WO2023013750A1 - Communication device and communication method - Google Patents
Communication device and communication method Download PDFInfo
- Publication number
- WO2023013750A1 WO2023013750A1 PCT/JP2022/030026 JP2022030026W WO2023013750A1 WO 2023013750 A1 WO2023013750 A1 WO 2023013750A1 JP 2022030026 W JP2022030026 W JP 2022030026W WO 2023013750 A1 WO2023013750 A1 WO 2023013750A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cell
- transmission timing
- trp201
- timing
- control unit
- Prior art date
Links
- 238000004891 communication Methods 0.000 title claims abstract description 60
- 238000000034 method Methods 0.000 title claims description 24
- 230000005540 biological transmission Effects 0.000 claims abstract description 128
- 238000010295 mobile communication Methods 0.000 description 26
- 238000012545 processing Methods 0.000 description 16
- 238000005259 measurement Methods 0.000 description 15
- 238000010586 diagram Methods 0.000 description 12
- 230000011664 signaling Effects 0.000 description 6
- 238000007726 management method Methods 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 230000006870 function Effects 0.000 description 4
- 230000004044 response Effects 0.000 description 4
- 238000013507 mapping Methods 0.000 description 3
- 230000004913 activation Effects 0.000 description 2
- 230000006978 adaptation Effects 0.000 description 2
- 238000007630 basic procedure Methods 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000008054 signal transmission Effects 0.000 description 2
- 101150014328 RAN2 gene Proteins 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000006837 decompression Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000013468 resource allocation Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W56/00—Synchronisation arrangements
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
- H04W72/044—Wireless resource allocation based on the type of the allocated resource
- H04W72/0457—Variable allocation of band or rate
Definitions
- the present disclosure relates to a communication device and communication method used in a mobile communication system.
- a first cell that is a serving cell and a second cell that belongs to the same frequency (intra frequency) as the first cell are configured in a communication device, and the communication device maintains the first cell as a serving cell, A model of performing data communication with the second cell is assumed (see Non-Patent Documents 1 to 3).
- the second cell is a cell (cell having TRP with different PCI) configured by a TRP different from that of the first cell and having a physical cell identifier (PCI) different from that of the first cell.
- PCI physical cell identifier
- a communication device located far from a cell transmits an uplink signal at an earlier timing than a communication device located close to the cell. Specifically, the communication device adjusts the transmission timing of the uplink signal based on the timing advance from the base station.
- An object is to provide an apparatus and a communication method.
- a communication apparatus (100) includes a control section (120) that adjusts a first transmission timing that is an uplink signal transmission timing and a second transmission timing that is an uplink signal transmission timing; and a transmitter that transmits an uplink signal at the first transmission timing and transmits an uplink signal at the second transmission timing.
- the control unit (120) determines a first offset value to be added to a value based on a first timing advance used to adjust the first transmission timing, and determines a second offset value used to adjust the second transmission timing. The determined first offset value is used as the second offset value to be added to the value based on the timing advance.
- a communication method is a communication method executed by the communication device (100).
- the communication method comprises adjusting a first transmission timing, which is the transmission timing of an uplink signal, and a second transmission timing, which is the transmission timing of the uplink signal; and transmitting the uplink signal at the first transmission timing. and transmitting the uplink signal at the second transmission timing.
- the adjusting step includes determining a first offset value to be added to a value based on a first timing advance used to adjust the first transmission timing; and using the determined first offset value as a second offset value to be added to the value based on the timing advance.
- FIG. 1 is a diagram showing the configuration of a mobile communication system according to an embodiment
- FIG. 1 is a diagram showing a configuration example of a protocol stack in a mobile communication system according to an embodiment
- FIG. FIG. 4 is an explanatory diagram for explaining the relationship between uplink frames and downlink frames in the mobile communication system according to the embodiment
- 1 is a diagram showing an assumed scenario in a mobile communication system according to an embodiment
- FIG. 3 shows a basic procedure in an assumed scenario according to an embodiment
- It is a figure which shows the structure of UE which concerns on embodiment.
- It is a figure which shows the structure of the base station which concerns on embodiment.
- FIG. 4 is a diagram showing a sequence of a first operation example in the mobile communication system according to the embodiment;
- FIG. 4 is an explanatory diagram for explaining a first operation example in the mobile communication system according to the embodiment;
- FIG. 7 is a diagram showing a sequence of a second operation example in the mobile communication system according to the embodiment;
- FIG. 5 is an explanatory diagram illustrating a second operation example in the mobile communication system according to the embodiment;
- the mobile communication system 1 is, for example, a system conforming to 3GPP Technical Specifications (TS).
- TS Technical Specifications
- a mobile communication system based on the 3GPP standard 5th Generation System (5GS), that is, NR (New Radio) will be described as an example.
- the mobile communication system 1 has a network 10 and a communication device (User Equipment: UE) 100 that communicates with the network 10 .
- the network 10 includes an NG-RAN (Next Generation Radio Access Network) 20, which is a 5G radio access network, and a 5GC (5G Core Network) 30, which is a 5G core network.
- NG-RAN Next Generation Radio Access Network
- 5G Core Network 5G Core Network
- the UE 100 is a device used by a user.
- the UE 100 is, for example, a portable device such as a mobile phone terminal such as a smart phone, a tablet terminal, a notebook PC, a communication module, or a communication card.
- the UE 100 may be a vehicle (eg, car, train, etc.) or a device provided therein.
- the UE 100 may be a transport body other than a vehicle (for example, a ship, an airplane, etc.) or a device provided thereon.
- the UE 100 may be a sensor or a device attached thereto.
- the UE 100 includes a mobile station, a mobile terminal, a mobile device, a mobile unit, a subscriber station, a subscriber terminal, a subscriber device, a subscriber unit, a wireless station, a wireless terminal, a wireless device, a wireless unit, a remote station, and a remote terminal. , remote device, or remote unit.
- NG-RAN 20 includes multiple base stations 200 .
- Each base station 200 manages at least one cell.
- a cell constitutes the minimum unit of a communication area. For example, one cell belongs to one frequency (carrier frequency) and is configured by one component carrier.
- the term “cell” may represent a radio communication resource and may also represent a communication target of UE 100 .
- Each base station 200 can perform radio communication with the UE 100 residing in its own cell.
- the base station 200 communicates with the UE 100 using the RAN protocol stack.
- Base station 200 provides NR user plane and control plane protocol termination towards UE 100 and is connected to 5GC 30 via NG interface.
- gNodeB gNodeB
- the 5GC 30 includes a core network device 300.
- the core network device 300 includes, for example, AMF (Access and Mobility Management Function) and/or UPF (User Plane Function).
- AMF Access and Mobility Management Function
- UPF User Plane Function
- AMF performs mobility management of UE100.
- UPF provides functions specialized for user plane processing.
- the AMF and UPF are connected with the base station 200 via the NG interface.
- the protocol of the radio section between the UE 100 and the base station 200 includes a physical (PHY) layer, a MAC (Medium Access Control) layer, an RLC (Radio Link Control) layer, a PDCP (Packet Data Convergence Protocol) layer, It has an RRC (Radio Resource Control) layer.
- PHY physical
- MAC Medium Access Control
- RLC Radio Link Control
- PDCP Packet Data Convergence Protocol
- RRC Radio Resource Control
- the PHY layer performs encoding/decoding, modulation/demodulation, antenna mapping/demapping, and resource mapping/demapping. Data and control information are transmitted between the PHY layer of the UE 100 and the PHY layer of the base station 200 via physical channels.
- a physical channel consists of multiple OFDM symbols in the time domain and multiple subcarriers in the frequency domain.
- One subframe consists of a plurality of OFDM symbols in the time domain.
- a resource block is a resource allocation unit, and is composed of a plurality of OFDM symbols and a plurality of subcarriers.
- a frame may consist of 10 ms and may include 10 subframes of 1 ms.
- a subframe can include a number of slots corresponding to the subcarrier spacing.
- the physical downlink control channel plays a central role, for example, for purposes such as downlink scheduling assignments, uplink scheduling grants, and transmission power control.
- the UE 100 can use a narrower bandwidth than the system bandwidth (that is, the cell bandwidth).
- the base station 200 sets a bandwidth part (BWP) consisting of continuous PRBs (Physical Resource Blocks) for the UE 100 .
- BWP bandwidth part
- UE 100 transmits and receives data and control signals on the active BWP. Up to four BWPs can be set in the UE 100, for example. Each BWP may have different subcarrier spacing and may overlap each other in frequency. If multiple BWPs are configured for the UE 100, the base station 200 can specify which BWP to activate through downlink control. This allows the base station 200 to dynamically adjust the UE bandwidth according to the amount of data traffic of the UE 100, etc., and reduce UE power consumption.
- the base station 200 can configure up to 3 control resource sets (CORESET) for each of up to 4 BWPs on the serving cell.
- CORESET is a radio resource for control information that the UE 100 should receive.
- UE 100 may be configured with up to 12 CORESETs on the serving cell.
- Each CORESET has an index from 0 to 11.
- a CORESET consists of 6 resource blocks (PRBs) and 1, 2 or 3 consecutive OFDM symbols in the time domain.
- the MAC layer performs data priority control, retransmission processing by hybrid ARQ (HARQ: Hybrid Automatic Repeat reQuest), random access procedures, and the like. Data and control information are transmitted between the MAC layer of the UE 100 and the MAC layer of the base station 200 via transport channels.
- the MAC layer of base station 200 includes a scheduler. The scheduler determines uplink and downlink transport formats (transport block size, modulation and coding scheme (MCS)) and allocation resources to the UE 100 .
- MCS modulation and coding scheme
- the RLC layer uses the functions of the MAC layer and PHY layer to transmit data to the RLC layer on the receiving side. Data and control information are transmitted between the RLC layer of the UE 100 and the RLC layer of the base station 200 via logical channels.
- the PDCP layer performs header compression/decompression and encryption/decryption.
- An SDAP (Service Data Adaptation Protocol) layer may be provided as an upper layer of the PDCP layer.
- the SDAP (Service Data Adaptation Protocol) layer performs mapping between an IP flow, which is the unit of QoS control performed by the core network, and a radio bearer, which is the unit of QoS control performed by the AS (Access Stratum).
- the RRC layer controls logical channels, transport channels and physical channels according to radio bearer establishment, re-establishment and release.
- RRC signaling for various settings is transmitted between the RRC layer of UE 100 and the RRC layer of base station 200 .
- UE 100 When there is an RRC connection between the RRC of UE 100 and the RRC of base station 200, UE 100 is in the RRC connected state. If there is no RRC connection between the RRC of the UE 100 and the RRC of the base station 200, the UE 100 is in RRC idle state. When the RRC connection between the RRC of UE 100 and the RRC of base station 200 is suspended, UE 100 is in RRC inactive state.
- the NAS layer located above the RRC layer performs session management and mobility management for UE100.
- NAS signaling is transmitted between the NAS layer of the UE 100 and the NAS layer of the core network device 300 (AMF).
- AMF core network device 300
- the UE 100 has an application layer and the like in addition to the radio interface protocol.
- Method for adjusting uplink transmission timing An example of a method for adjusting uplink transmission timing in the mobile communication system 1 according to the embodiment will be described with reference to FIG. That is, a method for synchronizing uplink transmission timing will be described.
- the base station 200 controls the transmission timing of the uplink signal of each UE 100 in order to keep the reception timing of the uplink signal from each UE 100 within the managed cell within a predetermined time range.
- the base station 200 determines a timing advance (hereinafter referred to as TA) for the UE 100 to adjust the transmission timing of the uplink signal.
- TA timing advance
- the UE 100 adjusts the timing of uplink transmission based on the downlink frame timing.
- the UE 100 uses TAs to adjust uplink frame timing for downlink frames. As shown in FIG. 4, the UE 100 shifts the i-th uplink frame forward with respect to the i-th downlink frame by a time of (N TA +N TA,offset ) Tc .
- the UE 100 calculates an adjustment value (T TA ) for shifting the downlink frame, for example, using the following formula.
- N TA is a value (hereinafter referred to as a TA value) calculated based on the TA (T A ) notified from the base station 200 (cell). NTA can be calculated by Equations 2 and 3.
- TA (T A ) in Equation 2 is the value of the timing advance command (TA command) contained in the medium access control (MAC) control element (CE).
- MAC medium access control
- CE control element
- the UE 100 calculates a new TA value (N TA_NEW ) from the retained TA value (N TA_old ).
- TA(T A ) in Equation 3 is the timing advance value included in the random access response. Note that ⁇ is the subcarrier interval setting.
- N TA,offset is a fixed offset value used to calculate the adjustment value (T TA ).
- N TA,offset may be notified from the base station 200 (cell). If the UE 100 is not notified of the N TA, offset from the base station 200, the UE 100 may determine the N TA, offset as a default value. The UE 100 may determine the offset value (N TA,offset ) based on conditions such as the frequency band, presence or absence of MR-DC, and presence or absence of coexistence of NR/NB-IoT. The UE 100 may, for example, determine the offset value (N TA,offset ) using Table 1 below.
- Tc is the basic time unit. Tc is a predetermined fixed value. The UE 100 holds information on Tc in advance. Tc is, for example, 0.509 ns.
- the downlink frame timing which is the reference for adjusting the timing of uplink transmission, is the timing at the beginning of the downlink frame. Specifically, the downlink frame timing is defined as the time at which the first detected path (in time) of the downlink frame is received from the base station 200 (specifically, the reference cell).
- a radio frame constituting an uplink frame and a downlink frame is composed of ten subframes of 1 ms. Each frame is divided into two equally sized half-frames of 5 sub-frames.
- the UE 100 synchronizes the downlink timing using the synchronization signal included in the reference signal (SSB: SS/PBCH Block) transmitted in the BWP, thereby grasping the downlink frame timing in the BWP that received the SSB. can.
- SSB SS/PBCH Block
- the SSB includes a primary synchronization signal (PSS), a secondary synchronization signal (SSS), a PBCH (Physical Broadcast Channel), and a demodulation reference signal (DMRS).
- PSS primary synchronization signal
- SSS secondary synchronization signal
- PBCH Physical Broadcast Channel
- DMRS demodulation reference signal
- an SSB may consist of four consecutive OFDM symbols in the time domain.
- the SSB may consist of 240 consecutive subcarriers (ie, 20 resource blocks) in the frequency domain.
- PBCH is a physical channel that carries a Master Information Block (MIB).
- MIB Master Information Block
- the base station 200 has a TRP 201 # 1 , a TRP 201 # 2 , a DU (Distributed Unit) 202 and a CU (Central Unit) 203 .
- FIG. 4 shows an example in which base station 200 is separated into DU202 and CU203, base station 200 may not be separated into DU202 and CU203.
- the number of TRPs 201 in base station 200 is two is shown, the number of TRPs 201 in base station 200 may be three or more.
- TRPs 201#1 and TRPs 201#2 are distributed and constitute different cells. Specifically, TRP 201#1 forms cell C1 and TRP 201#2 forms cell C2.
- Cell C1 and cell C2 belong to the same frequency.
- Cell C1 and cell C2 have different physical cell identifiers (PCI). That is, the cell C2 is a cell (cell having TRP with different PCI) configured by a TRP #2 different from the TRP 201 #1 corresponding to the cell C1 and having a PCI different from that of the cell C1.
- FIG. 4 shows an example in which the coverage of cell C2 is within the coverage of cell C1, the coverage of cell C2 may at least partially overlap the coverage of cell C1.
- the DU202 controls TRP201#1 and TRP201#2. In other words, TRP201#1 and TRP201#2 are under the same DU202.
- the DU 202 is a unit that includes lower layers included in the protocol stack described above, such as the RLC layer, the MAC layer and the PHY layer.
- DU202 is connected with CU203 via F1 interface which is a fronthaul interface.
- the CU203 controls DU202.
- the CU 203 is a unit including upper layers included in the protocol stack described above, such as the RRC layer, the SDAP layer and the PDCP layer.
- the CU 203 is connected to the core network (5GC 30) via the NG interface, which is a backhaul interface.
- the UE 100 is in the RRC connected state and performs wireless communication with the base station 200.
- NR is capable of wideband transmission in a high frequency band such as a millimeter wave band. It has high beam gain.
- Base station 200 and UE 100 establish a beam pair.
- the UE 100 performs data communication with the serving cell C1 (TRP201#1). Specifically, the UE 100 performs data communication with the cell C1 using a beam corresponding to transmission configuration indicator (TCI) state #1.
- UE 100 is configured with cell 2, which is a non-serving cell, in addition to cell C1.
- an SSB SS/PBCH Block
- a radio resource for performing data communication with cell 2 are configured from cell C1.
- the UE 100 reports the beam measurement results for the cell C2 to the cell C1.
- Base station 200 (DU 202) receives beam measurements from UE 100 in cell C1 and activates TCI state #2 corresponding to beams in cell C2 based on the beam measurements.
- cell C1 which is a serving cell
- cell C2 belonging to the same frequency (intra frequency) as cell C1
- UE 100 maintains cell C1 as a serving cell.
- a model in which data communication is performed with the cell C2 is assumed.
- the UE 100 receives configuration information from the cell C1 (TRP201#1) by, for example, RRC signaling.
- the setting information includes SSB settings used for beam measurement for cell C2 (TRP201#2) and settings necessary for using radio resources for data transmission/reception (including data transmission/reception with cell C2).
- Configuration information may be transmitted from CU 203 to UE 100 via DU 202 and cell C1 (TRP 201 #1).
- step S2 UE 100 performs beam measurement for cell C2 (TRP201#2) using the setting information (in particular, SSB setting) received in step S1 (step S2a), and sends a report including the measurement result to cell C1 (TRP201 #1) (step S2b).
- DU 202 receives beam measurement results via cell C1 (TRP 201#1).
- step S3 DU 202 sends an instruction to activate the TCI state associated with cell C2 (TRP201 #2) based on the beam measurement results received in step S2 via cell C1 (TRP201 #1) It transmits to UE100.
- Such an activation indication is performed by layer 1 (PHY layer) and layer 2 (MAC layer, etc.) signaling.
- the UE 100 activates the TCI state associated with the cell C2 (TRP201#2) in response to receiving the activation instruction from the cell C1. As a result, a beam pair is established between the UE 100 and the cell C2 (TRP201#2).
- step S4 the UE 100 transmits and receives data to and from the cell C2 (TRP201#2) using the UE dedicated channel on the cell C2 (TRP201#2).
- DU 202 transmits and receives data to and from UE 100 via cell C2 (TRP 201 #2).
- the UE 100 is within the coverage of the cell C1 (TRP201#1) and receives the broadcast channel (BCCH) and paging channel (PCH), which are common channels, from the cell C1 (TRP201#1).
- BCCH broadcast channel
- PCH paging channel
- the UE 100 can switch from cell C1 (TRP201 #1) to cell C2 (TRP201 #2) without depending on a switching instruction from a higher layer (in particular, the RRC layer).
- Data communication can be switched from cell C1 (TRP201#1) to cell C2 (TRP201#2) by beam management in layer 1 (PHY layer) and layer 2 (MAC layer, etc.) without handover. That is, a cell for data communication can be realized by beam switching between layer 1 (PHY layer) and layer 2 (MAC layer, etc.).
- the UE 100 in order to adjust the transmission timing of the uplink signal to cell C2 (TRP201 #2), the UE 100 needs to determine the offset value (N TA, offset ) to be given to the timing advance. .
- the method by which the UE 100 determines the offset value (N TA,offset ) is not defined.
- a method for the UE 100 to appropriately determine the offset value for adjusting the transmission timing of the uplink signal to the cell C2 (TRP201#2) will be described.
- UE 100 (Configuration of communication device) A configuration of the UE 100 according to the embodiment will be described with reference to FIG. UE 100 includes communication unit 110 and control unit 120 .
- the communication unit 110 performs wireless communication with the base station 200 by transmitting and receiving wireless signals to and from the base station 200 .
- the communication unit 110 has at least one transmitter 111 and at least one receiver 112 .
- the transmitter 111 and receiver 112 may be configured to include multiple antennas and RF circuits.
- the antenna converts a signal into radio waves and radiates the radio waves into space. Also, the antenna receives radio waves in space and converts the radio waves into signals.
- the RF circuitry performs analog processing of signals transmitted and received through the antenna.
- the RF circuitry may include high frequency filters, amplifiers, modulators, low pass filters, and the like.
- the control unit 120 performs various controls in the UE 100.
- Control unit 120 controls communication with base station 200 via communication unit 110 .
- the operations of the UE 100 described above and below may be operations under the control of the control unit 120 .
- the control unit 120 may include at least one processor capable of executing a program and a memory that stores the program.
- the processor may execute a program to operate the control unit 120 .
- the control unit 120 may include a digital signal processor that performs digital processing of signals transmitted and received through the antenna and RF circuitry.
- the digital processing includes processing of the protocol stack of the RAN. Note that the memory stores programs executed by the processor, parameters related to the programs, and data related to the programs.
- the memory may include at least one of ROM (Read Only Memory), EPROM (Erasable Programmable Read Only Memory), EEPROM (Electrically Erasable Programmable Read Only Memory), RAM (Random Access Memory), and flash memory. All or part of the memory may be included within the processor.
- the cell C1 ( TRP 201#1) and cell C2 (TRP 201#2) are set.
- the receiving unit 112 receives group information indicating whether cell C1 (TRP201#1) and cell C2 (TRP201#2) belong to the same timing advance group from the base station (200).
- the control unit 120 adjusts the transmission timing of the uplink signal to cell C2 (TRP201#2) based on the group information. This makes it possible to appropriately control the transmission timing of uplink signals for cell C2 (TRP201#2).
- the cell C1 ( TRP 201#1) and cell C2 (TRP 201#2) are set.
- the control unit 120 controls the first transmission timing, which is the transmission timing of the uplink signal to the cell C1 (TRP201#1), and the second transmission timing, which is the transmission timing of the uplink signal to the cell C2 (TRP201#2). , to adjust.
- the transmitter 111 transmits an uplink signal to cell C1 (TRP201#1) at the first transmission timing, and transmits an uplink signal to cell C2 (TRP201#2) at the second transmission timing.
- a control unit (120) determines a first offset value to be added to a value based on the first timing advance used for adjusting the first transmission timing, and assigns the first offset value to the second timing advance used for adjusting the second transmission timing.
- the determined first offset value is used as the second offset value to be given to the base value. This allows the UE 100 to appropriately determine the second offset value and appropriately control the transmission timing of the uplink signal for the cell C2 (TRP201#2).
- the configuration of the base station 200 according to the embodiment will be described with reference to FIG.
- the base station 200 has a plurality of TRPs 201 (TRP 201 # 1 and TRP 201 # 2 in the example of FIG. 7), a communication section 210 , a network interface 220 and a control section 230 .
- Each TRP 201 includes multiple antennas and is configured to enable beamforming.
- TRP 201 may also be referred to as a panel or antenna panel.
- the antenna converts a signal into radio waves and radiates the radio waves into space. Also, the antenna receives radio waves in space and converts the radio waves into signals.
- Each TRP 201 is arranged in a distributed manner and constitutes a cell.
- the communication unit 210 receives radio signals from the UE 100 and transmits radio signals to the UE 100.
- the communication unit 210 has at least one transmitter 211 and at least one receiver 212 .
- the transmitting section 211 and the receiving section 212 may be configured including an RF circuit.
- the RF circuitry performs analog processing of signals transmitted and received through the antenna.
- the RF circuitry may include high frequency filters, amplifiers, modulators, low pass filters, and the like.
- the network interface 220 transmits and receives signals to and from the network.
- the network interface 220 receives signals from adjacent base stations connected via an Xn interface, which is an interface between base stations, and transmits signals to adjacent base stations. Also, the network interface 220 receives signals from the core network device 300 connected via the NG interface, for example, and transmits signals to the core network device 300 .
- the control unit 230 performs various controls in the base station 200.
- the control unit 230 controls communication with the UE 100 via the communication unit 210, for example.
- the control unit 230 controls communication with nodes (for example, adjacent base stations, core network device 300) via the network interface 220, for example.
- the operations of the base station 200 described above and below may be operations under the control of the control unit 230 .
- the control unit 230 may include at least one processor capable of executing programs and a memory storing the programs.
- the processor may execute a program to operate the controller 230 .
- Control unit 230 may include a digital signal processor that performs digital processing of signals transmitted and received through the antenna and RF circuitry.
- the digital processing includes processing of the protocol stack of the RAN.
- the memory stores programs executed by the processor, parameters related to the programs, and data related to the programs. All or part of the memory may be included within the processor.
- the communication unit 210 may be provided in the DU202, and the control unit 230 may be provided in the DU202 and/or the CU203.
- the base station 200 configures the UE 100 with cell C1 (TRP201#1), which is a serving cell, and cell C2 (TRP201#2) belonging to the same frequency as cell C1 (TRP201#1). .
- Control section 230 determines whether or not cell C1 (TRP201#1) and cell C2 (TRP201#2) belong to the same timing advance group.
- Transmitting section 211 transmits to UE 100 group information indicating whether or not cell C1 (TRP201#1) and cell C2 (TRP201#2) belong to the same timing advance group.
- the UE 100 can grasp whether the cell C1 (TRP201#1) and the cell C2 (TRP201#2) belong to the same timing advance group, and the transmission timing of the uplink signal for the cell C2 (TRP201#2). can be controlled appropriately.
- FIG. 8 First Operation Example A first operation example in the mobile communication system 1 will be described with reference to FIGS. 8 and 9.
- UE 100 transmits an uplink signal to cell C2 based on group information indicating that cell C1 (TRP201 #1) and cell C2 (TRP201 #2) belong to the same timing advance group. Adjust timing.
- step S101 the base station 200 (transmitting section 211) sets the first timing advance (first TA) for adjusting the transmission timing of the uplink signal to the cell C1 (TRP201#1) to the cell C1 (TRP201#1). to the UE 100 in.
- UE 100 receives the first TA from cell C1 (TRP 201 #1).
- the base station 200 may transmit the first TA by MAC CE, or in random access, by responding to the random access (RA) preamble (RA response) from the UE 100.
- RA random access
- step S102 the UE 100 (control unit 120) determines the first adjustment value (T TA1 ). A first adjustment value (T TA1 ).
- the UE 100 calculates the first TA value (N TA1 ) based on the first TA (T A1 ) using Equation 2 or Equation 3, for example. Also, the UE 100 (control unit 120) may determine the first offset value (N TA,offset ) to be given to the first TA value. The UE 100 (control unit 120) may determine the first adjustment value (T TA1 ) from the first TA value and the determined first offset value using Equation 1 above.
- the UE 100 uses the downlink timing from the cell C1 (TRP 201#1) as a timing reference for the first uplink transmission (hereinafter, appropriately referred to as a first timing reference). As shown in FIG. 9, UE 100 (control section 120) determines the timing shifted by the first adjustment value (T TA1 ) determined from the first timing reference as the first transmission timing.
- step S103 the UE 100 (transmitting section 111) transmits the first uplink signal to the cell C1 (TRP201#1) at the determined first transmission timing.
- the base station 200 receives an uplink signal in cell C1 (TRP 201#1).
- the base station 200 (control unit 230) starts an operation for performing data communication with the cell C2 (TRP201#2) while the UE100 maintains the cell C1 (TRP201#1) as the serving cell.
- the base station 200 determines whether cell C1 (TRP201#1) and cell C2 (TRP201#2) belong to the same timing advance group.
- the base station 200 places cell C1 (TRP201#1) and cell C2 (TRP201#2) in the same timing advance group. may be determined to belong.
- the base station 200 determines that the cell C1 (TRP201#1) and the cell C2 (TRP201#2) belong to different timing advance groups. can be determined.
- first TA can be applied as (T TA2 )
- second timing reference can be used as the timing reference when adjusting the second transmission timing
- the base station 200 (control unit 230) generates group information indicating whether cell C1 (TRP201#1) and cell C2 (TRP201#2) belong to the same timing advance group.
- group information for example, by setting a timing advance group identifier for each cell, it may be indicated whether cell C1 (TRP201#1) and cell C2 (TRP201#2) belong to the same timing advance group.
- cell C1 (TRP201#1) is associated with timing advance group identifier #1
- cell C2 (TRP201#2) is associated with timing advance group identifier #1.
- the group information may indicate that cell C1 (TRP201#1) and cell C2 (TRP201#2) belong to the same timing advance group.
- the group information For example, in the group information, cell C1 (TRP201#1) is associated with timing advance group identifier #1, and cell C2 (TRP201#2) is associated with timing advance group identifier #2.
- the group information may indicate that cell C1 (TRP201#1) and cell C2 (TRP201#2) belong to different timing advance groups.
- the base station 200 determines that cell C1 (TRP201#1) and cell C2 (TRP201#2) belong to the same timing advance group. Therefore, the group information indicates that cell C1 (TRP201#1) and cell C2 (TRP201#2) belong to the same timing advance group.
- step S104 the base station 200 (transmitting section 211) transmits group information to the UE 100 in the cell C1 (TRP201#1).
- UE 100 (receiving section 112) receives group information from cell C1 (TRP 201 #1).
- the base station 200 may transmit the group information to the UE 100 in the cell C1 (TRP201#1) during steps S1 to S4 in the procedure shown in FIG.
- the base station 200 transmits, to the UE 100, configuration information including, for example, group information and beam measurement configuration information for configuring beam measurement reference signals used for beam measurement for cell C2 (TRP 201 #2).
- you can UE 100 receives group information and beam measurement configuration information from cell C1 (TRP 201 #1).
- the second transmission timing can be adjusted using the first TA as described later before the UE 100 transmits/receives data to/from the cell C2 (TRP201#2) (that is, step S4 in FIG. 5) can be determined. Also, signaling between the UE 100 and the base station 200 can be reduced compared to the case of transmitting the group information and the beam measurement configuration information separately.
- the beam measurement setting information includes reference signal information indicating the SSB or channel state information reference signal (CSI-RS) transmitted by cell C2 (TRP201#2).
- CSI-RS channel state information reference signal
- the base station 200 may transmit group information to the UE 100 in cell C2 (TRP201#2).
- UE 100 may receive group information from cell C2 (TRP 201 #2).
- the UE 100 (control unit 120) adjusts the transmission timing of the uplink signal to cell C2 (TRP201#2) based on the group information. For example, the UE 100 performs the following operations.
- step S105 the UE 100 (control unit 120) determines whether cell C1 (TRP201#1) and cell C2 (TRP201#2) belong to the same timing advance group based on the group information.
- the UE 100 uses the cell C1 (TRP201 #1) because the group information indicates that the cell C1 (TRP201 #1) and the cell C2 (TRP201 #2) belong to the same timing advance group. ) and cell C2 (TRP201#2) belong to the same timing advance group.
- step S106 the UE 100 (control unit 120) determines a second adjustment value (T TA2 ) for adjusting the second transmission timing.
- UE 100 uses the first TA to adjust the second transmission timing. good. That is, the UE 100 (control unit 120) may determine the second adjustment value using the first TA. The UE 100 (control unit 120) may use the first adjustment value as the second adjustment value. This eliminates the need for UE 100 to acquire a second timing advance different from the first TA (hereinafter referred to as a second TA) from base station 200, so signaling between UE 100 and base station 200 can be reduced.
- a second TA second timing advance different from the first TA
- the UE 100 uses the first offset value determined in step S102 as the second offset value (N TA, offset ) while using the first TA as the second TA. may Thereby, the UE 100 can omit the process of determining the second offset value using Table 1, for example. As a result, the processing load on the UE 100 can be reduced.
- UE 100 determines the timing of the second uplink transmission.
- the second transmission timing may be adjusted using the first timing reference as a reference (hereinafter referred to as a second timing reference). Therefore, the UE 100 (control unit 120) may have the same first transmission timing and second transmission timing.
- the UE 100 may use the downlink timing from cell C2 (TRP 201#2) as the second timing reference. Therefore, the UE 100 (control unit 120) determines the timing shifted by the determined second adjustment value (T TA2 ), that is, the first adjustment value (T TA1 ) from the second timing reference as the second transmission timing. good too.
- the UE 100 (control section 120) adjusts the second transmission timing using the first TA.
- the UE 100 may manage the first TA value and the second TA value independently. That is, the UE 100 (control unit 120) may store the first TA value and the second TA value.
- the UE 100 When the UE 100 (control unit 120) receives the first MAC CE including the first TA as the TA command from the base station 200, it may manage the first TA value based on the first MAC CE. That is, the UE 100 (control unit 120) updates the first TA value based on the first TA, and stores the updated first TA value. On the other hand, when the UE 100 (control unit 120) receives the second MAC CE including the second TA as the TA command from the base station 200, it manages the second TA value independently from the first TA value based on the first MAC CE. you can The UE 100 (control unit 120) updates the second TA value based on the second TA and stores the updated second TA value.
- the UE 100 may manage the first adjustment value and the second adjustment value independently.
- the UE 100 may independently manage the information regarding the adjustment of the transmission timing of the uplink signal for each cell.
- the UE 100 when using the first TA value as the second TA value, the UE 100 (control unit 120) may store only the first TA value and not the second TA value. Similarly, when using the first adjustment value as the second adjustment value, the UE 100 (control unit 120) may store only the first adjustment value and may not store the second adjustment value.
- step S107 the UE 100 (transmitting section 111) transmits the second uplink signal to the cell C2 (TRP201#2) at the determined second transmission timing.
- the base station 200 receives an uplink signal in cell C2 (TRP 201#2).
- the first TA can be used to adjust the second transmission timing in addition to the first transmission timing.
- Second Operation Example A second operation example in the mobile communication system 1 will be described with reference to FIGS. 10 and 11, mainly focusing on differences from the above-described operation example.
- the second operation example a case will be described where cell C1 (TRP201#1) and cell C2 (TRP201#2) belong to different timing advance groups.
- step S111 to step S115 is the same as the operation example described above.
- the base station 200 (control unit 230) generates group information indicating whether cell C1 (TRP201#1) and cell C2 (TRP201#2) belong to the same timing advance group.
- Base station 200 (control unit 230) transmits the generated group information to UE 100 in cell C1 (TRP 201 #1).
- the UE 100 determines that cell C1 (TRP201#1) and cell C2 (TRP201#2) belong to different timing advance groups based on the group information.
- the UE 100 may operate to acquire the second TA.
- UE 100 may perform random access to cell C2 (TRP 201#2), for example.
- UE 100 transmitting section 111) may transmit a random access (RA) preamble to cell C2 (TRP 201 #2).
- RA random access
- step S116 the base station 200 (transmitting section 211) transmits a second timing advance (second TA) for adjusting the second transmission timing to the UE 100 in cell C1 (TRP201#1).
- UE 100 (receiving section 112) receives the second TA from cell C1 (TRP 201 #1).
- the base station 200 may transmit the second TA by MAC CE, or in random access, by responding to the random access (RA) preamble from the UE 100 (RA response).
- UE 100 (receiving section 112) may receive the second TA from cell C2 (TRP 201 #2).
- TRP 201 #2 By receiving the TA (second TA) used for transmission of the second uplink signal from the transmission destination cell of the second uplink signal, it is possible to easily grasp the TA to be applied.
- step S117 the UE 100 (control unit 120) determines a second adjustment value (T TA2 ) for adjusting the second transmission timing.
- the UE 100 calculates the second TA value (N TA2 ) based on the second TA (T A2 ), for example, using Equation 2 or Equation 3 above.
- the UE 100 may determine the second offset value (N TA,offset ) to be given to the second TA value.
- the UE 100 may use the first offset value determined when adjusting the first transmission timing as the second offset value.
- the UE 100 may manage the first TA value (N TA1 ) and the second TA value (N TA2 ) independently and use the first offset value as the second offset value. Thereby, the UE 100 can omit the process of determining the second offset value using Table 1, for example. As a result, the processing load on the UE 100 can be reduced.
- the UE 100 may use the first offset value as the second offset value regardless of whether (i) the first TA value and the second TA value are the same, or (ii) the first The first offset value may be used as the second offset value regardless of whether the adjustment value and the second adjustment value are the same; and (iii) the first timing reference and the second timing reference are the same.
- the first offset value may be used as the second offset value regardless of whether there is, and (iv) the second offset value regardless of whether the transmission timing of the uplink signal after adjustment is the same may be used as the first offset value. Therefore, when cell C2 (TRP201#2) is configured together with cell C1 (TRP201#1), UE 100 can apply the same offset value (N TA, offset ) to both cells.
- the UE 100 may determine the second adjustment value (T TA2 ) based on the second TA value calculated using Equation 1 above and the second offset value determined.
- UE 100 When the group information indicates that cell C1 (TRP201 #1) and cell C2 (TRP201 #2) belong to different timing advance groups, UE 100 (control section 120) performs downlink from cell C2 (TRP201 #2).
- the timing may be used as a second timing reference to adjust the second transmission timing.
- the UE 100 (control unit 120) determines the second transmission timing to be the timing shifted by the determined second adjustment value (T TA2 ) from the second timing reference. In this way, the UE 100 (control section 120) adjusts the second transmission timing using the second TA. This allows the network to flexibly set the second transmission timing of the UE 100 (control unit 120).
- step S118 is the same as the operation example described above.
- the operation sequences (and operation flows) in the above-described embodiments do not necessarily have to be executed in chronological order according to the order described in the flow diagrams or sequence diagrams. For example, the steps in the operations may be performed out of order or in parallel with the order illustrated in the flow diagrams or sequence diagrams. Also, some steps in the operation may be omitted and additional steps may be added to the process. Further, the operation sequences (and operation flows) in the above-described embodiments may be implemented independently, or two or more operation sequences (and operation flows) may be combined and implemented. For example, some steps of one operation flow may be added to another operation flow, or some steps of one operation flow may be replaced with some steps of another operation flow.
- the mobile communication system 1 based on NR has been described as an example.
- the mobile communication system 1 may be a TS-compliant system of either LTE or another generation system (eg, 6th generation) of the 3GPP standard.
- Base station 200 may be an eNB that provides E-UTRA user plane and control plane protocol termination towards UE 100 in LTE.
- the mobile communication system 1 may be a system conforming to a TS of a standard other than the 3GPP standard.
- the base station 200 may be an IAB (Integrated Access and Backhaul) donor or an IAB node.
- IAB Integrated Access and Backhaul
- a program that causes a computer to execute each process performed by the UE 100 or the base station 200 may be provided.
- the program may be recorded on a computer readable medium.
- a computer readable medium allows the installation of the program on the computer.
- the computer-readable medium on which the program is recorded may be a non-transitory recording medium.
- the non-transitory recording medium is not particularly limited, but may be, for example, a recording medium such as CD-ROM or DVD-ROM.
- circuits that execute each process performed by the UE 100 or the base station 200 may be integrated, and at least a part of the UE 100 or the base station 200 may be configured as a semiconductor integrated circuit (chipset, SoC).
- “transmit” may mean performing at least one layer of processing in the protocol stack used for transmission, or physically transmitting the signal wirelessly or by wire. It may mean sending to Alternatively, “transmitting” may mean a combination of performing the at least one layer of processing and physically transmitting the signal wirelessly or by wire.
- “receive” may mean performing processing of at least one layer in the protocol stack used for reception, or physically receiving a signal wirelessly or by wire. may mean that Alternatively, “receiving” may mean a combination of performing the at least one layer of processing and physically receiving the signal wirelessly or by wire.
- “obtain/acquire” may mean obtaining information among stored information, and may mean obtaining information among information received from other nodes.
- the first cell (C1) and the second cell (C2) belonging to the same frequency as the serving cell (C1) and the first cell (C1) are managed by the base station (200) that manages the first cell (C1) and the second cell (
- a transmission unit that transmits an uplink signal to the first cell (C1) at the first transmission timing and transmits an uplink signal to the second cell (C2) at the second transmission timing,
- the control unit (120) determining a first offset value to be added to a value based on the first timing advance used to adjust the first transmission timing;
- a communication device (100) that uses the determined first offset value as a second offset value to be added to a value based on the second timing advance used to adjust the second transmission timing.
- Appendix 2 The communication device (100) according to appendix 1, wherein the control unit (120) uses the determined first offset value as the second offset value while using the first timing advance as the second timing advance.
- the control unit (120) uses the determined first offset value as the second offset value while independently managing the value based on the first timing advance and the value based on the second timing advance. 2.
- the first cell (C1) and the second cell (C2) belonging to the same frequency as the serving cell (C1) and the first cell (C1) are managed by the base station (200) that manages the first cell (C1) and the second cell (
- the adjusting step includes: determining a first offset value to be added to a value based on a first timing advance used to adjust the first transmission timing; and using the determined first offset value as a second offset value to be added to a value based on the second timing advance used to adjust the second transmission timing.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
A communication device (100) comprises: a control unit (120) for adjusting a first transmission timing as a transmission timing for an uplink signal, and a second transmission timing as a transmission timing for an uplink signal; and a transmission unit for transmitting an uplink signal at the first transmission timing and transmitting an uplink signal at the second transmission timing. The control unit (120) determines a first offset value to be given to a value based on a first timing advance used for adjusting the first transmission timing, and uses the determined first offset value as a second offset value to be given to a value based on a second timing advance used for adjusting the second transmission timing.
Description
本出願は、2021年8月4日に出願された特許出願番号2021-128568号に基づくものであって、その優先権の利益を主張するものであり、その特許出願のすべての内容が、参照により本明細書に組み入れられる。
This application is based on and claims the benefit of priority from patent application number 2021-128568, filed on August 4, 2021, the entire contents of which are incorporated by reference. incorporated herein by.
本開示は、移動通信システムで用いる通信装置及び通信方法に関する。
The present disclosure relates to a communication device and communication method used in a mobile communication system.
移動通信システムの標準化プロジェクトである3GPP(登録商標。以下同じ)(3rd Generation Partnership Project)において、MIMO(Multi-Input Multi-Output)の拡張として、複数送受信ポイント(TRP:Transmission/Reception Point)伝送の導入が検討されている。
In the 3GPP (registered trademark; hereinafter the same) (3rd Generation Partnership Project), which is a standardization project for mobile communication systems, as an extension of MIMO (Multi-Input Multi-Output), multiple transmission/reception point (TRP: Transmission/Reception Point) transmission Introduction is being considered.
複数TRP伝送のシナリオにおいて、サービングセルである第1セル及び当該第1セルと同じ周波数(イントラ周波数)に属する第2セルが通信装置に設定され、通信装置が第1セルをサービングセルとして維持しつつ、第2セルとのデータ通信を行うモデルが想定されている(非特許文献1乃至3参照)。ここで、第2セルは、第1セルとは異なるTRPにより構成され、且つ物理セル識別子(PCI)が第1セルとは異なるセル(cell having TRP with different PCI)である。
In a multi-TRP transmission scenario, a first cell that is a serving cell and a second cell that belongs to the same frequency (intra frequency) as the first cell are configured in a communication device, and the communication device maintains the first cell as a serving cell, A model of performing data communication with the second cell is assumed (see Non-Patent Documents 1 to 3). Here, the second cell is a cell (cell having TRP with different PCI) configured by a TRP different from that of the first cell and having a physical cell identifier (PCI) different from that of the first cell.
ところで、セルから離れた位置にいる通信装置は、伝搬遅延を補償するために、セルから近い位置にいる通信装置に比べて、早いタイミングで上りリンク信号の送信を行う。具体的には、通信装置は、基地局からのタイミングアドバンスに基づいて、上りリンク信号の送信タイミングを調整する。
By the way, in order to compensate for propagation delay, a communication device located far from a cell transmits an uplink signal at an earlier timing than a communication device located close to the cell. Specifically, the communication device adjusts the transmission timing of the uplink signal based on the timing advance from the base station.
上述の複数TRP伝送シナリオにおいて、通信装置は、第1セル及び第2セルのそれぞれに対して上りリンク信号の送信タイミング調整を行うことが必要であると考えられる。しかしながら、第2セルに対する上りリンク送信タイミングの調整方法は実現されておらず、第2セルに対する上りリンク信号の送信タイミングを適切に制御できない懸念がある。
In the multiple TRP transmission scenario described above, it is considered necessary for the communication device to adjust the transmission timing of the uplink signals for each of the first cell and the second cell. However, a method of adjusting the uplink transmission timing for the second cell has not been realized, and there is a concern that the transmission timing of the uplink signal for the second cell cannot be controlled appropriately.
そこで、本開示は、サービングセルである第1セル及び当該第1セルと同じ周波数に属する第2セルが設定される場合において、第2セルに対する上りリンク信号の送信タイミングを適切に制御可能とする通信装置及び通信方法を提供することを目的とする。
Therefore, in the present disclosure, when the first cell that is the serving cell and the second cell belonging to the same frequency as the first cell are set, communication that can appropriately control the transmission timing of the uplink signal for the second cell An object is to provide an apparatus and a communication method.
第1の態様に係る通信装置(100)は、上りリンク信号の送信タイミングである第1送信タイミングと、上りリンク信号の送信タイミングである第2送信タイミングと、を調整する制御部(120)と、前記第1送信タイミングで上りリンク信号を送信し、前記第2送信タイミングで上りリンク信号を送信する送信部と、を備える。前記制御部(120)は、前記第1送信タイミングを調整するために用いる第1タイミングアドバンスに基づく値に付与する第1オフセット値を決定し、前記第2送信タイミングを調整するために用いる第2タイミングアドバンスに基づく値に付与する第2オフセット値として、前記決定した第1オフセット値を用いる。
A communication apparatus (100) according to a first aspect includes a control section (120) that adjusts a first transmission timing that is an uplink signal transmission timing and a second transmission timing that is an uplink signal transmission timing; and a transmitter that transmits an uplink signal at the first transmission timing and transmits an uplink signal at the second transmission timing. The control unit (120) determines a first offset value to be added to a value based on a first timing advance used to adjust the first transmission timing, and determines a second offset value used to adjust the second transmission timing. The determined first offset value is used as the second offset value to be added to the value based on the timing advance.
第2の態様に係る通信方法は、通信装置(100)が実行する通信方法である。当該通信方法は、上りリンク信号の送信タイミングである第1送信タイミングと、上りリンク信号の送信タイミングである第2送信タイミングと、を調整するステップと、前記第1送信タイミングで上りリンク信号を送信し、前記第2送信タイミングで上りリンク信号を送信するステップと、を備える。前記調整するステップは、前記第1送信タイミングを調整するために用いる第1タイミングアドバンスに基づく値に付与する第1オフセット値を決定するステップと、前記第2送信タイミングを調整するために用いる第2タイミングアドバンスに基づく値に付与する第2オフセット値として、前記決定した第1オフセット値を用いるステップと、を有する。
A communication method according to the second aspect is a communication method executed by the communication device (100). The communication method comprises adjusting a first transmission timing, which is the transmission timing of an uplink signal, and a second transmission timing, which is the transmission timing of the uplink signal; and transmitting the uplink signal at the first transmission timing. and transmitting the uplink signal at the second transmission timing. The adjusting step includes determining a first offset value to be added to a value based on a first timing advance used to adjust the first transmission timing; and using the determined first offset value as a second offset value to be added to the value based on the timing advance.
本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。
実施形態に係る移動通信システムの構成を示す図である。
実施形態に係る移動通信システムにおけるプロトコルスタックの構成例を示す図である。
実施形態に係る移動通信システムにおける上りフレームと下りフレームとの関係を説明するための説明図である。
実施形態に係る移動通信システムにおける想定シナリオを示す図である。
実施形態に係る想定シナリオにおける基本的なプロシージャを示す図である。
実施形態に係るUEの構成を示す図である。
実施形態に係る基地局の構成を示す図である。
実施形態に係る移動通信システムにおける第1動作例のシーケンスを示す図である。
実施形態に係る移動通信システムにおける第1動作例を説明する説明図である。
実施形態に係る移動通信システムにおける第2動作例のシーケンスを示す図である。
実施形態に係る移動通信システムにおける第2動作例を説明する説明図である。
The above and other objects, features and advantages of the present disclosure will become more apparent from the following detailed description with reference to the accompanying drawings.
1 is a diagram showing the configuration of a mobile communication system according to an embodiment; FIG. 1 is a diagram showing a configuration example of a protocol stack in a mobile communication system according to an embodiment; FIG. FIG. 4 is an explanatory diagram for explaining the relationship between uplink frames and downlink frames in the mobile communication system according to the embodiment; 1 is a diagram showing an assumed scenario in a mobile communication system according to an embodiment; FIG. FIG. 3 shows a basic procedure in an assumed scenario according to an embodiment; It is a figure which shows the structure of UE which concerns on embodiment. It is a figure which shows the structure of the base station which concerns on embodiment. FIG. 4 is a diagram showing a sequence of a first operation example in the mobile communication system according to the embodiment; FIG. 4 is an explanatory diagram for explaining a first operation example in the mobile communication system according to the embodiment; FIG. 7 is a diagram showing a sequence of a second operation example in the mobile communication system according to the embodiment; FIG. 5 is an explanatory diagram illustrating a second operation example in the mobile communication system according to the embodiment;
図面を参照しながら、実施形態に係る移動通信システムについて説明する。図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。
A mobile communication system according to an embodiment will be described with reference to the drawings. In the description of the drawings, the same or similar parts are denoted by the same or similar reference numerals.
(移動通信システムの構成)
図1を参照して、実施形態に係る移動通信システム1の構成について説明する。移動通信システム1は、例えば、3GPPの技術仕様(Technical Specification:TS)に準拠したシステムである。以下において、移動通信システム1として、3GPP規格の第5世代システム(5th Generation System:5GS)、すなわち、NR(New Radio)に基づく移動通信システムを例に挙げて説明する。 (Configuration of mobile communication system)
A configuration of amobile communication system 1 according to an embodiment will be described with reference to FIG. The mobile communication system 1 is, for example, a system conforming to 3GPP Technical Specifications (TS). Hereinafter, as the mobile communication system 1, a mobile communication system based on the 3GPP standard 5th Generation System (5GS), that is, NR (New Radio) will be described as an example.
図1を参照して、実施形態に係る移動通信システム1の構成について説明する。移動通信システム1は、例えば、3GPPの技術仕様(Technical Specification:TS)に準拠したシステムである。以下において、移動通信システム1として、3GPP規格の第5世代システム(5th Generation System:5GS)、すなわち、NR(New Radio)に基づく移動通信システムを例に挙げて説明する。 (Configuration of mobile communication system)
A configuration of a
移動通信システム1は、ネットワーク10と、ネットワーク10と通信する通信装置(User Equipment:UE)100とを有する。ネットワーク10は、5Gの無線アクセスネットワークであるNG-RAN(Next Generation Radio Access Network)20と、5Gのコアネットワークである5GC(5G Core Network)30とを含む。
The mobile communication system 1 has a network 10 and a communication device (User Equipment: UE) 100 that communicates with the network 10 . The network 10 includes an NG-RAN (Next Generation Radio Access Network) 20, which is a 5G radio access network, and a 5GC (5G Core Network) 30, which is a 5G core network.
UE100は、ユーザにより利用される装置である。UE100は、例えば、スマートフォンなどの携帯電話端末、タブレット端末、ノートPC、通信モジュール、又は通信カードなどの移動可能な装置である。UE100は、車両(例えば、車、電車など)又はこれに設けられる装置であってよい。UE100は、車両以外の輸送機体(例えば、船、飛行機など)又はこれに設けられる装置であってよい。UE100は、センサ又はこれに設けられる装置であってよい。なお、UE100は、移動局、移動端末、移動装置、移動ユニット、加入者局、加入者端末、加入者装置、加入者ユニット、ワイヤレス局、ワイヤレス端末、ワイヤレス装置、ワイヤレスユニット、リモート局、リモート端末、リモート装置、又はリモートユニット等の別の名称で呼ばれてもよい。
UE 100 is a device used by a user. The UE 100 is, for example, a portable device such as a mobile phone terminal such as a smart phone, a tablet terminal, a notebook PC, a communication module, or a communication card. The UE 100 may be a vehicle (eg, car, train, etc.) or a device provided therein. The UE 100 may be a transport body other than a vehicle (for example, a ship, an airplane, etc.) or a device provided thereon. The UE 100 may be a sensor or a device attached thereto. Note that the UE 100 includes a mobile station, a mobile terminal, a mobile device, a mobile unit, a subscriber station, a subscriber terminal, a subscriber device, a subscriber unit, a wireless station, a wireless terminal, a wireless device, a wireless unit, a remote station, and a remote terminal. , remote device, or remote unit.
NG-RAN20は、複数の基地局200を含む。各基地局200は、少なくとも1つのセルを管理する。セルは、通信エリアの最小単位を構成する。例えば、1つのセルは、1つの周波数(キャリア周波数)に属し、1つのコンポーネントキャリアにより構成される。用語「セル」は、無線通信リソースを表すことがあり、UE100の通信対象を表すこともある。各基地局200は、自セルに在圏するUE100との無線通信を行うことができる。基地局200は、RANのプロトコルスタックを使用してUE100と通信する。基地局200は、UE100へ向けたNRユーザプレーン及び制御プレーンプロトコル終端を提供し、NGインターフェイスを介して5GC30に接続される。このようなNRの基地局200は、gNodeB(gNB)と称されることがある。
NG-RAN 20 includes multiple base stations 200 . Each base station 200 manages at least one cell. A cell constitutes the minimum unit of a communication area. For example, one cell belongs to one frequency (carrier frequency) and is configured by one component carrier. The term “cell” may represent a radio communication resource and may also represent a communication target of UE 100 . Each base station 200 can perform radio communication with the UE 100 residing in its own cell. The base station 200 communicates with the UE 100 using the RAN protocol stack. Base station 200 provides NR user plane and control plane protocol termination towards UE 100 and is connected to 5GC 30 via NG interface. Such an NR base station 200 is sometimes referred to as a gNodeB (gNB).
5GC30は、コアネットワーク装置300を含む。コアネットワーク装置300は、例えば、AMF(Access and Mobility Management Function)及び/又はUPF(User Plane Function)を含む。AMFは、UE100のモビリティ管理を行う。UPFは、ユーザプレーン処理に特化した機能を提供する。AMF及びUPFは、NGインターフェイスを介して基地局200と接続される。
The 5GC 30 includes a core network device 300. The core network device 300 includes, for example, AMF (Access and Mobility Management Function) and/or UPF (User Plane Function). AMF performs mobility management of UE100. UPF provides functions specialized for user plane processing. The AMF and UPF are connected with the base station 200 via the NG interface.
図2を参照して、実施形態に係る移動通信システム1におけるプロトコルスタックの構成例について説明する。
A configuration example of a protocol stack in the mobile communication system 1 according to the embodiment will be described with reference to FIG.
UE100と基地局200との間の無線区間のプロトコルは、物理(PHY)レイヤと、MAC(Medium Access Control)レイヤと、RLC(Radio Link Control)レイヤと、PDCP(Packet Data Convergence Protocol)レイヤと、RRC(Radio Resource Control)レイヤとを有する。
The protocol of the radio section between the UE 100 and the base station 200 includes a physical (PHY) layer, a MAC (Medium Access Control) layer, an RLC (Radio Link Control) layer, a PDCP (Packet Data Convergence Protocol) layer, It has an RRC (Radio Resource Control) layer.
PHYレイヤは、符号化・復号、変調・復調、アンテナマッピング・デマッピング、及びリソースマッピング・デマッピングを行う。UE100のPHYレイヤと基地局200のPHYレイヤとの間では、物理チャネルを介してデータ及び制御情報が伝送される。
The PHY layer performs encoding/decoding, modulation/demodulation, antenna mapping/demapping, and resource mapping/demapping. Data and control information are transmitted between the PHY layer of the UE 100 and the PHY layer of the base station 200 via physical channels.
物理チャネルは、時間領域における複数のOFDMシンボルと周波数領域における複数のサブキャリアとで構成される。1つのサブフレームは、時間領域で複数のOFDMシンボルで構成される。リソースブロックは、リソース割当単位であり、複数のOFDMシンボルと複数のサブキャリアとで構成される。フレームは、10msで構成されることができ、1msで構成された10個のサブフレームを含むことができる。サブフレーム内には、サブキャリア間隔に応じた数のスロットが含まれることができる。
A physical channel consists of multiple OFDM symbols in the time domain and multiple subcarriers in the frequency domain. One subframe consists of a plurality of OFDM symbols in the time domain. A resource block is a resource allocation unit, and is composed of a plurality of OFDM symbols and a plurality of subcarriers. A frame may consist of 10 ms and may include 10 subframes of 1 ms. A subframe can include a number of slots corresponding to the subcarrier spacing.
物理チャネルの中で、物理下りリンク制御チャネル(PDCCH)は、例えば、下りリンクスケジューリング割り当て、上りリンクスケジューリンググラント、及び送信電力制御等の目的で中心的な役割を果たす。
Among physical channels, the physical downlink control channel (PDCCH) plays a central role, for example, for purposes such as downlink scheduling assignments, uplink scheduling grants, and transmission power control.
NRでは、UE100は、システム帯域幅(すなわち、セルの帯域幅)よりも狭い帯域幅を使用できる。基地局200は、連続するPRB(Physical Resource Block)からなる帯域幅部分(BWP)をUE100に設定する。UE100は、アクティブなBWPにおいてデータ及び制御信号を送受信する。UE100には、例えば、最大4つのBWPが設定可能である。各BWPは、異なるサブキャリア間隔を有していてもよいし、周波数が相互に重複していてもよい。UE100に対して複数のBWPが設定されている場合、基地局200は、ダウンリンクにおける制御によって、どのBWPをアクティブ化するかを指定できる。これにより、基地局200は、UE100のデータトラフィックの量等に応じてUE帯域幅を動的に調整でき、UE電力消費を減少させ得る。
In NR, the UE 100 can use a narrower bandwidth than the system bandwidth (that is, the cell bandwidth). The base station 200 sets a bandwidth part (BWP) consisting of continuous PRBs (Physical Resource Blocks) for the UE 100 . UE 100 transmits and receives data and control signals on the active BWP. Up to four BWPs can be set in the UE 100, for example. Each BWP may have different subcarrier spacing and may overlap each other in frequency. If multiple BWPs are configured for the UE 100, the base station 200 can specify which BWP to activate through downlink control. This allows the base station 200 to dynamically adjust the UE bandwidth according to the amount of data traffic of the UE 100, etc., and reduce UE power consumption.
基地局200は、例えば、サービングセル上の最大4つのBWPのそれぞれに最大3つの制御リソースセット(CORESET:control resource set)を設定できる。CORESETは、UE100が受信すべき制御情報のための無線リソースである。UE100には、サービングセル上で最大12個のCORESETが設定され得る。各CORESETは、0乃至11のインデックスを有する。例えば、CORESETは、6つのリソースブロック(PRB)と、時間領域内の1つ、2つ、又は3つの連続するOFDMシンボルとにより構成される。
For example, the base station 200 can configure up to 3 control resource sets (CORESET) for each of up to 4 BWPs on the serving cell. CORESET is a radio resource for control information that the UE 100 should receive. UE 100 may be configured with up to 12 CORESETs on the serving cell. Each CORESET has an index from 0 to 11. For example, a CORESET consists of 6 resource blocks (PRBs) and 1, 2 or 3 consecutive OFDM symbols in the time domain.
MACレイヤは、データの優先制御、ハイブリッドARQ(HARQ:Hybrid Automatic Repeat reQuest)による再送処理、及びランダムアクセスプロシージャ等を行う。UE100のMACレイヤと基地局200のMACレイヤとの間では、トランスポートチャネルを介してデータ及び制御情報が伝送される。基地局200のMACレイヤはスケジューラを含む。スケジューラは、上下リンクのトランスポートフォーマット(トランスポートブロックサイズ、変調・符号化方式(MCS))及びUE100への割当リソースを決定する。
The MAC layer performs data priority control, retransmission processing by hybrid ARQ (HARQ: Hybrid Automatic Repeat reQuest), random access procedures, and the like. Data and control information are transmitted between the MAC layer of the UE 100 and the MAC layer of the base station 200 via transport channels. The MAC layer of base station 200 includes a scheduler. The scheduler determines uplink and downlink transport formats (transport block size, modulation and coding scheme (MCS)) and allocation resources to the UE 100 .
RLCレイヤは、MACレイヤ及びPHYレイヤの機能を利用してデータを受信側のRLCレイヤに伝送する。UE100のRLCレイヤと基地局200のRLCレイヤとの間では、論理チャネルを介してデータ及び制御情報が伝送される。
The RLC layer uses the functions of the MAC layer and PHY layer to transmit data to the RLC layer on the receiving side. Data and control information are transmitted between the RLC layer of the UE 100 and the RLC layer of the base station 200 via logical channels.
PDCPレイヤは、ヘッダ圧縮・伸張、及び暗号化・復号化を行う。
The PDCP layer performs header compression/decompression and encryption/decryption.
PDCPレイヤの上位レイヤとしてSDAP(Service Data Adaptation Protocol)レイヤが設けられていてもよい。SDAP(Service Data Adaptation Protocol)レイヤは、コアネットワークがQoS制御を行う単位であるIPフローとAS(Access Stratum)がQoS制御を行う単位である無線ベアラとのマッピングを行う。
An SDAP (Service Data Adaptation Protocol) layer may be provided as an upper layer of the PDCP layer. The SDAP (Service Data Adaptation Protocol) layer performs mapping between an IP flow, which is the unit of QoS control performed by the core network, and a radio bearer, which is the unit of QoS control performed by the AS (Access Stratum).
RRCレイヤは、無線ベアラの確立、再確立及び解放に応じて、論理チャネル、トランスポートチャネル、及び物理チャネルを制御する。UE100のRRCレイヤと基地局200のRRCレイヤとの間では、各種設定のためのRRCシグナリングが伝送される。UE100のRRCと基地局200のRRCとの間にRRC接続がある場合、UE100はRRCコネクティッド状態にある。UE100のRRCと基地局200のRRCとの間にRRC接続がない場合、UE100はRRCアイドル状態にある。UE100のRRCと基地局200のRRCとの間のRRC接続がサスペンドされている場合、UE100はRRCインアクティブ状態にある。
The RRC layer controls logical channels, transport channels and physical channels according to radio bearer establishment, re-establishment and release. RRC signaling for various settings is transmitted between the RRC layer of UE 100 and the RRC layer of base station 200 . When there is an RRC connection between the RRC of UE 100 and the RRC of base station 200, UE 100 is in the RRC connected state. If there is no RRC connection between the RRC of the UE 100 and the RRC of the base station 200, the UE 100 is in RRC idle state. When the RRC connection between the RRC of UE 100 and the RRC of base station 200 is suspended, UE 100 is in RRC inactive state.
RRCレイヤの上位に位置するNASレイヤは、UE100のセッション管理及びモビリティ管理を行う。UE100のNASレイヤとコアネットワーク装置300(AMF)のNASレイヤとの間では、NASシグナリングが伝送される。なお、UE100は、無線インターフェイスのプロトコル以外にアプリケーションレイヤ等を有する。
The NAS layer located above the RRC layer performs session management and mobility management for UE100. NAS signaling is transmitted between the NAS layer of the UE 100 and the NAS layer of the core network device 300 (AMF). Note that the UE 100 has an application layer and the like in addition to the radio interface protocol.
(上りリンク送信タイミングの調整方法)
図3を参照して、実施形態に係る移動通信システム1における上りリンク送信タイミングの調整方法の例について説明する。すなわち、上りリンク送信タイミングの同期を取る方法について説明する。 (Method for adjusting uplink transmission timing)
An example of a method for adjusting uplink transmission timing in themobile communication system 1 according to the embodiment will be described with reference to FIG. That is, a method for synchronizing uplink transmission timing will be described.
図3を参照して、実施形態に係る移動通信システム1における上りリンク送信タイミングの調整方法の例について説明する。すなわち、上りリンク送信タイミングの同期を取る方法について説明する。 (Method for adjusting uplink transmission timing)
An example of a method for adjusting uplink transmission timing in the
基地局200は、管理するセル内の各UE100から上りリンク信号の受信タイミングを所定の時間範囲内に収めるために、各UE100の上りリンク信号の送信タイミングを制御する。基地局200は、UE100が上りリンク信号の送信タイミングを調整するためのタイミングアドバンス(以下、TA)を決定する。基地局200は、各UE100へ決定したTAを提供する。
The base station 200 controls the transmission timing of the uplink signal of each UE 100 in order to keep the reception timing of the uplink signal from each UE 100 within the managed cell within a predetermined time range. The base station 200 determines a timing advance (hereinafter referred to as TA) for the UE 100 to adjust the transmission timing of the uplink signal. The base station 200 provides each UE 100 with the determined TA.
UE100は、下りフレームタイミングを基準として、上りリンク送信のタイミングを調整する。UE100は、下りフレームに対する上りフレームタイミングを調整するためにTAを使用する。図4に示すように、UE100は、(NTA+NTA,offset)Tcの時間だけ、i番目の下りフレームに対して、i番目の上りフレームを前にずらす。UE100は、例えば、以下の式を用いて、下りフレームに対してずらす調整値(TTA)を算出する。
The UE 100 adjusts the timing of uplink transmission based on the downlink frame timing. The UE 100 uses TAs to adjust uplink frame timing for downlink frames. As shown in FIG. 4, the UE 100 shifts the i-th uplink frame forward with respect to the i-th downlink frame by a time of (N TA +N TA,offset ) Tc . The UE 100 calculates an adjustment value (T TA ) for shifting the downlink frame, for example, using the following formula.
NTAは、基地局200(セル)から通知されるTA(TA)に基づいて算出される値(TA値と適宜称する)である。NTAは、式2及び式3により算出できる。
N TA is a value (hereinafter referred to as a TA value) calculated based on the TA (T A ) notified from the base station 200 (cell). NTA can be calculated by
式2におけるTA(TA)は、媒体アクセス制御(MAC)制御要素(CE)に含まれるタイミングアドバンスコマンド(TAコマンド)の値である。UE100は、TAコマンドの受信に応じて、保持しているTA値(NTA_old)から新たなTA値(NTA_NEW)を算出する。式3におけるTA(TA)は、ランダムアクセス応答に含まれるタイミングアドバンスの値である。なお、μは、サブキャリア間隔設定である。
TA (T A ) in Equation 2 is the value of the timing advance command (TA command) contained in the medium access control (MAC) control element (CE). Upon receiving the TA command, the UE 100 calculates a new TA value (N TA_NEW ) from the retained TA value (N TA_old ). TA(T A ) in Equation 3 is the timing advance value included in the random access response. Note that μ is the subcarrier interval setting.
NTA,offsetは、調整値(TTA)を算出するために用いられる固定のオフセット値である。NTA,offsetは、基地局200(セル)から通知されてよい。UE100は、基地局200からNTA,offsetを通知されない場合、デフォルト値としてNTA,offsetを決定してよい。UE100は、周波数帯、MR-DCの有無、NR・NB-IoTの共存の有無などの条件によりオフセット値(NTA,offset)を決定してよい。UE100は、例えば、以下の表1を用いてオフセット値(NTA,offset)を決定してよい。
N TA,offset is a fixed offset value used to calculate the adjustment value (T TA ). N TA,offset may be notified from the base station 200 (cell). If the UE 100 is not notified of the N TA, offset from the base station 200, the UE 100 may determine the N TA, offset as a default value. The UE 100 may determine the offset value (N TA,offset ) based on conditions such as the frequency band, presence or absence of MR-DC, and presence or absence of coexistence of NR/NB-IoT. The UE 100 may, for example, determine the offset value (N TA,offset ) using Table 1 below.
Tcは、基本時間ユニットである。Tcは、予め定められた固定値である。UE100は、Tcの情報を予め保持している。Tcは、例えば、0.509nsである。
Tc is the basic time unit. Tc is a predetermined fixed value. The
上りリンク送信のタイミングを調整する基準となる下りフレームタイミングは、下りフレームの先頭のタイミングである。具体的には、下りフレームタイミングは、下りフレームの(時間内に)最初に検出したパスを基地局200(具体的には、基準セル)から受信した時間として規定される。なお、上りフレーム及び下りフレームを構成する無線フレームは、10個の1msのサブフレームで構成される。各フレームは、5個のサブフレームからなる2個の同じサイズのハーフフレームに分割される。
The downlink frame timing, which is the reference for adjusting the timing of uplink transmission, is the timing at the beginning of the downlink frame. Specifically, the downlink frame timing is defined as the time at which the first detected path (in time) of the downlink frame is received from the base station 200 (specifically, the reference cell). A radio frame constituting an uplink frame and a downlink frame is composed of ten subframes of 1 ms. Each frame is divided into two equally sized half-frames of 5 sub-frames.
UE100は、BWPにおいて送信される参照信号(SSB:SS/PBCH Block)に含まれる同期信号を用いて、下りタイミングの同期を行うことで、SSBを受信したBWPにおける下りフレームタイミングを把握することができる。
The UE 100 synchronizes the downlink timing using the synchronization signal included in the reference signal (SSB: SS/PBCH Block) transmitted in the BWP, thereby grasping the downlink frame timing in the BWP that received the SSB. can.
なお、SSBは、プライマリ同期信号(PSS)、セカンダリ同期信号(SSS)、PBCH(Physical Broadcast Channel)、及び復調参照信号(DMRS)を含む。例えば、SSBは、時間領域において連続した4つのOFDMシンボルから構成されてもよい。また、SSBは、周波数領域において連続した240サブキャリア(すなわち、20リソースブロック)から構成されてもよい。PBCHは、マスタ情報ブロック(MIB)を運ぶ物理チャネルである。
The SSB includes a primary synchronization signal (PSS), a secondary synchronization signal (SSS), a PBCH (Physical Broadcast Channel), and a demodulation reference signal (DMRS). For example, an SSB may consist of four consecutive OFDM symbols in the time domain. Also, the SSB may consist of 240 consecutive subcarriers (ie, 20 resource blocks) in the frequency domain. PBCH is a physical channel that carries a Master Information Block (MIB).
(想定シナリオ)
図4を参照して、実施形態に係る移動通信システム1における想定シナリオについて説明する。 (Assumed scenario)
An assumed scenario in themobile communication system 1 according to the embodiment will be described with reference to FIG.
図4を参照して、実施形態に係る移動通信システム1における想定シナリオについて説明する。 (Assumed scenario)
An assumed scenario in the
基地局200は、TRP201#1と、TRP201#2と、DU(Distributed Unit)202と、CU(Central Unit)203とを有する。図4において、基地局200がDU202及びCU203に分離されている一例を示しているが、基地局200がDU202及びCU203に分離されていなくてもよい。また、基地局200のTRP201の数が2つである一例を示しているが、基地局200のTRP201の数が3つ以上であってもよい。
The base station 200 has a TRP 201 # 1 , a TRP 201 # 2 , a DU (Distributed Unit) 202 and a CU (Central Unit) 203 . Although FIG. 4 shows an example in which base station 200 is separated into DU202 and CU203, base station 200 may not be separated into DU202 and CU203. Also, although an example in which the number of TRPs 201 in base station 200 is two is shown, the number of TRPs 201 in base station 200 may be three or more.
TRP201#1及びTRP201#2は、分散して配置され、互いに異なるセルを構成する。具体的には、TRP201#1はセルC1を形成し、TRP201#2はセルC2を形成する。
The TRPs 201#1 and TRPs 201#2 are distributed and constitute different cells. Specifically, TRP 201#1 forms cell C1 and TRP 201#2 forms cell C2.
セルC1及びセルC2は、同じ周波数に属する。セルC1及びセルC2は、物理セル識別子(PCI)が互いに異なる。すなわち、セルC2は、セルC1に対応するTRP201#1とは異なるTRP#2により構成され、且つPCIがセルC1とは異なるセル(cell having TRP with different PCI)である。図4において、セルC2のカバレッジがセルC1のカバレッジ内にある一例を示しているが、セルC2のカバレッジは、セルC1のカバレッジと少なくとも一部が重複していればよい。
Cell C1 and cell C2 belong to the same frequency. Cell C1 and cell C2 have different physical cell identifiers (PCI). That is, the cell C2 is a cell (cell having TRP with different PCI) configured by a TRP # 2 different from the TRP 201 #1 corresponding to the cell C1 and having a PCI different from that of the cell C1. Although FIG. 4 shows an example in which the coverage of cell C2 is within the coverage of cell C1, the coverage of cell C2 may at least partially overlap the coverage of cell C1.
DU202は、TRP201#1及びTRP201#2を制御する。換言すると、TRP201#1及びTRP201#2は、同一のDU202の配下にある。DU202は、上述のプロトコルスタックに含まれる下位レイヤ、例えば、RLCレイヤ、MACレイヤ及びPHYレイヤを含むユニットである。DU202は、フロントホールインターフェイスであるF1インターフェイスを介してCU203と接続される。
DU202 controls TRP201# 1 and TRP201# 2. In other words, TRP201# 1 and TRP201# 2 are under the same DU202. The DU 202 is a unit that includes lower layers included in the protocol stack described above, such as the RLC layer, the MAC layer and the PHY layer. DU202 is connected with CU203 via F1 interface which is a fronthaul interface.
CU203は、DU202を制御する。CU203は、上述のプロトコルスタックに含まれる上位レイヤ、例えば、RRCレイヤ、SDAPレイヤ及びPDCPレイヤを含むユニットである。CU203は、バックホールインターフェイスであるNGインターフェイスを介してコアネットワーク(5GC30)と接続される。
CU203 controls DU202. The CU 203 is a unit including upper layers included in the protocol stack described above, such as the RRC layer, the SDAP layer and the PDCP layer. The CU 203 is connected to the core network (5GC 30) via the NG interface, which is a backhaul interface.
UE100は、RRCコネクティッド状態にあり、基地局200との無線通信を行う。NRは、ミリ波帯といった高周波数帯による広帯域伝送が可能であるが、このような高周波数帯の電波における電波減衰を補うために、基地局200とUE100との間でビームフォーミングを利用し、高いビーム利得を得ている。基地局200及びUE100は、ビームペアを確立する。
The UE 100 is in the RRC connected state and performs wireless communication with the base station 200. NR is capable of wideband transmission in a high frequency band such as a millimeter wave band. It has high beam gain. Base station 200 and UE 100 establish a beam pair.
UE100は、サービングであるセルC1(TRP201#1)とのデータ通信を行う。具体的には、UE100は、送信設定指示子(TCI)状態#1に対応するビームを用いてセルC1とのデータ通信を行う。UE100には、セルC1に加えて、非サービングセルであるセル2が設定される。例えば、UE100には、セルC2に対するビーム測定を行うためのSSB(SS/PBCH Block)、及びセル2とのデータ通信を行うための無線リソースがセルC1から設定される。
The UE 100 performs data communication with the serving cell C1 (TRP201#1). Specifically, the UE 100 performs data communication with the cell C1 using a beam corresponding to transmission configuration indicator (TCI) state # 1. UE 100 is configured with cell 2, which is a non-serving cell, in addition to cell C1. For example, in the UE 100, an SSB (SS/PBCH Block) for performing beam measurement for cell C2 and a radio resource for performing data communication with cell 2 are configured from cell C1.
UE100は、セルC2に対するビーム測定の結果をセルC1に報告する。基地局200(DU202)は、UE100からのビーム測定結果をセルC1において受信し、ビーム測定結果に基づいて、セルC2のビームに対応するTCI状態#2をアクティブ化する。
The UE 100 reports the beam measurement results for the cell C2 to the cell C1. Base station 200 (DU 202) receives beam measurements from UE 100 in cell C1 and activates TCI state # 2 corresponding to beams in cell C2 based on the beam measurements.
このように、実施形態では、複数TRP伝送のシナリオにおいて、サービングセルであるセルC1及び当該セルC1と同じ周波数(イントラ周波数)に属するセルC2がUE100に設定され、UE100がセルC1をサービングセルとして維持しつつ、セルC2とのデータ通信を行うモデルを想定する。
Thus, in the embodiment, in a multiple TRP transmission scenario, cell C1, which is a serving cell, and cell C2 belonging to the same frequency (intra frequency) as cell C1 are configured in UE 100, and UE 100 maintains cell C1 as a serving cell. A model in which data communication is performed with the cell C2 is assumed.
図5を参照して、実施形態に係る想定シナリオにおける基本的なプロシージャについて説明する。
A basic procedure in an assumed scenario according to the embodiment will be described with reference to FIG.
ステップS1において、UE100は、例えばRRCシグナリングによりセルC1(TRP201#1)から設定情報を受信する。設定情報は、セルC2(TRP201#2)に対するビーム測定に用いるSSBの設定と、データの送受信(セルC2とのデータ送受信を含む)のための無線リソースを用いるために必要な設定とを含む。設定情報は、CU203からDU202及びセルC1(TRP201#1)を介してUE100に送信されてもよい。
In step S1, the UE 100 receives configuration information from the cell C1 (TRP201#1) by, for example, RRC signaling. The setting information includes SSB settings used for beam measurement for cell C2 (TRP201#2) and settings necessary for using radio resources for data transmission/reception (including data transmission/reception with cell C2). Configuration information may be transmitted from CU 203 to UE 100 via DU 202 and cell C1 (TRP 201 #1).
ステップS2において、UE100は、ステップS1で受信した設定情報(特に、SSB設定)を用いてセルC2(TRP201#2)に対するビーム測定を行い(ステップS2a)、測定結果を含む報告をセルC1(TRP201#1)に送信する(ステップS2b)。DU202は、セルC1(TRP201#1)を介してビーム測定結果を受信する。
In step S2, UE 100 performs beam measurement for cell C2 (TRP201#2) using the setting information (in particular, SSB setting) received in step S1 (step S2a), and sends a report including the measurement result to cell C1 (TRP201 #1) (step S2b). DU 202 receives beam measurement results via cell C1 (TRP 201#1).
ステップS3において、DU202は、ステップS2で受信したビーム測定結果に基づいて、セルC2(TRP201#2)と対応付けられたTCI状態をアクティブ化する指示を、セルC1(TRP201#1)を介してUE100に送信する。このようなアクティブ化指示は、レイヤ1(PHYレイヤ)及びレイヤ2(MACレイヤ等)のシグナリングにより行われる。UE100は、セルC1からのアクティブ化指示の受信に応じて、セルC2(TRP201#2)と対応付けられたTCI状態をアクティブ化する。その結果、UE100とセルC2(TRP201#2)とのビームペアが確立される。
In step S3, DU 202 sends an instruction to activate the TCI state associated with cell C2 (TRP201 #2) based on the beam measurement results received in step S2 via cell C1 (TRP201 #1) It transmits to UE100. Such an activation indication is performed by layer 1 (PHY layer) and layer 2 (MAC layer, etc.) signaling. The UE 100 activates the TCI state associated with the cell C2 (TRP201#2) in response to receiving the activation instruction from the cell C1. As a result, a beam pair is established between the UE 100 and the cell C2 (TRP201#2).
ステップS4において、UE100は、セルC2(TRP201#2)上のUE専用チャネルを用いてデータをセルC2(TRP201#2)と送受信する。DU202は、セルC2(TRP201#2)を介してデータをUE100と送受信する。
In step S4, the UE 100 transmits and receives data to and from the cell C2 (TRP201#2) using the UE dedicated channel on the cell C2 (TRP201#2). DU 202 transmits and receives data to and from UE 100 via cell C2 (TRP 201 #2).
なお、UE100は、セルC1(TRP201#1)のカバレッジ内にあり、共通チャネルであるブロードキャストチャネル(BCCH)やページングチャネル(PCH)をセルC1(TRP201#1)から受信する。
Note that the UE 100 is within the coverage of the cell C1 (TRP201#1) and receives the broadcast channel (BCCH) and paging channel (PCH), which are common channels, from the cell C1 (TRP201#1).
このようなシナリオ及びプロシージャによれば、UE100は、上位レイヤ(特に、RRCレイヤ)からの切り替え指示に依存せずに、且つ、セルC1(TRP201#1)からセルC2(TRP201#2)へのハンドオーバを行うことなく、レイヤ1(PHYレイヤ)及びレイヤ2(MACレイヤ等)におけるビーム管理により、データ通信をセルC1(TRP201#1)からセルC2(TRP201#2)に切り替えることができる。すなわち、データ通信を行うセルをレイヤ1(PHYレイヤ)及びレイヤ2(MACレイヤ等)によるビーム切り替えによって実現できる。
According to such a scenario and procedure, the UE 100 can switch from cell C1 (TRP201 #1) to cell C2 (TRP201 #2) without depending on a switching instruction from a higher layer (in particular, the RRC layer). Data communication can be switched from cell C1 (TRP201#1) to cell C2 (TRP201#2) by beam management in layer 1 (PHY layer) and layer 2 (MAC layer, etc.) without handover. That is, a cell for data communication can be realized by beam switching between layer 1 (PHY layer) and layer 2 (MAC layer, etc.).
上述のシナリオにおいて、UE100は、セルC1(TRP201#1)及びセルC2(TRP201#2)のそれぞれに対して上りリンク信号の送信タイミング調整を行うことが必要であると考えられる。しかしながら、セルC2(TRP201#2)に対する上りリンク送信タイミングの調整方法は実現されておらず、セルC2(TRP201#2)に対する上りリンク信号の送信タイミングを適切に制御できない懸念がある。後述の一実施形態において、セルC2(TRP201#2)に対する上りリンク信号の送信タイミングを適切に制御可能とする方法について説明する。
In the above scenario, it is considered necessary for the UE 100 to adjust the transmission timing of uplink signals for each of cell C1 (TRP201#1) and cell C2 (TRP201#2). However, a method for adjusting the uplink transmission timing for cell C2 (TRP201#2) has not been realized, and there is concern that the transmission timing of uplink signals for cell C2 (TRP201#2) cannot be appropriately controlled. In one embodiment described later, a method for appropriately controlling the transmission timing of uplink signals for cell C2 (TRP201#2) will be described.
また、上述のシナリオにおいて、セルC2(TRP201#2)への上りリンク信号の送信タイミングを調整するために、UE100は、タイミングアドバンスに付与するオフセット値(NTA,offset)を決定する必要がある。しかしながら、UE100が、オフセット値(NTA,offset)を決定する方法について規定されていない。後述の一実施形態において、セルC2(TRP201#2)への上りリンク信号の送信タイミングを調整するためのオフセット値をUE100が適切に決定する方法について説明する。
Also, in the above scenario, in order to adjust the transmission timing of the uplink signal to cell C2 (TRP201 #2), the UE 100 needs to determine the offset value (N TA, offset ) to be given to the timing advance. . However, the method by which the UE 100 determines the offset value (N TA,offset ) is not defined. In one embodiment described later, a method for the UE 100 to appropriately determine the offset value for adjusting the transmission timing of the uplink signal to the cell C2 (TRP201#2) will be described.
(通信装置の構成)
図6を参照して、実施形態に係るUE100の構成について説明する。UE100は、通信部110及び制御部120を備える。 (Configuration of communication device)
A configuration of theUE 100 according to the embodiment will be described with reference to FIG. UE 100 includes communication unit 110 and control unit 120 .
図6を参照して、実施形態に係るUE100の構成について説明する。UE100は、通信部110及び制御部120を備える。 (Configuration of communication device)
A configuration of the
通信部110は、無線信号を基地局200と送受信することによって基地局200との無線通信を行う。通信部110は、少なくとも1つの送信部111及び少なくとも1つの受信部112を有する。送信部111及び受信部112は、複数のアンテナ及びRF回路を含んで構成されてもよい。アンテナは、信号を電波に変換し、当該電波を空間に放射する。また、アンテナは、空間における電波を受信し、当該電波を信号に変換する。RF回路は、アンテナを介して送受信される信号のアナログ処理を行う。RF回路は、高周波フィルタ、増幅器、変調器及びローパスフィルタ等を含んでもよい。
The communication unit 110 performs wireless communication with the base station 200 by transmitting and receiving wireless signals to and from the base station 200 . The communication unit 110 has at least one transmitter 111 and at least one receiver 112 . The transmitter 111 and receiver 112 may be configured to include multiple antennas and RF circuits. The antenna converts a signal into radio waves and radiates the radio waves into space. Also, the antenna receives radio waves in space and converts the radio waves into signals. The RF circuitry performs analog processing of signals transmitted and received through the antenna. The RF circuitry may include high frequency filters, amplifiers, modulators, low pass filters, and the like.
制御部120は、UE100における各種の制御を行う。制御部120は、通信部110を介した基地局200との通信を制御する。上述及び後述のUE100の動作は、制御部120の制御による動作であってよい。制御部120は、プログラムを実行可能な少なくとも1つのプロセッサ及びプログラムを記憶するメモリを含んでよい。プロセッサは、プログラムを実行して、制御部120の動作を行ってもよい。制御部120は、アンテナ及びRF回路を介して送受信される信号のデジタル処理を行うデジタル信号プロセッサを含んでもよい。当該デジタル処理は、RANのプロトコルスタックの処理を含む。なお、メモリは、プロセッサにより実行されるプログラム、当該プログラムに関するパラメータ、及び、当該プログラムに関するデータを記憶する。メモリは、ROM(Read Only Memory)、EPROM(Erasable Programmable Read Only Memory)、EEPROM(Electrically Erasable Programmable Read Only Memory)、RAM(Random Access Memory)及びフラッシュメモリの少なくとも1つを含んでよい。メモリの全部又は一部は、プロセッサ内に含まれていてよい。
The control unit 120 performs various controls in the UE 100. Control unit 120 controls communication with base station 200 via communication unit 110 . The operations of the UE 100 described above and below may be operations under the control of the control unit 120 . The control unit 120 may include at least one processor capable of executing a program and a memory that stores the program. The processor may execute a program to operate the control unit 120 . The control unit 120 may include a digital signal processor that performs digital processing of signals transmitted and received through the antenna and RF circuitry. The digital processing includes processing of the protocol stack of the RAN. Note that the memory stores programs executed by the processor, parameters related to the programs, and data related to the programs. The memory may include at least one of ROM (Read Only Memory), EPROM (Erasable Programmable Read Only Memory), EEPROM (Electrically Erasable Programmable Read Only Memory), RAM (Random Access Memory), and flash memory. All or part of the memory may be included within the processor.
一実施形態において、UE100には、サービングセルであるセルC1(TRP201#1)及びセルC1(TRP201#1)と同じ周波数に属するセルC2(TRP201#2)を管理する基地局200によって、セルC1(TRP201#1)及びセルC2(TRP201#2)が設定される。受信部112は、セルC1(TRP201#1)とセルC2(TRP201#2)とが同じタイミングアドバンスグループに属するか否かを示すグループ情報を基地局(200)から受信する。制御部120は、グループ情報に基づいて、セルC2(TRP201#2)への上りリンク信号の送信タイミングを調整する。これにより、セルC2(TRP201#2)に対する上りリンク信号の送信タイミングを適切に制御可能となる。
In one embodiment, in the UE 100, the cell C1 ( TRP 201#1) and cell C2 (TRP 201#2) are set. The receiving unit 112 receives group information indicating whether cell C1 (TRP201#1) and cell C2 (TRP201#2) belong to the same timing advance group from the base station (200). The control unit 120 adjusts the transmission timing of the uplink signal to cell C2 (TRP201#2) based on the group information. This makes it possible to appropriately control the transmission timing of uplink signals for cell C2 (TRP201#2).
一実施形態において、UE100には、サービングセルであるセルC1(TRP201#1)及びセルC1(TRP201#1)と同じ周波数に属するセルC2(TRP201#2)を管理する基地局200によって、セルC1(TRP201#1)及びセルC2(TRP201#2)が設定される。制御部120は、セルC1(TRP201#1)への上りリンク信号の送信タイミングである第1送信タイミングと、セルC2(TRP201#2)への上りリンク信号の送信タイミングである第2送信タイミングと、を調整する。送信部111は、第1送信タイミングでセルC1(TRP201#1)への上りリンク信号を送信し、第2送信タイミングでセルC2(TRP201#2)への上りリンク信号を送信する。制御部(120)は、第1送信タイミングを調整するために用いる第1タイミングアドバンスに基づく値に付与する第1オフセット値を決定し、第2送信タイミングを調整するために用いる第2タイミングアドバンスに基づく値に付与する第2オフセット値として、決定した第1オフセット値を用いる。これにより、UE100が、第2オフセット値を適切に決定でき、セルC2(TRP201#2)に対する上りリンク信号の送信タイミングを適切に制御可能となる。
In one embodiment, in the UE 100, the cell C1 ( TRP 201#1) and cell C2 (TRP 201#2) are set. The control unit 120 controls the first transmission timing, which is the transmission timing of the uplink signal to the cell C1 (TRP201#1), and the second transmission timing, which is the transmission timing of the uplink signal to the cell C2 (TRP201#2). , to adjust. The transmitter 111 transmits an uplink signal to cell C1 (TRP201#1) at the first transmission timing, and transmits an uplink signal to cell C2 (TRP201#2) at the second transmission timing. A control unit (120) determines a first offset value to be added to a value based on the first timing advance used for adjusting the first transmission timing, and assigns the first offset value to the second timing advance used for adjusting the second transmission timing. The determined first offset value is used as the second offset value to be given to the base value. This allows the UE 100 to appropriately determine the second offset value and appropriately control the transmission timing of the uplink signal for the cell C2 (TRP201#2).
(基地局の構成)
図7を参照して、実施形態に係る基地局200の構成について説明する。基地局200は、複数のTRP201(図7の例では、TRP201#1及びTRP201#2)と、通信部210と、ネットワークインターフェイス220と、制御部230とを有する。 (Base station configuration)
The configuration of thebase station 200 according to the embodiment will be described with reference to FIG. The base station 200 has a plurality of TRPs 201 (TRP 201 # 1 and TRP 201 # 2 in the example of FIG. 7), a communication section 210 , a network interface 220 and a control section 230 .
図7を参照して、実施形態に係る基地局200の構成について説明する。基地局200は、複数のTRP201(図7の例では、TRP201#1及びTRP201#2)と、通信部210と、ネットワークインターフェイス220と、制御部230とを有する。 (Base station configuration)
The configuration of the
各TRP201は、複数のアンテナを含み、ビームフォーミング可能に構成される。TRP201は、パネル又はアンテナパネルと称されてもよい。アンテナは、信号を電波に変換し、当該電波を空間に放射する。また、アンテナは、空間における電波を受信し、当該電波を信号に変換する。各TRP201は、分散して配置され、それぞれセルを構成する。
Each TRP 201 includes multiple antennas and is configured to enable beamforming. TRP 201 may also be referred to as a panel or antenna panel. The antenna converts a signal into radio waves and radiates the radio waves into space. Also, the antenna receives radio waves in space and converts the radio waves into signals. Each TRP 201 is arranged in a distributed manner and constitutes a cell.
通信部210は、例えば、UE100からの無線信号を受信し、UE100への無線信号を送信する。通信部210は、少なくとも1つの送信部211及び少なくとも1つの受信部212を有する。送信部211及び受信部212は、RF回路を含んで構成されてもよい。RF回路は、アンテナを介して送受信される信号のアナログ処理を行う。RF回路は、高周波フィルタ、増幅器、変調器及びローパスフィルタ等を含んでもよい。
For example, the communication unit 210 receives radio signals from the UE 100 and transmits radio signals to the UE 100. The communication unit 210 has at least one transmitter 211 and at least one receiver 212 . The transmitting section 211 and the receiving section 212 may be configured including an RF circuit. The RF circuitry performs analog processing of signals transmitted and received through the antenna. The RF circuitry may include high frequency filters, amplifiers, modulators, low pass filters, and the like.
ネットワークインターフェイス220は、信号をネットワークと送受信する。ネットワークインターフェイス220は、例えば、基地局間インターフェイスであるXnインターフェイスを介して接続された隣接基地局から信号を受信し、隣接基地局へ信号を送信する。また、ネットワークインターフェイス220は、例えば、NGインターフェイスを介して接続されたコアネットワーク装置300から信号を受信し、コアネットワーク装置300へ信号を送信する。
The network interface 220 transmits and receives signals to and from the network. The network interface 220, for example, receives signals from adjacent base stations connected via an Xn interface, which is an interface between base stations, and transmits signals to adjacent base stations. Also, the network interface 220 receives signals from the core network device 300 connected via the NG interface, for example, and transmits signals to the core network device 300 .
制御部230は、基地局200における各種の制御を行う。制御部230は、例えば、通信部210を介したUE100との通信を制御する。また、制御部230は、例えば、ネットワークインターフェイス220を介したノード(例えば、隣接基地局、コアネットワーク装置300)との通信を制御する。上述及び後述の基地局200の動作は、制御部230の制御による動作であってよい。制御部230は、プログラムを実行可能な少なくとも1つのプロセッサ及びプログラムを記憶するメモリを含んでよい。プロセッサは、プログラムを実行して、制御部230の動作を行ってもよい。制御部230は、アンテナ及びRF回路を介して送受信される信号のデジタル処理を行うデジタル信号プロセッサを含んでもよい。当該デジタル処理は、RANのプロトコルスタックの処理を含む。なお、メモリは、プロセッサにより実行されるプログラム、当該プログラムに関するパラメータ、及び、当該プログラムに関するデータを記憶する。メモリの全部又は一部は、プロセッサ内に含まれていてよい。
The control unit 230 performs various controls in the base station 200. The control unit 230 controls communication with the UE 100 via the communication unit 210, for example. Also, the control unit 230 controls communication with nodes (for example, adjacent base stations, core network device 300) via the network interface 220, for example. The operations of the base station 200 described above and below may be operations under the control of the control unit 230 . The control unit 230 may include at least one processor capable of executing programs and a memory storing the programs. The processor may execute a program to operate the controller 230 . Control unit 230 may include a digital signal processor that performs digital processing of signals transmitted and received through the antenna and RF circuitry. The digital processing includes processing of the protocol stack of the RAN. Note that the memory stores programs executed by the processor, parameters related to the programs, and data related to the programs. All or part of the memory may be included within the processor.
なお、基地局200がDU202及びCU203に分離されている場合、通信部210は、DU202内に設けられてもよく、制御部230は、DU202及び/又はCU203に設けられていてもよい。
In addition, when the base station 200 is separated into the DU202 and the CU203, the communication unit 210 may be provided in the DU202, and the control unit 230 may be provided in the DU202 and/or the CU203.
一実施形態において、基地局200(制御部230)は、サービングセルであるセルC1(TRP201#1)及びセルC1(TRP201#1)と同じ周波数に属するセルC2(TRP201#2)をUE100に設定する。制御部230は、セルC1(TRP201#1)とセルC2(TRP201#2)とが同じタイミングアドバンスグループに属するか否かを判定する。送信部211は、セルC1(TRP201#1)とセルC2(TRP201#2)とが同じタイミングアドバンスグループに属するか否かを示すグループ情報を、UE100に送信する。これにより、UE100は、セルC1(TRP201#1)とセルC2(TRP201#2)とが同じタイミングアドバンスグループに属するか否かを把握でき、セルC2(TRP201#2)に対する上りリンク信号の送信タイミングを適切に制御可能となる。
In one embodiment, the base station 200 (control unit 230) configures the UE 100 with cell C1 (TRP201#1), which is a serving cell, and cell C2 (TRP201#2) belonging to the same frequency as cell C1 (TRP201#1). . Control section 230 determines whether or not cell C1 (TRP201#1) and cell C2 (TRP201#2) belong to the same timing advance group. Transmitting section 211 transmits to UE 100 group information indicating whether or not cell C1 (TRP201#1) and cell C2 (TRP201#2) belong to the same timing advance group. Thereby, the UE 100 can grasp whether the cell C1 (TRP201#1) and the cell C2 (TRP201#2) belong to the same timing advance group, and the transmission timing of the uplink signal for the cell C2 (TRP201#2). can be controlled appropriately.
(システム動作)
(1)第1動作例
図8及び図9を参照して、移動通信システム1における第1動作例について説明する。第1動作例では、UE100は、セルC1(TRP201#1)とセルC2(TRP201#2)とが同じタイミングアドバンスグループに属することを示すグループ情報に基づいて、セルC2への上りリンク信号の送信タイミングを調整する。 (system operation)
(1) First Operation Example A first operation example in themobile communication system 1 will be described with reference to FIGS. 8 and 9. FIG. In the first operation example, UE 100 transmits an uplink signal to cell C2 based on group information indicating that cell C1 (TRP201 #1) and cell C2 (TRP201 #2) belong to the same timing advance group. Adjust timing.
(1)第1動作例
図8及び図9を参照して、移動通信システム1における第1動作例について説明する。第1動作例では、UE100は、セルC1(TRP201#1)とセルC2(TRP201#2)とが同じタイミングアドバンスグループに属することを示すグループ情報に基づいて、セルC2への上りリンク信号の送信タイミングを調整する。 (system operation)
(1) First Operation Example A first operation example in the
ステップS101において、基地局200(送信部211)は、セルC1(TRP201#1)への上りリンク信号の送信タイミングを調整するための第1タイミングアドバンス(第1TA)をセルC1(TRP201#1)においてUE100へ送信する。UE100(受信部112)は、第1TAをセルC1(TRP201#1)から受信する。
In step S101, the base station 200 (transmitting section 211) sets the first timing advance (first TA) for adjusting the transmission timing of the uplink signal to the cell C1 (TRP201#1) to the cell C1 (TRP201#1). to the UE 100 in. UE 100 (receiving section 112) receives the first TA from cell C1 (TRP 201 #1).
基地局200(送信部211)は、第1TAを、MAC CEにより送信してもよく、ランダムアクセスにおいて、UE100からのランダムアクセス(RA)プリアンブルに対する応答(RA応答)により送信してもよい。
The base station 200 (transmitting section 211) may transmit the first TA by MAC CE, or in random access, by responding to the random access (RA) preamble (RA response) from the UE 100.
ステップS102において、UE100(制御部120)は、第1調整値(TTA1)を決定する。セルC1(TRP201#1)への上りリンク信号(以下、第1上りリンク信号と適宜称する)の送信タイミング(以下、第1送信タイミングと適宜称する)を調整するための第1調整値(TTA1)を決定する。
In step S102, the UE 100 (control unit 120) determines the first adjustment value (T TA1 ). A first adjustment value (T TA1 ).
UE100(制御部120)は、例えば、式2又は式3を用いて、第1TA(TA1)に基づく第1TA値(NTA1)を算出する。また、UE100(制御部120)は、第1TA値に付与する第1オフセット値(NTA,offset)を決定してよい。UE100(制御部120)は、上述の式1を用いて、第1TA値と、決定した第1オフセット値とにより、第1調整値(TTA1)を決定してよい。
The UE 100 (control unit 120) calculates the first TA value (N TA1 ) based on the first TA (T A1 ) using Equation 2 or Equation 3, for example. Also, the UE 100 (control unit 120) may determine the first offset value (N TA,offset ) to be given to the first TA value. The UE 100 (control unit 120) may determine the first adjustment value (T TA1 ) from the first TA value and the determined first offset value using Equation 1 above.
UE100(制御部120)は、セルC1(TRP201#1)からの下りリンクタイミングを第1上りリンク送信のタイミング基準(以下、第1タイミング基準と適宜称する)として用いる。図9に示すように、UE100(制御部120)は、第1タイミング基準から決定した第1調整値(TTA1)だけずらしたタイミングを第1送信タイミングに決定する。
The UE 100 (control unit 120) uses the downlink timing from the cell C1 (TRP 201#1) as a timing reference for the first uplink transmission (hereinafter, appropriately referred to as a first timing reference). As shown in FIG. 9, UE 100 (control section 120) determines the timing shifted by the first adjustment value (T TA1 ) determined from the first timing reference as the first transmission timing.
ステップS103において、UE100(送信部111)は、決定した第1送信タイミングで第1上りリンク信号をセルC1(TRP201#1)へ送信する。基地局200(受信部212)は、上りリンク信号をセルC1(TRP201#1)において受信する。
In step S103, the UE 100 (transmitting section 111) transmits the first uplink signal to the cell C1 (TRP201#1) at the determined first transmission timing. The base station 200 (receiving section 212) receives an uplink signal in cell C1 (TRP 201#1).
その後、基地局200(制御部230)は、UE100がセルC1(TRP201#1)をサービングセルとして維持しつつ、セルC2(TRP201#2)とのデータ通信を行うための動作を開始する。
After that, the base station 200 (control unit 230) starts an operation for performing data communication with the cell C2 (TRP201#2) while the UE100 maintains the cell C1 (TRP201#1) as the serving cell.
基地局200(制御部230)は、セルC1(TRP201#1)とセルC2(TRP201#2)とが同じタイミングアドバンスグループに属するか否かを判定する。
The base station 200 (control unit 230) determines whether cell C1 (TRP201#1) and cell C2 (TRP201#2) belong to the same timing advance group.
基地局200(制御部230)は、例えば、以下の条件(a)及び(b)の両方を満たす場合、セルC1(TRP201#1)とセルC2(TRP201#2)とが同じタイミングアドバンスグループに属すると判定してよい。基地局200(制御部230)は、条件(a)及び(b)の少なくとも一方を満たさない場合に、セルC1(TRP201#1)とセルC2(TRP201#2)とが異なるタイミングアドバンスグループに属すると判定してよい。
For example, when both the following conditions (a) and (b) are satisfied, the base station 200 (control unit 230) places cell C1 (TRP201#1) and cell C2 (TRP201#2) in the same timing advance group. may be determined to belong. When at least one of the conditions (a) and (b) is not satisfied, the base station 200 (control unit 230) determines that the cell C1 (TRP201#1) and the cell C2 (TRP201#2) belong to different timing advance groups. can be determined.
(a)セルC2(TRP201#2)への上りリンク信号(以下、第2上りリンク信号と適宜称する)の送信タイミング(以下、第2送信タイミングと適宜称する)を調整するための第2調整値(TTA2)として、第1TAを適用可能である場合
(b)第2送信タイミングを調整する際に、タイミング基準として第1タイミング基準を用いることができる場合 (a) Second adjustment value for adjusting the transmission timing (hereinafter referred to as second transmission timing) of the uplink signal (hereinafter referred to as second uplink signal) to cell C2 (TRP201#2) When the first TA can be applied as (T TA2 ) (b) When the first timing reference can be used as the timing reference when adjusting the second transmission timing
(b)第2送信タイミングを調整する際に、タイミング基準として第1タイミング基準を用いることができる場合 (a) Second adjustment value for adjusting the transmission timing (hereinafter referred to as second transmission timing) of the uplink signal (hereinafter referred to as second uplink signal) to cell C2 (TRP201#2) When the first TA can be applied as (T TA2 ) (b) When the first timing reference can be used as the timing reference when adjusting the second transmission timing
基地局200(制御部230)は、判定結果に基づいて、セルC1(TRP201#1)とセルC2(TRP201#2)とが同じタイミングアドバンスグループに属するか否かを示すグループ情報を生成する。グループ情報において、例えば、セル毎にタイミングアドバンスグループ識別子を設定することで、セルC1(TRP201#1)とセルC2(TRP201#2)とが同じタイミングアドバンスグループに属するか否かを示してよい。例えば、グループ情報において、セルC1(TRP201#1)とタイミングアドバンスグループ識別子#1とが対応づけられており、セルC2(TRP201#2)とタイミングアドバンスグループ識別子#1とが対応づけられている場合、グループ情報は、セルC1(TRP201#1)とセルC2(TRP201#2)とが同じタイミングアドバンスグループに属することを示してよい。例えば、グループ情報において、セルC1(TRP201#1)とタイミングアドバンスグループ識別子#1とが対応づけられており、セルC2(TRP201#2)とタイミングアドバンスグループ識別子#2とが対応づけられている場合、グループ情報は、セルC1(TRP201#1)とセルC2(TRP201#2)とが異なるタイミングアドバンスグループに属することを示してよい。本動作例では、基地局200(制御部230)は、セルC1(TRP201#1)とセルC2(TRP201#2)とが同じタイミングアドバンスグループに属すると判定したとして説明を進める。従って、グループ情報は、セルC1(TRP201#1)とセルC2(TRP201#2)とが同じタイミングアドバンスグループに属することを示す。
Based on the determination result, the base station 200 (control unit 230) generates group information indicating whether cell C1 (TRP201#1) and cell C2 (TRP201#2) belong to the same timing advance group. In the group information, for example, by setting a timing advance group identifier for each cell, it may be indicated whether cell C1 (TRP201#1) and cell C2 (TRP201#2) belong to the same timing advance group. For example, in the group information, cell C1 (TRP201#1) is associated with timing advance group identifier # 1, and cell C2 (TRP201#2) is associated with timing advance group identifier # 1. , the group information may indicate that cell C1 (TRP201#1) and cell C2 (TRP201#2) belong to the same timing advance group. For example, in the group information, cell C1 (TRP201#1) is associated with timing advance group identifier # 1, and cell C2 (TRP201#2) is associated with timing advance group identifier # 2. , the group information may indicate that cell C1 (TRP201#1) and cell C2 (TRP201#2) belong to different timing advance groups. In this operation example, the base station 200 (control unit 230) determines that cell C1 (TRP201#1) and cell C2 (TRP201#2) belong to the same timing advance group. Therefore, the group information indicates that cell C1 (TRP201#1) and cell C2 (TRP201#2) belong to the same timing advance group.
ステップS104において、基地局200(送信部211)は、グループ情報をセルC1(TRP201#1)においてUE100へ送信する。UE100(受信部112)は、グループ情報をセルC1(TRP201#1)から受信する。
In step S104, the base station 200 (transmitting section 211) transmits group information to the UE 100 in the cell C1 (TRP201#1). UE 100 (receiving section 112) receives group information from cell C1 (TRP 201 #1).
基地局200(送信部211)は、図5に示すプロシージャにおけるステップS1からステップS4までの間において、グループ情報をセルC1(TRP201#1)においてUE100へ送信してよい。基地局200(送信部211)は、例えば、グループ情報とセルC2(TRP201#2)に対するビーム測定に用いるビーム測定用参照信号を設定するビーム測定設定情報と、を含む設定情報をUE100へ送信してよい。UE100(受信部112)は、グループ情報とビーム測定設定情報とを、セルC1(TRP201#1)から受信する。これにより、UE100がセルC2(TRP201#2)との間でデータの送受信前(すなわち、図5におけるステップS4)に、後述のように第1TAを用いて第2送信タイミングを調整可能か否かを判定できる。また、グループ情報とビーム測定設定情報とを別々に送信する場合と比較して、UE100と基地局200との間のシグナリングを削減できる。
The base station 200 (transmitting section 211) may transmit the group information to the UE 100 in the cell C1 (TRP201#1) during steps S1 to S4 in the procedure shown in FIG. The base station 200 (transmitting section 211) transmits, to the UE 100, configuration information including, for example, group information and beam measurement configuration information for configuring beam measurement reference signals used for beam measurement for cell C2 (TRP 201 #2). you can UE 100 (receiving section 112) receives group information and beam measurement configuration information from cell C1 (TRP 201 #1). As a result, whether or not the second transmission timing can be adjusted using the first TA as described later before the UE 100 transmits/receives data to/from the cell C2 (TRP201#2) (that is, step S4 in FIG. 5) can be determined. Also, signaling between the UE 100 and the base station 200 can be reduced compared to the case of transmitting the group information and the beam measurement configuration information separately.
ビーム測定設定情報は、セルC2(TRP201#2)が送信するSSB又はチャネル状態情報参照信号(CSI-RS)を示す参照信号情報を含む。
The beam measurement setting information includes reference signal information indicating the SSB or channel state information reference signal (CSI-RS) transmitted by cell C2 (TRP201#2).
なお、基地局200(送信部211)は、グループ情報をセルC2(TRP201#2)においてUE100へ送信してもよい。UE100(受信部112)は、グループ情報をセルC2(TRP201#2)から受信してもよい。
Note that the base station 200 (transmitting section 211) may transmit group information to the UE 100 in cell C2 (TRP201#2). UE 100 (receiving section 112) may receive group information from cell C2 (TRP 201 #2).
UE100(制御部120)は、グループ情報に基づいて、セルC2(TRP201#2)への上りリンク信号の送信タイミングを調整する。例えば、UE100は、以下の動作を実行する。
The UE 100 (control unit 120) adjusts the transmission timing of the uplink signal to cell C2 (TRP201#2) based on the group information. For example, the UE 100 performs the following operations.
ステップS105において、UE100(制御部120)は、グループ情報に基づいて、セルC1(TRP201#1)とセルC2(TRP201#2)とが同じタイミングアドバンスグループに属するか否かを判定する。
In step S105, the UE 100 (control unit 120) determines whether cell C1 (TRP201#1) and cell C2 (TRP201#2) belong to the same timing advance group based on the group information.
本動作例において、UE100(制御部120)は、グループ情報がセルC1(TRP201#1)とセルC2(TRP201#2)とが同じタイミングアドバンスグループに属することを示すため、セルC1(TRP201#1)とセルC2(TRP201#2)とが同じタイミングアドバンスグループに属すると判定する。
In this operation example, the UE 100 (control unit 120) uses the cell C1 (TRP201 #1) because the group information indicates that the cell C1 (TRP201 #1) and the cell C2 (TRP201 #2) belong to the same timing advance group. ) and cell C2 (TRP201#2) belong to the same timing advance group.
ステップS106において、UE100(制御部120)は、第2送信タイミングを調整するための第2調整値(TTA2)を決定する。
In step S106, the UE 100 (control unit 120) determines a second adjustment value (T TA2 ) for adjusting the second transmission timing.
UE100(制御部120)は、セルC1(TRP201#1)とセルC2(TRP201#2)とが同じタイミングアドバンスグループに属することを示す場合、第1TAを用いて、第2送信タイミングを調整してよい。すなわち、UE100(制御部120)は、第1TAを用いて、第2調整値を決定してよい。UE100(制御部120)は、第1調整値を第2調整値として用いてもよい。これにより、UE100は、第1TAと異なる第2タイミングアドバンス(以下、第2TAと適宜称する)を基地局200から取得する必要がなくなるため、UE100と基地局200との間のシグナリングを低減できる。
When indicating that cell C1 (TRP201 #1) and cell C2 (TRP201 #2) belong to the same timing advance group, UE 100 (control unit 120) uses the first TA to adjust the second transmission timing. good. That is, the UE 100 (control unit 120) may determine the second adjustment value using the first TA. The UE 100 (control unit 120) may use the first adjustment value as the second adjustment value. This eliminates the need for UE 100 to acquire a second timing advance different from the first TA (hereinafter referred to as a second TA) from base station 200, so signaling between UE 100 and base station 200 can be reduced.
UE100(制御部120)は、第2調整値を決定する際に、第2TAとして第1TAを用いつつ、第2オフセット値(NTA,offset)として、ステップS102において決定した第1オフセット値を用いてもよい。これにより、UE100は、例えば、表1を用いて第2オフセット値を決定する処理を省略することができる。その結果、UE100の処理負荷を低減できる。
When determining the second adjustment value, the UE 100 (control unit 120) uses the first offset value determined in step S102 as the second offset value (N TA, offset ) while using the first TA as the second TA. may Thereby, the UE 100 can omit the process of determining the second offset value using Table 1, for example. As a result, the processing load on the UE 100 can be reduced.
図9に示すように、UE100(制御部120)は、セルC1(TRP201#1)とセルC2(TRP201#2)とが同じタイミングアドバンスグループに属することを示す場合、第2上りリンク送信のタイミング基準(以下、第2タイミング基準と適宜称する)として第1タイミング基準を用いて、第2送信タイミングを調整してもよい。従って、UE100(制御部120)は、第1送信タイミングと第2送信タイミングとが同じであってもよい。
As shown in FIG. 9, when indicating that cell C1 (TRP201#1) and cell C2 (TRP201#2) belong to the same timing advance group, UE 100 (control unit 120) determines the timing of the second uplink transmission. The second transmission timing may be adjusted using the first timing reference as a reference (hereinafter referred to as a second timing reference). Therefore, the UE 100 (control unit 120) may have the same first transmission timing and second transmission timing.
なお、UE100(制御部120)は、セルC2(TRP201#2)からの下りリンクタイミングを第2タイミング基準として用いてよい。従って、UE100(制御部120)は、第2タイミング基準から、決定した第2調整値(TTA2)、すなわち、第1調整値(TTA1)だけずらしたタイミングを第2送信タイミングに決定してもよい。
UE 100 (control unit 120) may use the downlink timing from cell C2 (TRP 201#2) as the second timing reference. Therefore, the UE 100 (control unit 120) determines the timing shifted by the determined second adjustment value (T TA2 ), that is, the first adjustment value (T TA1 ) from the second timing reference as the second transmission timing. good too.
このようにして、UE100(制御部120)は、第1TAを用いて第2送信タイミングを調整する。
In this way, the UE 100 (control section 120) adjusts the second transmission timing using the first TA.
なお、UE100(制御部120)は、第1TA値と第2TA値とを独立に管理してよい。すなわち、UE100(制御部120)は、第1TA値と第2TA値とをそれぞれ記憶してよい。
Note that the UE 100 (control unit 120) may manage the first TA value and the second TA value independently. That is, the UE 100 (control unit 120) may store the first TA value and the second TA value.
UE100(制御部120)は、TAコマンドとして第1TAを含む第1MAC CEを基地局200から受信した場合、第1MAC CEに基づいて、第1TA値を管理してよい。すなわち、UE100(制御部120)は、第1TAに基づいて第1TA値を更新し、更新した第1TA値を記憶する。一方で、UE100(制御部120)は、TAコマンドとして第2TAを含む第2MAC CEを基地局200から受信した場合、第1MAC CEに基づいて、第2TA値を第1TA値とは独立に管理してよい。UE100(制御部120)は、第2TAに基づいて第2TA値を更新し、更新した第2TA値を記憶する。
When the UE 100 (control unit 120) receives the first MAC CE including the first TA as the TA command from the base station 200, it may manage the first TA value based on the first MAC CE. That is, the UE 100 (control unit 120) updates the first TA value based on the first TA, and stores the updated first TA value. On the other hand, when the UE 100 (control unit 120) receives the second MAC CE including the second TA as the TA command from the base station 200, it manages the second TA value independently from the first TA value based on the first MAC CE. you can The UE 100 (control unit 120) updates the second TA value based on the second TA and stores the updated second TA value.
また、UE100(制御部120)は、第1調整値と第2調整値とを独立に管理してよい。UE100(制御部120)は、上りリンク信号の送信タイミングの調整に関する情報を、セル毎に独立に管理してよい。
Also, the UE 100 (control unit 120) may manage the first adjustment value and the second adjustment value independently. The UE 100 (the control unit 120) may independently manage the information regarding the adjustment of the transmission timing of the uplink signal for each cell.
また、UE100(制御部120)は、第1TA値を第2TA値として用いる場合には、第1TA値のみを記憶し、第2TA値を記憶しなくてもよい。同様に、UE100(制御部120)は、第1調整値を第2調整値として用いる場合には、第1調整値のみを記憶し、第2調整値を記憶しなくてもよい。
Also, when using the first TA value as the second TA value, the UE 100 (control unit 120) may store only the first TA value and not the second TA value. Similarly, when using the first adjustment value as the second adjustment value, the UE 100 (control unit 120) may store only the first adjustment value and may not store the second adjustment value.
ステップS107において、UE100(送信部111)は、決定した第2送信タイミングで第2上りリンク信号をセルC2(TRP201#2)へ送信する。基地局200(受信部212)は、上りリンク信号をセルC2(TRP201#2)において受信する。
In step S107, the UE 100 (transmitting section 111) transmits the second uplink signal to the cell C2 (TRP201#2) at the determined second transmission timing. The base station 200 (receiving section 212) receives an uplink signal in cell C2 (TRP 201#2).
なお、UE100(制御部120)は、TAコマンドとして第1TAを含むMAC CEを基地局200から受信した場合、第1TAを用いて、第1送信タイミングに加えて、第2送信タイミングを調整できる。
Note that when the UE 100 (control unit 120) receives a MAC CE including the first TA as a TA command from the base station 200, the first TA can be used to adjust the second transmission timing in addition to the first transmission timing.
(2)第2動作例
図10及び図11を参照して、移動通信システム1における第2動作例について、上述の動作例との相違点を主として説明する。第2動作例では、セルC1(TRP201#1)とセルC2(TRP201#2)とが異なるタイミングアドバンスグループに属するケースについて説明する。 (2) Second Operation Example A second operation example in themobile communication system 1 will be described with reference to FIGS. 10 and 11, mainly focusing on differences from the above-described operation example. In the second operation example, a case will be described where cell C1 (TRP201#1) and cell C2 (TRP201#2) belong to different timing advance groups.
図10及び図11を参照して、移動通信システム1における第2動作例について、上述の動作例との相違点を主として説明する。第2動作例では、セルC1(TRP201#1)とセルC2(TRP201#2)とが異なるタイミングアドバンスグループに属するケースについて説明する。 (2) Second Operation Example A second operation example in the
ステップS111からステップS115の動作は、上述の動作例と同様である。なお、本動作例では、基地局200(制御部230)は、セルC1(TRP201#1)とセルC2(TRP201#2)とが同じタイミングアドバンスグループに属するか否かを示すグループ情報を生成する。基地局200(制御部230)は、生成したグループ情報をセルC1(TRP201#1)においてUE100へ送信する。
The operation from step S111 to step S115 is the same as the operation example described above. In this operation example, the base station 200 (control unit 230) generates group information indicating whether cell C1 (TRP201#1) and cell C2 (TRP201#2) belong to the same timing advance group. . Base station 200 (control unit 230) transmits the generated group information to UE 100 in cell C1 (TRP 201 #1).
UE100(制御部120)は、グループ情報に基づいて、セルC1(TRP201#1)とセルC2(TRP201#2)とが異なるタイミングアドバンスグループに属すると判定する。
The UE 100 (control unit 120) determines that cell C1 (TRP201#1) and cell C2 (TRP201#2) belong to different timing advance groups based on the group information.
UE100(制御部120)は、第2TAを取得するための動作を行ってよい。UE100(制御部120)は、例えば、セルC2(TRP201#2)にランダムアクセスを行ってよい。ランダムアクセスにおいて、UE100(送信部111)は、ランダムアクセス(RA)プリアンブルをセルC2(TRP201#2)に送信してよい。
The UE 100 (control unit 120) may operate to acquire the second TA. UE 100 (control unit 120) may perform random access to cell C2 (TRP 201#2), for example. In random access, UE 100 (transmitting section 111) may transmit a random access (RA) preamble to cell C2 (TRP 201 #2).
ステップS116において、基地局200(送信部211)は、第2送信タイミングを調整するための第2タイミングアドバンス(第2TA)をセルC1(TRP201#1)においてUE100へ送信する。UE100(受信部112)は、第2TAをセルC1(TRP201#1)から受信する。
In step S116, the base station 200 (transmitting section 211) transmits a second timing advance (second TA) for adjusting the second transmission timing to the UE 100 in cell C1 (TRP201#1). UE 100 (receiving section 112) receives the second TA from cell C1 (TRP 201 #1).
基地局200(送信部211)は、第2TAを、MAC CEにより送信してもよく、ランダムアクセスにおいて、UE100からのランダムアクセス(RA)プリアンブルに対する応答(RA応答)により送信してもよい。UE100(受信部112)は、第2TAをセルC2(TRP201#2)から受信してもよい。第2上りリンク信号の送信先のセルから、第2上りリンク信号の送信に用いるTA(第2TA)を受信することで、適用すべきTAを把握し易くできる。
The base station 200 (transmitting section 211) may transmit the second TA by MAC CE, or in random access, by responding to the random access (RA) preamble from the UE 100 (RA response). UE 100 (receiving section 112) may receive the second TA from cell C2 (TRP 201 #2). By receiving the TA (second TA) used for transmission of the second uplink signal from the transmission destination cell of the second uplink signal, it is possible to easily grasp the TA to be applied.
ステップS117において、UE100(制御部120)は、第2送信タイミングを調整するための第2調整値(TTA2)を決定する。
In step S117, the UE 100 (control unit 120) determines a second adjustment value (T TA2 ) for adjusting the second transmission timing.
UE100(制御部120)は、例えば、上述の式2又は式3を用いて、第2TA(TA2)に基づく第2TA値(NTA2)を算出する。
The UE 100 (control unit 120) calculates the second TA value (N TA2 ) based on the second TA (T A2 ), for example, using Equation 2 or Equation 3 above.
UE100(制御部120)は、第2TA値に付与する第2オフセット値(NTA,offset)を決定してよい。UE100(制御部120)は、第2オフセット値として、第1送信タイミングを調整する際に決定した第1オフセット値を用いてよい。UE100は、第1TA値(NTA1)と第2TA値(NTA2)とを独立に管理しつつ、第2オフセット値として当該第1オフセット値を用いてよい。これにより、UE100は、例えば、表1を用いて第2オフセット値を決定する処理を省略することができる。その結果、UE100の処理負荷を低減できる。
The UE 100 (control unit 120) may determine the second offset value (N TA,offset ) to be given to the second TA value. The UE 100 (control unit 120) may use the first offset value determined when adjusting the first transmission timing as the second offset value. The UE 100 may manage the first TA value (N TA1 ) and the second TA value (N TA2 ) independently and use the first offset value as the second offset value. Thereby, the UE 100 can omit the process of determining the second offset value using Table 1, for example. As a result, the processing load on the UE 100 can be reduced.
UE100(制御部120)は、(i)第1TA値と第2TA値とが同じであるか否かに関わらず、第2オフセット値として第1オフセット値を用いてよいし、(ii)第1調整値と第2調整値とが同じであるか否かに関わらず、第2オフセット値として第1オフセット値を用いてよいし、(iii)第1タイミング基準と第2タイミング基準とが同じであるか否かに関わらず、第2オフセット値として第1オフセット値を用いてよいし、(iv)調整後の上りリンク信号の送信タイミングが同じであるか否かに関わらず、第2オフセット値として第1オフセット値を用いてよい。従って、UE100は、セルC1(TRP201#1)と共に、セルC2(TRP201#2)が設定される場合、両セルへ同じオフセット値(NTA,offset)を適用できる。
The UE 100 (control unit 120) may use the first offset value as the second offset value regardless of whether (i) the first TA value and the second TA value are the same, or (ii) the first The first offset value may be used as the second offset value regardless of whether the adjustment value and the second adjustment value are the same; and (iii) the first timing reference and the second timing reference are the same. The first offset value may be used as the second offset value regardless of whether there is, and (iv) the second offset value regardless of whether the transmission timing of the uplink signal after adjustment is the same may be used as the first offset value. Therefore, when cell C2 (TRP201#2) is configured together with cell C1 (TRP201#1), UE 100 can apply the same offset value (N TA, offset ) to both cells.
UE100(制御部120)は、上述の式1を用いて、算出した第2TA値と、決定した第2オフセット値とにより、第2調整値(TTA2)を決定してよい。
The UE 100 (control unit 120) may determine the second adjustment value (T TA2 ) based on the second TA value calculated using Equation 1 above and the second offset value determined.
UE100(制御部120)は、セルC1(TRP201#1)とセルC2(TRP201#2)とが異なるタイミングアドバンスグループに属することをグループ情報が示す場合、セルC2(TRP201#2)からの下りリンクタイミングを第2タイミング基準として用いて第2送信タイミングを調整してよい。具体的には、図11に示すように、UE100(制御部120)は、第2タイミング基準から、決定した第2調整値(TTA2)だけずらしたタイミングを第2送信タイミングに決定する。このようにして、UE100(制御部120)は、第2TAを用いて第2送信タイミングを調整する。これにより、ネットワークは、UE100(制御部120)の第2送信タイミングを柔軟に設定できる。
When the group information indicates that cell C1 (TRP201 #1) and cell C2 (TRP201 #2) belong to different timing advance groups, UE 100 (control section 120) performs downlink from cell C2 (TRP201 #2). The timing may be used as a second timing reference to adjust the second transmission timing. Specifically, as shown in FIG. 11, the UE 100 (control unit 120) determines the second transmission timing to be the timing shifted by the determined second adjustment value (T TA2 ) from the second timing reference. In this way, the UE 100 (control section 120) adjusts the second transmission timing using the second TA. This allows the network to flexibly set the second transmission timing of the UE 100 (control unit 120).
ステップS118の動作は、上述の動作例と同様である。
The operation of step S118 is the same as the operation example described above.
(その他の実施形態)
上述の実施形態における動作シーケンス(及び動作フロー)は、必ずしもフロー図又はシーケンス図に記載された順序に沿って時系列に実行されなくてよい。例えば、動作におけるステップは、フロー図又はシーケンス図として記載した順序と異なる順序で実行されても、並列的に実行されてもよい。また、動作におけるステップの一部が削除されてもよく、さらなるステップが処理に追加されてもよい。また、上述の実施形態における動作シーケンス(及び動作フロー)は、別個独立に実施してもよいし、2以上の動作シーケンス(及び動作フロー)を組み合わせて実施してもよい。例えば、1つの動作フローの一部のステップを他の動作フローに追加してもよいし、1つの動作フローの一部のステップを他の動作フローの一部のステップと置換してもよい。 (Other embodiments)
The operation sequences (and operation flows) in the above-described embodiments do not necessarily have to be executed in chronological order according to the order described in the flow diagrams or sequence diagrams. For example, the steps in the operations may be performed out of order or in parallel with the order illustrated in the flow diagrams or sequence diagrams. Also, some steps in the operation may be omitted and additional steps may be added to the process. Further, the operation sequences (and operation flows) in the above-described embodiments may be implemented independently, or two or more operation sequences (and operation flows) may be combined and implemented. For example, some steps of one operation flow may be added to another operation flow, or some steps of one operation flow may be replaced with some steps of another operation flow.
上述の実施形態における動作シーケンス(及び動作フロー)は、必ずしもフロー図又はシーケンス図に記載された順序に沿って時系列に実行されなくてよい。例えば、動作におけるステップは、フロー図又はシーケンス図として記載した順序と異なる順序で実行されても、並列的に実行されてもよい。また、動作におけるステップの一部が削除されてもよく、さらなるステップが処理に追加されてもよい。また、上述の実施形態における動作シーケンス(及び動作フロー)は、別個独立に実施してもよいし、2以上の動作シーケンス(及び動作フロー)を組み合わせて実施してもよい。例えば、1つの動作フローの一部のステップを他の動作フローに追加してもよいし、1つの動作フローの一部のステップを他の動作フローの一部のステップと置換してもよい。 (Other embodiments)
The operation sequences (and operation flows) in the above-described embodiments do not necessarily have to be executed in chronological order according to the order described in the flow diagrams or sequence diagrams. For example, the steps in the operations may be performed out of order or in parallel with the order illustrated in the flow diagrams or sequence diagrams. Also, some steps in the operation may be omitted and additional steps may be added to the process. Further, the operation sequences (and operation flows) in the above-described embodiments may be implemented independently, or two or more operation sequences (and operation flows) may be combined and implemented. For example, some steps of one operation flow may be added to another operation flow, or some steps of one operation flow may be replaced with some steps of another operation flow.
上述の実施形態において、移動通信システム1としてNRに基づく移動通信システムを例に挙げて説明した。しかしながら、移動通信システム1は、この例に限定されない。移動通信システム1は、LTE又は3GPP規格の他の世代システム(例えば、第6世代)のいずれかのTSに準拠したシステムであってよい。基地局200は、LTEにおいてUE100へ向けたE-UTRAユーザプレーン及び制御プレーンプロトコル終端を提供するeNBであってよい。移動通信システム1は、3GPP規格以外の規格のTSに準拠したシステムであってよい。基地局200は、IAB(Integrated Access and Backhaul)ドナー又はIABノードであってよい。
In the above-described embodiment, the mobile communication system 1 based on NR has been described as an example. However, the mobile communication system 1 is not limited to this example. The mobile communication system 1 may be a TS-compliant system of either LTE or another generation system (eg, 6th generation) of the 3GPP standard. Base station 200 may be an eNB that provides E-UTRA user plane and control plane protocol termination towards UE 100 in LTE. The mobile communication system 1 may be a system conforming to a TS of a standard other than the 3GPP standard. The base station 200 may be an IAB (Integrated Access and Backhaul) donor or an IAB node.
UE100又は基地局200が行う各処理をコンピュータに実行させるプログラムが提供されてもよい。プログラムは、コンピュータ読取り可能媒体に記録されていてもよい。コンピュータ読取り可能媒体を用いれば、コンピュータにプログラムをインストールすることが可能である。ここで、プログラムが記録されたコンピュータ読取り可能媒体は、非一過性の記録媒体であってもよい。非一過性の記録媒体は、特に限定されるものではないが、例えば、CD-ROMやDVD-ROM等の記録媒体であってもよい。また、UE100又は基地局200が行う各処理を実行する回路を集積化し、UE100又は基地局200の少なくとも一部を半導体集積回路(チップセット、SoC)として構成してもよい。
A program that causes a computer to execute each process performed by the UE 100 or the base station 200 may be provided. The program may be recorded on a computer readable medium. A computer readable medium allows the installation of the program on the computer. Here, the computer-readable medium on which the program is recorded may be a non-transitory recording medium. The non-transitory recording medium is not particularly limited, but may be, for example, a recording medium such as CD-ROM or DVD-ROM. Also, circuits that execute each process performed by the UE 100 or the base station 200 may be integrated, and at least a part of the UE 100 or the base station 200 may be configured as a semiconductor integrated circuit (chipset, SoC).
上述の実施形態において、「送信する(transmit)」は、送信に使用されるプロトコルスタック内の少なくとも1つのレイヤの処理を行うことを意味してもよく、又は、無線又は有線で信号を物理的に送信することを意味してもよい。或いは、「送信する」は、上記少なくとも1つのレイヤの処理を行うことと、無線又は有線で信号を物理的に送信することとの組合せを意味してもよい。同様に、「受信する(receive)」は、受信に使用されるプロトコルスタック内の少なくとも1つのレイヤの処理を行うことを意味してもよく、又は、無線又は有線で信号を物理的に受信することを意味してもよい。或いは、「受信する」は、上記少なくとも1つのレイヤの処理を行うことと、無線又は有線で信号を物理的に受信することとの組合せを意味してもよい。同様に、「取得する(obtain/acquire)」は、記憶されている情報の中から情報を取得することを意味してもよく、他のノードから受信した情報の中から情報を取得することを意味してもよく、又は、情報を生成することにより当該情報を取得することを意味してもよい。同様に、「~を含む(include)」及び「~を備える(comprise)」は、列挙する項目のみを含むことを意味せず、列挙する項目のみを含んでもよいし、列挙する項目に加えてさらなる項目を含んでもよいことを意味する。同様に、本開示において、「又は(or)」は、排他的論理和を意味せず、論理和を意味する。
In the above embodiments, "transmit" may mean performing at least one layer of processing in the protocol stack used for transmission, or physically transmitting the signal wirelessly or by wire. It may mean sending to Alternatively, "transmitting" may mean a combination of performing the at least one layer of processing and physically transmitting the signal wirelessly or by wire. Similarly, "receive" may mean performing processing of at least one layer in the protocol stack used for reception, or physically receiving a signal wirelessly or by wire. may mean that Alternatively, "receiving" may mean a combination of performing the at least one layer of processing and physically receiving the signal wirelessly or by wire. Similarly, "obtain/acquire" may mean obtaining information among stored information, and may mean obtaining information among information received from other nodes. Alternatively, it may mean obtaining the information by generating the information. Similarly, "include" and "comprise" are not meant to include only the recited items, and may include only the recited items or in addition to the recited items. Means that it may contain further items. Similarly, in the present disclosure, "or" does not mean exclusive OR, but means logical OR.
本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。
Although the present disclosure has been described with reference to examples, it is understood that the present disclosure is not limited to those examples or structures. The present disclosure also includes various modifications and modifications within the equivalent range. In addition, various combinations and configurations, as well as other combinations and configurations, including single elements, more, or less, are within the scope and spirit of this disclosure.
(付記)
上述の実施形態に係る特徴について付記する。 (Appendix)
Features of the above-described embodiment will be added.
上述の実施形態に係る特徴について付記する。 (Appendix)
Features of the above-described embodiment will be added.
(付記1)
サービングセルである第1セル(C1)及び前記第1セル(C1)と同じ周波数に属する第2セル(C2)を管理する基地局(200)によって前記第1セル(C1)及び前記第2セル(C2)が設定される通信装置(100)であって、
前記第1セル(C1)への上りリンク信号の送信タイミングである第1送信タイミングと、前記第2セル(C2)への上りリンク信号の送信タイミングである第2送信タイミングと、を調整する制御部(120)と、
前記第1送信タイミングで前記第1セル(C1)への上りリンク信号を送信し、前記第2送信タイミングで前記第2セル(C2)への上りリンク信号を送信する送信部と、を備え、
前記制御部(120)は、
前記第1送信タイミングを調整するために用いる第1タイミングアドバンスに基づく値に付与する第1オフセット値を決定し、
前記第2送信タイミングを調整するために用いる第2タイミングアドバンスに基づく値に付与する第2オフセット値として、前記決定した第1オフセット値を用いる
通信装置(100)。 (Appendix 1)
The first cell (C1) and the second cell (C2) belonging to the same frequency as the serving cell (C1) and the first cell (C1) are managed by the base station (200) that manages the first cell (C1) and the second cell ( A communication device (100) in which C2) is set,
Control to adjust the first transmission timing, which is the transmission timing of the uplink signal to the first cell (C1), and the second transmission timing, which is the transmission timing of the uplink signal to the second cell (C2) a unit (120);
A transmission unit that transmits an uplink signal to the first cell (C1) at the first transmission timing and transmits an uplink signal to the second cell (C2) at the second transmission timing,
The control unit (120)
determining a first offset value to be added to a value based on the first timing advance used to adjust the first transmission timing;
A communication device (100) that uses the determined first offset value as a second offset value to be added to a value based on the second timing advance used to adjust the second transmission timing.
サービングセルである第1セル(C1)及び前記第1セル(C1)と同じ周波数に属する第2セル(C2)を管理する基地局(200)によって前記第1セル(C1)及び前記第2セル(C2)が設定される通信装置(100)であって、
前記第1セル(C1)への上りリンク信号の送信タイミングである第1送信タイミングと、前記第2セル(C2)への上りリンク信号の送信タイミングである第2送信タイミングと、を調整する制御部(120)と、
前記第1送信タイミングで前記第1セル(C1)への上りリンク信号を送信し、前記第2送信タイミングで前記第2セル(C2)への上りリンク信号を送信する送信部と、を備え、
前記制御部(120)は、
前記第1送信タイミングを調整するために用いる第1タイミングアドバンスに基づく値に付与する第1オフセット値を決定し、
前記第2送信タイミングを調整するために用いる第2タイミングアドバンスに基づく値に付与する第2オフセット値として、前記決定した第1オフセット値を用いる
通信装置(100)。 (Appendix 1)
The first cell (C1) and the second cell (C2) belonging to the same frequency as the serving cell (C1) and the first cell (C1) are managed by the base station (200) that manages the first cell (C1) and the second cell ( A communication device (100) in which C2) is set,
Control to adjust the first transmission timing, which is the transmission timing of the uplink signal to the first cell (C1), and the second transmission timing, which is the transmission timing of the uplink signal to the second cell (C2) a unit (120);
A transmission unit that transmits an uplink signal to the first cell (C1) at the first transmission timing and transmits an uplink signal to the second cell (C2) at the second transmission timing,
The control unit (120)
determining a first offset value to be added to a value based on the first timing advance used to adjust the first transmission timing;
A communication device (100) that uses the determined first offset value as a second offset value to be added to a value based on the second timing advance used to adjust the second transmission timing.
(付記2)
前記制御部(120)は、前記第2タイミングアドバンスとして前記第1タイミングアドバンスを用いつつ、前記第2オフセット値として、前記決定した第1オフセット値を用いる
付記1に記載の通信装置(100)。 (Appendix 2)
The communication device (100) according toappendix 1, wherein the control unit (120) uses the determined first offset value as the second offset value while using the first timing advance as the second timing advance.
前記制御部(120)は、前記第2タイミングアドバンスとして前記第1タイミングアドバンスを用いつつ、前記第2オフセット値として、前記決定した第1オフセット値を用いる
付記1に記載の通信装置(100)。 (Appendix 2)
The communication device (100) according to
(付記3)
前記制御部(120)は、前記第1タイミングアドバンスに基づく値と前記第2タイミングアドバンスに基づく値とを独立に管理しつつ、前記第2オフセット値として、前記決定した第1オフセット値を用いる
付記1に記載の通信装置(100)。 (Appendix 3)
The control unit (120) uses the determined first offset value as the second offset value while independently managing the value based on the first timing advance and the value based on the second timing advance. 2. A communication device (100) according toClaim 1.
前記制御部(120)は、前記第1タイミングアドバンスに基づく値と前記第2タイミングアドバンスに基づく値とを独立に管理しつつ、前記第2オフセット値として、前記決定した第1オフセット値を用いる
付記1に記載の通信装置(100)。 (Appendix 3)
The control unit (120) uses the determined first offset value as the second offset value while independently managing the value based on the first timing advance and the value based on the second timing advance. 2. A communication device (100) according to
(付記4)
サービングセルである第1セル(C1)及び前記第1セル(C1)と同じ周波数に属する第2セル(C2)を管理する基地局(200)によって前記第1セル(C1)及び前記第2セル(C2)が設定される通信装置(100)が実行する通信方法であって、
前記第1セル(C1)への上りリンク信号の送信タイミングである第1送信タイミングと、前記第2セル(C2)への上りリンク信号の送信タイミングである第2送信タイミングと、を調整するステップと、
前記第1送信タイミングで前記第1セル(C1)への上りリンク信号を送信し、前記第2送信タイミングで前記第2セル(C2)への上りリンク信号を送信するステップと、を備え、
前記調整するステップは、
前記第1送信タイミングを調整するために用いる第1タイミングアドバンスに基づく値に付与する第1オフセット値を決定するステップと、
前記第2送信タイミングを調整するために用いる第2タイミングアドバンスに基づく値に付与する第2オフセット値として、前記決定した第1オフセット値を用いるステップと、を有する
通信方法。 (Appendix 4)
The first cell (C1) and the second cell (C2) belonging to the same frequency as the serving cell (C1) and the first cell (C1) are managed by the base station (200) that manages the first cell (C1) and the second cell ( A communication method executed by a communication device (100) in which C2) is set,
A step of adjusting a first transmission timing, which is the transmission timing of the uplink signal to the first cell (C1), and a second transmission timing, which is the transmission timing of the uplink signal to the second cell (C2). and,
A step of transmitting an uplink signal to the first cell (C1) at the first transmission timing and transmitting an uplink signal to the second cell (C2) at the second transmission timing;
The adjusting step includes:
determining a first offset value to be added to a value based on a first timing advance used to adjust the first transmission timing;
and using the determined first offset value as a second offset value to be added to a value based on the second timing advance used to adjust the second transmission timing.
サービングセルである第1セル(C1)及び前記第1セル(C1)と同じ周波数に属する第2セル(C2)を管理する基地局(200)によって前記第1セル(C1)及び前記第2セル(C2)が設定される通信装置(100)が実行する通信方法であって、
前記第1セル(C1)への上りリンク信号の送信タイミングである第1送信タイミングと、前記第2セル(C2)への上りリンク信号の送信タイミングである第2送信タイミングと、を調整するステップと、
前記第1送信タイミングで前記第1セル(C1)への上りリンク信号を送信し、前記第2送信タイミングで前記第2セル(C2)への上りリンク信号を送信するステップと、を備え、
前記調整するステップは、
前記第1送信タイミングを調整するために用いる第1タイミングアドバンスに基づく値に付与する第1オフセット値を決定するステップと、
前記第2送信タイミングを調整するために用いる第2タイミングアドバンスに基づく値に付与する第2オフセット値として、前記決定した第1オフセット値を用いるステップと、を有する
通信方法。 (Appendix 4)
The first cell (C1) and the second cell (C2) belonging to the same frequency as the serving cell (C1) and the first cell (C1) are managed by the base station (200) that manages the first cell (C1) and the second cell ( A communication method executed by a communication device (100) in which C2) is set,
A step of adjusting a first transmission timing, which is the transmission timing of the uplink signal to the first cell (C1), and a second transmission timing, which is the transmission timing of the uplink signal to the second cell (C2). and,
A step of transmitting an uplink signal to the first cell (C1) at the first transmission timing and transmitting an uplink signal to the second cell (C2) at the second transmission timing;
The adjusting step includes:
determining a first offset value to be added to a value based on a first timing advance used to adjust the first transmission timing;
and using the determined first offset value as a second offset value to be added to a value based on the second timing advance used to adjust the second transmission timing.
Claims (4)
- 通信装置(100)であって、
上りリンク信号の送信タイミングである第1送信タイミングと、上りリンク信号の送信タイミングである第2送信タイミングと、を調整する制御部(120)と、
前記第1送信タイミングで上りリンク信号を送信し、前記第2送信タイミングで上りリンク信号を送信する送信部と、を備え、
前記制御部(120)は、前記第1送信タイミングを調整するために用いる第1タイミングアドバンスに基づく値に付与する第1オフセット値を決定し、前記第2送信タイミングを調整するために用いる第2タイミングアドバンスに基づく値に付与する第2オフセット値として、前記決定した第1オフセット値を用いる
通信装置(100)。 A communication device (100),
a control unit (120) that adjusts a first transmission timing that is the transmission timing of the uplink signal and a second transmission timing that is the transmission timing of the uplink signal;
A transmission unit that transmits an uplink signal at the first transmission timing and transmits an uplink signal at the second transmission timing,
The control unit (120) determines a first offset value to be added to a value based on a first timing advance used to adjust the first transmission timing, and determines a second offset value used to adjust the second transmission timing. A communication device (100) that uses the determined first offset value as a second offset value to be added to a value based on timing advance. - 前記制御部(120)は、前記第2タイミングアドバンスとして前記第1タイミングアドバンスを用いつつ、前記第2オフセット値として、前記決定した第1オフセット値を用いる
請求項1に記載の通信装置(100)。 The communication device (100) according to claim 1, wherein the control unit (120) uses the determined first offset value as the second offset value while using the first timing advance as the second timing advance. . - 前記制御部(120)は、前記第1タイミングアドバンスに基づく値と前記第2タイミングアドバンスに基づく値とを独立に管理しつつ、前記第2オフセット値として、前記決定した第1オフセット値を用いる
請求項1に記載の通信装置(100)。 The control unit (120) uses the determined first offset value as the second offset value while independently managing the value based on the first timing advance and the value based on the second timing advance. A communication device (100) according to claim 1. - 通信装置(100)が実行する通信方法であって、
上りリンク信号の送信タイミングである第1送信タイミングと、上りリンク信号の送信タイミングである第2送信タイミングと、を調整するステップと、
前記第1送信タイミングで上りリンク信号を送信し、前記第2送信タイミングで上りリンク信号を送信するステップと、を備え、
前記調整するステップは、前記第1送信タイミングを調整するために用いる第1タイミングアドバンスに基づく値に付与する第1オフセット値を決定するステップと、前記第2送信タイミングを調整するために用いる第2タイミングアドバンスに基づく値に付与する第2オフセット値として、前記決定した第1オフセット値を用いるステップと、を有する
通信方法。 A communication method executed by a communication device (100),
A step of adjusting a first transmission timing that is the transmission timing of the uplink signal and a second transmission timing that is the transmission timing of the uplink signal;
A step of transmitting an uplink signal at the first transmission timing and transmitting an uplink signal at the second transmission timing;
The adjusting step includes determining a first offset value to be added to a value based on a first timing advance used to adjust the first transmission timing; and using the determined first offset value as a second offset value to be added to a value based on timing advance.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021-128568 | 2021-08-04 | ||
JP2021128568A JP2023023249A (en) | 2021-08-04 | 2021-08-04 | User equipment and communication method |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023013750A1 true WO2023013750A1 (en) | 2023-02-09 |
Family
ID=85155836
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/030026 WO2023013750A1 (en) | 2021-08-04 | 2022-08-04 | Communication device and communication method |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2023023249A (en) |
WO (1) | WO2023013750A1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20180176905A1 (en) * | 2015-08-17 | 2018-06-21 | Huawei Technologies Co., Ltd. | Communication method, communications apparatus, terminal, and base station |
WO2020121497A1 (en) * | 2018-12-13 | 2020-06-18 | 株式会社Nttドコモ | User terminal and wireless communication method |
JP2020529176A (en) * | 2017-08-10 | 2020-10-01 | オフィノ, エルエルシー | Wireless resource configuration synchronization |
JP2021517442A (en) * | 2018-02-13 | 2021-07-15 | 華為技術有限公司Huawei Technologies Co.,Ltd. | Uplink synchronization method and equipment |
-
2021
- 2021-08-04 JP JP2021128568A patent/JP2023023249A/en active Pending
-
2022
- 2022-08-04 WO PCT/JP2022/030026 patent/WO2023013750A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20180176905A1 (en) * | 2015-08-17 | 2018-06-21 | Huawei Technologies Co., Ltd. | Communication method, communications apparatus, terminal, and base station |
JP2020529176A (en) * | 2017-08-10 | 2020-10-01 | オフィノ, エルエルシー | Wireless resource configuration synchronization |
JP2021517442A (en) * | 2018-02-13 | 2021-07-15 | 華為技術有限公司Huawei Technologies Co.,Ltd. | Uplink synchronization method and equipment |
WO2020121497A1 (en) * | 2018-12-13 | 2020-06-18 | 株式会社Nttドコモ | User terminal and wireless communication method |
Also Published As
Publication number | Publication date |
---|---|
JP2023023249A (en) | 2023-02-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111357357B (en) | Radio terminal, radio access network node and methods therefor | |
US10149219B2 (en) | User terminal, cellular base station, and processor | |
EP2765798B1 (en) | Method and apparatus for implementing small cell enhancements in a wireless communication system | |
KR20160013974A (en) | Communication method, base station and user equipment | |
WO2023013748A1 (en) | Communication device and communication method | |
WO2023013749A1 (en) | Communication device and communication method | |
KR20140106365A (en) | Methods of controlling uplink control information transmission and apparatuses thereof | |
WO2023013750A1 (en) | Communication device and communication method | |
WO2023013744A1 (en) | Communication device, base station, and communication method | |
WO2023013745A1 (en) | Communication device and communication method | |
US20240178954A1 (en) | Communication apparatus, base station, and communication method | |
US20240179748A1 (en) | Communication apparatus, base station, and communication method | |
WO2023127638A1 (en) | Base station and communication method | |
WO2023068356A1 (en) | Communication device, base station, and communication method | |
WO2023008326A1 (en) | Communication device and communication method | |
WO2023008325A1 (en) | Communication device, base station, and communication method | |
WO2023008324A1 (en) | Communication device, base station, and communication method | |
WO2023127639A1 (en) | Base station and communication method | |
WO2023068350A1 (en) | Communication device, base station, and communication method | |
WO2023068355A1 (en) | Communication device, base station, and communication method | |
US20240357672A1 (en) | Communication apparatus and communication method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22853168 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22853168 Country of ref document: EP Kind code of ref document: A1 |