link timing advance information indicates a feeder link timing advance without timing drift, and wherein the information indicates at least one of an update periodicity for the feeder link timing advance information or an update period for the feeder link timing advance information.
  • Aspect 21 The method of any of Aspects 1-15, 17-18, or 20, wherein the feeder link timing advance information indicates a feeder link timing advance without timing drift, and wherein an application time of the feeder link timing advance information is based at least in part on a last slot number of a first physical downlink shared channel communication of the one or more NTN SIBs or a last slot number of a first transmission window in an update period, and a system scheduling offset value.
  • a method of wireless communication at an entity of a nonterrestrial network comprising: outputting for transmission to a user equipment (UE) a system information block (SIB) that indicates information relating to one or more NTN SIBs that are to include at least one of ephemeris information or feeder link timing advance information; and outputting for transmission to the UE, the one or more NTN SIBs based at least in part on the information.
  • SIB system information block
  • Aspect 23 The method of Aspect 22, wherein the information indicates at least one of an update periodicity for the one or more NTN SIBs or one or more transmission windows within an update period for the one or more NTN SIBs.
  • Aspect 24 The method of Aspect 23, wherein the one or more transmission windows are for transmission of a physical downlink control channel communication that schedules the one or more NTN SIBs.
  • Aspect 25 The method of Aspect 23, wherein the one or more transmission windows are for transmission of a physical downlink shared channel communication of the one or more NTN SIBs.
  • Aspect 26 The method of any of Aspects 22-25, wherein a default update periodicity for the one or more NTN SIBs is the same as a periodicity for one or more non-NTN SIBs.
  • Aspect 27 The method of any of Aspects 22-26, wherein one or more repetitions of an NTN SIB, of the one or more NTN SIBs, within an update period, are associated with a same reference time.
  • Aspect 28 The method of any of Aspects 22-27, wherein a reference time for the at least one of the ephemeris information or the feeder link timing advance information of the one or more NTN SIBs is based at least in part on a particular downlink transmit timepoint within an update period.
  • Aspect 29 The method of any of Aspects 22-28, wherein the information indicates at least one of a resource allocation or a modulation and coding scheme for reception of the one or more NTN SIBs.
  • Aspect 30 The method of Aspect 29, wherein a time domain resource allocation of the resource allocation is with respect to a start of a transmission window for the one or more NTN SIBs.
  • Aspect 31 The method of any of Aspects 29-30, wherein the information further indicates a message size of the one or more NTN SIBs.
  • Aspect 32 The method of any of Aspects 22-31, wherein the information indicates at least one of a validity duration or an accuracy of the one or more NTN SIBs.
  • Aspect 33 The method of any of Aspects 22 or 26-32, wherein the information indicates an update periodicity for the one or more NTN SIBs using a parameter type of the SIB that is also used to indicate a periodicity for one or more non- NTN SIBs.
  • Aspect 34 The method of any of Aspects 22-32, wherein an update to the at least one of the ephemeris information or the feeder link timing advance information is independent of triggering a system information update procedure.
  • Aspect 35 The method of any of Aspects 22, 26-32, or 34 wherein the information indicates an identifier that indicates, according to a table, one or more of an update periodicity for the one or more NTN SIBs, one or more transmission windows within an update period for the one or more NTN SIBs, a time domain resource allocation for the one or more NTN SIBs, a frequency domain resource allocation for the one or more NTN SIBs, a modulation and coding scheme, or a message size of the one or more NTN SIBs.
  • Aspect 36 The method of any of Aspects 22-35, wherein the one or more NTN SIBs include a single NTN SIB that includes the ephemeris information and the feeder link timing advance information.
  • Aspect 37 The method of Aspect 36, wherein the feeder link timing advance information indicates a feeder link timing advance with timing drift, and wherein the information indicates at least one of a first validity duration or a first accuracy of the ephemeris information and at least one of a second validity duration or a second accuracy of the feeder link timing advance information.
  • Aspect 38 The method of Aspect 36, wherein the feeder link timing advance information indicates a feeder link timing advance without timing drift, and wherein an update periodicity for the feeder link timing advance information is based at least in part on an update periodicity for the ephemeris information.
  • Aspect 39 The method of any of Aspects 22-35, wherein the one or more NTN SIBs include multiple NTN SIBs that respectively include the ephemeris information and the feeder link timing advance information.
  • Aspect 40 The method of any of Aspects 22-35, wherein the information indicates the feeder link timing advance information, and the feeder link timing advance information indicates a feeder link timing advance without timing drift.
  • Aspect 41 The method of any of Aspects 22-36 or 38-39, wherein the feeder link timing advance information indicates a feeder link timing advance without timing drift, and wherein the information indicates at least one of an update periodicity for the feeder link timing advance information or an update period for the feeder link timing advance information.
  • Aspect 42 The method of any of Aspects 22-36, 38-39, or 41, wherein the feeder link timing advance information indicates a feeder link timing advance without timing drift, and wherein an application time of the feeder link timing advance information is based at least in part on a last slot number of a first physical downlink shared channel communication of the one or more NTN SIBs or a last slot number of a first transmission window in an update period, and a system scheduling offset value.
  • Aspect 43 An apparatus for wireless communication comprising a memory comprising instructions and one or more processors configured to execute the instructions and cause the apparatus to perform the method of one or more of Aspects 1- 21.
  • Aspect 44 A user equipment (UE), comprising at least one receiver, a memory comprising instructions, and one or more processors configured to execute the instructions and cause the UE to perform the method of one or more of Aspects 1-21, wherein the at least one receiver is configured to receive the SIB and the one or more NTN SIBs.
  • UE user equipment
  • Aspect 45 An apparatus for wireless communication, comprising at least one means for performing the method of one or more of Aspects 1-21.
  • Aspect 46 A non-transitory computer-readable medium comprising one or more instructions that, when executed by one or more processors of an apparatus, cause the apparatus to perform the method of one or more of Aspects 1-21.
  • Aspect 47 An apparatus for wireless communication comprising a memory comprising instructions and one or more processors configured to execute the instructions and cause the apparatus to perform the method of one or more of Aspects 22-42.
  • Aspect 48 An entity of a non-terrestrial network (NTN), comprising at least one transmitter, a memory comprising instructions, and one or more processors configured to execute the instructions and cause the entity of the NTN to perform the method of one or more of Aspects 22-42, wherein the at least one transmitter is configured to transmit the SIB and the one or more NTN SIBs.
  • NTN non-terrestrial network
  • Aspect 49 An apparatus for wireless communication, comprising at least one means for performing the method of one or more of Aspects 22-42.
  • Aspect 50 A non-transitory computer-readable medium comprising one or more instructions that, when executed by one or more processors of an apparatus, cause the apparatus to perform the method of one or more of Aspects 22-42.
  • the term “component” is intended to be broadly construed as hardware and/or a combination of hardware and software.
  • “Software” shall be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, and/or functions, among other examples, whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise.
  • a “processor” is implemented in hardware and/or a combination of hardware and software. It will be apparent that systems and/or methods described herein may be implemented in different forms of hardware and/or a combination of hardware and software.
  • satisfying a threshold may, depending on the context, refer to a value being greater than the threshold, greater than or equal to the threshold, less than the threshold, less than or equal to the threshold, equal to the threshold, not equal to the threshold, or the like.
  • “at least one of: a, b, or c” is intended to cover a, b, c, a + b, a + c, b + c, and a + b + c, as well as any combination with multiples of the same element (e.g., a + a, a + a + a, a + a + b, a + a + c, a + b + b, a + c + c, b + b, b + b + b, b + b + c, c + c, and c + c + c, or any other ordering of a, b, and c).
  • the terms “has,” “have,” “having,” or the like are intended to be open-ended terms that do not limit an element that they modify (e.g., an element “having” A may also have B). Further, the phrase “based on” is intended to mean “based, at least in part, on” unless explicitly stated otherwise. Also, as used herein, the term “or” is intended to be inclusive when used in a series and may be used interchangeably with “and/or,” unless explicitly stated otherwise (e.g., if used in combination with “either” or “only one of’).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Divers aspects de la présente divulgation portent d'une manière générale sur la communication sans fil. Selon certains aspects, un équipement utilisateur (UE) peut recevoir, en provenance d'une entité d'un réseau non terrestre (NTN), un bloc d'informations de système (SIB) qui indique des informations relatives à un ou à plusieurs SIB de NTN qui doivent comprendre des informations d'éphémérides et/ou des informations d'avance temporelle de liaison montante. L'UE peut recevoir, en provenance de l'entité du NTN, le ou les SIB de NTN sur la base, au moins en partie, des informations. De nombreux autres aspects sont décrits.
PCT/US2022/072980 2021-08-05 2022-06-16 Diffusion d'un bloc d'informations de système de réseau non terrestre WO2023015064A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020247003460A KR20240036019A (ko) 2021-08-05 2022-06-16 비지상망 시스템 정보 블록의 브로드캐스팅
EP22743691.2A EP4381828A1 (fr) 2021-08-05 2022-06-16 Diffusion d'un bloc d'informations de système de réseau non terrestre
CN202280050138.5A CN117643115A (zh) 2021-08-05 2022-06-16 非地面网络系统信息块的广播
CONC2024/0000524A CO2024000524A2 (es) 2021-08-05 2024-01-22 Difusión de un bloque de información del sistema de red no terrestre

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US202163203961P 2021-08-05 2021-08-05
US63/203,961 2021-08-05
US17/661,996 US11589292B1 (en) 2021-08-05 2022-05-04 Broadcasting of a non-terrestrial network system information block
US17/661,996 2022-05-04

Publications (1)

Publication Number Publication Date
WO2023015064A1 true WO2023015064A1 (fr) 2023-02-09

Family

ID=82595009

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2022/072980 WO2023015064A1 (fr) 2021-08-05 2022-06-16 Diffusion d'un bloc d'informations de système de réseau non terrestre

Country Status (1)

Country Link
WO (1) WO2023015064A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023186419A1 (fr) * 2022-03-30 2023-10-05 Sony Group Corporation Appareil et procédés de télécommunications sans fil

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020204421A1 (fr) * 2019-03-29 2020-10-08 Samsung Electronics Co., Ltd. Améliorations apportées à des réseaux non terrestres
WO2021017690A1 (fr) * 2019-07-29 2021-02-04 大唐移动通信设备有限公司 Procédé de synchronisation de mesure, dispositif de réseau et dispositif terminal
WO2021066696A1 (fr) * 2019-10-03 2021-04-08 Telefonaktiebolaget Lm Ericsson (Publ) Procédés de mise à jour de données d'éphémérides dans un réseau non terrestre (ntn)
CN112787712A (zh) * 2021-03-29 2021-05-11 中国电子科技集团公司第七研究所 面向低轨道卫星基站-飞行器用户终端的通信连接建立方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020204421A1 (fr) * 2019-03-29 2020-10-08 Samsung Electronics Co., Ltd. Améliorations apportées à des réseaux non terrestres
WO2021017690A1 (fr) * 2019-07-29 2021-02-04 大唐移动通信设备有限公司 Procédé de synchronisation de mesure, dispositif de réseau et dispositif terminal
WO2021066696A1 (fr) * 2019-10-03 2021-04-08 Telefonaktiebolaget Lm Ericsson (Publ) Procédés de mise à jour de données d'éphémérides dans un réseau non terrestre (ntn)
CN112787712A (zh) * 2021-03-29 2021-05-11 中国电子科技集团公司第七研究所 面向低轨道卫星基站-飞行器用户终端的通信连接建立方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023186419A1 (fr) * 2022-03-30 2023-10-05 Sony Group Corporation Appareil et procédés de télécommunications sans fil

Similar Documents

Publication Publication Date Title
US20220321207A1 (en) Measurement configuration in non-terrestrial networks
US11626954B2 (en) Polarization indication signaling for channel state information reference signals
US11632712B2 (en) System information parameter update time in non-terrestrial network
US20230276349A1 (en) Broadcasting of a non-terrestrial network system information block
WO2023015064A1 (fr) Diffusion d'un bloc d'informations de système de réseau non terrestre
US20220039033A1 (en) User equipment timing misalignment reporting in non-terrestrial networks
US11700050B2 (en) Polarization indication signaling
WO2023019541A1 (fr) Saut de fréquence pour de multiples répétitions de liaison montante
US20220039125A1 (en) Wireless communication with a configurable gap
WO2022035572A1 (fr) Ressources de domaine temporel interrompues pour un équipement utilisateur semi-duplex ayant une avance temporelle importante
EP4150791A2 (fr) Cible de fréquence de liaison montante pour réseau non terrestre
WO2023015514A1 (fr) Identification de faisceau et transmissions simultanées de blocs de signaux de synchronisation pour dispositif de réseau à plusieurs faisceaux
US20220353702A1 (en) Indicating a loss of coherence in a wireless network
WO2023000293A1 (fr) Protection de coexistence de véhicule à tout d'évolution à long terme et de nouvelle radio dans des canaux adjacents
US20230106766A1 (en) Nulling for inter-user equipment interference cancellation
WO2022221978A1 (fr) Compensation d'avance de synchronisation autonome pour communication air-sol
US20220085958A1 (en) Beam switch timing for a periodic channel state information reference signals
WO2022205045A1 (fr) Précision de synchronisation pour équipement utilisateur à capacité réduite dans un réseau non terrestre
EP4331261A1 (fr) Indication d'une perte de cohérence dans un réseau sans fil
WO2023129789A1 (fr) Distribution de bloc d'informations système dans une liaison latérale
WO2022217201A1 (fr) Configuration de mesure dans des réseaux non terrestres
WO2023081554A1 (fr) Transmission dans une autorisation configurée et planification semi-persistante dans un réseau non terrestre et liée à une opération harq
WO2023064659A1 (fr) Capacité d'équipement utilisateur pour commuter des polarisations

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22743691

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280050138.5

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2024505441

Country of ref document: JP

Kind code of ref document: A

Ref document number: 20247003460

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2401000625

Country of ref document: TH

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112024001493

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022743691

Country of ref document: EP

Effective date: 20240305

ENP Entry into the national phase

Ref document number: 112024001493

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20240124