WO2023013954A1 - Method and device for changing secondary base station in wireless mobile communication system - Google Patents

Method and device for changing secondary base station in wireless mobile communication system Download PDF

Info

Publication number
WO2023013954A1
WO2023013954A1 PCT/KR2022/011007 KR2022011007W WO2023013954A1 WO 2023013954 A1 WO2023013954 A1 WO 2023013954A1 KR 2022011007 W KR2022011007 W KR 2022011007W WO 2023013954 A1 WO2023013954 A1 WO 2023013954A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
gnb
base station
recnf
control
Prior art date
Application number
PCT/KR2022/011007
Other languages
French (fr)
Korean (ko)
Inventor
김성훈
Original Assignee
주식회사 블랙핀
김성훈
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 블랙핀, 김성훈 filed Critical 주식회사 블랙핀
Publication of WO2023013954A1 publication Critical patent/WO2023013954A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • H04W76/16Involving different core network technologies, e.g. a packet-switched [PS] bearer in combination with a circuit-switched [CS] bearer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices

Definitions

  • the present disclosure relates to a method and apparatus for changing a secondary node in a wireless communication system.
  • the 5G communication system In order to meet the growing demand for wireless data traffic after the commercialization of 4G communication systems, 5G communication systems are being developed. In order to achieve a high data rate, the 5G communication system has introduced a very high frequency (mmWave) band (eg, such as the 60 GHz band). In order to mitigate the path loss of radio waves and increase the propagation distance of radio waves in the ultra-high frequency band, beamforming, massive MIMO, and Full Dimensional MIMO (FD-MIMO) are used in 5G communication systems. ), array antenna, analog beam-forming and large scale antenna technologies are used. In the 5G communication system, scalability is increased by dividing the base station into a central unit and a distribution unit. In addition, the 5G communication system aims to support very high data rates and very low transmission delays in order to support various services.
  • mmWave very high frequency
  • FD-MIMO Full Dimensional MIMO
  • Disclosed embodiments are intended to provide a method and apparatus for efficiently supporting a secondary base station change in a wireless communication system.
  • the method in a method for controlling switching of a secondary base station, includes a secondary base station central unit receiving a first control message from a primary base station and transmitting a plurality of second control messages to the secondary base station distribution unit. and receiving a plurality of third control messages from the secondary base station distribution unit and transmitting a fourth control message including a first container and a second container to the primary base station, wherein the first container includes a plurality of cell group settings,
  • the second container contains one NR control message.
  • the disclosed embodiments provide a method and apparatus for efficiently supporting a secondary base station change in a wireless communication system.
  • FIG. 1 is a diagram illustrating the structure of an LTE system and an E-UTRAN according to the present disclosure.
  • FIG. 2 is a diagram illustrating a radio protocol structure in an LTE system according to the present disclosure.
  • 3A is a diagram illustrating structures of a 5G system and an NG-RAN according to an embodiment of the present disclosure.
  • 3B is a diagram illustrating the structure of a GNB according to an embodiment of the present disclosure.
  • FIG. 4 is a diagram illustrating a radio protocol structure in a 5G system according to an embodiment of the present disclosure.
  • FIG. 5 is a diagram illustrating the structure of an EN-DC according to an embodiment of the present disclosure.
  • 6A is a diagram illustrating operations of a terminal and a base station performing an EN-DC operation according to the first embodiment of the present invention.
  • 6B is a diagram illustrating another operation of a terminal and a base station performing an EN-DC operation according to the first embodiment of the present invention.
  • Figure 7a is a diagram showing the structure of the LTE reconfiguration message for the first procedure.
  • Figure 7b is a diagram showing the structure of the LTE reconfiguration message for the second procedure.
  • 7c is a diagram illustrating the structure of an SGNB ADD ACK message for the first procedure.
  • 7d is a diagram illustrating the structure of an SGNB ADD ACK message for the second procedure.
  • FIG. 8 is a flowchart illustrating an operation of the central apparatus of a target secondary base station according to the first embodiment.
  • FIG. 9 is a flowchart for explaining a terminal operation according to the first embodiment.
  • FIG. 10 is a block diagram showing the internal structure of a terminal to which the present invention is applied.
  • FIG. 11 is a block diagram showing the internal structure of a base station to which the present invention is applied.
  • connection node a term referring to network entities, a term referring to messages, a term referring to an interface between network entities, and a term referring to various types of identification information. Etc. are illustrated for convenience of description. Therefore, the present invention is not limited to the terms described below, and other terms indicating objects having equivalent technical meanings may be used.
  • the present invention uses terms and names defined in the 3rd Generation Partnership Project (3GPP) standard, which is the most up-to-date among existing communication standards.
  • 3GPP 3rd Generation Partnership Project
  • the present invention is not limited by the above terms and names, and may be equally applied to systems conforming to other standards.
  • Table 1 lists the abbreviations used in the present invention.
  • Table 2 defines terms frequently used in the present invention.
  • Terminology Definition Cell combination of downlink and optionally uplink resources The linking between the carrier frequency of the downlink resources and the carrier frequency of the uplink resources is indicated in the system information transmitted on the downlink resources.
  • Global cell identity An identity to uniquely identify an NR cell. It is consisted of cellIdentity and plmn-Identity of the first PLMN-Identity in plmn-IdentityList in SIB1.
  • gNB node providing NR user plane and control plane protocol terminations towards the UE, and connected via the NG interface to the 5GC.
  • Information element A structural element containing single or multiple fields is referred as information element.
  • SCG Cell For dual connectivity operation, the SCG cell in which the UE performs random access when performing the Reconfiguration with Sync procedure.
  • Serving Cell For a UE in RRC_CONNECTED not configured with CA/DC there is only one serving cell comprising of the primary cell.
  • the term 'serving cells' is used to denote the set of cells comprising of the Special Cell(s) and all secondary cells.
  • SpCell primary cell of a master or secondary cell group.
  • Cell Group in dual connectivity a group of serving cells associated with either the MeNB or the SeNB.
  • En-gNB node providing NR user plane and control plane protocol terminations towards the UE, and acting as Secondary Node in EN-DC.
  • Master Cell Group in MR-DC a group of serving cells associated with the Master Node, comprising of the SpCell (PCell) and optionally one or more SCells.
  • master node in MR-DC the radio access node that provides the control plane connection to the core network. It may be a Master eNB (in EN-DC), a Master ng-eNB (in NGEN-DC) or a Master gNB (in NR-DC and NE-DC).
  • NG-RAN node either a gNB or an ng-eNB.
  • Secondary Cell Group in MR-DC a group of serving cells associated with the Secondary Node, comprising of the SpCell (PSCell) and optionally one or more SCells.
  • Secondary node in MR-DC the radio access node, with no control plane connection to the core network, providing additional resources to the UE. It may be an en-gNB (in EN-DC), a Secondary ng-eNB (in NE-DC) or a Secondary gNB (in NR-DC and NGEN-DC).
  • Conditional PSCell Change a PSCell change procedure that is executed only when PSCell execution condition(s) are met.
  • gNB Central Unit a logical node hosting RRC, SDAP and PDCP protocols of the gNB or RRC and PDCP protocols of the en-gNB that controls the operation of one or more gNB-DUs.
  • the gNB-CU terminates the F1 interface connected with the gNB-DU.
  • gNB Distributed Unit gNB-DU
  • One gNB-DU supports one or multiple cells. One cell is supported by only one gNB-DU.
  • the gNB-DU terminates the F1 interface connected with the gNB-CU.
  • E-RAB An E-RAB uniquely identifies the concatenation of an S1 Bearer and the corresponding Data Radio Bearer.
  • NAS Non Access Stratum
  • Table 3 is an abbreviation of various messages, IEs, and terms of the present invention.
  • Table 4 is a description of the main technical terms used in the present invention.
  • Terminology Definition PSCell change This means that the current PSCell is changed to a new PSCell, and includes a change of the PSCell within the same SN and a change of the PSCell between SNs.
  • the addition of a PSCell can also be seen as a PSCell change.
  • CG-ConfigInfo IE It is transmitted from the MN to the SN or from the CU to the DU and consists of the following information.
  • l Capability information of the UE l Measurement results of candidate cells that can be added as serving cells (MeasResultList2NR) l MCG's DRX information, etc.
  • CG-Config IE SN delivers to MN or CU to DU and consists of the following information l NR RRCReconfiguration message containing SCG configuration information.
  • the MN transmits the RRCReconfiguration message to the UE as it is without processing it.
  • l Information related to the SCG bearer It includes information specifying a security key to be used in the bearer.
  • l DRX setting information of SCG l ARFCN information indicating the center frequency of PSCell measConfig This is measurement-related information set independently by MN and SN. It is composed of at least one measurement object information (MeasObject), at least one report setting information (ReportConfig), and at least one measurement identifier (MeasId).
  • Measurement target information and report setting information are identified as MeasObjectId and ReportConfigId, respectively, and MeasId consists of one MeasObjectId and one ReportConfigId.
  • MeasId is information instructing to perform a predetermined operation when the measurement result for the related MeasObject meets the condition set in ReportConfigId.
  • TCSPCELL Indicates the target candidate SpCell.
  • the TCSPCELL may be a cell selected by the MN or the S-SN from among cells measured by the UE and reporting the measurement result to the BS. Through the first procedure, one of the TCSPCELLs becomes a PSCell.
  • the E-UTRAN 101 includes an E-UTRA user plane (PDCP/RLC/MAC/PHY) and a control plane. It consists of ENBs 102, 103, and 104 that provide (RRC) to the UE. ENBs are interconnected with each other via the X2 interface.
  • the ENB is connected to a Mobility Management Entity (MME) 105 / Serving-Gateway (S-GW) 106 through an S1 interface.
  • MME 105 and S-GW 106 may be configured as one physical node or separate physical nodes.
  • the eNBs 102, 103, 104 host the functions listed below.
  • radio bearer control radio admission control
  • link mobility control dynamic allocation of resources to UEs in uplink, downlink and sidelink (constant);
  • IP and Ethernet header compression, uplink data decompression and encryption of user data streams are IP and Ethernet header compression, uplink data decompression and encryption of user data streams
  • AMF selection when AMF cannot be selected with information provided by the terminal routing of user plane data to UPF, scheduling and transmission of paging messages, scheduling and transmission of broadcast information (derived from AMF or O&M), for mobility and scheduling Measurement and measurement reporting configuration, session management, QoS flow management and mapping to data radio bearers, RRC_INACTIVE support, radio access network sharing, tight interaction between NR and E-UTRA, network slicing support
  • MME 105 hosts functions such as NAS signaling, NAS signaling security, AS security control, S-GW selection, authentication, PWS message transmission support and location management.
  • the S-GW 106 hosts functions such as packet routing and forwarding, uplink and downlink transport level packet marking, and mobility anchoring for handover between eNBs.
  • FIG. 2 is a diagram illustrating a radio protocol structure of an LTE system.
  • the user plane protocol stack is composed of PDCP (201 to 202), RLC (203 to 204), MAC (205 to 206), and PHY (207 to 208).
  • the control clearing protocol stack is composed of NAS (209 to 210), RRC (211 to 212), PDCP, RLC, MAC, PHY.
  • Each protocol sublayer performs functions related to the operations listed in Table 5.
  • Sublayer Functions NAS Authentication, mobility management, security control, etc.
  • RRC System information paging, RRC connection management, security functions, signaling radio bearer and data radio bearer management, mobility management, QoS management, recovery from radio link failure detection and recovery, NAS message transmission, etc.
  • PDCP Data transmission header compression and decompression, encryption and decryption, integrity protection and integrity verification, redundant transmission, ordering and out-of-order delivery, etc.
  • PHY Channel coding physical layer hybrid-ARQ processing, rate matching, scrambling, modulation, layer mapping, downlink control information, uplink control information, etc.
  • 3A is a diagram illustrating structures of a 5G system and an NG-RAN according to an embodiment of the present disclosure.
  • the 5G system consists of NG-RAN (301) and 5GC (302).
  • An NG-RAN node is one of the two below.
  • gNB providing NR user plane and control plane towards UE
  • ng-eNB providing E-UTRA user plane and control plane towards UE.
  • the gNBs 305 to 306 and the ng-eNBs 303 to 304 are interconnected through an Xn interface.
  • the gNB and ng-eNB are connected to an Access and Mobility Management Function (AMF) 307 and a User Plane Function (UPF) 308 through an NG interface.
  • AMF 307 and UPF 308 may be configured as one physical node or separate physical nodes.
  • gNBs 305 to 306 and ng-eNBs 303 to 304 host the functions listed below.
  • radio bearer control radio admission control
  • link mobility control dynamic allocation of resources to UEs in uplink, downlink and sidelink (constant);
  • IP and Ethernet header compression, uplink data decompression and encryption of user data streams are IP and Ethernet header compression, uplink data decompression and encryption of user data streams
  • AMF selection when AMF cannot be selected with information provided by the terminal routing of user plane data to UPF, scheduling and transmission of paging messages, scheduling and transmission of broadcast information (derived from AMF or O&M), for mobility and scheduling Measurement and measurement reporting configuration, session management, QoS flow management and mapping to data radio bearers, RRC_INACTIVE support, radio access network sharing, tight interaction between NR and E-UTRA, network slicing support
  • AMF 307 hosts functions such as NAS signaling, NAS signal security, AS security control, S-GW selection, authentication, mobility management and location management.
  • UPF 308 hosts functions such as packet routing and forwarding, transport level packet marking on the uplink and downlink, QoS management, and mobility anchoring for mobility.
  • 3B is a diagram illustrating the structure of a GNB according to an embodiment of the present disclosure.
  • the gNBs 311 to 312 may include one gNB-CU 313 and one or more gNB-DUs 314 to 315.
  • the gNB-CU and gNB-DU are connected through the F1 interface.
  • One gNB-DU is connected only to one gNB-CU.
  • the gNB-CU provides RRC, SDAP, and PDCP protocol sublayers, and the gNB-DU provides RLC, MAC, and PHY protocol sublayers.
  • FIG. 4 is a diagram illustrating a radio protocol structure of a 5G system.
  • the user plane protocol stack is composed of SDAP (401 to 402), PDCP (403 to 404), RLC (405 to 406), MAC (407 to 408), and PHY (409 to 410).
  • the control clearing protocol stack is composed of NAS (411 to 412), RRC (413 to 414), PDCP, RLC, MAC, PHY.
  • Each protocol sublayer performs functions related to the operations listed in Table 8.
  • Sublayer Functions NAS Authentication, mobility management, security control, etc.
  • RRC System information paging, RRC connection management, security functions, signaling radio bearer and data radio bearer management, mobility management, QoS management, recovery from radio link failure detection and recovery, NAS message transmission, etc.
  • RLC Higher layer PDU transmission error correction through ARQ, RLC SDU division and re-division, SDU reassembly, RLC re-establishment, etc.
  • MAC Mapping between logical channels and transport channels multiplexing/demultiplexing MAC SDUs belonging to one or another logical channel in a transport block (TB) carried in the physical layer, information reporting schedule, priority processing between UEs, priority between single UE logical channels ranking processing, etc.
  • PHY Channel coding physical layer hybrid-ARQ processing, rate matching, scrambling, modulation, layer mapping, downlink control information, uplink control information, etc.
  • E-UTRAN supports MR-DC through E-UTRA-NR dual connectivity (EN-DC), and the UE It is connected to one eNB (501 to 502) serving as an MN and one en-gNB (503 to 504) serving as an SN.
  • the eNBs 501 to 502 are connected to the EPC 505 through an S1 interface and connected to the en-gNBs 503 to 504 through an X2 interface.
  • the en-gNBs 503 - 504 may be connected to the EPC 505 via the S1-U interface and another en-gNB via the X2-U interface.
  • LTE and NR are expected to coexist for a considerable period of time in the future. It will not be uncommon for one operator to have both LTE and NR. In this case, if the terminal simultaneously transmits and receives data in LTE and NR, the terminal can receive a high transmission rate through NR and stably maintain an RRC connection through LTE. When EN-DC is set, the terminal can transmit and receive data through LTE and NR.
  • the PSCell change procedure generally consists of a process in which the MN or S-SN recognizes the need for change, the T-SN determines configuration information of the new PSCell, and the MN informs the UE of the configuration information of the new PSCell.
  • the PSCell change procedure generally consists of a process in which the MN or S-SN recognizes the need for change, the T-SN determines configuration information of the new PSCell, and the MN informs the UE of the configuration information of the new PSCell.
  • first reconstruction or conditional reconstruction
  • second reconstruction or immediate reconstruction
  • 6A is a diagram for explaining operations of a terminal and a base station performing a second procedure according to the first embodiment of the present invention.
  • the S-SN GNB-CU 603 determines to change the SN of a predetermined terminal through the second procedure. The determination may be made based on a measurement result reported by the terminal, a load of the base station, a radio resource management policy, and the like.
  • the S-SN GNB-CU initiates the procedure by sending an SGNB CHA REQ (606) to the MN (602).
  • SGNB CHA REQ includes the following information.
  • Target node identifier information en-gNB ID of the target node
  • CG-ConfigInfo includes configuration information applied to the UE by the S-SN.
  • the MN In step 608, the MN generates an SGNB ADD REQ based on the information of the SGNB CHA REQ message and transmits it to the T-SN GNB-CU 604 indicated in the target node identifier information.
  • the SGNB ADD REQ includes the following information.
  • MeNB Cell ID PCell's ECGI. With this information, the T-SN considers cells around the MeNB Cell as SpCells.
  • SGNB Addition Trigger Indication IE indicating one of SN change, inter-eNB HO, and intra-eNB HO.
  • Information related to data radio bearer setup Information about the radio bearer to be setup. Can be used for T-SN's call admission control.
  • the T-SN GNB-CU determines whether to accept the SGNB addition request for the UE. If accepted, it is determined which bearer to accept among the bearers of the UE. Then, PDCP configuration information is determined for each accepted bearer.
  • step 611 the T-SN GNB-CU transmits CON SET REQ to the T-SN GNB-DU (605).
  • CON SET REQ includes the following information.
  • SpCell ID Identifier of SpCell determined by T-SN GNB-CU
  • CG-Config PDCP configuration information for each bearer determined by the T-SN GNB-CU, etc.
  • the T-SN GNB-DU Upon receiving the CON SET REQ, the T-SN GNB-DU determines which bearer of the UE to accept the SN change request. If it is decided to accept, RLC configuration information, MAC configuration information, etc. of the accepted bearer are determined. Then, PHY configuration information to be applied to the terminal is determined.
  • the T-SN GNB-DU transmits CON SET RES to the T-SN GNB-CU.
  • CON SET RES includes the following information.
  • CellGroupConfig Various setting information such as RLC setting information and MAC setting information determined in the above step. Although the name is similar, it is information different from CG-config.
  • C-RNTI C-RNTI to be used by the terminal
  • Requested Target Cell ID The SpCell ID that was included in the CON SET REQ. Indicates that CON SET RES is a response message to CON SET REQ.
  • the T-SN GNB-CU Upon receiving the CON SET RES, the T-SN GNB-CU generates NR RECNF using CellGroupConfig and various configuration information determined by itself. Then, CG-Config including the NR RECNF and various information useful to the MN is created.
  • the T-SN GNB-CU transmits an SGNB ADD ACK to the MN.
  • SGNB ADD ACK includes CG-Config. The structure of the SGNB ADD ACK is detailed in FIG. 7-4.
  • LTE RECNF includes NR RECNF, first Transaction id, security key information, and the like.
  • the structure of LTE RECNF for the second procedure is detailed in FIG. 7-2.
  • the MN transmits LTE RECNF to the UE.
  • the terminal Upon receiving the LTE RECNF, the terminal processes the NR RECNF information included in the LTE RECNF to recognize in which cell random access should be performed and which setting should be applied in the new cell.
  • the UE transmits an LTE RECNF CMP to the MN.
  • the LTE RECNF CMP includes a first Transaction id and NR RECNF CMP.
  • the MN Upon receiving the LTE RECNF CMP, the MN sees the first Transaction id and recognizes that the LTE RECNF CMP is a response to the LTE RECNF.
  • MN settings may be adjusted by referring to CG-Config corresponding to the LTE RECNF.
  • the MN transmits the SGNB REC CMP to the T-SN GNB-CU.
  • the T-SN GNB-CU recognizes that the UE has received NR RECNF and will initiate a random access procedure.
  • the MN transmits the SGNB CHA CNF to the S-SN GNB-CU.
  • the S-SN GNB-CU may initiate an SN status transmission procedure and data forwarding.
  • the UE performs a random access process in a specific cell of T-SN GNB-DU and a cell designated as SpCell in NR RECNF.
  • Random access consists of the UE transmitting a preamble in the GNB-DU, the GNB-DU transmitting a random access response to the UE, and the UE transmitting the PUSCH in the GNB-DU.
  • the UE transmits the C-RNTI MAC CE.
  • the C-RNTI MAC CE contains the C-RNTI determined by the T-SN GNB-DU for the cell.
  • the T-SN GNB-DU recognizes which terminal the random access is for by looking at the C-RNTI.
  • the T-SN GNB-DU generates an ACC SUC.
  • the T-SN GNB-DU transmits the ACC SUC to the T-SN GNB-CU.
  • the ACC SUC contains the following information.
  • NR CGI NR CGI of a cell in which the UE completed random access
  • the S-SN GNB-CU transmits the SN STA TRA.
  • the SN STA TRA includes the PDCP SN and HFN of the bearer to which data forwarding is to be applied.
  • the SN STA TRA is transmitted to the T-SN GNB-CU via the MN.
  • the T-SN GNB-CU refers to the PDCP SN and HFN included in the SN STA TRA to determine a PDCP SN to be applied during data transmission.
  • the S-SN GNB-CU starts data forwarding.
  • the S-SN GNB-CU transmits PDCP SDUs that have not yet been transmitted and PDCP SDUs that have been transmitted but have not been confirmed to be transmitted to the MN through the GTP tunnel, and the MN transmits them to the T-SN GNB-CU.
  • the T-SN GNB-CU processes them as PDCP PDUs and delivers them as T-SN GNB-DUs.
  • the T-SN GNB-DU transmits the PDCP PDU to the UE.
  • 6B is a diagram illustrating operations of a terminal and a base station performing a first procedure according to a first embodiment of the present invention.
  • the S-SN GNB-CU determines to change the SN through the first procedure. The determination may be made based on a measurement result reported by the terminal, a load of the base station, a radio resource management policy, and the like.
  • the S-SN GNB-CU initiates the procedure by sending an SGNB CHA REQ to the MN.
  • SGNB CHA REQ includes the following information.
  • Target node identifier information en-gNB ID of the target node
  • CG-ConfigInfo includes setting information applied to the terminal by the S-SN.
  • First information related to the first procedure This may be a list of identifiers of TCSPCELLs related to the first procedure.
  • the S-SN GNB-CU selects k TCSPCELLs based on the measurement results of the UE.
  • Second information related to the first procedure Information representing the nature of the first procedure, indicating whether the first procedure for the TCSPCELLs is a start of a new procedure or a replacement of an existing procedure.
  • the MN In step 643, the MN generates an SGNB ADD REQ based on the information of the SGNB CHA REQ message and transmits it to the T-SN GNB-CU indicated in the target node identifier information.
  • the SGNB ADD REQ includes the following information.
  • MeNB Cell ID PCell's ECGI.
  • the T-SN Upon receiving this information, the T-SN considers cells around the MeNB Cell as SpCells.
  • Information related to data radio bearer setup Information about the radio bearer to be setup. Can be used for T-SN's call admission control.
  • the first procedure does not use SGNB Addition Trigger Indication information. This is because information related to the first procedure can inform that the corresponding procedure is related to the SN change.
  • the T-SN GNB-CU determines which TCSPCELL to accept and which bearer of the UE to accept for each accepted TCSPCELL. Then, PDCP configuration information is determined for each accepted bearer. The T-SN GNB-CU generates CG-Config containing the determined information for each accepted TCSPCELL.
  • the T-SN GNB-CU transmits m CON SET REQs to the T-SN GNB-DU.
  • One CON SET REQ corresponds to one TCSPCELL and includes the following information.
  • SpCell ID Identifier of accepted TCSPCELL
  • CG-Config PDCP setting information determined for the TCSPCELL, etc.
  • the T-SN GNB-DU Upon receiving the CON SET REQ for any TCSPCELL, the T-SN GNB-DU determines whether to accept it. And, if accepted, it decides which bearer to accept. Determines RLC configuration information, MAC configuration information, etc. of the accepted bearer. Then, PHY configuration information to be applied to the terminal is determined.
  • the T-SN GNB-DU transmits n CON SET RES to the T-SN GNB-CU.
  • Each CON SET RES includes the following information.
  • CellGroupConfig Includes various setting information determined for the corresponding TCSPCELL
  • C-RNTI C-RNTI to be used by the terminal
  • Requested Target Cell ID NR CGI of the corresponding TCSPCELL.
  • the T-SN GNB-CU Upon receiving n CON SET RES, the T-SN GNB-CU generates an SGNB ADD ACK.
  • the structure of the SGNB ADD ACK is detailed in FIG. 7-3.
  • the T-SN GNB-CU transmits an SGNB ADD ACK to the MN.
  • MN generates LTE RECNF including NR RECNF received through SGNB ADD ACK.
  • LTE RECNF includes the first Transaction id.
  • the structure of LTE RECNF is detailed in FIG. 7A.
  • step 651 the MN transmits LTE RECNF to the terminal.
  • the terminal Upon receiving the LTE RECNF, the terminal processes the NR RECNF information included therein to recognize the configuration of TCSPCELLs and the execution conditions corresponding to each TCSPCELL.
  • the UE transmits an LTE RECNF CMP to the MN.
  • LTE RECNF CMP includes the first Transaction id.
  • the terminal that has transmitted the LTE RECNF CMP performs a conditional reconfiguration evaluation procedure to determine whether the conditional reconfiguration condition is satisfied.
  • the UE determines whether the measurement result of the cell (TCSPCELL) corresponding to the cell identifier indicated in the third NR reconfiguration message satisfies the execution condition, and if so, the second NR reconfiguration message corresponding to the cell that satisfies the execution condition is applied. to perform conditional reconstruction.
  • the UE performs a random access process in a specific cell of the T-SN GNB-DU, that is, a cell designated as SpCell in the third NR RECNF for which the execution condition is satisfied.
  • Random access consists of the UE transmitting a preamble in the GNB-DU, the GNB-DU transmitting a random access response to the UE, and the UE transmitting the PUSCH in the GNB-DU.
  • the UE transmits the C-RNTI MAC CE.
  • the C-RNTI MAC CE contains the C-RNTI determined by the T-SN GNB-DU for the cell.
  • the T-SN GNB-DU recognizes which terminal the random access is for by looking at the C-RNTI.
  • the T-SN GNB-DU generates an ACC SUC.
  • the T-SN GNB-DU transmits the ACC SUC to the T-SN GNB-CU.
  • the ACC SUC contains the following information.
  • NR CGI NR CGI of a cell in which the UE completed random access
  • the UE transmits the ULIT to the MN.
  • ULIT includes NR RECNF CMP and CRID.
  • the MN identifies the CG-Config corresponding to the CRID and reconfigures the MN's settings according to the CG-Config.
  • the MN transmits the SGNB REC CMP to the T-SN GNB-CU.
  • SGNB REC CMP includes NR RECNF CMP.
  • the NR RECNF CMP includes the Transaction id of the third NR RECNF for which the execution condition is satisfied.
  • the T-SN GNB-CU recognizes that the UE has performed conditional reconfiguration.
  • the MN transmits the SGNB CHA CNF to the S-SN GNB-CU.
  • the S-SN GNB-CU may initiate an SN status transmission procedure and data forwarding.
  • the S-SN GNB-CU transmits the SN STA TRA.
  • the SN STA TRA includes the PDCP SN and HFN of the bearer to which data forwarding is to be applied.
  • the SN STA TRA is transmitted to the T-SN GNB-CU via the MN.
  • the S-SN GNB-CU starts data forwarding.
  • the S-SN GNB-CU transmits PDCP SDUs that have not yet been transmitted and PDCP SDUs that have been transmitted but have not been confirmed to be transmitted to the MN through the GTP tunnel, and the MN transmits them to the T-SN GNB-CU.
  • the T-SN GNB-CU processes them as PDCP PDUs and delivers them as T-SN GNB-DUs.
  • the T-SN GNB-DU transmits the PDCP PDU to the UE.
  • LTE RECNF for setting the first procedure to the UE in EN-DC operation is shown in FIG. 7A.
  • the LTE RECNF includes a 1st Transaction id generated by the MN and a 1NR RECNF 702 generated by the T-SN.
  • the first RECNF may include various information depending on the purpose of the related procedure. If it is for the first procedure (conditional reconstruction), the first NR RECNF includes conditional reconstruction related information 710 .
  • Conditional reconfiguration related information includes at least one CondReconfigToAddMod IE (703 to 720 to 721).
  • Each CondReconfigToAddMod IE includes a configuration identifier 704, an execution condition 705, a 2nd NR RECNF including various setting information 706, and an execution condition cell group IE 722.
  • the second NR RECNF includes radio bearer configuration information 708, a counter for calculating a security key 709, and a third NR RECNF 707.
  • the third NR RECNF includes a secondaryCellGroup IE, and the IE includes TCSPCELL configuration information.
  • one 1st NR reconstruction message for 1st reconstruction includes a plurality of 2nd NR RECNFs, and one 2nd NR RECNF corresponds to one TCSPCELL.
  • One second NR RECNF corresponds to one configuration identifier, one execution condition, and one execution condition cell group.
  • the first NR RECNF includes a second Transaction ID
  • the second NR RECNF includes a third Transaction ID
  • the third NR RECNF includes a fourth Transaction ID.
  • LTE RECNF for setting the second procedure to the UE in EN-DC operation is shown in FIG. 7B.
  • the LTE RECNF includes the first Transaction id generated by the MN and the 1NR RECNF 702 generated by the T-SN GNB-CU.
  • the first RECNF may include various information depending on the purpose of the related procedure.
  • the first NR RECNF includes radio bearer configuration information 728, a counter for calculating a security key 729, and a fourth NR RECNF 727.
  • the fourth NR RECNF includes a secondaryCellGroup IE, and the IE includes SpCell/PSCell configuration information.
  • one 1st NR reconstruction message for the second reconstruction includes one 4th NR RECNF.
  • the 1st NR RECNF includes the 2nd Transaction ID and the 4th NR RECNF includes the 5th Transaction ID, both generated by the T-SN GNB-CU.
  • the structure of the SGNB ADD ACK for the first procedure of the UE in EN-DC operation is shown in FIG. 7c.
  • the SGNB ADD ACK 731 includes at least a first container 732 and a second container 733.
  • the first container stores a number of CG-Configs.
  • CG-config (hereafter, 1st CG-config, 734) stored in the first container includes Assistance Info for MN 735 and CondReconfigurationId (736, hereinafter, CRID).
  • Assistance info for MN includes information that the MN needs to know in order to determine or adjust its configuration, for example, DRX configuration in the SN, band combination information selected in the SN, and the like.
  • the second container contains one NR RECNF 739.
  • the NR RECNF 739 is the first NR RECNF 702 contained in the LTE RECNF.
  • the first NR RECNF may include a plurality of CondReconfigToAddMod IEs, and one CondReconfigToAddMod may include one second NR RECNF 737 and one CRID 738.
  • the CG-Config 735 of the first container and the second NR RECNF 737 of the second container correspond one-to-one and are connected by CRIDs 736 and 738.
  • the number of CG-Configs included in the first container is equal to the number of second NR RECNFs included in the first NR RECNF.
  • the structure of the SGNB ADD ACK for the second procedure of the UE in EN-DC operation is shown in FIG. 7d.
  • the SGNB ADD ACK 741 includes one container 742, hereinafter a third container, and the third container includes one CG-Config 743.
  • CG-Config (hereinafter referred to as second CG-Config) stored in the third container includes Assistance info for MN 744 and NR RECNF 745, which are information necessary for the MN to adjust its own settings.
  • NR RECNF 745 is NR RECNF 722.
  • Assistance info for MN includes information that the MN needs to know in order to determine or adjust its configuration, for example, DRX configuration in the SN, band combination information selected in the SN, and the like.
  • the first CG-Config does not include NR RECNF, but instead includes CRID.
  • the CRID corresponds to one of a plurality of NR RECNFs included in the second container.
  • FIG. 8 is a flowchart for explaining T-SN GNB-CU operation according to the first embodiment.
  • step 801 the T-SN GNB-CU receives a control message requesting preparation of resources for EN-DC operation from the MN.
  • step 811 the T-SN GNB-CU determines whether information related to the first procedure is included in the control message. If included, proceed to step 816, otherwise proceed to step 841.
  • step 816 the T-SN GNB-CU selects m TCSPCELLs among the k TCSPCELLs included in the first information related to the first procedure and generates a CON SET REQ for each TCSPCELL. m number of CON SET REQs are transmitted to the T-SN GNB-DU. One CON SET REQ corresponds to one TCSPCELL. Proceeding to step 816 means that the control message received in step 801 includes one cell group setting information, one execution condition information, and a plurality of cell identifiers.
  • the T-SN GNB-CU receives n CON SET RES from the T-SN GNB-CU.
  • One CON SET RES corresponds to one accepted TCSPCELL.
  • CON SET RES includes information such as CellGroupConfig.
  • the T-SN GNB-CU In step 826, the T-SN GNB-CU generates an SGNB ADD ACK message including the first container and the second container and transmits it to the MN.
  • the first container is composed of a plurality of first CG-Configs, and the first CG-config does not include NR RECNF but includes Assistance Info for MN and CRID.
  • the second container includes the first NR RECNFs and includes the same number of second NR RECNFs as the plurality of CRIDs.
  • the T-SN GNB-CU creates the first container and the second container so that the first CG-Config of the first container and the NR RECNF of the second container are connected by CRID.
  • the T-SN GNB-CU receives the SN STA TRA from the MN, recognizes a PDCP SN to be applied to downlink data, and processes the PDCP SDU transferred from the MN as a PDCP PDU.
  • step 861 the T-SN GNB-CU transmits the PDCP PDU to the T-SN GNB-DU.
  • step 841 the T-SN GNB-CU transmits one CON SET REQ to the T-SN GNB-DU.
  • CON SET REQ contains information such as SpCell ID.
  • the T-SN GNB-CU receives one CON SET RES from the T-SN GNB-CU.
  • CON SET RES includes information such as CellGroupConfig.
  • the T-SN GNB-CU In step 826, the T-SN GNB-CU generates an SGNB ADD ACK message including the third container and transmits it to the MN.
  • the third container is composed of one second CG-Config, and the second CG-config includes NR RECNF and Assistance Info for MN and does not include a CRID.
  • the T-SN GNB-CU receives the SN STA TRA from the MN, recognizes a PDCP SN to be applied to downlink data, and processes the PDCP SDU transferred from the MN as a PDCP PDU.
  • step 861 the T-SN GNB-CU transmits the PDCP PDU to the T-SN GNB-DU.
  • FIG. 9 is a flowchart illustrating an operation of a terminal performing a first procedure according to a first embodiment.
  • step 901 the UE reports the capabilities of the UE related to the EN-DC and the first reconfiguration procedure to the first base station (MN or MeNB).
  • MN the first base station
  • band combination information in which EN-DC is supported (a list of band combinations supporting EN-DC);
  • Second performance information a list of EN-DC band combinations supporting 1 st reconfiguration among band combinations supported by EN-DC;
  • the second capability information indicates which NR band of a band combination among the band combinations reported as the first capability information supports the first reconstruction.
  • the second capability information is information indicating whether intra-band first reconfiguration is supported.
  • the third capability information is a combination of NR bands composed of two NR bands, and indicates that inter-band first reconfiguration is supported in the NR band combination included in the third capability information. For example, if a (N1, N2) band combination is included in the third capability information, it means that the first reconstruction between N1 and N2 is supported. In this case, all NR bands (for example, N1 and N2) belonging to the band combination included in the third capability information are NR bands supported by EN-DC.
  • the terminal receives LTE RECNF.
  • the LTE RECNF includes a first NR RECNF. If the LTE RECNF is a message indicating first reconfiguration, the first NR RECNF includes first information.
  • the first information includes at least one or more pieces of second information, and the second information always includes third information and fourth information and optionally includes fifth information.
  • the third information corresponds to one TCSPCELL.
  • the third information consists of one or two MeasIds, and defines an execution condition for resetting the TCSPCELL.
  • the fourth information is the second NR RECNF, and includes third NR RECNF including radio bearer configuration information, security key related information, and TCSPCELL configuration information.
  • Fifth information is information indicating which of MCG and SCG (or MeNB and SgNB, or MN and S-SN) the execution condition is associated with.
  • the third information and the fifth information define execution conditions of the first reconstruction for each TCSPCELL (or for each second information).
  • third information and fifth information commonly applied to all TCSPCELLs (or second information) included in one first NR message.
  • an operation of the terminal it is also possible to define an operation of the terminal to include common third information and common fifth information as lower IEs of the first information and ignore individual third information included as lower IEs of the second information. In this case, if common third information exists, the terminal applies the common third information to all TCSPCELLs included in one piece of first information, and if common third information does not exist, applies third information indicated for each TCSPCELL. do.
  • One LTE RECNF includes one 1st NR RECNF, one 1st NR RECNF includes multiple 2nd NR RECNFs, and one 2nd NR RECNF includes one 3rd NR RECNF. That is, one LTE RECNF may include a plurality of third NR RECNFs, the same number of third information and the same number of fourth information, and may include another plurality of fifth information.
  • One RECNF includes one Transaction ID.
  • the LTE RECNF includes a first Transaction id
  • the first NR RECNF includes a second Transaction id.
  • the second NR RECNF and the third NR RECNF include a third Transaction id and a fourth Transaction id, respectively.
  • step 911 the terminal transmits the LTE RECNF CMP to the first base station.
  • the LTE RECNF CMP includes a first Transaction id.
  • step 916 the UE initiates a first reconfiguration procedure because the first reconfiguration information is included in the first NR RECNF included in the received LTE RECNF.
  • the terminal determines which cell group (or which node) the MeasId indicated in the third information is associated with based on the third and fifth information set for each TCSPCELL. If there is no fifth information, it is determined that the execution condition for the corresponding TCSPCELL is set by the S-SN, and MeasId is related to the Source SCG (or S-SN). And the meaning of MeasId is interpreted according to MeasConfig of Source SCG (or S-SN). If there is fifth information, it is determined that the execution condition for the corresponding TCSPCELL is set by the MN, and MeasId is related to the MCG (or MN).
  • MeasId is interpreted according to MeasConfig of MCG (or MN).
  • the execution condition for the corresponding TCSPCELL is set by the CG (or node) indicated by the 5th information among MCG and SCG (or between MN and S-SN), and MeasId is the CG (or node ) is judged to be related to And the meaning of MeasId is interpreted according to MeasConfig of the CG (or node).
  • MeasId having a value between 1 and 32 and MeasId-v1250 having a value between 33 and 64.
  • the former is named 5 bit MeasId, and the latter is named 5 bit MeasId-Ext.
  • NR has MeasId having a value between 1 and 64, and is named as 6 bit MeasId in the present invention.
  • the MN may inform the T-SN of MeasId to be used as an execution condition determined by the MN.
  • MN changes 5 bit MeasId or 5 bit MeasId-Ext to 6 bit MeasId, includes it in SGNB ADD REQ, and informs T-SN. If the MN selects 5-bit MeasId as an execution condition, it sets the MSB of 6-bit MeasId to 0 and sets the remaining 5 bits to 5-bit MeasId. If the MN selects 5 bit MeasId-Ext as an execution condition, it sets the MSB of 6 bit MeasId to 1 and sets the remaining 5 bits to 5 bit MeasId.
  • the UE receives 6 bit MeasId as an execution condition through RECNF. If the execution condition is determined by the S-SN, that is, if the execution condition cell group IE is SCG, the terminal determines the execution condition as it is without converting the received 6-bit MeasId. If the execution condition is determined by the MN, that is, if the execution condition cell group IE is MCG, the UE determines the execution condition by converting the received 6-bit MeasId into 5-bit MeasId or 5-bit MeasId-Ext. If the MSB of 6-bit MeasId is 0, the remaining 5 bits are interpreted as 5-bit MeasId and related ReportConfig and MeasObject are selected. If the MSB of 6-bit MeasId is 1, the remaining 5 bits are interpreted as 5-bit MeasId-Ext and the related ReportConfig and MeasObject are selected.
  • the terminal performs a conditional reset evaluation operation. For each second information included in the first information, the terminal considers the serving cell (ie, target candidate cell) indicated in the third NR RECNF of each second information as an 'applicable cell', and the applicable cell Among them, it is determined whether there is a cell that satisfies an event related to an execution condition. In addition, a target candidate cell that satisfies the event is regarded as a triggered cell.
  • step 931 the terminal performs conditional reset.
  • the UE applies the corresponding second NR RECNF to the triggered cell.
  • the terminal transmits the ULIT to the second base station.
  • the ULIT includes the first NR RECNF CMP.
  • the first NR RECNF CMP includes a third Transaction id.
  • the ULIT also includes a CRID corresponding to the triggered cell (or corresponding to the second NR RECNF corresponding to the triggered cell).
  • FIG. 10 is a block diagram showing the internal structure of a terminal to which the present invention is applied.
  • the terminal includes a control unit 1001, a storage unit 1002, a transceiver 1003, a main processor 1004, and an input/output unit 1005.
  • the controller 1001 controls overall operations of the UE related to mobile communication. For example, the controller 1001 transmits and receives signals through the transceiver 1003 . Also, the control unit 1001 writes and reads data in the storage unit 1002 . To this end, the controller 1001 may include at least one processor.
  • the control unit 1001 may include a communication processor (CP) that controls communication and an application processor (AP) that controls upper layers such as application programs.
  • the control unit 1001 controls the storage unit and the transceiver so that the operation of the terminal of FIG. 9 is performed.
  • the storage unit 1002 stores data such as a basic program for operating the terminal, an application program, and setting information.
  • the storage unit 1002 provides stored data according to the request of the control unit 1001 .
  • the transver 1003 includes an RF processing unit, a baseband processing unit, and an antenna.
  • the RF processing unit performs functions for transmitting and receiving signals through a wireless channel, such as band conversion and amplification of signals. That is, the RF processing unit up-converts the baseband signal provided from the baseband processing unit into an RF band signal, transmits the signal through an antenna, and down-converts the RF band signal received through the antenna into a baseband signal.
  • the RF processing unit may include a transmit filter, a receive filter, an amplifier, a mixer, an oscillator, a digital to analog converter (DAC), an analog to digital converter (ADC), and the like.
  • the RF processing unit may perform MIMO, and may receive multiple layers when performing MIMO operation.
  • the baseband processing unit performs a conversion function between a baseband signal and a bit string according to the physical layer standard of the system. For example, during data transmission, the baseband processing unit generates complex symbols by encoding and modulating a transmission bit stream. In addition, when data is received, the baseband processing unit demodulates and decodes the baseband signal provided from the RF processing unit to restore a received bit stream.
  • the transceiver is a transceiver.
  • the main processor 1004 controls overall operations except for operations related to mobile communication.
  • the main processor 1004 processes user input transmitted by the input/output unit 1005, stores necessary data in the storage unit 1002, controls the control unit 1001 to perform mobile communication-related operations, and the input/output unit ( 1005) to transmit the output information.
  • the input/output unit 1005 is composed of a device that receives user input, such as a microphone and a screen, and a device that provides information to the user, and performs input and output of user data under the control of a main processor.
  • FIG. 11 is a block diagram showing the configuration of a GNB-CU according to the present invention.
  • the base station includes a control unit 1101, a storage unit 1102, an F1 interface unit 1103, and a backhaul interface unit 1104.
  • the controller 1101 controls overall operations of the base station. For example, the control unit 1101 transmits and receives signals through the transceiver 1103 or the backhaul interface unit 1104 . Also, the control unit 1101 writes and reads data in the storage unit 1102 . To this end, the controller 1101 may include at least one processor. The controller 1101 is an F1 interface unit so that the base station operations shown in FIGS. 6 and 8 are performed. storage. Controls the backhaul interface.
  • the storage unit 1102 stores data such as a basic program for the operation of the main base station, an application program, and setting information.
  • the storage unit 1102 may store information about a bearer allocated to a connected terminal, measurement results reported from the connected terminal, and the like.
  • the storage unit 1102 may store information that is a criterion for determining whether to provide or stop multiple connections to the terminal. And, the storage unit 1102 provides the stored data according to the request of the control unit 1101.
  • the interface unit 1103 provides an interface for communicating with the GNB-DU. That is, the F1 interface unit converts a bit stream transmitted through the GNB-DU into a physical signal and converts a physical signal received from the GNB-DU into a bit stream.
  • the backhaul interface unit 1104 provides an interface for communicating with other nodes in the network. That is, the backhaul communication unit 1104 converts a bit string transmitted from the main base station to another node, for example, a secondary base station, a core network, etc., into a physical signal, and converts the physical signal received from the other node into a bit string. convert
  • the interface unit and the backhaul interface unit constitute a transmission/reception unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

According to one embodiment of the present disclosure, a method for controlling a secondary base station change comprises a step in which a secondary base station central unit receives a first control message from a main base station, transmits a plurality of second control messages to secondary base station distribution units, receives a plurality of third control messages from the secondary base station distribution units, and transmits, to the main base station, a fourth control message including a first container and a second container, wherein the first container includes a plurality of cell group configurations and the second container includes one NR control message.

Description

무선 이동 통신 시스템에서 세컨더리 기지국을 변경하는 방법 및 장치.A method and apparatus for changing a secondary base station in a wireless mobile communication system.
본 개시는 무선 통신 시스템에서 세컨더리 노드를 변경하는 방법 및 장치에 관한 것이다. The present disclosure relates to a method and apparatus for changing a secondary node in a wireless communication system.
4G 통신 시스템 상용화 이후 증가 추세에 있는 무선 데이터 트래픽 수요를 충족시키기 위해, 5G 통신 시스템이 개발되고 있다. 높은 데이터 전송률을 달성하기 위해, 5G 통신 시스템은 초고주파(mmWave) 대역 (예를 들어, 60기가(60GHz) 대역과 같은)을 도입하였다. 초고주파 대역에서의 전파의 경로 손실 완화 및 전파의 전달 거리를 증가시키기 위해, 5G 통신 시스템에서는 빔포밍(beamforming), 거대 배열 다중 입출력(massive MIMO), 전차원 다중입출력 (Full Dimensional MIMO: FD-MIMO), 어레이 안테나(array antenna), 아날로그 빔형성 (analog beam-forming) 및 대규모 안테나 (large scale antenna) 기술들이 사용된다. 5G 통신 시스템에서는 기지국을 중앙 유니트와 분산 유니트로 분할해서 확장성을 높인다. 또한 5G 통신 시스템에서는 다양한 서비스를 지원하기 위해서 굉장히 높은 데이터 전송률과 굉장히 낮은 전송지연을 지원하는 것을 목표로 한다.In order to meet the growing demand for wireless data traffic after the commercialization of 4G communication systems, 5G communication systems are being developed. In order to achieve a high data rate, the 5G communication system has introduced a very high frequency (mmWave) band (eg, such as the 60 GHz band). In order to mitigate the path loss of radio waves and increase the propagation distance of radio waves in the ultra-high frequency band, beamforming, massive MIMO, and Full Dimensional MIMO (FD-MIMO) are used in 5G communication systems. ), array antenna, analog beam-forming and large scale antenna technologies are used. In the 5G communication system, scalability is increased by dividing the base station into a central unit and a distribution unit. In addition, the 5G communication system aims to support very high data rates and very low transmission delays in order to support various services.
개시된 실시예는 무선 통신 시스템에서 세컨더리 기지국 변경을 효율적으로 지원하는 방법 및 장치를 제공하고자 한다.Disclosed embodiments are intended to provide a method and apparatus for efficiently supporting a secondary base station change in a wireless communication system.
본 개시의 일 실시예에 따르면, 세컨더리 기지국 변경을 제어하는 방법에 있어서, 상기 방법은 세컨더리 기지국 중앙 유닛이 주 기지국으로부터 제1 제어메시지를 수신하고 세컨더리 기지국 분산 유닛으로 복수의 제2 제어메시지를 전송하고 세컨더리 기지국 분산 유닛으로부터 복수의 제3 제어 메시지를 수신하고 주기지국으로 제1 컨테이너와 제2컨테이너를 포함한 제4 제어메시지를 전송하는 단계를 포함하고 제1 컨테이너는 복수의 셀그룹설정을 포함하고 제2 컨테이너는 하나의 NR 제어메시지를 포함한다.According to an embodiment of the present disclosure, in a method for controlling switching of a secondary base station, the method includes a secondary base station central unit receiving a first control message from a primary base station and transmitting a plurality of second control messages to the secondary base station distribution unit. and receiving a plurality of third control messages from the secondary base station distribution unit and transmitting a fourth control message including a first container and a second container to the primary base station, wherein the first container includes a plurality of cell group settings, The second container contains one NR control message.
개시된 실시예는 무선 통신 시스템에서 세컨더리 기지국 변경을 효율적으로 지원하는 방법 및 장치를 제공한다.The disclosed embodiments provide a method and apparatus for efficiently supporting a secondary base station change in a wireless communication system.
도 1은, 본 개시에 따른 LTE 시스템과 E-UTRAN의 구조를 도시한 도면이다.1 is a diagram illustrating the structure of an LTE system and an E-UTRAN according to the present disclosure.
도 2는, 본 개시에 따른 LTE 시스템에서 무선 프로토콜 구조를 도시한 도면이다.2 is a diagram illustrating a radio protocol structure in an LTE system according to the present disclosure.
도 3a는, 본 개시의 일 실시예에 따른 5G 시스템과 NG-RAN의 구조를 도시한 도면이다.3A is a diagram illustrating structures of a 5G system and an NG-RAN according to an embodiment of the present disclosure.
도 3b는, 본 개시의 일 실시예에 따른 GNB의 구조를 도시한 도면이다.3B is a diagram illustrating the structure of a GNB according to an embodiment of the present disclosure.
도 4는, 본 개시의 일 실시예에 따른 5G 시스템에서 무선 프로토콜 구조를 도시한 도면이다.4 is a diagram illustrating a radio protocol structure in a 5G system according to an embodiment of the present disclosure.
도 5는, 본 개시의 일 실시예에 따른 EN-DC의 구조를 도시한 도면이다.5 is a diagram illustrating the structure of an EN-DC according to an embodiment of the present disclosure.
도 6a는 본 발명의 제1 실시 예에 따른 EN-DC 동작을 수행하는 단말과 기지국의 동작을 설명한 도면이다. 6A is a diagram illustrating operations of a terminal and a base station performing an EN-DC operation according to the first embodiment of the present invention.
도 6b는 본 발명의 제1 실시 예에 따른 EN-DC 동작을 수행하는 단말과 기지국의 또 다른 동작을 설명한 도면이다.6B is a diagram illustrating another operation of a terminal and a base station performing an EN-DC operation according to the first embodiment of the present invention.
도 7a는 제1 절차를 위한 LTE 재구성 메시지의 구조를 도시한 도면이다. Figure 7a is a diagram showing the structure of the LTE reconfiguration message for the first procedure.
도 7b는 제2 절차를 위한 LTE 재구성 메시지의 구조를 도시한 도면이다. Figure 7b is a diagram showing the structure of the LTE reconfiguration message for the second procedure.
도 7c은 제1 절차를 위한 SGNB ADD ACK 메시지의 구조를 도시한 도면이다.7c is a diagram illustrating the structure of an SGNB ADD ACK message for the first procedure.
도 7d는 제2 절차를 위한 SGNB ADD ACK 메시지의 구조를 도시한 도면이다.7d is a diagram illustrating the structure of an SGNB ADD ACK message for the second procedure.
도 8은 제1 실시 예에 따른 타겟 세컨더리 기지국 중앙 장치의 동작을 설명하기 위한 흐름도이다.8 is a flowchart illustrating an operation of the central apparatus of a target secondary base station according to the first embodiment.
도 9는 제1 실시 예에 따른 단말 동작을 설명하기 위한 흐름도이다. 9 is a flowchart for explaining a terminal operation according to the first embodiment.
도 10는 본 발명을 적용한 단말의 내부 구조를 도시하는 블록도이다. 10 is a block diagram showing the internal structure of a terminal to which the present invention is applied.
도 11은 본 발명을 적용한 기지국의 내부 구조를 도시하는 블록도이다.11 is a block diagram showing the internal structure of a base station to which the present invention is applied.
이하, 본 발명의 실시예를 첨부한 도면과 함께 상세히 설명한다. 또한 본 발명을 설명함에 있어서 관련된 공지 기능 혹은 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단된 경우 그 상세한 설명은 생략한다. 그리고 후술되는 용어들은 본 발명에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례 등에 따라 달라질 수 있다. 그러므로 그 정의는 본 명세서 전반에 걸친 내용을 토대 로 내려져야 할 것이다.Hereinafter, embodiments of the present invention will be described in detail with accompanying drawings. In addition, in describing the present invention, if it is determined that a detailed description of a related known function or configuration may unnecessarily obscure the subject matter of the present invention, the detailed description will be omitted. In addition, terms to be described later are terms defined in consideration of functions in the present invention, which may vary according to the intention or custom of a user or operator. Therefore, the definition will have to be made based on the contents throughout this specification.
이하 설명에서 사용되는 접속 노드(node)를 식별하기 위한 용어, 망 객체(network entity)들을 지칭하는 용어, 메시지들을 지칭하는 용어, 망 객체들 간 인터페이스를 지칭하는 용어, 다양한 식별 정보들을 지칭하는 용어 등은 설명의 편의를 위해 예시된 것이다. 따라서, 본 발명이 후술되는 용어들에 한정되는 것은 아니며, 동등한 기술적 의미를 가지는 대상을 지칭하는 다른 용어가 사용될 수 있다. A term used in the following description to identify a connection node, a term referring to network entities, a term referring to messages, a term referring to an interface between network entities, and a term referring to various types of identification information. Etc. are illustrated for convenience of description. Therefore, the present invention is not limited to the terms described below, and other terms indicating objects having equivalent technical meanings may be used.
이하 설명의 편의를 위하여, 본 발명은 현재 존재하는 통신표준 가운데 가장 최신의 표준인 3GPP (3rd Generation Partnership Project) 규격에서 정의하고 있는 용어 및 명칭들을 사용한다. 하지만, 본 발명이 상기 용어 및 명칭들에 의해 한정되는 것은 아니며, 다른 규격에 따르는 시스템에도 동일하 게 적용될 수 있다. For convenience of description below, the present invention uses terms and names defined in the 3rd Generation Partnership Project (3GPP) standard, which is the most up-to-date among existing communication standards. However, the present invention is not limited by the above terms and names, and may be equally applied to systems conforming to other standards.
표 1에 본 발명에서 사용되는 약어들을 나열하였다. Table 1 lists the abbreviations used in the present invention.
AcronymAcronym Full namefull name AcronymAcronym Full namefull name
5GC5GC 5G Core Network5G Core Network NG-RANNG-RAN NG Radio Access NetworkNG Radio Access Network
5GS5GS 5G System5G System NRNR NR Radio AccessNR Radio Access
5QI5QI 5G QoS Identifier5G QoS Identifier NR-DCNR-DC NR-NR Dual ConnectivityNR-NR Dual Connectivity
ACKACK AcknowledgementAcknowledgment PBRPBR Prioritised Bit RatePrioritized Bit Rate
AMFAMF Access and Mobility Management FunctionAccess and Mobility Management Function PCCPCC Primary Component CarrierPrimary Component Carrier
ARQARQ Automatic Repeat RequestAutomatic Repeat Request PCellPCell Primary CellPrimary Cell
ASAS Access StratumAccess Stratum PCIPCI Physical Cell IdentifierPhysical Cell Identifier
ASN.1ASN.1 Abstract Syntax Notation OneAbstract Syntax Notation One PDCCHPDCCH Physical Downlink Control ChannelPhysical Downlink Control Channel
BSRBSR Buffer Status ReportBuffer Status Report PDCPPDCP Packet Data Convergence ProtocolPacket Data Convergence Protocol
BWPBWP Bandwidth PartBandwidth Part PDSCHPDSCH Physical Downlink Shared ChannelPhysical Downlink Shared Channel
CACA Carrier AggregationCarrier Aggregation PDUPDUs Protocol Data UnitProtocol Data Unit
CAGCAG Closed Access GroupClosed Access Group PLMNPLMN Public Land Mobile NetworkPublic Land Mobile Network
CAG-IDCAG-ID Closed Access Group IdentifierClosed Access Group Identifier PRACHPRACH Physical Random Access ChannelPhysical Random Access Channel
CGCG Cell GroupCell Group PRBPRB Physical Resource BlockPhysical Resource Block
CHOCHO Conditional HandoverConditional Handover PSCellPSCell Primary SCG CellPrimary SCG Cell
CIFCIF Carrier Indicator FieldCarrier Indicator Field PSSPSS Primary Synchronisation SignalPrimary Synchronization Signal
CORESETCORESET Control Resource SetControl Resource Set PUCCHPUCCH Physical Uplink Control ChannelPhysical Uplink Control Channel
CPCCPC Conditional PSCell ChangeConditional PSCell Change PUSCHPUSCH Physical Uplink Shared ChannelPhysical Uplink Shared Channel
CQICQI Channel Quality IndicatorChannel Quality Indicator PWSPWS Public Warning SystemPublic Warning System
C-RNTIC-RNTI Cell RNTICell RNTI QFIQFI QoS Flow IDQoS Flow ID
CSICSI Channel State InformationChannel State Information QoEQoE Quality of ExperienceQuality of Experience
DCDC Dual ConnectivityDual Connectivity QoSQoS Quality of ServiceQuality of Service
DCIDCI Downlink Control InformationDownlink Control Information RACHRACH Random Access ChannelRandom Access Channel
DRBDRB (user) Data Radio Bearer(user) Data Radio Bearer RANRAN Radio Access NetworkRadio Access Network
DRXDRX Discontinuous ReceptionDiscontinuous Reception RA-RNTIRA-RNTI Random Access RNTIRandom Access RNTI
ECGIECGI E-UTRAN Cell Global IdentifierE-UTRAN Cell Global Identifier RATRAT Radio Access TechnologyRadio Access Technology
eNBeNB E-UTRAN NodeBE-UTRAN NodeB RBRB Radio BearerRadio Bearer
EN-DCEN-DC E-UTRA-NR Dual ConnectivityE-UTRA-NR Dual Connectivity RLCRLC Radio Link ControlRadio Link Control
EPCEPC Evolved Packet CoreEvolved Packet Core RNARNA RAN-based Notification AreaRAN-based Notification Area
EPSEPS Evolved Packet SystemEvolved Packet System RNAURNAU RAN-based Notification Area UpdateRAN-based Notification Area Update
E-RABE-RAB E-UTRAN Radio Access BearerE-UTRAN Radio Access Bearer RNTIRNTI Radio Network Temporary IdentifierRadio Network Temporary Identifier
ETWSETWS Earthquake and Tsunami Warning SystemEarthquake and Tsunami Warning System RRCRRC Radio Resource ControlRadio Resource Control
E-UTRAE-UTRA Evolved Universal Terrestrial Radio AccessEvolved Universal Terrestrial Radio Access RRMRRM Radio Resource ManagementRadio Resource Management
E-UTRANE-UTRAN Evolved Universal Terrestrial Radio Access NetworkEvolved Universal Terrestrial Radio Access Network RSRPRSRP Reference Signal Received PowerReference Signal Received Power
FDDFDD Frequency Division DuplexFrequency Division Duplex RSRQRSRQ Reference Signal Received QualityReference Signal Received Quality
FDMFDM Frequency Division MultiplexingFrequency Division Multiplexing RSSIRSSI Received Signal Strength IndicatorReceived Signal Strength Indicator
GBRGBR Guaranteed Bit RateGuaranteed Bit Rate SCCSCC Secondary Component CarrierSecondary Component Carrier
HARQHARQ Hybrid Automatic Repeat RequestHybrid Automatic Repeat Request SCellSCell Secondary CellSecondary Cell
HPLMNHPLMN Home Public Land Mobile NetworkHome Public Land Mobile Network SCGSCG Secondary Cell GroupSecondary Cell Group
IDCIDC In-Device CoexistenceIn-Device Coexistence SCSSCS Subcarrier SpacingSubcarrier Spacing
IEIE Information elementInformation element SDAPSDAP Service Data Adaptation ProtocolService Data Adaptation Protocol
IMSIIMSI International Mobile Subscriber IdentityInternational Mobile Subscriber Identity SDUSDU Service Data UnitService Data Unit
KPASKPAS Korean Public Alert SystemKorean Public Alert System SeNBSeNB Secondary eNBSecondary eNBs
L1L1 Layer 1Layer 1 SFNSFN System Frame NumberSystem Frame Number
L2L2 Layer 2Layer 2 S-GWS-GW Serving GatewayServing Gateway
L3L3 Layer 3Layer 3 SISI System InformationSystem Information
LCGLCG Logical Channel GroupLogical Channel Group SIBSIB System Information BlockSystem Information Block
MACMAC Medium Access ControlMedium Access Control (S-/T-) SN(S-/T-)SN (Source/Target) Secondary Node(Source/Target) Secondary Node
MBRMBR Maximum Bit RateMaximum Bit Rate SpCellSpCell Special CellSpecial Cell
MCGMCG Master Cell GroupMaster Cell Group SRBSRB Signalling Radio BearerSignaling Radio Bearer
MCSMCS Modulation and Coding SchemeModulation and Coding Schemes SRSSRS Sounding Reference SignalSounding Reference Signal
MeNBMeNB Master eNBMaster eNB SSBSSB SS/PBCH blockSS/PBCH block
MIBMIB Master Information BlockMaster Information Block SSSSSS Secondary Synchronisation SignalSecondary Synchronization Signal
MIMOMIMO Multiple Input Multiple OutputMultiple Input Multiple Output SULSUL Supplementary UplinkSupplementary Uplinks
MMEMME Mobility Management EntityMobility Management Entity TDDTDD Time Division DuplexTime Division Duplex
MNMN Master NodeMaster Node TDMTDM Time Division MultiplexingTime Division Multiplexing
MR-DCMR-DC Multi-Radio Dual ConnectivityMulti-Radio Dual Connectivity TRPTRP Transmit/Receive PointTransmit/Receive Point
NASNAS Non-Access StratumNon-Access Stratum UCIUCI Uplink Control InformationUplink Control Information
NCGINCGI NR Cell Global IdentifierNR Cell Global Identifier UEUE User EquipmentUser Equipment
NE-DCNE-DC NR-E-UTRA Dual ConnectivityNR-E-UTRA Dual Connectivity UL-SCHUL-SCH Uplink Shared ChannelUplink Shared Channel
NGEN-DCNGEN-DC NG-RAN E-UTRA-NR Dual ConnectivityNG-RAN E-UTRA-NR Dual Connectivity UPFUPF User Plane FunctionUser Plane Function
표 2에 본 발명에서 빈번하게 사용되는 용어들을 정의하였다. Table 2 defines terms frequently used in the present invention.
TerminologyTerminology DefinitionDefinition
CellCell combination of downlink and optionally uplink resources. The linking between the carrier frequency of the downlink resources and the carrier frequency of the uplink resources is indicated in the system information transmitted on the downlink resources.combination of downlink and optionally uplink resources. The linking between the carrier frequency of the downlink resources and the carrier frequency of the uplink resources is indicated in the system information transmitted on the downlink resources.
Global cell identityGlobal cell identity An identity to uniquely identifying an NR cell. It is consisted of cellIdentity and plmn-Identity of the first PLMN-Identity in plmn-IdentityList in SIB1.An identity to uniquely identify an NR cell. It is consisted of cellIdentity and plmn-Identity of the first PLMN-Identity in plmn-IdentityList in SIB1.
gNBgNB node providing NR user plane and control plane protocol terminations towards the UE, and connected via the NG interface to the 5GC.node providing NR user plane and control plane protocol terminations towards the UE, and connected via the NG interface to the 5GC.
Information elementInformation element A structural element containing single or multiple fields is referred as information element.A structural element containing single or multiple fields is referred as information element.
NRNR NR radio accessNR radio access
PCellPCell SpCell of a master cell group.SpCell of a master cell group.
Primary SCG CellPrimary SCG Cell For dual connectivity operation, the SCG cell in which the UE performs random access when performing the Reconfiguration with Sync procedure.For dual connectivity operation, the SCG cell in which the UE performs random access when performing the Reconfiguration with Sync procedure.
Serving CellServing Cell For a UE in RRC_CONNECTED not configured with CA/DC there is only one serving cell comprising of the primary cell. For a UE in RRC_CONNECTED configured with CA/ DC the term 'serving cells' is used to denote the set of cells comprising of the Special Cell(s) and all secondary cells.For a UE in RRC_CONNECTED not configured with CA/DC there is only one serving cell comprising of the primary cell. For a UE in RRC_CONNECTED configured with CA/ DC the term 'serving cells' is used to denote the set of cells comprising of the Special Cell(s) and all secondary cells.
SpCellSpCell primary cell of a master or secondary cell group.primary cell of a master or secondary cell group.
Cell GroupCell Group in dual connectivity, a group of serving cells associated with either the MeNB or the SeNB.in dual connectivity, a group of serving cells associated with either the MeNB or the SeNB.
En-gNBEn-gNB node providing NR user plane and control plane protocol terminations towards the UE, and acting as Secondary Node in EN-DC.node providing NR user plane and control plane protocol terminations towards the UE, and acting as Secondary Node in EN-DC.
Master Cell GroupMaster Cell Group in MR-DC, a group of serving cells associated with the Master Node, comprising of the SpCell (PCell) and optionally one or more SCells.in MR-DC, a group of serving cells associated with the Master Node, comprising of the SpCell (PCell) and optionally one or more SCells.
Master nodemaster node in MR-DC, the radio access node that provides the control plane connection to the core network. It may be a Master eNB (in EN-DC), a Master ng-eNB (in NGEN-DC) or a Master gNB (in NR-DC and NE-DC).in MR-DC, the radio access node that provides the control plane connection to the core network. It may be a Master eNB (in EN-DC), a Master ng-eNB (in NGEN-DC) or a Master gNB (in NR-DC and NE-DC).
NG-RAN nodeNG-RAN node either a gNB or an ng-eNB.either a gNB or an ng-eNB.
PSCellPSCell SpCell of a secondary cell group.SpCell of a secondary cell group.
Secondary CellSecondary Cell For a UE configured with CA, a cell providing additional radio resources on top of Special Cell.For a UE configured with CA, a cell providing additional radio resources on top of Special Cell.
Secondary Cell GroupSecondary Cell Group in MR-DC, a group of serving cells associated with the Secondary Node, comprising of the SpCell (PSCell) and optionally one or more SCells.in MR-DC, a group of serving cells associated with the Secondary Node, comprising of the SpCell (PSCell) and optionally one or more SCells.
Secondary nodeSecondary node in MR-DC, the radio access node, with no control plane connection to the core network, providing additional resources to the UE. It may be an en-gNB (in EN-DC), a Secondary ng-eNB (in NE-DC) or a Secondary gNB (in NR-DC and NGEN-DC).in MR-DC, the radio access node, with no control plane connection to the core network, providing additional resources to the UE. It may be an en-gNB (in EN-DC), a Secondary ng-eNB (in NE-DC) or a Secondary gNB (in NR-DC and NGEN-DC).
Conditional PSCell ChangeConditional PSCell Change a PSCell change procedure that is executed only when PSCell execution condition(s) are met.a PSCell change procedure that is executed only when PSCell execution condition(s) are met.
gNB Central Unit (gNB-CU)gNB Central Unit (gNB-CU) a logical node hosting RRC, SDAP and PDCP protocols of the gNB or RRC and PDCP protocols of the en-gNB that controls the operation of one or more gNB-DUs. The gNB-CU terminates the F1 interface connected with the gNB-DU. a logical node hosting RRC, SDAP and PDCP protocols of the gNB or RRC and PDCP protocols of the en-gNB that controls the operation of one or more gNB-DUs. The gNB-CU terminates the F1 interface connected with the gNB-DU.
gNB Distributed Unit (gNB-DU)gNB Distributed Unit (gNB-DU) a logical node hosting RLC, MAC and PHY layers of the gNB or en-gNB, and its operation is partly controlled by gNB-CU. One gNB-DU supports one or multiple cells. One cell is supported by only one gNB-DU. The gNB-DU terminates the F1 interface connected with the gNB-CU.a logical node hosting RLC, MAC and PHY layers of the gNB or en-gNB, and its operation is partly controlled by gNB-CU. One gNB-DU supports one or multiple cells. One cell is supported by only one gNB-DU. The gNB-DU terminates the F1 interface connected with the gNB-CU.
E-RABE-RAB An E-RAB uniquely identifies the concatenation of an S1 Bearer and the corresponding Data Radio Bearer. When an E-RAB exists, there is a one-to-one mapping between this E-RAB and an EPS bearer of the Non Access Stratum (NAS) as defined in TS 23.401 [3].An E-RAB uniquely identifies the concatenation of an S1 Bearer and the corresponding Data Radio Bearer. When an E-RAB exists, there is a one-to-one mapping between this E-RAB and an EPS bearer of the Non Access Stratum (NAS) as defined in TS 23.401 [3].
표 3은 본 발명의 각 종 메시지, IE, 용어들의 약어 (Abbreviation)이다. Table 3 is an abbreviation of various messages, IEs, and terms of the present invention.
AbbreviationAbbreviation Message/IE/Terminology Message/IE/Terminology
LTE RECNFLTE RECNF RRCConnectionReconfiguration RRCConnectionReconfiguration
LTE RECNF CMPLTE RECNF CMP RRCConnectionReconfigurationCompleteRRCConnectionReconfigurationComplete
CAPENQCAPENQ UECapabilityEnquiry UECapabilityInquiry
CAPINFCAPINF UECapabilityInformation UECapabilityInformation
NR RECNFNR RECNF RRCReconfiguration RRCReconfiguration
NR RECNF CMPNR RECNF CMP RRCReconfigurationComplete RRCReconfigurationComplete
ULITULIT ULInformationTransferMRDCULInformationTransferMRDC
SGNB ADD REQSGNB ADD REQ SGNB ADDITION REQUESTSGNB ADDITION REQUEST
SGNB ADD ACKSGNB ADD ACK SGNB ADDITION REQUEST ACKNOWLEDGESGNB ADDITION REQUEST ACKNOWLEDGE
SGNB REL REQSGNB REL REQ SGNB RELEASE REQUESTSGNB RELEASE REQUEST
SGNB REL ACKSGNB REL ACK SGNB RELEASE REQUEST ACKNOWLEDGESGNB RELEASE REQUEST ACKNOWLEDGE
SGNB RECNF CMPSGNB RECNF CMP SGNB RECONFIGURATION COMPLETESGNB RECONFIGURATION COMPLETE
CON SET REQCON SET REQ UE CONTEXT SETUP REQUESTUE CONTEXT SETUP REQUEST
CON SET RESCON SET RES UE CONTEXT SETUP RESPONEUE CONTEXT SETUP RESPONE
SN STA TRASN STA TRA SN STATUS TRANSFERSN STATUS TRANSFER
Transaction IDTransaction ID rrc-TransactionIdentifierrrc-TransactionIdentifier
TCSPCELLTCSPCELL Target Candidate SpCellTarget Candidate SpCell
CRIDCRID CondReconfigurationIdCondReconfigurationId
표 4는 본 발명에서 사용된 주요 기술 용어들의 설명이다.Table 4 is a description of the main technical terms used in the present invention.
TerminologyTerminology Definition Definition
PSCell 변경PSCell change 현재 PSCell이 새로운 PSCell로 변경되는 것을 의미하며, 동일한 SN 내에서 PSCell이 변경되는 것과 SN 간에 PSCell이 변경되는 것을 포괄한다. 또한 PSCell이 추가되는 것 역시 PSCell 변경으로 볼 수 있다.This means that the current PSCell is changed to a new PSCell, and includes a change of the PSCell within the same SN and a change of the PSCell between SNs. In addition, the addition of a PSCell can also be seen as a PSCell change.
CG-ConfigInfo IECG-ConfigInfo IE MN이 SN에게, 혹은 CU가 DU에게 전달하며 아래 정보들로 구성된다.l 단말의 성능 정보 (ue-CapabilityInfo)
l 서빙 셀로 추가될 수 있는 후보 셀들의 측정 결과 (MeasResultList2NR)
l MCG의 DRX 정보 등
It is transmitted from the MN to the SN or from the CU to the DU and consists of the following information. l Capability information of the UE (ue-CapabilityInfo)
l Measurement results of candidate cells that can be added as serving cells (MeasResultList2NR)
l MCG's DRX information, etc.
CG-Config IECG-Config IE SN이 MN에게, 혹은 CU가 DU에게 전달하며 아래 정보들로 구성된다
l SCG 설정 정보를 담고 있는 NR RRCReconfiguration 메시지. MN은 상기 RRCReconfiguration 메시지를 가공하지 않고 단말에게 그대로 전달한다.
l SCG 베어러와 관련된 정보. 상기 베어러에서 사용될 보안 키를 지정하는 정보등을 포함한다.
l SCG의 DRX 설정 정보
l PSCell의 중심 주파수를 지시하는 ARFCN 정보
SN delivers to MN or CU to DU and consists of the following information
l NR RRCReconfiguration message containing SCG configuration information. The MN transmits the RRCReconfiguration message to the UE as it is without processing it.
l Information related to the SCG bearer. It includes information specifying a security key to be used in the bearer.
l DRX setting information of SCG
l ARFCN information indicating the center frequency of PSCell
measConfigmeasConfig MN과 SN이 독립적으로 설정하는 측정 관련 정보이다. 적어도 하나 이상의 측정 대상 정보 (MeasObject), 적어도 하나 이상의 보고 설정 정보 (ReportConfig), 적어도 하나 이상의 측정식별자(MeasId)로 구성된다. 측정 대상 정보와 보고 설정 정보는 각 각 MeasObjectId와 ReportConfigId로 식별되며, MeasId는 하나의 MeasObjectId와 하나의 ReportConfigId로 구성된다. MeasId는 관련된 MeasObject에 대해서 측정한 결과가 ReportConfigId에서 설정된 조건에 부합되면 정해진 동작을 수행할 것을 지시하는 정보이다. This is measurement-related information set independently by MN and SN. It is composed of at least one measurement object information (MeasObject), at least one report setting information (ReportConfig), and at least one measurement identifier (MeasId). Measurement target information and report setting information are identified as MeasObjectId and ReportConfigId, respectively, and MeasId consists of one MeasObjectId and one ReportConfigId. MeasId is information instructing to perform a predetermined operation when the measurement result for the related MeasObject meets the condition set in ReportConfigId.
TCSPCELLTCSPCELL 타겟 후보 SpCell을 지칭한다. 제1 절차에서 하나의 타겟 노드에 여러 개의 셀들이 타겟 후보 SpCell들로 설정될 수 있다. TCSPCELL은 단말이 측정해서 기지국에게 측정 결과를 보고한 셀들 중 MN 혹은 S-SN이 선택한 셀일 수 있다. 제1 절차를 통해 TCSPCELL 중 하나가 PSCell이 된다. Indicates the target candidate SpCell. In the first procedure, several cells in one target node may be configured as target candidate SpCells. The TCSPCELL may be a cell selected by the MN or the S-SN from among cells measured by the UE and reporting the measurement result to the BS. Through the first procedure, one of the TCSPCELLs becomes a PSCell.
도 1는, 본 개시의 일 실시예에 따른 LTE 시스템과 E-UTRAN의 구조를 도시한 도면이다.E-UTRAN (101)은 E-UTRA 사용자 평면 (PDCP/RLC/MAC/PHY) 및 제어 평면 (RRC)을 UE에게 제공하는 ENB (102, 103, 104)로 구성된다. ENB는 X2 인터페이스를 통해 서로 상호 연결된다. ENB는 S1 인터페이스를 통해 MME (Mobility Management Entity) (105)/S-GW (Serving-Gateway) (106)와 연결된다. S1 인터페이스는 MME/S-GW와 ENB 사이에 다대다 관계를 지원한다. MME(105) 및 S-GW(106)는 하나의 물리적 노드 또는 별개의 물리적 노드로 구성될 수 있다. 1 is a diagram illustrating the structure of an LTE system and an E-UTRAN according to an embodiment of the present disclosure. The E-UTRAN 101 includes an E-UTRA user plane (PDCP/RLC/MAC/PHY) and a control plane. It consists of ENBs 102, 103, and 104 that provide (RRC) to the UE. ENBs are interconnected with each other via the X2 interface. The ENB is connected to a Mobility Management Entity (MME) 105 / Serving-Gateway (S-GW) 106 through an S1 interface. The S1 interface supports a many-to-many relationship between MME/S-GW and ENB. MME 105 and S-GW 106 may be configured as one physical node or separate physical nodes.
eNB (102, 103, 104)는 아래에 나열된 기능을 호스팅한다. The eNBs 102, 103, 104 host the functions listed below.
라디오 리소스 관리를 위한 기능: 라디오 베어러 제어, 라디오 입학 제어, 연결 이동성 제어, 업링크, 다운 링크 및 사이드 링크 (일정)에서 UEs에게 자원의 동적 할당;Functions for radio resource management: radio bearer control, radio admission control, link mobility control, dynamic allocation of resources to UEs in uplink, downlink and sidelink (constant);
IP 및 이더넷 헤더 압축, 업링크 데이터 감압 및 사용자 데이터 스트림의 암호화IP and Ethernet header compression, uplink data decompression and encryption of user data streams
단말이 제공한 정보로 AMF를 선택할 수 없는 경우 AMF 선택, UPF로 사용자 평면 데이터의 라우팅, 페이징 메시지의 스케줄링 및 전송, (AMF또는 O&M에서 유래한) 방송 정보의 스케줄링 및 전송, 이동성 및 스케줄링을 위한 측정 및 측정 보고 구성, 세션 관리, 데이터 무선 베어러에 대한 QoS 흐름 관리 및 매핑, RRC_INACTIVE 지원, 무선 액세스 네트워크 공유, NR과 E-UTRA 간의 긴밀한 상호 작용, 네트워크 슬라이싱 지원AMF selection when AMF cannot be selected with information provided by the terminal, routing of user plane data to UPF, scheduling and transmission of paging messages, scheduling and transmission of broadcast information (derived from AMF or O&M), for mobility and scheduling Measurement and measurement reporting configuration, session management, QoS flow management and mapping to data radio bearers, RRC_INACTIVE support, radio access network sharing, tight interaction between NR and E-UTRA, network slicing support
MME (105)는 NAS 시그널링, NAS 신호 보안, AS 보안 제어, S-GW 선택, 인증, PWS 메시지 전송 지원 및 위치 관리와 같은 기능을 호스팅한다. MME 105 hosts functions such as NAS signaling, NAS signaling security, AS security control, S-GW selection, authentication, PWS message transmission support and location management.
S-GW (106)는 패킷 라우팅 및 전달, 업링크 및 다운링크의 전송 수준 패킷 마킹, eNB 간 핸드오버를 위한 이동성 앵커링 등의 기능을 호스팅한다. The S-GW 106 hosts functions such as packet routing and forwarding, uplink and downlink transport level packet marking, and mobility anchoring for handover between eNBs.
도 2는, LTE 시스템의 무선 프로토콜 구조를 도시한 도면이다. 2 is a diagram illustrating a radio protocol structure of an LTE system.
사용자 평면 프로토콜 스택은 PDCP (201 내지 202), RLC (203 내지 204), MAC (205 내지 206), PHY (207 내지 208)로 구성된다. 제어 평명 프로토콜 스택은 NAS (209 내지 210), RRC (211 내지 212), PDCP, RLC, MAC, PHY로 구성된다.The user plane protocol stack is composed of PDCP (201 to 202), RLC (203 to 204), MAC (205 to 206), and PHY (207 to 208). The control clearing protocol stack is composed of NAS (209 to 210), RRC (211 to 212), PDCP, RLC, MAC, PHY.
각 프로토콜 부계층은 표 5에 나열된 동작과 관련된 기능을 수행한다. Each protocol sublayer performs functions related to the operations listed in Table 5.
SublayerSublayer FunctionsFunctions
NASNAS 인증, 모빌리티 관리, 보안 제어 등Authentication, mobility management, security control, etc.
RRCRRC 시스템 정보, 페이징, RRC 연결 관리, 보안 기능, 시그널링 무선 베어러 및 데이터 무선 베어러 관리, 모빌리티 관리, QoS 관리, 무선 링크 오류로부터의 복구 감지 및 복구, NAS 메시지 전송 등 System information, paging, RRC connection management, security functions, signaling radio bearer and data radio bearer management, mobility management, QoS management, recovery from radio link failure detection and recovery, NAS message transmission, etc.
PDCPPDCP 데이터 전송, 헤더 압축 및 복원, 암호화 및 복호화, 무결성 보호 및 무결성 검증, 중복 전송, 순서 조정 및 순서 맞춤 전달 등Data transmission, header compression and decompression, encryption and decryption, integrity protection and integrity verification, redundant transmission, ordering and out-of-order delivery, etc.
RLCRLC 상위 계층 PDU 전송, ARQ를 통한 오류 수정, RLC SDU의 연접/분할/재조립, RLC data PDU의 재조립, RLC 재설립 등Upper layer PDU transmission, error correction through ARQ, RLC SDU concatenation/division/reassembly, RLC data PDU reassembly, RLC re-establishment, etc.
MACMAC 논리 채널과 전송 채널 간의 매핑, 물리 계층에서 전달되는 전송 블록(TB)에서 하나 또는 다른 논리 채널에 속하는 MAC SDU들을 다중화/역다중화, 정보 보고 일정, UE 간의 우선 순위 처리, 단일 UE 논리적 채널 간의 우선 순위 처리 등Mapping between logical channels and transport channels, multiplexing/demultiplexing MAC SDUs belonging to one or another logical channel in a transport block (TB) carried in the physical layer, information reporting schedule, priority processing between UEs, priority between single UE logical channels ranking processing, etc.
PHYPHY 채널 코딩, 물리적 계층 하이브리드-ARQ 처리, 레이트 매칭, 스크램블링, 변조, 레이어 매핑, 다운링크 제어 정보, 업링크 제어 정보 등Channel coding, physical layer hybrid-ARQ processing, rate matching, scrambling, modulation, layer mapping, downlink control information, uplink control information, etc.
도 3a는, 본 개시의 일 실시예에 따른 5G 시스템과 NG-RAN의 구조를 도시한 도면이다. 5G시스템은 NG-RAN (301)과 5GC (302)로 구성된다. NG-RAN 노드는 아래 둘 중 하나이다.3A is a diagram illustrating structures of a 5G system and an NG-RAN according to an embodiment of the present disclosure. The 5G system consists of NG-RAN (301) and 5GC (302). An NG-RAN node is one of the two below.
NR 사용자 평면 및 제어 평면을 UE쪽으로 제공하는 gNB; 또는gNB providing NR user plane and control plane towards UE; or
E-UTRA 사용자 평면 및 제어 평면을 UE쪽으로 제공하는 ng-eNB.ng-eNB providing E-UTRA user plane and control plane towards UE.
gNB (305 내지 306)와 ng-eNB(303 내지 304)는 Xn 인터페이스를 통해 상호 연결된다. gNB 및 ng-eNB는 NG 인터페이스를 통해 AMF (Access and Mobility Management Function) (307) 및 UPF (User Plane Function)(308)에 연결된다. AMF (307)와 UPF (308)는 하나의 물리적 노드 또는 별개의 물리적 노드로 구성될 수 있다. The gNBs 305 to 306 and the ng-eNBs 303 to 304 are interconnected through an Xn interface. The gNB and ng-eNB are connected to an Access and Mobility Management Function (AMF) 307 and a User Plane Function (UPF) 308 through an NG interface. AMF 307 and UPF 308 may be configured as one physical node or separate physical nodes.
gNB (305 내지 306)와 ng-eNB (303 내지 304)는 아래에 나열된 기능을 호스팅한다. gNBs 305 to 306 and ng-eNBs 303 to 304 host the functions listed below.
라디오 리소스 관리를 위한 기능: 라디오 베어러 제어, 라디오 입학 제어, 연결 이동성 제어, 업링크, 다운 링크 및 사이드 링크 (일정)에서 UEs에게 자원의 동적 할당;Functions for radio resource management: radio bearer control, radio admission control, link mobility control, dynamic allocation of resources to UEs in uplink, downlink and sidelink (constant);
IP 및 이더넷 헤더 압축, 업링크 데이터 감압 및 사용자 데이터 스트림의 암호화IP and Ethernet header compression, uplink data decompression and encryption of user data streams
단말이 제공한 정보로 AMF를 선택할 수 없는 경우 AMF 선택, UPF로 사용자 평면 데이터의 라우팅, 페이징 메시지의 스케줄링 및 전송, (AMF또는 O&M에서 유래한) 방송 정보의 스케줄링 및 전송, 이동성 및 스케줄링을 위한 측정 및 측정 보고 구성, 세션 관리, 데이터 무선 베어러에 대한 QoS 흐름 관리 및 매핑, RRC_INACTIVE 지원, 무선 액세스 네트워크 공유, NR과 E-UTRA 간의 긴밀한 상호 작용, 네트워크 슬라이싱 지원AMF selection when AMF cannot be selected with information provided by the terminal, routing of user plane data to UPF, scheduling and transmission of paging messages, scheduling and transmission of broadcast information (derived from AMF or O&M), for mobility and scheduling Measurement and measurement reporting configuration, session management, QoS flow management and mapping to data radio bearers, RRC_INACTIVE support, radio access network sharing, tight interaction between NR and E-UTRA, network slicing support
AMF (307)는 NAS 시그널링, NAS 신호 보안, AS 보안 제어, S-GW 선택, 인증, 이동성 관리 및 위치 관리와 같은 기능을 호스팅한다. AMF 307 hosts functions such as NAS signaling, NAS signal security, AS security control, S-GW selection, authentication, mobility management and location management.
UPF (308)는 패킷 라우팅 및 전달, 업링크 및 다운링크의 전송 수준 패킷 마킹, QoS 관리, 이동성을 위한 이동성 앵커링 등의 기능을 호스팅한다. UPF 308 hosts functions such as packet routing and forwarding, transport level packet marking on the uplink and downlink, QoS management, and mobility anchoring for mobility.
도 3b는, 본 개시의 일 실시예에 따른 GNB의 구조를 도시한 도면이다.3B is a diagram illustrating the structure of a GNB according to an embodiment of the present disclosure.
gNB (311 내지 312)는 하나의 gNB-CU (313) 및 하나 이상의 gNB-DU (314 내지 315)로 구성될 수 있다. gNB-CU와 gNB-DU는 F1 인터페이스를 통해 연결된다. 하나의 gNB-DU는 하나의 gNB-CU에만 연결된다. gNB-CU는 RRC, SDAP, PDCP 프로토콜 부계층을 제공하고 gNB-DU는 RLC, MAC, PHY 프로토콜 부계층을 제공한다.The gNBs 311 to 312 may include one gNB-CU 313 and one or more gNB-DUs 314 to 315. The gNB-CU and gNB-DU are connected through the F1 interface. One gNB-DU is connected only to one gNB-CU. The gNB-CU provides RRC, SDAP, and PDCP protocol sublayers, and the gNB-DU provides RLC, MAC, and PHY protocol sublayers.
도 4는, 5G 시스템의 무선 프로토콜 구조를 도시한 도면이다. 4 is a diagram illustrating a radio protocol structure of a 5G system.
사용자 평면 프로토콜 스택은 SDAP (401 내지 402), PDCP (403 내지 404), RLC (405 내지 406), MAC (407 내지 408), PHY (409 내지 410)로 구성된다. 제어 평명 프로토콜 스택은 NAS (411 내지 412), RRC (413 내지 414), PDCP, RLC, MAC, PHY로 구성된다.The user plane protocol stack is composed of SDAP (401 to 402), PDCP (403 to 404), RLC (405 to 406), MAC (407 to 408), and PHY (409 to 410). The control clearing protocol stack is composed of NAS (411 to 412), RRC (413 to 414), PDCP, RLC, MAC, PHY.
각 프로토콜 부계층은 표 8에 나열된 동작과 관련된 기능을 수행한다. Each protocol sublayer performs functions related to the operations listed in Table 8.
SublayerSublayer FunctionsFunctions
NASNAS 인증, 모빌리티 관리, 보안 제어 등Authentication, mobility management, security control, etc.
RRCRRC 시스템 정보, 페이징, RRC 연결 관리, 보안 기능, 시그널링 무선 베어러 및 데이터 무선 베어러 관리, 모빌리티 관리, QoS 관리, 무선 링크 오류로부터의 복구 감지 및 복구, NAS 메시지 전송 등 System information, paging, RRC connection management, security functions, signaling radio bearer and data radio bearer management, mobility management, QoS management, recovery from radio link failure detection and recovery, NAS message transmission, etc.
SDAPSDAP QoS 플로우와 데이터 무선 베어러 간의 매핑, DL 및 UL 패킷의 QoS 플로우 ID(QFI) 마킹.Mapping between QoS flows and data radio bearers, QoS flow ID (QFI) marking of DL and UL packets.
PDCPPDCP 데이터 전송, 헤더 압축 및 복원, 암호화 및 복호화, 무결성 보호 및 무결성 검증, 중복 전송, 순서 조정 및 순서 맞춤 전달 등Data transmission, header compression and decompression, encryption and decryption, integrity protection and integrity verification, redundant transmission, ordering and out-of-order delivery, etc.
RLCRLC 상위 계층PDU 전송, ARQ를 통한 오류 수정, RLC SDU의 분할 및 재분할, SDU의 재조립, RLC 재설립 등Higher layer PDU transmission, error correction through ARQ, RLC SDU division and re-division, SDU reassembly, RLC re-establishment, etc.
MACMAC 논리 채널과 전송 채널 간의 매핑, 물리 계층에서 전달되는 전송 블록(TB)에서 하나 또는 다른 논리 채널에 속하는 MAC SDU들을 다중화/역다중화, 정보 보고 일정, UE 간의 우선 순위 처리, 단일 UE 논리적 채널 간의 우선 순위 처리 등Mapping between logical channels and transport channels, multiplexing/demultiplexing MAC SDUs belonging to one or another logical channel in a transport block (TB) carried in the physical layer, information reporting schedule, priority processing between UEs, priority between single UE logical channels ranking processing, etc.
PHYPHY 채널 코딩, 물리적 계층 하이브리드-ARQ 처리, 레이트 매칭, 스크램블링, 변조, 레이어 매핑, 다운링크 제어 정보, 업링크 제어 정보 등Channel coding, physical layer hybrid-ARQ processing, rate matching, scrambling, modulation, layer mapping, downlink control information, uplink control information, etc.
도 5는, 본 개시의 일 실시예에 따른 EN-DC의 구조를 도시한 도면이다.E-UTRAN은 E-UTRA-NR 듀얼 커넥티비티 (EN-DC)를 통해 MR-DC를 지원하며, UE는 MN 역할을 하는 하나의 eNB (501 내지 502), SN 역할을 하는 하나의 en-gNB (503 내지 504)에 연결된다. eNB (501 내지 502)는 S1 인터페이스를 통해 EPC (505)와 연결되고 X2 인터페이스를 통해 en-gNB (503 내지 504)에 연결된다. en-gNB (503 내지 504)는 X2-U 인터페이스를 통해 S1-U 인터페이스 및 다른 en-gNB를 통해 EPC (505)에 연결될 수도 있다.5 is a diagram showing the structure of EN-DC according to an embodiment of the present disclosure. E-UTRAN supports MR-DC through E-UTRA-NR dual connectivity (EN-DC), and the UE It is connected to one eNB (501 to 502) serving as an MN and one en-gNB (503 to 504) serving as an SN. The eNBs 501 to 502 are connected to the EPC 505 through an S1 interface and connected to the en-gNBs 503 to 504 through an X2 interface. The en-gNBs 503 - 504 may be connected to the EPC 505 via the S1-U interface and another en-gNB via the X2-U interface.
앞으로 상당 기간 LTE와 NR은 공존할 것으로 예상된다. 한 사업자가 LTE와 NR을 모두 가지고 있는 경우도 드물지 않을 것이다. 이 경우 단말이 LTE와 NR에서 동시에 데이터를 송수신한다면, 단말은 NR을 통해 높은 전송 속도를 제공받고, LTE를 통해 RRC 연결을 안정적으로 유지할 수 있다. EN-DC가 설정되면 단말은 LTE와 NR을 통해 데이터를 송수신할 수 있다. LTE and NR are expected to coexist for a considerable period of time in the future. It will not be uncommon for one operator to have both LTE and NR. In this case, if the terminal simultaneously transmits and receives data in LTE and NR, the terminal can receive a high transmission rate through NR and stably maintain an RRC connection through LTE. When EN-DC is set, the terminal can transmit and receive data through LTE and NR.
EN-DC로 동작할 때, NR의 커버리지가 협소해서 SN의 잦은 교체가 필요하다. SN 변경 절차는 필연적으로 PSCell의 변경을 요하기 때문에 PSCell 변경 절차라고도 한다. PSCell 변경 절차는 일반적으로 MN이나 S-SN이 변경 필요성을 인지하고 T-SN이 새로운 PSCell의 설정 정보를 결정하고, MN이 단말에게 상기 새로운 PSCell의 설정 정보를 알려주는 과정으로 구성된다. 단말의 상황에 따라 PSCell 설정 정보가 주어지면 즉각적으로 PSCell을 변경해야 할 경우도 있고, 소정의 조건이 충족되면 PSCell을 변경하는 것이 바람직한 경우도 있다. 본 발명에서는 후자를 제1 재구성 (혹은 조건부 재구성), 전자를 제2 재구성 (혹은 즉각적 재구성)으로 명명한다. 본 발명에서는 제1 재구성과 제2 재구성을 수행하는 단말과 기지국의 동작을 제시한다. When operating as an EN-DC, frequent replacement of SNs is required because the coverage of NRs is narrow. Since the SN change procedure inevitably requires a change of the PSCell, it is also referred to as a PSCell change procedure. The PSCell change procedure generally consists of a process in which the MN or S-SN recognizes the need for change, the T-SN determines configuration information of the new PSCell, and the MN informs the UE of the configuration information of the new PSCell. Depending on the situation of the terminal, there are cases where the PSCell needs to be changed immediately when the PSCell configuration information is given, and there are cases where it is desirable to change the PSCell when a predetermined condition is met. In the present invention, the latter is referred to as first reconstruction (or conditional reconstruction), and the former is referred to as second reconstruction (or immediate reconstruction). In the present invention, operations of a terminal and a base station performing first and second reconfiguration are presented.
도 6a는 본 발명의 제1 실시 예에 따른 제2 절차를 수행하는 단말과 기지국의 동작을 설명하기 도면이다. 6A is a diagram for explaining operations of a terminal and a base station performing a second procedure according to the first embodiment of the present invention.
606단계에서 S-SN GNB-CU(603)는 제2절차를 통해 소정의 단말의 SN을 변경하기로 결정한다. 상기 결정은 단말이 보고한 측정 결과, 기지국의 부하, 무선 자원 관리 정책 등을 토대로 내려질 수 있다. S-SN GNB-CU는 MN(602)으로 SGNB CHA REQ(606)를 전송해서 절차를 개시한다. SGNB CHA REQ는 아래 정보를 포함한다. In step 606, the S-SN GNB-CU 603 determines to change the SN of a predetermined terminal through the second procedure. The determination may be made based on a measurement result reported by the terminal, a load of the base station, a radio resource management policy, and the like. The S-SN GNB-CU initiates the procedure by sending an SGNB CHA REQ (606) to the MN (602). SGNB CHA REQ includes the following information.
타겟 노드 식별자 정보: 타겟 노드의 en-gNB IDTarget node identifier information: en-gNB ID of the target node
셀그룹 설정 정보 CG-ConfigInfo를 담은 컨테이너: CG-ConfigInfo는 S-SN에서 단말에게 적용한 설정 정보 등을 포함한다. Container containing cell group configuration information CG-ConfigInfo: CG-ConfigInfo includes configuration information applied to the UE by the S-SN.
608 단계에서 MN은 SGNB CHA REQ 메시지의 정보를 바탕으로 SGNB ADD REQ를 생성해서 타겟 노드 식별자 정보에서 지시된 T-SN GNB-CU(604)로 전송한다. SGNB ADD REQ는 아래 정보를 포함한다. In step 608, the MN generates an SGNB ADD REQ based on the information of the SGNB CHA REQ message and transmits it to the T-SN GNB-CU 604 indicated in the target node identifier information. The SGNB ADD REQ includes the following information.
MeNB Cell ID: PCell의 ECGI. 이 정보를 T-SN은 MeNB Cell 주변의 셀들을 SpCell로 고려한다. MeNB Cell ID: PCell's ECGI. With this information, the T-SN considers cells around the MeNB Cell as SpCells.
SGNB Addition Trigger Indication: SN change, inter-eNB HO, intra-eNB HO 중 하나를 지시하는 IE.SGNB Addition Trigger Indication: IE indicating one of SN change, inter-eNB HO, and intra-eNB HO.
CG-ConfigInfo를 담은 컨테이너 Container containing CG-ConfigInfo
데이터 무선 베어러 설정 관련 정보: 설정되어야 할 무선 베어러에 대한 정보. T-SN의 호 수락 제어에 사용될 수 있음.Information related to data radio bearer setup: Information about the radio bearer to be setup. Can be used for T-SN's call admission control.
최대 전송 속도 관련 정보: 해당 호의 예상 최대 데이터 레이트. T-SN의 호 수락 제어에 사용될 수 있음.Information about the maximum transmission rate: the expected maximum data rate for the call. Can be used for T-SN's call admission control.
상기 정보를 수신한 T-SN GNB-CU는, 상기 단말에 대한 SGNB 추가 요청을 수락할지 결정한다. 수락한다면 상기 단말의 베어러들 중 어떤 베어러를 수락할지 결정한다. 그리고 수락한 베어러 별로 PDCP 설정 정보 등을 결정한다. Upon receiving the information, the T-SN GNB-CU determines whether to accept the SGNB addition request for the UE. If accepted, it is determined which bearer to accept among the bearers of the UE. Then, PDCP configuration information is determined for each accepted bearer.
611 단계에서 T-SN GNB-CU는 T-SN GNB-DU(605)에게 CON SET REQ를 전송한다. CON SET REQ는 아래 정보를 포함한다. In step 611, the T-SN GNB-CU transmits CON SET REQ to the T-SN GNB-DU (605). CON SET REQ includes the following information.
SpCell ID: T-SN GNB-CU가 결정한 SpCell의 식별자SpCell ID: Identifier of SpCell determined by T-SN GNB-CU
CG-Config: T-SN GNB-CU가 결정한 베어러 별 PDCP 설정 정보 등 CG-Config: PDCP configuration information for each bearer determined by the T-SN GNB-CU, etc.
CON SET REQ를 수신한 T-SN GNB-DU는 상기 단말의 어떤 베어러에 대한 SN 변경 요청을 수락할지 결정한다. 수락하기로 하였다면 상기 수락한 베어러의 RLC 설정 정보, MAC 설정 정보 등을 결정한다. 그리고 상기 단말에게 적용할 PHY 설정 정보 등을 결정한다. Upon receiving the CON SET REQ, the T-SN GNB-DU determines which bearer of the UE to accept the SN change request. If it is decided to accept, RLC configuration information, MAC configuration information, etc. of the accepted bearer are determined. Then, PHY configuration information to be applied to the terminal is determined.
613 단계에서 T-SN GNB-DU는 T-SN GNB-CU에게 CON SET RES를 전송한다. CON SET RES는 아래 정보를 포함한다. In step 613, the T-SN GNB-DU transmits CON SET RES to the T-SN GNB-CU. CON SET RES includes the following information.
CellGroupConfig: 위의 단계에서 결정한 RLC 설정 정보, MAC 설정 정보 등 각 종 설정 정보. 명칭은 유사하지만 CG-config와 상이한 정보이다. CellGroupConfig: Various setting information such as RLC setting information and MAC setting information determined in the above step. Although the name is similar, it is information different from CG-config.
C-RNTI: 단말이 사용할 C-RNTIC-RNTI: C-RNTI to be used by the terminal
Requested Target Cell ID: CON SET REQ에 포함되었던 SpCell ID. CON SET RES가 CON SET REQ에 대한 응답 메시지임을 나타낸다. Requested Target Cell ID: The SpCell ID that was included in the CON SET REQ. Indicates that CON SET RES is a response message to CON SET REQ.
CON SET RES를 수신한 T-SN GNB-CU는 CellGroupConfig 및 자신이 결정한 각 종 설정 정보를 이용해서 NR RECNF를 생성한다. 그리고 상기 NR RECNF와 MN에게 도움이 될 각종 정보 들을 포함하는 CG-Config를 생성한다. Upon receiving the CON SET RES, the T-SN GNB-CU generates NR RECNF using CellGroupConfig and various configuration information determined by itself. Then, CG-Config including the NR RECNF and various information useful to the MN is created.
615 단계에서 T-SN GNB-CU는 MN으로SGNB ADD ACK을 전송한다. SGNB ADD ACK은 CG-Config를 포함한다. SGNB ADD ACK의 구조는 도7-4에 상술한다.In step 615, the T-SN GNB-CU transmits an SGNB ADD ACK to the MN. SGNB ADD ACK includes CG-Config. The structure of the SGNB ADD ACK is detailed in FIG. 7-4.
SGNB ADD ACK을 수신한 MN은 CG-Config에 포함된 NR RECNF를 포함하는 LTE RECNF를 생성한다. LTE RECNF는 NR RECNF, 제1 Transaction id, 보안키 정보 등이 포함된다. 제2 절차를 위한 LTE RECNF의 구조는 도 7-2에 상술한다.Upon receiving the SGNB ADD ACK, the MN generates LTE RECNF including NR RECNF included in CG-Config. LTE RECNF includes NR RECNF, first Transaction id, security key information, and the like. The structure of LTE RECNF for the second procedure is detailed in FIG. 7-2.
617 단계에서 MN은 UE에게 LTE RECNF를 전송한다. LTE RECNF를 수신한 단말은 LTE RECNF에 포함된 NR RECNF의 정보를 처리해서 어떤 셀에서 랜덤 액세스를 수행해야 할지 그리고 상기 새로운 셀에서 어떤 설정을 적용해야 하는지 등을 인지한다. In step 617, the MN transmits LTE RECNF to the UE. Upon receiving the LTE RECNF, the terminal processes the NR RECNF information included in the LTE RECNF to recognize in which cell random access should be performed and which setting should be applied in the new cell.
619 단계에서 UE는 MN에게 LTE RECNF CMP를 전송한다. LTE RECNF CMP는 제1 Transaction id와 NR RECNF CMP를 포함한다. LTE RECNF CMP를 수신한 MN은 제1 Transaction id를 보고 LTE RECNF CMP가 LTE RECNF에 대한 응답인 것을 인지한다. 그리고 상기 LTE RECNF에 대응되는 CG-Config를 참조해서 MN의 설정을 조정할 수 있다. In step 619, the UE transmits an LTE RECNF CMP to the MN. The LTE RECNF CMP includes a first Transaction id and NR RECNF CMP. Upon receiving the LTE RECNF CMP, the MN sees the first Transaction id and recognizes that the LTE RECNF CMP is a response to the LTE RECNF. In addition, MN settings may be adjusted by referring to CG-Config corresponding to the LTE RECNF.
621 단계에서 MN은 T-SN GNB-CU에게 SGNB REC CMP를 전송한다. SGNB REC CMP를 수신한 T-SN GNB-CU는 단말이 NR RECNF을 수신하였으며 랜덤 액세스 과정을 개시할 것임을 인지한다. In step 621, the MN transmits the SGNB REC CMP to the T-SN GNB-CU. Upon receiving the SGNB REC CMP, the T-SN GNB-CU recognizes that the UE has received NR RECNF and will initiate a random access procedure.
623 단계에서 MN은 S-SN GNB-CU에게 SGNB CHA CNF을 전송한다. SGNB CHA CNF를 수신한 S-SN GNB-CU는 SN 상태 전송 절차와 데이터 포워딩을 개시할 수 있다. In step 623, the MN transmits the SGNB CHA CNF to the S-SN GNB-CU. Upon receiving the SGNB CHA CNF, the S-SN GNB-CU may initiate an SN status transmission procedure and data forwarding.
625 단계에서 UE는 T-SN GNB-DU의 특정 셀, NR RECNF에서 SpCell로 지정된 셀에서 랜덤 액세스 과정을 수행한다. 랜덤 액세스는 UE가 GNB-DU로 프리앰블을 전송하고 GNB-DU가 UE에게 랜덤 액세스 응답을 전송하고, UE가 GNB-DU로 PUSCH를 전송하는 단계로 구성된다. 상기 PUSCH를 통해 단말은 C-RNTI MAC CE를 전송한다. C-RNTI MAC CE는 T-SN GNB-DU가 상기 셀에 대해서 결정했던 C-RNTI를 수납한다. T-SN GNB-DU는 상기 C-RNTI를 보고 상기 랜덤 액세스가 어떤 단말에 대한 것인지 인지한다. 상기 단말과의 랜덤 액세스가 완료되면 T-SN GNB-DU는 ACC SUC를 생성한다. In step 625, the UE performs a random access process in a specific cell of T-SN GNB-DU and a cell designated as SpCell in NR RECNF. Random access consists of the UE transmitting a preamble in the GNB-DU, the GNB-DU transmitting a random access response to the UE, and the UE transmitting the PUSCH in the GNB-DU. Through the PUSCH, the UE transmits the C-RNTI MAC CE. The C-RNTI MAC CE contains the C-RNTI determined by the T-SN GNB-DU for the cell. The T-SN GNB-DU recognizes which terminal the random access is for by looking at the C-RNTI. When the random access with the UE is completed, the T-SN GNB-DU generates an ACC SUC.
627 단계에서 T-SN GNB-DU는 T-SN GNB-CU에게 ACC SUC를 전송한다. ACC SUC는 아래 정보를 포함한다. In step 627, the T-SN GNB-DU transmits the ACC SUC to the T-SN GNB-CU. The ACC SUC contains the following information.
F1인터페이스 상의 단말 식별자Terminal identifier on the F1 interface
NR CGI: 상기 단말이 랜덤 액세스를 완료한 셀의 NR CGINR CGI: NR CGI of a cell in which the UE completed random access
629 단계에서 S-SN GNB-CU는 SN STA TRA를 전송한다. SN STA TRA는 데이터 포워딩이 적용될 베어러의 PDCP SN과 HFN 등을 포함한다. SN STA TRA는 MN을 거쳐 T-SN GNB-CU로 전송된다. T-SN GNB-CU는 SN STA TRA에 포함된 PDCP SN과 HFN을 참조해서 데이터 전송 시 적용할 PDCP SN을 결정한다.In step 629, the S-SN GNB-CU transmits the SN STA TRA. The SN STA TRA includes the PDCP SN and HFN of the bearer to which data forwarding is to be applied. The SN STA TRA is transmitted to the T-SN GNB-CU via the MN. The T-SN GNB-CU refers to the PDCP SN and HFN included in the SN STA TRA to determine a PDCP SN to be applied during data transmission.
631 단계에서 S-SN GNB-CU는 데이터 포워딩을 시작한다. S-SN GNB-CU는 아직 전송되지 않은 PDCP SDU들과 전송되었지만 전송 성공이 확인되지 않은 PDCP SDU들을 GTP 터널을 통해 MN으로 전송하고 MN은 이들을 T-SN GNB-CU로 전송한다. T-SN GNB-CU는 이들을 PDCP PDU로 처리한 후 T-SN GNB-DU로 전달한다. In step 631, the S-SN GNB-CU starts data forwarding. The S-SN GNB-CU transmits PDCP SDUs that have not yet been transmitted and PDCP SDUs that have been transmitted but have not been confirmed to be transmitted to the MN through the GTP tunnel, and the MN transmits them to the T-SN GNB-CU. The T-SN GNB-CU processes them as PDCP PDUs and delivers them as T-SN GNB-DUs.
633 단계에서 T-SN GNB-DU는 단말에게 상기 PDCP PDU를 전송한다. In step 633, the T-SN GNB-DU transmits the PDCP PDU to the UE.
도 6b는 본 발명의 제1 실시 예에 따른 제1 절차를 수행하는 단말과 기지국의 동작을 설명하는 도면이다. 6B is a diagram illustrating operations of a terminal and a base station performing a first procedure according to a first embodiment of the present invention.
641단계에서 S-SN GNB-CU는 제1 절차를 통해 SN을 변경하기로 결정한다. 상기 결정은 단말이 보고한 측정 결과, 기지국의 부하, 무선 자원 관리 정책 등을 토대로 내려질 수 있다. S-SN GNB-CU는 MN으로 SGNB CHA REQ를 전송해서 절차를 개시한다. SGNB CHA REQ는 아래 정보를 포함한다. In step 641, the S-SN GNB-CU determines to change the SN through the first procedure. The determination may be made based on a measurement result reported by the terminal, a load of the base station, a radio resource management policy, and the like. The S-SN GNB-CU initiates the procedure by sending an SGNB CHA REQ to the MN. SGNB CHA REQ includes the following information.
타겟 노드 식별자 정보: 타겟 노드의 en-gNB IDTarget node identifier information: en-gNB ID of the target node
CG-ConfigInfo를 담은 컨테이너: CG-ConfigInfo는 S-SN에서 단말에게 적용한 설정 정보 등을 포함한다. Container containing CG-ConfigInfo: CG-ConfigInfo includes setting information applied to the terminal by the S-SN.
제1 절차 관련 제1 정보: 제1 절차와 관련된 TCSPCELL들의 식별자 리스트일 수 있다. S-SN GNB-CU는 단말의 측정 결과를 토대로 k개의 TCSPCELL들을 선택한다. First information related to the first procedure: This may be a list of identifiers of TCSPCELLs related to the first procedure. The S-SN GNB-CU selects k TCSPCELLs based on the measurement results of the UE.
제1 절차 관련 제2 정보: 제1 절차의 성격을 나타내는 정보로, 상기 TCSPCELL들에 대한 제1 절차가 새로운 절차의 시작인지 기존 절차의 대체인지 지시한다. Second information related to the first procedure: Information representing the nature of the first procedure, indicating whether the first procedure for the TCSPCELLs is a start of a new procedure or a replacement of an existing procedure.
643 단계에서 MN은 SGNB CHA REQ 메시지의 정보를 바탕으로 SGNB ADD REQ를 생성해서 타겟 노드 식별자 정보에서 지시된 T-SN GNB-CU로 전송한다. SGNB ADD REQ는 아래 정보를 포함한다. In step 643, the MN generates an SGNB ADD REQ based on the information of the SGNB CHA REQ message and transmits it to the T-SN GNB-CU indicated in the target node identifier information. The SGNB ADD REQ includes the following information.
MeNB Cell ID: PCell의 ECGI. 이 정보를 수신한 T-SN은 MeNB Cell 주변의 셀들을 SpCell로 고려한다. MeNB Cell ID: PCell's ECGI. Upon receiving this information, the T-SN considers cells around the MeNB Cell as SpCells.
CG-ConfigInfo를 담은 컨테이너 Container containing CG-ConfigInfo
*제1 절차 관련 제1 정보*First information related to the first procedure
제1 절차 관련 제2 정보Second Information Related to Procedure 1
데이터 무선 베어러 설정 관련 정보: 설정되어야 할 무선 베어러에 대한 정보. T-SN의 호 수락 제어에 사용될 수 있음.Information related to data radio bearer setup: Information about the radio bearer to be setup. Can be used for T-SN's call admission control.
최대 전송 속도 관련 정보: 해당 호의 예상 최대 데이터 레이트. T-SN의 호 수락 제어에 사용될 수 있음.Information about the maximum transmission rate: the expected maximum data rate for the call. Can be used for T-SN's call admission control.
제2 절차와 달리 제1 절차에서는 SGNB Addition Trigger Indication 정보를 사용하지 않는다. 제1 절차 관련 정보로 해당 절차가 SN 변경과 관련된 것이라는 사실을 알릴 수 있기 때문이다. SGNB ADD REQ를 수신한 T-SN GNB-CU는, 어떤 TCSPCELL을 수락할지, 수락된 TCSPCELL별로 상기 단말의 어떤 베어러를 수락할지 결정한다. 그리고 수락한 베어러 별로 PDCP 설정 정보 등을 결정한다. T-SN GNB-CU는 상기 결정한 정보들을 수납한 CG-Config를 수락한 TCSPCELL별로 생성한다.Unlike the second procedure, the first procedure does not use SGNB Addition Trigger Indication information. This is because information related to the first procedure can inform that the corresponding procedure is related to the SN change. Upon receiving the SGNB ADD REQ, the T-SN GNB-CU determines which TCSPCELL to accept and which bearer of the UE to accept for each accepted TCSPCELL. Then, PDCP configuration information is determined for each accepted bearer. The T-SN GNB-CU generates CG-Config containing the determined information for each accepted TCSPCELL.
645 단계에서 T-SN GNB-CU는 T-SN GNB-DU에게 m개의 CON SET REQ를 전송한다. 하나의 CON SET REQ는 하나의 TCSPCELL과 대응되며 아래 정보를 포함한다. In step 645, the T-SN GNB-CU transmits m CON SET REQs to the T-SN GNB-DU. One CON SET REQ corresponds to one TCSPCELL and includes the following information.
SpCell ID: 수락된 TCSPCELL의 식별자SpCell ID: Identifier of accepted TCSPCELL
CG-Config: 상기 TCSPCELL에 대해서 결정된 PDCP 설정 정보 등CG-Config: PDCP setting information determined for the TCSPCELL, etc.
제1 절차 관련 제2 정보 Second Information Related to Procedure 1
임의의 TCSPCELL에 대한 CON SET REQ를 수신한 T-SN GNB-DU는 이를 수락할지 여부를 판단한다. 그리고 수락하기로 하였다면 어떤 베어러를 수락할지 결정한다. 상기 수락한 베어러의 RLC 설정 정보, MAC 설정 정보 등을 결정한다. 그리고 상기 단말에게 적용할 PHY 설정 정보 등을 결정한다. Upon receiving the CON SET REQ for any TCSPCELL, the T-SN GNB-DU determines whether to accept it. And, if accepted, it decides which bearer to accept. Determines RLC configuration information, MAC configuration information, etc. of the accepted bearer. Then, PHY configuration information to be applied to the terminal is determined.
647 단계에서 T-SN GNB-DU는 T-SN GNB-CU에게 n개의 CON SET RES를 전송한다. 하나의 CON SET RES는 하나의 수락된 TCSPCELL에 대응된다. T-SN GNB-CU는 k개의 TCSPCELL 중 m개의 TCSPCELL을 선택하고, T-SN GNB-DU는 m개의 TCSPCELL 중 n개의 TCSPCELL을 선택하므로 k >= m >= n의 관계가 성립한다. 각 CON SET RES는 아래 정보를 포함한다. In step 647, the T-SN GNB-DU transmits n CON SET RES to the T-SN GNB-CU. One CON SET RES corresponds to one accepted TCSPCELL. Since the T-SN GNB-CU selects m TCSPCELLs out of k TCSPCELLs and the T-SN GNB-DU selects n TCSPCELLs out of m TCSPCELLs, the relationship k >= m >= n holds. Each CON SET RES includes the following information.
CellGroupConfig: 해당 TCSPCELL에 대해서 결정한 각 종 설정 정보를 포함CellGroupConfig: Includes various setting information determined for the corresponding TCSPCELL
C-RNTI: 단말이 사용할 C-RNTIC-RNTI: C-RNTI to be used by the terminal
Requested Target Cell ID: 해당 TCSPCELL의 NR CGI. Requested Target Cell ID: NR CGI of the corresponding TCSPCELL.
n개의 CON SET RES를 수신한 T-SN GNB-CU는 SGNB ADD ACK을 생성한다. SGNB ADD ACK의 구조는 도 7-3에 상술한다.Upon receiving n CON SET RES, the T-SN GNB-CU generates an SGNB ADD ACK. The structure of the SGNB ADD ACK is detailed in FIG. 7-3.
649단계에서 T-SN GNB-CU는 MN에게 SGNB ADD ACK을 전송한다. MN은 SGNB ADD ACK을 통해 전달받은 NR RECNF를 포함하는 LTE RECNF를 생성한다. LTE RECNF은 제1 Transaction id를 포함한다. LTE RECNF의 구조는 도 7a에 상술한다. In step 649, the T-SN GNB-CU transmits an SGNB ADD ACK to the MN. MN generates LTE RECNF including NR RECNF received through SGNB ADD ACK. LTE RECNF includes the first Transaction id. The structure of LTE RECNF is detailed in FIG. 7A.
651 단계에서 MN은 단말에게 LTE RECNF를 전송한다. LTE RECNF를 수신한 단말은 여기에 포함된 NR RECNF의 정보를 처리해서 TCSPCELL들의 설정을 인지하고 각 TCSPCELL들에 대응되는 실행 조건을 인지한다. In step 651, the MN transmits LTE RECNF to the terminal. Upon receiving the LTE RECNF, the terminal processes the NR RECNF information included therein to recognize the configuration of TCSPCELLs and the execution conditions corresponding to each TCSPCELL.
653 단계에서 단말은 MN에게 LTE RECNF CMP를 전송한다. LTE RECNF CMP는 제1 Transaction id를 포함한다. LTE RECNF CMP를 전송한 단말은 조건부 재구성 조건이 충족되는지 판단하기 위해 조건부 재구성 평가 절차를 수행한다. UE는 제3 NR 재구성 메시지에서 지시된 셀 식별자에 해당하는 셀(TCSPCELL)의 측정 결과가 실행 조건을 충족하는지 여부를 판단하고, 그렇다면 실행 조건을 충족하는 셀에 대응되는 제2 NR 재구성 메시지를 적용해서 조건부 재구성을 실행한다. In step 653, the UE transmits an LTE RECNF CMP to the MN. LTE RECNF CMP includes the first Transaction id. The terminal that has transmitted the LTE RECNF CMP performs a conditional reconfiguration evaluation procedure to determine whether the conditional reconfiguration condition is satisfied. The UE determines whether the measurement result of the cell (TCSPCELL) corresponding to the cell identifier indicated in the third NR reconfiguration message satisfies the execution condition, and if so, the second NR reconfiguration message corresponding to the cell that satisfies the execution condition is applied. to perform conditional reconstruction.
655 단계에서 UE는 T-SN GNB-DU의 특정 셀, 즉 실행 조건이 충족된 제3 NR RECNF에서 SpCell로 지정된 셀에서 랜덤 액세스 과정을 수행한다. 랜덤 액세스는 UE가 GNB-DU로 프리앰블을 전송하고 GNB-DU가 UE에게 랜덤 액세스 응답을 전송하고, UE가 GNB-DU로 PUSCH를 전송하는 단계로 구성된다. 상기 PUSCH를 통해 단말은 C-RNTI MAC CE를 전송한다. C-RNTI MAC CE는 T-SN GNB-DU가 상기 셀에 대해서 결정했던 C-RNTI를 수납한다. T-SN GNB-DU는 상기 C-RNTI를 보고 상기 랜덤 액세스가 어떤 단말에 대한 것인지 인지한다. 상기 단말과의 랜덤 액세스가 완료되면 T-SN GNB-DU는 ACC SUC를 생성한다. In step 655, the UE performs a random access process in a specific cell of the T-SN GNB-DU, that is, a cell designated as SpCell in the third NR RECNF for which the execution condition is satisfied. Random access consists of the UE transmitting a preamble in the GNB-DU, the GNB-DU transmitting a random access response to the UE, and the UE transmitting the PUSCH in the GNB-DU. Through the PUSCH, the UE transmits the C-RNTI MAC CE. The C-RNTI MAC CE contains the C-RNTI determined by the T-SN GNB-DU for the cell. The T-SN GNB-DU recognizes which terminal the random access is for by looking at the C-RNTI. When the random access with the UE is completed, the T-SN GNB-DU generates an ACC SUC.
657 단계에서 T-SN GNB-DU는 T-SN GNB-CU에게 ACC SUC를 전송한다. ACC SUC는 아래 정보를 포함한다. In step 657, the T-SN GNB-DU transmits the ACC SUC to the T-SN GNB-CU. The ACC SUC contains the following information.
F1인터페이스 상의 단말 식별자Terminal identifier on the F1 interface
NR CGI: 상기 단말이 랜덤 액세스를 완료한 셀의 NR CGINR CGI: NR CGI of a cell in which the UE completed random access
659 단계에서 UE는 MN에게 ULIT를 전송한다. ULIT는 NR RECNF CMP와 CRID를 포함한다. MN은 CRID와 대응되는 CG-Config를 식별하고 상기 CG-Config에 맞춰 MN의 설정을 재구성한다. In step 659, the UE transmits the ULIT to the MN. ULIT includes NR RECNF CMP and CRID. The MN identifies the CG-Config corresponding to the CRID and reconfigures the MN's settings according to the CG-Config.
661 단계에서 MN은 T-SN GNB-CU에게 SGNB REC CMP를 전송한다. SGNB REC CMP는 NR RECNF CMP를 포함한다. NR RECNF CMP는, 실행 조건이 충족된 제3 NR RECNF의 Transaction id가 포함된다. T-SN GNB-CU는 단말이 조건부 재구성을 실행하였다는 것을 인지한다. In step 661, the MN transmits the SGNB REC CMP to the T-SN GNB-CU. SGNB REC CMP includes NR RECNF CMP. The NR RECNF CMP includes the Transaction id of the third NR RECNF for which the execution condition is satisfied. The T-SN GNB-CU recognizes that the UE has performed conditional reconfiguration.
663 단계에서 MN은 S-SN GNB-CU에게 SGNB CHA CNF을 전송한다. SGNB CHA CNF를 수신한 S-SN GNB-CU는 SN 상태 전송 절차와 데이터 포워딩을 개시할 수 있다. In step 663, the MN transmits the SGNB CHA CNF to the S-SN GNB-CU. Upon receiving the SGNB CHA CNF, the S-SN GNB-CU may initiate an SN status transmission procedure and data forwarding.
665 단계에서 S-SN GNB-CU는 SN STA TRA를 전송한다. SN STA TRA는 데이터 포워딩이 적용될 베어러의 PDCP SN과 HFN 등을 포함한다. SN STA TRA는 MN을 거쳐 T-SN GNB-CU로 전송된다.In step 665, the S-SN GNB-CU transmits the SN STA TRA. The SN STA TRA includes the PDCP SN and HFN of the bearer to which data forwarding is to be applied. The SN STA TRA is transmitted to the T-SN GNB-CU via the MN.
667 단계에서 S-SN GNB-CU는 데이터 포워딩을 시작한다. S-SN GNB-CU는 아직 전송되지 않은 PDCP SDU들과 전송되었지만 전송 성공이 확인되지 않은 PDCP SDU들을 GTP 터널을 통해 MN으로 전송하고 MN은 이들을 T-SN GNB-CU로 전송한다. T-SN GNB-CU는 이들을 PDCP PDU로 처리한 후 T-SN GNB-DU로 전달한다. In step 667, the S-SN GNB-CU starts data forwarding. The S-SN GNB-CU transmits PDCP SDUs that have not yet been transmitted and PDCP SDUs that have been transmitted but have not been confirmed to be transmitted to the MN through the GTP tunnel, and the MN transmits them to the T-SN GNB-CU. The T-SN GNB-CU processes them as PDCP PDUs and delivers them as T-SN GNB-DUs.
669 단계에서 T-SN GNB-DU는 단말에게 상기 PDCP PDU를 전송한다. In step 669, the T-SN GNB-DU transmits the PDCP PDU to the UE.
EN-DC 동작 중인 UE에게 제1 절차를 설정하는 LTE RECNF의 구조를 도 7a에 도시하였다. The structure of LTE RECNF for setting the first procedure to the UE in EN-DC operation is shown in FIG. 7A.
LTE RECNF는 MN이 생성한 제1 Transaction id와 T-SN이 생성한 제1NR RECNF (702)를 포함한다. 제1 RECNF에는 관련 절차의 목적에 따라 다양한 정보가 포함될 수 있다. 제1 절차 (조건부 재구성)를 위한 것이라면, 제1 NR RECNF는 조건부 재구성 관련 정보(710)를 포함한다. 조건부 재구성 관련 정보는 적어도 하나 이상의 CondReconfigToAddMod IE (703 내지 720 내지 721)를 포함한다. The LTE RECNF includes a 1st Transaction id generated by the MN and a 1NR RECNF 702 generated by the T-SN. The first RECNF may include various information depending on the purpose of the related procedure. If it is for the first procedure (conditional reconstruction), the first NR RECNF includes conditional reconstruction related information 710 . Conditional reconfiguration related information includes at least one CondReconfigToAddMod IE (703 to 720 to 721).
각 CondReconfigToAddMod IE는 구성 식별자 (704), 실행 조건 (705), 각 종 설정 정보를 포함하는 제2 NR RECNF (706), 그리고 실행 조건 셀그룹 IE(722)를 포함한다. Each CondReconfigToAddMod IE includes a configuration identifier 704, an execution condition 705, a 2nd NR RECNF including various setting information 706, and an execution condition cell group IE 722.
제2 NR RECNF는 무선 베어러 설정 정보 (708), 보안 키 산출을 위한 카운터 (709), 제3 NR RECNF(707)를 포함한다. 상기 제3 NR RECNF는 secondaryCellGroup IE를 포함하고, 상기 IE는 TCSPCELL의 설정 정보를 포함한다. The second NR RECNF includes radio bearer configuration information 708, a counter for calculating a security key 709, and a third NR RECNF 707. The third NR RECNF includes a secondaryCellGroup IE, and the IE includes TCSPCELL configuration information.
결과적으로 제1 재구성을 위한 하나의 제1 NR 재구성 메시지는 다수의 제2 NR RECNF를 포함하고 하나의 제2 NR RECNF는 하나의 TCSPCELL에 대응된다. 하나의 제2 NR RECNF는 하나의 구성 식별자, 하나의 실행 조건 그리고 하나의 실행 조건 셀그룹과 대응된다.As a result, one 1st NR reconstruction message for 1st reconstruction includes a plurality of 2nd NR RECNFs, and one 2nd NR RECNF corresponds to one TCSPCELL. One second NR RECNF corresponds to one configuration identifier, one execution condition, and one execution condition cell group.
제1 NR RECNF는 제2 Transaction ID를, 제2 NR RECNF는 제3 Transaction ID를, 제3 NR RECNF는 제4 Transaction ID를 포함한다.The first NR RECNF includes a second Transaction ID, the second NR RECNF includes a third Transaction ID, and the third NR RECNF includes a fourth Transaction ID.
EN-DC 동작 중인 UE에게 제2 절차를 설정하는 LTE RECNF의 구조를 도 7b에 도시하였다. The structure of LTE RECNF for setting the second procedure to the UE in EN-DC operation is shown in FIG. 7B.
LTE RECNF는 MN이 생성한 제1 Transaction id와 T-SN GNB-CU가 생성한 제1NR RECNF (702)를 포함한다. 제1 RECNF에는 관련 절차의 목적에 따라 다양한 정보가 포함될 수 있다. 제2 절차를 위한 것이라면, 제1 NR RECNF는 무선 베어러 설정 정보 (728), 보안 키 산출을 위한 카운터 (729), 제4 NR RECNF(727)을 포함한다. 상기 제4 NR RECNF는 secondaryCellGroup IE를 포함하고, 상기 IE는 SpCell/PSCell의 설정 정보를 포함한다. The LTE RECNF includes the first Transaction id generated by the MN and the 1NR RECNF 702 generated by the T-SN GNB-CU. The first RECNF may include various information depending on the purpose of the related procedure. For the second procedure, the first NR RECNF includes radio bearer configuration information 728, a counter for calculating a security key 729, and a fourth NR RECNF 727. The fourth NR RECNF includes a secondaryCellGroup IE, and the IE includes SpCell/PSCell configuration information.
결과적으로 제2 재구성을 위한 하나의 제1 NR 재구성 메시지는 하나의 제4 NR RECNF를 포함한다. As a result, one 1st NR reconstruction message for the second reconstruction includes one 4th NR RECNF.
제1 NR RECNF는 제2 Transaction ID를, 제4 NR RECNF는 제5 Transaction ID를 포함하며 모두 T-SN GNB-CU가 생성한다. The 1st NR RECNF includes the 2nd Transaction ID and the 4th NR RECNF includes the 5th Transaction ID, both generated by the T-SN GNB-CU.
EN-DC 동작 중인 UE의 제1 절차를 위한 SGNB ADD ACK의 구조를 도 7c에 도시하였다. The structure of the SGNB ADD ACK for the first procedure of the UE in EN-DC operation is shown in FIG. 7c.
SGNB ADD ACK(731)은 적어도 제1 컨테이너(732)와 제2 컨테이너(733)로 구성된다. The SGNB ADD ACK 731 includes at least a first container 732 and a second container 733.
제1 컨테이너는 다수의 CG-Config를 수납한다. 제1 컨테이너에 수납된 CG-config (이하 제1 CG-config, 734)는 Assistance Info for MN(735)와 CondReconfigurationId (736, 이하 CRID)를 포함한다. Assistance info for MN은 MN이 자신의 설정을 결정하거나 조정하기 위해 알아야할 정보들, 예를 들어 SN에서의 DRX 설정, SN에서 선택한 밴드 조합 정보 등을 포함한다. The first container stores a number of CG-Configs. CG-config (hereafter, 1st CG-config, 734) stored in the first container includes Assistance Info for MN 735 and CondReconfigurationId (736, hereinafter, CRID). Assistance info for MN includes information that the MN needs to know in order to determine or adjust its configuration, for example, DRX configuration in the SN, band combination information selected in the SN, and the like.
제2 컨테이너는 하나의 NR RECNF(739)을 포함한다. NR RECNF(739)는 LTE RECNF에 수납된 제1 NR RECNF(702)이다. 제1 NR RECNF는 다수의 CondReconfigToAddMod IE를 포함할 수 있으며, 하나의 CondReconfigToAddMod는 하나의 제2 NR RECNF(737)와 하나의 CRID(738)를 포함할 수 있다. The second container contains one NR RECNF 739. The NR RECNF 739 is the first NR RECNF 702 contained in the LTE RECNF. The first NR RECNF may include a plurality of CondReconfigToAddMod IEs, and one CondReconfigToAddMod may include one second NR RECNF 737 and one CRID 738.
제1 컨테이너의 CG-Config(735)와 제2 컨테이너의 제2 NR RECNF(737)는 일 대 일로 대응되며 CRID(736과 738)에 의해서 연결된다. 제1 컨테이너에 포함된 CG-Config의 수와 제1 NR RECNF에 포함된 제2 NR RECNF의 수는 동일하다. The CG-Config 735 of the first container and the second NR RECNF 737 of the second container correspond one-to-one and are connected by CRIDs 736 and 738. The number of CG-Configs included in the first container is equal to the number of second NR RECNFs included in the first NR RECNF.
EN-DC 동작 중인 UE의 제2 절차를 위한 SGNB ADD ACK의 구조를 도 7d에 도시하였다.The structure of the SGNB ADD ACK for the second procedure of the UE in EN-DC operation is shown in FIG. 7d.
SGNB ADD ACK(741)은 하나의 컨테이너(742), 이하 제3 컨테이너를 포함하며, 제3 컨테이너는 하나의 CG-Config (743)를 포함한다. 제3 컨테이너에 수납된CG-Config(이하 제2 CG-Config)는 MN이 자신의 설정을 조정하는데 필요한 정보인 Assistance info for MN (744)과 NR RECNF(745)를 포함한다. NR RECNF(745)는 NR RECNF(722)이다. Assistance info for MN은 MN이 자신의 설정을 결정하거나 조정하기 위해 알아야할 정보들, 예를 들어 SN에서의 DRX 설정, SN에서 선택한 밴드 조합 정보 등을 포함한다. The SGNB ADD ACK 741 includes one container 742, hereinafter a third container, and the third container includes one CG-Config 743. CG-Config (hereinafter referred to as second CG-Config) stored in the third container includes Assistance info for MN 744 and NR RECNF 745, which are information necessary for the MN to adjust its own settings. NR RECNF 745 is NR RECNF 722. Assistance info for MN includes information that the MN needs to know in order to determine or adjust its configuration, for example, DRX configuration in the SN, band combination information selected in the SN, and the like.
제1 CG-Config는 NR RECNF는 포함하지 않는 대신 CRID를 포함한다. 상기 CRID는 제2 컨테이너에 포함된 다수의 NR RECNF 중 하나와 대응된다. The first CG-Config does not include NR RECNF, but instead includes CRID. The CRID corresponds to one of a plurality of NR RECNFs included in the second container.
도 8은 제1 실시 예에 따른 T-SN GNB-CU동작을 설명하기 위한 흐름도이다. 8 is a flowchart for explaining T-SN GNB-CU operation according to the first embodiment.
801 단계에서 T-SN GNB-CU는 MN으로부터 EN-DC 동작을 위한 자원을 준비할 것을 요청하는 제어 메시지를 수신한다. In step 801, the T-SN GNB-CU receives a control message requesting preparation of resources for EN-DC operation from the MN.
811 단계에서 T-SN GNB-CU는 상기 제어 메시지에 제1절차 관련 정보가 포함되어 있는지 판단한다. 포함되어 있다면 816단계로, 포함되어 있지 않다면 841 단계로 진행한다. In step 811, the T-SN GNB-CU determines whether information related to the first procedure is included in the control message. If included, proceed to step 816, otherwise proceed to step 841.
*816 단계에서 T-SN GNB-CU는 제1 절차 관련 제1 정보에 포함된 k개의 TCSPCELL중 m개의 TCSPCELL을 선택해서 TCSPCELL 별로 CON SET REQ를 생성한다. T-SN GNB-DU에게 m개의 CON SET REQ를 전송한다. 하나의 CON SET REQ는 하나의 TCSPCELL에 대응된다. 816 단계로 진행하였다는 것은 801 단계에서 수신한 제어 메시지가 하나의 셀그룹설정정보와 하나의 실행 조건 정보와 복수의 셀 식별자를 포함하는 것을 의미한다.* In step 816, the T-SN GNB-CU selects m TCSPCELLs among the k TCSPCELLs included in the first information related to the first procedure and generates a CON SET REQ for each TCSPCELL. m number of CON SET REQs are transmitted to the T-SN GNB-DU. One CON SET REQ corresponds to one TCSPCELL. Proceeding to step 816 means that the control message received in step 801 includes one cell group setting information, one execution condition information, and a plurality of cell identifiers.
821 단계에서 T-SN GNB-CU는 T-SN GNB-CU로부터 n개의 CON SET RES를 수신한다. 하나의 CON SET RES는 수락된 하나의 TCSPCELL에 대응된다. CON SET RES는 CellGroupConfig 등의 정보를 포함한다. In step 821, the T-SN GNB-CU receives n CON SET RES from the T-SN GNB-CU. One CON SET RES corresponds to one accepted TCSPCELL. CON SET RES includes information such as CellGroupConfig.
826 단계에서 T-SN GNB-CU는 제1 컨테이너와 제2 컨테이너를 포함하는 SGNB ADD ACK 메시지를 생성해서 MN에게 전송한다. 제1 컨테이너는 복수의 제1 CG-Config들로 구성되고, 제1 CG-config는 NR RECNF는 포함하지 않고 Assistance Info for MN과 CRID를 포함한다. 제2 컨테이너는 제1 NR RECNF를 포함하며, 복수의 CRID와 동일한 수의 제2 NR RECNF를 포함한다. T-SN GNB-CU는 제1 컨테이너의 제1 CG-Config와 제2 컨테이너의 NR RECNF가 CRID로 연결되도록 제1 컨테이너와 제2 컨테이너를 생성한다. In step 826, the T-SN GNB-CU generates an SGNB ADD ACK message including the first container and the second container and transmits it to the MN. The first container is composed of a plurality of first CG-Configs, and the first CG-config does not include NR RECNF but includes Assistance Info for MN and CRID. The second container includes the first NR RECNFs and includes the same number of second NR RECNFs as the plurality of CRIDs. The T-SN GNB-CU creates the first container and the second container so that the first CG-Config of the first container and the NR RECNF of the second container are connected by CRID.
836 단계에서 T-SN GNB-CU는 MN으로부터 SN STA TRA를 수신해서 하향 링크 데이터에 적용할 PDCP SN을 인지하고 MN으로부터 전달된 PDCP SDU를 PDCP PDU로 처리한다. In step 836, the T-SN GNB-CU receives the SN STA TRA from the MN, recognizes a PDCP SN to be applied to downlink data, and processes the PDCP SDU transferred from the MN as a PDCP PDU.
861 단계에서 T-SN GNB-CU는 PDCP PDU를 T-SN GNB-DU로 전송한다.In step 861, the T-SN GNB-CU transmits the PDCP PDU to the T-SN GNB-DU.
841 단계에서 T-SN GNB-CU는 T-SN GNB-DU에게 하나의 CON SET REQ를 전송한다. CON SET REQ는 SpCell ID 등의 정보를 담고 있다. In step 841, the T-SN GNB-CU transmits one CON SET REQ to the T-SN GNB-DU. CON SET REQ contains information such as SpCell ID.
846 단계에서 T-SN GNB-CU는 T-SN GNB-CU로부터 하나의 CON SET RES를 수신한다. CON SET RES는 CellGroupConfig 등의 정보를 포함한다. In step 846, the T-SN GNB-CU receives one CON SET RES from the T-SN GNB-CU. CON SET RES includes information such as CellGroupConfig.
826 단계에서 T-SN GNB-CU는 제3 컨테이너를 포함하는 SGNB ADD ACK 메시지를 생성해서 MN에게 전송한다. 제3 컨테이너는 하나의 제2 CG-Config로 구성되고, 제2 CG-config는 NR RECNF, Assistance Info for MN를 포함하고 CRID를 포함하지 않는다. In step 826, the T-SN GNB-CU generates an SGNB ADD ACK message including the third container and transmits it to the MN. The third container is composed of one second CG-Config, and the second CG-config includes NR RECNF and Assistance Info for MN and does not include a CRID.
856 단계에서 T-SN GNB-CU는 MN으로부터 SN STA TRA를 수신해서 하향 링크 데이터에 적용할 PDCP SN을 인지하고 MN으로부터 전달된 PDCP SDU를 PDCP PDU로 처리한다. In step 856, the T-SN GNB-CU receives the SN STA TRA from the MN, recognizes a PDCP SN to be applied to downlink data, and processes the PDCP SDU transferred from the MN as a PDCP PDU.
861 단계에서 T-SN GNB-CU는 PDCP PDU를 T-SN GNB-DU로 전송한다.In step 861, the T-SN GNB-CU transmits the PDCP PDU to the T-SN GNB-DU.
도 9는 제1 실시 예에 따른 제1 절차를 수행하는 단말 동작을 설명하기 위한 흐름도이다. 9 is a flowchart illustrating an operation of a terminal performing a first procedure according to a first embodiment.
901 단계에서 단말은 제1 기지국 (MN 또는 MeNB)에게 EN-DC 및 제1 재구성 절차와 관련된 단말의 능력을 보고한다. In step 901, the UE reports the capabilities of the UE related to the EN-DC and the first reconfiguration procedure to the first base station (MN or MeNB).
제1 성능 정보: EN-DC가 지원되는 밴드 조합 정보 (a list of band combinations supporting EN-DC); 그리고 First performance information: band combination information in which EN-DC is supported (a list of band combinations supporting EN-DC); and
제2 성능 정보: EN-DC가 지원되는 밴드 조합 중 제1 재구성을 지원하는 밴드 조합의 리스트 (a list of EN-DC band combinations supporting 1st reconfiguration); 그리고 Second performance information: a list of EN-DC band combinations supporting 1 st reconfiguration among band combinations supported by EN-DC; and
제3 성능 정보: 두 개의 NR 밴드로 구성된 NR 밴드 조합Third performance information: NR band combination composed of two NR bands
제2 성능 정보는 제1 성능 정보로 보고된 밴드 조합 중 어떤 밴드 조합의 NR밴드가 제1 재구성을 지원하는지 나타낸다. 제2 성능 정보는 밴드 내 (intra-band) 제1 재구성 지원 여부를 나타내는 정보이다.The second capability information indicates which NR band of a band combination among the band combinations reported as the first capability information supports the first reconstruction. The second capability information is information indicating whether intra-band first reconfiguration is supported.
제3 성능 정보는 두 개의 NR밴드로 구성된 NR 밴드의 조합이며, 제3 성능 정보에 포함된 NR밴드 조합에서는 밴드 간 (inter-band) 제1 재구성이 지원된다는 것을 나타낸다. 예를 들어 제3 성능 정보에 (N1, N2) 밴드 조합이 포함되었다면, N1과 N2사이에 제1 재구성이 지원됨을 의미한다. 이 때 제3 성능 정보에 포함된 밴드 조합에 속하는 모든 NR 밴드들 (예를 들어 N1과 N2)는 EN-DC가 지원되는 NR 밴드이다. The third capability information is a combination of NR bands composed of two NR bands, and indicates that inter-band first reconfiguration is supported in the NR band combination included in the third capability information. For example, if a (N1, N2) band combination is included in the third capability information, it means that the first reconstruction between N1 and N2 is supported. In this case, all NR bands (for example, N1 and N2) belonging to the band combination included in the third capability information are NR bands supported by EN-DC.
906 단계에서 단말은 LTE RECNF를 수신한다. 상기 LTE RECNF는 제1 NR RECNF를 포함한다. 상기 LTE RECNF가 제1 재구성을 지시하는 메시지라면, 상기 제1 NR RECNF는 제1 정보를 포함한다. 제1 정보는 적어도 하나 이상의 제2 정보를 포함하고, 제2 정보는 항상 제3 정보와 제4정보를 포함하고 선택적으로 제5 정보를 포함한다. In step 906, the terminal receives LTE RECNF. The LTE RECNF includes a first NR RECNF. If the LTE RECNF is a message indicating first reconfiguration, the first NR RECNF includes first information. The first information includes at least one or more pieces of second information, and the second information always includes third information and fourth information and optionally includes fifth information.
하나의 제2 정보는 하나의 TCSPCELL에 대응된다. 제3 정보는 하나 혹은 두개의 MeasId로 구성되며, 상기 TCSPCELL로의 재설정을 실행할 실행 조건을 정의한다. 제4 정보는 제2 NR RECNF로 무선 베어러 설정 정보, 보안키 관련 정보, TCSPCELL의 설정 정보를 포함하는 제3 NR RECNF를 포함한다. 제5 정보는 실행 조건이 MCG와 SCG 중 (혹은 MeNB와 SgNB 중, 혹은 MN과 S-SN 중) 어떤 것과 연관된 것인지 나타내는 정보이다. One piece of second information corresponds to one TCSPCELL. The third information consists of one or two MeasIds, and defines an execution condition for resetting the TCSPCELL. The fourth information is the second NR RECNF, and includes third NR RECNF including radio bearer configuration information, security key related information, and TCSPCELL configuration information. Fifth information is information indicating which of MCG and SCG (or MeNB and SgNB, or MN and S-SN) the execution condition is associated with.
제3 정보와 제5 정보는 TCSPCELL 별로(혹은 제2 정보 별로) 제1 재구성의 실행 조건을 정의한다. 혹은 하나의 제1 NR 메시지에 포함된 모든 TCSPCELL (혹은 제2 정보)에 공통으로 적용되는 제3 정보와 제5 정보를 정의하는 것도 가능하다. 제1 정보의 하위 IE로 공통 제3 정보와 공통 제5 정보를 포함시키고, 제2 정보의 하위 IE로 포함된 개별적인 제3 정보는 무시하도록 단말의 동작을 정의하는 것도 가능하다. 이 경우, 단말은 공통 제3 정보가 존재하면 하나의 제1 정보에 포함된 모든 TCSPCELL에 대해 상기 공통 제3 정보를 적용하고, 공통 제3 정보가 존재하지 않으면 TCSPCELL 별로 지시된 제3 정보를 적용한다. The third information and the fifth information define execution conditions of the first reconstruction for each TCSPCELL (or for each second information). Alternatively, it is also possible to define third information and fifth information commonly applied to all TCSPCELLs (or second information) included in one first NR message. It is also possible to define an operation of the terminal to include common third information and common fifth information as lower IEs of the first information and ignore individual third information included as lower IEs of the second information. In this case, if common third information exists, the terminal applies the common third information to all TCSPCELLs included in one piece of first information, and if common third information does not exist, applies third information indicated for each TCSPCELL. do.
하나의 LTE RECNF는 하나의 제1 NR RECNF를, 하나의 제1 NR RECNF는 다수의 제2 NR RECNF를, 하나의 제2 NR RECNF는 하나의 제3 NR RECNF를 포함한다. 즉 하나의 LTE RECNF는 다수의 제3 NR RECNF, 동일한 수의 제3 정보와 동일한 수의 제4 정보를 포함할 수 있으며 또 다른 다수의 제5정보를 포함할 수 있다. One LTE RECNF includes one 1st NR RECNF, one 1st NR RECNF includes multiple 2nd NR RECNFs, and one 2nd NR RECNF includes one 3rd NR RECNF. That is, one LTE RECNF may include a plurality of third NR RECNFs, the same number of third information and the same number of fourth information, and may include another plurality of fifth information.
하나의 RECNF는 하나의 Transaction id를 포함한다. LTE RECNF는 제1 Transaction id를 포함하고, 제1 NR RECNF는 제2 Transaction id를 포함한다. 제2 NR RECNF와 제3 NR RECNF는 각 각 제3 Transaction id와 제4 Transaction id를 포함한다.One RECNF includes one Transaction ID. The LTE RECNF includes a first Transaction id, and the first NR RECNF includes a second Transaction id. The second NR RECNF and the third NR RECNF include a third Transaction id and a fourth Transaction id, respectively.
911 단계에서 단말은 제1 기지국으로 LTE RECNF CMP를 전송한다. 상기 LTE RECNF CMP에는 제1 Transaction id가 포함된다.In step 911, the terminal transmits the LTE RECNF CMP to the first base station. The LTE RECNF CMP includes a first Transaction id.
916 단계에서 단말은 수신한 LTE RECNF에 포함된 제1 NR RECNF에 제1 재구성 정보가 포함되어 있으므로 제1 재구성 절차를 개시한다. In step 916, the UE initiates a first reconfiguration procedure because the first reconfiguration information is included in the first NR RECNF included in the received LTE RECNF.
921 단계에서 단말은 TCSPCELL별로 설정된 제3 정보와 제5정보를 기초로 제3 정보에서 지시된 MeasId가 어떤 셀그룹(혹은 어떤 노드)과 관련되었는지 판단한다. 제5 정보가 없으면, 해당 TCSPCELL에 대한 실행 조건은 S-SN이 설정하였으며, MeasId는 Source SCG (혹은 S-SN)과 관련된 것으로 판단한다. 그리고 MeasId의 의미는 Source SCG (혹은 S-SN)의 MeasConfig에 따라 해석한다. 제5 정보가 있으면, 해당 TCSPCELL에 대한 실행 조건은 MN이 설정하였으며, MeasId는 MCG (혹은 MN)과 관련된 것으로 판단한다. 그리고 MeasId의 의미는 MCG (혹은 MN)의 MeasConfig에 따라 해석한다. 혹은, 제5 정보가 있으면, 해당 TCSPCELL에 대한 실행 조건은 MCG와 SCG 중 (혹은 MN과 S-SN중) 제5 정보가 지시하는 CG(혹은 노드)가 설정하였으며, MeasId는 상기 CG (혹은 노드)와 관련된 것으로 판단한다. 그리고 MeasId의 의미는 상기 CG (혹은 노드)의 MeasConfig에 따라 해석한다.In step 921, the terminal determines which cell group (or which node) the MeasId indicated in the third information is associated with based on the third and fifth information set for each TCSPCELL. If there is no fifth information, it is determined that the execution condition for the corresponding TCSPCELL is set by the S-SN, and MeasId is related to the Source SCG (or S-SN). And the meaning of MeasId is interpreted according to MeasConfig of Source SCG (or S-SN). If there is fifth information, it is determined that the execution condition for the corresponding TCSPCELL is set by the MN, and MeasId is related to the MCG (or MN). And the meaning of MeasId is interpreted according to MeasConfig of MCG (or MN). Alternatively, if there is 5th information, the execution condition for the corresponding TCSPCELL is set by the CG (or node) indicated by the 5th information among MCG and SCG (or between MN and S-SN), and MeasId is the CG (or node ) is judged to be related to And the meaning of MeasId is interpreted according to MeasConfig of the CG (or node).
LTE에는 1에서 32 사이의 값을 가지는 MeasId와 33에서 64사이의 값을 가지는 MeasId-v1250 라는 2 종류의 MeasId가 있다. 전자를 5 bit MeasId, 후자를 5 bit MeasId-Ext으로 명명한다. NR에는1에서 64 사이의 값을 가지는 MeasId가 있으며 본 발명에서 6 bit MeasId로 명명한다. In LTE, there are two types of MeasId: MeasId having a value between 1 and 32 and MeasId-v1250 having a value between 33 and 64. The former is named 5 bit MeasId, and the latter is named 5 bit MeasId-Ext. NR has MeasId having a value between 1 and 64, and is named as 6 bit MeasId in the present invention.
SGNB ADD REQ에 MN은 T-SN에게 자신이 결정한 실행 조건으로 사용할 MeasId를 알려줄 수 있다. MN은 5 bit MeasId 혹은 5 bit MeasId-Ext를 6 bit MeasId로 변경해서 SGNB ADD REQ에 포함시켜서 T-SN에게 알려준다. MN은 실행 조건으로 5 bit MeasId를 선택하였다면, 6 bit MeasId의 MSB를 0으로 설정하고 나머지 5비트를 5 bit MeasId로 설정한다. MN은 실행 조건으로 5 bit MeasId-Ext를 선택하였다면 6 bit MeasId의 MSB를 1로 설정하고 나머지 5비트를 5 bit MeasId로 설정한다. In the SGNB ADD REQ, the MN may inform the T-SN of MeasId to be used as an execution condition determined by the MN. MN changes 5 bit MeasId or 5 bit MeasId-Ext to 6 bit MeasId, includes it in SGNB ADD REQ, and informs T-SN. If the MN selects 5-bit MeasId as an execution condition, it sets the MSB of 6-bit MeasId to 0 and sets the remaining 5 bits to 5-bit MeasId. If the MN selects 5 bit MeasId-Ext as an execution condition, it sets the MSB of 6 bit MeasId to 1 and sets the remaining 5 bits to 5 bit MeasId.
단말은 RECNF를 통해서 6 bit MeasId를 실행 조건으로 수신한다. 상기 실행 조건이 S-SN에 의해서 결정된 것이라면, 즉 실행 조건 셀 그룹 IE가 SCG라면, 단말은 상기 수신한 6 bit MeasId를 변환하지 않고 그대로 실행 조건을 판단한다. 상기 실행 조건이 MN에 의해서 결정된 것이라면, 즉 실행 조건 셀 그룹 IE가 MCG라면 단말은 상기 수신한 6 bit MeasId를 5 bit MeasId 혹은 5 bit MeasId-Ext으로 변환해서 실행 조건을 판단한다. 6 bit MeasId의 MSB가 0이면 나머지 5비트를 5 bit MeasId로 해석하고 관련된 ReportConfig와 MeasObject를 선택한다. 6 bit MeasId의 MSB가 1이면 나머지 5비트를 5 bit MeasId-Ext로 해석하고 관련된 ReportConfig와 MeasObject를 선택한다. The UE receives 6 bit MeasId as an execution condition through RECNF. If the execution condition is determined by the S-SN, that is, if the execution condition cell group IE is SCG, the terminal determines the execution condition as it is without converting the received 6-bit MeasId. If the execution condition is determined by the MN, that is, if the execution condition cell group IE is MCG, the UE determines the execution condition by converting the received 6-bit MeasId into 5-bit MeasId or 5-bit MeasId-Ext. If the MSB of 6-bit MeasId is 0, the remaining 5 bits are interpreted as 5-bit MeasId and related ReportConfig and MeasObject are selected. If the MSB of 6-bit MeasId is 1, the remaining 5 bits are interpreted as 5-bit MeasId-Ext and the related ReportConfig and MeasObject are selected.
926 단계에서 단말은 조건부 재설정 평가 동작을 수행한다. 단말은 제1 정보에 포함된 제2 정보 별로, 각 제2 정보의 제3 NR RECNF에서 지시된 서빙 셀(즉 target candidate cell)을 '적용 가능한 셀 (applicable cell)'로 간주하고, 적용 가능한 셀 중 실행 조건과 연관된 이벤트를 만족하는 셀이 있는지 판단한다. 그리고 상기 이벤트를 만족한 target candidate cell셀을 트리거드 셀 (triggered cell)로 간주한다. In step 926, the terminal performs a conditional reset evaluation operation. For each second information included in the first information, the terminal considers the serving cell (ie, target candidate cell) indicated in the third NR RECNF of each second information as an 'applicable cell', and the applicable cell Among them, it is determined whether there is a cell that satisfies an event related to an execution condition. In addition, a target candidate cell that satisfies the event is regarded as a triggered cell.
931 단계에서 단말은 조건부 재설정을 실행한다. 단말은 트리거드 셀에 대해서 대응되는 제2 NR RECNF를 적용한다. In step 931, the terminal performs conditional reset. The UE applies the corresponding second NR RECNF to the triggered cell.
936 단계에서 단말은 제2 기지국으로 ULIT를 전송한다. ULIT는 제1 NR RECNF CMP를 포함한다. 제1 NR RECNF CMP는 제3 Transaction id를 포함한다. ULIT는 또한 트리거드 셀에 대응되는 (혹은 트리거드 셀에 대응되는 제2 NR RECNF에 대응되는) CRID를 포함한다. In step 936, the terminal transmits the ULIT to the second base station. The ULIT includes the first NR RECNF CMP. The first NR RECNF CMP includes a third Transaction id. The ULIT also includes a CRID corresponding to the triggered cell (or corresponding to the second NR RECNF corresponding to the triggered cell).
도 10은 본 발명을 적용한 단말의 내부 구조를 도시하는 블록도이다. 10 is a block diagram showing the internal structure of a terminal to which the present invention is applied.
상기 도면을 참고하면, 상기 단말은 제어부 (1001), 저장부 (1002), 트랜시버 (1003), 주프로세서 (1004), 입출력부 (1005)를 포함한다. Referring to the drawing, the terminal includes a control unit 1001, a storage unit 1002, a transceiver 1003, a main processor 1004, and an input/output unit 1005.
상기 제어부 (1001)는 이동 통신 관련 상기 UE의 전반적인 동작들을 제어한다. 예를 들어, 상기 제어부 (1001)는 상기 트랜시버 (1003)를 통해 신호를 송수신한다. 또한, 상기 제어부(1001)는 상기 저장부 (1002)에 데이터를 기록하고, 읽는다. 이를 위해, 상기 제어부(1001)는 적어도 하나의 프로세서(processor)를 포함할 수 있다. 예를 들어, 상기 제어부 (1001)는 통신을 위한 제어를 수행하는 CP(communication processor) 및 응용 프로그램 등 상위 계층을 제어하는 AP(application processor)를 포함할 수 있다. 상기 제어부 (1001)는 도9의 단말 동작이 수행되도록 저장부와 트랜시버를 제어한다. The controller 1001 controls overall operations of the UE related to mobile communication. For example, the controller 1001 transmits and receives signals through the transceiver 1003 . Also, the control unit 1001 writes and reads data in the storage unit 1002 . To this end, the controller 1001 may include at least one processor. For example, the control unit 1001 may include a communication processor (CP) that controls communication and an application processor (AP) that controls upper layers such as application programs. The control unit 1001 controls the storage unit and the transceiver so that the operation of the terminal of FIG. 9 is performed.
상기 저장부 (1002)는 상기 단말의 동작을 위한 기본 프로그램, 응용 프로그램, 설정 정보 등의 데이터를 저장한다. 상기 저장부 (1002)는 상기 제어부 (1001)의 요청에 따라 저장된 데이터를 제공한다. The storage unit 1002 stores data such as a basic program for operating the terminal, an application program, and setting information. The storage unit 1002 provides stored data according to the request of the control unit 1001 .
상기 트랜스버 (1003)는 RF처리부, 기저대역처리부, 안테나를 포함한다. RF처리부는 신호의 대역 변환, 증폭 등 무선 채널을 통해 신호를 송수신하기 위한 기능을 수행한다. 즉, 상기 RF처리부는 상기 기저대역처리부로부터 제공되는 기저대역 신호를 RF 대역 신호로 상향 변환한 후 안테나를 통해 송신하고, 상기 안테나를 통해 수신되는 RF 대역 신호를 기저대역 신호로 하향 변환한다. 상기 RF처리부는 송신 필터, 수신 필터, 증폭기, 믹서 (mixer), 오실레이터 (oscillator), DAC (digital to analog convertor), ADC (analog to digital convertor) 등을 포함할 수 있다. 상기 RF 처리부는 MIMO를 수행할 수 있으며, MIMO 동작 수행 시 여러 개의 레이어를 수신할 수 있다. 상기 기저대역처리부는 시스템의 물리 계층 규격에 따라 기저대역 신호 및 비트열 간 변환 기능을 수행 한다. 예를 들어, 데이터 송신 시, 상기 기저대역처리부는 송신 비트열을 부호화 및 변조함으로써 복소 심벌들을 생성한다. 또한, 데이터 수신 시, 상기 기저대역처리부는 상기 RF처리부로부터 제공되는 기저대역 신호를 복조 및 복호화를 통해 수신 비트열을 복원한다. 상기 트랜시버는 송수신부이다. The transver 1003 includes an RF processing unit, a baseband processing unit, and an antenna. The RF processing unit performs functions for transmitting and receiving signals through a wireless channel, such as band conversion and amplification of signals. That is, the RF processing unit up-converts the baseband signal provided from the baseband processing unit into an RF band signal, transmits the signal through an antenna, and down-converts the RF band signal received through the antenna into a baseband signal. The RF processing unit may include a transmit filter, a receive filter, an amplifier, a mixer, an oscillator, a digital to analog converter (DAC), an analog to digital converter (ADC), and the like. The RF processing unit may perform MIMO, and may receive multiple layers when performing MIMO operation. The baseband processing unit performs a conversion function between a baseband signal and a bit string according to the physical layer standard of the system. For example, during data transmission, the baseband processing unit generates complex symbols by encoding and modulating a transmission bit stream. In addition, when data is received, the baseband processing unit demodulates and decodes the baseband signal provided from the RF processing unit to restore a received bit stream. The transceiver is a transceiver.
상기 주프로세서(1004)는 이동통신 관련 동작을 제외한 전반적인 동작을 제어한다. 상기 주프로세서(1004)는 입출렵부(1005)가 전달하는 사용자의 입력을 처리하여 필요한 데이터는 저장부(1002)에 저장하고 제어부(1001)를 제어해서 이동통신 관련 동작을 수행하고 입출력부(1005)로 출력 정보를 전달한다. The main processor 1004 controls overall operations except for operations related to mobile communication. The main processor 1004 processes user input transmitted by the input/output unit 1005, stores necessary data in the storage unit 1002, controls the control unit 1001 to perform mobile communication-related operations, and the input/output unit ( 1005) to transmit the output information.
상기 입출력부(1005)는 마이크로폰, 스크린 등 사용자 입력을 받아들이는 장치와 사용자에게 정보를 제공하는 장치로 구성되며, 주프로세서의 제어에 따라 사용자 데이터의 입출력을 수행한다. The input/output unit 1005 is composed of a device that receives user input, such as a microphone and a screen, and a device that provides information to the user, and performs input and output of user data under the control of a main processor.
도 11는 본 발명에 따른 GNB-CU의 구성을 나타낸 블록도이다. 11 is a block diagram showing the configuration of a GNB-CU according to the present invention.
*상기 도면에 도시된 바와 같이, 상기 기지국은 제어부 (1101), 저장부 (1102), F1 인터페이스부(1103), 백홀 인터페이스부 (1104)를 포함하여 구성된다. * As shown in the figure, the base station includes a control unit 1101, a storage unit 1102, an F1 interface unit 1103, and a backhaul interface unit 1104.
상기 제어부 (1101)는 상기 기지국의 전반적인 동작들을 제어한다. 예를 들어, 상기 제어부 (1101)는 상기 트랜시버 (1103)를 통해 또는 상기 백홀 인터페이스부(1104)을 통해 신호를 송수신한다. 또한, 상기 제어부(1101)는 상기 저장부(1102)에 데이터를 기록하고, 읽는다. 이를 위해, 상기 제어부(1101)는 적어도 하나의 프로세서를 포함할 수 있다. 상기 제어부 (1101)는 도 6과 도8에 도시된 기지국 동작이 수행되도록 F1 인터페이스부. 저장부. 백홀 인터페이스부를 제어한다.The controller 1101 controls overall operations of the base station. For example, the control unit 1101 transmits and receives signals through the transceiver 1103 or the backhaul interface unit 1104 . Also, the control unit 1101 writes and reads data in the storage unit 1102 . To this end, the controller 1101 may include at least one processor. The controller 1101 is an F1 interface unit so that the base station operations shown in FIGS. 6 and 8 are performed. storage. Controls the backhaul interface.
상기 저장부 (1102)는 상기 주기지국의 동작을 위한 기본 프로그램, 응용 프로그램, 설정 정보 등의 데이터를 저장한다. 특히, 상기 저장부 (1102)는 접속된 단말에 할당된 베어러에 대한 정보, 접속된 단말로부터 보고된 측정 결과 등을 저장할 수 있다. 또한, 상기 저장부 (1102)는 단말에게 다중 연결을 제공하거나, 중단할지 여부의 판단 기준이 되는 정보를 저장할 수 있다. 그리고, 상기 저장부 (1102)는 상기 제어부(1101)의 요청에 따라 저장된 데이터를 제공한다. The storage unit 1102 stores data such as a basic program for the operation of the main base station, an application program, and setting information. In particular, the storage unit 1102 may store information about a bearer allocated to a connected terminal, measurement results reported from the connected terminal, and the like. In addition, the storage unit 1102 may store information that is a criterion for determining whether to provide or stop multiple connections to the terminal. And, the storage unit 1102 provides the stored data according to the request of the control unit 1101.
상기 인터페이스부 (1103)는 GNB-DU와 통신을 수행하기 위한 인터페이스를 제공한다. 즉 상기 F1 인터페이스부는 GNB-DU로 송신되는 비트열을 물리적 신호로 변환하고 GNB-DU로부터 수신되는 물리적 신호를 비트열로 변환한다. The interface unit 1103 provides an interface for communicating with the GNB-DU. That is, the F1 interface unit converts a bit stream transmitted through the GNB-DU into a physical signal and converts a physical signal received from the GNB-DU into a bit stream.
상기 백홀 인터페이스부 (1104)는 네트워크 내 다른 노드들과 통신을 수행하기 위한 인터페이스를 제공한다. 즉, 상기 백홀 통신부 (1104)는 상기 주기지국에서 다른 노드, 예를 들어, 보조기지국, 코어망 등으로 송신되는 비트열을 물리적 신호로 변환하고, 상기 다른 노드로부터 수신되는 물리적 신호를 비트열로 변환한다.The backhaul interface unit 1104 provides an interface for communicating with other nodes in the network. That is, the backhaul communication unit 1104 converts a bit string transmitted from the main base station to another node, for example, a secondary base station, a core network, etc., into a physical signal, and converts the physical signal received from the other node into a bit string. convert
상기 인터페이스부와 상기 백홀 인터페이스부는 송수신부를 구성한다.The interface unit and the backhaul interface unit constitute a transmission/reception unit.

Claims (6)

  1. 무선 통신 시스템에서, 타겟 세컨더리 기지국 중앙 유닛의 방법에 있어서,In a wireless communication system, in a method of a target secondary base station central unit,
    마스터 기지국으로부터 E-UTRA-NR Dual Connectivity (EN-DC) 동작을 위한 자원을 준비할 것을 요청하는, 하나의 셀그룹설정정보와 하나의 실행 조건 정보와 복수의 셀 식별자를 포함하는 제1 제어메시지를 수신하는 단계;A first control message requesting preparation of resources for E-UTRA-NR Dual Connectivity (EN-DC) operation from the master base station, including one cell group configuration information, one execution condition information, and a plurality of cell identifiers receiving;
    타겟 기지국 분산 유닛으로 컨텍스트 설정과 관련된 복수의 제2 제어메시지를 전송하는 단계;Transmitting a plurality of second control messages related to context establishment to a target base station distribution unit;
    타겟 기지국 분산 유닛으로부터 컨텍스트 설정과 관련된 복수의 제3 제어메시지를 수신하는 단계;Receiving a plurality of third control messages related to context setup from a target base station distribution unit;
    마스터 기지국으로 Secondary GNB (SGNB) 추가 준비를 확정하는, 하나의 제1 컨테이너를 포함하는 제4 제어메시지를 전송하는 단계를 포함하고,Transmitting to the master base station a fourth control message including one first container, which determines preparation for secondary GNB (SGNB) addition,
    제1 컨테이너는 복수의 셀그룹설정을 포함하는 것을 특징으로 하는 방법A method characterized in that the first container includes a plurality of cell group configurations
  2. 제1항에 있어서,According to claim 1,
    제4 제어메시지는 제2 컨테이너를 포함하고, 제2 컨테이너는 하나의 NR RRC (Radio Resource Control (RRC) 재구성 메시지를 포함하는 것을 특징으로 하는 방법 The fourth control message includes a second container, and the second container includes one NR Radio Resource Control (RRC) reconfiguration message.
  3. 제1항에 있어서, According to claim 1,
    제1 제어메시지에 포함된 셀 식별자의 개수는 제2 제어메시지의 개수보다 크거나 같고 제2 제어메시지의 개수는 제3 제어메시지의 개수보다 크거나 같음을 특징으로 하는 방법 The number of cell identifiers included in the first control message is greater than or equal to the number of second control messages and the number of second control messages is greater than or equal to the number of third control messages.
  4. 무선 통신 시스템에서, 타겟 기지국 중앙 유닛에 있어서,In a wireless communication system, in a target base station central unit,
    신호를 송수신하도록 구성되는 송수신부 및 A transmitting and receiving unit configured to transmit and receive signals; and
    제어부를 포함하며,It includes a control unit,
    상기 제어부는,The control unit,
    마스터 기지국으로부터 EN-DC 동작을 위한 자원을 준비할 것을 요청하는, 하나의 셀그룹설정정보와 하나의 실행 조건 정보와 복수의 셀 식별자를 포함하는 제1 제어메시지를 수신하고,Receiving a first control message including one cell group configuration information, one execution condition information, and a plurality of cell identifiers requesting preparation of resources for an EN-DC operation from a master base station;
    타겟 기지국 분산 유닛으로 컨텍스트 설정과 관련된 복수의 제2 제어메시지를 전송하고, Transmitting a plurality of second control messages related to context setup to a target base station distribution unit;
    타겟 기지국 분산 유닛으로부터 컨텍스트 설정과 관련된 복수의 제3 제어메시지를 수신하고,Receiving a plurality of third control messages related to context setup from a target base station distribution unit;
    마스터 기지국으로 SGNB 추가 준비를 확정하는, 하나의 제1 컨테이너를 포함하는 제4 제어메시지를 전송하고,Transmitting a fourth control message including one first container to confirm SGNB addition preparation to the master base station;
    제1 컨테이너는 복수의 셀그룹설정을 포함하도록 구성된 장치 The first container is a device configured to include a plurality of cell group configurations.
  5. 제4항에 있어서,According to claim 4,
    제4 제어메시지는 제2 컨테이너를 포함하고, 제2 컨테이너는 하나의 NR RRC 재구성 메시지를 포함하도록 구성된 장치 The fourth control message includes a second container, and the second container is configured to include one NR RRC reconfiguration message.
  6. 제4항에 있어서, According to claim 4,
    제1 제어메시지에 포함된 셀 식별자의 개수는 제2 제어메시지의 개수보다 크거나 같고 제2 제어메시지의 개수는 제3 제어메시지의 개수보다 크거나 같도록 구성된 장치.The number of cell identifiers included in the first control message is greater than or equal to the number of second control messages, and the number of second control messages is greater than or equal to the number of third control messages.
PCT/KR2022/011007 2021-08-05 2022-07-27 Method and device for changing secondary base station in wireless mobile communication system WO2023013954A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0103224 2021-08-05
KR20210103224 2021-08-05

Publications (1)

Publication Number Publication Date
WO2023013954A1 true WO2023013954A1 (en) 2023-02-09

Family

ID=85156187

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/011007 WO2023013954A1 (en) 2021-08-05 2022-07-27 Method and device for changing secondary base station in wireless mobile communication system

Country Status (1)

Country Link
WO (1) WO2023013954A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210092725A1 (en) * 2019-03-27 2021-03-25 Ofinno, Llc Cell Information for Access Management

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210092725A1 (en) * 2019-03-27 2021-03-25 Ofinno, Llc Cell Information for Access Management

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"3rd Generation Partnership Project; Technical Specification Group Radio Access Network; NG-RAN; Architecture description (Release 16)", 3GPP STANDARD; TECHNICAL SPECIFICATION; 3GPP TS 38.401, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG3, no. V16.6.0, 13 August 2021 (2021-08-13), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, pages 1 - 79, XP052056341 *
GOOGLE: "Clarification of the default configuration behaviour in SN change", 3GPP DRAFT; R3-182983 DEFAULT CONFIG OPTION IN R15.1.0, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG3, no. Busan, South Korea; 20180521 - 20180525, 11 May 2018 (2018-05-11), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051527159 *
INTEL CORPORATION, CATT, ZTE, HUAWEI: "Baseline CR for introducing Rel-16 NR mobility enhancement", 3GPP DRAFT; R3-201587, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG3, no. Electronic Meeting; 20200420 - 20200430, 5 April 2020 (2020-04-05), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051868726 *
ZTE: "Discussion on SgNB Change in Option 3 with CU-DU split", 3GPP DRAFT; R3-172924 DISCUSSION ON SGNB CHANGE IN OPTION 3 WITH CU-DU SPLIT, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG3, no. Berlin, Germany; 20170821 - 20170825, 21 August 2017 (2017-08-21), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051319764 *

Similar Documents

Publication Publication Date Title
WO2018174627A1 (en) Method and device for indicating type of bearer used for next message in wireless communication system
WO2019160327A1 (en) Method and device for performing cell reselection in mobile communication system
WO2012060608A2 (en) Method for coordinating inter-cell interference and base station
WO2019160281A1 (en) Method and apparatus for performing dc based handover
WO2014142487A1 (en) Method for managing information about on/off small cells in radio access system and apparatus for supporting same
WO2019022480A1 (en) Method and apparatus for allocating resource based on anchor carrier in wireless communication system
WO2023080470A1 (en) Method and device for performing and reporting application layer measurement in wireless mobile communication system
WO2023113340A1 (en) Method and device for releasing rrc connection on basis of rrc control message in non-terrestrial network
WO2023013954A1 (en) Method and device for changing secondary base station in wireless mobile communication system
WO2023013976A1 (en) Method and device for changing secondary base station in wireless mobile communication system
WO2023013958A1 (en) Method and device for changing secondary base station in wireless mobile communication system
WO2023013975A1 (en) Method and apparatus for changing secondary base station in wireless mobile communication system
WO2023013977A1 (en) Method and apparatus for resuming rrc connection in wireless mobile communication system
WO2023106716A1 (en) Method and apparatus for executing conditional reconfiguration when multiple conditions related to multiple events are satisfied in non-terrestrial network
WO2023106708A1 (en) Method and apparatus for measuring neighboring cell via plurality of measurement timing configurations in non-terrestrial network
WO2023106709A1 (en) Method and device for triggering measurement result report in non-terrestrial network on basis of location
WO2023013960A1 (en) Method and device for changing secondary base station in wireless mobile communication system
WO2023096377A1 (en) Method and device for processing paging message by terminal in wireless mobile communication system
WO2023096316A1 (en) Method and apparatus for processing, by distributed unit, paging message in wireless mobile communication system
WO2023096317A1 (en) Method and device for processing paging message by base station in wireless mobile communication system
WO2023022401A1 (en) Method by which terminal in rrc_inactive state transmits/receives data in wireless mobile communication system, and device
WO2023080471A1 (en) Method and device for measuring application layer and reporting same in wireless mobile communication system
WO2023022403A1 (en) Method and device for rrc_inactive state terminal to transmit and receive data in wireless mobile communication system
WO2023022408A1 (en) Method and device for transmitting buffer status report and power headroom report by terminal in rrc_inactive state in wireless mobile communication system
WO2023080472A1 (en) Method and apparatus for performing and reporting application layer measurement in wireless mobile communication system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22853332

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE