WO2023013998A1 - Biomarker for prognosis of lung cancer treatment and use thereof - Google Patents

Biomarker for prognosis of lung cancer treatment and use thereof Download PDF

Info

Publication number
WO2023013998A1
WO2023013998A1 PCT/KR2022/011222 KR2022011222W WO2023013998A1 WO 2023013998 A1 WO2023013998 A1 WO 2023013998A1 KR 2022011222 W KR2022011222 W KR 2022011222W WO 2023013998 A1 WO2023013998 A1 WO 2023013998A1
Authority
WO
WIPO (PCT)
Prior art keywords
lung cancer
tet2
clonal hematopoiesis
dnmt3a
mutations
Prior art date
Application number
PCT/KR2022/011222
Other languages
French (fr)
Korean (ko)
Inventor
선충현
김수경
임호균
송한
최세훈
윤재광
Original Assignee
(주)지놈오피니언
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020220094276A external-priority patent/KR102574286B1/en
Application filed by (주)지놈오피니언 filed Critical (주)지놈오피니언
Publication of WO2023013998A1 publication Critical patent/WO2023013998A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • C12Q1/6886Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer

Definitions

  • the present invention relates to a biomarker and its use for predicting the prognosis of lung cancer treatment, in particular, the prognosis of non-small cell lung cancer treatment. More specifically, the present invention is intended to predict the prognosis of lung cancer patients who have received or are scheduled to receive adjuvant therapy following surgical resection.
  • Clonal hematopoiesis is a condition defined by the expansion of clonally derived hematopoietic stem cells (HSCs) harboring somatic mutations in leukemia-associated genes, which can be detected by next-generation sequencing (NGS) (Genovese G , Kahler AK, Handsaker RE, et al: Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence.N Engl J Med 371:2477-87, 2014;Park SJ, Bejar R: Clonal hematopoiesis in cancer.Exp Hematol 83:105-112, 2020; and Jaiswal S, Ebert BL: Clonal hematopoiesis in human aging and disease.
  • NGS next-generation sequencing
  • CH cardiovascular diseases and hematological malignancies.
  • lung cancer is the most commonly diagnosed cancer and is a leading cause of cancer-related death worldwide.
  • surgical excision is preferentially performed when possible, but the 5-year survival rate after surgery remains at 65%. Therefore, it is important to develop predictive factors capable of predicting the prognosis after lung cancer surgery in order to increase the survival rate through additional treatment after surgery and early detection of recurrence.
  • prognostic factors such as age, gender, and cancer stage have been identified, but new factors need to be explored in the NGS era.
  • Non-Patent Document 1 Jaiswal S, Ebert BL: Clonal hematopoiesis in human aging and disease, Science 366, 2019.
  • Non-Patent Document 2 Park SJ, Bejar R: Clonal hematopoiesis in cancer, Exp Hematol 83:105-112, 2020.
  • Non-Patent Document 3 Genovese G, Kahler AK, Handsaker RE, et al: Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence, N Engl J Med 371:2477-87, 2014.
  • the object of the present invention is to solve all of the above problems.
  • An object of the present invention is to provide a method of predicting the prognosis of lung cancer treatment in a lung cancer patient or a method of providing information for predicting the prognosis of lung cancer treatment.
  • Another object of the present invention is to provide a composition for predicting the prognosis of lung cancer treatment in lung cancer patients.
  • Another object of the present invention is to provide a kit for predicting the prognosis of lung cancer treatment in lung cancer patients.
  • Another object of the present invention is to provide a panel for genetic analysis capable of detecting genetic mutations of clonal hematopoiesis in order to predict the prognosis of lung cancer treatment in lung cancer patients.
  • Another object of the present invention is to provide a method for treating lung cancer or a method for providing information for lung cancer treatment.
  • predicting the prognosis of lung cancer treatment of an individual comprising determining whether clonal hematopoiesis exists in an individual through genetic analysis of a biological sample isolated from an individual being treated for lung cancer
  • a method or method of providing information for predicting the prognosis of lung cancer treatment of an individual is provided.
  • composition for predicting the prognosis of lung cancer treatment in an individual comprising, as an active ingredient, an agent for confirming the presence of clonal hematopoiesis using a biological sample isolated from an individual being treated for lung cancer. is provided.
  • kits for predicting the prognosis of lung cancer treatment of a subject comprising the composition is provided.
  • a genetic analysis panel for detecting genetic mutations in clonal hematopoiesis comprising the composition is provided.
  • treatment of lung cancer comprising the step of determining whether clonal hematopoiesis exists in a subject through genetic analysis of a biological sample isolated from the subject prior to administration of a therapeutic agent for lung cancer treatment.
  • a method or method of providing information for treatment of lung cancer is provided.
  • the present invention when it is confirmed that there is a mutation in a gene related to clonal hematopoiesis (CH) of an individual, it is possible to predict the prognosis according to the treatment of lung cancer, particularly non-small cell lung cancer, of the individual.
  • the present invention can provide useful information for determining the application of adjuvant therapy following surgical resection in relation to lung cancer treatment, information useful for determining whether to administer a therapeutic agent for lung cancer treatment, and the like, and furthermore, lung cancer In clinical trials of drug candidates for treatment, useful information can be provided to evaluate the efficacy and safety of drug candidates for patients.
  • CONSORT Consolidated Standards of Reporting Trials
  • Figures 2a and 2b show the overall survival and recurrence-free survival of patients, respectively, according to the presence of clonal hematopoietic (CH) mutations in the entire cohort.
  • Figure 2c shows the overall survival of patients according to the presence of CH mutations after propensity score matching (PSM).
  • PSM propensity score matching
  • Figure 3 shows the cumulative mortality according to the presence of CH.
  • FIGS. 3A, 3B, and 3C show cumulative lung cancer mortality according to the presence of CH, cumulative non-lung cancer mortality according to the presence of CH, and cumulative mortality of unknown cause according to the presence of CH, respectively.
  • Figures 4a and 4b show overall survival according to the presence of CH mutations in patients receiving adjuvant therapy for stage IIB lung cancer before and after PSM, respectively.
  • 4c and 4d respectively show the overall survival rate according to the presence of CH mutation in patients without adjuvant therapy for stage IIB lung cancer before and after PSM (Tx, Treatment).
  • 5A-5C show the characteristics of CH mutations identified in the entire cohort.
  • Figure 5A shows the prevalence of CH by age of patients in the cohort.
  • 5B shows the number of mutations carried per patient.
  • Figure 5c shows the number of mutations in each CH gene.
  • Figures 6a to 6c show the overall survival of patients according to the presence of CH mutations in stages IIB, IIIA and IIIB, respectively.
  • the term "about” refers to the typical error range for each value known to one of ordinary skill in the art. Further, unless otherwise specified, all numbers, values and/or expressions expressing ingredients, conditions, compositions, amounts, etc., used herein mean that such numbers are, among other things, essentially the representations of measurements that would occur to obtain such values. Since these are approximations that reflect various uncertainties, they should be understood to be qualified by the term "about”.
  • clonal haematopoiesis refers to a condition in which, when hematopoietic stem cells undergo somatic mutations to gain an opportunity for selective proliferation, the mutated clone expands and occupies a certain portion of leukocytes.
  • subject can be used interchangeably with “patient” and includes a mammal, such as a primate (eg, a human), a companion animal (eg, a dog, cats, etc.), livestock animals (eg, cows, pigs, horses, sheep, goats, etc.) and laboratory animals (eg rats, mice, guinea pigs, etc.).
  • a primate eg, a human
  • a companion animal eg, a dog, cats, etc.
  • livestock animals eg, cows, pigs, horses, sheep, goats, etc.
  • laboratory animals eg rats, mice, guinea pigs, etc.
  • prognosis refers to the course of a disease, such as the likelihood of death or progression due to lung cancer, including onset, recurrence, metastatic spread, survival rate, disease-free survival rate, drug resistance or susceptibility of a disease such as lung cancer, and whether it is cured or not.
  • the prognosis may refer to a survival prognosis according to lung cancer treatment including surgery, chemotherapy, chemotherapy, chemoradiation, or a combination of these therapies in lung cancer patients.
  • the prognosis of lung cancer treatment may mean the patient's responsiveness to a therapeutic agent for lung cancer treatment.
  • prediction refers to preliminarily determining the possibility of a patient surviving by responding preferentially or unfavorably to a treatment such as chemotherapy or chemoradiation or a treatment for lung cancer. Predicting survival prognosis can help select the most appropriate treatment method for a patient, confirm whether the patient responds favorably to the treatment method, or predict long-term survival of the patient after performing the treatment method.
  • biological sample refers to any biological sample obtained from an individual, which is a tissue, tumor tissue, lung tumor tissue, blood, serum, plasma, lymph, saliva, sputum, Samples such as mucus or urine include, but are not limited to.
  • adjuvant therapy includes chemotherapy (CTx), chemoradiation therapy (CRTx), molecular targeted therapy, radiofrequency hyperthermia cancer therapy, immunotherapy using biological agents, etc., performed before and after tumor removal surgery to treat cancer locally.
  • CTx chemotherapy
  • CRTx chemoradiation therapy
  • molecular targeted therapy radiofrequency hyperthermia cancer therapy
  • immunotherapy using biological agents etc., performed before and after tumor removal surgery to treat cancer locally.
  • any therapy may be included as long as it can be used as an adjuvant to systemic treatment.
  • all survival rate refers to the rate at which a cancer patient survives 5 years after undergoing surgery, even if the cancer has recurred or metastasized.
  • recurrence-free survival rate refers to the rate of cancer recurrence-free survival 5 years after surgery.
  • missense mutation refers to a genetic mutation in which a single base substitution occurs at a site on a DNA chain, thereby changing the genetic code of mRNA and designating an amino acid different from the original one to affect a protein.
  • frameshift mutation refers to a genetic mutation caused by insertion or deletion of a non-divisible number of bases.
  • nonsense mutation refers to a genetic mutation in which a codon encoding an original amino acid is changed to a stop codon that does not encode an amino acid by a single base substitution, so that protein synthesis is stopped at the location of the codon.
  • splice variation refers to a variation that occurs through the use of alternative splicing sites within transcribed RNA molecules or between individually transcribed RNA molecules.
  • primer refers to a nucleic acid sequence that is capable of forming a base pair with a complementary template and serves as a starting point for copying the template strand.
  • the sequence of the primer does not necessarily have to be exactly the same as the sequence of the template, but is sufficiently complementary to allow hybridization with the template.
  • Primers can initiate DNA synthesis in the presence of reagents for polymerization and four different nucleoside triphosphates in an appropriate buffer solution and temperature. PCR conditions and lengths of sense and antisense primers can be modified based on those known in the art.
  • probe refers to a substance capable of specifically binding to a target substance to be detected in a sample, and through the binding, a substance capable of specifically confirming the presence of the target substance in the sample.
  • the probe may be prepared in the form of an oligonucleotide probe, a single-stranded DNA probe, a double-stranded DNA probe, or an RNA probe. Selection of suitable probes and hybridization conditions can be modified based on those known in the art.
  • antisense nucleic acid refers to a nucleic acid-based molecule that has a complementary sequence to a target gene variant and can form a dimer with the target gene variant, and can be used to detect the target gene variant.
  • An appropriate length of the antisense nucleic acid may be selected to increase detection specificity.
  • gene panel refers to a genetic mutation detection tool in which a panel is composed of a plurality of agents capable of detecting mutations in a plurality of target genes.
  • therapeutic agent for treating lung cancer refers to a substance exhibiting an effect of improving, alleviating or treating the symptoms of a patient with lung cancer, and noting morphological, physiological or genetic changes in lung cancer cells. As long as they are clearly indicated, their physical properties, chemical properties, biological origin, etc. are not particularly limited.
  • the therapeutic agent includes all kinds of substances that can be used in the adjuvant therapy, ie, chemotherapy (CTx), chemoradiation therapy (CRTx), molecular target therapy, immunotherapy using biological agents, and the like.
  • clinical trial refers to all processes of research on the application of pharmaceuticals to humans, as well as research procedures conducted to confirm the safety and efficacy of pharmaceuticals, as well as bioequivalence tests to prove the bioequivalence of original and generic drugs. , clinical studies or side effects studies on drugs that have already been approved and are on the market.
  • the present invention is based in part on the surprising discovery that the presence or absence of clonal haematopoiesis (CH) in individuals undergoing lung cancer treatment is significantly associated with the prognosis of lung cancer treatment.
  • CH clonal haematopoiesis
  • the present invention may include determining whether clonal hematopoiesis exists in a subject being treated for lung cancer in order to provide information necessary for prognosis of lung cancer.
  • clonal hematopoiesis exists in the subject according to the present invention, it may indicate that the prognosis of lung cancer treatment is not good compared to the case where clonal hematopoiesis does not exist.
  • individuals with clonal hematopoiesis had a poorer overall survival rate compared to individuals without clonal hematopoiesis, and even after excluding variables other than clonal hematopoiesis by applying the propensity score matching (PSM) technique, Patients who still had clonal hematopoiesis showed poorer survival compared to patients who did not (see Example 6.3 and FIGS. 2A-2C).
  • PSM propensity score matching
  • mortality due to lung cancer was similar regardless of the presence or absence of clonal hematopoiesis, but non-lung cancer mortality and mortality from unknown cause were compared with patients without clonal hematopoiesis. It was significantly higher in patients with hematopoiesis (see Example 6.3 and FIGS. 3A-3C).
  • the presence of clonal hematopoiesis was associated with poorer overall survival in patients receiving adjuvant therapy, but the presence of clonal hematopoiesis did not significantly affect overall survival in patients not receiving adjuvant therapy. It was confirmed (see Example 6.3 and FIGS. 4a to 4d).
  • confirming the presence or absence of clonal hematopoiesis can predict the prognosis of lung cancer treatment and at the same time help select an appropriate follow-up therapy following lung cancer surgery, thereby increasing the survival rate of individuals after lung cancer treatment.
  • it is possible to more efficiently and accurately evaluate the efficacy of a therapeutic agent by selecting an individual to evaluate the efficacy of a therapeutic agent used for lung cancer treatment, such as adjuvant therapy, by checking whether clonal hematopoiesis exists in the individual prior to administration of the therapeutic agent, The cost of evaluating the efficacy of such therapeutics (eg, clinical trials) can be lowered.
  • clonal hematopoiesis exists in the target patient, and patients with clonal hematopoiesis are excluded from the patient group for lung cancer.
  • Efficacy evaluation of the therapeutic agent can be performed more efficiently and accurately.
  • the efficacy of the therapeutic agent in the individual and the lung cancer treatment effect can be increased.
  • a method for predicting the prognosis of lung cancer treatment of an individual comprising the step of determining whether clonal hematopoiesis exists in an individual through genetic analysis of a biological sample isolated from the individual.
  • a method for providing information for predicting the prognosis of lung cancer treatment of an individual is provided, which includes determining whether clonal hematopoiesis exists in the individual through genetic analysis of a biological sample isolated from the individual.
  • Genes causing somatic mutations associated with clonal hematopoiesis include APC, ASXL1, ASXL2, ATM, BCL11B, BCOR, BCORL1, BIRC3, BRAF, BRCC3, CARD11, CASP8, CBL, CD58, CD79B, CNOT3, CREBBP, and CUX1 , DDX3X, DNMT3A, EP300, ETV6, EZH2, FAM46C, FBXW7, FLT3, FOXP1, GNAS, GNB1, GPS2, HIST1H1C, IDH2, IKZF1, IKZF2, JAK1, JAK2, JAK3, JARID2, KDM6A, KIT, KLHL6, KMT2D, KRAS , LUC7L2, MAP3K1, MPL, MYD88, NF1, NFE2L2, NOTCH1, NOTCH2, NRAS, PDS5B, PDSS2, PHF6, PHIP, PIK3CA, PI
  • the one or more genes are DNMT3A, ASXL1, TET2, PPM1D, ATM, BCL11B, CARD11, CBL, CD79B, CHEK2, CUX1, ETV6, FOXP1, JAK2, KMT2D, MAP3K1, MPL, NF1, NOTCH1, NOTCH2, It may include one or more selected from the group consisting of PHIP, PRPF40B, RAD21, SETD2, SF3B1, TET1, TNFAIP3, TP53, U2AF1 and ZRSR2.
  • the one or more genes are selected from the group consisting of ASXL1, CBL, CHEK2, CUX1, DNMT3A, FOXP1, JAK2, KMT2D, MPL, NOTCH1, PPM1D, PRPF40B, SF3B1, TET2, TNFAIP3, TP53, U2AF1 and ZRSR2.
  • One or more selected ones may be included.
  • the one or more genes may include one or more selected from the group consisting of DNMT3A, ASXL1, TET2, PPM1D, SF3B1, ATM, and TNFAIP3.
  • the one or more genes may include any one gene selected from the group consisting of the above-mentioned genes, and in this case, the one or more genes consist of the rest of the genes other than the selected one gene. It may further include one or more selected from the group.
  • the one or more genes may include DNMT3A.
  • the one or more genes are ASXL1, TET2, PPM1D, ATM, BCL11B, CARD11, CBL, CD79B, CHEK2, CUX1, ETV6, FOXP1, JAK2, KMT2D, MAP3K1, MPL, NF1, NOTCH1, NOTCH2, PHIP, PRPF40B, It may further include one or more selected from the group consisting of RAD21, SETD2, SF3B1, TET1, TNFAIP3, TP53, U2AF1 and ZRSR2.
  • the at least one gene is selected from the group consisting of ASXL1, CBL, CHEK2, CUX1, FOXP1, JAK2, KMT2D, MPL, NOTCH1, PPM1D, PRPF40B, SF3B1, TET2, TNFAIP3, TP53, U2AF1 and ZRSR2 Add one or more can be included with
  • the one or more genes may further include one or more selected from the group consisting of ASXL1, TET2, PPM1D, SF3B1, ATM, and TNFAIP3.
  • the presence or absence of clonal hematopoiesis may be determined based on the presence or absence of mutations in the one or more genes and the variant allele frequency (VAF). For example, through genetic analysis using a biological sample isolated from an individual, one or more mutations exist in one or more genes among the genes of the gene group, and the frequency of the variant allele is higher than a certain level, for example, about 1.8% or higher, about 1.8% or higher. If it is 1.9% or more, or about 2% or more, clonal hematopoiesis can be diagnosed as present.
  • VAF variant allele frequency
  • the "individual” may mean a patient being treated for lung cancer. Specifically, the subject may mean a patient with lung cancer. More specifically, the subject may mean a patient before or after undergoing tumor removal surgery. Additionally, the subject may be a patient prior to receiving adjuvant therapy.
  • the "lung cancer” refers to a tumor originating in the lung, and may include non-small cell cancer and small cell cancer such as squamous cell carcinoma, adenocarcinoma, and large cell carcinoma.
  • the lung cancer may be non-small cell lung cancer.
  • the subject's non-small cell lung cancer may be stage I, stage II or a later stage.
  • the non-small cell lung cancer stage of the subject may be stage IA, stage IB, stage IIA, stage IIB, stage IIIA or stage IIIB, and more specifically stage IIB.
  • the prognosis of lung cancer treatment may refer to a survival prognosis according to lung cancer treatment including surgery, chemotherapy, anticancer immunotherapy, chemoradiation, or a combination of these therapies or the same in an individual.
  • the prognosis of lung cancer treatment may mean overall survival rate or recurrence-free survival rate according to adjuvant therapy performed before or after tumor removal surgery or lung cancer treatment including the same.
  • prognosis of lung cancer treatment may include overall survival rate or recurrence-free survival rate after tumor removal surgery or after application of adjuvant therapy following tumor removal surgery.
  • the prognosis of lung cancer treatment may include responsiveness to adjuvant therapy such as chemotherapy or radiation therapy after surgery in an individual receiving treatment for lung cancer, survival prognosis, or both thereof.
  • Anticancer chemotherapy may refer to treatment using an anticancer agent.
  • Prognosis may mean, for example, responsiveness to anticancer drugs and/or survival prognosis in lung cancer patients administered with anticancer drugs including platinum-based drugs, taxane-based drugs, vinca alkaloid-based drugs, and anti-metabolites.
  • surgery and adjuvant therapy are performed, and even among patients with similar clinical characteristics or similar stages, the response to each adjuvant therapy varies, and survival prognosis may also show significant differences.
  • a significant difference according to the presence of CH in patient mortality was not lung cancer mortality but non-lung cancer mortality. and mortality of unknown cause, and these significant differences suggest that in patients with CH, several adverse outcomes associated with CH (e.g., cardiopulmonary disease, sepsis, stroke, etc.) may be amplified by CTx or RTx, eventually affecting survival. support that there is Therefore, the presence or absence of CH in a subject undergoing lung cancer treatment enables the selection of a more appropriate adjuvant therapy.
  • adverse outcomes associated with CH e.g., cardiopulmonary disease, sepsis, stroke, etc.
  • anti-inflammatory drugs eg, cannabis
  • conventional adjuvant anticancer therapy or selected adjuvant anticancer therapy are used to improve the prognosis of lung cancer treatment.
  • Kinumab can be used.
  • the step of determining whether clonal hematopoiesis exists is before undergoing tumor removal surgery, after tumor removal surgery, before applying adjuvant therapy after tumor removal surgery, or following tumor removal surgery. This can be done after application of adjuvant therapy. For example, by confirming the presence of clonal hematopoiesis before undergoing tumor removal surgery, it is possible to determine whether chemotherapy or radiation therapy is more favorable for the patient's prognosis instead of surgical resection. As another example, after undergoing tumor removal surgery, whether or not the application of additional adjuvant therapy is favorable for the patient's prognosis can be determined according to the presence or absence of clonal hematopoiesis. As another example, after tumor removal surgery and adjuvant therapy are applied, it may be determined whether to additionally perform a complementary therapy according to the presence or absence of clonal hematopoiesis and/or the type of mutated gene.
  • Gene mutations associated with the clonal hematopoiesis include missense mutations, frameshift mutations, nonsense mutations, splice mutations, nucleotide insertions, deletions or substitutions, combinations thereof, and the like. can be in the form
  • the mutation of the DNMT3A gene may be one or more selected from the mutations listed in Table 1 below, but is not limited thereto.
  • the mutation of the TET2 gene may be one or more selected from the mutations listed in Table 2 below, but is not limited thereto.
  • Mutations of the ASXL1 gene may be one or more selected from among the mutations listed in Table 3 below, but are not limited thereto.
  • the mutation of the PPM1D gene may be one or more selected from the mutations listed in Table 4 below, but is not limited thereto.
  • the mutation at position 5073770 of the JAK2 gene may be a missense mutation in which base G at position 1849 is substituted with T.
  • the method of the present invention when it is confirmed that the mutation exists through genetic analysis of a biological sample isolated from the individual, compared to the case where the mutation does not exist, the treatment of lung cancer of the individual It may further include determining that the prognosis is indicative of poor prognosis.
  • the genetic analysis can be performed using Next Generation Sequencing (NGS) and PCR-based techniques such as real-time quantitative PCR, blocker PCR, digital droplet PCR (ddPCR), clamping PCR, ICE-COLD PCR, castPCR, ARMS PCR, BEAMing, etc., but are not limited thereto.
  • NGS Next Generation Sequencing
  • ddPCR digital droplet PCR
  • clamping PCR ICE-COLD PCR
  • castPCR ARMS PCR
  • BEAMing BEAMing, etc.
  • the practitioner can detect and identify the genetic mutation associated with clonal hematopoiesis using known genetic analysis techniques without limitation.
  • the genetic analysis may include next-generation genome sequencing analysis. For example, using next-generation genome sequencing analysis, whole genome sequencing, whole exome sequencing, RNA sequencing, etc. information can be analyzed.
  • compositions are compositions, kits and genetic panels
  • a composition for predicting the prognosis of lung cancer treatment in a subject comprising an agent for diagnosing clonal hematopoiesis as an active ingredient using a biological sample isolated from a subject being treated for lung cancer is provided. do.
  • the composition can be used in a method for diagnosing clonal hematopoiesis or predicting the prognosis of lung cancer treatment for predicting the prognosis of lung cancer treatment according to the present invention.
  • the agent is DNMT3A, ASXL1, TET2, PPM1D, ATM, BCL11B, CARD11, CBL, CD79B, CHEK2, CUX1, ETV6, FOXP1, JAK2, KMT2D, MAP3K1, MPL, NF1, NOTCH1, NOTCH2, PHIP, It may include an agent for detecting whether one or more mutations exist in one or more genes selected from the group consisting of PRPF40B, RAD21, SETD2, SF3B1, TET1, TNFAIP3, TP53, U2AF1 and ZRSR2.
  • the agent is one selected from the group consisting of ASXL1, CBL, CHEK2, CUX1, DNMT3A, FOXP1, JAK2, KMT2D, MPL, NOTCH1, PPM1D, PRPF40B, SF3B1, TET2, TNFAIP3, TP53, U2AF1 and ZRSR2 It may include an agent for detecting the presence of one or more mutations in one or more genes.
  • the agent may include an agent for detecting the presence of one or more mutations in one or more genes selected from the group consisting of DNMT3A, ASXL1, TET2, PPM1D, SF3B1, ATM, and TNFAIP3.
  • the agent may include an agent for detecting whether a mutation exists in one gene selected from the gene group, wherein the agent consists of the remaining genes except for the selected one gene. It may further include an agent for detecting whether there is a mutation in one or more genes selected from the group.
  • the agent may include an agent for detecting whether there is a mutation in DNMT3A, wherein the agent is ASXL1, TET2, PPM1D, ATM, BCL11B, CARD11, CBL, CD79B, CHEK2, CUX1, ETV6, Detecting whether there is a mutation in one or more genes selected from the group consisting of FOXP1, JAK2, KMT2D, MAP3K1, MPL, NF1, NOTCH1, NOTCH2, PHIP, PRPF40B, RAD21, SETD2, SF3B1, TET1, TNFAIP3, TP53, U2AF1 and ZRSR2 or from the group consisting of ASXL1, CBL, CHEK2, CUX1, DNMT3A, FOXP1, JAK2, KMT2D, MPL, NOTCH1, PPM1D, PRPF40B, SF3B1, TET2, TNFAIP3, TP53, U2AF1 and ZRSR2 Detecting whether there is a mutation in DN
  • the agent may include, for example, an agent capable of detecting a mutant gene, an mRNA derived therefrom, or a protein encoded by the mutant gene.
  • An agent capable of detecting the expression of the gene or mRNA may be a nucleotide sequence that complementarily binds to the mutant gene or mRNA, for example, sense and antisense primers, probes, or antisense nucleic acids, but is not limited thereto.
  • the agent may specifically be an agent for detecting a gene mutation in clonal hematopoiesis, for example, a primer, a probe, or an antisense nucleic acid.
  • probe sequence information is provided in Tables 6 to 9 below.
  • probe sequence information for chromosomal sequences in which somatic sequence mutations are detected among the entire sequences of the NGS panel for DNMT3A, TET2, ASXL1, and PPM1D genes, and the mutation detection agent is not limited thereto.
  • the composition can be used for genetic analysis of a biological sample isolated from an individual, and the genetic analysis includes Next Generation Sequencing (NGS) and PCR-based techniques such as real-time quantitative PCR, blocker PCR, digital droplet PCR (ddPCR), clamping PCR, ICE-COLD PCR, castPCR, ARMS PCR, BEAMing, and the like.
  • NGS Next Generation Sequencing
  • PCR-based techniques such as real-time quantitative PCR, blocker PCR, digital droplet PCR (ddPCR), clamping PCR, ICE-COLD PCR, castPCR, ARMS PCR, BEAMing, and the like.
  • the agent capable of detecting the protein is a monoclonal antibody, a polyclonal antibody, a chimeric antibody, a fragment (scFv) of these antibodies, or an aptamer ( aptamer), but is not limited thereto.
  • kits for predicting the prognosis of lung cancer treatment of a subject comprising the composition is provided.
  • the kit consists of one or more other component compositions, solutions or devices suitable for the assay method.
  • the kit may be a reverse transcription polymerase chain reaction (RT-PCR) kit, a DNA chip kit, an enzyme-linked immunosorbent assay (ELISA) kit, a protein chip kit, or a rapid kit.
  • RT-PCR reverse transcription polymerase chain reaction
  • ELISA enzyme-linked immunosorbent assay
  • composition included in the kit may be in the form of a panel, but is not limited thereto.
  • a panel for genetic analysis comprising the composition.
  • the genetic analysis panel may be based on next-generation sequencing (NGS), which may be used to search for genetic mutations associated with clonal hematopoiesis or to predict prognosis in association with lung cancer treatment.
  • NGS next-generation sequencing
  • the practitioner can perform analysis on the region of the gene to be sequenced and furthermore, the region to search for mutations in the gene.
  • the operator can perform simultaneous analysis on a plurality of target genes in one analysis through the gene analysis panel.
  • the gene analysis panel may include probes having complementary nucleotide sequences for each target gene, and each probe is specific for a target gene region in a biological sample isolated from an individual by hybridization. can be antagonistically combined.
  • panels for genetic analysis for detecting genetic variants associated with clonal hematopoiesis include APC, ASXL1, ASXL2, ATM, BCL11B, BCOR, BCORL1, BIRC3, BRAF, BRCC3, CARD11, CASP8, CBL, CD58, CD79B KIT , KLHL6, KMT2D, KRAS, LUC7L2, MAP3K1, MPL, MYD88, NF1, NFE2L2, NOTCH1, NOTCH2, NRAS, PDS5B, PDSS2, PHF6, PHIP, PIK3CA, PIK3R1, PPM1D, PRDM1, PRPF40B, PTEN, PTPN11, RAD21, RIT1 , RPS15, SETD2, SETDB1, SF1, SF3A1, SF3B1, SMC1A, SMC3, SRSF2, STAG1, STAG2, STAT3, SUZ12, TBL1XR1, TET1, TET2, TNFA
  • the above probes can be used to search for nucleotide sequence mutations of the gene.
  • the gene to which the probe is attached can be amplified through PCR to prepare a library for sequencing, and the presence or absence of nucleotide sequence mutation in the gene can be finally detected through next-generation sequencing analysis.
  • treatment of lung cancer comprising the step of determining whether clonal hematopoiesis exists in a subject through genetic analysis of a biological sample isolated from the subject prior to administration of a therapeutic agent for lung cancer treatment.
  • a method or method of providing information for treatment of lung cancer is provided. As described above, the presence or absence of clonal hematopoiesis in lung cancer patients is closely related to the prognosis of lung cancer treatment. can be determined, thereby increasing the survival rate of lung cancer patients.
  • the one or more genes are selected from the group consisting of ASXL1, CBL, CHEK2, CUX1, DNMT3A, FOXP1, JAK2, KMT2D, MPL, NOTCH1, PPM1D, PRPF40B, SF3B1, TET2, TNFAIP3, TP53, U2AF1 and ZRSR2 may include one or more.
  • the one or more genes may include one or more selected from the group consisting of DNMT3A, ASXL1, TET2, PPM1D, SF3B1, ATM, and TNFAIP3.
  • the one or more genes may include any one gene selected from the group consisting of the above-mentioned genes, and in this case, the one or more genes consist of the rest of the genes other than the selected one gene. It may further include one or more selected from the group.
  • the presence or absence of clonal hematopoiesis may be determined based on the presence or absence of a mutation in the one or more genes and the variant allele frequency (VAF). For example, through genetic analysis using a biological sample isolated from an individual, one or more mutations exist in one or more genes among the genes of the gene group, and the frequency of the variant allele is higher than a certain level, for example, about 1.8% or higher, about 1.8% or higher. If it is 1.9% or more, or about 2% or more, it can be classified as an individual with clonal hematopoiesis.
  • VAF variant allele frequency
  • the step of administering a lung cancer treatment may be further included.
  • a step of determining whether to administer a lung cancer treatment may be further included. For example, when it is determined that clonal hematopoiesis exists in the subject, it may be determined not to administer the lung cancer treatment or to administer the lung cancer treatment.
  • the step of determining whether to administer the lung cancer treatment is a single CH mutation in a significant blood cell count abnormality, high VAF (> 10%), multiple CH with the presence or absence of clonal hematopoiesis (CH) Mutations, TP53 and/or PPM1D variants, DNMT3A variants, IDH1/2 hotspot mutations, and the like can be comprehensively considered.
  • the stage of lung cancer, the patient's age, medical history, and the type and number of current accompanying diseases may be additionally considered.
  • a step of administering a lung cancer treatment may be further included.
  • a lung cancer treatment that has relatively less effect on clonal hematopoiesis or has a lower probability of amplifying adverse outcomes associated with clonal hematopoiesis. administration can be selected.
  • the therapeutic agent for treating lung cancer includes a drug candidate for clinical trials.
  • the lung cancer treatment method according to the present invention can be applied to clinical trials for lung cancer therapeutics.
  • the method may further include administering a drug candidate when it is determined that the subject does not have clonal hematopoiesis.
  • the method may further include administering a drug candidate when it is determined that the subject has clonal hematopoiesis.
  • clonal hematopoiesis occurs in the individual through genetic analysis of a biological sample isolated from an individual who has participated or is scheduled to participate in a clinical trial for a lung cancer treatment. It may include a step of confirming whether or not it is present, and by selecting a population in which clonal hematopoiesis exists through this confirmation step, it is possible to increase the probability of success in a clinical trial for a lung cancer treatment.
  • the present invention can increase the probability of success of a clinical trial by selecting a clinical trial patient group according to the presence or absence of clonal hematopoiesis, which negatively affects the prognosis of lung cancer treatment.
  • the presence of clonal hematopoiesis in the subject may indicate that the safety or effectiveness of a lung cancer treatment is underestimated compared to the case where clonal hematopoiesis is not present.
  • the subject may be a subject who has or is currently conducting a clinical trial for a lung cancer treatment.
  • evaluation of safety, efficacy, etc. for a lung cancer therapeutic agent confirms the presence or absence of clonal hematopoiesis in an individual to exclude a population in which clonal hematopoiesis exists, or to exclude a population in which clonal hematopoiesis exists and clonal hematopoiesis. Hematopoiesis can be differentiated and progressed in non-existent populations.
  • the subject may be an individual scheduled to conduct a clinical trial for a lung cancer treatment or a lung cancer patient registered as a clinical trial candidate.
  • a clinical trial candidate For example, by confirming the presence or absence of clonal hematopoiesis in the process of selecting patients (individuals) for clinical trials of lung cancer therapeutics, individuals with clonal hematopoiesis are excluded from clinical trials or populations with clonal hematopoiesis are excluded.
  • a clinical trial can be conducted by separately selecting a population in which hyperclonal hematopoiesis does not exist.
  • the drug candidate has a relatively greater effect on clonal hematopoiesis.
  • Substances that are less likely to amplify adverse outcomes associated with small or clonal hematopoiesis can be chosen and administered.
  • treatment efficacy and safety for lung cancer as well as effects on clonal hematopoiesis may be evaluated.
  • the following example describes the clinical impact of preoperative clonal hematopoiesis on the survival outcome of lung cancer patients, particularly non-small cell lung cancer (NSCLC) patients who received adjuvant therapy following surgical resection in a large single-center serial surgery cohort. -scale single center consecutive surgical cohort).
  • a propensity score matching (PSM) technique was used to rule out the possibility of selection bias according to adjuvant therapy and CH status.
  • CCTx adjuvant chemotherapy
  • CRTx chemoradiation therapy
  • Targeted NGS was performed with a custom panel comprising the following 89 genes using blood-derived DNA collected from patients enrolled in this study (Table 10).
  • Sequencing libraries were prepared according to the SureSelect XT HS Target Enrichment System (Agilent, Santa Clara, CA) protocol. Libraries were sequenced on an Illumina NovaSeq6000 platform (Illumina, San Diego, CA) using 150 bp paired-ends according to the manufacturer's protocol. The average coverage depth of Analysis ready BAM was over 800 times.
  • CT computed tomography
  • PET positron emission tomography
  • EBUS bronchoscopy ultrasonography
  • EUS endoscopic ultrasonography
  • a mediastinal LN biopsy was performed using Treatment plans for biopsy-proven N2 disease were determined by a multidisciplinary team including medical oncologists, radiologists, and thoracic surgeons. Patients in the study sample were retrospectively staged according to the American Joint Committee on Cancer (AJCC) 8th edition (Detterbeck FC, Boffa DJ, Kim AW, et al: The Eighth Edition Lung Cancer Stage Classification. Chest 151 :193-203, 2017]).
  • AJCC American Joint Committee on Cancer
  • adjuvant CTx was recommended for all stage II and III patients, except when the patient was >75 years of age or in poor physical condition.
  • Systemic CTx with platinum-based therapy was recommended for a total of 4 cycles of treatment for 4 to 6 weeks postoperatively.
  • tyrosine kinase inhibitors have been primarily used when relapsed after first-line adjuvant CTx.
  • RTx adjuvant radiation therapy
  • adjuvant RTx was omitted for a significant number of patients with single N2 nodal metastases.
  • the primary endpoint was survival according to the presence of CH in patients receiving adjuvant therapy for stage IIB or stage III NSCLC, and stage IIB patients according to the presence of CH and adjuvant therapy. survival outcomes were included as secondary end points (FIG. 1).
  • 89 genes frequently detected in CH were selected and examined (see Table 10 for a list of genes), and a variant allele frequency (VAF) of 2% or more was defined as CH positive.
  • VAF variant allele frequency
  • PD potential driver
  • OS Overall survival
  • RFS Recurrence-free survival
  • Continuous variables were expressed as mean and standard deviation, and categorical variables as counts and percentages.
  • the normality of individual parameter distributions was evaluated with the Shapiro-Wilk test. Student's t- test or Wilcoxon rank-sum test was used to compare two groups in terms of continuous variables, and chi-square test or Fisher's exact test was applied for categorical variables.
  • PMM propensity score matching
  • McNemar's test and paired-sample t-test were used to analyze propensity score matching pairs.
  • OS and RFS results were defined using Kaplan-Meier curves. Differences in survival rates were analyzed using the log-rank test. Since the two causes of death were mutually exclusive, significant differences in cumulative incidence function values between subgroups were assessed using the Gray test.
  • a Cox proportional hazards model was used for univariate and multivariate analysis to determine the clinical impact of CH on survival outcomes.
  • a stepwise selection was used (refers to Table 17 in Example 6.3 below).
  • the proportional hazards assumption for the Cox regression model was tested with Schoenfeld residuals.
  • PSM was applied to adjust for possible selection bias derived from a retrospective nonrandomized cohort to generate two groups (CH-positive and CH-negative) with similar characteristics.
  • a total of 12 variables (related to Table 14 in Example 6.2 below) were used to balance the clinical characteristics of the two groups.
  • pairs of observations with equivalent propensity scores were selected with nearest-neighbor matching and a caliper width of standard deviation 0.25.
  • CH-negative patients were randomly matched with CH-positive patients in a 2:1 ratio.
  • Balance between groups was assessed using standardized mean differences (SMDs). An absolute standardized difference of 0.1 or less was considered to represent an ideal balance, and an absolute standardized difference of 0.2 or less was considered to represent an acceptable balance.
  • SMDs standardized mean differences
  • the present inventors investigated the prevalence and characteristics of clonal hematopoiesis (CH) in patients with advanced non-small cell lung cancer (NSCLC). In addition, we evaluated the clinical impact of preoperative CH on survival outcomes in all patients and in patients after PSM.
  • CH clonal hematopoiesis
  • CH is a common phenomenon associated with aging and is closely related to subsequent hematological malignancies, cardiovascular disease and poor prognosis in patients with advanced solid tumors. Cancer patients have higher CH rates than healthy individuals, and CH is associated with shorter patient survival. This is presumably due to a high genetic predisposition to malignancies, prolonged exposure to carcinogenic environments and cancer-related therapies using genotoxic therapies.
  • CH is thought to be highly relevant to CTx and RTx, meaning that local and systemic therapies can promote clonal outgrowth of hematopoietic stem cells (HSCs).
  • HSCs hematopoietic stem cells
  • cytotoxic chemotherapeutic agents including platinum-based compounds, such as cisplatin and the like, target the organ of DNA replication.
  • Conventional chemotherapy is designed to kill rapidly dividing cells, causing severe DNA damage and killing the cells.
  • mutations in cancer-related genes such as TP53, PPM1D, and CHEK2 impair the cell death process that should be normally activated by DNA damage, so that hematopoietic stem cells (HSCs) with damaged DNA continue to survive despite the action of cytotoxic drugs. make it possible Therefore, cancer-related therapies are thought to influence the evolutionary trajectory of emerging CH clones.
  • the present invention when it is confirmed that there is a mutation in a gene related to clonal hematopoiesis (CH) of an individual, it is possible to predict the prognosis according to the treatment of lung cancer, particularly non-small cell lung cancer, of the individual.
  • the present invention can provide useful information for determining the application of adjuvant therapy following surgical resection in relation to lung cancer treatment, information useful for determining whether to administer a therapeutic agent for lung cancer treatment, and the like, and furthermore, lung cancer It is expected to have great industrial value as it can provide useful information for evaluating the efficacy and safety of drug candidates for patients in clinical trials of drug candidates for treatment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Hospice & Palliative Care (AREA)
  • Biophysics (AREA)
  • Oncology (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

The present invention relates to a biomarker for prognosing the treatment of lung cancer, especially non-small cell lung cancer, and a use thereof. According to the present invention, when it is confirmed that a mutation exists in a specific gene of a subject, prognosis can be made of the treatment of lung cancer, particularly non-small cell lung cancer, of the subject. In addition, the present invention can provide useful information for determining whether adjuvant therapy should be applied following surgical resection in the context of lung cancer treatment.

Description

폐암 치료의 예후를 예측하기 위한 바이오마커 및 이의 용도Biomarkers for predicting the prognosis of lung cancer treatment and their uses
본 발명은 폐암 치료의 예후, 특히 비소세포폐암 치료의 예후를 예측하기 위한 바이오마커 및 이의 용도에 관한 것이다. 보다 구체적으로는, 본 발명은 외과적 절제술에 이어 보조 요법을 받았거나 받을 예정인 폐암 환자의 예후를 예측하기 위한 것이다.The present invention relates to a biomarker and its use for predicting the prognosis of lung cancer treatment, in particular, the prognosis of non-small cell lung cancer treatment. More specifically, the present invention is intended to predict the prognosis of lung cancer patients who have received or are scheduled to receive adjuvant therapy following surgical resection.
본 출원은 2021년 8월 2일에 출원된 대한민국 특허출원 제10-2021-0101280호 및 2022년 7월 28일에 출원된 대한민국 특허출원 제10-2022-0094276호에 기초한 우선권을 주장하며, 해당 출원의 명세서 및 도면에 개시된 모든 내용은 본 출원에 원용된다.This application claims priority based on Korean Patent Application No. 10-2021-0101280 filed on August 2, 2021 and Korean Patent Application No. 10-2022-0094276 filed on July 28, 2022, All contents disclosed in the specification and drawings of the application are incorporated into this application.
클론성 조혈증(CH)은 백혈병 관련 유전자에 체세포 돌연변이를 보유하는 클론 유래 조혈 줄기 세포(HSC)의 확장으로 정의되는 상태이며, 이는 차세대 시퀀싱(NGS)에 의해 검출될 수 있다(문헌[Genovese G, Kahler AK, Handsaker RE, et al: Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. N Engl J Med 371:2477-87, 2014]; 문헌[Park SJ, Bejar R: Clonal hematopoiesis in cancer. Exp Hematol 83:105-112, 2020]; 및 문헌[Jaiswal S, Ebert BL: Clonal hematopoiesis in human aging and disease. Science 366, 2019] 참조). CH의 발생은 노화와 관련이 있으며, 혈액 악성 종양 없이 발견될 수도 있다. 이는 담배의 사용, 방사선 요법(RTx) 및/또는 화학요법(CTx)에의 노출과도 상당한 관련성이 있다. 또한, CH는 후속 심혈관 질환 및 혈액 악성 종양의 발병률을 증가시키는 것으로 알려져 있다.Clonal hematopoiesis (CH) is a condition defined by the expansion of clonally derived hematopoietic stem cells (HSCs) harboring somatic mutations in leukemia-associated genes, which can be detected by next-generation sequencing (NGS) (Genovese G , Kahler AK, Handsaker RE, et al: Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence.N Engl J Med 371:2477-87, 2014;Park SJ, Bejar R: Clonal hematopoiesis in cancer.Exp Hematol 83:105-112, 2020; and Jaiswal S, Ebert BL: Clonal hematopoiesis in human aging and disease. Science 366, 2019). The occurrence of CH is associated with aging and may be found without hematological malignancies. It is also strongly associated with tobacco use, exposure to radiation therapy (RTx) and/or chemotherapy (CTx). In addition, CH is known to increase the incidence of subsequent cardiovascular diseases and hematological malignancies.
한편, 폐암은 가장 흔하게 진단되는 암이며, 전 세계적으로 암 관련 사망의 주요 원인이다. 폐암 치료를 위해 가능한 경우 수술에 의한 절제가 우선적으로 시행되지만 수술 후 5년간 생존율은 65%에 머무르고 있다. 따라서, 수술 후 추가 치료, 재발의 조기 발견 등을 통해 생존율을 높이기 위해서는 폐암 수술 후 예후를 예측할 수 있는 예측 인자의 개발이 중요하다. 연령, 성별, 및 암 병기와 같은 몇 가지 예후 인자가 확인되었지만, NGS 시대를 맞아 새로운 인자를 탐색할 필요가 있다.On the other hand, lung cancer is the most commonly diagnosed cancer and is a leading cause of cancer-related death worldwide. For lung cancer treatment, surgical excision is preferentially performed when possible, but the 5-year survival rate after surgery remains at 65%. Therefore, it is important to develop predictive factors capable of predicting the prognosis after lung cancer surgery in order to increase the survival rate through additional treatment after surgery and early detection of recurrence. Several prognostic factors such as age, gender, and cancer stage have been identified, but new factors need to be explored in the NGS era.
[선행기술문헌][Prior art literature]
(비특허문헌 1) Jaiswal S, Ebert BL: Clonal hematopoiesis in human aging and disease, Science 366, 2019.(Non-Patent Document 1) Jaiswal S, Ebert BL: Clonal hematopoiesis in human aging and disease, Science 366, 2019.
(비특허문헌 2) Park SJ, Bejar R: Clonal hematopoiesis in cancer, Exp Hematol 83:105-112, 2020.(Non-Patent Document 2) Park SJ, Bejar R: Clonal hematopoiesis in cancer, Exp Hematol 83:105-112, 2020.
(비특허문헌 3) Genovese G, Kahler AK, Handsaker RE, et al: Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence, N Engl J Med 371:2477-87, 2014.(Non-Patent Document 3) Genovese G, Kahler AK, Handsaker RE, et al: Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence, N Engl J Med 371:2477-87, 2014.
본 발명은 상술한 문제점을 모두 해결하는 것을 그 목적으로 한다.The object of the present invention is to solve all of the above problems.
본 발명은 폐암 환자에서 폐암 치료의 예후를 예측하는 방법 또는 폐암 치료의 예후 예측을 위한 정보의 제공 방법을 제공하는 것을 일 목적으로 한다.An object of the present invention is to provide a method of predicting the prognosis of lung cancer treatment in a lung cancer patient or a method of providing information for predicting the prognosis of lung cancer treatment.
본 발명은 폐암 환자에서 폐암 치료의 예후를 예측하기 위한 조성물을 제공하는 것을 다른 목적으로 한다.Another object of the present invention is to provide a composition for predicting the prognosis of lung cancer treatment in lung cancer patients.
본 발명은 폐암 환자에서 폐암 치료의 예후를 예측하기 위한 키트를 제공하는 것을 또 다른 목적으로 한다.Another object of the present invention is to provide a kit for predicting the prognosis of lung cancer treatment in lung cancer patients.
본 발명은 폐암 환자에서 폐암 치료의 예후를 예측하기 위해 클론성 조혈증의 유전자 변이를 검출할 수 있는 유전자 분석용 패널을 제공하는 것을 또 다른 목적으로 한다.Another object of the present invention is to provide a panel for genetic analysis capable of detecting genetic mutations of clonal hematopoiesis in order to predict the prognosis of lung cancer treatment in lung cancer patients.
본 발명은 폐암 치료 방법 또는 폐암 치료를 위한 정보의 제공 방법을 제공하는 것을 또 다른 목적으로 한다.Another object of the present invention is to provide a method for treating lung cancer or a method for providing information for lung cancer treatment.
본 발명의 목적은 이상에서 언급한 목적으로 제한되지 않는다. 본 발명의 목적은 이하의 설명으로 보다 분명해질 것이며, 청구범위에 기재된 수단 및 그 조합으로 실현될 것이다.The object of the present invention is not limited to the object mentioned above. The objects of the present invention will become more apparent from the following description, and will be realized by means of the instrumentalities and combinations set out in the claims.
상기 목적을 달성하기 위한 본 발명의 대표적인 구성은 다음과 같다.Representative configurations of the present invention for achieving the above object are as follows.
본 발명의 일 태양에 따르면, 폐암에 대해 치료받는 개체로부터 분리한 생물학적 시료의 유전자 분석을 통해 개체에 클론성 조혈증이 존재하는지 여부를 확인하는 단계를 포함하는 개체의 폐암 치료의 예후를 예측하는 방법 또는 개체의 폐암 치료의 예후 예측을 위한 정보의 제공 방법이 제공된다.According to one aspect of the present invention, predicting the prognosis of lung cancer treatment of an individual comprising determining whether clonal hematopoiesis exists in an individual through genetic analysis of a biological sample isolated from an individual being treated for lung cancer A method or method of providing information for predicting the prognosis of lung cancer treatment of an individual is provided.
본 발명의 다른 태양에 따르면, 폐암에 대해 치료받는 개체로부터 분리한 생물학적 시료를 이용하여 클론성 조혈증의 존재를 확인하기 위한 제제를 유효성분으로 포함하는 개체의 폐암 치료의 예후를 예측하기 위한 조성물이 제공된다.According to another aspect of the present invention, a composition for predicting the prognosis of lung cancer treatment in an individual comprising, as an active ingredient, an agent for confirming the presence of clonal hematopoiesis using a biological sample isolated from an individual being treated for lung cancer. is provided.
본 발명의 또 다른 태양에 따르면, 상기 조성물을 포함하는 개체의 폐암 치료의 예후를 예측하기 위한 키트가 제공된다.According to another aspect of the present invention, a kit for predicting the prognosis of lung cancer treatment of a subject comprising the composition is provided.
본 발명의 또 다른 태양에 따르면, 상기 조성물을 포함하는 클론성 조혈증의 유전자 변이를 검출하기 위한 유전자 분석용 패널이 제공된다.According to another aspect of the present invention, a genetic analysis panel for detecting genetic mutations in clonal hematopoiesis comprising the composition is provided.
본 발명의 또 다른 태양에 따르면, 폐암 치료를 위한 치료제의 투여 전에, 개체로부터 분리한 생물학적 시료의 유전자 분석을 통해 상기 개체에 클론성 조혈증이 존재하는지 여부를 확인하는 단계를 포함하는 폐암의 치료 방법 또는 폐암의 치료를 위한 정보의 제공 방법이 제공된다.According to another aspect of the present invention, treatment of lung cancer comprising the step of determining whether clonal hematopoiesis exists in a subject through genetic analysis of a biological sample isolated from the subject prior to administration of a therapeutic agent for lung cancer treatment. A method or method of providing information for treatment of lung cancer is provided.
본 발명에 따라 개체의 클론성 조혈증(CH) 관련 유전자에 변이가 존재함을 확인하면, 그 개체의 폐암, 특히 비소세포폐암의 치료에 따른 예후를 예측할 수 있다. 또한, 본 발명은 폐암 치료와 관련하여, 외과적 절제술에 이어서 보조 요법의 적용을 결정하는 데 유용한 정보, 폐암 치료를 위한 치료제의 투여 여부를 결정하는 데 유용한 정보 등을 제공할 수 있으며, 나아가 폐암 치료를 위한 약물 후보 물질의 임상시험에서 환자에 대한 약물 후보 물질의 유효성, 안전성 등의 평가에 유용한 정보를 제공할 수 있다.According to the present invention, when it is confirmed that there is a mutation in a gene related to clonal hematopoiesis (CH) of an individual, it is possible to predict the prognosis according to the treatment of lung cancer, particularly non-small cell lung cancer, of the individual. In addition, the present invention can provide useful information for determining the application of adjuvant therapy following surgical resection in relation to lung cancer treatment, information useful for determining whether to administer a therapeutic agent for lung cancer treatment, and the like, and furthermore, lung cancer In clinical trials of drug candidates for treatment, useful information can be provided to evaluate the efficacy and safety of drug candidates for patients.
도 1은 본 발명의 일 실시예에 사용된 CONSORT(Consolidated Standards of Reporting Trials) 다이어그램을 나타낸다.1 shows a Consolidated Standards of Reporting Trials (CONSORT) diagram used in an embodiment of the present invention.
도 2a 및 도 2b는 전체 코호트에서 클론성 조혈증(CH) 돌연변이의 존재에 따른 환자의 전체 생존율 및 무재발 생존율을 각각 나타낸다. 도 2c는 성향 점수 매칭(PSM) 후 CH 돌연변이의 존재에 따른 환자의 전체 생존율을 도시한다.Figures 2a and 2b show the overall survival and recurrence-free survival of patients, respectively, according to the presence of clonal hematopoietic (CH) mutations in the entire cohort. Figure 2c shows the overall survival of patients according to the presence of CH mutations after propensity score matching (PSM).
도 3은 CH 존재에 따른 누적 사망률을 나타낸다. 구체적으로, 도 3a, 도 3b 및 도 3c는 각각 CH의 존재에 따른 누적 폐암 사망률, CH의 존재에 따른 누적 비-폐암 사망률, 및 CH의 존재에 따른 원인 불명의 누적 사망률을 나타낸다.Figure 3 shows the cumulative mortality according to the presence of CH. Specifically, FIGS. 3A, 3B, and 3C show cumulative lung cancer mortality according to the presence of CH, cumulative non-lung cancer mortality according to the presence of CH, and cumulative mortality of unknown cause according to the presence of CH, respectively.
도 4a 및 도 4b는 각각 PSM 전과 후의 병기 IIB기 폐암에 대한 보조 요법을 받은 환자에서 CH 돌연변이의 존재에 따른 전체 생존율을 나타낸다. 도 4c 및 도 4d는 각각 PSM 전과 후의 IIB기 폐암에 대한 보조 요법이 수행되지 않은 환자에서 CH 돌연변이 존재에 따른 전체 생존율을 나타낸다(Tx, Treatment).Figures 4a and 4b show overall survival according to the presence of CH mutations in patients receiving adjuvant therapy for stage IIB lung cancer before and after PSM, respectively. 4c and 4d respectively show the overall survival rate according to the presence of CH mutation in patients without adjuvant therapy for stage IIB lung cancer before and after PSM (Tx, Treatment).
도 5a 내지 도 5c는 전체 코호트에서 확인된 CH 돌연변이의 특성을 나타낸다. 도 5a는 코호트에서 환자의 연령에 따른 CH 유병률을 나타낸다. 도 5b는 환자당 보유한 돌연변이의 수를 나타낸다. 도 5c는 각 CH 유전자의 돌연변이 수를 나타낸다.5A-5C show the characteristics of CH mutations identified in the entire cohort. Figure 5A shows the prevalence of CH by age of patients in the cohort. 5B shows the number of mutations carried per patient. Figure 5c shows the number of mutations in each CH gene.
도 6a 내지 도 6c는 각각 병기 IIB기, IIIA기 및 IIIB기에서 CH 돌연변이의 존재에 따른 환자의 전체 생존율을 나타낸다.Figures 6a to 6c show the overall survival of patients according to the presence of CH mutations in stages IIB, IIIA and IIIB, respectively.
후술하는 본 발명에 대한 상세한 설명은, 본 발명이 실시될 수 있는 특정 구현예에 관하여 특정 도면을 참조하여 기술될 것이지만, 본 발명은 이에 한정되지 않고, 적절하게 설명된다면, 그 청구항들이 주장하는 것과 균등한 모든 범위와 더불어 첨부된 청구항에 의해서만 한정된다. 본 발명의 다양한 구현예/실시예는 서로 다르지만 상호 배타적일 필요는 없음이 이해되어야 한다. 예를 들어, 본 명세서에 기재되어 있는 특정 형상, 구조 및 특성은 본 발명의 정신과 범위를 벗어나지 않으면서 일 구현예/실시예에서 다른 구현예/실시예로 변경되거나 구현예/실시예들이 조합되어 구현될 수 있다. 본 명세서에 사용된 기술 및 학술 용어들은, 달리 정의되지 않는 한, 본 발명이 속하는 분야에서 일반적으로 사용되는 것과 같은 의미를 갖는다. 본 명세서를 해석할 목적으로 하기 정의들이 적용될 것이고, 단수로 사용된 용어는 적절한 경우에는 복수형을 포함할 것이며 그 반대도 마찬가지이다.The detailed description of the invention that follows will be described with reference to specific drawings in relation to specific embodiments in which the invention may be practiced, but the invention is not limited thereto and, if properly described, what the claims claim and All scopes of equivalence are limited only by the appended claims. It should be understood that the various implementations/embodiments of the present invention are different from each other but are not necessarily mutually exclusive. For example, specific shapes, structures, and characteristics described herein may be changed from one embodiment/embodiment to another, or a combination of embodiments/embodiments, without departing from the spirit and scope of the present invention. can be implemented Technical and scientific terms used herein, unless defined otherwise, have the same meaning as commonly used in the field to which this invention belongs. For purposes of interpreting this specification, the following definitions will apply and terms used in the singular will include the plural as appropriate and vice versa.
정의Justice
본 명세서 사용되는 용어 "약"은 당해 기술 분야에서 통상의 기술자에게 알려진 각각의 값에 대한 통상적인 오차 범위를 지칭한다. 또한, 달리 명시되지 않는 한, 본 명세서에서 사용된 성분, 조건, 조성, 양 등을 표현하는 모든 숫자, 값 및/또는 표현은 이러한 숫자들이 본질적으로 다른 것들 중에서 이러한 값을 얻는 데 발생하는 측정의 다양한 불확실성이 반영된 근사치들이므로 "약"이라는 용어에 의해 수식되는 것으로 이해되어야 한다. As used herein, the term "about" refers to the typical error range for each value known to one of ordinary skill in the art. Further, unless otherwise specified, all numbers, values and/or expressions expressing ingredients, conditions, compositions, amounts, etc., used herein mean that such numbers are, among other things, essentially the representations of measurements that would occur to obtain such values. Since these are approximations that reflect various uncertainties, they should be understood to be qualified by the term "about".
용어 "클론성 조혈증(Clonal haematopoiesis)"은 조혈 줄기 세포에 체세포 돌연변이가 발생하여 선택적 증식의 기회를 얻게 되는 경우, 돌연변이가 발생한 클론이 확장하여 백혈구의 일정 부분을 차지하는 증상을 의미한다.The term "clonal haematopoiesis" refers to a condition in which, when hematopoietic stem cells undergo somatic mutations to gain an opportunity for selective proliferation, the mutated clone expands and occupies a certain portion of leukocytes.
용어 "개체"는 "환자"와 상호 교환적으로 사용될 수 있고, 폐암이 발병하거나 폐암에 대한 치료를 필요로 하는 포유 동물, 예를 들어, 영장류(예: 인간), 반려 동물(예: 개, 고양이 등), 가축 동물(예: 소, 돼지, 말, 양, 염소 등) 및 실험실 동물(예: 랫트, 마우스, 기니피그 등)일 수 있다. 본 발명의 일 구현예에서, 개체는 인간이다.The term "subject" can be used interchangeably with "patient" and includes a mammal, such as a primate (eg, a human), a companion animal (eg, a dog, cats, etc.), livestock animals (eg, cows, pigs, horses, sheep, goats, etc.) and laboratory animals (eg rats, mice, guinea pigs, etc.). In one embodiment of the invention, the subject is a human.
용어 "예후"는 폐암과 같은 질환의 발병, 재발, 전이성 확산, 생존율, 무병 생존율, 약물 내성 또는 감수성을 비롯한 폐암에 기인한 사망 또는 진행의 가능성 등의 병의 경과 및 완치 여부를 의미한다. 구체적으로, 예후는 폐암 환자에서 수술, 항암 화학 요법, 항암 면역 요법, 화학방사선 요법 또는 이들 요법의 조합을 포함하는 폐암 치료에 따른 생존 예후를 의미하는 것일 수 있다. 또한, 폐암 치료의 예후는 환자의 폐암 치료를 위한 치료제에 대한 반응성을 의미하는 것일 수 있다. The term "prognosis" refers to the course of a disease, such as the likelihood of death or progression due to lung cancer, including onset, recurrence, metastatic spread, survival rate, disease-free survival rate, drug resistance or susceptibility of a disease such as lung cancer, and whether it is cured or not. Specifically, the prognosis may refer to a survival prognosis according to lung cancer treatment including surgery, chemotherapy, chemotherapy, chemoradiation, or a combination of these therapies in lung cancer patients. In addition, the prognosis of lung cancer treatment may mean the patient's responsiveness to a therapeutic agent for lung cancer treatment.
용어 "예측"은 환자가 항암 화학 요법, 화학방사선 요법 등 치료법 또는 폐암 치료제에 대해 선호적으로 또는 비선호적으로 반응하여 생존할 가능성을 미리 판단하는 것을 의미한다. 생존 예후를 예측하는 것은 환자에 가장 적절한 치료 방법을 선택하도록 도움을 줄 수 있고, 해당 치료 방법에 선호적으로 반응하는지 확인하거나, 해당 치료 방법을 수행한 후 환자의 장기 생존 여부를 예측할 수 있다. The term “prediction” refers to preliminarily determining the possibility of a patient surviving by responding preferentially or unfavorably to a treatment such as chemotherapy or chemoradiation or a treatment for lung cancer. Predicting survival prognosis can help select the most appropriate treatment method for a patient, confirm whether the patient responds favorably to the treatment method, or predict long-term survival of the patient after performing the treatment method.
용어 "생물학적 시료"라는 용어는 개체로부터 얻은 임의의 생물학적 표본으로서, 폐암 치료의 예후를 예측하고자 하는 개체로부터 분리된 조직, 종양 조직, 폐종양 조직, 혈액, 혈청, 혈장, 림프액, 타액, 객담, 점액 또는 소변과 같은 시료를 포함하지만, 이로 한정되지 않는다. The term "biological sample" refers to any biological sample obtained from an individual, which is a tissue, tumor tissue, lung tumor tissue, blood, serum, plasma, lymph, saliva, sputum, Samples such as mucus or urine include, but are not limited to.
용어 "보조 요법"은 화학요법(CTx), 화학방사선 요법(CRTx), 분자 타겟 요법, 고주파온열암치료, 생물학적 제제 등을 이용한 면역요법을 포함하며, 종양 제거 수술 전후에 시행하여 암을 국소적 또는 전신적으로 치료하는 데 보조적으로 사용될 수 있는 것이라면 어떠한 요법도 포함될 수 있다. The term "adjuvant therapy" includes chemotherapy (CTx), chemoradiation therapy (CRTx), molecular targeted therapy, radiofrequency hyperthermia cancer therapy, immunotherapy using biological agents, etc., performed before and after tumor removal surgery to treat cancer locally. Alternatively, any therapy may be included as long as it can be used as an adjuvant to systemic treatment.
용어 "전체 생존율"은 암 환자가 수술을 받은 후 5년 동안 암이 재발하거나 전이되었을지라도 생존한 비율을 의미한다. The term “overall survival rate” refers to the rate at which a cancer patient survives 5 years after undergoing surgery, even if the cancer has recurred or metastasized.
용어 "무재발 생존율"은 수술을 받은 후 5년 동안 암의 재발없이 생존한 비율을 의미한다. The term "recurrence-free survival rate" refers to the rate of cancer recurrence-free survival 5 years after surgery.
용어 "미스센스 변이"는 DNA 사슬 위의 어떤 부위에 하나의 염기 치환이 일어나서 mRNA의 유전암호가 변해 본래의 것과는 다른 아미노산으로 지정되어 단백질에 영향을 주게 되는 유전자 변이를 지칭한다. The term "missense mutation" refers to a genetic mutation in which a single base substitution occurs at a site on a DNA chain, thereby changing the genetic code of mRNA and designating an amino acid different from the original one to affect a protein.
용어 "프레임시프트 변이"는 염기가 3으로 나누어지지 않는 개수로 삽입되거나 결실되어 일어나는 유전자 변이를 지칭한다. The term "frameshift mutation" refers to a genetic mutation caused by insertion or deletion of a non-divisible number of bases.
용어 "넌센스 변이"는 하나의 염기 치환으로 본래의 어느 한 아미노산을 암호화하는 코돈이 아미노산을 암호화하지 않는 종결코돈으로 변화되어 단백질의 합성이 그 코돈이 있는 곳에서 중단되는 유전자 변이를 지칭한다. The term "nonsense mutation" refers to a genetic mutation in which a codon encoding an original amino acid is changed to a stop codon that does not encode an amino acid by a single base substitution, so that protein synthesis is stopped at the location of the codon.
용어 "스플라이스 변이"는 전사된 RNA 분자 내 또는 개별적으로 전사된 RNA 분자 사이에 대안적인 스플라이싱 부위의 사용을 통해 발생하는 변이를 지칭한다. The term "splice variation" refers to a variation that occurs through the use of alternative splicing sites within transcribed RNA molecules or between individually transcribed RNA molecules.
용어 "프라이머"란 상보적인 주형(template)과 염기쌍(base pair)을 형성할 수 있고, 주형 가닥 복사를 위한 시작 지점으로 기능을 하는 핵산 서열을 의미한다. 프라이머의 서열은 반드시 주형의 서열과 정확히 같을 필요는 없으며, 충분히 상보적이어서 주형과 혼성화될 수 있으면 된다. 프라이머는 적절한 완충용액 및 온도에서 중합반응을 위한 시약 및 상이한 4가지 뉴클레오사이드 3인산(nucleoside triphosphate)의 존재하에 DNA 합성을 개시할 수 있다. PCR 조건, 센스 및 안티센스 프라이머의 길이는 당업계에 공지된 것을 기초로 변형할 수 있다.The term “primer” refers to a nucleic acid sequence that is capable of forming a base pair with a complementary template and serves as a starting point for copying the template strand. The sequence of the primer does not necessarily have to be exactly the same as the sequence of the template, but is sufficiently complementary to allow hybridization with the template. Primers can initiate DNA synthesis in the presence of reagents for polymerization and four different nucleoside triphosphates in an appropriate buffer solution and temperature. PCR conditions and lengths of sense and antisense primers can be modified based on those known in the art.
용어 "프로브"란 시료 내의 검출하고자 하는 표적 물질과 특이적으로 결합할 수 있는 물질로서, 상기 결합을 통하여 특이적으로 시료 내의 표적 물질의 존재를 확인할 수 있는 물질을 의미한다. 프로브는 올리고뉴클레오티드 프로브, 단쇄 DNA 프로브, 이중쇄 DNA 프로브, RNA 프로브 등의 형태로 제작될 수 있다. 적당한 프로브의 선택 및 혼성화 조건은 당업계에 공지된 것을 기초로 변형할 수 있다. The term “probe” refers to a substance capable of specifically binding to a target substance to be detected in a sample, and through the binding, a substance capable of specifically confirming the presence of the target substance in the sample. The probe may be prepared in the form of an oligonucleotide probe, a single-stranded DNA probe, a double-stranded DNA probe, or an RNA probe. Selection of suitable probes and hybridization conditions can be modified based on those known in the art.
용어 "안티센스 핵산"은 타겟으로 하는 유전자 변이체에 대한 상보적인 서열을 가지고 있어 타겟 유전자 변이체와 이합체를 형성할 수 있는 핵산 기반의 분자를 의미하며, 타겟 유전자 변이체를 검출하는 데 사용될 수 있다. 상기 안티센스 핵산은 검출 특이성을 증가시키기 위하여 적절한 길이를 선택할 수 있다. The term "antisense nucleic acid" refers to a nucleic acid-based molecule that has a complementary sequence to a target gene variant and can form a dimer with the target gene variant, and can be used to detect the target gene variant. An appropriate length of the antisense nucleic acid may be selected to increase detection specificity.
용어 "유전자 패널(gene panel)"은 복수 개의 목적 유전자에 대한 돌연변이를 검출할 수 있는 복수 개의 제제가 하나의 패널로 구성된, 유전자 변이 검출 도구를 의미한다. The term "gene panel" refers to a genetic mutation detection tool in which a panel is composed of a plurality of agents capable of detecting mutations in a plurality of target genes.
용어 "폐암 치료를 위한 치료제" 또는 "폐암 치료제"는 폐암이 발병한 환자의 증상을 개선, 경감 또는 치료하는 효과를 나타내는 물질을 의미하며, 폐암 세포의 형태학적, 생리학적 또는 유전학적 변화를 유의하게 나타내는 한, 이들의 물리적 성상, 화학적 성상, 생물학적 기원 등은 특별히 제한되지 않는다. 치료제는 상기 보조 요법 즉, 화학요법(CTx), 화학방사선 요법(CRTx), 분자 타겟 요법, 생물학적 제제 등을 이용한 면역요법 등에서 사용될 수 있는 모든 종류의 물질을 포함한다.The term "therapeutic agent for treating lung cancer" or "therapeutic agent for lung cancer" refers to a substance exhibiting an effect of improving, alleviating or treating the symptoms of a patient with lung cancer, and noting morphological, physiological or genetic changes in lung cancer cells. As long as they are clearly indicated, their physical properties, chemical properties, biological origin, etc. are not particularly limited. The therapeutic agent includes all kinds of substances that can be used in the adjuvant therapy, ie, chemotherapy (CTx), chemoradiation therapy (CRTx), molecular target therapy, immunotherapy using biological agents, and the like.
용어 "임상시험"은 인간을 대상으로 의약품의 적용을 연구하는 모든 과정을 의미하며, 의약품의 안전성, 유효성 등을 확증하고자 시행하는 연구 절차뿐만 아니라 오리지널 의약품과 복제의약품의 생물학적 동등성을 입증하는 생동성 시험, 이미 허가되어 시판 중인 의약품에 대한 임상 연구 또는 부작용 연구 등을 모두 포함한다.The term "clinical trial" refers to all processes of research on the application of pharmaceuticals to humans, as well as research procedures conducted to confirm the safety and efficacy of pharmaceuticals, as well as bioequivalence tests to prove the bioequivalence of original and generic drugs. , clinical studies or side effects studies on drugs that have already been approved and are on the market.
폐암 치료의 예후 예측을 위한 클론성 조혈증의 진단Diagnosis of clonal hematopoiesis for prognosis of lung cancer treatment
본 발명은 부분적으로 폐암 치료를 받는 개체에 클론성 조혈증(Clonal haematopoiesis, CH)이 존재하는지 여부가 폐암 치료의 예후와 유의미한 관련성이 있다는 놀라운 발견에 기초한다. 또한, 클론성 조혈증에 관여하는 유전자들 중 특정 유전자에서의 돌연변이가 보다 큰 관련성이 있음을 확인하였다. 이에 따라, 본 발명은 폐암의 예후 예측에 필요한 정보를 제공하기 위하여 폐암에 대해 치료받는 개체에 클론성 조혈증이 존재하는지 여부를 확인하는 것을 포함할 수 있다. 또한, 본 발명에 따라 개체에 클론성 조혈증이 존재하는 것으로 확인된 경우에 클론성 조혈증이 존재하지 않는 경우에 비해 폐암 치료의 예후가 양호하지 않음을 나타낼 수 있다. The present invention is based in part on the surprising discovery that the presence or absence of clonal haematopoiesis (CH) in individuals undergoing lung cancer treatment is significantly associated with the prognosis of lung cancer treatment. In addition, it was confirmed that mutations in specific genes among genes involved in clonal hematopoiesis have a greater relevance. Accordingly, the present invention may include determining whether clonal hematopoiesis exists in a subject being treated for lung cancer in order to provide information necessary for prognosis of lung cancer. In addition, when it is confirmed that clonal hematopoiesis exists in the subject according to the present invention, it may indicate that the prognosis of lung cancer treatment is not good compared to the case where clonal hematopoiesis does not exist.
본 발명의 일 실시예에 따르면, 클론성 조혈증이 있는 개체는 그렇지 않은 개체와 비교하여 전체 생존율이 더 불량하였으며, 성향 점수 매칭(PSM) 기법을 적용하여 클론성 조혈증 외의 다른 변수를 배제한 후에도 여전히 클론성 조혈증이 있는 환자는 그렇지 않은 환자와 비교하여 더 불량한 생존율을 보였다(실시예 6.3 및 도 2a 내지 도 2c 참조). 이와 같이, 클론성 조혈증의 존재는 폐암 환자의 치료에 있어 불량한 예후의 주요 인자로 작용될 수 있다. According to one embodiment of the present invention, individuals with clonal hematopoiesis had a poorer overall survival rate compared to individuals without clonal hematopoiesis, and even after excluding variables other than clonal hematopoiesis by applying the propensity score matching (PSM) technique, Patients who still had clonal hematopoiesis showed poorer survival compared to patients who did not (see Example 6.3 and FIGS. 2A-2C). As such, the presence of clonal hematopoiesis can act as a major factor in poor prognosis in the treatment of lung cancer patients.
본 발명의 다른 실시예에 따르면, 폐암에 의한 사망율은 클론성 조혈증의 존재 유무와 관계없이 유사하였지만, 비-폐암 사망률 및 원인 불명의 사망률은 클론성 조혈증이 없는 환자와 비교하여 클론성 조혈증이 있는 환자에서 유의하게 더 높았다(실시예 6.3 및 도 3a 내지 도 3c 참조). 또한, 보조 요법을 받은 환자의 경우 클론성 조혈증의 존재는 더 불량한 전체 생존율과 연관되어 있었지만, 보조 요법을 받지 않은 환자의 경우에 클론성 조혈증의 존재는 전체 생존율에 큰 영향을 미치지 못함을 확인하였다(실시예 6.3 및 도 4a 내지 도 4d 참조). 이러한 결과는 폐암의 악화 외의 다른 원인 예컨대, 심폐 질환, 패혈증, 뇌졸중 등의 발생에 의해 사망률이 증가한 것이고 클론성 조혈증의 존재 자체가 보조 요법과 관련된 불리한 결과를 증폭시켜 폐암 치료의 예후를 더욱 악화시킬 수 있음을 뒷받침하는 것이다. According to another embodiment of the present invention, mortality due to lung cancer was similar regardless of the presence or absence of clonal hematopoiesis, but non-lung cancer mortality and mortality from unknown cause were compared with patients without clonal hematopoiesis. It was significantly higher in patients with hematopoiesis (see Example 6.3 and FIGS. 3A-3C). In addition, the presence of clonal hematopoiesis was associated with poorer overall survival in patients receiving adjuvant therapy, but the presence of clonal hematopoiesis did not significantly affect overall survival in patients not receiving adjuvant therapy. It was confirmed (see Example 6.3 and FIGS. 4a to 4d). These results indicate that the death rate is increased due to causes other than exacerbation of lung cancer, such as cardiopulmonary disease, sepsis, stroke, etc., and the existence of clonal hematopoiesis itself amplifies adverse outcomes related to adjuvant therapy, further worsening the prognosis of lung cancer treatment. It is to support that it can be done.
따라서, 본 발명에 따라 클론성 조혈증의 존재 유무를 확인하는 것은 폐암 치료의 예후를 예측할 수 있는 동시에 폐암 수술 후 후속하는 적절한 후속 요법의 선택에 도움을 주어 폐암 치료 후 개체의 생존율을 높일 수 있다. 또한, 치료제 투여 전에 개체에 클론성 조혈증이 존재하는지 여부를 확인하여 보조 요법 등 폐암 치료에 사용되는 치료제의 효능을 평가하기 위한 개체를 선별함으로써 치료제의 효능 평가를 보다 효율적이고 정확하게 할 수 있고, 이러한 치료제의 효능 평가(예컨대, 임상시험)의 비용을 낮출 수 있다. 예컨대, 치료제의 임상시험을 위한 환자군(피험자) 모집에 있어서, 치료제를 투여하기 전에 대상 환자에 클론성 조혈증이 존재하는지 여부를 확인하고, 클론성 조혈증이 존재하는 환자를 환자군에서 제외하여 폐암 치료제의 효능 평가를 보다 효율적이고 정확하게 할 수 있다. 나아가, 치료제를 투여하기 전 개체에서 클론성 조혈증이 존재하는지 여부를 확인하여 폐암 치료에 사용되는 치료제에 대한 반응성이 높은 개체를 선별함으로써, 개체에서 치료제 효능을 높이고 폐암 치료 효과를 높일 수 있다.Therefore, confirming the presence or absence of clonal hematopoiesis according to the present invention can predict the prognosis of lung cancer treatment and at the same time help select an appropriate follow-up therapy following lung cancer surgery, thereby increasing the survival rate of individuals after lung cancer treatment. . In addition, it is possible to more efficiently and accurately evaluate the efficacy of a therapeutic agent by selecting an individual to evaluate the efficacy of a therapeutic agent used for lung cancer treatment, such as adjuvant therapy, by checking whether clonal hematopoiesis exists in the individual prior to administration of the therapeutic agent, The cost of evaluating the efficacy of such therapeutics (eg, clinical trials) can be lowered. For example, in recruiting patient groups (subjects) for a clinical trial of a therapeutic agent, before administering the therapeutic agent, it is confirmed whether or not clonal hematopoiesis exists in the target patient, and patients with clonal hematopoiesis are excluded from the patient group for lung cancer. Efficacy evaluation of the therapeutic agent can be performed more efficiently and accurately. Furthermore, by checking whether clonal hematopoiesis exists in an individual before administering the therapeutic agent and selecting an individual highly responsive to the therapeutic agent used for lung cancer treatment, the efficacy of the therapeutic agent in the individual and the lung cancer treatment effect can be increased.
폐암 치료의 예후 예측 방법Methods for predicting the prognosis of lung cancer treatment
본 발명의 일 태양에 따르면, 개체로부터 분리한 생물학적 시료의 유전자 분석을 통해 개체에 클론성 조혈증이 존재하는지 여부를 확인하는 단계를 포함하는 개체의 폐암 치료의 예후를 예측하는 방법이 제공된다. 또한, 개체로부터 분리한 생물학적 시료의 유전자 분석을 통해 개체에 클론성 조혈증이 존재하는지 여부를 확인하는 단계를 포함하는 개체의 폐암 치료의 예후를 예측하기 위한 정보를 제공하는 방법이 제공된다. According to one aspect of the present invention, there is provided a method for predicting the prognosis of lung cancer treatment of an individual comprising the step of determining whether clonal hematopoiesis exists in an individual through genetic analysis of a biological sample isolated from the individual. In addition, a method for providing information for predicting the prognosis of lung cancer treatment of an individual is provided, which includes determining whether clonal hematopoiesis exists in the individual through genetic analysis of a biological sample isolated from the individual.
상기 클론성 조혈증과 관련된 체세포 돌연변이가 발생하는 유전자로는 APC, ASXL1, ASXL2, ATM, BCL11B, BCOR, BCORL1, BIRC3, BRAF, BRCC3, CARD11, CASP8, CBL, CD58, CD79B, CNOT3, CREBBP, CUX1, DDX3X, DNMT3A, EP300, ETV6, EZH2, FAM46C, FBXW7, FLT3, FOXP1, GNAS, GNB1, GPS2, HIST1H1C, IDH2, IKZF1, IKZF2, JAK1, JAK2, JAK3, JARID2, KDM6A, KIT, KLHL6, KMT2D, KRAS, LUC7L2, MAP3K1, MPL, MYD88, NF1, NFE2L2, NOTCH1, NOTCH2, NRAS, PDS5B, PDSS2, PHF6, PHIP, PIK3CA, PIK3R1, PPM1D, PRDM1, PRPF40B, PTEN, PTPN11, RAD21, RIT1, RPS15, SETD2, SETDB1, SF1, SF3A1, SF3B1, SMC1A, SMC3, SRSF2, STAG1, STAG2, STAT3, SUZ12, TBL1XR1, TET1, TET2, TNFAIP3, TNFRSF14, TP53, U2AF1, VHL, WT1, ZRSR2 및 CHEK2가 포함된다. 본 발명의 일 구현예에 따르면, 개체로부터 분리한 생물학적 시료를 이용한 유전자 분석을 통해 상기 하나 이상의 유전자에 하나 이상의 변이가 존재하는지 여부에 기초하여 클론성 조혈증의 존재 여부를 결정하는 단계를 추가로 포함할 수 있다. Genes causing somatic mutations associated with clonal hematopoiesis include APC, ASXL1, ASXL2, ATM, BCL11B, BCOR, BCORL1, BIRC3, BRAF, BRCC3, CARD11, CASP8, CBL, CD58, CD79B, CNOT3, CREBBP, and CUX1 , DDX3X, DNMT3A, EP300, ETV6, EZH2, FAM46C, FBXW7, FLT3, FOXP1, GNAS, GNB1, GPS2, HIST1H1C, IDH2, IKZF1, IKZF2, JAK1, JAK2, JAK3, JARID2, KDM6A, KIT, KLHL6, KMT2D, KRAS , LUC7L2, MAP3K1, MPL, MYD88, NF1, NFE2L2, NOTCH1, NOTCH2, NRAS, PDS5B, PDSS2, PHF6, PHIP, PIK3CA, PIK3R1, PPM1D, PRDM1, PRPF40B, PTEN, PTPN11, RAD21, RIT1, RPS15, SETD2, SETDB1 , SF1, SF3A1, SF3B1, SMC1A, SMC3, SRSF2, STAG1, STAG2, STAT3, SUZ12, TBL1XR1, TET1, TET2, TNFAIP3, TNFRSF14, TP53, U2AF1, VHL, WT1, ZRSR2 and CHEK2. According to one embodiment of the present invention, the step of determining the presence or absence of clonal hematopoiesis based on whether one or more mutations exist in the one or more genes through genetic analysis using a biological sample isolated from the individual can include
다른 구현예에서, 상기 하나 이상의 유전자는 DNMT3A, ASXL1, TET2, PPM1D, ATM, BCL11B, CARD11, CBL, CD79B, CHEK2, CUX1, ETV6, FOXP1, JAK2, KMT2D, MAP3K1, MPL, NF1, NOTCH1, NOTCH2, PHIP, PRPF40B, RAD21, SETD2, SF3B1, TET1, TNFAIP3, TP53, U2AF1 및 ZRSR2로 이루어진 군으로부터 선택되는 하나 이상을 포함할 수 있다. In another embodiment, the one or more genes are DNMT3A, ASXL1, TET2, PPM1D, ATM, BCL11B, CARD11, CBL, CD79B, CHEK2, CUX1, ETV6, FOXP1, JAK2, KMT2D, MAP3K1, MPL, NF1, NOTCH1, NOTCH2, It may include one or more selected from the group consisting of PHIP, PRPF40B, RAD21, SETD2, SF3B1, TET1, TNFAIP3, TP53, U2AF1 and ZRSR2.
또 다른 구현예에서, 상기 하나 이상의 유전자는 ASXL1, CBL, CHEK2, CUX1, DNMT3A, FOXP1, JAK2, KMT2D, MPL, NOTCH1, PPM1D, PRPF40B, SF3B1, TET2, TNFAIP3, TP53, U2AF1 및 ZRSR2로 이루어진 군으로부터 선택되는 하나 이상을 포함할 수 있다. In another embodiment, the one or more genes are selected from the group consisting of ASXL1, CBL, CHEK2, CUX1, DNMT3A, FOXP1, JAK2, KMT2D, MPL, NOTCH1, PPM1D, PRPF40B, SF3B1, TET2, TNFAIP3, TP53, U2AF1 and ZRSR2. One or more selected ones may be included.
또 다른 구현예에서, 상기 하나 이상의 유전자는 DNMT3A, ASXL1, TET2, PPM1D, SF3B1, ATM, 및 TNFAIP3로 이루어진 군으로부터 선택되는 하나 이상을 포함할 수 있다.In another embodiment, the one or more genes may include one or more selected from the group consisting of DNMT3A, ASXL1, TET2, PPM1D, SF3B1, ATM, and TNFAIP3.
또 다른 구현예에서, 상기 하나 이상의 유전자는 상기 언급된 유전자로 이루어진 군으로부터 선택되는 어느 하나의 유전자를 포함할 수 있으며, 이 때, 상기 하나 이상의 유전자는 상기 선택된 하나의 유전자를 제외한 나머지 유전자로 이루어진 군에서 선택되는 하나 이상을 추가로 포함할 수 있다. 일례로서, 상기 하나 이상의 유전자는 DNMT3A를 포함할 수 있다. 이 때, 상기 하나 이상의 유전자는 ASXL1, TET2, PPM1D, ATM, BCL11B, CARD11, CBL, CD79B, CHEK2, CUX1, ETV6, FOXP1, JAK2, KMT2D, MAP3K1, MPL, NF1, NOTCH1, NOTCH2, PHIP, PRPF40B, RAD21, SETD2, SF3B1, TET1, TNFAIP3, TP53, U2AF1 및 ZRSR2로 이루어진 군에서 선택되는 하나 이상을 추가로 포함할 수 있다. 또한, 상기 하나 이상의 유전자는 ASXL1, CBL, CHEK2, CUX1, FOXP1, JAK2, KMT2D, MPL, NOTCH1, PPM1D, PRPF40B, SF3B1, TET2, TNFAIP3, TP53, U2AF1 및 ZRSR2로 이루어진 군에서 선택되는 하나 이상을 추가로 포함할 수 있다. 또한, 상기 하나 이상의 유전자는 ASXL1, TET2, PPM1D, SF3B1, ATM, 및 TNFAIP3로 이루어진 군에서 선택되는 하나 이상을 추가로 포함할 수 있다.In another embodiment, the one or more genes may include any one gene selected from the group consisting of the above-mentioned genes, and in this case, the one or more genes consist of the rest of the genes other than the selected one gene. It may further include one or more selected from the group. As an example, the one or more genes may include DNMT3A. At this time, the one or more genes are ASXL1, TET2, PPM1D, ATM, BCL11B, CARD11, CBL, CD79B, CHEK2, CUX1, ETV6, FOXP1, JAK2, KMT2D, MAP3K1, MPL, NF1, NOTCH1, NOTCH2, PHIP, PRPF40B, It may further include one or more selected from the group consisting of RAD21, SETD2, SF3B1, TET1, TNFAIP3, TP53, U2AF1 and ZRSR2. In addition, the at least one gene is selected from the group consisting of ASXL1, CBL, CHEK2, CUX1, FOXP1, JAK2, KMT2D, MPL, NOTCH1, PPM1D, PRPF40B, SF3B1, TET2, TNFAIP3, TP53, U2AF1 and ZRSR2 Add one or more can be included with In addition, the one or more genes may further include one or more selected from the group consisting of ASXL1, TET2, PPM1D, SF3B1, ATM, and TNFAIP3.
본 발명의 다른 구현예에 따르면, 상기 하나 이상의 유전자에 변이가 존재하는지 여부 및 변이 대립 유전자 빈도(variant allele frequency, VAF)에 기초하여 클론성 조혈증의 존재 여부를 결정할 수 있다. 예컨대, 개체로부터 분리한 생물학적 시료를 이용한 유전자 분석을 통해, 상기 유전자 군의 유전자들 중 하나 이상의 유전자에 하나 이상의 변이가 존재하고 변이 대립 유전자 빈도가 일정 수준 이상, 예를 들어 약 1.8% 이상, 약 1.9% 이상, 또는 약 2% 이상인 경우에, 클론성 조혈증이 존재하는 것으로 진단할 수 있다. According to another embodiment of the present invention, the presence or absence of clonal hematopoiesis may be determined based on the presence or absence of mutations in the one or more genes and the variant allele frequency (VAF). For example, through genetic analysis using a biological sample isolated from an individual, one or more mutations exist in one or more genes among the genes of the gene group, and the frequency of the variant allele is higher than a certain level, for example, about 1.8% or higher, about 1.8% or higher. If it is 1.9% or more, or about 2% or more, clonal hematopoiesis can be diagnosed as present.
상기 "개체"는 폐암에 대해 치료받는 환자를 의미할 수 있다. 구체적으로 개체는 폐암이 발병한 환자를 의미할 수 있다. 보다 구체적으로 개체는 종양 제거 수술을 받기 전 또는 받은 후의 환자를 의미할 수 있다. 또한, 개체는 보조 요법을 받기 전 환자일 수 있다. The "individual" may mean a patient being treated for lung cancer. Specifically, the subject may mean a patient with lung cancer. More specifically, the subject may mean a patient before or after undergoing tumor removal surgery. Additionally, the subject may be a patient prior to receiving adjuvant therapy.
상기 "폐암"은 폐에서 기원한 종양을 의미하며, 편평상피암, 선암, 대세포암과 같은 비소세포암 및 소세포암을 포함하는 것일 수 있다. 구체적으로 상기 폐암은 비소세포폐암일 수 있다. 보다 구체적으로, 상기 개체의 비소세포폐암은 병기가 I기, II기 또는 그 이후의 병기일 수 있다. 보다 더 구체적으로 상기 개체의 비소세포폐암 병기는 IA기, IB기, IIA기, IIB기, IIIA기 또는 IIIB기일 수 있고, 보다 구체적으로 IIB기일 수 있다.The "lung cancer" refers to a tumor originating in the lung, and may include non-small cell cancer and small cell cancer such as squamous cell carcinoma, adenocarcinoma, and large cell carcinoma. Specifically, the lung cancer may be non-small cell lung cancer. More specifically, the subject's non-small cell lung cancer may be stage I, stage II or a later stage. More specifically, the non-small cell lung cancer stage of the subject may be stage IA, stage IB, stage IIA, stage IIB, stage IIIA or stage IIIB, and more specifically stage IIB.
일 구현예에서, 상기 폐암 치료의 예후는 개체에서 수술, 항암 화학 요법, 항암 면역 요법, 화학방사선 요법 또는 이들 요법의 조합 또는 이를 포함하는 폐암 치료에 따른 생존 예후를 의미하는 것일 수 있다. 예컨대, 폐암 치료의 예후는 종양 제거 수술 전후에 이루어지는 보조 요법 또는 이를 포함하는 폐암 치료에 따른 전체 생존율 또는 무재발 생존율을 의미하는 것일 수 있다. 또한, 폐암 치료의 예후는 종양 제거 수술 이후 또는 종양 제거 수술에 이은 보조 요법 적용 이후 전체 생존율 또는 무재발 생존율을 포함하는 것일 수 있다.In one embodiment, the prognosis of lung cancer treatment may refer to a survival prognosis according to lung cancer treatment including surgery, chemotherapy, anticancer immunotherapy, chemoradiation, or a combination of these therapies or the same in an individual. For example, the prognosis of lung cancer treatment may mean overall survival rate or recurrence-free survival rate according to adjuvant therapy performed before or after tumor removal surgery or lung cancer treatment including the same. In addition, prognosis of lung cancer treatment may include overall survival rate or recurrence-free survival rate after tumor removal surgery or after application of adjuvant therapy following tumor removal surgery.
다른 구현예에서, 상기 폐암 치료의 예후는 폐암에 대해 치료받는 개체에서 수술 후 항암 화학 요법, 방사선 요법 등 보조 요법에 대한 반응성, 이에 따른 생존 예후, 또는 이들 둘 모두를 포함할 수 있다. 항암 화학 요법은 항암제를 이용하는 치료 요법을 의미하는 것일 수 있다. 예후는 예를 들면, 백금계 약물, 탁센계 약물, 빈카 알칼로이드계 약물, 대사길항제 등을 포함하는 항암제를 투여한 폐암 환자에서 항암제에 대한 반응성 및/또는 이에 따른 생존 예후를 의미하는 것일 수 있다. 폐암 환자의 경우에 수술을 진행하고 보조 요법을 진행하는데, 비슷한 임상적 특징 또는 비슷한 병기를 가지는 환자들 중에도 각 보조 요법에 대한 반응이 다양하고 생존 예후에도 상당한 차이를 나타낼 수 있다. 상기 클론성 조혈증과 관련된 유전자 변이 마커를 이용하는 경우, 보조 요법에 대한 반응성 및/또는 이에 따른 생존 예후를 예측할 수 있으며, 그에 따라 추가 필요한 치료 방법의 진행 방향을 결정할 수 있다. 이로써 폐암 발병 후의 생존율을 현저히 높일 수 있다.In another embodiment, the prognosis of lung cancer treatment may include responsiveness to adjuvant therapy such as chemotherapy or radiation therapy after surgery in an individual receiving treatment for lung cancer, survival prognosis, or both thereof. Anticancer chemotherapy may refer to treatment using an anticancer agent. Prognosis may mean, for example, responsiveness to anticancer drugs and/or survival prognosis in lung cancer patients administered with anticancer drugs including platinum-based drugs, taxane-based drugs, vinca alkaloid-based drugs, and anti-metabolites. In the case of lung cancer patients, surgery and adjuvant therapy are performed, and even among patients with similar clinical characteristics or similar stages, the response to each adjuvant therapy varies, and survival prognosis may also show significant differences. When the genetic mutation marker associated with clonal hematopoiesis is used, responsiveness to adjuvant therapy and/or survival prognosis thereof can be predicted, and accordingly, the direction of further treatment can be determined. As a result, the survival rate after lung cancer onset can be remarkably increased.
본 발명의 일 실시예에서, 비소세포폐암 수술을 받은 환자에 CH가 존재하는지 여부에 따른 환자 사망률을 확인한 결과, 환자 사망률에 있어 CH의 존재에 따른 유의한 차이가 폐암 사망률이 아닌 비-폐암 사망률 및 원인 불명의 사망률에서 확인되었고, 이러한 유의한 차이는 CH가 있는 환자에서 CH와 관련된 여러 불리한 결과(예컨대 심폐 질환, 패혈증, 뇌졸중 등)가 CTx 또는 RTx에 의해 증폭되어 결국 생존에 영향을 미칠 수 있음을 뒷받침한다. 따라서, 폐암 치료를 받는 개체에 CH의 존재 유무는 보다 적절한 보조 요법의 선택을 가능하게 한다. 예컨대, 폐암 치료를 받는 개체 중 CH가 존재하는 것으로 진단된 환자의 경우, 폐암 치료의 예후를 개선하기 위해, 통상의 항암 보조 요법 또는 선별된 항암 보조 요법과 함께, 또는 단독으로 항염증제(예: 카나키누맙)를 사용할 수 있다. In one embodiment of the present invention, as a result of confirming patient mortality according to the presence or absence of CH in patients who underwent non-small cell lung cancer surgery, a significant difference according to the presence of CH in patient mortality was not lung cancer mortality but non-lung cancer mortality. and mortality of unknown cause, and these significant differences suggest that in patients with CH, several adverse outcomes associated with CH (e.g., cardiopulmonary disease, sepsis, stroke, etc.) may be amplified by CTx or RTx, eventually affecting survival. support that there is Therefore, the presence or absence of CH in a subject undergoing lung cancer treatment enables the selection of a more appropriate adjuvant therapy. For example, in the case of a patient diagnosed with CH present among individuals undergoing lung cancer treatment, anti-inflammatory drugs (eg, cannabis) alone or in combination with conventional adjuvant anticancer therapy or selected adjuvant anticancer therapy are used to improve the prognosis of lung cancer treatment. Kinumab) can be used.
본 발명의 일 구현예에서, 클론성 조혈증이 존재하는지 여부를 확인하는 단계는 종양 제거 수술을 받기 전, 종양 제거 수술을 받은 후, 종양 제거 수술 후 보조 요법 적용 전, 또는 종양 제거 수술에 이은 보조 요법 적용 후에 이루어질 수 있다. 예를 들어, 종양 제거 수술을 받기 전에는 클론성 조혈증의 존재 여부를 확인함으로써 외과적 절제술 대신 화학요법이나 방사선 요법 등이 환자의 예후에 더 유리한지 여부를 판단할 수 있다. 다른 예로, 종양 제거 수술을 받은 후에는 클론성 조혈증의 존재 여부에 따라 추가적인 보조 요법을 적용하는 것이 환자의 예후에 유리한지 여부를 판단할 수 있다. 또 다른 예로, 종양 제거 수술 및 보조 요법 적용 후에는 클론성 조혈증의 존재 여부 및/또는 돌연변이가 발생한 유전자의 종류에 따라 어떤 보완 요법을 추가로 실시할 것인지 여부를 결정할 수 있다.In one embodiment of the present invention, the step of determining whether clonal hematopoiesis exists is before undergoing tumor removal surgery, after tumor removal surgery, before applying adjuvant therapy after tumor removal surgery, or following tumor removal surgery. This can be done after application of adjuvant therapy. For example, by confirming the presence of clonal hematopoiesis before undergoing tumor removal surgery, it is possible to determine whether chemotherapy or radiation therapy is more favorable for the patient's prognosis instead of surgical resection. As another example, after undergoing tumor removal surgery, whether or not the application of additional adjuvant therapy is favorable for the patient's prognosis can be determined according to the presence or absence of clonal hematopoiesis. As another example, after tumor removal surgery and adjuvant therapy are applied, it may be determined whether to additionally perform a complementary therapy according to the presence or absence of clonal hematopoiesis and/or the type of mutated gene.
상기 클론성 조혈증과 관련된 유전자 변이는 미스센스(missense) 변이, 프레임시프트(frameshift mutation) 변이, 넌센스(nonsense) 변이, 스플라이스(splice) 변이, 뉴클레오티드 삽입, 결실 또는 치환, 이들의 조합 등의 형태일 수 있다.Gene mutations associated with the clonal hematopoiesis include missense mutations, frameshift mutations, nonsense mutations, splice mutations, nucleotide insertions, deletions or substitutions, combinations thereof, and the like. can be in the form
예를 들어, 상기 DNMT3A 유전자의 돌연변이는 하기 표 1에 기재된 변이 중 선택되는 하나 이상일 수 있으나, 이에 제한되는 것은 아니다.For example, the mutation of the DNMT3A gene may be one or more selected from the mutations listed in Table 1 below, but is not limited thereto.
Figure PCTKR2022011222-appb-img-000001
Figure PCTKR2022011222-appb-img-000001
상기 TET2 유전자의 돌연변이는 하기 표 2에 기재된 변이 중 선택되는 하나 이상일 수 있으나, 이에 제한되는 것은 아니다.The mutation of the TET2 gene may be one or more selected from the mutations listed in Table 2 below, but is not limited thereto.
Figure PCTKR2022011222-appb-img-000002
Figure PCTKR2022011222-appb-img-000002
상기 ASXL1 유전자의 돌연변이는 하기 표 3에 기재된 변이 중 선택되는 하나 이상일 수 있으나, 이에 제한되는 것은 아니다.Mutations of the ASXL1 gene may be one or more selected from among the mutations listed in Table 3 below, but are not limited thereto.
Figure PCTKR2022011222-appb-img-000003
Figure PCTKR2022011222-appb-img-000003
상기 PPM1D 유전자의 돌연변이는 하기 표 4에 기재된 변이 중 선택되는 하나 이상일 수 있으나, 이에 제한되는 것은 아니다.The mutation of the PPM1D gene may be one or more selected from the mutations listed in Table 4 below, but is not limited thereto.
Figure PCTKR2022011222-appb-img-000004
Figure PCTKR2022011222-appb-img-000004
상기 ATM, BCL11B, CARD11, CBL, CD79B, CHEK2, CUX1, ETV6, FOXP1, JAK2, KMT2D, MAP3K1, MPL, NF1, NOTCH1, NOTCH2, PHIP, PRPF40B, RAD21, SETD2, SF3B1, TET1, TNFAIP3, TP53, U2AF1 및 ZRSR2 유전자의 돌연변이는 각각 하기 표 5에 기재된 변이일 수 있으나, 이에 제한되는 것은 아니다. ATM, BCL11B, CARD11, CBL, CD79B, CHEK2, CUX1, ETV6, FOXP1, JAK2, KMT2D, MAP3K1, MPL, NF1, NOTCH1, NOTCH2, PHIP, PRPF40B, RAD21, SETD2, SF3B1, TET1, TNFAIP3, TP53, U2AF1 And mutations of the ZRSR2 gene may be mutations described in Table 5, respectively, but are not limited thereto.
Figure PCTKR2022011222-appb-img-000005
Figure PCTKR2022011222-appb-img-000005
예를 들어, 상기 JAK2 유전자 5073770 위치의 돌연변이는 1849번 위치의 염기 G가 T로 치환되는 미스센스 돌연변이일 수 있다.For example, the mutation at position 5073770 of the JAK2 gene may be a missense mutation in which base G at position 1849 is substituted with T.
본 발명의 일 구현예에서, 본 발명의 방법은 개체로부터 분리한 생물학적 시료의 유전자 분석을 통해 상기 변이가 존재하는 것으로 확인된 경우에, 상기 변이가 존재하지 않는 경우에 비해, 개체의 폐암 치료의 예후가 양호하지 않음을 나타내는 것으로 결정하는 단계를 추가로 포함할 수 있다.In one embodiment of the present invention, the method of the present invention, when it is confirmed that the mutation exists through genetic analysis of a biological sample isolated from the individual, compared to the case where the mutation does not exist, the treatment of lung cancer of the individual It may further include determining that the prognosis is indicative of poor prognosis.
본 발명의 일 실시예에서, 폐암 환자들의 수술 후 보조 요법 치료 경과를 추적 관찰한 결과, 상기 CH 관련 유전자 변이가 존재하는 폐암 환자들의 경우에 CH 관련 유전자 변이가 없는 폐암 환자들에 비해 수술 후 5년간 생존율이 통계적으로 유의하게 낮은 양상을 나타내었다.In one embodiment of the present invention, as a result of follow-up of adjuvant therapy treatment progress of lung cancer patients after surgery, in the case of lung cancer patients with the CH-related gene mutation, compared to lung cancer patients without CH-related genetic mutation, after surgery 5 The annual survival rate was statistically significantly lower.
상기 유전자 분석은 차세대 유전체 시퀀싱 분석법(Next Generation Sequencing, NGS) 및 PCR-기반 기법, 예를 들어, 실시간 정량적 PCR, blocker PCR, 디지털 액적(droplet) PCR(ddPCR), 클램핑 PCR, ICE-COLD PCR, castPCR, ARMS PCR, BEAMing 등을 포함하지만, 이로 한정되지 않는다. 실시자는 공지된 유전자 분석 기법을 제한 없이 이용하여 클론성 조혈증과 관련된 상기 유전자 변이를 검출 및 식별할 수 있다. 바람직하게는 상기 유전자 분석은 차세대 유전체 시퀀싱 분석법을 포함할 수 있다. 예를 들어, 차세대 유전체 시퀀싱 분석법을 이용하여, 전유전체 염기서열분석(Whole Genome Sequencing), 전엑솜 염기서열분석(Whole Exome Sequencing), RNA 염기서열분석(RNA Sequencing) 등의 데이터 처리를 통해 생성된 정보를 분석할 수 있다.The genetic analysis can be performed using Next Generation Sequencing (NGS) and PCR-based techniques such as real-time quantitative PCR, blocker PCR, digital droplet PCR (ddPCR), clamping PCR, ICE-COLD PCR, castPCR, ARMS PCR, BEAMing, etc., but are not limited thereto. The practitioner can detect and identify the genetic mutation associated with clonal hematopoiesis using known genetic analysis techniques without limitation. Preferably, the genetic analysis may include next-generation genome sequencing analysis. For example, using next-generation genome sequencing analysis, whole genome sequencing, whole exome sequencing, RNA sequencing, etc. information can be analyzed.
조성물, 키트 및 유전자 패널Compositions, kits and genetic panels
본 발명의 다른 태양에 따르면, 폐암에 대해 치료받는 개체로부터 분리한 생물학적 시료를 이용하여 클론성 조혈증을 진단하기 위한 제제를 유효성분으로 포함하는 개체의 폐암 치료의 예후를 예측하기 위한 조성물이 제공된다. 상기 조성물은 본 발명에 따른 폐암 치료의 예후를 예측하기 위한 클론성 조혈증의 진단 또는 폐암 치료의 예후를 예측하는 방법에 사용될 수 있다. According to another aspect of the present invention, a composition for predicting the prognosis of lung cancer treatment in a subject comprising an agent for diagnosing clonal hematopoiesis as an active ingredient using a biological sample isolated from a subject being treated for lung cancer is provided. do. The composition can be used in a method for diagnosing clonal hematopoiesis or predicting the prognosis of lung cancer treatment for predicting the prognosis of lung cancer treatment according to the present invention.
일 구현예에서, 상기 제제는 DNMT3A, ASXL1, TET2, PPM1D, ATM, BCL11B, CARD11, CBL, CD79B, CHEK2, CUX1, ETV6, FOXP1, JAK2, KMT2D, MAP3K1, MPL, NF1, NOTCH1, NOTCH2, PHIP, PRPF40B, RAD21, SETD2, SF3B1, TET1, TNFAIP3, TP53, U2AF1 및 ZRSR2로 이루어진 군으로부터 선택되는 하나 이상의 유전자에 하나 이상의 변이가 존재하는지를 검출하기 위한 제제를 포함할 수 있다.In one embodiment, the agent is DNMT3A, ASXL1, TET2, PPM1D, ATM, BCL11B, CARD11, CBL, CD79B, CHEK2, CUX1, ETV6, FOXP1, JAK2, KMT2D, MAP3K1, MPL, NF1, NOTCH1, NOTCH2, PHIP, It may include an agent for detecting whether one or more mutations exist in one or more genes selected from the group consisting of PRPF40B, RAD21, SETD2, SF3B1, TET1, TNFAIP3, TP53, U2AF1 and ZRSR2.
다른 구현예에서, 상기 제제는 ASXL1, CBL, CHEK2, CUX1, DNMT3A, FOXP1, JAK2, KMT2D, MPL, NOTCH1, PPM1D, PRPF40B, SF3B1, TET2, TNFAIP3, TP53, U2AF1 및 ZRSR2로 이루어진 군으로부터 선택되는 하나 이상의 유전자에 하나 이상의 변이가 존재하는지를 검출하기 위한 제제를 포함할 수 있다.In another embodiment, the agent is one selected from the group consisting of ASXL1, CBL, CHEK2, CUX1, DNMT3A, FOXP1, JAK2, KMT2D, MPL, NOTCH1, PPM1D, PRPF40B, SF3B1, TET2, TNFAIP3, TP53, U2AF1 and ZRSR2 It may include an agent for detecting the presence of one or more mutations in one or more genes.
또 다른 구현예에서, 상기 제제는 DNMT3A, ASXL1, TET2, PPM1D, SF3B1, ATM, 및 TNFAIP3로 이루어진 군으로부터 선택되는 하나 이상의 유전자에 하나 이상의 변이가 존재하는지를 검출하기 위한 제제를 포함할 수 있다.In another embodiment, the agent may include an agent for detecting the presence of one or more mutations in one or more genes selected from the group consisting of DNMT3A, ASXL1, TET2, PPM1D, SF3B1, ATM, and TNFAIP3.
또 다른 구현예에서, 상기 제제는 상기 유전자 군으로부터 선택되는 하나의 유전자에 변이가 존재하는지 검출하기 위한 제제를 포함할 수 있으며, 이 때, 상기 제제는 상기 선택된 하나의 유전자를 제외한 나머지 유전자로 이루어진 군에서 선택되는 하나 이상의 유전자에 변이가 존재하는지를 검출하기 위한 제제를 추가로 포함할 수 있다. 일례로서, 상기 제제는 DNMT3A에 변이가 존재하는지를 검출하기 위한 제제를 포함할 수 있으며, 이 때, 상기 제제는 ASXL1, TET2, PPM1D, ATM, BCL11B, CARD11, CBL, CD79B, CHEK2, CUX1, ETV6, FOXP1, JAK2, KMT2D, MAP3K1, MPL, NF1, NOTCH1, NOTCH2, PHIP, PRPF40B, RAD21, SETD2, SF3B1, TET1, TNFAIP3, TP53, U2AF1 및 ZRSR2로 이루어진 군으로부터 선택되는 하나 이상의 유전자에 변이가 존재하는지를 검출하기 위한 제제를 추가로 포함할 수 있거나, ASXL1, CBL, CHEK2, CUX1, DNMT3A, FOXP1, JAK2, KMT2D, MPL, NOTCH1, PPM1D, PRPF40B, SF3B1, TET2, TNFAIP3, TP53, U2AF1 및 ZRSR2로 이루어진 군으로부터 선택되는 하나 이상의 유전자에 변이가 존재하는지를 검출하기 위한 제제를 추가로 포함할 수 있거나, ASXL1, TET2, PPM1D, SF3B1, ATM, 및 TNFAIP3로 이루어진 군으로부터 선택되는 하나 이상의 유전자에 변이가 존재하는지를 검출하기 위한 제제를 추가로 포함할 수 있거나, ASXL1, TET2, PPM1D, SF3B1, ATM, 및 TNFAIP3로 이루어진 군으로부터 선택되는 하나 이상의 유전자에 변이가 존재하는지를 검출하기 위한 제제를 추가로 포함할 수 있다. In another embodiment, the agent may include an agent for detecting whether a mutation exists in one gene selected from the gene group, wherein the agent consists of the remaining genes except for the selected one gene. It may further include an agent for detecting whether there is a mutation in one or more genes selected from the group. As an example, the agent may include an agent for detecting whether there is a mutation in DNMT3A, wherein the agent is ASXL1, TET2, PPM1D, ATM, BCL11B, CARD11, CBL, CD79B, CHEK2, CUX1, ETV6, Detecting whether there is a mutation in one or more genes selected from the group consisting of FOXP1, JAK2, KMT2D, MAP3K1, MPL, NF1, NOTCH1, NOTCH2, PHIP, PRPF40B, RAD21, SETD2, SF3B1, TET1, TNFAIP3, TP53, U2AF1 and ZRSR2 or from the group consisting of ASXL1, CBL, CHEK2, CUX1, DNMT3A, FOXP1, JAK2, KMT2D, MPL, NOTCH1, PPM1D, PRPF40B, SF3B1, TET2, TNFAIP3, TP53, U2AF1 and ZRSR2 Detecting whether there is a mutation in one or more genes selected from the group consisting of ASXL1, TET2, PPM1D, SF3B1, ATM, and TNFAIP3 It may further include an agent for detecting whether there is a mutation in one or more genes selected from the group consisting of ASXL1, TET2, PPM1D, SF3B1, ATM, and TNFAIP3.
상기 제제는, 예를 들어 변이 유전자, 이로부터 유래되는 mRNA, 또는 변이 유전자로부터 코딩되는 단백질을 검출할 수 있는 제제를 포함할 수 있다. The agent may include, for example, an agent capable of detecting a mutant gene, an mRNA derived therefrom, or a protein encoded by the mutant gene.
상기 유전자 또는 mRNA 발현을 검출할 수 있는 제제는 상기 변이 유전자 또는 mRNA에 상보적으로 결합하는 뉴클레오티드 서열, 예를 들어, 센스 및 안티센스 프라이머, 프로브, 또는 안티센스 핵산일 수 있으나, 이에 한정되지 않는다. 상기 제제는 구체적으로 클론성 조혈증의 유전자 변이를 검출하기 위한 제제, 예를 들어 프라이머, 프로브 또는 안티센스 핵산일 수 있다. An agent capable of detecting the expression of the gene or mRNA may be a nucleotide sequence that complementarily binds to the mutant gene or mRNA, for example, sense and antisense primers, probes, or antisense nucleic acids, but is not limited thereto. The agent may specifically be an agent for detecting a gene mutation in clonal hematopoiesis, for example, a primer, a probe, or an antisense nucleic acid.
클론성 조혈증 관련 유전자의 변이의 존재를 확인하기 위해 사용할 수 있는 제제의 예시로서 하기 표 6 내지 표 9에 프로브의 서열 정보를 제공한다.As examples of agents that can be used to confirm the presence of mutations in clonal hematopoiesis-related genes, probe sequence information is provided in Tables 6 to 9 below.
ChromosomeChromosome StartStart StopStop GeneGene Probe SequenceProbe Sequence 서열번호sequence number
22 2556467225564672 2556479225564792 DNMT3ADNMT3A GCGGGCGGCGGCGGCGGCGAGAGCAGAGGACGAGCCGGGACGCGGCGCCGCGGCACCAGGGCGCGCAGCCGGGCCGGCCCGACCCCACCGGCCATACGGTAATGAGCGCCGCTGCTGGCGGCGGGCGGCGGCGGCGGCGAGAGCAGAGGACGAGCCGGGACGCGGCGCCGCGGCACCAGGGCGCGCAGCCGGGCCGGCCCGACCCCACCGGCCATACGGTAATGAGCGCCGCTGCTGGCG 1One
22 2553747225537472 2553759225537592 DNMT3ADNMT3A CAGAGCCAACCAGGCCTGCAGCCTGAGCTCAGACCTCAGCTTTCTCTGGGCCCAGGCACCGGTCCTGAAGTGAGGTGACATTCATTTCACTACATCCTGTGACTGCACTCACTTCCTCCACAGAGCCAACCAGGCCTGCAGCCTGAGCTCAGACCTCAGCTTTCTCTGGGCCCAGGCACCGGTCCTGAAGTGAGGTGACATTCATTTCACTACATCCTGTGACTGCACTCACTTCCTCCA 22
22 2553729025537290 2553741025537410 DNMT3ADNMT3A GGGCCTCTGGGGGAGGCTGGGATTTCCCAGGGGCTGGTTGGGGTGGGAGGGAGGATGCGGGAAGCTTTCAAAGGAGAGAGAGGCTGTGAATGAAGAGAAGGGAGGAGGCGGAGGCAGCTGGGGCCTCTGGGGGAGGCTGGGATTTCCCAGGGGCTGGTTGGGGTGGGAGGGAGGATGCGGGAAGCTTTCAAAGGAGAGAGAGGCTGTGAATGAAGAGAAGGGAGGAGGCGGAGGCAGCTG 33
22 2553717025537170 2553729025537290 DNMT3ADNMT3A GAGGTCCCAGAAGTGGCACCCATTGGCCGCAGCGACACGGAGGGGAGACTGCTGCCACTCCAAGGCTCTCAGAGGCTGCTGGGGTAGGAGGTGGCCCTGAAGGGAGCCTGCCTCGGTTTCGAGGTCCCAGAAGTGGCACCCATTGGCCGCAGCGACACGGAGGGGAGACTGCTGCCACTCCAAGGCTCTCAGAGGCTGCTGGGGTAGGAGGTGGCCCTGAAGGGAGCCTGCCTCGGTTTC 44
22 2553705025537050 2553717025537170 DNMT3ADNMT3A TCTGCTCTCTGGGGTGCTGGTGAGGCCAGAAGGAGGAGCAACACCCCAGGCCTCACAGGCCAGGTGTGGCCCTGGGCTGAGGGCCTGACCCAGGGAGGGTGGGGTGCTCCGCCCCACTGATCTGCTCTCTGGGGTGCTGGTGAGGCCAGAAGGAGGAGCAACACCCCAGGCCTCACAGGCCAGGTGTGGCCCTGGGCTGAGGGCCTGACCCAGGGAGGGTGGGGTGCTCCGCCCCACTGA 55
22 2553696625536966 2553708625537086 DNMT3ADNMT3A CTGACCCAGGGAGGGTGGGGTGCTCCGCCCCACTGATCCTCTTCTCTCCCCCACAGGTGGAGCCATCGAAGCCCCCACCCACAGGCTGACAGAGGCACCGTTCACCAGAGGGCTCAACACCTGACCCAGGGAGGGTGGGGTGCTCCGCCCCACTGATCCTCTTCTCTCCCCCACAGGTGGAGCCATCGAAGCCCCCACCCACAGGCTGACAGAGGCACCGTTCACCAGAGGGCTCAACAC 66
22 2553684625536846 2553696625536966 DNMT3ADNMT3A CGGGATCTATGTTTAAGTTTTAACTCTCGCCTCCAAAGACCACGATAATTCCTTCCCCAAAGCCCAGCAGCCCCCCAGCCCCGCGCAGCCCCAGCCTGCCTCCCGGCGCCCAGATGCCCGCGGGATCTATGTTTAAGTTTTAACTCTCGCCTCCAAAGACCACGATAATTCCTTTCCCCAAAGCCCAGCAGCCCCCCAGCCCCGCGCAGCCCCAGCCTGCCTCCCGGCGCCCAGATGCCCG 77
22 2553672625536726 2553684625536846 DNMT3ADNMT3A CCATGCCCTCCAGCGGCCCCGGGGACACCAGCAGCTCTGCTGCGGAGCGGGAGGAGGACCGAAAGGTGAGCAGCGGGCTCTGCTGGGGACCCTCTGGCCTGGGAGAGGGAGAGCCCTGTCCCATGCCCTCCAGCGGCCCCGGGGACACCAGCAGCTCTGCTGCGGAGCGGGAGGAGGACCGAAAGGTGAGCAGCGGGCTCTGCTGGGGACCCTCTGGCCTGGGAGAGGGAGAGCCCTGTC 88
22 2552300025523000 2552312025523120 DNMT3ADNMT3A GCCTGCAGGACGGAGAGGAGCAGGAGGAGCCGCGTGGCAAGGAGGAGCGCCAAGAGCCCAGCACCACGGCACGGAAGGTGGGGCGGCCTGGGAGGAAGCGCAAGCACCCCCCGGTGAGTGGCCTGCAGGACGGAGAGGAGCAGGAGGAGCCGCGTGGCAAGGAGGAGCGCCAAGAGCCCAGCACCACGGCACGGAAGGTGGGGCGGCCTGGGAGGAAGCGCAAGCACCCCCCGGTGAGTG 99
22 2550438025504380 2550450025504500 DNMT3ADNMT3A CCTCCCAGGGCCCTGCCAGGTTGTTTTGCATATGTGCATTTTAATTTCAAAAAGTCTTCCTTCCAAGCGTGTATGATGAAATGAGTAAATTGATTAATTGGCGTAACTTATTTTGCATGGCCTCCCAGGGCCCTGCCAGGTTGTTTTGCATATGTGCATTTTAATTTCAAAAAAGTCTTCCTTCCAAGCGTGTATGATGAAATGAGTAAATTGATTAATTGGCGTAACTTATTTTGCATGG 1010
22 2550428225504282 2550440225504402 DNMT3ADNMT3A TGGCGTAACTTATTTTGCATGGATCCAACCTAATGTTCATGCAGGATAGAGAACATTTCCAGAATACAAATTTCCAAACTTATTAAGAAGCTTTTATTCATTTATTATTCGACAAATATGTGGCGTAACTTATTTTGCATGGATCCAACCTAATGTTCATGCAGGATAGAGAACATTTCCAGAATACAAATTTCCAAACTTATTAAGAAGCTTTTATTCATTTATTATTCGACAAATATG 1111
22 2550474525504745 2550486525504865 DNMT3ADNMT3A TTGCTGTATTTGTAGCCCCTGGCCTGGGCACTCAAGGGCAGCAGATACCCTGTTTGCCTCCCTGAGTGCAGAGGTCCTGAGCCCACCCTAGTTGGGCTGACTCAACTGGAAATTTGGTTGTTGCTGTATTTGTAGCCCCTGGCCTGGGCACTCAAGGGCAGCAGATACCCTGTTTGCCTCCCTGAGTGCAGAGGTCCTGAGCCCACCCTAGTTGGGCTGACTCAACTGGAAATTTGGTTG 1212
22 2550465025504650 2550477025504770 DNMT3ADNMT3A GCTGACTCAACTGGAAATTTGGTTGTGACAGTGGCGTGGGGAGAGGGCTGGGTGATTGTATTCTGTGTACTGCCCAGCCCAGGCCTCTTCATCTGGGGACTTTTTGGCCTAACCCTGGAAGCTGACTCAACTGGAAATTTGGTTGTGACAGTGGCGTGGGGAGAGGGCTGGGTGATTGTATTCTGTGTACTGCCCAGCCCAGGCCTCTTCATCTGGGGACTTTTTGGCCTAACCCTGGAA 1313
22 2550455525504555 2550467525504675 DNMT3ADNMT3A GGGACTTTTTGGCCTAACCCTGGAAGCCTGGAAAGTTGCCCACTTTTCTCTTTCAGGTTAAGCCAGCAATTTCAGGGCCAACCGAGCTGTAAACATGTTAGTAATGAGGACAACTAGCATGGGACTTTTTGGCCTAACCCTGGAAGCCTGGAAAGTTGCCCACTTTTCTCTTTCAGGTTAAGCCAGCAATTTCAAGGGCCAACCGAGCTGTAAACATGTTAGTAATGAGGACAACTAGCAT 1414
22 2550550325505503 2550562325505623 DNMT3ADNMT3A ACTGATCTAACCCTCCTCTTGTGTATCTTTCTTACATTTGCAGGTGGAAAGCGGTGACACGCCAAAGGACCCTGCGGTGATCTCCAAGTCCCCATCCATGGCCCAGGACTCAGGCGCCTCACTGATCTAACCCTCCTCTTGTGTATCTTTCTTACATTTGCAGGTGGAAAGCGGTGACACGCCAAAGGACCCTGCGGTGATTCTCCAAGTCCCCATCCATGGCCCAGGACTCAGGCGCCTC 1515
22 2550538325505383 2550550325505503 DNMT3ADNMT3A AGAGCTATTACCCAATGGGGACTTGGAGAAGCGGAGTGAGCCCCAGCCAGAGGAGGGGAGCCCTGCTGGGGGGCAGAAGGGCGGGGCCCCAGCAGAGGGAGAGGGTGCAGCTGAGACCCTAGAGCTATTACCCAATGGGGACTTGGAGAAGCGGAGTGAGCCCCAGCCAGAGGAGGGGAGCCCTGCTGGGGGGCAGAAGGGCGGGGCCCCAGCAGAGGGAGAGGGTGCAGCTGAGACCCT 1616
22 2550526325505263 2550538325505383 DNMT3ADNMT3A GCCTGAAGCCTCAAGAGCAGTGGAAAATGGCTGCTGCACCCCCAAGGAGGGCCGAGGAGCCCCTGCAGAAGCGGGTGAGTCCTCAGCACCAGGGGCAGCCTCTTCTGGGCCCACCAGCATGCCTGAAGCCTCAAGAGCAGTGGAAAATGGCTGCTGCACCCCCAAGGAGGGCCGAGGAGCCCCTGCAGAAGCGGGTGAGTCCTCAGCACCAGGGGCAGCCTCTTCTGGGCCCACCAGCAT 1717
22 2550514425505144 2550526325505263 DNMT3ADNMT3A ACCCTGAGAGTCAGGGACTTGGCTCTCCAGCAGGTCCCAGGAAGGATGGTCTGGGTCGTGGCTAAAGGTCTGCTTGCCAAGGCTATGGCCTGGAGGCTACTGGCTGGATGCAGCCTGCGACCCTGAGAGTCAGGGACTTGGCTCTCCAGCAGGTCCCAGGAAGGATGGTCTGGGTCGTGGCTAAAGGTCTGCTTGCCAAGGCTATGCCTGGAGGCTACTGGCTGGATGCAGCCTGCG 1818
22 2549833025498330 2549845025498450 DNMT3ADNMT3A ACCAACGAACTGGTCCCTTTGTTCTTCCCTCTCCACAGGCAAAGAACAGAAGGAGACCAACATCGAATCCATGAAAATGGAGGCAAGTGTTCCACCCCCAGGGGCTCTGTGGATCCTGATACCAACGAACTGGTCCCTTTGTTCTTCCCTCTCCACAGGCAAAGAACAGAAGGAGACCAACATCGAATCCATGAAAATGGAGGCAAGTGTTCCACCCCCAGGGGCTCTGTGGATCCTGAT 1919
22 2549788225497882 2549800225498002 DNMT3ADNMT3A CGTCAGTGCCCACCCTAATGCCCTAATGTCTGTCTCTCTGTCCTAGGGCTCCCGGGGCCGGCTGCGGGGTGGCTTGGGCTGGGAGTCCAGCCTCCGTCAGCGGCCCATGCCGAGGCTCACCGTCAGTGCCCACCCTAATGCCCTAATGTCTGTCTCTCTGTCCTAGGGCTCCCGGGGCCGGCTGCGGGGTGGCTTGGGCTGGGAGTCCAGCCTCCGTCAGCGGCCCATGCCGAGGCTCAC 2020
22 2549776225497762 2549788225497882 DNMT3ADNMT3A CTTCCAGGCGGGGGACCCCTACTACATCAGCAAGCGCAAGCGGGACGAGTGGCTGGCACGCTGGAAAAGGGAGGTGAGGCGCCTTCTGGCCTGGGCCCCAGCCCGTCCTGCAGAACTGGACTTCCAGGCGGGGGACCCCTACTACATCAGCAAGCGCAAGCGGGACGAGTGGGCTGGCACGCTGGAAAAGGGAGGGTGAGGCGCCTTCTGGCCTGGGCCCCAGCCCGTCCTGCAGAACTGGA 2121
22 2547512325475123 2547524325475243 DNMT3ADNMT3A CTAGACAAAGAAAATGTTCCCTCCCTCCCCCCCGCCGCCCCCCTCCCCTCCCAGTGGCCCCCTCCGCCCCCAGCCCCATCGCCCCCTTCCCCTCCCCCAAGACGGGCAGCTACTTCCAGACTAGACAAAGAAAATGTTCCCTCCCTCCCCCCCGCCGCCCCCCTCCCCTCCCAGTGGCCCCCTCCGCCCCAGCCCCATCGCCCCCTTCCCCTCCCCCAAGACGGGCAGCTACTTCCAGA 2222
22 2547500325475003 2547512325475123 DNMT3ADNMT3A GCTTCAGGGCCGCGGCTCACACCTGAGCGCGACTGCAGAGGGGCTGCACCTGGCCTTATGGGTAGGTTCCTGGACGGAGCCCCGGGGAGACCGGGGGCGGGGAGGCGGCAGGGCCGGTGGGCTTCAGGGCCGCGGCTCACACCTGAGCGCGACTGCAGAGGGGCTGCACCTGGCCTTATGGGTAGGTTCCTGGACGGAGCCCCGGGGAGACCGGGGGCGGGGAGGCGGCAGGGCCGGTGG 2323
22 2547249925472499 2547261925472619 DNMT3ADNMT3A ATCAAGGATTTCATTCTCCTTTGTAGGGATCCTGGAGCGGGTTGTGAGAAGGAATGGGCGCGTGGATCGTAGCCTGAAAGACGAGTGTGATACGGTGAAAGGATGGAGGCTGTGCAATGGATCAAGGATTTCATTCTCCTTTGTAGGGATCCTGGAGCGGGTTGTGAGAAGGAATGGGCGCGTGGATCGTAGCCTGAAAGACGAGTGTGATACGGTGAAAGGATGGAGGCTGTGCAATGG 2424
22 2547101325471013 2547113325471133 DNMT3ADNMT3A TTGTTTCCCCAGGCTGAGAAGAAAGCCAAGGTCATTGCAGGAATGAATGCTGTGGAAGAAAACCAGGGGCCCGGGGAGTCTCAGAAGGTGGAGGAGGCCAGCCCTCCTGCTGTGCAGCAGTTGTTTCCCCAGGCTGAGAAGAAAGCCAAGGTCATTGCAGGAATGAATGCTGTGGAAGAAAACCAGGGGCCCGGGGAGTCTCAGAAGGTGGAGGAGGCCAGCCCTCCTGCTGTGCAGCAG 2525
22 2547089325470893 2547101325471013 DNMT3ADNMT3A CCCACTGACCCCGCATCCCCCACTGTGGCTACCACGCCTGAGCCCGTGGGGTCCGATGCTGGGGACAAGAATGCCACCAAAGCAGGCGATGACGAGCCAGAGTACGAGGTGAGCGGCTTCCCCACTGACCCCGCATCCCCCACTGTGGCTACCACGCCTGAGCCCGTGGGGTCCGATGCTGGGGACAAGAATGCCACCAAAGCAGGCGATGACGAGCCAGAGTACGAGGTGAGGCGGCTTC 2626
22 2547053825470538 2547065825470658 DNMT3ADNMT3A GTGACCACTGTGTAATGATTTCTGCTCCTTGGGGCTCCAGGACGGCCGGGGCTTTGGCATTGGGGAGCTGGTGTGGGGGAAACTGCGGGGCTTCTCCTGGTGGCCAGGCCGCATTGTGTCGTGACCACTGTGTAATGATTTCTGCTCCTTGGGGCTCCAGGACGGCCGGGGCTTTGGCATTGGGGAGCTGGTGTGGGGGAAACTGCGGGGCTTCTCCTGGTGGCCAGGCCGCATTGTGTC 2727
22 2547041825470418 2547053825470538 DNMT3ADNMT3A TTGGTGGATGACGGGCCGGAGCCGAGCAGCTGAAGGCACCCGCTGGGTCATGTGGTTCGGAGACGGCAAATTCTCAGTGGTAAGTTGTGGGGTTTGGCAGTAGCCTGGGGTGGGGGAAGGTTGGTGGATGACGGGCCGGAGCCGAGCAGCTGAAGGCACCCGCTGGGTCATGTGGTTCGGAGACGGCAAATTCTCAGTGGTAAGTTGTGGGGTTTGGCAGTAGCCTGGGGTGGGGGAAGG 2828
22 2546991325469913 2547003325470033 DNMT3ADNMT3A CCCCAGGTGTGTGTTGAGAAGCTGATGCCGCTGAGCTCGTTTTGCAGTGCGTTCCACCAGGCCACGTACAACAAGCAGCCCATGTACCGCAAAGCCATCTACGAGGTCCTGCAGGTGAGTCCCCAGGTGTGTGTTGAGAAGCTGATGCCGCTGAGCTCGTTTTGCAGTGCGTTCCACCAGGCCACGTACAACAAGCAGCCCATGTACCGCAAAGCCATCTACGAGGTCCTGCAGGTGAGT 2929
22 2546956725469567 2546968725469687 DNMT3ADNMT3A AGCCTGTCCTGACAACCCCAACCCTGGCGTGTCACCCTCCAGGTGGCCAGCAGCCGCGCGGGGAAGCTGTTCCCGGTGTGCCACGACAGCGATGAGAGTGACACTGCCAAGGCCGTGGAGAGCCTGTCCTGACAACCCCAACCCTGGCGTGTCACCCTCCAGGTGGCCAGCAGCCGCGCGGGGAAGCTGTTCCCGGTGTGCCACGACAGCGATGAGAGTGACACTGCCAAGGCCGTGGAG 3030
22 2546944725469447 2546956725469567 DNMT3ADNMT3A GTGCAGAACAAGCCCATGATTGAATGGGCCCTGGGGGGCTTCCAGCCTTCTGGCCCTAAGGGCCTGGAGCCACCAGAAGGTAAATGAGGGCACCCAGCTTTCTGGGACCCCTGCCCGCCAGTGCAGAACAAGCCCATGATTGAATGGGCCCTGGGGGGCTTCCAGCCTTCTGGCCCTAAGGGCCTGGAGCCACCAGAAGGTAAATGAGGGCACCCAGCTTTCTGGGACCCCTGCCCGCCA 3131
22 2546910325469103 2546922325469223 DNMT3ADNMT3A CCTGTCAGCCTGTAACTGACCTTGGCACCTGCTTTCCTCCTCCAGAAGAGAAGAATCCCTACAAAGAAGTGTACACGGACATGTGGGTGGAACCTGAGGCAGCTGCCTACGCACCACCTCCCTGTCAGCCTGTAACTGACCTTGGCACCTGCTTTCCTCCTCCAGAAGAGAAGAATCCCTACAAAGAAGTGTACACGGACATGTGGGTGGAACCTGAGGCAGCTGCCTACGCACCACCTC 3232
22 2546898325468983 2546910325469103 DNMT3ADNMT3A CACCAGCCAAAAAGCCCCGGAAGAGCACAGCGGAGAAGCCCAAGGTCAAGGAGATTATTGATGAGCGCACAAGAGGTAGTTGGCCTGCTTCTGGAGAGGGTGGCACCAGGAGGCCTGCATCACCAGCCAAAAAGCCCCGGAAGAGCACAGCGGAGAAGCCCAAGGTCAAGGAGATTATTGATGAGCGCACAAGAGGTAGTTGGCCTGCTTCTGGAGAGGGTGGCACCAGGAGGCCTGCAT 3333
22 2546885125468851 2546897125468971 DNMT3ADNMT3A CGCGGCCTCCTCTGACGCCAGCTCTCCTCCCCTTGCAGAGCGGCTGGTGTACGAGGTGCGGCAGAAGTGCCGGAACATTGAGGGTAAGTTTGTTGCCTGGGAACTCTGGCACTCCTAGTGCGCGGCCTCCTTCTGACGCCAGCTCTCCTCCCCTTGCAGAGCGGCTGGTGTACGAGGTGCGGCAGAAGTGCCGGAACATTGAGGGTAAGTTTGTTGCCTGGGAACTCTGGCACTCCTAGTG 3434
22 2546810125468101 2546822125468221 DNMT3ADNMT3A CCCCTCCCTCTGCTTTCCAGACATCTGCATCTCCTGTGGGAGCCTCAATGTTACCCTGGAACACCCCCTCTTCGTTGGAGGAATGTGCCAAAACTGCAAGGTAGGAGCACACCCACCCAGCCCCTCCCTCTGCTTTTCCAGACATCTGCATCTCCTGTGGGAGCCTCAATGTTACCCTGGAACACCCCCTCTTCGTTGGAGGAATGTGCCAAAACTGCAAGGTAGGAGCACACCCACCCAG 3535
22 2546740525467405 2546752525467525 DNMT3ADNMT3A CTAGAACTGCTTTCTGGAGTGTGCGTACCAGTACGACGACGACGGCTACCAGTCCTACTGCACCATCTGCTGTGGGGGCCGTGAGGTGCTCATGTGCGGAAACAACAACTGCTGCAGGTGCTAGAACTGCTTTCTGGAGTGTGCGTACCAGTACGACGACGACGGCTACCAGTCCTACTGCACCATCTGCTGTGGGGGCCGTGAGGTGCTCATGTGCGGAAACAACAACTGCTGCAGGTG 3636
22 2546711525467115 2546723525467235 DNMT3ADNMT3A CTCCTCTGCTCACTGGGTCTCCTTCCAGGTGCTTTTGCGTGGAGTGTGTGGACCTCTTGGTGGGGCCGGGGGCTGCCCAGGCAGCCATTAAGGAAGACCCCTGGAACTGCTACATGTGCGCTCCTCTGCTCACTGGGTCTCCTTCCAGGTGCTTTTGCGTGGAGTGTGTGGACCTCTTGGTGGGGCCGGGGGCTGCCCAGGCAGCCATTAAGGAAGACCCCTGGAACTGCTACATGTGCG 3737
22 2546699525466995 2546711525467115 DNMT3ADNMT3A GGCACAAGGGTACCTACGGGCTGCTGCGGCGGCGAGAGGACTGGCCCTCCCGGCTCCAGATGTTCTTCGCTAATAACCACGACCAGGAATTTGTGAGTGCTGGGCCTGGGGCGCGGTCTCGGCACAAGGGTACCTACGGGCTGCTGCGGCGGCGAGAGGACTGGCCCTCCCGGCTCCAGATGTTCTTCGCTAATAACCACGACCAGGAATTTGTGAGTGCTGGGCCTGGGGCGCGGTCTC 3838
22 2546674925466749 2546686925466869 DNMT3ADNMT3A GTTGTGCTCACTGCTTAGGACCCTCCAAAGGTTTACCCACCTGTCCCAGCTGAGAAGAGGAAGCCCATCCGGGTGCTGTCTCTCTTTGATGGAATCGCTACAGGTGAGGGGTGCAGGCCCGTTGGCTCACTGCTTAGGACCCTCCAAAGGTTTACCCACCTGTCCCAGCTGAGAAGAGGAAGCCCATCCGGGTGCTGTCTCTCTTTGATGGAATCGCTACAGGTGAGGGGTGCAGGCCC 3939
22 2546450325464503 2546462325464623 DNMT3ADNMT3A CCAGGGAGATGGCTCCAAGTAACGGTGCTGTCTGCTGGCTGGTGCAGGGCTCCTGGTGCTGAAGGACTTGGGCATTCAGGTGGACCGCTACATTGCCTCGGAGGTGTGTGAGGACTCCATCCAGGGAGATGGCTCCAAGTAACGGTGCTGTCTGCTGGCTGGTGCAGGGCTCCTGGTGCTGAAGGACTTGGGCATTCAGGTGGACCGCTACATTGCCTCGGAGGTGTGTGAGGACTCCAT 4040
22 2546438325464383 2546450325464503 DNMT3ADNMT3A CACGGTGGGCATGGTGCGGCACCAGGGGAAGATCATGTACGTCGGGGACGTCCGCAGCGTCACACAGAAGCATGTATGTCCATGCTGTGGGGCGCAGCCCGTCTTCCCCTCCCTGCACACCACGGTGGGCATGGTGCGGCACCAGGGGAAGATCATGTACGTCGGGGACGTCCGCAGCGTCACACAGAAGCATGTATGTCCATGCTGTGGGGCGCAGCCCGTCTTCCCCTCCCTGCACAC 4141
22 2546349325463493 2546361325463613 DNMT3ADNMT3A CTTTATCCTCCCAGATCCAGGAGTGGGGCCCATTCGATCTGGTGATTGGGGGCAGTCCCTGCAATGACCTCTCCATCGTCAACCCTGCTCGCAAGGGCCTCTACGGTAGGTACCATCCTGCTTTATCCTCCCAGATCCAGGAGTGGGGCCCATTCGATCTGGTGATTGGGGGCAGTCCCTGCAATGACCTCTCCATCGTCAACCCTGCTCGCAAGGGCCTCTACGGTAGGTACCATCCTG 4242
22 2546324525463245 2546336525463365 DNMT3ADNMT3A CTATGCAGACAGCCCCAGCTGATGGCTTTCTCTTCCGACCTCTCAGAGGGCACTGGCCGGCTCTTCTTTGAGTTCTACCGCCTCCTGCATGATGCGCGGCCCAAGGAGGGAGATGATCGCCTATGCAGACAGCCCCAGCTGATGGCTTTCTCTTCCGACCTCTCAGAGGGCACTGGCCGGCTCTTCTTTGAGTTCTACCGCCTCCTGCATGATGCGCGGCCCAAGGAGGGAGATGATCGC 4343
22 2546312525463125 2546324525463245 DNMT3ADNMT3A CCCTTCTTCTGGCTCTTTGAGAATGTGGTGGCCATGGGCGTTAGTGACAAGAGGGACATCTCGCGATTTCTCGAGGTATAGCCAGCAACCTTGGTTTGGCCAGCTCACTAATGGCTTCTACCCTTCTTCTGGCTCTTTGAGAATGTGGTGGCCATGGGCGTTAGTGACAAGAGGGACATCTCGCGATTTCTCGAGGTATAGCCAGCAACCTTGGTTTGGCCAGCTCACTAATGGCTTCTA 4444
22 2546198125461981 2546210125462101 DNMT3ADNMT3A CGTCTCCTGTTTTGTAGTCCAACCCTGTGATGATTGATGCCAAAGAAGTGTCAGCTGCACACAGGGCCCGCTACTTCTGGGGTAACCTTCCCGGTATGAACAGGTTGGTGAAAGCTCCTGCGTCTCCTGTTTTGTAGTCCAACCCTGTGATGATTGATGCCAAGAAGGTCAGCTGCACACAGGGCCCGCTACTTCTGGGGTAACCTTCCCGGTATGAACAGGTTGGTGAAAGCTCCTG 4545
22 2545977925459779 2545989925459899 DNMT3ADNMT3A TTACAGTCTCTCTTCTGCCTCCTAGGCCGTTGGCATCCACTGTGAATGATAAGCTGGAGCTGCAGGAGTGTCTGGAGCATGGCAGGATAGCCAAGGTCAGCTCCAGCGTCTAGAACCTCTTTACAGTCTCTCTTCTGCCTCCTAGGCCGTTGGCATCCACTGTGAATGATAAGCTGGAGCTGCAGGAGTGTCTGGAGCATGGCAGGATAGCCAAGGTCAGCTCCAGCGTCTAGAACCTCT 4646
22 2545857425458574 2545869425458694 DNMT3ADNMT3A TTCAGCAAAGTGAGGACCATTACTACGAGGTCAAACTCCATAAAGCAGGGCAAAGACCAGCATTTTCCTGTCTTCATGAATGAGAAAGAGGACATCTTATGGTGCACTGAAATGGAAAGGTTCAGCAAAGTGAGGACCATTACTACGAGGTCAAACTCCATAAAGCAGGGCAAAGACCAGCATTTTCCTGTCTTCATGAATGAGAAAGAGGACATCTTATGGTGCACTGAAATGGAAAGG 4747
22 2545721825457218 2545733825457338 DNMT3ADNMT3A CCTGGTCTGGCCAGCACTCACCCTGCCCTCTCTGCCTTTTCTCCCCCAGGGTATTTGGTTTCCCAGTCCACTATACTGACGTCTCCAACATGAGCCGCTTGGCGAGGCAGAGACTGCTGGCCTGGTCTGGCCAGCACTCACCCTGCCCTCTCTGCCTTTTCTCCCCCAGGGTATTTGGTTTCCCAGTCCACTATACTGACGTCTCCAACATGAGCCGCTTGGCGAGGCAGAGACTGCTGG 4848
22 2545709825457098 2545721825457218 DNMT3ADNMT3A GCCGGTCATGGAGCGTGCCAGTCATCCGCCACCTCTTCGCTCCGCTGAAGGAGTATTTTGCGTGTGTGTAAGGGACATGGGGGCAAACTGAGGTAGCGACACAAAGTTAAACAAACAAACGCCGGTCATGGAGCGTGCCAGTCATCCGCCACCTCTTCGCTCCGCTGAAGGAGTATTTTGCGTGTGTGTAAGGGACATGGGGGCAAACTGAGGTAGCGACACAAAGTTAAACAAACAAAC 4949
ChromosomeChromosome StartStart StopStop GeneGene Probe_SequenceProbe_Sequence 서열번호sequence number
44 106155077106155077 106155197106155197 TET2TET2 GGATGGCCCCGAAGCAAGCCTGATGGAACAGGATAGAACCAACCATGTTGAGGGCAACAGACTAAGTCCATTCCTGATACCATCACCTCCCATTTGCCAGACAGAACCTCTGGCTACAAAGGATGGCCCCGAAGCAAGCCTGATGGAACAGGATAGAACCAACCATGTTGAGGGCAACAGACTAAGTCCATTCCTGATACCATCACCTCCCATTTGCCAGACAGAACCTTCTGGCTACAAA 5050
44 106156157106156157 106156277106156277 TET2TET2 TTCAGGTTCCAGCAGCAATTTGCAAGCTCCTGGTGGCAGCTCTGAACGGTATTTAAAACAAAATGAAATGAATGGTGCTTACTTCAAGCAAAGCTCAGTGTTCACTAAGGATTCCTTTTCTTCAGGTTCCAGCAGCAATTTGCAAGCTCCTGGTGGCAGCTCTGAACGGTATTTAAAACAAAATGAAATGAATGGTGCTTACTTCAAGCAAAGCTCAGTGTTCACTAAGGATTCCTTTTC 5151
44 106156277106156277 106156397106156397 TET2TET2 TGCCACTACCACACCACCACCACCATCACAATTGCTTCTTTCTCCCCCTCCTCCTCTTCCACAGGTTCCTCAGCTTCCTTCAGAAGGAAAAAGCACTCTGAATGGTGGAGTTTTAGAAGATGCCACTACCACACCACCACCACCATCACAATTGCTTCTTTCTCCCCCTCCTCCTCTTCCACAGGTTCCTCAGCTTCCTTCAGAAGGAAAAAGCACTCTGAATGGTGGAGTTTTAGAAGA 5252
44 106156397106156397 106156517106156517 TET2TET2 ACACCACCACTACCCCAACCAAAGTAACACAACACTTTTAAGGGAAGTGAAAATAGAGGGTAAACCTGAGGCACCACCTTCCCAGAGTCCTAATCCATCTACACATGTATGCAGCCCTTCACACCACCACTACCCCAACCAAAGTAACAACACTTTTAAGGGAAGTGAAAATAGAGGGTAAACCTGAGGCACCACCTTCCCAGAGTCCTAATCCATCTACACATGTATGCAGCCCTTC 5353
44 106156517106156517 106156637106156637 TET2TET2 TCCGATGCTTTCTGAAAGGCCTCAGAATAATTGTGTGAACAGGAATGACATACAGACTGCAGGGACAATGACTGTTCCATTGTGTTCTGAGAAAACAAGACCAATGTCAGAACACCTCAATCCGATGCTTTCTGAAAGGCCTCAGAATAATTGTGTGAACAGGAATGACATACAGACTGCAGGGACAATGACTGTTCCATTGTGTTCTGAGAAAACAAGACCAATGTCAGAACACCTCAA 5454
44 106156637106156637 106156757106156757 TET2TET2 GCATAACCCACCAATTTTTGGTAGCAGTGGAGAGCTACAGGACAACTGCCAGCAGTTGATGAGAAACAAAGAGCAAGAGATTCTGAAGGGTCGAGACAAGGAGCAAACACGAGATCTTGTGCATAACCCACCAATTTTTGGTAGCAGTGGAGAGCTACAGGACAACTGCCAGCAGTTGATGAGAAACAAAGAGCAAGAGATTCTGAAGGGTCGAGACAAGGAGCAAACACGAGATCTTGT 5555
44 106156757106156757 106156877106156877 TET2TET2 GCCCCCAACACAGCACTATCTGAAACCAGGATGGATTGAATTGAAGGCCCCTCGTTTTCACCAAGCGGAATCCCATCTAAAACGTAATGAGGCATCACTGCCATCAATTCTTCAGTATCAGCCCCCAACACAGCACTATCTGAAACCAGGATGGATTGAATTGAAGGCCCCTCGTTTTCACCAAGCGGAATCCCATCTAAAACGTAATGAGGCATCACTGCCATCAATTCTTCAGTATCA 5656
44 106156877106156877 106156997106156997 TET2TET2 ACCCAATCTCTCCAATCAAATGACCTCCAAACAATACACTGGAAATTCCAACATGCCTGGGGGGCTCCCAAGGCAAGCTTACACCCAGAAAACAACACAGCTGGAGCACAAGTCACAAATACCCAATCTCTCCAATCAAATGACCTCCAAACAATACACTGGAAATTCCAACATGCCTGGGGGGCTCCCAAGGCAAGCTTACACCCAGAAAACAACACAGCTGGAGCACAAGTCACAAAT 5757
44 106156997106156997 106157117106157117 TET2TET2 GTACCAAGTTGAAATGAATCAAGGGCAGTCCCAAGGTACAGTGGACCAACATCTCCAGTTCCAAAAACCCTCACACCAGGTGCACTTCTCCAAAACAGACCATTTACCAAAAGCTCATGTGTACCAAGTTGAAATGAATCAAGGGCAGTCCCAAGGTACAGTGGACCAACATCTCCAGTTCCAAAAACCCTCACACCAGGTGCACTTCTCCAAAACAGACCATTTACCAAAAGCTCATGT 5858
44 106157117106157117 106157237106157237 TET2TET2 GCAGTCACTGTGTGGCACTAGATTTCATTTTCAACAAAGAGCAGATTCCCAAACTGAAAAACTTATGTCCCCAGTGTTGAAACAGCACTTGAATCAACAGGCTTCAGAGACTGAGCCATTGCAGTCACTGTGTGGCACTAGATTTCATTTTCAACAAAGAGCAGATTCCCAAACTGAAAAACTTATGTCCCCAAGTGTTGAAACAGCACTTGAATCAACAGGCTTCAGAGACTGAGCCATT 5959
44 106157237106157237 106157357106157357 TET2TET2 TTCAAACTCACACCTTTTGCAACATAAGCCTCATAAACAGGCAGCACAAACACAACCATCCCAGAGTTCACATCTCCCTCAAAACCAGCAACAGCAGCAAAAATTACAAATAAAGAATAATTCAAACTCACACCTTTTGCAACATAAGCCTCATAAACAGGCAGCACAAACACAACCATCCCAGAGTTCACATCTCCCTCAAAACCAGCAACAGCAGCAAAAATTACAAATAAAGAATAA 6060
44 106155197106155197 106155317106155317 TET2TET2 GCTCCAGAATGGAAGCCCACTGCCTGAGAGAGCTCATCCAGAAGTAAATGGAGACACCAAGTGGCACTCTTTCAAAAGTTATTATGGAATACCCTGTATGAAGGGAAGCCAGAATAGTCGGCTCCAGAATGGAAGCCCACTGCCTGAGAGAGCTCATCCAGAAGTAAATGGAGACACCAAGTGGCACTCTTTCAAAAGTTATTATGGAATACCCTGTATGAAGGGAAGCCAGAATAGTCG 6161
44 106157357106157357 106157477106157477 TET2TET2 AGAGGAAATACTCCAGACTTTTCCTCACCCCCAAAGCAACAATGATCAGCAAAGAGAAGGATCATTCTTTGGCCAGACTAAAGTGGAAGAATGTTTTCATGGTGAAAATCAGTATTCAAAAGAGGAAATACTCCAGACTTTTCCTCACCCCCAAAGCAACAATGATCAGCAAAGAGAAGGATCATTCTTTGGCCAGACTAAAGTGGAAGAATGTTTTCATGGTGAAAATCAGTATTCAAA 6262
44 106157477106157477 106157597106157597 TET2TET2 ATCAAGCGAGTTCGAGACTCATAATGTCCAAATGGGACTGGAGGAAGTACAGAATATAAATCGTAGAAATTCCCCTTATAGTCAGACCATGAAATCAAGTGCATGCAAAATACAGGTTTCATCAAGCGAGTTCGAGACTCATAATGTCCAAATGGGACTGGAGGAAGTACAGAATATAAATCGTAGAAATTCCCCTTATAGTCAGACCATGAAATCAAGTGCATGCAAAATACAGGTTTC 6363
44 106157597106157597 106157717106157717 TET2TET2 TTGTTCAAACAATACACACCTAGTTTCAGAGAATAAAGAACAGACTACACATCCTGAACTTTTTGCAGGAAACAAGACCCAAAACTTGCATCACATGCAATATTTTCCAAATAATGTGATTTGTTCAAACAATACACACCTAGTTTCAGAGAATAAAGAACAGACTACACATCCTGAACTTTTTGCAGGAAACAAGACCCAAAACTTGCATCACATGCAATATTTTCCAAATAATGTGAT 6464
44 106157717106157717 106157837106157837 TET2TET2 CCCAAAGCAAGATCTTCTTCACAGGTGCTTTCAAGAACAGGAGCAGAAGTCACAACAAGCTTCAGTTCTACAGGGATATAAAAATAGAAACCAAGATATGTCTGGTCAACAAGCTGCGCACCCAAAGCAAGATCTTCTTCACAGGTGCTTTCAAGAACAGGAGCAGAAGTCACAACAAGCTTCAGTTCTACAGGGATATAAAAATAGAAACCAAGATATGTCTGGTCAACAAGCTGCGCA 6565
44 106157837106157837 106157957106157957 TET2TET2 ACTTGCTCAGCAAAGGTACTTGATACATAACCATGCAAATGTTTTTCCTGTGCCTGACCAGGGAGGAAGTCACACTCAGACCCCTCCCCAGAAGGACACTCAAAAGCATGCTGCTCTAAGACTTGCTCAGCAAAGGTACTTGATACATAACCATGCAAATGTTTTTCCTGTGCCTGACCAGGGAGGAAGTCACACTCAGACCCCTCCCCAGAAGGACACTCAAAAGCATGCTGCTCTAAG 6666
44 106157957106157957 106158077106158077 TET2TET2 GTGGCATCTCTTACAGAAGCAAGAACAGCAGCAAACACAGCAACCCCAAACTGAGTCTTGCCATAGTCAGATGCACAGGCCAATTAAGGTGGAACCTGGATGCAAGCCACATGCCTGTATGTGGCATCTCTTACAGAAGCAAGAACAGCAGCAAACACAGCAACCCCAAACTGAGTCTTGCCATAGTCAGATGCACAGGCCAATTAAGGTGGAACCTGGATGCAAGCCACATGCCTGTAT 6767
44 106158077106158077 106158197106158197 TET2TET2 GCACACAGCACCACCAGAAAACAAAACATGGAAAAAGGTAACTAAGCAAGAGAATCCACCTGCAAGCTGTGATAATGTGCAGCAAAAGAGCATCATTGAGACCATGGAGCAGCATCTGAAGCACACAGCACCACCAGAAAACAAAACATGGAAAAAGGTAACTAAGCAAGAGAATCCACCTGCAAGCTGTGATAATGTGCAGCAAAAGAGCATCATTGAGACCATGGAGCAGCATCTGAA 6868
44 106158197106158197 106158317106158317 TET2TET2 GCAGTTTCACGCCAAGTCGTTATTTGACCATAAGGCTCTTACTCTCAAATCACAGAAGCAAGTAAAAGTTGAAATGTCAGGGCCAGTCACAGTTTTGACTAGACAAACCACTGCTGCAGAGCAGTTTCACGCCAAGTCGTTATTTGACCATAAGGCTCTTACTCTCAAATCACAGAAGCAAGTAAAAGTTGAAATGTCAGGGCCAGTCACAGTTTTGACTAGACAAACCACTGCTGCAGA 6969
44 106158317106158317 106158437106158437 TET2TET2 ACTTGATAGCCACACCCCAGCTTTAGAGCAGCAAACAACTTCTTCAGAAAAGACACCAACCAAAAGAACAGCTGCTTCTGTTCTCAATAATTTTATAGAGTCACCTTCCAAATTACTAGAACTTGATAGCCACACCCCAGCTTTAGAGCAGCAAACAACTTCTTCAGAAAAGACACCAACCAAAAGAACAGCTGCTTCTGTTCTCAATAATTTTATAGAGTCACCTTCCAAATTACTAGA 7070
44 106158437106158437 106158557106158557 TET2TET2 TACTCCTATAAAAAATTTATTGGATACACCTGTCAAGACTCAATATGATTTCCCATCTTGCAGATGTGTAGGTAAGTGCCAGAAATGTACTGAGACACATGGCGTTTATCCAGAATTAGCTACTCCTATAAAAAATTTATTGGATACACCTGTCAAGACTCAATATGATTTCCCATCTTGCAGATGTGTAGGTAAGTGCCAGAAATGTACTGAGACACATGGCGTTTATCCAGAATTAGC 7171
44 106155317106155317 106155437106155437 TET2TET2 TGTGAGTCCTGACTTTACACAAGAAAGTAGAGGGTATTCCAAGTGTTTGCAAAATGGAGGAATAAAACGCACAGTTAGTGAACCTTCTCTCTCTGGGCTCCTTCAGATCAAGAAATTGAATGTGAGTCCTGACTTTACACAAGAAAGTAGAGGGTATTCCAAGTGTTTGCAAAATGGAGGAATAAAACGCACAGTTAGTGAACCTTCTCTCTCTGGGCTCCTTCAGATCAAGAAATTGAA 7272
44 106158557106158557 106158677106158677 TET2TET2 AAATTTATCTTCAGATATGGGATTTTCCTTCTTTTTTTAAATCTTGAGTCTGGCAGCAATTTGTAAAGGCTCATAAAAATCTGAAGCTTACATTTTTTGTCAAGTTACCGATGCTTGTGTAAATTTATCTTCAGATATGGGATTTTCCTTCTTTTTTTAAATCTTGAGTCTGGCAGCAATTTGTAAAGGCTCATAAAAATCTGAAGCTTACATTTTTTGTCAAGTTACCGATGCTTGTGT 7373
44 106158677106158677 106158797106158797 TET2TET2 CTTGTGAAAGAGAACTTCACTTACATGCAGTTTTTCCAAAAGAATTAAATAATCGTGCATGTTTATTTTTCCCTCTCTTCAGATCCTGTAAAATTTGAATGTATCTGTTTTAGATCAATTCTTGTGAAAGAGAACTTCACTTACATGCAGTTTTTCCAAAAGAATTAAATAATCGTGCATGTTTATTTTTCCCTCTCTTCAGATCCTGTAAAATTTGAATGTATCTGTTTTAGATCAATT 7474
44 106158797106158797 106158917106158917 TET2TET2 CGCCTATTTAGCTCTTTGTATATTATCTCCTGGAGAGACAGCTAGGCAGCAAAAAAACAATCTATTAAAATGAGAAAATAACGACCATAGGCAGTCTAATGTACGAACTTTAAATATTTTCGCCTATTTAGCTCTTTGTATATTATCTCCTGGAGAGACAGCTAGGCAGCAAAAAAACAATCTATTAAAATGAGAAAATAACGACCATAGGCAGTCTAATGTACGAACTTTAAATATTTT 7575
44 106158917106158917 106159037106159037 TET2TET2 TTAATTCAAGGTAAAATATATTAGTTTCACAAGATTTCTGGCTAATAGGGAAATTATTATCTTCAGTCTTCATGAGTTGGGGGAAATGATAATGCTGACACTCTTAGTGCTCCTAAAGTTTTAATTCAAGGTAAAATATATTAGTTTCACAAGATTTCTGGCTAATAGGGAAATTATTATCTTCAGTCTTCATGAGTTGGGGGAAATGATAATGCTGACACTCTTAGTGCTCCTAAAGTT 7676
44 106159037106159037 106159156106159156 TET2TET2 TCCTTTTCTCCATTTATACATTTGGAATGTTGTGATTTATATTCATTTTGATTCCCTTTTCTCTAAAATTTCATCTTTTTGATTAAAAAATATGATACAGGCATACCTCAGAGATATTGTCCTTTTCTCCATTTATACATTTGGAATGTTGTGATTTATATTCATTTTGATTCCCTTTTCTCTAAAATTTCATCTTTTTGATTAAAAAAATATGATACAGGCATACCTCAGAGATATTG 7777
44 106155437106155437 106155557106155557 TET2TET2 ACAAGACCAAAAGGCTAATGGAGAAAGACGTAACTTCGGGGTAAGCCAAGAAAGAAATCCAGGTGAAAGCAGTCAACCAAATGTCTCCGATTTGAGTGATAAGAAAGAATCTGTGAGTTCACAAGACCAAAAGGCTAATGGAGAAAGACGTAACTTCGGGGTAAGCCAAGAAAGAAATCCAGGTGAAAGCAGTCAACCAAATGTCTCCGATTTGAGTGATAAGAAAGAAATCTGTGAGTTC 7878
44 106155557106155557 106155677106155677 TET2TET2 TGTAGCCCAAGAAAATGCAGTTAAAGATTTCACCAGTTTTTCAACACATAACTGCAGTGGGCCTGAAAATCCAGAGCTTCAGATTCTGAATGAGCAGGAGGGGAAAAGTGCTAATTACCATGTAGCCCAAGAAAATGCAGTTAAAGATTTCACCAGTTTTTCAACACATAACTGCAGTGGGCCTGAAAATCCAGAGCTTCAGATTCTGAATGAGCAGGAGGGGAAAAGTGCTAATTACCA 7979
44 106155677106155677 106155797106155797 TET2TET2 TGACAAGAACATTGTATTACTTAAAAACAAGGCAGTGCTAATGCCTAATGGTGCTACAGTTTCTGCCTCTTCCGTGGAACACACACATGGTGAACTCCTGGAAAAAACACTGTCTCAATATGACAAGAACATTGTATTACTTAAAAACAAGGCAGTGCTAATGCCTAATGGTGCTACAGTTTCTGCCTCTTCCGTGGAACACACACATGGTGAACTCCTGGAAAAAACACTGTCTCAATA 8080
44 106155797106155797 106155917106155917 TET2TET2 TTATCCAGATTGTGTTTCCATTGCGGTGCAGAAAACCACATCTCACATAAATGCCATTAACAGTCAGGCTACTAATGAGTTGTCCTGTGAGATCACTCACCCATCGCATACCTCAGGGCATTATCCAGATTGTGTTTCCATTGCGGTGCAGAAAACCACATCTCACATAAATGCCATTAACAGTCAGGCTACTAATGAGTTGTCCTGTGAGATCACTCACCCATCGCATACCTCAGGGCA 8181
44 106155917106155917 106156037106156037 TET2TET2 GATCAATTCCGCACAGACCTCTAACTCTGAGCTGCCTCCAAAGCCAGCTGCAGTGGTGAGTGAGGCCTGTGATGCTGATGATGCTGATAATGCCAGTAAACTAGCTGCAATGCTAAATACGATCAATTCCGCACAGACCTCTAACTCTGAGCTGCCTCCAAAGCCAGCTGCAGTGGTGAGTGAGGCCTGTGATGCTGATGATGCTGATAATGCCAGTAAACTAGCTGCAATGCTAAATAC 8282
44 106156037106156037 106156157106156157 TET2TET2 CTGTTCCTTTCAGAAACCAGAACAACTACAACAACAAAAATCAGTTTTTGAGATATGCCCATCTCCTGCAGAAAATAACATCCAGGGAACCACAAAGCTAGCGTCTGGTGAAGAATTCTGCTGTTCCTTTCAGAAACCAGAACAACTACAACAACAAAAATCAGTTTTTGAGATATGCCCATCTCCTGCAGAAAATAACATCCAGGGAACCACAAAGCTAGCGTCTGGTGAAGAATTCTG 8383
44 106161458106161458 106161578106161578 TET2TET2 AATAAAACGAGGTATGCCTGTATTTTTAAAAAAAGCTTTTTGTTAAAATTCAGGATATGTAATAGGTCTGTAGGAATAGTGAAATATTTTTGCTGATGGATGTAGATATATACGTGGATAAATAAAACGAGGTATGCCTGTATTTTTAAAAAAAGCTTTTTGTTAAAATTCAGGATATGTAATAGGTCTGTAGGAATAGTGAAATATTTTTGCTGATGGATGTAGATATATACGTGGATA 8484
44 106162538106162538 106162658106162658 TET2TET2 AGGAGCAGGTCCTAATGTGGCAGCTATTAGAGAAATCATGGAAGAAAGGTAATTAACGCAAAGGCACAGGGCAGATTAACGTTTATCCTTTTGTATATGTCAGAATTTTTCCAGCCTTCAAGGAGCAGGTCCTAATGTGGCAGCTATTAGAGAAATCATGGAAGAAAGGTAATTAACGCAAAGGCACAGGGCAGATTAACGTTTATCCTTTTGTATATGTCAATTTTTCCAGCCTTCA 8585
44 106162658106162658 106162778106162778 TET2TET2 CACACAAAGCAGTAAACAATTGTAAATTGAGTAATTATTAGTAGGCTTAGCTATTCTAGGGTTGCCAACACTACACACTGTGCTATTCACCAGAGAGTCACAATATTTGACAGGACTAATCACACAAAGCAGTAAACAATTGTAAATTGAGTAATTATTAGTAGGCTTAGCTATTCTAGGGTTGCCAACACTACACACTGTGCTATTCACCAGAGAGTCACAATATTTGACAGGACTAAT 8686
44 106162778106162778 106162898106162898 TET2TET2 AGTCTGCTAGCTGGCACAGGCTGCCCACTTTGCGATGGATGCCAGAAAACCCAGGCATGAACAGGAATCGGCCAGCCAGGCTGCCAGCCACAAGGTACTGGCACAGGCTCCAACGAGAGGAGTCTGCTAGCTGGCACAGGCTGCCCACTTTGCGATGGATGCCAGAAAACCCAGGCATGAACAGGAATCGGCCAGCCAGGCTGCCAGCCACAAGGTACTGGCACAGGCTCCAACGAGAGG 8787
44 106162898106162898 106163018106163018 TET2TET2 TCCCACTCTGGCTTTCCCACCTGATAATAAAGTGTCAAAGCAGAAAGACTGGTAAAGTGTGGTATAAGAAAAGAACCACTGAATTAAATTCACCTAGTGTTGCAAATGAGTACTTATCTCTCCCACTCTGGCTTTCCCACCTGATAATAAAGTGTCAAAGCAGAAAGACTGGTAAAGTGTGGTATAAGAAAAGAACCACTGAATTAAATTCACCTAGTGTTGCAAATGAGTACTTATCTC 8888
44 106163018106163018 106163138106163138 TET2TET2 TAAGTTTTCTTTTACCATAAAAAGAGAGCAAGTGTGATATGTTGAATAGAAAGAGAAACATACTATTTACAGCTGCCTTTTTTTTTTTTTTTCGCTATCAATCACAGGTATACAAGTACTTAAGTTTTCTTTTACCATAAAAAGAGAGCAAGTGTGATATGTTGAATAGAAAGAGAAACATACTATTTACAGCTGCCTTTTTTTTTTTTTTTCGCTATCAATCACAGGTATACAAGTACT 8989
44 106163138106163138 106163258106163258 TET2TET2 TGCCTTTACTCCTGCATGTAGAAGACTCTTATGAGCGAGATAATGCAGAGAAGGCCTTTCATATAAATTTATACAGCTCTGAGCTGTTCTTCTTCTAGGGTGCCTTTTCATTAAGAGGTATGCCTTTACTCCTGCATGTAGAAGACTCTTATGAGCGAGATAATGCAGAGAAGGCCTTTCATATAAATTTATACAGCTCTGAGCTGTTCTTCTTCTAGGGTGCCTTTTCATTAAGAGGTA 9090
44 106163258106163258 106163378106163378 TET2TET2 GGCAGTATTATTATTAAAGTACTTAGGATACATTGGGGCAGCTAGGACATATTCAGTATCATTCTTGCTCCATTTCCAAATTATTCATTTCTAAATTAGCATGTAGAAGTTCACTAAATAGGCAGTATTATTATTAAAGTACTTAGGATACATTGGGGCAGCTAGGACATATTCAGTATCATTCTTGCTCCATTTCCAAATTATTCATTTCTAAATTAGCATGTAGAAGTTCACTAAATA 9191
44 106163378106163378 106163498106163498 TET2TET2 ATCATCTAGTGGCCTGGCAGAAATAGTGAATTTCCCTAAGTGCCTTTTTTTTGTTGTTTTTTTGTTTTGTTTTTTAAACAAGCAGTAGGTGGTGCTTTGGTCATAAGGGAAGATATAGTCATCATCTAGTGGCCTGGCAGAAATAGTGAATTTCCCTAAGTGCCTTTTTTTTGTTGTTTTTTTGTTTTGTTTTTTAAACAAGCAGTAGGTGGTGCTTTGGTCATAAGGGAAGATATAGTC 9292
44 106163498106163498 106163618106163618 TET2TET2 TATTTCTAGGACTATTCCATATTTTCCATGTGGCTGGATACTAACTATTTGCCAGCCTCCTTTTCTAAATTGTGAGACATTCTTGGAGGAACAGTTCTAACTAAAATCTATTATGACTCCTATTTCTAGGACTATTCCATATTTTCCATGTGGCTGGATACTAACTATTTGCCAGCCTCCTTTTCTAAATTGTGAGACATTCTTGGAGGAACAGTTCTAACTAAAATCTATTATGACTCC 9393
44 106163618106163618 106163738106163738 TET2TET2 CCAAGTTTTAAAATAGCTAAATTTAGTAAGGGAAAAAATAGTTTATGTTTTAGAAGACTGAACTTAGCAAACTAACCTGAATTTTGTGCTTTGTGAAATTTTATATCGAAATGAGCTTTCCCAAGTTTTAAAATAGCTAAATTTAGTAAGGGAAAAAATAGTTTATGTTTTAGAAGACTGAACTTAGCAAACTAACCTGAATTTTGTGCTTTGTGAAATTTTATATCGAAATGAGCTTTC 9494
44 106161578106161578 106161698106161698 TET2TET2 GAGATGAAGATCTTAATTATAGCTATGCAGCATAGATTTAGTCAAAGACATTTGAAAAGACAAATGTTAAATTAGTGTGGCTAATGACCTACCCGTGCCATGTTTTCCCTCTTGCAATGAGAGATGAAGATCTTAATTATAGCTATGCAGCATAGATTTAGTCAAAGACATTTGAAAAGACAAATGTTAAATTAGTGTGGCTAATGACCTACCCGTGCCATGTTTTCCCTCTTGCAATGA 9595
44 106163738106163738 106163858106163858 TET2TET2 CCATTTTCACCCACATGTAATTTACAAAATAGTTCATTACAATTATCTGTACATTTTGATATTGAGGAAAAACAAGGCTTAAAAACCATTATCCAGTTTGCTTGGCGTAGACCTGTTTAACCATTTTCACCCACATGTAATTTACAAAATAGTTCATTACAATTATCTGTACATTTTGATATTGAGGAAAAACAAGGCTTAAAAACCATTATCCAGTTTGCTTGGCGTAGACCTGTTTAA 9696
44 106163858106163858 106163978106163978 TET2TET2 AAAATAATAAACCGTTCATTTCTCAGGATGTGGTCATAGAATAAAGTTATGCTCAAATGTTCAAATATTTTGATTGCCTCTTGAATTCATTTGCTAATTGTATGTGTGTGTGTTTCTGTGAAAATAATAAACCGTTCATTTCTCAGGATGTGGTCATAGAATAAAGTTATGCTCAAATGTTCAAATATTTTGATTGCCTCTTGAATTCATTTGCTAATTGTATGTGTGTGTGTTTCTGTG 9797
44 106161698106161698 106161818106161818 TET2TET2 GATACCCCACACTGTGTAGAAGGATGGAGGGAGGACTCCTACTGTCCCTCTTTGCGTGTGGTTATTAAGTTGCCTCACTGGGCTAAAACACCACACATCTCATAGATAATATTTGGTAAGGATACCCCACACTGTGTAGAAGGATGGAGGGAGGACTCCTACTGTCCCTCTTTGCGTGTGGTTATTAAGTTGCCTCACTGGGCTAAAACACCACACATCTCATAGATAATATTTGGTAAG 9898
44 106161818106161818 106161938106161938 TET2TET2 TTGTAATCGTCTTCACTCTTCTCTTATCACCCACCCCTATCTTCCCACTTTTCCATCTTTGTTGGTTTGCAACAGCCCCTTCTTTTTGCCTGACTCTCCAGGATTTTCTCTCATCATAAATTGTAATCGTCTTCACTCTTCTCTTATCACCCACCCCTATCTTCCCACTTTTCCATCTTTGTTGGTTTGCAACAGCCCCTTCTTTTTGCCTGACTCTCCAGGATTTTCTCTCATCATAAA 9999
44 106161938106161938 106162058106162058 TET2TET2 TTGTTCTAAAGTACATACTAATATGGGTCTGGATTGACTATTCTTATTTGCAAAACAGCAATTAAATGTTATAGGGAAGTAGGAAGAAAAAGGGGTATCCTTGACAATAAACCAAGCAATTTGTTCTAAAGTACATACTAATATGGGTCTGGATTGACTATTCTTATTTGCAAAACAGCAATTAAATGTTATAGGGAAGTAGGAAGAAAAAGGGGTATCCTTGACAATAAACCAAGCAAT 100100
44 106162058106162058 106162178106162178 TET2TET2 ATTCTGGGGGTGGGATAGAGCAGGAAATTTTATTTTTAATCTTTTAAAATCCAAGTAATAGGTAGGCTTCCAGTTAGCTTTAAATGTTTTTTTTTTCCAGCTCAAAAAATTGGATTGTAGATTCTGGGGGTGGGATAGAGCAGGAAATTTTATTTTTAATCTTTTAAAATCCAAGTAATAGGTAGGCTTCCAGTTAGCTTTAAATGTTTTTTTTTTCCAGCTCAAAAAATTGGATTGTAG 101101
44 106162178106162178 106162298106162298 TET2TET2 TTGATACTACATATAATACATTCTAATTCCCTCACTGTATTCTTTGTTTAGTTTCATTTATTTGGTTTAAAATAATTTTTTATCCCATATCTGAAATGTAATATATTTTTATCCAACAACTTGATACTACATATAATACATTCTAATTCCCTCACTGTATTCTTTGTTTAGTTTCATTTATTTGGTTTAAAATAATTTTTTATCCCATATCTGAAATGTAATATATTTTTATCCAACAAC 102102
44 106162298106162298 106162418106162418 TET2TET2 CAGCATGTACATATACTTAATTATGTGGCACATTTTCTAATAGATCAGTCCATCAATCTACTCATTTTAAAGAAAAAAAAATTTTAAAGTCACTTTTAGAGCCCTTAATGTGTAGTTGGGCAGCATGTACATATACTTAATTATGTGGCACATTTTCTAATAGATCAGTCCATCAATCTACTCATTTTAAAGAAAAAAAAATTTTAAAGTCACTTTTAGAGCCCTTAATGTGTAGTTGGG 103103
44 106162418106162418 106162538106162538 TET2TET2 GGTTAAGCTTTGTGGATGTAGCCTTTATATTTAGTATAATTGAGGTCTAAAATAATAATCTTCTATTATCTCAACAGAGCAAATTATTGAAAAAGATGAAGGTCCTTTTTATACCCATCTGGTTAAGCTTTGTGGATGTAGCCTTTATATTTAGTATAATTGAGGTCTAAAATAATAATCTTCTATTATCTCAACAGAGCAAATTATTGAAAAAGATGAAGGTCCTTTTTATACCCATCT 104104
44 106163977106163977 106164097106164097 TET2TET2 GGGTTTCTTTAAGGTTTGGACAGAAGGGTAAAGCTATTAGGATTGAAAGAGTCATCTATACTGGTAAAGAAGGCAAAAGTTCTCAGGGATGTCCTATTGCTAAGTGGGTAAGTGTGACTTGGGTTTCTTTAAGGTTTGGACAGAAGGGTAAAGCTATTAGGATTGAAAGAGTCATCTATACTGGTAAAGAAGGCAAAAGTTCTCAGGGATGTCCTATTGCTAAGTGGGTAAGTGTGACTT 105105
44 106164710106164710 106164830106164830 TET2TET2 ATGGTGATCCACGCAGGTGGTTCGCAGAAGCAGCAGTGAAGAGAAGCTACTGTGTTTGGTGCGGGAGCGAGCTGGCCACACCTGTGAGGCTGCAGTGATTGTGATTCTCATCCTGGTGTGATGGTGATCCACGCAGGTGGTTCGCAGAAGCAGCAGTGAAGAGAAGCTACTGTGTTTGGTGCGGGAGCGAGCTGGCCACACCTGTGAGGCTGCAGTGATTGTGATTCTCATCCTGGTGTG 106106
44 106164830106164830 106164950106164950 TET2TET2 GGAAGGAATCCCGCTGTCTCTGGCTGACAAACTCTACTCGGAGCTTACCGAGACGCTGAGGAAATACGGCACGCTCACCAATCGCCGGTGTGCCTTGAATGAAGAGTAAGTGAAGCCCAGGGAAGGAATCCCGCTGTCTCTGGCTGACAAACTCTACTCGGAGCTTACCGAGACGCTGAGGAAATACGGCACGCTCACCAATCGCCGGTGTGCCTTGAATGAAGAGTAAGTGAAGCCCAG 107107
44 106180731106180731 106180851106180851 TET2TET2 ATAATGCTATCCATAGCAATGAATTTGGTCTTTTGATTTTTCAGGAGAACTTGCGCCTGTCAGGGGCTGGATCCAGAAACCTGTGGTGCCTCCTTCTCTTTTGGTTGTTCATGGAGCATGATAATGCTATCCATAGCAATGAATTTGGTCTTTTGATTTTTCAGGAGAACTTGCGCCTGTCAGGGGCTGGATCCAGAAACCTGTGGTGCCTCCTTCTCTTTTGGTTGTTCATGGAGCATG 108108
44 106180851106180851 106180971106180971 TET2TET2 TACTACAATGGATGTAAGTTTGCCAGAAGCAAGATCCCAAGGAAGTTTAAGCTGCTTGGGGATGACCCAAAAGAGGTTTGTTTACTTCCTGATGTATAATCGCTTTATTTTTCATAGAGATACTACAATGGATGTAAGTTTGCCAGAAGCAAGATCCCAAGGAAGTTTAAGCTGCTTGGGGATGACCCAAAAGAGGTTTGTTTACTTCCTGATGTATAATCGCTTTATTTTTCATAGAGA 109109
44 106182900106182900 106183020106183020 TET2TET2 ATTCACTTTATACAGGAAGAGAAACTGGAGTCTCATTTGCAAAACCTGTCCACTCTTATGGCACCAACATATAAGAAACTTGCACCTGATGCATATAATAATCAGGTAAGTTTAAATAATATTCACTTTATACAGGAAGAGAAACTGGAGTCTCATTTGCAAAACCTGTCCACTCTTATGGCACCAACATATAAGAAACTTGCACCTGATGCATATAATAATCAGGTAAGTTTAAATAAT 110110
44 106190715106190715 106190835106190835 TET2TET2 GTAAGAGTAAAACTAACTACTTTCGCATTCACACACACTTTTATTTTTCAGATTGAATATGAACACAGAGCACCAGAGTGCCGTCTGGGTCTGAAGGAAGGCCGTCCATTCTCAGGGGTCGTAAGAGTAAAACTAACTACTTTCGCATTCACACACACTTTTATTTTTCAGATTGAATATGAACACAGAGCACCAGAGTGCCGTCTGGGTCTGAAGGAAGGCCGTCCATTCTCAGGGGTC 111111
44 106190835106190835 106190955106190955 TET2TET2 ACTGCATGTTTGGACTTCTGTGCTCATGCCCACAGAGACTTGCACAACATGCAGAATGGCAGCACATTGGTAAGTTGGGCTGAGGACAGCTTAGCAGCTGTTGAGTCTGTTCTCACACTGACTGCATGTTTGGACTTCTGTGCTCATGCCCACAGAGACTTGCACAACATGCAGAATGGCAGCACATTGGTAAGTTGGGCTGAGGACAGCTTAGCAGCTGTTGAGTCTGTTCTCACACTG 112112
44 106193718106193718 106193838106193838 TET2TET2 AGGTATGCACTCTCACTAGAGAAGACAATCGAGAATTTGGAGGAAAACCTGAGGATGAGCAGCTTCACGTTCTGCCTTTATACAAAGTCTCTGACGTGGATGAGTTTGGGAGTGTGGAAGAGGTATGCACTCTCACTAGAGAAGACAATCGAGAATTTGGAGGAAAACCTGAGGATGAGCAGCTTCACGTTCTGCCTTTATACAAAGTCTCTGACGTGGATGAGTTTGGGAGTTGTGGAAG 113113
44 106193838106193838 106193958106193958 TET2TET2 CTCAGGAGGAGAAAAAACGGAGTGGTGCCATTCAGGTACTGAGTTCTTTTCGGCGAAAAGTCAGGATGTTAGCAGAGCCAGTCAAGACTTGCCGACAAAGGAAACTAGAAGCCAAGAAAGCTCAGGAGGAGAAAAAACGGAGTGGTGCCATTCAGGTACTGAGTCTTTTCGGCGAAAAGTCAGGATGTTAGCAGAGCCAGTCAAGACTTGCCGACAAAGGAAACTAGAAGCCAAGAAAG 114114
44 106193958106193958 106194078106194078 TET2TET2 CTGCAGCTGAAAAGCTTTCCTCCCTGGAGAACAGCTCAAATAAAAATGAAAAGGAAAAGTCAGCCCCATCACGTACAAAACAAACTGAAAACGCAAGCCAGGCTAAACAGTTGGCAGGTACTGCAGCTGAAAAGCTTTCCTCCCTGGAGAACAGCTCAAATAAAAATGAAAAGGAAAAGTCAGCCCCATCACGTACAAAACAAACTGAAAACGCAAGCCAGGCTAAACAGTTGGCAGGTA 115115
44 106196122106196122 106196241106196241 TET2TET2 TTTAAGTATCCTCACTAGCCTTCATAAAATAATCATCAACATCAAAGATACCTGTTTCTGTTCTCTCTTACCCTGTCCACAGAACTTTTGCGACTTTCAGGACCAGTCATGCAGCAGTCTTTAAGTATCCTCACTAGCCTTCATAAAATAATCATCAACATCAAAGATACCTGTTTCTGTTCTCTCTTACCCTGTCCACAGAACTTTTGCGACTTTCAGGACCAGTCATGCAGCAGTC 116116
44 106196292106196292 106196412106196412 TET2TET2 GAGACCCCAGCAGCAGCAGCCACATCACCCTCAGACAGAGTCTGTCAACTCTTATTCTGCTTCTGGATCCACCAATCCATACATGAGACGGCCCAATCCAGTTAGTCCTTATCCAAACTCGAGACCCCAGCAGCAGCAGCCACATCACCCTCAGACAGAGTCTGTCAACTCTTATTCTGCTTCTGGATCCACCAATCCATACATGAGACGGCCCAATCCAGTTAGTTAGTCCTTATCCAAACTC 117117
44 106197372106197372 106197492106197492 TET2TET2 CCAGCATAAGAGCATGAATGAGCCAAAACATGGCTTGGCTCTTTGGGAAGCCAAAATGGCTGAAAAAGCCCGTGAGAAAGAGGAAGAGTGTGAAAAGTATGGCCCAGACTATGTGCCTCACCAGCATAAGAGCATGAATGAGCCAAAACATGGCTTGGCTCTTTGGGAAGCCAAAATGGCTGAAAAAGCCCGTGAGAAAGAGGAAGAGTGTGAAAAGTATGGCCCAGACTATGTGCCTCA 118118
44 106197492106197492 106197612106197612 TET2TET2 GAAATCCCATGGCAAAAAAGTGAAACGGGAGCCTGCTGAGCCACATGAAACTTCAGAGCCCACTTACCTGCGTTTCATCAAGTCTCTTGCCGAAAGGACCATGTCCGTGACCACAGACTCGAAATCCCATGGCAAAAAAGTGAAACGGGAGCCTGCTGAGCCACATGAAACTTCAGAGCCCACTTACCTGCGTTTCATCAAGTCTCTTGCCGAAAGGACCATGTCCGTGACCACAGACTC 119119
44 106197612106197612 106197732106197732 TET2TET2 CACAGTAACTACATCTCCATATGCCTTCACTCGGGTCACAGGGCCTTACAACAGATATATATGATATCACCCCCTTTTGTTGGTTACCTCACTTGAAAAGACCACAACCAACCTGTCAGTCACAGTAACTACATCTCCATATGCCTTCACTCGGGTCACAGGGCCTTACAACAGATATATATGATATCACCCCCTTTTGTTGGTTACCTCACTTGAAAAGACCACAACCAACCTGTCAGT 120120
44 106196412106196412 106196532106196532 TET2TET2 TTCACACACTTCAGATATCTATGGAAGCACCAGCCCTATGAACTTCTATTCCACCTCATCTCAAGCTGCAGGTTCATATTTGAATTCTTCTAATCCCATGAACCCTTACCCTGGGCTTTTTTCACACACTTCAGATATCTATGGAAGCACCAGCCCTATGAACTTCTATTCCACCTCATCTCAAGCTGCAGGTTCATATTTGAATTCTTCTAATCCCATGAACCCTTACCCTGGGCTTTT 121121
44 106196532106196532 106196652106196652 TET2TET2 GAATCAGAATACCCAATATCCATCATATCAATGCAATGGAAACCTATCAGTGGACAACTGCTCCCCATATCTGGGTTCCTATTCTCCCCAGTCTCAGCCGATGGATCTGTATAGGTATCCGAATCAGAATACCCAATATCCATCATATCAATGCAATGGAAACCTATCAGTGGACAACTGCTCCCCATATCTGGGTCCTATTCTCCCCAGTCTCAGCCGATGGATCTGTATAGGTATCC 122122
44 106196652106196652 106196772106196772 TET2TET2 AAGCCAAGACCCTCTGTCTAAGCTCAGTCTACCACCCATCCATACACTTTACCAGCCAAGGTTTGGAAATAGCCAGAGTTTTACATCTAAATACTTAGGTTATGGAAACCAAAATATGCAAAGCCAAGACCCTCTGTCTAAGCTCAGTCTACCACCCATCCATACACTTTACCAGCCAAGGTTTGGAAATAGCCAGAGTTTTACATCTAAATACTTAGGTTATGGAAACCAAAATATGCA 123123
44 106196772106196772 106196892106196892 TET2TET2 GGGAGATGGTTTCAGCAGTTGTACCATTAGACCAAATGTACATCATGTAGGGAAATTGCCTCCTTATCCCACTCATGAGATGGATGGCCACTTCATGGGAGCCACCTCTAGATTACCACCGGGAGATGGTTTCAGCAGTTGTACCATTAGACCAAATGTACATCATGTAGGGAAATTGCCTCCTTATCCCACTCATGAGATGGATGGCCACTTCATGGGAGCCACCTCTAGATTACCACC 124124
44 106196892106196892 106197012106197012 TET2TET2 CAATCTGAGCAATCCAAACATGGACTATAAAAATGGTGAACATCATTCACCTTCTCACATAATCCATAACTACAGTGCAGCTCCGGGCATGTTCAACAGCTCTCTTCATGCCCTGCATCTCAATCTGAGCAATCCAAACATGGACTATAAAAATGGTGAACATCATTCACCTTCTCACATAATCCATAACTACAGTGCAGCTCCGGGCATGTTCAACAGCTCTCTTCATGCCCTGCATCT 125125
44 106197012106197012 106197132106197132 TET2TET2 CCAAAACAAGGAGAATGACATGCTTTCCCACACAGCTAATGGGTTATCAAAGATGCTTCCAGCTCTTAACCATGATAGAACTGCTTGTGTCCAAGGAGGCTTACACAAATTAAGTGATGCCCAAAACAAGGAGAATGACATGCTTTCCCACACAGCTAATGGGTTATCAAAGATGCTTCCAGCTCTTAACCATGATAGAACTGCTTGTGTCCAAGGAGGCTTACACAAATTAAGTGATGC 126126
44 106197132106197132 106197252106197252 TET2TET2 TAATGGTCAGGAAAAGCAGCCATTGGCACTAGTCCAGGGTGTGGCTTCTGGTGCAGAGGACAACGATGAGGTCTGGTCAGACAGCGAGCAGAGCTTTCTGGATCCTGACATTGGGGGAGTTAATGGTCAGGAAAAGCAGCCATTGGCACTAGTCCAGGGTGTGGCTTCTGGTGCAGAGGACAACGATGAGGTCTGGTCAGACAGCGAGCAGAGCTTTCTGGATCCTGACATTGGGGGAGT 127127
44 106197252106197252 106197372106197372 TET2TET2 GGCCGTGGCTCCAACTCATGGGTCAATTCTCATTGAGTGTGCAAAGCGTGAGCTGCATGCCACAACCCCTTTAAAGAATCCCAATAGGAATCACCCCACCAGGATCTCCCTCGTCTTTTAGGCCGTGGCTCCAACTCATGGGTCAATTCTCATTGAGTGTGCAAAGCGTGAGCTGCATGCCACAACCCCTTTAAAGAATCCCAATAGGAATCACCCCACCAGGATCTCCCTCGTCTTTTA 128128
ChromosomeChromosome StartStart StopStop GeneGene Probe SequenceProbe Sequence 서열번호sequence number
2020 3094658830946588 3094670830946708 ASXL1ASXL1 AACAGAAGAAGAAGAAGGAGCGCACGTGGGCCGAGGCCGCGCGCCTGGTGAGGCGGACAGCCGAGGGGGGCTCCGTGGGGCCCGGGGTGGGGGGGGCTCGCCGCGCACCCCCCCACTGGGAACAGAAGAAGAAGAAGGAGCGCACGTGGGCCGAGGCCGCGCGCCTGGTGAGGCGGACAGCCGAGGGGGGCTCCGTGGGGCCCGGGGTGGGGGGGGCTCGCCGCGCACCCCCCCACTGGG 129129
2020 3095416830954168 3095428830954288 ASXL1ASXL1 ACGTTTATATTTCTTCAGGTATTAGAAAACTACTCGGATGCTCCAATGACACCAAAACAGATTCTGCAGGTCATAGAGGCAGAAGGACTAAAGGAAATGAGGTTTGTATTGTTCTTGTTGACGTTTATATTTCTTCAAGGTATTAGAAAACTACTCGGATGCTCCAATGACACCAAAACAGATTCTGCAGGTCATAGAGGCAGAAGGACTAAAGGAAATGAGGTTTGTATTGTTCTTGTTG 130130
2020 3095428630954286 3095440630954406 ASXL1ASXL1 TGCTTAACATGAGGGTTTCATAGGATATGTGTCTTTCTGTAGTTGTAGTGATATGAGTAAGTACACCTGTGTATGTATTTGTGCTTCTGTGTCTGGTAGTGAGATGGAACTATCCATTTCTGCTTAACATGAGGGTTTCATAGGATATGTGTCTTTCTGTAGTGTAGTGATATGAGTAAGTACACCTGTGTATGTATTTGTGCTTCTGTGTCTGGTAGTGAGATGGAACTATCCATTTC 131131
2020 3095681130956811 3095693130956931 ASXL1ASXL1 TTACAGTGGGACTTCCCCTCTCGCATGCCTCAATGCTATGCTACATTCCAATTCAAGAGGAGGAGAGGGGTTGTTTTATAAACTGCCTGGCCGAATCAGCCTTTTCACGCTCAAGGTAAGTTACAGTGGGACTTCCCCTCTCGCATGCCTCAATGCTATGCTACATTCCAATTCAAGAGGAGGAGAGGGGTTGTTTTATAAACTGCCTGGCCGAATCAGCCTTTTCACGCTCAAGGTAAG 132132
2020 3095988030959880 3096000030960000 ASXL1ASXL1 TTGTAATTTGGCTCTGGGCAGAATTCTTGGCATAGTACGTGCTTTATGTGTGAACTGAATTATATTTCTTCATCTTAATTTTACAGGTGTGAGCCACTGCACCAGGCCCCTTCATCTTAATTGTAATTTGGCTCTGGGCAGAATTCTTGGCATAGTACGTGCTTTATGTGTGAACTGAATTATATTTCTTCATCTTAATTTTACAGGTGTGAGCCACTGCACCAGGCCCCTTCATCTTAA 133133
2020 3096000030960000 3096012030960120 ASXL1ASXL1 TTTTAATATATCTTTGAATAAACACCATTGTATGAACCTGCTGTAAGCTTGGGAGTGGTCTGTTAGTCTACAGCTTGTGTCTGAGATGTGCTAATTGAATATTTGCTCAGTACCTCATCTTTTTAATATATCTTTGAATAAACACCATTGTATGAACCTGCTGTAAGCTTGGGAGTGGTCTGTTAGTCTACAGCTTGTGTCTGAGATGTGCTAATTGAATATTTGCTCAGTACCTCATCT 134134
2020 3096012030960120 3096023930960239 ASXL1ASXL1 TAACTGCCTTTGGCTTTATGTTGCTTATCCTTCATAGTATCTTGTTCATTGGCCTTTTACATCCATAGGCATCACTTCTCTGATATTCGTTGTGCTCTTTTAATGGATTAATGGTTTGCTAACTGCCTTTGGCTTTATGTTGCTTATCCTTCATAGTATCTTGTTCATTGGCCTTTTACATCCATAGGCATCACTTCTCTGATATTCGTTGTGCTCTTTTAATGGATTAATGGTTTGC 135135
2020 3101587031015870 3101599031015990 ASXL1ASXL1 CTGCCTTGCTTTAAGAATTTGTAGGGTTTTGTTCACCTGAGTTGTACCTTGCTGTCACAGAAGGATGCCCTGCAGTGGTCTCGCCATCCAGCTACAGTGGAGGGAGAGGAGCCAGAGGACCTGCCTTGCTTTAAGAATTTGTAGGGTTTTGTTCACCTGAGTTGTACCTTGCTGTCACAGAAGGATGCCCTGCAGTGGTCTCGCCATCCAGCTACAGTGGAGGGAGAGGAGCCAGAGGAC 136136
2020 3101599031015990 3101611031016110 ASXL1ASXL1 ACGGCTGATGTGGAGAGCTGTGGGTCTAATGAAGCCAGCACTGTGAGTGGTGAAAACGATGGTAAGGACCCTTTAATGGATGGGTGAGGGAGCCACAGCAGGCACTAGGGACTAACCTTTACGGCTGATGTGGAGAGCTGTGGGTCTAATGAAGCCAGCACTGTGAGTGGTGAAAACGATGGTAAGGACCCTTTAATGGATGGGTGAGGGAGCCACAGCAGGCACTAGGGACTAACCTTT 137137
2020 3101611631016116 3101623631016236 ASXL1ASXL1 CTCTCTTCCAGTATCTCTTGATGAAACATCTTCGAACGCATCCTGTTCTACAGAATCTCAGAGTCGACCTCTTTCCAATCCCAGGGACAGCTACAGAGCTTCCTCACAGGTAAGGAAGAGCTCTCTTCCAGTATCTCTTGATGAAACATCTTCGAACGCATCCTGTTCTACAGAATCTCAGAGTCGACCTCTTTCCAATCCCAGGGACAGCTACAGAGCTTCCTCACAGGTAAGGAAGAG 138138
2020 3101712731017127 3101724731017247 ASXL1ASXL1 TCTTGGAACGCAGGCGAACAAACAAAAGAAAAAGACTGGGGTGATGCTGCCTCGAGTTGTCCTGACTCCTCTGAAGGTAAACGGGGCCCACGTGGAATCTGCATCAGGTATGTGTAAACTTCTTGGAACGCAGGCGAACAAACAAAAGAAAAAAGACTGGGGTGATGCTGCCTCGAGTGTCCTGACTCCTCTGAAGGTAAACGGGGCCCACGTGGAATCTGCATCAGGTATGTGTAAACT 139139
2020 3101765931017659 3101777931017779 ASXL1ASXL1 GCGGCTTGGTGATACTTTTGACCAGTGGAATGCTGTGCCTTCAGGGTTCTCGGGCTGCCACGCCGATGGCGAGAGCGGCAGCCCGTCCAGCAGCAGCAGCGGCTCTCTGGCCCTGGGCAGGCGGCTTGGTGATACTTTTGACCAGTGGAATGCTGTGCCTTCAGGGTTCTCGGGCTGCCACGCCGATGGCGAGAGCGGCAGCCCGTCCAGCAGCAGCAGCGGCTCTCTGGCCCTGGGCAG 140140
2020 3101777931017779 3101789931017899 ASXL1ASXL1 CGCTGCTATTCGTGGCCAGGCCGAGGTCACCCAGGACCCTGCCCCGCTCCTGAGAGGCTTCCGGAAGCCAGCCACAGGTGAGTGGCGTGGCACTTATTTCTCTGCCTGTAAAGGGGGCCCCGCTGCTATTCGTGGCCAGGCCGAGGTCACCCAGGACCCTGCCCCGCTCCTGAGAGGCTTCCGGAAGCCAGCCACAGGTGAGTGGCGTGGCACTTATTTCTCTGCCTGTAAAGGGGGCCC 141141
2020 3101908531019085 3101920531019205 ASXL1ASXL1 AAAAAGCTGAAATCTATACCTTGCTTCAAAAATCATAGGTCAAATGAAGCGCAACAGAGGGGAAGAAATAGATTTTGAGACACCTGGGTCCATTCTTGTCAACACCAACCTCCGTGCCCTAAAAAGCTGAAATCTATACCTTGCTTCAAAAATCATAGGTCAAATGAAGCGCAACAGAGGGGAAGAAATAGATTTTGAGACACCTGGGTCCATTCTTGTCAACACCAACCTCCGTGCCCT 142142
2020 3101920531019205 3101932531019325 ASXL1ASXL1 GATCAACTCTCGGACCTTCCATGCCTTACCATCACACTTCCAGCAGCAGCTCCTCTTCCTCCTGCCTGAAGTAGACAGACAGGTGCACATGGGCAGCCTCCCCTTTGCCTCTCTCTGGGTGATCAACTCTCGGACCTTCCATGCCTTACCATCACACTTCCAGCAGCAGCTCCTCTTCCTCCTGCCTGAAGTAGACAGACAGGTGCACATGGGCAGCCTCCCCTTTGCCTCTCTCTGGGT 143143
2020 3101937331019373 3101949331019493 ASXL1ASXL1 TGATCCTTCTAGGTGGGGACGGATGGCCTGTTGCGTCTCAGCAGCAGTGCACTAAATAACGAGTTTTTTACCCATGCGGCTCAGAGCTGGCGGGAGCGCCTGGCTGATGGTATGTAGACTTGATCCTTCTAGGTGGGGACGGATGGCCTGTTGCGTCTCAGCAGCAGTGCACTAAATAACGAGTTTTTTACCCATGCGGCTCAGAGCTGGCGGGAGCGCCTGGCTGATGGTATGTAGACT 144144
2020 3102062131020621 3102074031020740 ASXL1ASXL1 TCCATAAGACAGACATTAATATCCCGAATGCACTTACTAGAAGAGGTTTATTTCTCCCTAGGTGAATTTACTCATGAGATGCAAGTCAGGATACGACAGGAAATGGAGAAGGAAAAGAATCCATAAGACAGACATTAATATCCCGAATGCACTTACTAGAAGAGGTTTATTTCTCCCTAGGTGAATTTACTCATGAGATGCAAGTCAGGATACGACAGGAAATGGAGAAGGAAAAGAA 145145
2020 3102074231020742 3102086231020862 ASXL1ASXL1 TGGAACAATGGAAAGAAAAGTTCTTTGAAGACTACTATGGACAGAAGTAAGGCAGTTGGAGCTATGAGTCCTGGTCTGGGGTTTTGAGGGGATAGAGGTAGATGGTCTCAAAATAGCATATGGAACAATGGAAAGAAAAGTTCTTTGAAGACTACTATGGACAGAAGTAAGGCAGTTGGAGCTATGAGTCCTGGTCTGGGGTTTTGAGGGGATAGAGGTAGATGGTCTCAAAATAGCATA 146146
2020 3102104331021043 3102116331021163 ASXL1ASXL1 TCCACTCTGGCCTGAAACTGATGGCTGTGATTTTGATTTGCAGGCTGGGTTTGACCAAAGAAGAGTCATTGCAGCAGAACGTGGGCCAGGAGGAGGCTGAAATCAAAAGTGGCTTGTGTGTCCACTCTGGCCTGAAACTGATGGCTGTGATTTGATTTGCAGGCTGGGTTTGACCAAAGAAGAGTCATTGCAGCAGAACGTGGGCCAGGAGGAGGCTGAAATCAAAAGTGGCTTGTGTG 147147
2020 3102116331021163 3102128331021283 ASXL1ASXL1 TCCCAGGAGAATCAGTGCGTATACAGCGTGGTCCAGCCACCCGACAGCGAGATGGGCATTTTAAGAAACGCTCTCGGCCAGATCTCCGAACCAGAGCCAGAAGGAATCTGTACAAAAAACTCCCAGGAGAATCAGTGCGTATACAGCGTGGTCCAGCCACCCGACAGCGAGATGGGCATTTTAAGAAACGCTCTCGGCCAGATCTCCGAACCAGAGCCAGAAGGAATCTGTACAAAAAAC 148148
2020 3102128331021283 3102140331021403 ASXL1ASXL1 AGGAGTCAGAACAAGCAGGGGTTGCTAAGGATGCAAAATCTGTGGCCTCAGATGTTCCCCTCTACAAGGATGGGGAGGCTAAGACTGACCCAGCAGGGCTGAGCAGTCCCCATCTGCCAGAGGAGTCAGAACAAGCAGGGGTTGCTAAGGATGCAAAATCTGTGGCCTCAGATGTTCCCCTCTACAAGGATGGGGAGGCTAAGACTGACCCAGCAGGGCTGAGCAGTCCCCATCTGCCAG 149149
2020 3102140331021403 3102152331021523 ASXL1ASXL1 GCACATCCTCTGCAGCACCCGACCTGGAGGGTCCCGAATTCCCAGTTGAGTCTGTGGCTTCTCGGATCCAGGCTGAGCCAGACAACTTGGCACGTGCCTCTGCATCTCCAGACAGAATTCGCACATCCTCTGCAGCACCCGACCTGGAGGGTCCCGAATTCCCAGTTGAGTCTGTGGCTTCTCGGATCCAGGCTGAGCCAGACAACTTGGCACGTGCCTCTGCATCTCCAGACAGAATTC 150150
2020 3102152331021523 3102164331021643 ASXL1ASXL1 CTAGCCTGCCTCAGGAAACTGTGGATCAGGAACCCAAGGATCAGAAGAGGAAATCCTTTGAGCAGGCGGCCTCTGCATCCTTTCCCGAAAAGAAGCCCCGGCTTGAAGATCGTCAGTCCTCTAGCCTGCCTCAGGAAACTGTGGATCAGGAACCCAAGGATCAGAAGAGGAAATCCTTTGAGCAGGCGGCCTCTGCATCCTTTCCCGAAAAGAAGCCCCGGCTTGAAGATCGTCAGTCCT 151151
2020 3102164331021643 3102176331021763 ASXL1ASXL1 TTCGTAACACAATTGAAAGTGTTCACACCGAAAAGCCACAGCCCACTAAAGAGGAGCCCAAAGTCCCGCCCATCCGGGTAGGAGACTGTTTGATTCCTGGCTGCCCTGGAGCCAGGTTTTTTCGTAACACAATTGAAAGTGTTCACACCGAAAAGCCACAGCCCACTAAAGAGGAGCCCAAAGTCCCGCCCATCCGGGTAGGAGACTGTTTGATTCCTGGCTGCCCTGGAGCCAGGTTTT 152152
2020 3102218831022188 3102230831022308 ASXL1ASXL1 AGATCACCCAGTCAGTTAAAACTATTTTCTAATTCTTTTTTTGCAGATTCAACTTTCACGTATCAAACCACCCTGGGTGGTTAAAGGTCAGCCCACTTACCAGATATGCCCCCGGATCATAGATCACCCAGTCAGTTAAAACTATTTTCTAATTCTTTTTTTGCAGATTCAACTTTCACGTATCAAACCACCCTGGGTGGTTAAAGGTCAGCCCACTTACCAGATATGCCCCCGGATCAT 153153
2020 3102326831023268 3102338831023388 ASXL1ASXL1 CATACCATCTGTTGAGCCCCAGGTTGGAGAGGAGTGGGAGAAAGCTGCTCCCACCCCTCCTGCATTGCCTGGGGATTTGACAGCTGAGGAGGGTCTAGATCCTCTTGACAGCCTTACTTCCATACCATCTGTTGAGCCCCAGGTTGGAGAGGAGTGGGAGAAAGCTGCTCCCACCCCTCCTGCATTGCCTGGGGATTTGACAGCTGAGGAGGGTCTAGATCCTCTTGACAGCCTTACTTC 154154
2020 3102338831023388 3102350831023508 ASXL1ASXL1 ACTCTGGACTGTGCCATCTCGAGGAGGCAGTGACAGCAATGGCAGTTACTGTCAACAGGTGGACATTGAAAAGCTGAAAATCAACGGAGACTCTGAAGCACTGAGTCCTCACGGTGAGTCACTCTGGACTGTGCCATCTCGAGGAGGCAGTGACAGCAATGGCAGTTACTGTCAACAGGTGGACATTGAAAAGCTGAAAATCAACGGAGACTCTGAAGCACTGAGTCCTCACGGTGAGTC 155155
2020 3102350831023508 3102362831023628 ASXL1ASXL1 CACGGATACAGCCTCTGACTTTGAAGGTCACCTCACGGAGGACAGCAGTGAGGCTGACACTAGAGAAGCTGCAGTGACAAAGGGATCTTCGGTGGACAAGGATGAGAAACCCAATTGGAACACGGATACAGCCTCTGACTTTGAAGGTCACCTCACGGAGGACAGCAGTGAGGCTGACACTAGAGAAGCTGCAGTGACAAAGGGATCTTCGGTGGACAAGGATGAGAAACCCAATTGGAA 156156
2020 3102362831023628 3102374831023748 ASXL1ASXL1 CCAATCTGCCCCACTGTCCAAGGTGAATGGTGACATGCGTCTGGTTACAAGGACAGATGGGATGGTTGCTCCTCAGAGCTGGGTGTCTCGAGTATGTGCGGTCCGCCAAAAGATCCCAGACCAATCTGCCCCACTGTCCAAGGTGAATGGTGACATGCGTTCTGGTTACAAGGACAGATGGGATGGTTGCTCCTCAGAGCTGGGTGTCTCGAGTATGTGCGGTCCGCCAAAAGATCCCAGA 157157
2020 3102374831023748 3102386831023868 ASXL1ASXL1 TTCCCTACTGCTGGCCAGTACTGAGTACCAGCCAAGAGCCGTGTGCCTGTCCATGCCTGGGTCCTCAGTGGAGGCCACTAACCCACTTGTGATGCAGTTGCTGCAGGGTAGCTTGCCCCTTTCCCTACTGCTGGCCAGTACTGAGTACCAGCCAAGAGCCGTGTGCCTGTCCATGCCTGGGTCCTCAGTGGAGGCCACTAACCCACTTGTGATGCAGTTGCTGCAGGGTAGCTTGCCCCT 158158
2020 3102386831023868 3102398831023988 ASXL1ASXL1 AGAGAAGGTTCTTCCACCAGCCCACGATGACAGCATGTCAGAATCCCCACAAGTACCACTTACAAAAGACCAGAGCCATGGCTCGCTACGCATGGGATCTTTACATGGTCTTGGAAAAAAAGAGAAGGTTCTTCCACCAGCCCACGATGACAGCATGTCAGAATCCCCACAAGTACCACTTACAAAAGACCAGAGCCATGGCTCGCTACGCATGGGATCTTTACATGGTCTTGGAAAAAA 159159
2020 3102398831023988 3102410831024108 ASXL1ASXL1 CAGTGGCATGGTTGATGGAAGCAGCCCCAGTTCTTTAAGGGCTTTGAAGGAGCCTCTTCTGCCAGATAGCTGTGAAACAGGCACTGGTCTTGCCAGGATTGAGGCCACCCAGGCTCCTGGCAGTGGCATGGTTGATGGAAGCAGCCCCAGTTCTTTAAGGGCTTTGAAGGAGCCTCTTCTGCCAGATAGCTGTGAAACAGGCACTGGTCTTGCCAGGATTGAGGCCACCCAGGCTCCTGG 160160
2020 3102410831024108 3102422831024228 ASXL1ASXL1 AGCACCCCAAAAGAATTGCAAGGCAGTCCCAAGTTTTGACTCCCTCCATCCAGTGACAAATCCCATTACATCCTCTAGGAAACTGGAAGAAATGGATTCCAAAGAGCAGTTCTCTTCCTTAGCACCCCAAAAGAATTGCAAGGCAGTCCCAAGTTTTGACTCCCTCCATCCAGTGACAAATCCCATTACATCCTCTAGGAAACTGGAAGAAATGGATTCCAAAGAGCAGTTCTCTTCCTT 161161
2020 3102422831024228 3102434831024348 ASXL1ASXL1 TAGTTGTGAAGATCAGAAGGAAGTCCGTGCTATGTCACAGGACAGTAATTCAAATGCTGCTCCAGGAAAGAGCCCAGGAGATCTTACTACCTCGAGAACACCTCGTTTCTCATCTCCAAATAGTTGTGAAGATCAGAAGGAAGTCCGTGCTATGTCACAGGACAGTAATTCAAATGCTGCTCCAGGAAAGAGCCCAGGAGATCTTACTACCTCGAGAACACCTCGTTTCTCATCTCCAAA 162162
2020 3102434831024348 3102446831024468 ASXL1ASXL1 TGTGATCTCCTTTGGTCCAGAGCAGACAGGTCGGGCCCTGGGTGATCAGAGCAATGTTACAGGCCAAGGGAAGAAGCTTTTTGGCTCTGGGAATGTGGCTGCAACCCTTCAGCGCCCCAGTGTGATCTCCTTTGGTCCAGAGCAGACAGGTCGGGCCCTGGGTGATCAGAGCAATGTTACAGGCCAAGGGAAGAAGCTTTTTGGCTCTGGGAATGTGGCTGCAACCCTTCAGCGCCCCAG 163163
2020 3102230831022308 3102242831022428 ASXL1ASXL1 CCCCACCACGGAGTCCTCCTGCCGGGGTTGGACTGGCGCCAGGACCCTCGCAGACATTAAAGCCCGTGCTCTGCAGGTCCGAGGGGCGAGAGGTCACCACTGCCATAGAGAGGCGGCCACCCCCACCACGGAGTCCTCCTGCCGGGGTTGGACTGGCGCCAGGACCCTCGCAGACATTAAAGCCCGTGCTCTGCAGGTCCGAGGGGCGAGAGGTCACCACTGCCATAGAGAGGCGGCCAC 164164
2020 3102446831024468 3102458831024588 ASXL1ASXL1 GCCTGCGGACCCGATGCCTCTTCCTGCTGAGATCCCTCCAGTTTTTCCCAGTGGGAAGTTGGGACCAAGCACAAACTCCATGTCTGGTGGGGTACAGACTCCAAGGGAAGACTGGGCTCCGCCTGCGGACCCGATGCCTCTTCCTGCTGAGATCCCTCCAGTTTTTCCCAGTGGGAAGTTGGGACCAAGCACAAACTCCATGTCTGGTGGGGTACAGACTCCAAGGGAAGACTGGGCTCC 165165
2020 3102458831024588 3102470831024708 ASXL1ASXL1 AAAGCCACATGCCTTTGTTGGCAGCGTCAAGAATGAGAAGACTTTTGTGGGGGGTCCTCTTAAGGCAAATGCCGAGAACAGGAAAGCTACTGGGCATAGTCCCCTGGAACTGGTGGGTCAAAAGCCACATGCCTTTGTTGGCAGCGTCAAGAATGAGAAGACTTTTGTGGGGGGTCCTCTTAAGGCAAATGCCGAGAACAGGAAAGCTACTGGGCATAGTCCCCTGGAACTGGTGGGTCA 166166
2020 3102470831024708 3102482831024828 ASXL1ASXL1 CTTGGAAGGGATGCCCTTTGTCATGGACTTGCCCTTCTGGAAATTACCCCGAGAGCCAGGGAAGGGGCTCAGTGAGCCTCTGGAGCCTTCTTCTCTCCCCTCCCAACTCAGCATCAAGCACTTGGAAGGGATGCCCTTTGTCATGGACTTGCCCTTCTGGAAATTACCCCGAGAGCCAGGGAAGGGGCTCAGTGAGCCTCTGGAGCCTTCTTCTCTCCCCTCCCAACTCAGCATCAAGCA 167167
2020 3102482831024828 3102494831024948 ASXL1ASXL1 GGCATTTTATGGGAAGCTTTCTAAACTCCAACTGAGTTCCACCAGCTTTAATTATTCCTCTAGCTCTCCCACCTTTCCCAAAGGCCTTGCTGGAAGTGTGGTGCAGCTGAGCCACAAAGCGGCATTTTATGGGAAGCTTTCTAAACTCCAACTGAGTTCCACCAGCTTTAATTATTCCTCTAGCTCTCCCACCTTTCCCAAAGGCCTTGCTGGAAGTGTGGTGCAGCTGAGCCACAAAGC 168168
2020 3102494831024948 3102506831025068 ASXL1ASXL1 AAACTTTGGTGCGAGCCACAGTGCATCACTTTCCTTGCAAATGTTCACTGACAGCAGCACGGTGGAAAGCATCTCGCTCCAGTGTGCGTGCAGCCTGAAAGCCATGATCATGTGCCAAGGAAACTTTGGTGCGAGCCACAGTGCATCACTTTCCTTGCAAATGTTCACTGACAGCAGCACGGTGGAAAGCATCTCGCTCCAGTGTGCGTGCAGCCTGAAAGCCATGATCATGTGCCAAGG 169169
2020 3102506831025068 3102518831025188 ASXL1ASXL1 CTGCGGTGCGTTCTGTCACGATGACTGTATTGGACCCTCAAAGCTCTGTGTATTGTGCCTTGTGGTGAGATAATAAATTATGGCCATGGGAAACATTGTATATTTAGTGTGTGTATTTTGCTGCGGTGCGTTCTGTCACGATGACTGTATTGGACCCTCAAAGCTCTGTGTATTGTGCCTTGTGGTGAGATAATAAATTATGGCCATGGGAAACATTGTATATTTAGTGTGTGTATTTTG 170170
2020 3102242831022428 3102254831022548 ASXL1ASXL1 CACTGCCATCGGAGGGGGGGGTGGCCCGGGTGGAGGTGGCGGCGGGGCCACCGATGAGGGAGGTGGCAGAGGCAGCAGCAGTGGTGATGGTGGTGAGGCCTGTGGCCACCCTGAGCCCAGCACTGCCATCGGAGGGGGGGGGTGGCCCGGGTGGAGGTGGCGGCGGGGCCACCGATGAGGGAGGTGGCAGAGGCAGCAGCAGTGGTGATGGTGGTGAGGCCTGTGGCCACCCTGAGCCCAG 171171
2020 3102254831022548 3102266831022668 ASXL1ASXL1 GGGAGGCCCGAGCACCCCTGGAAAGTGTACGTCAGATCTACAGCGAACACAACTACTGCCGCCTTATCCTCTAAATGGGGAGCATACCCAGGCCGGAACTGCCATGTCCAGAGCTAGGAGGGGAGGCCCGAGCACCCCTGGAAAGTGTACGTCAGATCTACAGCGAACACAACTACTGCCGCCTTATCCTCTAAATGGGGAGCATACCCAGGCCGGAACTGCCATGTCCAGAGCTAGGAG 172172
2020 3102266831022668 3102278831022788 ASXL1ASXL1 AGAGGACCTGCCTTCTCTGAGAAAGGAGGAAAGCTGCCTACTACAGAGGGCTACAGTTGGACTCACAGATGGGCTAGGAGATGCCTCCCAACTCCCCGTTGCTCCCACTGGGGACCAGCCAGAGGACCTGCCTTCTCTGAGAAAGGAGGAAAGCTGCCTACTACAGAGGGCTACAGTTGGACTCACAGATGGGCTAGGAGATGCCTCCCAACTCCCCGTTGCTCCCACTGGGGACCAGCC 173.173.
2020 3102278831022788 3102290831022908 ASXL1ASXL1 ATGCCAGGCCTTGCCCCTACTGTCCTCCCAAACCTCAGTAGCTGAGAGATTAGTGGAGCAGCCTCAGTTGCATCCGGATGTTAGAACTGAATGTGAGTCTGGCACCACTTCCTGGGAAAGATGCCAGGCCTTGCCCCTACTGTCCTCCCAAACCTCAGTAGCTGAGAGATTAGTGGAGCAGCCTCAGTTGCATCCGGATGTTAGAACTGAATGTGAGTCTGGCACCACTTCCTGGGAAAG 174174
2020 3102290831022908 3102302831023028 ASXL1ASXL1 TGATGATGAGGAGCAAGGACCCACCGTTCCTGCAGACAATGGTCCCATTCTGTCTCTAGTGGGAGATGATACATTAGAGAAAGGAACTGGCCAAGCTCTTGACAGTCATCCCACTATGAATGATGATGAGGAGCAAGGACCCACCGTTCCTGCAGACAATGGTCCCATTCTGTCTCTAGTGGGAGATGATACATTAGAGAAAGGAACTGGCCAAGCTCTTGACAGTCATCCCACTATGAA 175175
2020 3102302831023028 3102314831023148 ASXL1ASXL1 GGATCCTGTAAATGTGACCCCCAGTTCCACACCTGAATCCTCACCGACTGATTGCCTGCAGAACAGAGCATTTGATGACGAATTAGGGCTTGGTGGCTCATGCCCTCCTATGAGGGAAAGGGATCCTGTAAATGTGACCCCCAGTTCCACACCTGAATCCTCACCGACTGATTGCCTGCAGAACAGAGCATTTGATGACGAATTAGGGCTTGGTGGCTCATGCCCTCCTATGAGGGAAAG 176176
2020 3102314831023148 3102326831023268 ASXL1ASXL1 TGATACTAGACAAGAAAACTTGAAAACCAAGGCTCTCGTTTCTAACAGTTCTTTGCATTGGATACCCATCCCATCGAATGATGAGGTAGTGAAACAGCCCAAACCAGAATCCAGAGAACATGATACTAGACAAGAAAACTTGAAAACCAAGGCTCTCGTTTCTAACAGTTCTTTGCATTGGATACCCATCCCATCGAATGATGAGGTAGTGAAACAGCCCAAACCAGAATCCAGAGAACA 177177
ChromosomeChromosome StartStart StopStop GeneGene Probe_Sequence Probe_Sequence 서열번호sequence number
1717 5867767658677676 5867779658677796 PPM1DPPM1D TCGAAGATAAACAATAGTTGGCCGGCGAGCGCCTAGTGTGTCTCCCGCCGCCGGATTCGGCGGGCTGCGTGGGACCGGCGGGATCCCGGCCAGCCGGCCATGGCGGGGCTGTACTCGCTGTCGAAGATAAACAATAGTTGGCCGGCGAGCGCCTAGTGTGTCTCCCGCCGCCGGATTCGGCGGGCTGCGTGGGACCGGCGGGATCCCGGCCAGCCGGCCATGGCGGGGCTGTACTCGCTG 178178
1717 5867779658677796 5867791558677915 PPM1D PPM1D GGAGTGAGCGTCTTCTCCGACCAGGGCGGGAGGAAGTACATGGAGGACGTTACTCAAATCGTTGTGGAGCCCGAACCGACGGCTGAAGA AAAGCCCTCGCCGCGGCGGTCGCTGTCTCAGGAGTGAGCGTCTTCTCCGACCAGGGCGGGAGGAAGTACATGGAGGACGTTACTCAAATCGTTGTGGAGCCCGAACCGACGGCTGAAGAAAAGCCCTCGCCGCGGCGGTCGCTGTCTCA 179179
1717 5867792658677926 5867804658678046 PPM1DPPM1D CGCGGCCGTCGCCGGCCGCCCTTCCCGGCGGCGAAGTCTCGGGGAAAGGCCCAGCGGTGGCAGCCCGAGAGGCTCGCGACCCTCTCCCGGACGCCGGGGCCTCGCCGGCACCTAGCCGCTCGCGGCCGTCGCCGGCCGCCCTTCCCGGCGGCGAAGTCTCGGGGAAAGGCCCAGCGGTGGCAGCCCGAGAGGCTCGCGACCCTCTCCCGGACGCCGGGGCCTCGCCGGCACCTAGCCGCT 180180
1717 5867804658678046 5867816658678166 PPM1DPPM1D GCTGCCGCCGCCGTTCCTCCGTGGCCTTTTTCGCCGTGTGCGACGGGCACGGCGGGCGGGAGGCGGCACAGTTTGCCCGGGAGCACTTGTGGGGTTTCATCAAGAAGCAGAAGGGTTTCAGCTGCCGCCGCCGTTCCTCCGTGGCCTTTTTCGCCGTGTGCGACGGGCACGGCGGGCGGGAGGCGGCACAGTTTGCCCGGGAGCACTTGTGGGGTTTCATCAAGAAGCAGAAGGGTTTCA 181181
1717 5867816658678166 5867828658678286 PPM1D PPM1D CCTCGTCCGAGCCGGCTAAGGTTTGCGCTGCCATCCGCAAAGGCTTTCTCGCTTGTCACCTTGCCATGTGGAAGAAACTGGGTAAGTTCC CTGGCTTGTTTGGCGCCCGCCCCTTTTTCACCTCGTCCGAGCCGGCTAAGGTTTGCGCTGCCATCCGCAAAGGCTTTCTCGCTTGTCACCTTGCCATGTGGAAGAAACTGGGTAAGTTCCCTGGCTTGTTTGGCGCCCGCCCCTTTTTCA 182182
1717 5870087558700875 5870099558700995 PPM1DPPM1D TTACAGCGGAATGGCCAAAGACTATGACGGGTCTTCCTAGCACATCAGGGACAACTGCCAGTGTGGTCATCATTCGGGGCATGAAGATGTATGTAGCTCACGTAGGTGACTCAGGGGTGGTTACAGCGGAATGGCCAAAGACTATGACGGGTCTTCCTAGCACATCAGGGACAACTGCCAGTGTGGTCATCATTCGGGGCATGAAGATGTATGTAGCTCACGTAGGTGACTCAGGGGTGG 183183
1717 5870099558700995 5870111558701115 PPM1DPPM1D TTCTTGGAATTCAGGATGACCCGAAGGATGACTTTGTCAGAGCTGTGGAGGTGACACAGGACCATAAGCCAGAACTTCCCAAGGAAAGAGAACGAATCGAAGGACTTGGTGGGAGGTAACTTCTTGGAATTCAGGATGACCCGAAGGATGACTTTGTCAGAGCTGTGGAGGTGACACAGGACCATAAGCCAGAACTTCCCAAGGAAAGAGAACGAATCGAAGGACTTGGTGGGAGGTAAC 184184
1717 5871115558711155 5871127558711275 PPM1DPPM1D TATCTTAGTTGTTGTATTTTAATCATTTAGATTATTTATGTGAACTCTTTATTTTTAGTGTAATGAACAAGTCTGGGGTGAATCGTGTAGTTTGGAAACGACCTCGACTCACTCACAATGTATCTTAGTTGTTGTATTTTAATCATTTAGATTATTATGTGAACTCTTTATTTTTAGTGTAATGAACAAGTCTGGGGTGAATCGTGTAGTTTGGAAACGACCTCGACTCACTCACAATG 185185
1717 5871127558711275 5871139558711395 PPM1DPPM1D GACCTGTTAGAAGGAGCACAGTTATTGACCAGATTCCTTTTCTGGCAGTAGCAAGAGCACTTGGTAAGTAGGACTTAATTTGGTGAAATTATATTGAATTTTCTACAATATATGGTGGCAGACCTGTTAGAAGGAGCACAGTTATTGACCAGATTCCTTTTCTGGCAGTAGCAAGAGCACTTGGTAAGTAGGACTTAATTTGGTGAAAATTATATTGAATTTTCTACAATATATGGTGGCA 186186
1717 5872522858725228 5872534858725348 PPM1DPPM1D GCTTTTTCTGCTCCCTTCCCCCAGGTGATTTGTGGAGCTATGATTTCTTCAGTGGTGAATTTGTGGTGTCACCTGAACCAGACACAAGTGTCCACACTCTTGACCCTCAGAAGCACAAGTGCTTTTTCTGCTCCCTTCCCCCAGGTGATTTGTGGAGCTATGATTTCTTCAGTGGTGAATTTGTGGTGTCACCTGAACCAGACACAAGTGTCCACACTCTTGACCCTCAGAAGCACAAGT 187187
1717 5872534858725348 5872546858725468 PPM1DPPM1D ATATTATATTGGGGAGTGATGGACTTTGGAATATGATTCCACCACAAGATGCCATCTCAATGTGCCAGGACCAAGAGGAGAAAAAATACCTGATGGTGAGATGTGATTGAATAACTTGATATATTATATTGGGGAGTGATGGACTTTGGAATATGATTCCACCACAAGATGCCATCTCAATGTGCCAGGACCAAGAGGAGAAAAAATACCTGATGGTGAGATGTGATTGAATAACTTGAT 188188
1717 5873390158733901 5873402158734021 PPM1DPPM1D AGATGTAGTGGCAGCTAAATCTGAGTTACTTTCCTTCTCCTTGTTCTTTTGAATACAGGGTGAGCATGGACAATCTTGTGCCAAAATGCTTGTGAATCGAGCATTGGGCCGCTGGAGGCAAGATGTAGTGGCAGCTAAATCTGAGTTACTTTCCTTCTCCTTGTTCTTTTGAATACAGGTGGAGCATGGACAATCTTGTGCCAAAATGCTTGTGAATCGAGCATTGGGCCGCTGGAGGCA 189189
1717 5873402158734021 5873414158734141 PPM1DPPM1D GCGTATGCTCCGAGCAGATAACACTAGTGCCATAGTAATCTGCATCTCTCCAGAAGTGGACAATCAGGGAAACTTTACCAATGAAGATGAGTTATACCTGAACCTGACTGACAGCCCTTCGCGTATGCTCCGAGCAGATAACACTAGTGCCATAGTAATCTGCATCTCTCCAGAAGTGGACAATCAGGGAAACTTTACCAATGAAGATGAGTTATACCTGAACCTGACTGACAGCCCTTC 190190
1717 5873414158734141 5873426158734261 PPM1DPPM1D CTATAATAGTCAAGAAACCTGTGTGATGACTCCTTCCCCATGTTCTACACCACCAGTCAAGGTATATAGTTCCATAGTTTTTAAGTTATGTTTTAATAGACACCAGTTCTTTGGTTAGCGCTATAATAGTCAAGAAACCTGTGTGATGACTCCTTCCCCATGTTCTACACCACCAGTCAAGGTATATAGTTCCATAGTTTTTAAGTTATGTTTTAATAGACACCAGTTCTTTGGTTAGCG 191191
1717 5873424058734240 5873436058734360 PPM1DPPM1D ACACCAGTTCTTTGGTTAGCGTCACCTGGAAACAATTTTTAAATTCTTACAGGATTTTGGATTTGAACTCGATTCAAGAAAGTGATGTAACTTATTATCAGAGAGCCATCTTTACATCAAACACCAGTTCTTTGGTTAGCGTCACCTGGAAACAATTTTTAAATTCTTACAGGATTTTGGATTTGAACTCGATTCAAGAAAGTGATGTAACTTATTATCAGAGAGCCATCTTTACATCAA 192192
1717 5873436058734360 5873447958734479 PPM1DPPM1D TACTAATCTGAATGCCAGCCATGTGTACAGCACTAATAAAAAGGTGATTGTGGGCCCTTAAGAATATTATTGTTTGCCATCTAATGCTATGAACATTATTTTTAAAGCATTTAGAAGTTTACTAATCTGAATGCCAGCCATGTGTACAGCACTAATAAAAAGGTGATTGTGGGCCCTTAAGAATATTATTGTTTGCCATCTAATGCTATGAACATTATTTTTAAAGCATTTAGAAGTT 193193
1717 5874033458740334 5874045458740454 PPM1DPPM1D TTTTACCTTCTTATTTTTCAGTCACTGGAGGAGGATCCATGGCCAAGGGTGAATTCTAAGGACCATATACCTGCCCTGGTTCGTAGCAATGCCTTCTCAGAGAATTTTTTAGAGGTTTCATTTTACCTTCTTATTTTTCAGTCACTGGAGGAGGATCCATGGCCAAGGGTGAATTCTAAGGACCATATACCTGCCCTGGTTCGTAGCAATGCCTTCTCAGAGAATTTTTTAGAGGTTTCA 194194
1717 5874045458740454 5874057458740574 PPM1DPPM1D GCTGAGATAGCTCGAGAGAATGTCCAAGGTGTAGTCATACCCTCAAAAGATCCAGAACCACTTGAAGAAAATTGCGCTAAAGCCCTGACTTTAAGGATACATGATTCTTTGAATAATAGCGCTGAGATAGCTCGAGAGAATGTCCAAGGTGTAGTCATACCCTCAAAAGATCCAGAACCACTTGAAGAAAATTGCGCTAAAGCCCTGACTTTAAGGATACATGATTCTTTGAATAATAGC 195195
1717 5874057458740574 5874069458740694 PPM1D PPM1D CTTCCAATTGGCCTTGTGCCTACTAATTCAACAAACACTGTCATGGACCAAAAAAATTTGAAGATGTCAACTCCTGGCCAAATGAAAGCC CAAGAAATTGAAAGAACCCCTCCAACAAACCTTCCAATTGGCCTTGTGCCTACTAATTCAACAAACACTGTCATGGACCAAAAAAATTTGAAGATGTCAACTCCTGGCCAAATGAAAGCCCAAGAAATTGAAAGAACCCCTCCAACAAAC 196196
1717 5874069458740694 5874081458740814 PPM1DPPM1D TTTAAAAGGACATTAGAAGAGTCCAATTCTGGCCCCCTGATGAAGAAGCATAGACGAAATGGCTTAAGTCGAAGTAGTGGTGCTCAGCCTGCAAGTCTCCCCACAACCTCACAGCGAAAGTTTAAAAGGACATTAGAAGAGTCCAATTCTGGCCCCCTGATGAAGAAGCATAGACGAAATGGCTTAAGTCGAAGTAGTGGTGCTCAGCCTGCAAGTCTCCCCACAACCTCACAGCGAAAG 197197
1717 5874081458740814 5874093458740934 PPM1DPPM1D AACTCTGTTAAACTCACCATGCGACGCAGACTTAGGGGCCAGAAGAAAATTGGAAATCCTTTACTTCATCAACACAGGAAAACTGTTTGTGTTTGCTGAAATGCATCTGGGAAATGAGGTAACTCTGTTAAACTCACCATGCGACGCAGACTTAGGGGCCAGAAGAAAATTGGAAATCCTTTACTTCATCAACACAGGAAAACTGTTTGTGTTTGCTGAAATGCATCTGGGAAATGAGGT 198198
이는 DNMT3A, TET2, ASXL1 및 PPM1D 유전자에 대한 NGS 패널의 전체 서열 중 체세포 서열변이가 검출되는 염색체 서열에 대한 프로브 서열정보를 예시적으로 제시한 것이며, 상기 돌연변이 검출 제제는 이에 제한되지 않는다. This is an example of probe sequence information for chromosomal sequences in which somatic sequence mutations are detected among the entire sequences of the NGS panel for DNMT3A, TET2, ASXL1, and PPM1D genes, and the mutation detection agent is not limited thereto.
상기 조성물은 개체로부터 분리한 생물학적 시료의 유전자 분석을 위해 사용될 수 있으며, 상기 유전자 분석은 차세대 유전체 시퀀싱 분석법(Next Generation Sequencing, NGS) 및 PCR-기반 기법, 예를 들어, 실시간 정량적 PCR, blocker PCR, 디지털 액적(droplet) PCR(ddPCR), 클램핑 PCR, ICE-COLD PCR, castPCR, ARMS PCR, BEAMing 등을 포함하지만, 이로 한정되지 않는다.The composition can be used for genetic analysis of a biological sample isolated from an individual, and the genetic analysis includes Next Generation Sequencing (NGS) and PCR-based techniques such as real-time quantitative PCR, blocker PCR, digital droplet PCR (ddPCR), clamping PCR, ICE-COLD PCR, castPCR, ARMS PCR, BEAMing, and the like.
또한, 상기 단백질을 검출할 수 있는 제제는 상기 단백질에 특이적으로 결합할 수 있는 모노클로날 항체, 폴리클로날 항체, 키메릭(chimeric) 항체, 이들 항체의 단편(scFv), 또는 앱타머(aptamer)일 수 있으나, 이에 한정되지 않는다.In addition, the agent capable of detecting the protein is a monoclonal antibody, a polyclonal antibody, a chimeric antibody, a fragment (scFv) of these antibodies, or an aptamer ( aptamer), but is not limited thereto.
본 발명의 또 다른 태양에 따르면, 상기 조성물을 포함하는 개체의 폐암 치료의 예후를 예측하기 위한 키트가 제공된다.According to another aspect of the present invention, a kit for predicting the prognosis of lung cancer treatment of a subject comprising the composition is provided.
구체적으로, 상기 키트는 분석 방법에 적합한 한 종류 또는 그 이상의 다른 구성성분 조성물, 용액 또는 장치로 구성된다. 예를 들어, 상기 키트는 RT-PCR(Reverse transcription polymerase chain reaction) 키트, DNA 칩 키트, ELISA(Enzyme-linked immunosorbent assay) 키트, 단백질 칩 키트 또는 래피드(rapid) 키트일 수 있다.Specifically, the kit consists of one or more other component compositions, solutions or devices suitable for the assay method. For example, the kit may be a reverse transcription polymerase chain reaction (RT-PCR) kit, a DNA chip kit, an enzyme-linked immunosorbent assay (ELISA) kit, a protein chip kit, or a rapid kit.
일 구현예에서, 상기 키트에 포함된 상기 조성물은 패널(panel) 형태일 수 있지만, 이에 한정되지 않는다.In one embodiment, the composition included in the kit may be in the form of a panel, but is not limited thereto.
본 발명의 또 다른 태양에 따르면, 상기 조성물을 포함하는 유전자 분석용 패널이 제공된다. 상기 유전자 분석용 패널은 차세대 시퀀싱 분석법(NGS)을 기초로 할 수 있으며, 이는 클론성 조혈증과 연관된 유전자 변이를 탐색하는데 이용되거나, 폐암의 치료와 연관되어 예후를 예측하기 위해 활용될 수 있다. 유전자 분석용 패널을 통해 실시자는 염기서열 분석하고자 하는 유전자의 영역, 나아가 유전자의 변이를 탐색하고자 하는 영역에 대한 분석을 수행할 수 있다. 또한, 실시자는 유전자 분석용 패널을 통해 한번의 분석에서 복수 개의 목적 유전자에 대한 동시 분석을 수행할 수 있다. 유전자 분석용 패널은 목적 유전자 각각에 대한 상보적 염기서열을 갖는 프로브(probe)를 포함할 수 있고, 각각의 프로브는 개체로부터 분리한 생물학적 시료 내의 목적 유전자 영역에 대하여 혼성화 반응(hybridization)에 의해 특이적으로 결합할 수 있다. 예를 들어, 클론성 조혈증과 관련된 유전자 변이를 검출하기 위한 유전자 분석용 패널은 APC, ASXL1, ASXL2, ATM, BCL11B, BCOR, BCORL1, BIRC3, BRAF, BRCC3, CARD11, CASP8, CBL, CD58, CD79B, CNOT3, CREBBP, CUX1, DDX3X, DNMT3A, EP300, ETV6, EZH2, FAM46C, FBXW7, FLT3, FOXP1, GNAS, GNB1, GPS2, HIST1H1C, IDH2, IKZF1, IKZF2, JAK1, JAK2, JAK3, JARID2, KDM6A, KIT, KLHL6, KMT2D, KRAS, LUC7L2, MAP3K1, MPL, MYD88, NF1, NFE2L2, NOTCH1, NOTCH2, NRAS, PDS5B, PDSS2, PHF6, PHIP, PIK3CA, PIK3R1, PPM1D, PRDM1, PRPF40B, PTEN, PTPN11, RAD21, RIT1, RPS15, SETD2, SETDB1, SF1, SF3A1, SF3B1, SMC1A, SMC3, SRSF2, STAG1, STAG2, STAT3, SUZ12, TBL1XR1, TET1, TET2, TNFAIP3, TNFRSF14, TP53, U2AF1, VHL, WT1, ZRSR2 및 CHEK2 유전자로 구성된 군으로부터 선택된 하나 이상의 유전자에 대한 프로브를 포함할 수 있다. 이상의 프로브들은 상기 유전자에 대한 염기서열 변이들을 탐색하는 데 이용될 수 있다. 프로브가 부착된 유전자는 PCR을 통해 증폭됨으로써 염기서열 분석을 위한 라이브러리로 제작될 수 있고, 차세대 시퀀싱 분석법을 통해 최종적으로 상기 유전자에 대한 염기서열 변이 유무가 검출될 수 있다.According to another aspect of the present invention, a panel for genetic analysis comprising the composition is provided. The genetic analysis panel may be based on next-generation sequencing (NGS), which may be used to search for genetic mutations associated with clonal hematopoiesis or to predict prognosis in association with lung cancer treatment. Through the gene analysis panel, the practitioner can perform analysis on the region of the gene to be sequenced and furthermore, the region to search for mutations in the gene. In addition, the operator can perform simultaneous analysis on a plurality of target genes in one analysis through the gene analysis panel. The gene analysis panel may include probes having complementary nucleotide sequences for each target gene, and each probe is specific for a target gene region in a biological sample isolated from an individual by hybridization. can be antagonistically combined. For example, panels for genetic analysis for detecting genetic variants associated with clonal hematopoiesis include APC, ASXL1, ASXL2, ATM, BCL11B, BCOR, BCORL1, BIRC3, BRAF, BRCC3, CARD11, CASP8, CBL, CD58, CD79B KIT , KLHL6, KMT2D, KRAS, LUC7L2, MAP3K1, MPL, MYD88, NF1, NFE2L2, NOTCH1, NOTCH2, NRAS, PDS5B, PDSS2, PHF6, PHIP, PIK3CA, PIK3R1, PPM1D, PRDM1, PRPF40B, PTEN, PTPN11, RAD21, RIT1 , RPS15, SETD2, SETDB1, SF1, SF3A1, SF3B1, SMC1A, SMC3, SRSF2, STAG1, STAG2, STAT3, SUZ12, TBL1XR1, TET1, TET2, TNFAIP3, TNFRSF14, TP53, U2AF1, VHL, WT1, ZRSR2 and CHEK2 genes. It may contain probes for one or more genes selected from the group consisting of: The above probes can be used to search for nucleotide sequence mutations of the gene. The gene to which the probe is attached can be amplified through PCR to prepare a library for sequencing, and the presence or absence of nucleotide sequence mutation in the gene can be finally detected through next-generation sequencing analysis.
상기 "클론성 조혈증", "폐암", "개체", "생물학적 시료", "예후", "예측", "변이" 등 동일 구성에 대한 구체적인 설명은 상기를 참조한다. For detailed descriptions of the same elements such as "clonal hematopoiesis", "lung cancer", "subject", "biological sample", "prognosis", "prediction", and "mutation", refer to the above.
폐암의 치료를 위한 클론성 조혈증의 진단Diagnosis of clonal hematopoiesis for the treatment of lung cancer
본 발명의 또 다른 태양에 따르면, 폐암 치료를 위한 치료제의 투여 전에, 개체로부터 분리한 생물학적 시료의 유전자 분석을 통해 상기 개체에 클론성 조혈증이 존재하는지 여부를 확인하는 단계를 포함하는 폐암의 치료 방법 또는 폐암의 치료를 위한 정보의 제공 방법이 제공된다. 상술한 바와 같이, 폐암 환자에서 클론성 조혈증의 존재 유무는 폐암 치료의 예후와 밀접하게 관련이 있으므로, 폐암 치료제의 투여 전에 환자가 클론성 조혈증을 갖고 있는지 여부를 확인하여 치료제의 투여 여부를 결정할 수 있으며, 이로써 폐암 환자의 생존율을 높일 수 있다. According to another aspect of the present invention, treatment of lung cancer comprising the step of determining whether clonal hematopoiesis exists in a subject through genetic analysis of a biological sample isolated from the subject prior to administration of a therapeutic agent for lung cancer treatment. A method or method of providing information for treatment of lung cancer is provided. As described above, the presence or absence of clonal hematopoiesis in lung cancer patients is closely related to the prognosis of lung cancer treatment. can be determined, thereby increasing the survival rate of lung cancer patients.
상기 클론성 조혈증과 관련된 체세포 돌연변이가 발생하는 유전자에 대한 구성은 본 명세서의 "폐암 치료의 예후 예측 방법"에서 기술된 내용을 참조한다.For the configuration of the genes in which somatic mutations related to the clonal hematopoiesis occur, refer to the contents described in "Method for Predicting Prognosis of Lung Cancer Treatment" of the present specification.
일 구현예에서, 상기 클론성 조혈증이 존재하는지 여부를 확인하는 단계는 DNMT3A, ASXL1, TET2, PPM1D, ATM, BCL11B, CARD11, CBL, CD79B, CHEK2, CUX1, ETV6, FOXP1, JAK2, KMT2D, MAP3K1, MPL, NF1, NOTCH1, NOTCH2, PHIP, PRPF40B, RAD21, SETD2, SF3B1, TET1, TNFAIP3, TP53, U2AF1 및 ZRSR2로 이루어진 군으로부터 선택되는 하나 이상의 유전자에 하나 이상의 변이가 존재하는지를 확인하는 것을 포함할 수 있으며, 이에 기초하여 클론성 조혈증의 존재 여부를 결정하는 단계를 추가로 포함할 수 있다.In one embodiment, the step of determining whether clonal hematopoiesis exists is DNMT3A, ASXL1, TET2, PPM1D, ATM, BCL11B, CARD11, CBL, CD79B, CHEK2, CUX1, ETV6, FOXP1, JAK2, KMT2D, MAP3K1 , MPL, NF1, NOTCH1, NOTCH2, PHIP, PRPF40B, RAD21, SETD2, SF3B1, TET1, TNFAIP3, TP53, U2AF1 and ZRSR2 may include determining whether one or more mutations exist in one or more genes selected from the group consisting of and, based on this, determining the presence or absence of clonal hematopoiesis may be further included.
다른 구현예에서, 상기 하나 이상의 유전자는 ASXL1, CBL, CHEK2, CUX1, DNMT3A, FOXP1, JAK2, KMT2D, MPL, NOTCH1, PPM1D, PRPF40B, SF3B1, TET2, TNFAIP3, TP53, U2AF1 및 ZRSR2로 이루어진 군으로부터 선택되는 하나 이상을 포함할 수 있다.In another embodiment, the one or more genes are selected from the group consisting of ASXL1, CBL, CHEK2, CUX1, DNMT3A, FOXP1, JAK2, KMT2D, MPL, NOTCH1, PPM1D, PRPF40B, SF3B1, TET2, TNFAIP3, TP53, U2AF1 and ZRSR2 may include one or more.
또 다른 구현예에서, 상기 하나 이상의 유전자는 DNMT3A, ASXL1, TET2, PPM1D, SF3B1, ATM, 및 TNFAIP3로 이루어진 군으로부터 선택되는 하나 이상을 포함할 수 있다.In another embodiment, the one or more genes may include one or more selected from the group consisting of DNMT3A, ASXL1, TET2, PPM1D, SF3B1, ATM, and TNFAIP3.
또 다른 구현예에서, 상기 하나 이상의 유전자는 상기 언급된 유전자로 이루어진 군으로부터 선택되는 어느 하나의 유전자를 포함할 수 있으며, 이 때, 상기 하나 이상의 유전자는 상기 선택된 하나의 유전자를 제외한 나머지 유전자로 이루어진 군에서 선택되는 하나 이상을 추가로 포함할 수 있다.In another embodiment, the one or more genes may include any one gene selected from the group consisting of the above-mentioned genes, and in this case, the one or more genes consist of the rest of the genes other than the selected one gene. It may further include one or more selected from the group.
또 다른 구현예에서, 상기 하나 이상의 유전자에 변이가 존재하는지 여부 및 변이 대립 유전자 빈도(variant allele frequency, VAF)에 기초하여 클론성 조혈증의 존재 여부를 결정할 수 있다. 예컨대, 개체로부터 분리한 생물학적 시료를 이용한 유전자 분석을 통해, 상기 유전자 군의 유전자들 중 하나 이상의 유전자에 하나 이상의 변이가 존재하고 변이 대립 유전자 빈도가 일정 수준 이상, 예를 들어 약 1.8% 이상, 약 1.9% 이상, 또는 약 2% 이상인 경우에, 클론성 조혈증이 존재하는 개체로 분류될 수 있다.In another embodiment, the presence or absence of clonal hematopoiesis may be determined based on the presence or absence of a mutation in the one or more genes and the variant allele frequency (VAF). For example, through genetic analysis using a biological sample isolated from an individual, one or more mutations exist in one or more genes among the genes of the gene group, and the frequency of the variant allele is higher than a certain level, for example, about 1.8% or higher, about 1.8% or higher. If it is 1.9% or more, or about 2% or more, it can be classified as an individual with clonal hematopoiesis.
또 다른 구현예에서, 상기 개체에 클론성 조혈증이 존재하지 않는 것으로 결정된 경우에 폐암 치료제를 투여하는 단계를 추가로 포함할 수 있다. In another embodiment, when it is determined that clonal hematopoiesis does not exist in the subject, the step of administering a lung cancer treatment may be further included.
또 다른 구현예에서, 상기 개체에 클론성 조혈증이 존재하는 것으로 결정된 경우에는 폐암 치료제의 투여 여부를 결정하는 단계를 추가로 포함할 수 있다. 예컨대, 상기 개체에 클론성 조혈증이 존재하는 것으로 결정된 경우에 폐암 치료제를 투여하지 않거나, 또는 폐암 치료제를 투여하는 것으로 결정할 수 있다. In another embodiment, when it is determined that clonal hematopoiesis exists in the subject, a step of determining whether to administer a lung cancer treatment may be further included. For example, when it is determined that clonal hematopoiesis exists in the subject, it may be determined not to administer the lung cancer treatment or to administer the lung cancer treatment.
또 다른 구현예에서, 상기 폐암 치료제의 투여 여부를 결정하는 단계는 클론성 조혈증(CH)의 존재 여부와 함께 유의한 혈구 카운트 이상, 높은 VAF(> 10%)에서의 단일 CH 돌연변이, 다중 CH 돌연변이, TP53 및/또는 PPM1D의 변이체, DNMT3A 변이체, IDH1/2의 핫스팟(hotspot) 돌연변이 등을 종합적으로 고려하여 결정할 수 있다. 이 외에도, 폐암의 병기, 환자의 나이, 병력, 현재 동반하고 있는 질환의 종류 및 수 등이 추가적으로 고려될 수 있다.In another embodiment, the step of determining whether to administer the lung cancer treatment is a single CH mutation in a significant blood cell count abnormality, high VAF (> 10%), multiple CH with the presence or absence of clonal hematopoiesis (CH) Mutations, TP53 and/or PPM1D variants, DNMT3A variants, IDH1/2 hotspot mutations, and the like can be comprehensively considered. In addition to this, the stage of lung cancer, the patient's age, medical history, and the type and number of current accompanying diseases may be additionally considered.
상술한 여러 가지 변수를 고려하여, 상기 개체에 클론성 조혈증이 존재하는 것으로 결정된 경우에 폐암 치료제를 투여하는 단계를 추가로 포함할 수 있다. 예컨대, 폐암 치료의 투여 전에 환자에서 클론성 조혈증이 존재하는 것으로 결정된 경우, 상대적으로 클론성 조혈증에 영향을 덜 미치거나 클론성 조혈증과 관련된 불리한 결과를 증폭시킬 확률이 더 낮은 폐암 치료제를 선택하여 투여할 수 있다.In consideration of the above-described various variables, when it is determined that clonal hematopoiesis exists in the subject, a step of administering a lung cancer treatment may be further included. For example, when it is determined that clonal hematopoiesis is present in a patient prior to administration of lung cancer treatment, a lung cancer treatment that has relatively less effect on clonal hematopoiesis or has a lower probability of amplifying adverse outcomes associated with clonal hematopoiesis. administration can be selected.
한편, 본 발명의 또 다른 구현예에 따르면, 상기 폐암 치료를 위한 치료제는 임상시험을 위한 약물 후보 물질을 포함한다. 예컨대, 본 발명에 따른 폐암의 치료 방법은 폐암 치료제에 대한 임상시험에 적용될 수 있다. Meanwhile, according to another embodiment of the present invention, the therapeutic agent for treating lung cancer includes a drug candidate for clinical trials. For example, the lung cancer treatment method according to the present invention can be applied to clinical trials for lung cancer therapeutics.
따라서, 본 발명의 또 다른 태양에 따르면, 폐암 치료를 위한 약물 후보 물질을 개체에 투여하기 전에, 개체로부터 분리한 생물학적 시료의 유전자 분석을 통해 상기 개체에 클론성 조혈증이 존재하는지 여부를 확인하는 단계를 포함하는 폐암의 치료 방법 또는 폐암 치료용 약물 후보 물질의 임상시험 방법이 제공된다.Therefore, according to another aspect of the present invention, prior to administering a drug candidate for lung cancer treatment to a subject, genetic analysis of a biological sample isolated from the subject confirms whether clonal hematopoiesis exists in the subject A method for treating lung cancer or a method for clinical testing of a drug candidate for treating lung cancer is provided.
일 구체예에서, 상기 방법은 개체에 클론성 조혈증이 존재하지 않는 것으로 결정된 경우에 약물 후보 물질을 투여하는 단계를 추가로 포함할 수 있다.In one embodiment, the method may further include administering a drug candidate when it is determined that the subject does not have clonal hematopoiesis.
다른 구체예에서, 상기 방법은 개체에 클론성 조혈증이 존재하는 것으로 결정된 경우에 약물 후보 물질을 투여하는 단계를 추가로 포함할 수 있다.In another embodiment, the method may further include administering a drug candidate when it is determined that the subject has clonal hematopoiesis.
예컨대, 본 발명의 폐암 치료 방법을 폐암 치료제에 대한 임상시험에 적용하는 경우, 폐암 치료제에 대한 임상시험에 참여하거나 참여할 예정인 개체로부터 분리한 생물학적 시료의 유전자 분석을 통해 상기 개체에 클론성 조혈증이 존재하는지 여부를 확인하는 단계를 포함할 수 있으며, 이와 같은 확인 단계를 통해 클론성 조혈증이 존재하는 개체군을 선별함으로써 폐암 치료제에 대한 임상시험 성공 확률을 높일 수 있다.For example, when the lung cancer treatment method of the present invention is applied to a clinical trial for a lung cancer treatment, clonal hematopoiesis occurs in the individual through genetic analysis of a biological sample isolated from an individual who has participated or is scheduled to participate in a clinical trial for a lung cancer treatment. It may include a step of confirming whether or not it is present, and by selecting a population in which clonal hematopoiesis exists through this confirmation step, it is possible to increase the probability of success in a clinical trial for a lung cancer treatment.
상술한 바와 같이, 폐암 환자에서 클론성 조혈증의 존재가 폐암 치료에 대한 불량한 예후로 이어짐이 입증되었으므로, 본 발명에 따라 클론성 조혈증의 존재 유무를 확인하는 것은 폐암 치료제에 대한 임상시험의 성공 확률을 높이기 위해 이용될 수 있다. 의약품의 임상시험은 임상 1상에서 허가승인까지 평균적으로 10년 이상의 기간이 소요되며, 따라서 장기간 동안 의약품의 안전성 및 유효성이 평가된다. 이때, 시험되는 의약품에 의한 영향 외에도 치료의 예후에 부정적인 영향을 주는 다른 숨은 인자가 있다면 의약품의 안정성, 유효성 등이 실제보다 더 과소평가되거나 환자에 따른 편차가 크게 나타나는 것으로 평가될 가능성이 존재하며, 이에 의해 임상시험의 성공 확률이 저하될 위험이 있다. 따라서 의약품의 임상시험에 있어서 균일한 환자군을 선별하는 것 또한 매우 중요하다. 본 발명은 폐암 치료의 예후에 부정적으로 작용하는 클론성 조혈증의 존재 여부에 따라 임상시험 환자군을 선별함으로써 임상시험의 성공 확률을 높일 수 있다.As described above, since it has been proven that the presence of clonal hematopoiesis in lung cancer patients leads to poor prognosis for lung cancer treatment, confirming the presence or absence of clonal hematopoiesis according to the present invention is the success of clinical trials for lung cancer therapeutics. Can be used to increase odds. Clinical trials of pharmaceuticals take an average of 10 years or more from phase 1 clinical trial to approval, so the safety and efficacy of medicines are evaluated over a long period of time. At this time, in addition to the effect of the drug being tested, if there are other hidden factors that negatively affect the prognosis of treatment, there is a possibility that the safety and effectiveness of the drug may be underestimated more than it actually is, or the variation depending on patients may be large. As a result, there is a risk that the probability of success of the clinical trial will be lowered. Therefore, it is also very important to select a uniform patient group in clinical trials of pharmaceuticals. The present invention can increase the probability of success of a clinical trial by selecting a clinical trial patient group according to the presence or absence of clonal hematopoiesis, which negatively affects the prognosis of lung cancer treatment.
일 구현예에서, 상기 개체에 클론성 조혈증이 존재하는 경우는 클론성 조혈증이 존재하지 않는 경우에 비해 폐암 치료제의 안전성 또는 유효성이 과소평가됨을 나타내는 것일 수 있다.In one embodiment, the presence of clonal hematopoiesis in the subject may indicate that the safety or effectiveness of a lung cancer treatment is underestimated compared to the case where clonal hematopoiesis is not present.
다른 구현예에서, 상기 개체는 폐암 치료제에 대한 임상시험을 진행한 적이 있거나 진행하고 있는 개체일 수 있다. 예를 들어, 폐암 치료제에 대한 안전성, 유효성 등의 평가는 개체에서 클론성 조혈증의 유무를 확인하여 클론성 조혈증이 존재하는 개체군을 배제하거나, 또는 클론성 조혈증이 존재하는 개체군과 클론성 조혈증이 존재하지 않는 개체군을 구별하여 진행될 수 있다.In another embodiment, the subject may be a subject who has or is currently conducting a clinical trial for a lung cancer treatment. For example, evaluation of safety, efficacy, etc. for a lung cancer therapeutic agent confirms the presence or absence of clonal hematopoiesis in an individual to exclude a population in which clonal hematopoiesis exists, or to exclude a population in which clonal hematopoiesis exists and clonal hematopoiesis. Hematopoiesis can be differentiated and progressed in non-existent populations.
또한, 상기 개체는 폐암 치료제에 대한 임상시험을 진행할 예정인 개체이거나 임상시험 후보로 등록된 폐암 환자일 수 있다. 예를 들어, 폐암 치료제의 임상시험을 위한 환자(개체) 선별 과정에서 클론성 조혈증의 유무를 확인함으로써 클론성 조혈증이 존재하는 개체는 임상시험에서 배제하거나 또는 클론성 조혈증이 존재하는 개체군과 클론성 조혈증이 존재하지 않는 개체군을 따로 선별하여 임상시험을 진행할 수 있다.In addition, the subject may be an individual scheduled to conduct a clinical trial for a lung cancer treatment or a lung cancer patient registered as a clinical trial candidate. For example, by confirming the presence or absence of clonal hematopoiesis in the process of selecting patients (individuals) for clinical trials of lung cancer therapeutics, individuals with clonal hematopoiesis are excluded from clinical trials or populations with clonal hematopoiesis are excluded. A clinical trial can be conducted by separately selecting a population in which hyperclonal hematopoiesis does not exist.
한편, 개체에 클론성 조혈증이 존재하는 것으로 결정된 경우에 약물 후보 물질을 투여하는 단계를 추가로 포함하는 상기 임상시험 방법에 있어서, 상기 약물 후보 물질로 클론성 조혈증에 대한 영향이 상대적으로 더 작거나 클론성 조혈증과 관련된 불리한 결과를 증폭시킬 확률이 더 낮은 물질을 선택하여 투여할 수 있다. 이때, 클론성 조혈증이 존재하는 것으로 결정된 개체에 투여되는 상기 약물 후보 물질에 대해 폐암에 대한 치료 효능 및 안전성뿐만 아니라 클론성 조혈증에 대한 영향 또한 평가될 수 있다. 상기 "클론성 조혈증", "폐암", "개체", "생물학적 시료", "변이" 등 동일 구성에 대한 구체적인 설명은 상기를 참조한다. On the other hand, in the clinical trial method further comprising the step of administering a drug candidate when it is determined that clonal hematopoiesis exists in the subject, the drug candidate has a relatively greater effect on clonal hematopoiesis. Substances that are less likely to amplify adverse outcomes associated with small or clonal hematopoiesis can be chosen and administered. At this time, for the drug candidate administered to the subject determined to have clonal hematopoiesis, treatment efficacy and safety for lung cancer as well as effects on clonal hematopoiesis may be evaluated. For detailed descriptions of the same elements such as "clonal hematopoiesis", "lung cancer", "subject", "biological sample", and "mutation", refer to the above.
이하, 본 발명을 하기 실시예에 의하여 더욱 상세하게 설명한다. 단, 하기 실시예는 본 발명을 예시하기 위한 것일 뿐, 본 발명의 범위가 이들만으로 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail by the following examples. However, the following examples are only for exemplifying the present invention, and the scope of the present invention is not limited only to these.
실시예Example
하기 실시예는 외과적 절제술에 이어 보조 요법을 받은 폐암 환자, 특히 비소세포폐암(NSCLC) 환자의 생존 결과에 미치는 수술 전에 존재한 클론성 조혈증의 임상적 영향을 대규모 단일 중심 연속 수술 코호트(large-scale single center consecutive surgical cohort)를 사용하여 평가한 것이다. 보조 요법 및 CH 상태에 따른 선택 편향의 가능성을 배제하기 위해 성향 점수 매칭(propensity score matching; PSM) 기법을 사용하였다.The following example describes the clinical impact of preoperative clonal hematopoiesis on the survival outcome of lung cancer patients, particularly non-small cell lung cancer (NSCLC) patients who received adjuvant therapy following surgical resection in a large single-center serial surgery cohort. -scale single center consecutive surgical cohort). A propensity score matching (PSM) technique was used to rule out the possibility of selection bias according to adjuvant therapy and CH status.
실시예 1. 환자 그룹Example 1. Patient group
2011년 1월과 2017년 12월 사이에 NSCLC 수술을 받은 환자(1211명)의 모든 임상 기록을 서울아산병원의 폐암 데이터베이스에서 검토하였다. 본 실시예는 병기 IIB기 또는 III기의 NSCLC에 대해 보조 요법(adjuvant therapy)을 받은 환자에 대해 수행되었다(도 1). 구체적으로, NSCLC 수술을 받은 환자 1211명 중 369명의 환자를 제외시켰고, 제외 기준은 다음과 같았다: i) 폐암 이외의 악성종양이 과거에 있었거나 현재 있는 환자; ii) 수술 전 보조요법(neoadjuvant therapy)을 받은 환자; iii) 하엽 절제술(sublobar resection)(쐐기 절제술(wedge resection) 또는 구역절제술(segmentectomy))을 받은 환자; iv) 불완전 절제 환자; 및 v) 수술 후 30일 이내에 사망한 환자.All clinical records of patients (1211 patients) who underwent NSCLC surgery between January 2011 and December 2017 were reviewed in the lung cancer database of Asan Medical Center. This example was performed on patients receiving adjuvant therapy for stage IIB or III NSCLC (FIG. 1). Specifically, 369 patients out of 1211 patients who underwent NSCLC surgery were excluded, and the exclusion criteria were as follows: i) patients with past or present malignancies other than lung cancer; ii) patients receiving neoadjuvant therapy before surgery; iii) patients who underwent sublobar resection (wedge resection or segmentectomy); iv) patients with incomplete resection; and v) patients who died within 30 days of surgery.
상기 기준에 따라 제외한 후, 병기 IIB기 또는 III기의 NSCLC에 대해 보조 화학요법(CTx) 또는 화학방사선 요법(CRTx)을 받은 563명의 환자를 식별하였다. 이들 중 수술 전에 수집하여 한국인체자원은행네트워크(Korea Biobank Network)인 서울아산병원 조직세포자원센터(Asan Bio-Resource Center)에 보관된 혈액 샘플이 있는 424명의 환자를 확인할 수 있었다. 이들 샘플 중 9개 샘플은 샘플 분해로 인해 제외하였고, 혈액 샘플이 있는 415명의 환자를 최종 코호트(final cohort)로 등록하였다.After exclusion according to the above criteria, 563 patients who received adjuvant chemotherapy (CTx) or chemoradiation therapy (CRTx) for stage IIB or III NSCLC were identified. Of these, 424 patients with blood samples collected prior to surgery and stored at the Asan Medical Center's Asan Bio-Resource Center, a Korea Biobank Network, were identified. Nine of these samples were excluded due to sample degradation, and 415 patients with blood samples were enrolled into the final cohort.
병기 IIB기 환자에서 보조 요법에 따른 CH의 임상적 영향을 확인하기 위해, 병기 IIB기의 NSCLC에 대한 보조 요법이 수행되지 않은 환자의 혈액 샘플을 추가로 분석하였다(도 1).In order to confirm the clinical effect of CH according to adjuvant therapy in stage IIB patients, blood samples from patients without adjuvant therapy for stage IIB NSCLC were further analyzed (FIG. 1).
본 연구는 서울아산병원의 임상연구심의위원회의 승인을 받았다(2020-0906). 모든 참여자로부터 서면 동의서를 받았다.This study was approved by the Clinical Research Review Committee of Asan Medical Center (2020-0906). Written informed consent was obtained from all participants.
실시예 2. 샘플 처리 및 시퀀싱Example 2. Sample processing and sequencing
본 연구에 등록된 환자로부터 채취된 혈액 유래 DNA를 사용하여 하기 89개의 유전자를 포함하는 맞춤형 패널과 함께 표적화된 NGS를 수행하였다(표 10).Targeted NGS was performed with a custom panel comprising the following 89 genes using blood-derived DNA collected from patients enrolled in this study (Table 10).
APCAPC ASXL1ASXL1 ASXL2ASXL2 ATMATM BCL11BBCL11B BCORBCOR BCORL1BCORL1 BIRC3BIRC3
BRAFBRAF BRCC3BRCC3 CARD11CARD11 CASP8CASP8 CBLCBL CD58CD58 CD79BCD79B CNOT3CNOT3
CREBBPCREBBP CUX1CUX1 DDX3XDDX3X DNMT3ADNMT3A EP300EP300 ETV6ETV6 EZH2EZH2 FAM46CFAM46C
FBXW7FBXW7 FLT3FLT3 FOXP1FOXP1 GNASGNAS GNB1GNB1 GPS2GPS2 HIST1H1CHIST1H1C IDH2IDH2
IKZF1IKZF1 IKZF2IKZF2 JAK1JAK1 JAK2JAK2 JAK3JAK3 JARID2JARID2 KDM6AKDM6A KITKIT
KLHL6KLHL6 KRASKRAS LUC7L2LUC7L2 MAP3K1MAP3K1 KMT2DKMT2D MPLMPL MYD88MYD88 NF1NF1
NFE2L2NFE2L2 NOTCH1NOTCH1 NOTCH2NOTCH2 NRASNRAS PDS5BPDS5B PDSS2PDSS2 PHF6PHF6 PHIPPHIP
PIK3CAPIK3CA PIK3R1PIK3R1 PPM1DPPM1D PRDM1PRDM1 PRPF40BPRPF40B PTENPTEN PTPN11PTPN11 RAD21RAD21
RIT1RIT1 RPS15RPS15 SETD2SETD2 SETDB1SETDB1 SF1SF1 SF3A1SF3A1 SF3B1SF3B1 SMC1ASMC1A
SMC3SMC3 SRSF2SRSF2 STAG1STAG1 STAG2STAG2 STAT3STAT3 SUZ12SUZ12 TBL1XR1TBL1XR1 TET1TET1
TET2TET2 TNFAIP3TNFAIP3 TNFRSF14TNFRSF14 TP53TP53 U2AF1U2AF1 VHLVHL WT1WT1 ZRSR2ZRSR2
CHEK2CHEK2
시퀀싱 라이브러리는 SureSelect XT HS Target Enrichment System(미국 캘리포니아주 산타클라라 소재의 Agilent) 프로토콜에 따라 준비하였다. 제조업체의 프로토콜에 따라 150 bp 페어 엔드(paired-end)를 사용하여 Illumina NovaSeq6000 플랫폼(미국 캘리포니아주 샌디에고 소재의 Illumina)에서 라이브러리를 시퀀싱하였다. Analysis ready BAM의 평균 커버리지 깊이는 800배 초과였다.Sequencing libraries were prepared according to the SureSelect XT HS Target Enrichment System (Agilent, Santa Clara, CA) protocol. Libraries were sequenced on an Illumina NovaSeq6000 platform (Illumina, San Diego, CA) using 150 bp paired-ends according to the manufacturer's protocol. The average coverage depth of Analysis ready BAM was over 800 times.
실시예 3. 환자의 수술 전 및 수술 후 관리Example 3. Preoperative and postoperative management of patients
진단, 병기 결정, 및 외과적 절제를 위한 환자 정밀검사를 잘 확립되고 널리 사용되는 프로토콜에 따라 수행하였다(문헌[Yun JK, Bok JS, Lee GD, et al: Long-term outcomes of upfront surgery in patients with resectable pathological N2 non-small-cell lung cancer. Eur J Cardiothorac Surg 58:59-69, 2020] 참조).Patient work-up for diagnosis, staging, and surgical resection was performed according to well-established and widely used protocols (Yun JK, Bok JS, Lee GD, et al: Long-term outcomes of upfront surgery in patients with resectable pathological N2 non-small-cell lung cancer. Eur J Cardiothorac Surg 58:59-69, 2020).
컴퓨터 단층 촬영(CT) 또는 양전자 방출 단층 촬영(PET)에서 임상적 N2(cN2) 질환이 의심되는 경우, 의심스러운 결절에 대해 기관지 내시경 초음파(EBUS), 종격동내시경술, 또는 내시경 초음파(EUS)를 사용하여 종격동 LN 생검을 수행하였다. 생검으로 입증된 N2 질환에 대한 치료 계획은 의학 종양 전문의, 방사선 전문의, 흉부 외과의를 포함한 다학제 팀(multidisciplinary team)이 결정하였다. 연구 샘플의 환자에 대해 AJCC(American Joint Committee on Cancer) 8판에 따라 후향적으로 병기를 결정하였다(문헌[Detterbeck FC, Boffa DJ, Kim AW, et al: The Eighth Edition Lung Cancer Stage Classification. Chest 151:193-203, 2017] 참조).If computed tomography (CT) or positron emission tomography (PET) suggests clinical N2 (cN2) disease, bronchoscopy ultrasonography (EBUS), mediastinoscopy, or endoscopic ultrasonography (EUS) for the suspicious nodule is recommended. A mediastinal LN biopsy was performed using Treatment plans for biopsy-proven N2 disease were determined by a multidisciplinary team including medical oncologists, radiologists, and thoracic surgeons. Patients in the study sample were retrospectively staged according to the American Joint Committee on Cancer (AJCC) 8th edition (Detterbeck FC, Boffa DJ, Kim AW, et al: The Eighth Edition Lung Cancer Stage Classification. Chest 151 :193-203, 2017]).
다학제 팀의 판단에 따라, 환자가 75세를 초과하거나 신체 상태가 불량한 경우를 제외한 모든 II기 및 III기 환자에 대해 보조 CTx가 권장되었다. 백금 기반 요법을 사용하는 전신 CTx는 수술 후 4주 내지 6주 동안 총 4회 사이클의 치료로 권장되었다. 2008년부터 표피 성장 인자 수용체(EGFR)에 활성화 돌연변이를 갖는 환자에 대해 표적화된 요법의 사용이 보편화됨에 따라, 1차 보조 CTx 이후 재발했을 때 티로신 키나아제 억제제가 주로 사용되었다. III기에 대한 보조 방사선 요법(RTx)의 경우, 완전 절제술을 받은 환자의 경우 50.4 Gy의 총 용량 또는 양성 절제연(positive resection margin)을 갖는 환자의 경우 55 내지 60 Gy의 총 용량까지 1.8 Gy의 일일 용량을 투여했다. 완전 절제술을 받은 환자들 중에서, 단일 N2 결절 전이가 있는 상당수의 환자의 경우 보조 RTx를 생략하였다.Based on the judgment of the multidisciplinary team, adjuvant CTx was recommended for all stage II and III patients, except when the patient was >75 years of age or in poor physical condition. Systemic CTx with platinum-based therapy was recommended for a total of 4 cycles of treatment for 4 to 6 weeks postoperatively. As the use of targeted therapies for patients with activating mutations in the epidermal growth factor receptor (EGFR) has become common since 2008, tyrosine kinase inhibitors have been primarily used when relapsed after first-line adjuvant CTx. For adjuvant radiation therapy (RTx) for stage III, 1.8 Gy daily up to a total dose of 50.4 Gy for patients undergoing complete resection or 55 to 60 Gy for patients with a positive resection margin. dose was administered. Among patients who underwent total resection, adjuvant RTx was omitted for a significant number of patients with single N2 nodal metastases.
모든 환자에 대한 추적조사 정보는 수술 후 첫 2년 동안은 6개월마다, 그 이후에는 매년 클리닉 추적조사 기록을 통해 얻었다. 흉부 CT 스캔은 모든 임상 방문 시 또는 질환 재발이 의심될 때 언제라도 수행되었다. 재발 사례에 대한 치료 방식과 화학요법은 담당 의사의 재량에 따라 결정되었다.Follow-up information for all patients was obtained from clinic follow-up records every 6 months for the first 2 years after surgery and annually thereafter. A chest CT scan was performed at every clinical visit or whenever disease recurrence was suspected. Treatment and chemotherapy for relapse cases were determined at the discretion of the attending physician.
실시예 4. 유전자 변이 검출 및 생존 결과 측정Example 4. Genetic mutation detection and survival outcome measurement
병기 IIB기 또는 III기의 NSCLC에 대해 보조 요법을 받은 환자에서 CH의 존재에 따른 생존 결과를 1차 종말점(primary endpoint)으로 하였고, CH의 존재 여부와 보조 요법의 수행 여부에 따른 병기 IIB기 환자의 생존 결과는 2차 종말점(secondary end point)에 포함시켰다(도 1).The primary endpoint was survival according to the presence of CH in patients receiving adjuvant therapy for stage IIB or stage III NSCLC, and stage IIB patients according to the presence of CH and adjuvant therapy. survival outcomes were included as secondary end points (FIG. 1).
CH에서 자주 검출되는 89개의 유전자를 선택하여 검사하고(유전자 목록은 상기 표 10 참조), 2% 이상의 변이 대립 유전자 빈도(variant allele frequency, VAF)를 보이는 경우 CH 양성으로 정의하였다. 89 genes frequently detected in CH were selected and examined (see Table 10 for a list of genes), and a variant allele frequency (VAF) of 2% or more was defined as CH positive.
돌연변이 중 잠재적인 운전자(potential driver, PD) 돌연변이를 분류하기 위해 다음 기준을 사용하였다: 1) COSMIC에서 "조혈 및 림프구" 범주의 암종에서 1회 초과로 보고되었거나, 모든 범주의 암종에서 10회 초과로 발생하는 임의의 체세포 변이; 및 2) 기능 상실 효과가 있는 임의의 체세포 변이(프레임시프트(frameshift), 정지 획득(stop gain), 스플라이스 도너/억셉터 부위에서의 돌연변이). 상기 PD 돌연변이의 기준을 충족하지 않는 돌연변이는 비-PD 돌연변이로 분류하였다. 결과적인 PD 돌연변이 목록을 하기 표 11에 나타낸다.The following criteria were used to classify potential driver (PD) mutations among the mutations: 1) reported more than 1 time in carcinomas in the “hematopoietic and lymphoid” category in COSMIC, or more than 10 times in carcinomas in all categories any somatic mutation that occurs with; and 2) any somatic mutations with loss-of-function effects (frameshift, stop gain, mutations at splice donor/acceptor sites). Mutations that did not meet the criteria for PD mutations were classified as non-PD mutations. The resulting PD mutation list is shown in Table 11 below.
GeneGene PositionPosition Variant classificationVariant classification Protein changeProtein change CDSCDS
ASXL1ASXL1 3102244131022441 FRAME_SHIFTFRAME_SHIFT p.642Gly_643Glyfsp.642Gly_643Glyfs c.1927_1928insGc.1927_1928insG
ASXL1ASXL1 3102228631022286 STOP_GAINEDSTOP_GAINED p.590Tyr_591GlninsTer???p.590Tyr_591GlninsTer??? c.1772_1773insAc.1772_1773insA
ASXL1ASXL1 3102121131021211 STOP_GAINEDSTOP_GAINED p.Arg404*p.Arg404* c.1210C>Tc.1210C>T
ASXL1ASXL1 3102244131022441 FRAME_SHIFTFRAME_SHIFT p.642Gly_643Glyfsp.642Gly_643Glyfs c.1927_1928insGc.1927_1928insG
ASXL1ASXL1 3102347831023478 FRAME_SHIFTFRAME_SHIFT p.987Asp_994Hisfsp.987Asp_994Hisfs c.2964_2971delCTCTGAAGCACTGAGTCc.2964_2971delCTCTGAAGCACTGAGTC
ASXL1ASXL1 3102434331024343 FRAME_SHIFTFRAME_SHIFT p.1276Pro_1277Asnfsp.1276Pro_1277Asnfs c.3829_3830delCc.3829_3830delC
ASXL1ASXL1 3102240231022402 FRAME_SHIFTFRAME_SHIFT p.629His_637Thrfsp.629His_637Thrfs c.1888_1896delCACCACTGCCATAGAGAGGCGGCc.1888_1896delCACCACTGCCATAGAGAGGCGGC
ASXL1ASXL1 3102292731022927 FRAME_SHIFTFRAME_SHIFT p.804Pro_805Thrfsp.804Pro_805Thrfs c.2413_2414insCc.2413_2414insC
ASXL1ASXL1 3102270031022700 FRAME_SHIFTFRAME_SHIFT p.728Ser_729Cysfsp.728Ser_729Cysfs c.2186_2187delGc.2186_2187delG
ASXL1ASXL1 3102246331022463 FRAME_SHIFTFRAME_SHIFT p.649Gly_650Glyfsp.649Gly_650Glyfs c.1949_1950delGTc.1949_1950delGT
ASXL1ASXL1 3102244131022441 FRAME_SHIFTFRAME_SHIFT p.642Gly_643Glyfsp.642Gly_643Glyfs c.1927_1928insGc.1927_1928insG
ASXL1ASXL1 3102228831022288 STOP_GAINEDSTOP_GAINED p.Tyr591*p.Tyr591* c.1773C>Ac.1773C>A
ASXL1ASXL1 3102293631022936 FRAME_SHIFTFRAME_SHIFT p.807Pro_808Alafsp.807Pro_808Alafs c.2422_2423delCc.2422_2423delC
ASXL1ASXL1 3102244131022441 FRAME_SHIFTFRAME_SHIFT p.642Gly_643Glyfsp.642Gly_643Glyfs c.1927_1928insGc.1927_1928insG
CBLCBL 119148973119148973 NON_SYNONYMOUS_CODINGNON_SYNONYMOUS_CODING p.His398Argp.His398Arg c.1193A>Gc.1193A>G
CHEK2CHEK2 2908394929083949 FRAME_SHIFTFRAME_SHIFT p.565Arg_566Glufsp.565Arg_566Glufs c.1696_1697delCc.1696_1697delC
CUX1CUX1 101459346101459346 STOP_GAINEDSTOP_GAINED p.Trp12*p.Trp12* c.36G>Ac.36G>A
DNMT3ADNMT3A 2546360025463600 SPLICE_SITE_ACCEPTORSPLICE_SITE_ACCEPTOR -- --
DNMT3ADNMT3A 2546207725462077 NON_SYNONYMOUS_CODINGNON_SYNONYMOUS_CODING p.Pro777Argp.Pro777Arg c.2330C>Gc.2330C>G
DNMT3ADNMT3A 2546888825468888 SPLICE_SITE_DONORSPLICE_SITE_DONOR -- --
DNMT3ADNMT3A 2546820125468201 SPLICE_SITE_ACCEPTORSPLICE_SITE_ACCEPTOR -- --
DNMT3ADNMT3A 2546201825462018 NON_SYNONYMOUS_CODINGNON_SYNONYMOUS_CODING p.Asn797Aspp.Asn797Asp c.2389A>Gc.2389A>G
DNMT3ADNMT3A 2546328625463286 NON_SYNONYMOUS_CODINGNON_SYNONYMOUS_CODING p.Arg736Hisp.Arg736His c.2207G>Ac.2207G>A
DNMT3ADNMT3A 2546716825467168 FRAME_SHIFTFRAME_SHIFT p.568Pro_569Glyfsp.568Pro_569Glyfs c.1706_1707delCc.1706_1707delC
DNMT3ADNMT3A 2546907925469079 FRAME_SHIFTFRAME_SHIFT p.459Ser_460Thrfsp.459Ser_460Thrfs c.1378_1379insTAc.1378_1379insTA
DNMT3ADNMT3A 2546998625469986 FRAME_SHIFTFRAME_SHIFT p.351Ser_352Alafsp.351Ser_352Alafs c.1055_1056delGc.1055_1056delG
DNMT3ADNMT3A 2546744925467449 NON_SYNONYMOUS_CODINGNON_SYNONYMOUS_CODING p.Gly543Cysp.Gly543Cys c.1627G>Tc.1627G>T
DNMT3ADNMT3A 2546707125467071 FRAME_SHIFTFRAME_SHIFT p.600Trp_601Profsp.600Trp_601Profs c.1803_1804delGc.1803_1804delG
DNMT3ADNMT3A 2546950425469504 FRAME_SHIFTFRAME_SHIFT p.416Ser_421Leufsp.416Ser_421Leufs c.1251_1256delCGGGAATCCCGGTc.1251_1256delCGGGAATCCCGGT
DNMT3ADNMT3A 2545724325457243 NON_SYNONYMOUS_CODINGNON_SYNONYMOUS_CODING p.Arg882Cysp.Arg882Cys c.2644C>Tc.2644C>T
DNMT3ADNMT3A 2546952725469527 FRAME_SHIFTFRAME_SHIFT p.410Leu_414Glnfsp.410Leu_414Glnfs c.1233_1237delTCGGGGGGc.1233_1237delTCGGGGGG
DNMT3ADNMT3A 2546206825462068 NON_SYNONYMOUS_CODINGNON_SYNONYMOUS_CODING p.Ile780Thrp.Ile780Thr c.2339T>Cc.2339T>C
DNMT3ADNMT3A 2545724325457243 NON_SYNONYMOUS_CODINGNON_SYNONYMOUS_CODING p.Arg882Cysp.Arg882Cys c.2644C>Tc.2644C>T
DNMT3ADNMT3A 2545859525458595 FRAME_SHIFTFRAME_SHIFT p.858Leu_859Trpfsp.858Leu_859Trpfs c.2577_2578insAc.2577_2578insA
DNMT3ADNMT3A 2547002825470028 SPLICE_SITE_ACCEPTORSPLICE_SITE_ACCEPTOR -- --
DNMT3ADNMT3A 2546747025467470 FRAME_SHIFTFRAME_SHIFT p.534Ser_535Tyrfsp.534Ser_535Tyrfs c.1605_1606delCc.1605_1606delC
DNMT3ADNMT3A 2545724325457243 NON_SYNONYMOUS_CODINGNON_SYNONYMOUS_CODING p.Arg882Cysp.Arg882Cys c.2644C>Tc.2644C>T
DNMT3ADNMT3A 2545859525458595 NON_SYNONYMOUS_CODINGNON_SYNONYMOUS_CODING p.Trp860Argp.Trp860Arg c.2578T>Cc.2578T>C
DNMT3ADNMT3A 2546317225463172 NON_SYNONYMOUS_CODINGNON_SYNONYMOUS_CODING p.Glu774Valp.Glu774Val c.2321A>Tc.2321A>T
DNMT3ADNMT3A 2546720825467208 SPLICE_SITE_ACCEPTORSPLICE_SITE_ACCEPTOR -- --
DNMT3ADNMT3A 2547047225470472 FRAME_SHIFTFRAME_SHIFT p.333Gly_334Lysfsp.333Gly_334Lysfs c.1001_1002delGc.1001_1002delG
DNMT3ADNMT3A 2546719025467190 NON_SYNONYMOUS_CODINGNON_SYNONYMOUS_CODING p.Cys562Tyrp.Cys562Tyr c.1685G>Ac.1685G>A
DNMT3ADNMT3A 2546702325467023 SPLICE_SITE_DONORSPLICE_SITE_DONOR -- --
DNMT3ADNMT3A 2545715925457159 FRAME_SHIFTFRAME_SHIFT p.908Phe_909Alafsp.908Phe_909Alafs c.2727_2728insTTc.2727_2728insTT
FOXP1FOXP1 7102614771026147 NON_SYNONYMOUS_CODINGNON_SYNONYMOUS_CODING p.Tyr492Cysp.Tyr492Cys c.1475A>Gc.1475A>G
FOXP1FOXP1 7106471071064710 FRAME_SHIFTFRAME_SHIFT p.320Gln_321Serfsp.320Gln_321Serfs c.963_964insAAc.963_964insAA
JAK2JAK2 50737705073770 NON_SYNONYMOUS_CODINGNON_SYNONYMOUS_CODING p.Val617Phep. Val617Phe c.1849G>Tc.1849G>T
KMT2DKMT2D 4943415649434156 STOP_GAINEDSTOP_GAINED p.Leu2466*p.Leu2466* c.7397T>Ac.7397T>A
MPLMPL 4381500943815009 NON_SYNONYMOUS_CODINGNON_SYNONYMOUS_CODING p.Trp515Leup.Trp515Leu c.1544G>Tc.1544G>T
NOTCH1NOTCH1 139390743139390743 NON_SYNONYMOUS_CODINGNON_SYNONYMOUS_CODING p.Thr2483Metp.Thr2483Met c.7448C>Tc.7448C>T
PPM1DPPM1D 5874043858740438 FRAME_SHIFTFRAME_SHIFT p.447Asn_448Phefsp.447Asn_448Phefs c.1344_1345delTc.1344_1345delT
PPM1DPPM1D 5874035758740357 FRAME_SHIFTFRAME_SHIFT p.420Ser_421Leufsp.420Ser_421Leufs c.1263_1264insAc.1263_1264insA
PPM1DPPM1D 5874053258740532 FRAME_SHIFTFRAME_SHIFT p.479Lys_480Alafsp.479Lys_480Alafs c.1438_1439insAc.1438_1439insA
PPM1DPPM1D 5874050558740505 FRAME_SHIFTFRAME_SHIFT p.470Pro_471Glufsp.470Pro_471Glufs c.1411_1412insCc.1411_1412insC
PPM1DPPM1D 5874074958740749 STOP_GAINEDSTOP_GAINED p.Arg552*p.Arg552* c.1654C>Tc.1654C>T
PPM1DPPM1D 5874062358740623 FRAME_SHIFTFRAME_SHIFT p.509Gln_510Lysfsp.509Gln_510Lysfs c.1529_1530insAc.1529_1530insA
PPM1DPPM1D 5874069458740694 FRAME_SHIFTFRAME_SHIFT p.533Phe_534Lysfsp.533Phe_534Lysfs c.1600_1601delTc.1600_1601delT
PRPF40BPRPF40B 5002731750027317 FRAME_SHIFTFRAME_SHIFT p.189Asp_190Aspfsp.189Asp_190Aspfs c.568_569insGATGACCTAGAGGGTGAc.568_569insGATGACCTAGAGGGTGA
PRPF40BPRPF40B 5002731750027317 FRAME_SHIFTFRAME_SHIFT p.189Asp_190Aspfsp.189Asp_190Aspfs c.568_569insGATGACCTAGAGGGTGAc.568_569insGATGACCTAGAGGGTGA
SF3B1SF3B1 198267359198267359 NON_SYNONYMOUS_CODINGNON_SYNONYMOUS_CODING p.Lys666Asnp.Lys666Asn c.1998G>Tc.1998G>T
SF3B1SF3B1 198267360198267360 NON_SYNONYMOUS_CODINGNON_SYNONYMOUS_CODING p.Lys666Argp.Lys666Arg c.1997A>Gc.1997A>G
TET2TET2 106157878106157878 FRAME_SHIFTFRAME_SHIFT p.926Val_927Phefsp.926Val_927Phefs c.2780_2781delTc.2780_2781delT
TET2TET2 106182979106182979 FRAME_SHIFTFRAME_SHIFT p.1339Leu_1340Alafsp.1339Leu_1340Alafs c.4019_4020delTc.4019_4020delT
TET2TET2 106193794106193794 FRAME_SHIFTFRAME_SHIFT p.1418Pro_1420Tyrfsp.1418Pro_1420Tyrfs c.4257_4259delTTc.4257_4259delTT
TET2TET2 106196243106196243 STOP_GAINEDSTOP_GAINED p.Gln1526*p.Gln1526* c.4576C>Tc.4576C>T
TET2TET2 106155853106155853 FRAME_SHIFTFRAME_SHIFT p.251Ile_252Asnfsp.251Ile_252Asnfs c.755_756insTTc.755_756insTT
TET2TET2 106180853106180853 NON_SYNONYMOUS_CODINGNON_SYNONYMOUS_CODING p.Tyr1294Cysp.Tyr1294Cys c.3881A>Gc.3881A>G
TET2TET2 106157989106157989 FRAME_SHIFTFRAME_SHIFT p.963Gln_964Thrfsp.963Gln_964Thrfs c.2891_2892insAc.2891_2892insA
TET2TET2 106157969106157969 FRAME_SHIFTFRAME_SHIFT p.956Leu_957Glnfsp.956Leu_957Glnfs c.2871_2872insAc.2871_2872insA
TET2TET2 106155281106155281 FRAME_SHIFTFRAME_SHIFT p.60Tyr_61Glyfsp.60Tyr_61Glyfs c.183_184insTc.183_184insT
TET2TET2 106157789106157789 FRAME_SHIFTFRAME_SHIFT p.896Gln_897Glyfsp.896Gln_897Glyfs c.2691_2692delGc.2691_2692delG
TET2TET2 106157560106157560 STOP_GAINEDSTOP_GAINED p.Gln821*p.Gln821* c.2461C>Tc.2461C>T
TNFAIP3TNFAIP3 138197265138197265 FRAME_SHIFTFRAME_SHIFT p.255His_256Phefsp.255His_256Phefs c.768_769insTc.768_769insT
TNFAIP3TNFAIP3 138196885138196885 STOP_GAINEDSTOP_GAINED p.Arg183*p.Arg183* c.547C>Tc.547C>T
TNFAIP3TNFAIP3 138200309138200309 FRAME_SHIFTFRAME_SHIFT p.575Pro_581Alafsp.575Pro_581Alafs c.1728_1734delGCATTCTTGCCACAc.1728_1734delGCATTCTTGCCACA
TP53TP53 75740037574003 STOP_GAINEDSTOP_GAINED p.Arg342*p.Arg342* c.1024C>Tc.1024C>T
U2AF1U2AF1 4452445644524456 NON_SYNONYMOUS_CODINGNON_SYNONYMOUS_CODING p.Ser34Tyrp.Ser34Tyr c.101C>Ac.101C>A
ZRSR2ZRSR2 1583395615833956 FRAME_SHIFTFRAME_SHIFT p.238Phe_239Tyrfsp.238Phe_239Tyrfs c.715_716delTc.715_716delT
전체 생존율(OS)은 수술일과 사망일 사이의 시간 간격을 기준으로 계산하였으며, 국민 안전 사망 지수 데이터베이스(Korean National Security Death Index Database)의 기록을 검토하여 결정하였다. 폐암 사망률에는 명백한 종양 진행으로 인한 사망을 포함시켰다. 비-폐암 사망률은 폐암 진행으로 인한 것이 아닌 알려진 원인에 따른 사망률로 정의하였다. 무재발 생존율(RFS)은 수술일과 재발일 사이의 시간을 기준으로 계산하였으며, 재발이 없는 환자는 재발이 없는 것으로 알려진 최신 시점에서 검열하였다.Overall survival (OS) was calculated based on the time interval between the date of surgery and the date of death, and was determined by reviewing records in the Korean National Security Death Index Database. Lung cancer mortality included deaths due to overt tumor progression. Non-lung cancer mortality was defined as mortality from known causes not due to lung cancer progression. Recurrence-free survival (RFS) was calculated based on the time between the date of surgery and the date of recurrence.
실시예 5. 통계 분석Example 5. Statistical Analysis
연속형 변수는 평균과 표준 편차로, 범주형 변수는 카운트와 퍼센트로 표시하였다. 개별 모수 분포의 정규성은 Shapiro-Wilk 검정으로 평가하였다. 연속형 변수 측면에서 두 그룹을 비교하기 위해 스튜던트 t 검정 또는 Wilcoxon 순위합(rank-sum) 검정을 사용하고, 범주형 변수에 대해서는 카이 제곱 검정 또는 Fisher 정확 검정을 적용하였다. 성향 점수 매칭(PSM) 후, McNemar 검정과 대응표본 t-검정을 사용하여 성향 점수 매칭 쌍을 분석하였다. OS 및 RFS 결과는 Kaplan-Meier 곡선을 사용하여 정의하였다. 생존율의 차이는 로그-순위 검정을 사용하여 분석하였다. 두 가지 원인별 사망은 상호 배타적이므로, 하위 그룹 간의 누적 발생률 함수 값의 유의한 차이는 Gray 검정을 사용하여 평가하였다. 생존 결과에 미치는 CH의 임상적 영향을 확인하기 위한 단변수 및 다변수 분석을 위해 Cox 비례 위험 모델을 사용하였다. 본 발명자들은 두 가지 유형의 다변수 Cox 모델을 개발했다: CH에 대한 민감도 테스트를 조정하기 위해 연령, 성별, 흡연 이력 및 동반질환의 수를 공변량으로 포함시켰고(하기 실시예 6.1의 표 13과 관련됨), 보조 요법을 받은 환자에서 CH의 예후 효과를 확인하기 위해 우도 비 검정(likelihood ratio test)(모델 입력의 경우 p 값 ≤ 0.10 및 모델 유지의 경우 p 값 ≤ 0.05)을 위한 선택 절차로 전진형 단계별 선택을 사용하였다(하기 실시예 6.3의 표 17과 관련됨). Cox 회귀 모델에 대한 비례 위험 가정은 Schoenfeld 잔차(residual)로 테스트하였다.Continuous variables were expressed as mean and standard deviation, and categorical variables as counts and percentages. The normality of individual parameter distributions was evaluated with the Shapiro-Wilk test. Student's t- test or Wilcoxon rank-sum test was used to compare two groups in terms of continuous variables, and chi-square test or Fisher's exact test was applied for categorical variables. After propensity score matching (PSM), McNemar's test and paired-sample t-test were used to analyze propensity score matching pairs. OS and RFS results were defined using Kaplan-Meier curves. Differences in survival rates were analyzed using the log-rank test. Since the two causes of death were mutually exclusive, significant differences in cumulative incidence function values between subgroups were assessed using the Gray test. A Cox proportional hazards model was used for univariate and multivariate analysis to determine the clinical impact of CH on survival outcomes. We developed two types of multivariate Cox models: age, sex, smoking history and number of comorbidities were included as covariates to adjust the sensitivity test for CH (related to Table 13 in Example 6.1 below) and ), forward as the procedure of choice for likelihood ratio test (p-value ≤ 0.10 for model input and p-value ≤ 0.05 for model maintenance) to ascertain the prognostic effect of CH in patients receiving adjuvant therapy. A stepwise selection was used (refers to Table 17 in Example 6.3 below). The proportional hazards assumption for the Cox regression model was tested with Schoenfeld residuals.
유사한 특성을 가진 두 그룹(CH-양성 및 CH-음성)을 생성하기 위한 후향적 비무작위 코호트로부터 유래된 가능한 선택 편향을 조정하기 위해 PSM을 적용했다. 총 12개의 변수(하기 실시예 6.2의 표 14와 관련됨)를 사용하여 두 그룹의 임상적 특성의 균형을 맞추었다. PSM의 경우, 최근접-이웃 매칭 및 표준 편차 0.25의 캘리퍼 너비로 동등한 성향 점수를 가진 관찰 쌍을 선택하였다. CH-음성 환자를 2:1 비로 CH-양성 환자와 무작위로 매칭시켰다. 그룹 간의 균형은 표준화된 평균 차이(standardized mean difference, SMD)를 사용하여 평가하였다. 0.1 이하의 절대 표준화된 차이가 이상적인 균형을 나타내는 것으로 간주되었고, 0.2 이하의 절대 표준화된 차이는 허용되는 균형을 나타내는 것으로 간주되었다.PSM was applied to adjust for possible selection bias derived from a retrospective nonrandomized cohort to generate two groups (CH-positive and CH-negative) with similar characteristics. A total of 12 variables (related to Table 14 in Example 6.2 below) were used to balance the clinical characteristics of the two groups. For PSM, pairs of observations with equivalent propensity scores were selected with nearest-neighbor matching and a caliper width of standard deviation 0.25. CH-negative patients were randomly matched with CH-positive patients in a 2:1 ratio. Balance between groups was assessed using standardized mean differences (SMDs). An absolute standardized difference of 0.1 or less was considered to represent an ideal balance, and an absolute standardized difference of 0.2 or less was considered to represent an acceptable balance.
모든 통계 계산은 "Survival", "MatchIt", "cmprsk", "dplyr", "sad", "ggplot2", "GGally", "survminer", 및 "rms" 패키지를 사용하는 R 버전 4.0.2(오스트리아 비엔나 소재의 The R Foundation for Statistical Computing)를 사용하여 수행하였다. 보고된 모든 P 값은 양측이다. 0.05 미만의 P 값이 유의한 것으로 간주되었다.All statistical calculations were performed using R version 4.0.2 ( The R Foundation for Statistical Computing, Vienna, Austria) was used. All reported P values are two-tailed. A P value of less than 0.05 was considered significant.
실시예 6. 샘플 분석 결과Example 6. Sample Analysis Results
실시예 6.1. CH의 특성Example 6.1. Characteristics of CH
최종 코호트에서 환자의 평균 연령은 60.2 ± 8.3세였다. 총 415명의 환자 중에서, CH는 86명(20.7%)에서 발견되었다. CH의 유병률은 40대, 50대, 60대, 및 70대 환자에서 각각 10.4%, 14.9%, 23.8%, 및 34.5%였으며, 연령에 따른 지속적인 증가를 나타냈다(도 5a). 돌연변이 수는 단일 돌연변이가 82.6%의 환자에서 가장 흔했고, 2개의 돌연변이가 14.0%, 3개의 돌연변이가 3.5%였다(도 5b). DNMT3A(33.0%)의 돌연변이가 가장 흔했고, ASXL1(13.2%), TET2(11.3%), 및 PPM1D(7.5%)의 돌연변이가 그 뒤를 이었다. 이 4개의 유전자가 검출된 모든 돌연변이의 65.1%를 차지하였고, 그 밖에 SF3B1, ATM, TNFAIP3 등의 돌연변이가 존재하였다(도 5c). 개별 환자에 대해 검출된 CH 돌연변이의 세부 사항은 상기 표 1 내지 표 5에 요약되어 있다. The mean age of patients in the final cohort was 60.2 ± 8.3 years. Of a total of 415 patients, CH was found in 86 (20.7%). The prevalence of CH was 10.4%, 14.9%, 23.8%, and 34.5% in patients in their 40s, 50s, 60s, and 70s, respectively, and showed a continuous increase with age (FIG. 5a). As for the number of mutations, a single mutation was the most common in 82.6% of patients, two mutations in 14.0%, and three mutations in 3.5% (Fig. 5b). Mutations in DNMT3A (33.0%) were the most common, followed by mutations in ASXL1 (13.2%), TET2 (11.3%), and PPM1D (7.5%). These four genes accounted for 65.1% of all detected mutations, and other mutations such as SF3B1, ATM, and TNFAIP3 were present (FIG. 5c). Details of CH mutations detected for individual patients are summarized in Tables 1-5 above.
VAF에 대한 여러 컷오프 값에 기초한 민감도 테스트는 VAF의 컷오프 값이 1.8% 이상일 때 P 값이 OS에 대한 단변수 및 다변수(연령, 성별, 흡연 이력 및 동반질환의 수에 따라 조정됨) Cox 분석에서 각각 0.002 및 0.005로 가장 낮음을 보여주었다(VAF 값에 기초한 CH에 대한 민감도 테스트 결과를 나타내는 하기 표 12를 참조함). 그러나, 2% 이상의 VAF의 컷오프 값은 1.8% 이상의 경우와 비교하여 유사한 결과를 가졌다(단변수 및 다변수 분석의 경우 p 값 = 각각 0.006 및 0.012)(하기 표 12를 참조함).Sensitivity tests based on multiple cutoff values for VAF showed that when the cutoff value for VAF was greater than or equal to 1.8%, P-values for OS were univariate and multivariate (adjusted for age, gender, smoking history and number of comorbidities) Cox analysis. showed the lowest at 0.002 and 0.005, respectively (see Table 12 below showing the sensitivity test results for CH based on VAF values). However, the cutoff value of VAF of 2% or more had similar results compared to that of 1.8% or more (p values = 0.006 and 0.012 for univariate and multivariate analysis, respectively) (see Table 12 below).
Figure PCTKR2022011222-appb-img-000006
Figure PCTKR2022011222-appb-img-000006
연구 환자에서 CH-PD 및 CH 비-PD의 유병률은 각각 16.3%(68/415) 및 6.0%(25/415)였으며, CH 돌연변이가 있는 환자에서는 79.1%(68/86) 및 29.1%(25/86)였다. 이들 환자에서 민감도 테스트 또한 수행하였다. 그 결과, 다변수 분석에서 여러 공변량에 의한 조정 후에도 CH-PD는 여전히 유의한 인자로 관찰된 반면(p = 0.006), 다변수 분석에서 CH 비-PD는 유의하지 않았다(p = 0.399)(CH, CH-PD, 및 CH 비-PD에 대한 민감도 테스트 결과를 나타내는 하기 표 13을 참조함).The prevalence of CH-PD and CH non-PD in study patients was 16.3% (68/415) and 6.0% (25/415), respectively, and 79.1% (68/86) and 29.1% (25/86) in patients with CH mutations, respectively. /86). Sensitivity tests were also performed in these patients. As a result, CH-PD was still observed as a significant factor even after adjustment by several covariates in multivariate analysis (p = 0.006), whereas CH non-PD was not significant in multivariate analysis (p = 0.399) (CH , CH-PD, and CH non-PD, see Table 13 below showing the sensitivity test results).
Figure PCTKR2022011222-appb-img-000007
Figure PCTKR2022011222-appb-img-000007
실시예 6.2. 환자 특성Example 6.2. patient characteristics
수술 후 평균 추적조사 기간은 44.6 ± 24.3개월이었다. 환자의 기준선 인구통계학 및 종양 특성을 하기 표 14(클론성 조혈증의 존재에 따른 병기 IIB기 또는 III기에 대한 보조 요법을 받은 환자의 기준선 특성(최종 코호트))에 나타내었다. PSM 전에는, CH가 있는 환자(n = 86)가 CH가 없는 환자(n = 329)보다 연령이 높았다(p < 0.001). 두 그룹 간에 성별(p = 0.367), 흡연 이력(p = 0.785), 동반질환의 수(p = 0.988), EGFR 돌연변이의 비율(p = 0.501), 조직학 분포(p = 0.647) 및 종합적 병기(p = 0.548), 보조 요법 유형(p = 0.146)의 유의한 차이는 없었다. The mean follow-up period after surgery was 44.6 ± 24.3 months. Baseline demographics and tumor characteristics of patients are shown in Table 14 below (baseline characteristics of patients receiving adjuvant therapy for stage IIB or III according to presence of clonal hematopoiesis (final cohort)). Before PSM, patients with CH (n = 86) were older than those without CH (n = 329) (p < 0.001). Between the two groups, gender (p = 0.367), smoking history (p = 0.785), number of comorbidities (p = 0.988), proportion of EGFR mutations (p = 0.501), histological distribution (p = 0.647), and overall stage (p = 0.647). = 0.548), there was no significant difference between adjuvant therapy types (p = 0.146).
Figure PCTKR2022011222-appb-img-000008
Figure PCTKR2022011222-appb-img-000008
Figure PCTKR2022011222-appb-img-000009
Figure PCTKR2022011222-appb-img-000009
PSM 후, 연령(p = 0.620)을 비롯한 모든 변수는 두 그룹 간에 유사해졌고, 잘 균형을 이루었다(모든 SMD가 0.2 미만임)(성향 점수 매칭 후 클론성 조혈증의 존재에 따른 병기 IIB기 또는 III기에 대한 보조 요법을 받은 환자의 기준선 특성(최종 코호트)을 나타내는 하기 표 15를 참조함).After PSM, all variables including age (p = 0.620) became similar between the two groups and were well balanced (all SMDs < 0.2) (stage IIB or III according to the presence of clonal hematopoiesis after propensity score matching). See Table 15 below showing baseline characteristics (final cohort) of patients who received adjuvant therapy for qi).
Figure PCTKR2022011222-appb-img-000010
Figure PCTKR2022011222-appb-img-000010
Figure PCTKR2022011222-appb-img-000011
Figure PCTKR2022011222-appb-img-000011
실시예 6.3. 생존율 분석Example 6.3. survival rate assay
전반적으로, CH가 있는 45명의 환자(n = 86)와 CH가 없는 124명의 환자(n = 329)가 추적조사의 종료 시까지 사망했으며, 이들의 5년 OS 비율은 각각 45.1%와 61.9%였다. 재발 사건이 일어난 환자는 CH가 있는 경우와 CH가 없는 경우 각각 48명과 161명이었으며, 이들의 5년 RFS 비율은 각각 39.1%와 44.2%였다. 사망 원인에 대한 자세한 정보는 하기 표 16(전체 관찰 기간 동안의 사망 원인)에 요약되어 있다.Overall, 45 patients with CH (n = 86) and 124 patients without CH (n = 329) died by the end of follow-up, and their 5-year OS rates were 45.1% and 61.9%, respectively . Recurrent events occurred in 48 and 161 patients with and without CH, respectively, and their 5-year RFS rates were 39.1% and 44.2%, respectively. Detailed information on the cause of death is summarized in Table 16 (cause of death during the entire observation period) below.
Figure PCTKR2022011222-appb-img-000012
Figure PCTKR2022011222-appb-img-000012
CH의 존재에 따른 Kaplan-Meier 생존 곡선은 도 2a 내지 도 2c에 플롯팅되어 있다. 두 그룹 간의 RFS에는 유의한 차이가 없었지만(p = 0.251), CH가 있는 환자는 CH가 없는 환자보다 OS가 더 불량했다(p < 0.001)(도 2a 및 도 2b). PSM 후, CH가 있는 환자는 CH가 없는 환자보다 생존율이 훨씬 더 불량했다(p = 0.029)(도 2c). Kaplan-Meier survival curves according to the presence of CH are plotted in FIGS. 2A-2C. Although there was no significant difference in RFS between the two groups (p = 0.251), patients with CH had poorer OS than those without CH (p < 0.001) (FIGS. 2A and 2B). After PSM, patients with CH had significantly poorer survival than those without CH (p = 0.029) (Fig. 2c).
사망 원인에 따르면, 폐암 사망률은 CH와 관계없이 유사했다(p = 0.568)(도 3a). 그러나, CH가 있는 환자는 CH가 없는 환자에 비해 비-폐암 사망률(p = 0.042) 및 원인 불명의 사망률(p = 0.018)이 통계적으로 더 높았다(도 3b 및 도 3c).According to cause of death, lung cancer mortality was similar regardless of CH (p = 0.568) (Fig. 3a). However, patients with CH had statistically higher non-lung cancer mortality (p = 0.042) and unexplained mortality (p = 0.018) compared to patients without CH (FIGS. 3B and 3C).
다변수 Cox 분석에서, CH의 존재는 60% 미만의 DLCO, EGFR 돌연변이의 비율, 조직학적 유형 및 종합적 병기와 함께 보조 요법을 받은 진행된 NSCLC 환자의 OS에 대한 중요한 예후 인자였다(위험비[HR] [95% 신뢰 구간] = 1.62 [1.10 내지 2.38], p = 0.014)(전체 환자에서 OS에 대한 단변수 및 다변수 분석 결과를 나타내는 하기 표 17을 참조함). 단변수 분석에서 유의했던 연령과 동반질환의 수는 CH의 존재를 비롯한 여러 공변량에 의한 조정 후 유의하지 않게 되었다.In a multivariate Cox analysis, the presence of CH was a significant prognostic factor for OS in patients with advanced NSCLC receiving adjuvant therapy, along with a DLCO <60%, the rate of EGFR mutations, histologic type, and overall stage (hazard ratio [HR] [95% confidence interval] = 1.62 [1.10 to 2.38], p = 0.014) (see Table 17 below showing the results of univariate and multivariate analyzes for OS in all patients). Age and the number of comorbidities that were significant in the univariate analysis became insignificant after adjusting for several covariates, including the presence of CH.
Figure PCTKR2022011222-appb-img-000013
Figure PCTKR2022011222-appb-img-000013
병기 IIB기에서 보조 요법에 따른 CH의 임상적 영향을 확인하기 위해, 환자를 보조 요법을 받은 환자와 받지 않은 환자로 나누었다. 병기 IIB기의 NSCLC에 대한 보조 요법을 받은 환자의 경우, CH의 존재는 PSM 전(p < 0.001) 및 PSM 후(p = 0.007) 더 불량한 OS와 연관되어 있었다(도 4a 및 도 4b). 보조 요법을 받지 않은 환자의 경우, CH가 있는 환자의 예후는 CH가 없는 환자의 예후보다 유의하게 더 나빴지만(p = 0.045), PSM 후에는 유사해졌다(p = 0.452)(도 4c 및 도 4d). PSM 전과 후 병기 IIB기 환자의 기준선 특성에 대한 세부 사항은 하기 표 18(PSM 전과 후, 클론성 조혈증의 존재에 따른 병기 IIB기 NSCLC에 대한 보조 화학요법을 받은 환자의 기준선 특성) 및 표 19(PSM 전과 후, 클론성 조혈증의 존재에 따른 병기 IIB기 NSCLC에 대한 보조 화학요법을 받지 않은 환자의 기준선 특성)에 나타내었다.To determine the clinical impact of CH according to adjuvant therapy in stage IIB, patients were divided into patients who received adjuvant therapy and those who did not. For patients receiving adjuvant therapy for stage IIB NSCLC, the presence of CH was associated with poorer OS before PSM (p < 0.001) and after PSM (p = 0.007) (FIGS. 4A and 4B). For patients not receiving adjuvant therapy, the prognosis of patients with CH was significantly worse than that of patients without CH (p = 0.045), but became similar after PSM (p = 0.452) (Figures 4C and 4D). ). Details of baseline characteristics of stage IIB patients before and after PSM are shown in Table 18 (baseline characteristics of patients who received adjuvant chemotherapy for stage IIB NSCLC before and after PSM, according to presence of clonal hematopoiesis) and Table 19 below. (Baseline characteristics of patients without adjuvant chemotherapy for stage IIB NSCLC with presence of clonal hematopoiesis before and after PSM).
Figure PCTKR2022011222-appb-img-000014
Figure PCTKR2022011222-appb-img-000014
Figure PCTKR2022011222-appb-img-000015
Figure PCTKR2022011222-appb-img-000015
실시예 7. 고찰Example 7. Consideration
위 실시예를 통해, 본 발명자들은 진행된 비소세포폐암(NSCLC) 환자에서 클론성 조혈증(CH)의 유병률과 특성을 조사하였다. 또한, 전체 환자와 PSM 후 환자에서 생존 결과에 미치는 수술 전 존재하는 CH의 임상적 영향을 평가하였다. Through the above examples, the present inventors investigated the prevalence and characteristics of clonal hematopoiesis (CH) in patients with advanced non-small cell lung cancer (NSCLC). In addition, we evaluated the clinical impact of preoperative CH on survival outcomes in all patients and in patients after PSM.
그 결과, 환자의 21%는 수술 전 CH를 가지고 있었으며, 이는 나이가 많을수록 증가하는 것으로 확인되었다. CH의 존재와 관련된 유전자의 돌연변이 중 DNMT3A의 돌연변이가 가장 흔했고, ASXL1, TET2, 및 PPM1D가 뒤를 이었다. 또한, CH-PD는 CH의 3/4를 차지했고, CH 자체보다 전체 생존율(OS)에 대한 더 중요한 예후 인자로 작용하였다. 수술 전 CH의 존재는 전체 사망률, 특히 비-폐암 사망률 및 원인 불명의 사망률의 증가와 상당한 관련이 있었다. 다변수 Cox 분석에 따르면 CH의 존재는 진행된 병기의 NSCLC에 대해 수술에 이어 보조 요법을 받은 환자들 사이에서 중요한 예후 인자로 확인되었다. CH의 예후 효과는 두 그룹 간의 기준선 공변량을 적절하게 조정하기 위해 엄격한 위험-조정 방법론을 채택한 후에도 동일했다.As a result, 21% of the patients had CH before surgery, which increased with age. Among mutations in genes associated with the presence of CH, mutations in DNMT3A were the most common, followed by ASXL1, TET2, and PPM1D. In addition, CH-PD accounted for 3/4 of CH and served as a more important prognostic factor for overall survival (OS) than CH itself. Presence of CH before surgery was significantly associated with increased overall mortality, especially non-lung cancer mortality and unexplained mortality. Multivariate Cox analysis confirmed the presence of CH as an important prognostic factor among patients receiving adjuvant therapy followed by surgery for advanced-stage NSCLC. The prognostic effect of CH was the same after adopting a rigorous risk-adjustment methodology to appropriately adjust baseline covariates between the two groups.
건강한 노인 여성에서의 비-무작위 X 염색체 비활성화의 최초 검출 이래로, CH에 대한 연구와 본 발명자들의 이해는 지난 몇 년에 걸쳐 상당히 성장하였다. 기존의 여러 연구에 따르면, CH는 노화와 관련되어 흔히 발생하는 현상으로서 진행된 고형 종양 환자에서 후속 혈액 악성종양, 심혈관 질환 및 나쁜 예후와 밀접한 관련이 있다. 암 환자는 건강한 사람보다 CH 비율이 더 높으며, CH는 더 짧은 환자 생존과 관련된다. 이는 아마도 악성종양에 대한 높은 유전적 소인, 발암성 환경에 대한 장기간 노출 및 유전독성 요법을 사용하는 암 관련 요법 때문일 것으로 추측된다. 특히 암 관련 요법에서, CH는 CTx 및 RTx와 상당한 관련이 있는 것으로 생각되며, 이는 국소 및 전신 치료가 조혈 줄기 세포(HSC)의 클론 증식(clonal outgrowth)을 촉진할 수 있음을 의미한다. 이러한 관점에서, 본 발명자들은 수술 전 존재하는 CH가 암 관련 치료를 통해 CH와 관련된 불리한 결과를 유발하는 일련의 과정을 증폭시켜 불량한 생존 결과를 가져온다는 가설을 세웠다.Since the first detection of non-random X chromosome inactivation in healthy elderly women, research on CH and our understanding has grown considerably over the past few years. According to several previous studies, CH is a common phenomenon associated with aging and is closely related to subsequent hematological malignancies, cardiovascular disease and poor prognosis in patients with advanced solid tumors. Cancer patients have higher CH rates than healthy individuals, and CH is associated with shorter patient survival. This is presumably due to a high genetic predisposition to malignancies, prolonged exposure to carcinogenic environments and cancer-related therapies using genotoxic therapies. Particularly in cancer-related therapy, CH is thought to be highly relevant to CTx and RTx, meaning that local and systemic therapies can promote clonal outgrowth of hematopoietic stem cells (HSCs). In this respect, we hypothesize that CH present before surgery amplifies a series of processes that lead to adverse CH-related outcomes through cancer-related treatment, leading to poor survival outcomes.
일 실시예에 따른 생존 분석에서, CH의 존재는 불량한 OS(p = 0.001)와 상당한 관련이 있었다(도 2a). 그러나, CH와 연령 사이의 양의 상관 관계를 고려할 때, 이 결과만으로 OS에 대한 CH의 효과를 단정할 수 없었다. 이 문제를 극복하기 위해, 본 발명자들은 두 가지 유형의 통계 조정을 수행하였다. 그 결과, 다변수 분석과 관련된 연령, 성별, 흡연 이력 및 동반질환의 수의 조정 후에도 여전히 CH의 예후 예측 인자로서의 효과는 유의미하였다(p = 0.012)(상기 표 12). 또한, 다변수 분석에서 전진형 단계별 선택을 통해 연령이 아닌 CH가 최종 예후 인자로 포함되었다는 사실은 CH가 연령보다 생존과 더 밀접한 관련이 있음을 시사하는 것이다(상기 표 17). PSM 후, 연령을 비롯한 모든 임상 변수는 CH에 관계없이 유사해졌고, CH가 있는 환자는 CH가 없는 환자에 비해 OS가 여전히 불량하였다(p = 0.029)(도 2c). 따라서, 본 발명자들은 진행된 병기의 NSCLC에 대해 보조 요법을 받은 환자에서 CH의 존재가 OS에 대한 독립적인 예후 인자라는 결론을 내릴 수 있었다.In a survival assay according to one example, the presence of CH was significantly associated with poor OS (p = 0.001) (FIG. 2A). However, considering the positive correlation between CH and age, we could not conclude the effect of CH on OS from this result alone. To overcome this problem, we performed two types of statistical adjustments. As a result, even after adjusting for age, gender, smoking history, and number of comorbidities associated with multivariate analysis, the effect of CH as a predictor of prognosis was still significant (p = 0.012) (Table 12 above). In addition, the fact that CH, but not age, was included as the final prognostic factor through progressive stage selection in multivariate analysis suggests that CH is more closely related to survival than age (Table 17 above). After PSM, all clinical variables, including age, were similar regardless of CH, and patients with CH still had poorer OS compared to those without CH (p = 0.029) (Fig. 2c). Thus, we could conclude that the presence of CH is an independent prognostic factor for OS in patients receiving adjuvant therapy for advanced-stage NSCLC.
사망 원인 측면에서, 본 발명자들은 CH의 존재에 따른 유의한 차이가 폐암 사망률(p = 0.568)이 아닌 비-폐암 사망률(p = 0.042)과 원인 불명의 사망률(p = 0.018)에서 나타났음을 발견하였다. 보조 요법을 마친 환자들에서의 수술 후 감시에 대한 양호한 순응도로부터 판단해 볼 때, 원인 불명의 사망은 비교적 느린 암 진행이라기 보다는 급성 사건, 예컨대 심폐 질환, 패혈증, 뇌졸중에 기인한 것으로 추측된다. 따라서, 이러한 발견이 CH가 있는 환자에서 CH와 관련된 다양한 불리한 결과가 CTx 또는 RTx에 의해 증폭되어 결국 생존에 영향을 미친다는 점을 뒷받침한다.In terms of cause of death, we found that a significant difference according to the presence of CH appeared in non-lung cancer mortality (p = 0.042) and unknown cause mortality (p = 0.018), but not in lung cancer mortality (p = 0.568). . Judging from the good compliance with postoperative monitoring in patients who completed adjuvant therapy, it is speculated that unexplained deaths are due to acute events, such as cardiopulmonary disease, sepsis, and stroke, rather than relatively slow cancer progression. Thus, these findings support that various adverse outcomes associated with CH in patients with CH are amplified by CTx or RTx, eventually affecting survival.
백금 기반 화합물을 포함하는 대부분의 세포독성 화학요법제, 예컨대 시스플라틴 등은 DNA 복제 기관을 표적으로 한다. 기존의 화학요법은 빠르게 분열하는 세포를 죽이도록 설계되었으며, 심각한 DNA 손상을 일으켜 세포를 사멸시킨다. 그러나 TP53, PPM1D 및 CHEK2와 같은 암 연관 유전자의 돌연변이는 DNA의 손상에 의해 정상적으로 활성화되어야 하는 세포 사멸 과정을 훼손시켜 세포독성 약물의 작용에도 불구하고 손상된 DNA를 갖는 조혈 줄기 세포(HSC)가 계속 생존할 수 있도록 한다. 따라서 암과 관련된 치료법은 신흥 CH 클론의 진화 궤적에 영향을 미치는 것으로 사료된다. 최근 연구는 순차적 샘플링을 통해 암 치료에 대한 CH의 클론 역학을 평가했으며, 암 치료는 DNA 손상 반응(DDR) 유전자에서 돌연변이가 발생된 클론에 대해 우선적으로 선택되고, 이들 클론은 세포독성 또는 방사선 요법이 없는 경우 비-DDR 유전자 돌연변이에 비해 경쟁적 적응도(competitive fitness)가 더 낮았음을 보고하였다.Most cytotoxic chemotherapeutic agents, including platinum-based compounds, such as cisplatin and the like, target the organ of DNA replication. Conventional chemotherapy is designed to kill rapidly dividing cells, causing severe DNA damage and killing the cells. However, mutations in cancer-related genes such as TP53, PPM1D, and CHEK2 impair the cell death process that should be normally activated by DNA damage, so that hematopoietic stem cells (HSCs) with damaged DNA continue to survive despite the action of cytotoxic drugs. make it possible Therefore, cancer-related therapies are thought to influence the evolutionary trajectory of emerging CH clones. A recent study evaluated the clonal kinetics of CH in response to cancer treatment through sequential sampling, cancer treatment was preferentially selected for clones with mutations in DNA damage response (DDR) genes, and these clones were selected for cytotoxic or radiotherapy. reported that competitive fitness was lower than non-DDR gene mutations in the absence of this.
CH 돌연변이에 초점을 맞춘 최근 연구는 혈액 악성종양에서의 PD, CH-PD 또는 CH 비-PD와의 연관성에 기초하여 CH를 분류한 후 그의 영향을 보고하였다. Coombs 등의 보고서에 따르면, CH 자체가 독립적인 예후 효과를 나타내지는 않았지만, CH-PD의 경우는 연령, 성별, 및 흡연에 관계없이 더 불량한 예후와 관련이 있는 것으로 나타났다. 이러한 결과와 일부 일치되게, 본 발명자들의 다변수 분석에서는 CH-PD(p = 0.003)에서의 예후 효과가 CH 자체(p = 0.012)보다 더 유의하였다(상기 표 13). 더욱이, CH 자체와 달리, CH-PD의 부정적 예후 효과는 돌연변이 수가 증가함에 따라 점진적으로 증가하였으며, 이는 CH-PD가 CH 자체보다 OS에 대한 더 민감한 예후 인자임을 나타낸다(상기 표 13). 특히, 본 연구에서 CH-PD의 비율(79.1%)은 기존의 다른 연구에서의 비율(52%-67%)보다 높았는데, 이는 아마도 폐암 환자들 중 현재/과거 흡연자의 비율이 더 높았기 때문일 것이다. 본 발명자들은 이것이 본 연구에서 CH-PD뿐만 아니라 CH 자체가 OS에 대한 독립적인 예후 인자로 나타난 주된 이유라고 생각한다(도 2c).A recent study focusing on CH mutations classified CH based on its association with PD, CH-PD or CH non-PD in hematological malignancies and then reported its impact. According to the report by Coombs et al., although CH itself did not show an independent prognostic effect, CH-PD was associated with a poorer prognosis regardless of age, gender, and smoking. Consistent with some of these results, in our multivariate analysis, the prognostic effect of CH-PD (p = 0.003) was more significant than that of CH itself (p = 0.012) (Table 13 above). Moreover, unlike CH itself, the negative prognostic effect of CH-PD gradually increased with increasing mutation number, indicating that CH-PD is a more sensitive prognostic factor for OS than CH itself (Table 13 above). In particular, the proportion of CH-PD in this study (79.1%) was higher than that in other studies (52%-67%), probably because of the higher proportion of current/former smokers among lung cancer patients. will be. We believe this is the main reason why CH-PD as well as CH itself appeared as independent prognostic factors for OS in our study (Fig. 2c).
상기를 고려해 볼 때, 의사는 보조 요법이 처방된 CH 돌연변이가 있는 폐암 환자를 다음과 같이 관리해야 한다. 첫 번째로, 불리한 결과가 발생할 위험이 높은 환자와 그렇지 않은 환자를 구별해야 한다. 고위험 CH에 대한 명확한 정의는 없지만, 유의한 혈구 카운트 이상, 높은 VAF(> 10%)에서의 단일 CH 돌연변이, 다중 CH 돌연변이, TP53 및/또는 PPM1D의 변이체, DNMT3A 변이체, 및 IDH1/2의 핫스팟(hotspot) 돌연변이는 환자를 고위험 그룹으로 분류하는 것으로 간주된다. 두 번째로, CH로 인한 생존 손실의 위험에도 불구하고 보조 요법이 예후에 유리한 환자 그룹의 정교화를 진행해야 한다. 이를 고려하여 본 발명자들은 종합적 병기에 따라 보조 요법을 받은 환자들을 계층화한 후 하위 그룹 분석을 수행하였다. 전체 병기에 관계없이, CH 돌연변이가 있는 환자는 CH가 없는 환자에 비해 더 불량한 생존 결과를 가졌지만(도 6a 내지 도 6c), IIB기 환자에서 특히 유의한 차이가 관찰되었으며(5년 비율: 48.5% 대 73.8%, p < 0.001)(도 4a), 이는 PSM 후에도 여전히 유의했다(5년 비율: 48.5% 대 74.3%)(도 4b). 그러나 CH의 존재는 PSM 후 보조 요법을 받지 않은 병기 IIB기 환자에서 OS의 유의한 차이에 영향을 미치지 않았다(5년 비율: 41.6% 대 53.7%)(도 4d). 이러한 결과는 수술 전 CH 돌연변이가 보조 요법을 통해 CH와 관련된 불리한 결과를 증폭시켜 불량한 생존 결과를 초래할 수 있음을 나타낸다. 따라서 보조 요법의 생존 이익이 4% 내지 15% 범위임을 고려할 때, 본 발명자들은 보조 요법이 병기 II기 NSCLC 환자에서 다학제적 접근법으로 더 신중하게 결정되어야 한다고 생각한다. 반면에, 관련된 불리한 결과의 진행을 억제하는 치료는 CH 돌연변이가 있는 폐암 환자를 관리하기 위한 좋은 보충요법이 될 수 있다. 예를 들어, IL-1ß에 대한 인간화 단클론성 항체인 항염증제 카나키누맙은 죽상경화성 질환이 있는 고위험 환자에서의 심혈관 사고와 폐암 발병률을 감소시키는 것으로 보고되었다. 치료를 위해 전신 요법이 필수적인 병기 III기의 환자의 경우, 분자 표적 중재(molecularly targeted intervention)의 공격적인 사용이 고위험 CH 돌연변이가 있는 환자를 위한 대안이 될 수 있다. 마지막으로, 고위험 CH 돌연변이가 있는 환자의 경우 개별화된 추적조사 기간 및 심혈관 질환 또는 2차 악성종양과 같은 CH의 불리한 결과에 대한 철저한 모니터링이 필요하다.In view of the above, physicians should manage lung cancer patients with CH mutations for whom adjuvant therapy is prescribed as follows. First, it is necessary to distinguish between patients who are at high risk of adverse outcomes and those who are not. There is no clear definition of high-risk CH, but significant blood count abnormalities, single CH mutations at high VAF (> 10%), multiple CH mutations, variants of TP53 and/or PPM1D, DNMT3A variants, and hotspots of IDH1/2 ( hotspot mutations are considered to classify patients into a high-risk group. Second, the elaboration of the patient group for which adjuvant therapy has a favorable prognosis despite the risk of loss of survival due to CH should proceed. Considering this, the present inventors stratified patients who received adjuvant therapy according to the comprehensive stage and then performed subgroup analysis. Regardless of overall stage, patients with CH mutations had poorer survival outcomes compared to patients without CH ( FIGS. 6A to 6C ), but a particularly significant difference was observed in patients with stage IIB (5-year rate: 48.5 % vs. 73.8%, p < 0.001) (Fig. 4a), which was still significant after PSM (5-year ratio: 48.5% vs. 74.3%) (Fig. 4b). However, the presence of CH did not affect the significant difference in OS in stage IIB patients who did not receive adjuvant therapy after PSM (5-year rate: 41.6% vs. 53.7%) (FIG. 4D). These results indicate that preoperative CH mutations can amplify adverse outcomes associated with CH with adjuvant therapy, leading to poor survival outcomes. Therefore, considering that the survival benefit of adjuvant therapy ranges from 4% to 15%, we believe that adjuvant therapy should be more carefully determined with a multidisciplinary approach in stage II NSCLC patients. On the other hand, treatment that inhibits the progression of associated adverse outcomes may be a good supplemental therapy for managing lung cancer patients with CH mutations. For example, the anti-inflammatory drug canakinumab, a humanized monoclonal antibody to IL-1β, has been reported to reduce the incidence of cardiovascular events and lung cancer in high-risk patients with atherosclerotic disease. For patients with stage III disease who require systemic therapy for treatment, aggressive use of molecularly targeted interventions may be an alternative for patients with high-risk CH mutations. Finally, for patients with high-risk CH mutations, an individualized follow-up period and thorough monitoring for adverse outcomes of CH, such as cardiovascular disease or secondary malignancies, are required.
결론적으로, 수술 전 존재하는 CH 돌연변이는 수술에 이어 보조 요법을 받는 NSCLC 환자에게 중요한 임상적 영향을 미치며, 이는 생존 결과를 감소시킨다.In conclusion, presurgery CH mutations have important clinical implications for NSCLC patients receiving adjuvant therapy following surgery, which reduces survival outcomes.
본 발명에 따라 개체의 클론성 조혈증(CH) 관련 유전자에 변이가 존재함을 확인하면, 그 개체의 폐암, 특히 비소세포폐암의 치료에 따른 예후를 예측할 수 있다. 또한, 본 발명은 폐암 치료와 관련하여, 외과적 절제술에 이어서 보조 요법의 적용을 결정하는 데 유용한 정보, 폐암 치료를 위한 치료제의 투여 여부를 결정하는 데 유용한 정보 등을 제공할 수 있으며, 나아가 폐암 치료를 위한 약물 후보 물질의 임상시험에서 환자에 대한 약물 후보 물질의 유효성, 안전성 등의 평가에 유용한 정보를 제공할 수 있으므로 산업적 이용 가치가 클 것으로 기대된다.According to the present invention, when it is confirmed that there is a mutation in a gene related to clonal hematopoiesis (CH) of an individual, it is possible to predict the prognosis according to the treatment of lung cancer, particularly non-small cell lung cancer, of the individual. In addition, the present invention can provide useful information for determining the application of adjuvant therapy following surgical resection in relation to lung cancer treatment, information useful for determining whether to administer a therapeutic agent for lung cancer treatment, and the like, and furthermore, lung cancer It is expected to have great industrial value as it can provide useful information for evaluating the efficacy and safety of drug candidates for patients in clinical trials of drug candidates for treatment.

Claims (32)

  1. 폐암에 대해 치료받는 개체로부터 분리한 생물학적 시료의 유전자 분석을 통해 개체에 클론성 조혈증이 존재하는지 여부를 확인하는 단계를 포함하는 Confirming whether clonal hematopoiesis exists in an individual through genetic analysis of a biological sample isolated from an individual being treated for lung cancer
    개체의 폐암 치료의 예후를 예측하기 위한 정보 제공 방법.A method of providing information for predicting the prognosis of lung cancer treatment in a subject.
  2. 제1항에 있어서, According to claim 1,
    상기 클론성 조혈증이 존재하는지 여부를 확인하는 단계는 DNMT3A, ASXL1, TET2, PPM1D, ATM, BCL11B, CARD11, CBL, CD79B, CHEK2, CUX1, ETV6, FOXP1, JAK2, KMT2D, MAP3K1, MPL, NF1, NOTCH1, NOTCH2, PHIP, PRPF40B, RAD21, SETD2, SF3B1, TET1, TNFAIP3, TP53, U2AF1 및 ZRSR2로 이루어진 군으로부터 선택되는 하나 이상의 유전자에 하나 이상의 변이가 존재하는지를 확인하는 것을 포함하는 The step of determining whether clonal hematopoiesis exists is DNMT3A, ASXL1, TET2, PPM1D, ATM, BCL11B, CARD11, CBL, CD79B, CHEK2, CUX1, ETV6, FOXP1, JAK2, KMT2D, MAP3K1, MPL, NF1, NOTCH1, NOTCH2, PHIP, PRPF40B, RAD21, SETD2, SF3B1, TET1, TNFAIP3, TP53, U2AF1 and ZRSR2 Including determining whether one or more mutations exist in one or more genes selected from the group consisting of
    정보 제공 방법.How to Provide Information.
  3. 제2항에 있어서, According to claim 2,
    상기 하나 이상의 유전자는 DNMT3A, ASXL1, TET2, PPM1D, SF3B1, ATM 및 TNFAIP3로 이루어진 군으로부터 선택되는 하나 이상을 포함하는The one or more genes include one or more selected from the group consisting of DNMT3A, ASXL1, TET2, PPM1D, SF3B1, ATM and TNFAIP3
    정보 제공 방법.How to Provide Information.
  4. 제2항에 있어서, According to claim 2,
    상기 하나 이상의 유전자는 DNMT3A를 포함하는The one or more genes include DNMT3A
    정보 제공 방법.How to Provide Information.
  5. 제2항에 있어서, According to claim 2,
    상기 하나 이상의 유전자에 하나 이상의 변이가 존재하는지 여부 및 변이 대립 유전자 빈도(variant allele frequency, VAF)에 기초하여 클론성 조혈증의 존재 여부를 결정하는 단계를 추가로 포함하는Further comprising determining whether clonal hematopoiesis exists based on whether one or more mutations exist in the one or more genes and variant allele frequency (VAF)
    정보 제공 방법.How to Provide Information.
  6. 제5항에 있어서, According to claim 5,
    상기 하나 이상의 유전자에 하나 이상의 변이가 존재하고 변이 대립 유전자 빈도(variant allele frequency, VAF)가 약 1.8% 이상인 경우에 클론성 조혈증이 존재하는 것으로 결정하는 단계를 추가로 포함하는Further comprising determining that clonal hematopoiesis exists when one or more mutations are present in the one or more genes and the variant allele frequency (VAF) is about 1.8% or more
    정보 제공 방법.How to Provide Information.
  7. 제1항에 있어서, According to claim 1,
    개체에 클론성 조혈증이 존재하는 경우, 클론성 조혈증이 존재하지 않는 경우에 비해, 개체의 폐암 치료의 예후가 양호하지 않음을 나타내는 것인When clonal hematopoiesis exists in the subject, compared to the case where clonal hematopoiesis does not exist, indicating that the prognosis of lung cancer treatment of the subject is not good
    정보 제공 방법.How to Provide Information.
  8. 제1항에 있어서,According to claim 1,
    상기 예후는 종양 제거 수술 이후 또는 종양 제거 수술에 이은 보조 요법 적용 이후의 전체 생존율 또는 무재발 생존율을 포함하는The prognosis includes overall survival or recurrence-free survival after tumor removal surgery or after application of adjuvant therapy following tumor removal surgery.
    정보 제공 방법.How to Provide Information.
  9. 제1항에 있어서,According to claim 1,
    상기 개체는 종양 제거 수술, 화학요법, 화학방사선 요법, 항암 면역 요법 또는 이들의 조합으로 치료되는 The subject is treated with tumor removal surgery, chemotherapy, chemoradiation, anti-cancer immunotherapy, or a combination thereof.
    정보 제공 방법.How to Provide Information.
  10. 제1항에 있어서, According to claim 1,
    상기 폐암은 비소세포폐암인The lung cancer is non-small cell lung cancer
    정보 제공 방법.How to Provide Information.
  11. 제10항에 있어서, According to claim 10,
    상기 비소세포폐암은 병기가 I기, II기 또는 그 이후의 병기인The non-small cell lung cancer is stage I, stage II or later stage
    정보 제공 방법.How to Provide Information.
  12. 제1항에 있어서,According to claim 1,
    상기 개체는 종양 제거 수술을 받은 폐암 환자인 The subject is a lung cancer patient who has undergone tumor removal surgery
    정보 제공 방법.How to Provide Information.
  13. 제12항에 있어서, According to claim 12,
    상기 클론성 조혈증이 존재하는지 여부를 확인하는 단계는 종양 제거 수술을 받기 전, 종양 제거 수술을 받은 후, 종양 제거 수술 후 보조 요법 적용 전, 또는 종양 제거 수술에 이은 보조 요법 적용 후에 이루어지는 The step of determining whether clonal hematopoiesis exists is performed before receiving tumor removal surgery, after receiving tumor removal surgery, before applying adjuvant therapy after tumor removal surgery, or after applying adjuvant therapy following tumor removal surgery.
    정보 제공 방법.How to Provide Information.
  14. 제1항에 있어서, According to claim 1,
    상기 변이는 미스센스(missense) 변이, 프레임시프트(frameshift mutation) 변이, 넌센스(nonsense) 변이, 스플라이스(splice) 변이, 뉴클레오티드 추가, 결실 또는 치환, 또는 이들의 조합인The mutation is a missense mutation, a frameshift mutation, a nonsense mutation, a splice mutation, a nucleotide addition, deletion or substitution, or a combination thereof
    정보 제공 방법.How to Provide Information.
  15. 제1항에 있어서, According to claim 1,
    상기 유전자 분석은 차세대 유전체 시퀀싱 분석법(Next Generation Sequencing, NGS)을 포함하는The genetic analysis includes Next Generation Sequencing (NGS)
    정보 제공 방법.How to Provide Information.
  16. 폐암에 대해 치료받는 개체로부터 분리한 생물학적 시료를 이용하여 클론성 조혈증의 존재를 확인하기 위한 제제를 유효성분으로 포함하는Containing as an active ingredient an agent for confirming the presence of clonal hematopoiesis using a biological sample isolated from an individual being treated for lung cancer
    개체의 폐암 치료의 예후를 예측하기 위한 조성물.A composition for predicting the prognosis of lung cancer treatment in a subject.
  17. 제16항에 있어서, According to claim 16,
    상기 제제는 DNMT3A, ASXL1, TET2, PPM1D, ATM, BCL11B, CARD11, CBL, CD79B, CHEK2, CUX1, ETV6, FOXP1, JAK2, KMT2D, MAP3K1, MPL, NF1, NOTCH1, NOTCH2, PHIP, PRPF40B, RAD21, SETD2, SF3B1, TET1, TNFAIP3, TP53, U2AF1 및 ZRSR2로 이루어진 군으로부터 선택되는 하나 이상의 유전자에 하나 이상의 변이가 존재하는지를 검출하기 위한 제제를 포함하는DNMT3A, ASXL1, TET2, PPM1D, ATM, BCL11B, CARD11, CBL, CD79B, CHEK2, CUX1, ETV6, FOXP1, JAK2, KMT2D, MAP3K1, MPL, NF1, NOTCH1, NOTCH2, PHIP, PRPF40B, RAD21, SETD2 , SF3B1, TET1, TNFAIP3, TP53, U2AF1 and ZRSR2 comprising an agent for detecting the presence of one or more mutations in one or more genes selected from the group consisting of
    조성물.composition.
  18. 제16항에 있어서, According to claim 16,
    상기 제제는 DNMT3A, ASXL1, TET2, PPM1D, SF3B1, ATM 및 TNFAIP3로 이루어진 군으로부터 선택되는 하나 이상의 유전자에 하나 이상의 변이가 존재하는지를 검출하기 위한 제제를 포함하는The agent comprises an agent for detecting whether one or more mutations exist in one or more genes selected from the group consisting of DNMT3A, ASXL1, TET2, PPM1D, SF3B1, ATM and TNFAIP3
    조성물.composition.
  19. 제16항에 있어서, According to claim 16,
    상기 폐암은 비소세포폐암인The lung cancer is non-small cell lung cancer
    조성물.composition.
  20. 제19항에 있어서, According to claim 19,
    상기 비소세포폐암은 병기가 I기, II기 또는 그 이후의 병기인The non-small cell lung cancer is stage I, stage II or later stage
    조성물.composition.
  21. 제16항에 있어서, According to claim 16,
    클론성 조혈증의 존재는 양호하지 않은 폐암 치료 예후를 의미하는The presence of clonal hematopoiesis indicates poor lung cancer treatment prognosis.
    조성물.composition.
  22. 제16항에 있어서,According to claim 16,
    상기 변이는 미스센스(missense) 변이, 프레임시프트(frameshift mutation) 변이, 넌센스(nonsense) 변이 또는 스플라이스(splice) 변이, 뉴클레오티드 추가, 결실 또는 치환, 또는 이들의 조합인The mutation is a missense mutation, a frameshift mutation, a nonsense mutation or a splice mutation, a nucleotide addition, deletion or substitution, or a combination thereof
    조성물.composition.
  23. 제16항에 있어서, According to claim 16,
    상기 제제는 클론성 조혈증의 유전자 변이를 검출하기 위한 프라이머, 프로브 또는 안티센스 핵산을 포함하는The formulation comprises primers, probes or antisense nucleic acids for detecting genetic mutations in clonal hematopoiesis.
    조성물.composition.
  24. 제16항 내지 제23항 중 어느 한 항에 따른 조성물을 포함하는 Comprising the composition according to any one of claims 16 to 23
    개체의 폐암 치료의 예후를 예측하기 위한 키트.A kit for predicting the prognosis of lung cancer treatment in a subject.
  25. 제16항 내지 제23항 중 어느 한 항에 따른 조성물을 포함하는 Comprising the composition according to any one of claims 16 to 23
    클론성 조혈증의 유전자 변이를 검출하기 위한 유전자 분석용 패널.A panel for genetic analysis to detect genetic mutations in clonal hematopoiesis.
  26. 폐암 치료를 위한 치료제의 투여 전에, 개체로부터 분리한 생물학적 시료의 유전자 분석을 통해 상기 개체에 클론성 조혈증이 존재하는지 여부를 확인하는 단계를 포함하는Prior to administration of a therapeutic agent for lung cancer treatment, confirming whether clonal hematopoiesis exists in the subject through genetic analysis of a biological sample isolated from the subject
    폐암의 치료 방법. Lung cancer treatment methods.
  27. 제26항에 있어서, The method of claim 26,
    상기 클론성 조혈증이 존재하는지 여부를 확인하는 단계는 DNMT3A, ASXL1, TET2, PPM1D, ATM, BCL11B, CARD11, CBL, CD79B, CHEK2, CUX1, ETV6, FOXP1, JAK2, KMT2D, MAP3K1, MPL, NF1, NOTCH1, NOTCH2, PHIP, PRPF40B, RAD21, SETD2, SF3B1, TET1, TNFAIP3, TP53, U2AF1 및 ZRSR2로 이루어진 군으로부터 선택되는 하나 이상의 유전자에 하나 이상의 변이가 존재하는지를 확인하는 것을 포함하는 The step of determining whether clonal hematopoiesis exists is DNMT3A, ASXL1, TET2, PPM1D, ATM, BCL11B, CARD11, CBL, CD79B, CHEK2, CUX1, ETV6, FOXP1, JAK2, KMT2D, MAP3K1, MPL, NF1, NOTCH1, NOTCH2, PHIP, PRPF40B, RAD21, SETD2, SF3B1, TET1, TNFAIP3, TP53, U2AF1 and ZRSR2 Including determining whether one or more mutations exist in one or more genes selected from the group consisting of
    방법.method.
  28. 제27항에 있어서, The method of claim 27,
    상기 하나 이상의 유전자에 하나 이상의 변이가 존재하고 변이 대립 유전자 빈도(variant allele frequency, VAF)가 약 1.8% 이상인 경우에 클론성 조혈증이 존재하는 것으로 결정하는 단계를 추가로 포함하는Further comprising determining that clonal hematopoiesis exists when one or more mutations are present in the one or more genes and the variant allele frequency (VAF) is about 1.8% or more
    방법.method.
  29. 제26항에 있어서, The method of claim 26,
    개체에 클론성 조혈증이 존재하지 않는 것으로 결정된 경우에 폐암 치료제를 투여하는 단계를 추가로 포함하는 Further comprising the step of administering a lung cancer treatment when it is determined that clonal hematopoiesis does not exist in the subject
    방법.method.
  30. 제26항에 있어서, The method of claim 26,
    상기 폐암 치료를 위한 치료제는 임상시험을 위한 약물 후보 물질을 포함하는The therapeutic agent for the treatment of lung cancer includes a drug candidate for clinical trials.
    방법.method.
  31. 제26항에 있어서, The method of claim 26,
    개체에 클론성 조혈증이 존재하는 것으로 결정된 경우에 폐암 치료제를 투여하는 단계를 추가로 포함하는 Further comprising the step of administering a lung cancer treatment when it is determined that clonal hematopoiesis exists in the subject
    방법.method.
  32. 제31항에 있어서, According to claim 31,
    상기 폐암 치료를 위한 치료제는 임상시험을 위한 약물 후보 물질을 포함하는The therapeutic agent for the treatment of lung cancer includes a drug candidate for clinical trials.
    방법.method.
PCT/KR2022/011222 2021-08-02 2022-07-29 Biomarker for prognosis of lung cancer treatment and use thereof WO2023013998A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20210101280 2021-08-02
KR10-2021-0101280 2021-08-02
KR1020220094276A KR102574286B1 (en) 2021-08-02 2022-07-28 Biomarker for predicting prognosis of lung cancer treatment and use thereof
KR10-2022-0094276 2022-07-28

Publications (1)

Publication Number Publication Date
WO2023013998A1 true WO2023013998A1 (en) 2023-02-09

Family

ID=85154535

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/011222 WO2023013998A1 (en) 2021-08-02 2022-07-29 Biomarker for prognosis of lung cancer treatment and use thereof

Country Status (2)

Country Link
TW (1) TW202315950A (en)
WO (1) WO2023013998A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016085876A1 (en) * 2014-11-25 2016-06-02 The Broad Institute Inc. Clonal haematopoiesis

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016085876A1 (en) * 2014-11-25 2016-06-02 The Broad Institute Inc. Clonal haematopoiesis

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
"Ph.D. thesis, Ulsan University Graduate School", 13 June 2021, ULSAN UNIVERSITY GRADUATE SCHOOL, KOREA, Korea, article YOON JAE-GWANG: "Clinical significance of clonal hematopoiesis in patients with surgically resected non-small cell lung cancer", pages: 1 - 27, XP093033390 *
COOMBS CATHERINE C.; ZEHIR AHMET; DEVLIN SEAN M.; KISHTAGARI ASHWIN; SYED AIJAZUDDIN; JONSSON PHILIP; HYMAN DAVID M.; SOLIT DAVID : "Therapy-Related Clonal Hematopoiesis in Patients with Non-hematologic Cancers Is Common and Associated with Adverse Clinical Outcomes", CELL STEM CELL, ELSEVIER, CELL PRESS, AMSTERDAM, NL, vol. 21, no. 3, 10 August 2017 (2017-08-10), AMSTERDAM, NL , pages 374, XP085189927, ISSN: 1934-5909, DOI: 10.1016/j.stem.2017.07.010 *
RAVAZI PEDRAM, BOB T. LI, CHENLU HOU, RONGLAI SHEN, OLIVER VENN, RAYMOND S. LIM: "Cell-free DNA (cfDNA) mutations from clonal hematopoiesis: implications for interpretation of liquid biopsy tests.", JOURNAL OF CLINICAL ONCOLOGY, AMERICAN SOCIETY OF CLINICAL ONCOLOGY, US, vol. 1, 20 May 2017 (2017-05-20), US , pages 11526, XP093033340, ISSN: 0732-183X *
RICCIUTI BIAGIO, JOAO VICTOR MACHADO ALESSI, YVONNE Y. LI, MARISSA N. LAWRENCE, HERSH GUPTA, MIZUKI NISHINO: "DNMT3A mutation to identify a subset of non-small cell lung cancers with increased sensitivity to PD-(L) 1 blockade.", JOURNAL OF CLINICAL ONCOLOGY, AMERICAN SOCIETY OF CLINICAL ONCOLOGY, US, vol. 1, 20 May 2021 (2021-05-20), US , pages 9113, XP093033326, ISSN: 0732-183X *
YAUNG STEPHANIE, FREDERIKE FUHLBRÜCK, JOHNNY WU, FERGAL CASEY, MAUREEN PETERSON, WEI ZOU,: "Evaluation of clonal hematopoiesis in late stage NSCLC using a next-generation sequencing panel targeting cancer genes", JOURNAL OF CLINICAL ONCOLOGY, AMERICAN SOCIETY OF CLINICAL ONCOLOGY, US, vol. 37, no. 15 suppl., 20 May 2019 (2019-05-20), US , pages 9050, XP093033344, ISSN: 0732-183X *

Also Published As

Publication number Publication date
TW202315950A (en) 2023-04-16

Similar Documents

Publication Publication Date Title
Newell et al. Multiomic profiling of checkpoint inhibitor-treated melanoma: Identifying predictors of response and resistance, and markers of biological discordance
Braun et al. Interplay of somatic alterations and immune infiltration modulates response to PD-1 blockade in advanced clear cell renal cell carcinoma
Dias-Santagata et al. BRAF V600E mutations are common in pleomorphic xanthoastrocytoma: diagnostic and therapeutic implications
EP3444363B1 (en) Biomarkers for prediciting and assessing responsiveness of thyroid and kidney cancer subjects to lenvatinib compounds
EP3266879B1 (en) Genetic alterations in isocitrate dehydrogenase and other genes in malignant glioma
US7919261B2 (en) Methods for predicting treatment response based on the expression profiles of protein and transcription biomarkers
JP2015526078A (en) Markers associated with human double microchromosome 2 inhibitors
Liang et al. Afatinib is effective in the treatment of lung adenocarcinoma with uncommon EGFR p. L747P and p. L747S mutations
Spitz et al. Variants in inflammation genes are implicated in risk of lung cancer in never smokers exposed to second-hand smoke
Rosenbaum et al. Clinical, genomic, and transcriptomic correlates of response to immune checkpoint blockade-based therapy in a cohort of patients with angiosarcoma treated at a single center
Tang et al. Immune and circulating tumor DNA profiling after radiation treatment for oligometastatic non-small cell lung cancer: translational correlatives from a mature randomized phase II trial
US20180155795A1 (en) Classification and actionability indices for cancer
WO2021086014A1 (en) Cxcl13 marker for predicting immunotherapy responsiveness in lung cancer patient and use thereof
Yang et al. Longitudinal circulating tumor DNA profiling in metastatic colorectal cancer during anti-EGFR therapy
Gambichler et al. Patched 1 expression in Merkel cell carcinoma
Wasko et al. Tumor-selective activity of RAS-GTP inhibition in pancreatic cancer
US10610521B2 (en) Biomarkers for response to rapamycin analogs
WO2023013998A1 (en) Biomarker for prognosis of lung cancer treatment and use thereof
Li et al. Analysis of KRAS, NRAS, and BRAF mutations, microsatellite instability, and relevant prognosis effects in patients with early colorectal cancer: a cohort study in East Asia
KR20210033402A (en) Method for predicting the response to anticancer immunotherapy using dna methylation aberration and tumor mutational burden
KR102574286B1 (en) Biomarker for predicting prognosis of lung cancer treatment and use thereof
Nishio et al. Impact of ramucirumab plus erlotinib on circulating cell-free DNA from patients with untreated metastatic non-small cell lung cancer with EGFR-activating mutations (RELAY phase 3 randomized study)
Herz et al. Elevated microsatellite instability at selected tetranucleotide (EMAST) repeats in gastric cancer: a distinct microsatellite instability type with potential clinical impact?
Kim et al. Prior antibiotic administration disrupts anti-PD-1 responses in advanced gastric cancer by altering the gut microbiome and systemic immune response
WO2022039565A1 (en) Biomarker for diagnosing age-related macular degeneration, and use thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22853376

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE