WO2023013713A1 - Electric current cancellation device and impedance measurement device - Google Patents

Electric current cancellation device and impedance measurement device Download PDF

Info

Publication number
WO2023013713A1
WO2023013713A1 PCT/JP2022/029876 JP2022029876W WO2023013713A1 WO 2023013713 A1 WO2023013713 A1 WO 2023013713A1 JP 2022029876 W JP2022029876 W JP 2022029876W WO 2023013713 A1 WO2023013713 A1 WO 2023013713A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
current
connection line
circuit
load
Prior art date
Application number
PCT/JP2022/029876
Other languages
French (fr)
Japanese (ja)
Inventor
昭純 堀田
博之 戸谷
大桂 池田
真 笠井
智春 坂井
浩一 柳沢
Original Assignee
日置電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日置電機株式会社 filed Critical 日置電機株式会社
Publication of WO2023013713A1 publication Critical patent/WO2023013713A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/389Measuring internal impedance, internal conductance or related variables

Definitions

  • the present invention provides a current cancellation device that cancels a current component flowing through a load connection line connected to a load, and an impedance measurement device that includes the current cancellation device and measures the impedance of an object to be measured that is connected in series to the load connection line. It is related to the device.
  • a battery internal impedance measuring device (hereinafter also referred to as “measuring device") disclosed in the following patent document is known.
  • This measuring device includes an AC power supply unit, an AC voltage detection unit, an AC current detection unit, and an arithmetic control unit, and measures the secondary battery in a state where a DC current is supplied to a load connected via a pair of power supply lines. is configured to be able to measure the internal impedance of the
  • an alternating current supply unit supplies an alternating current for measurement to the secondary battery.
  • the AC voltage detection unit detects the AC voltage generated between both terminals of the secondary battery when the AC current is supplied, and the AC current detection unit detects the AC current flowing through the secondary battery when the AC current is supplied. Detect current.
  • the arithmetic control unit calculates the internal impedance of the secondary battery based on the AC voltage detected by the AC voltage detection unit and the AC current detected by the AC current detection unit. Therefore, in this measuring device, in a state in which an AC signal for measurement is supplied to a pair of power supply lines formed of conductors, the impedance of the secondary battery as a measurement object connected in series to the pair of power supply lines is measured. can be measured.
  • the above measuring device has the following problems. Specifically, when a device that generates switching noise, such as a switching power supply, is used as a load, the switching noise is superimposed on the connection line (load connection line) that connects the load and the secondary battery, Noise passes through the secondary battery. At that time, the AC current detector detects not only the AC current flowing through the secondary battery but also the switching noise, and the AC voltage detector detects not only the voltage caused by the AC current but also the switching noise. Therefore, the measurement accuracy for measuring the impedance of the secondary battery is lowered. Therefore, there is a demand to improve this decrease in measurement accuracy.
  • switching noise such as a switching power supply
  • the present invention has been made in view of such problems to be solved.
  • a current canceling device capable of avoiding failure of a load in some cases, and an impedance measuring device equipped with such a current canceling device and capable of reliably and accurately measuring the impedance of an object to be measured which is connected in series to a load connection line.
  • the main purpose is
  • a current cancellation device includes a current component detection unit that detects a current component flowing through a load connection line connected to a load without contacting the load connection line; A cancel signal injection unit that generates a cancel signal for canceling the current component detected by the component detection unit and injects the generated cancel signal into the load connection line without contact.
  • this current cancellation device even if switching noise occurs in the load, it is possible to sufficiently reduce the noise current flowing through the load connection line.
  • this current cancellation device even if a large current flows through the load connection line, the current flowing through the load connection line is sufficiently reduced, so that the load failure caused by the flow of a large current value can be prevented. can be avoided.
  • the cancellation signal injection unit includes a cancellation signal generation circuit that generates the cancellation signal, and injects the cancellation signal generated by the cancellation signal generation circuit into the load connection line.
  • the cancel signal generation circuit amplifies the current component detected by the current component detector, adjusts the phase of the current component, and outputs the amplified current component as the cancel signal to the injection circuit.
  • the configuration is simpler than a configuration in which an oscillator is provided and a cancellation signal having the same signal level as the current component detected by the current component detection unit is generated by the oscillator in the opposite phase.
  • it is possible to reliably cancel the current component on the load connection line.
  • the injection circuit includes a first ring-shaped magnetic core through which the load connection line is inserted, and a first winding wound around the first magnetic core. and the cancellation signal is injected by supplying the cancellation signal generated by the cancellation signal generation circuit to both ends of the winding. According to this current cancellation device, it is possible to reliably cancel the current component on the load connection line while having a simple configuration.
  • the first magnetic core is provided with a gap. According to this current cancellation device, by providing a gap in the first magnetic core, magnetic saturation of the first magnetic core can be effectively avoided even if the level of the cancellation signal injected into the load connection line is increased. can be done.
  • the cancellation signal injection unit includes a cancellation signal generation circuit that generates the cancellation signal, and injects the cancellation signal generated by the cancellation signal generation circuit into the load connection line. and an injection circuit, wherein the injection circuit comprises an air-core coil through which the load connection line is inserted, and the cancel signal generated by the cancel signal generation circuit is supplied to both ends of the air-core coil. to inject the cancellation signal into the load connection line.
  • the injection circuit comprises an air-core coil through which the load connection line is inserted, and the cancel signal generated by the cancel signal generation circuit is supplied to both ends of the air-core coil.
  • an impedance measuring device is an impedance measuring device that includes the current cancellation device described above and measures the impedance of an object to be measured that is connected in series with the load connection line.
  • a measurement signal supply unit that generates and supplies the AC signal to the object to be measured; a current value of the AC signal supplied to the object to be measured from the measurement signal supply unit while receiving the voltage detection signal, and a voltage value of the AC voltage indicated by the voltage detection signal.
  • a processing unit for measuring the impedance of the object to be measured based on.
  • the ratio (S/ N) can be increased, whereby the impedance can be measured with high accuracy in the impedance arithmetic processing (measurement processing) performed by the processing unit. Further, according to this impedance measuring device, even if the level of the AC signal (the current value of the AC current) supplied to the load connection line is increased, the current cancellation device sufficiently reduces the AC current flowing through the first closed loop. Therefore, it is possible to avoid failure of the load due to the flow of an alternating current with a large current value.
  • the object to be measured and the load are connected by the load connection line to form a closed loop, and the measurement signal supply unit supplies the alternating current across the object to be measured. supply. According to this impedance measuring device, it is possible to configure the impedance measuring device at low cost due to its simple configuration.
  • the object to be measured is a battery
  • the measurement signal supply unit is composed of an AC electronic load that converts the stored power of the battery into an AC current, and generates a signal by the AC conversion.
  • the measurement object and the measurement signal supply unit are connected by a connection line to form a first closed loop
  • the measurement signal supply unit and the load are connected by a connecting line to form a second closed loop
  • the current canceling device comprises two connecting points of the connecting line forming the first closed loop and the connecting line forming the second closed loop. and forming the second closed loop is used as the load connection line to inject the cancellation signal.
  • the impedance measuring device since the signal level of the AC signal can be increased by the AC electronic load, the ratio (S/N) of the signal level (S) to the noise level (N) of the current detection signal or the voltage detection signal can be increased, the impedance can be measured with high accuracy in the impedance arithmetic processing (measurement processing) performed by the processing unit.
  • the measurement signal supply section is configured by a bipolar power supply that generates the AC signal, and the measurement object and the measurement signal supply section are connected by a connection line to form a first and the measurement signal supply unit and the load are connected by a connection line to form a second closed loop, and the current canceling device is connected to the connection line forming the first closed loop and the Two connection points with the connection line forming a second closed loop are connected, and the cancellation signal is injected with the connection line forming the second closed loop as the load connection line.
  • the impedance measuring device since the signal level of the AC signal can be increased by the AC bipolar power supply, the ratio (S/N) of the signal level (S) to the noise level (N) of the current detection signal or the voltage detection signal can be increased, the impedance can be measured with high accuracy in the impedance arithmetic processing (measurement processing) performed by the processing unit.
  • the impedance measuring apparatus includes a bypass capacitor, the object to be measured and the bypass capacitor are connected by a connection line to form a first closed loop, and the bypass capacitor and the load are connected by a connection line.
  • the current cancellation device connects two connection points of the connection line forming the first closed loop and the connection line forming the second closed loop, and The cancellation signal is injected with the connection line forming the second closed loop as the load connection line.
  • the bypass capacitor sufficiently reduces the current component flowing through the first closed loop, the effect of the current component on the current detection signal and the voltage detection signal is reliably avoided. Impedance can be measured with higher accuracy in the impedance arithmetic processing (measurement processing) that is performed.
  • the current value of the AC current supplied to the object to be measured is As a result, in the impedance arithmetic processing (measurement processing) performed by the processing unit, the ratio (S/N) of the signal level (S) to the noise level (N) is increased, and the impedance can be measured more accurately. can be measured.
  • the measurement signal supply unit connects the two connection points and supplies the AC signal in a non-contact manner to the connection line forming the first closed loop. do.
  • the measurement signal supply unit includes an AC signal generation circuit that generates the AC signal, and a supply circuit that supplies the AC signal generated by the AC signal generation circuit.
  • the supply circuit includes: a second annular magnetic core through which the connection line connecting the two connection points and forming the first closed loop is inserted; The AC signal generated by the AC signal generating circuit is supplied to both ends of the second winding to supply the AC signal.
  • connection line forming the first closed loop is composed of an insulation-coated wire
  • an AC signal can be supplied without stripping the insulation-coated wire.
  • the second magnetic core is provided with a gap. According to this impedance measuring device, by providing the gap in the second magnetic core, even if the level of the AC signal (current value of the AC current) supplied to the load connection line is increased, the second magnetic core Magnetic saturation can be effectively avoided.
  • the measurement signal supply unit includes an AC signal generation circuit that generates the AC signal, and a supply circuit that supplies the AC signal generated by the AC signal generation circuit.
  • the supply circuit is composed of an air-core coil that connects the two connection points and through which the connection line that forms the first closed loop is inserted, and is generated by the AC signal generation circuit
  • the AC signal is supplied to the object to be measured by supplying the AC signal to both ends of the air-core coil. According to this impedance measuring device, although it has a simple configuration, it is possible to reliably supply an AC signal to the load connection line.
  • the measurement signal supply unit supplies the alternating current across the object to be measured. According to this impedance measuring device, it is possible to configure the impedance measuring device at low cost due to its simple configuration.
  • the impedance measuring apparatus includes a current detection unit that detects the current value of the AC signal supplied to the measurement target and outputs the current value as a current detection signal to the processing unit, and the processing unit includes: a first quadrature detection circuit that receives the AC signal and quadrature-detects the current detection signal to generate an in-phase component and a quadrature component of the AC current; and a first quadrature detection circuit that receives the AC signal and quadrature-detects the voltage detection signal.
  • a second quadrature detection circuit for generating an in-phase component and a quadrature component of an alternating voltage; an in-phase component and a quadrature component of the alternating current output from the first quadrature detection circuit; and an arithmetic circuit for calculating the impedance of the object to be measured based on the in-phase component and the quadrature component of the AC voltage.
  • the ratio (S/N) of the signal level (S) to the noise level (N) is increased to improve accuracy. Impedance can be measured well.
  • the cancellation signal injection unit of the current cancellation device includes a class D amplifier circuit as a final stage, injects the cancellation signal amplified by the class D amplifier circuit, an A/D conversion circuit that analog-to-digital converts the current detection signal detected by the current detection unit and outputs it as current data to the processing unit; and an analog-to-digital conversion of the voltage detection signal detected by the voltage detection unit.
  • An A/D conversion circuit for outputting voltage data to the processing unit is provided, and each A/D conversion circuit is synchronized with an operation clock common to the operation clock of the class D amplifier circuit of the measurement signal supply unit. Perform the analog-to-digital conversion.
  • the impedance measuring device even if the operation clock of the class D amplifier circuit is superimposed on the load connection line or propagated by radio waves, the noise caused by the operation clock is sufficiently reduced by each A/D conversion circuit. Therefore, the impedance can be measured with higher accuracy in the impedance arithmetic processing (measurement processing) performed by the processing unit.
  • the current cancellation device of the present invention when the level of the current component flowing through the load connection line connected to the load is reduced and the level of the AC signal supplied to the load connection line is increased, failure of the load is avoided. can do. Further, according to the impedance measuring apparatus of the present invention, by including such a current cancellation device, it is possible to reliably and accurately measure the impedance of the object to be measured that is connected in series to the load connection line.
  • FIG. 1 is a configuration diagram showing the configuration of an impedance measuring device 1;
  • FIG. 3 is a configuration diagram showing another configuration of the impedance measuring device 1;
  • FIG. 4 is a frequency characteristic diagram showing the ability of the cancel signal injection unit 4 to cancel the noise signal Sn.
  • FIG. It is a block diagram which shows a structure of 1 A of impedance measuring apparatuses.
  • 1 is a configuration diagram showing a configuration of an impedance measuring device 1B;
  • FIG. It is a block diagram which shows a structure of 1 C of impedance measuring apparatuses.
  • 1 is a configuration diagram showing the configuration of an impedance measuring device 1D;
  • FIG. It is a block diagram which shows the structure of 44 A of injection circuits.
  • 3 is a configuration diagram showing the configuration of an injection circuit 25A;
  • the impedance measuring device 1 shown in FIG. 1 is an example of an “impedance measuring device” provided with a “current canceling device (current canceling device 10 in this example)". It is configured to be able to measure the impedance (internal impedance Zb in this example) of the battery Bat as the object to be measured in the closed loop Lo1 state.
  • a specific example of the object to be measured is a battery Bat (an example of a battery) used in a fuel cell vehicle (FCV) having a voltage across the battery as high as about DC650V.
  • the impedance measurement device 1 is configured as an FRA (Frequency Response Analyzer) capable of measuring the frequency response of an AC signal Sac, which is a sine wave signal, which will be described later, to the battery Bat, and is capable of highly accurate impedance measurement. It has become.
  • FRA Frequency Response Analyzer
  • a motor of a fuel cell vehicle that generates electrical noise when rotating is used as a load Load
  • the core wire is formed of conductors such as an insulation coated cable, an enameled wire, and an electric wire that is not coated with insulation.
  • the internal impedance Zb of the battery Bat is measured in a state in which the battery Bat and the load Load are connected by a power line (hereinafter also referred to as “load connection line L”).
  • load connection line L the battery Bat is configured by connecting a plurality of battery cells in series
  • FIG. 1 shows one battery as a whole.
  • the impedance measuring device 1 comprises a measuring section 2, a non-contact current sensor 3, a cancellation signal injection section 4, a processing section 5 and an output section 6.
  • the non-contact current sensor 3 and the cancellation signal injection unit 4 constitute the current cancellation device 10 .
  • the measurement unit 2 includes an alternating current supply circuit 21, an alternating voltage detection circuit 22, a pair of contact-type probes P1 and P2, and a pair of contact-type probes P3 and P4.
  • the AC current supply circuit 21 constitutes a "measurement signal supply section” and a “current detection section”, generates an AC signal Sac for measurement, and connects the probes P1 and P2 to both ends of the battery Bat as the object to be measured.
  • the AC current Iac is supplied in the closed loop Lo1 consisting of the battery Bat and the load Load and in the closed loop Lo2 consisting of the battery Bat and the AC current supply circuit 21 .
  • the alternating current supply circuit 21 sweeps the frequency (for example, 1 Hz to 10 MHz) by controlling the signal level and frequency of the alternating signal Sac by the control signal output from the processing unit 5 .
  • frequency sweeping is not essential, and if sweeping is not required, a configuration for generating a fixed-frequency AC signal Sac may be applied to the AC current supply circuit 21 .
  • the AC current supply circuit 21 outputs an AC reference signal Sr as a reference signal indicating the voltage value, frequency and phase of the AC signal Sac.
  • the alternating current supply circuit 21 detects the alternating current Iac flowing in the battery Bat (closed loop Lo2) by means of an internal current transformer, a current detection resistor, etc., and detects the current value, frequency and frequency of the alternating current Iac.
  • a current detection signal S1 indicating the phase is output.
  • the AC voltage detection circuit 22 detects the voltage across the battery Bat through probes P3 and P4 when the AC current Iac is supplied from the AC current supply circuit 21, and detects the voltage value of the voltage across the battery Bat. Output as a voltage detection signal S2 indicating frequency and phase.
  • the non-contact current sensor 3 is a so-called clamp-type current sensor and functions as a non-contact current component detector.
  • This non-contact current sensor 5 detects an AC current component flowing through the load connection line L without contacting the load connection line L (the core wire (conductor) of the load connection line L), and detects the detected current component. It is output to the cancel signal injection unit 4 as a noise signal Sn.
  • the non-contact current sensor 5 includes a pair of magnetic cores 3a, 3a and an insulated wire wound around the magnetic cores 3a, 3a in a semi-annular case (not shown). and a current detection circuit. It should be noted that illustration of windings and a current detection circuit is omitted in the figure.
  • a pair of magnetic cores 3a, 3a are configured to be openable and closable, and when clamping the load connection line L, they are opened by operating an operation switch (not shown).
  • the load connection line L is inserted through the openings of the magnetic cores 3a, 3a, and then the operation switch is operated to close (annularly) the magnetic cores 3a, 3a.
  • the connecting line L is clamped.
  • a magnetic flux whose magnitude changes according to the magnitude of the current component flowing through the load connection line L is generated in the magnetic cores 3a and 3a.
  • a varying current is output from the winding.
  • the current detection circuit converts the current output from the winding into a voltage to generate a noise signal Sn and output it to the cancel signal injection unit 4 .
  • the cancel signal injection unit 4 includes an amplifier circuit 41, a phase adjustment circuit 42, an inverting amplifier circuit 43, and an injection circuit 44, and generates a cancel signal Sk for canceling the current component flowing through the load connection line L.
  • the generated cancel signal Sk is injected into the load connection line L without contact.
  • the amplifying circuit 41, the phase adjusting circuit 42 and the inverting amplifying circuit 43 constitute a "cancellation signal generating circuit”.
  • the amplifier circuit 41 amplifies the noise signal Sn output from the non-contact current sensor 3 with a predetermined gain and outputs the amplified noise signal to the phase adjustment circuit 42 .
  • the phase adjustment circuit 42 adjusts the phase of the input noise signal Sn so that the noise signal Sn has the same phase as the current component flowing through the load connection line L, and outputs the noise signal Sn to the inverting amplifier circuit 43. do. Specifically, the phase adjustment circuit 42 adjusts the phase of the noise signal Sn so that the signal level of the input noise signal Sn is minimized.
  • the inverting amplifier circuit 43 has a class D amplifier circuit that operates in synchronization with the clock signal CL2 output from the processing unit 5 and is arranged at the output stage, and class D-amplifies the input noise signal Sn with a predetermined gain. Together with this, it is inverted and amplified and output to the injection circuit 44 as a cancel signal Sk.
  • the gains of the inverting amplifier circuit 43 and the phase adjustment circuit 42 are determined by adjusting the magnitude of the current component flowing on the load connection line L and the current component (noise signal Sn) detected by the non-contact current sensor 3 to the phase adjustment circuit. 42 and the inverting amplifier circuit 43 and the inverting amplifier circuit 43, and is predetermined to be equal to the magnitude of the cancel signal Sk when injected into the load connection line L from the injection circuit 44.
  • FIG. A clock signal CL2, which will be described later, is supplied from the processing unit 5 to the inverting amplifier circuit 43, and the class D amplification operation is performed in synchronization with this clock signal CL2. Therefore, the inverting amplifier circuit 43 can maintain the signal level of the cancel signal Sk at the required level even with load fluctuations by including the class D amplifier circuit as the final stage.
  • the "cancellation signal generation circuit” has a substantially flat frequency characteristic in the range from a frequency slightly higher than the DC voltage to a frequency higher than the AC signal Sac for measurement. , has the ability to detect the noise signal Sn over a wide frequency band and to generate a cancellation signal Sk capable of canceling the noise signal Sn.
  • a non-inverting amplifier circuit is provided in place of the inverting amplifier circuit 43, and the phase adjustment circuit 42 adjusts the noise signal Sn so that the phase of the current component flowing through the load connection line L is opposite to that of the noise signal Sn.
  • a configuration that adjusts the phase can also be adopted.
  • the cancellation signal injection unit 4 if the necessary gain is ensured in each circuit, the provision of the amplifier circuit 41 can be omitted.
  • the injection circuit 44 includes a magnetic core Mc1 as a first magnetic core and a winding W1 as a first winding wound around the magnetic core Mc1.
  • a cancel current Ik based on the cancel signal Sk is injected into the core wire of the load connection line L without contact.
  • the magnetic core Mc1 is made of a material such as ferrite, permalloy, permendur, silicon steel plate, or pure iron, and has a circular, elliptical, rectangular, or polygonal shape so that the load connection line L can be inserted therethrough. It is formed in an annular shape.
  • the magnetic core Mc1 is provided with a gap G1, which makes it difficult for the magnetic core Mc1 to be magnetically saturated. Further, the magnetic core Mc1 may employ a separable clamp type configuration.
  • the injection circuit 44 by applying a cancel signal Sk to both ends of the winding W1, cancellation is performed by a transformer method (the winding W1 is a primary winding with a plurality of turns and the load connection line L is a secondary winding with a single turn).
  • a signal Sk is injected into the load connection line L.
  • a current based on the cancel signal Sk flows through the winding W1
  • a magnetic flux based on the cancel signal Sk is generated in the magnetic core Mc1
  • a cancel current Ik having a current value corresponding to the magnitude of the magnetic flux is generated in the normal mode. It is injected (provided) into the load connection line L as a signal.
  • the processing unit 5 is composed of, for example, a CPU, and as shown in FIG. It is configured with a generation circuit 59, receives the current detection signal S1 and the voltage detection signal S2, and measures the internal impedance Zb of the battery Bat to be measured based on the current detection signal S1 and the voltage detection signal S2.
  • the A/D conversion circuit 51 inputs the AC reference signal Sr output from the AC current supply circuit 21 and performs A/D conversion (analog/digital conversion) to obtain the voltage value of the sinusoidal AC signal Sac, Signal data D11 (sin ⁇ t) indicating frequency and phase is output to phase shift circuit 54 and quadrature detection circuits 55 and 56 .
  • the A/D conversion circuit 52 receives the current detection signal S1 output from the alternating current supply circuit 21 and A/D converts it into a signal indicating the current value, frequency and phase of the current detection signal S1 (alternating current Iac). Data D12 is output to the quadrature detection circuit 55.
  • FIG. The A/D conversion circuit 53 receives the voltage detection signal S2 output from the AC voltage detection circuit 22 and performs A/D conversion to perform quadrature detection of signal data D13 indicating the voltage value, frequency and phase of the voltage detection signal S2. Output to circuit 56 .
  • the phase shift circuit 54 receives the signal data D11 (sin ⁇ t) output from the A/D conversion circuit 51, and shifts the phase of the AC signal Sac, which is a sinusoidal signal indicated by the signal data D11, by 90° to obtain a cosine signal.
  • a wave signal is generated, and signal data D11 (cos ⁇ t) indicating the current value, frequency and phase of the cosine wave signal is generated and output to quadrature detection circuits 55 and 56 .
  • the quadrature detection circuit 55 receives the signal data D12 indicating the current detection signal S1 (the alternating current value of the alternating current Iac) output from the A/D conversion circuit 52, and detects the sine output from the A/D conversion circuit 51.
  • the signal data D12 is quadrature-detected using the signal data D11 (sin ⁇ t) representing the wave AC signal Sac and the signal data D11 (cos ⁇ t) representing the cosine wave AC signal Sac output from the phase shift circuit 54, thereby obtaining the AC current Iac.
  • Current data Di indicating the in-phase component (I component: In-phse component) and the quadrature component (Q component: Quadrature component) of the current value by a complex number is generated and output to the arithmetic circuit 57 .
  • the quadrature detection circuit 56 receives signal data D13 representing the voltage detection signal S2 (the voltage value of the AC voltage generated across the battery Bat due to the flow of the AC current Iac) output from the A/D conversion circuit 53.
  • Signal data D11 sin ⁇ t indicating the sine wave AC signal Sac output from the A/D conversion circuit 51 and signal data D11 (cos ⁇ t) indicating the cosine wave AC signal Sac output from the phase shift circuit 54 are input. ) to perform quadrature detection on the signal data D13 to generate voltage data Dv indicating the in-phase component (I component: In-phase component) and the quadrature component (Q component: Quadrature component) of the voltage value of the voltage detection signal S2 in complex numbers. is output to the arithmetic circuit 57.
  • the arithmetic circuit 57 receives the current data Di output from the quadrature detection circuit 55 and the voltage data Dv output from the quadrature detection circuit 56, and calculates the internal voltage of the battery Bat based on the current data Di and the voltage data Dv. Calculate the impedance Zb. Further, the arithmetic circuit 57 outputs the impedance data Dz indicating the internal impedance Zb of the battery Bat as the arithmetic result to the internal memory 58 for storage and to the output unit 6 .
  • the internal memory 58 is composed of a semiconductor memory, a hard disk device, or the like, and stores impedance data Dz and the like.
  • the clock generation circuit 59 generates and outputs a clock signal CL1 as an operation clock for each of the A/D conversion circuits 51 to 53, and outputs the final class D amplifier circuit in the inverting amplifier circuit 43 of the cancel signal injection unit 4. generates and outputs a clock signal CL2 as an operation clock of the .
  • the clock generation circuit 59 generates the clock signal CL1 and the clock signal CL2 such that the other is N (N is an integer equal to or greater than 1) times the clock signal CL1 and the clock signal CL2 and is synchronized with each other.
  • the output unit 6 is composed of, for example, a display device (display) such as a liquid crystal panel or an organic EL panel, and inputs the impedance data Dz output from the processing unit 5 to display the internal impedance Zb of the battery Bat on the screen. indicate. It should be noted that the output unit 6 may be configured by an interface device that performs data communication with an external device instead of the display device, and may employ a configuration that outputs the impedance data Dz to this external device.
  • a display device such as a liquid crystal panel or an organic EL panel
  • the load connection line L is inserted into the injection circuit 44 and the battery Bat and the load Load are connected by the load connection line L.
  • a DC current Ib flows from the battery Bat through the load connection line L to the load Load, as shown in FIG.
  • the non-contact current sensor 3 is clamped to the load connection line L, and the probes P1 to P4 are brought into contact with both ends of the battery Bat.
  • the processing unit 5 controls the AC current supply circuit 21 of the measuring unit 2 to generate the AC signal Sac.
  • the alternating current supply circuit 21 sweeps the frequency to generate the alternating signal Sac, and supplies the generated alternating signal Sac across the battery Bat via the probes P1 and P2, and supplies the alternating current signal Sac to the alternating current signal Sac.
  • the AC reference signal Sr based on this is output to the processing unit 5 .
  • an alternating current Iac based on the alternating signal Sac flows through a closed loop Lo1 composed of the battery Bat, the load Load, and the load connection line L connecting the battery Bat and the load Load, and the probe P1, the battery Bat, the probe P2, and the alternating current Iac.
  • the current flows through the closed loop Lo2 formed by the circuits in the current supply circuit 21 .
  • the load Load generates electrical noise during rotation, and this electrical noise becomes noise current In and flows through the load connection line L in the closed loop Lo1.
  • the non-contact current sensor 3 senses the current components of the alternating current Iac and the noise current In flowing through the load connection line L (the core wire (conductor) of the load connection line L). )) is detected in a non-contact manner, and the detected current component is output to the cancel signal injection unit 4 as a noise signal Sn.
  • the amplifier circuit 41 amplifies the noise signal Sn output from the non-contact current sensor 3 with a predetermined gain and outputs the amplified noise signal to the phase adjustment circuit 42 .
  • the phase adjustment circuit 42 adjusts the input noise signal Sn so that it has the same phase as the current component flowing through the load connection line L, that is, so that the signal level of the input noise signal Sn is minimized.
  • the phase is adjusted and output to the inverting amplifier circuit 43 .
  • the inverting amplifier circuit 43 amplifies the input noise signal Sn by class D with a predetermined gain, inverts and amplifies it, and outputs it to the injection circuit 44 as a cancel signal Sk.
  • the cancellation signal Sk output from the inverting amplifier circuit 43 is supplied across the winding W1, whereby magnetic flux based on the cancellation signal Sk is generated in the magnetic core Mc1 and the magnetic flux A cancellation current Ik having a current value corresponding to the magnitude of the current is injected into the load connection line L as a normal mode signal.
  • the load connection line L the alternating current Iac and the noise current In and the canceling current Ik of the same current level and in opposite phase to the alternating current Iac and the noise current In cancel each other out, so that the load connection line
  • the current levels of alternating current Iac and noise current In flowing through L are sufficiently reduced. Therefore, the alternating current flowing in the battery Bat is only the alternating current Iac flowing through the closed loop Lo2 composed of the battery Bat and the alternating current supply circuit 21 .
  • the AC current supply circuit 21 detects the AC current Iac flowing through the closed loop Lo2 and outputs the current detection signal S1 to the processing unit 5 and the AC reference signal Sr to the processing unit 5. Further, the AC voltage detection circuit 22 detects the voltage generated across the battery Bat based on the AC current Iac flowing inside the battery Bat when the AC current Iac is supplied from the AC current supply circuit 21 as a probe P3. , P4 and output to the processing unit 5 as a voltage detection signal S2. In this case, since the alternating current flowing in the battery Bat is only the alternating current Iac flowing through the closed loop Lo2 as described above, the current detection signal S1 and the voltage detection signal S2 are detection signals based only on the alternating current Iac. , the internal impedance Zb is accurately measured in the impedance measurement process by the processing unit 5, which will be described later.
  • the A/D conversion circuit 51 receives the AC reference signal Sr and performs A/D conversion in synchronization with the clock signal CL1 to convert the voltage value, frequency and phase of the sinusoidal AC signal Sac. is output to the phase shift circuit 54 and the quadrature detection circuits 55 and 56. Further, the A/D conversion circuit 52 receives the current detection signal S1 and performs A/D conversion in synchronization with the clock signal CL1 to generate signal data D12 indicating the current value, frequency and phase of the alternating current Iac as a quadrature detection circuit. 55.
  • the A/D conversion circuit 53 receives the voltage detection signal S2 and performs A/D conversion in synchronization with the clock signal CL1 to obtain signal data indicating the voltage value, frequency and phase of the AC signal Sac at both ends of the battery Bat. D12 is output to the quadrature detection circuit 56.
  • the phase shift circuit 54 receives the signal data D11, shifts the phase of the AC signal Sac, which is a sine wave signal indicated by the signal data D11, by 90° to generate a cosine wave signal, and the phase of the cosine wave signal.
  • Signal data D11 (cos ⁇ t) indicating the current value, frequency and phase is generated and output to quadrature detection circuits 55 and 56 .
  • the quadrature detection circuit 55 receives signal data D12 representing the current detection signal S1, and also receives signal data D11 (sin ⁇ t) representing the sine wave AC signal Sac and signal data D11 (cos ⁇ t) representing the cosine wave AC signal Sac. ) quadrature-detects the signal data D 12 to generate current data Di representing the in-phase component and quadrature component of the current value of the alternating current Iac flowing through the battery Bat in complex numbers and output to the arithmetic circuit 57 .
  • the quadrature detection circuit 56 inputs the signal data D13 indicating the voltage across the battery Bat (AC signal Sac), and quadrature-detects the signal data D13 with the signal data D11 (sin ⁇ t) and the signal data D11 (cos ⁇ t). , the voltage data Dv indicating the in-phase component and the quadrature component of the voltage value across the battery Bat by a complex number, and output to the arithmetic circuit 57 .
  • the arithmetic circuit 57 inputs the current data Di and the voltage data Dv, calculates the internal impedance Zb of the battery Bat based on the current data Di and the voltage data Dv, and outputs the impedance data Dz to the internal memory 58.
  • the output unit 6 receives the impedance data Dz and displays the internal impedance Zb of the battery Bat on the screen of the display device.
  • the arithmetic circuit 57 can display the frequency characteristic of the internal impedance Zb of the battery Bat with respect to the frequency of the AC signal Sac on the screen of the display device by including the frequency information of the AC signal Sac in the impedance data Dz.
  • the arithmetic circuit 57 generates current value information of the DC current Ib flowing through the load connection line L based on the input current data Di (which may be the signal data D12 output from the A/D conversion circuit 52), By including the current value information in the impedance data Dz, it is possible to display the characteristics of the internal impedance Zb of the battery Bat with respect to the current value of the direct current Ib on the screen of the display device.
  • Di which may be the signal data D12 output from the A/D conversion circuit 52
  • the arithmetic circuit 57 monitors the current value of the alternating current Iac flowing through the closed loop Lo2 based on the input current data Di (which may be the signal data D12 output from the A/D conversion circuit 52).
  • the alternating current supply circuit 21 is controlled so that the current value of the current Iac is within the target current value range required for impedance measurement.
  • the ratio (S/N) of the signal level (S) to the noise level (N) of the current detection signal S1 and the voltage detection signal S2 is increased.
  • the internal impedance Zb can be measured with high accuracy.
  • the current canceling device 10 reduces the noise current In flowing through the load connection line L, so that the current detection signal S1 and the voltage detection signal S2 As a result of avoiding the influence of the noise current In on, the ratio (S/N) of the signal level (S) to the noise level (N) of the current detection signal S1 or the voltage detection signal S2 can be increased.
  • the internal impedance Zb can be measured with higher accuracy.
  • the clock signal CL1 which is the operation clock of each of the A/D conversion circuits 51 to 53
  • the clock signal CL2 which is the operation clock of the class D amplifier circuit at the final stage in the inverting amplifier circuit 43
  • the impedance measuring device 1A as the "impedance measuring device" will be described.
  • components having the same functions as the components in the impedance measuring device 1 described above are denoted by the same reference numerals, and duplicate descriptions are omitted. .
  • the impedance measuring device 1A includes a measuring section 2A, a non-contact current sensor 3, a cancellation signal injection section 4, a processing section 5, and an output section 6. Then, the internal impedance Zb of the battery Bat is measured based on the current detection signal S1 and the voltage detection signal S2.
  • the measurement section 2A includes an AC voltage detection circuit 22 and an AC electronic load 23 in place of the AC current supply circuit 21 in the impedance measurement device 1 .
  • the AC electronic load 23 constitutes a "measurement signal supply unit” and a “current detection unit”, converts the power stored in the battery Bat into an AC signal, and outputs an AC signal generated by the AC conversion as an AC signal Sac for measurement. Output.
  • the AC electronic load 23 also processes an AC reference signal Sr as a reference signal indicating the voltage value, frequency and phase of the AC signal Sac, and a current detection signal S1 indicating the current value, frequency and phase of the output AC current Iac. Output to part 5.
  • the battery Bat and the AC electronic load 23 are connected by a connection line to form a closed loop Lo3 (first closed loop), and the AC electronic load 23 and the load Load are connected to the connection line. are connected to form a closed loop Lo4 (second closed loop).
  • the current cancellation device 10 connects two connection points (intersection points) Po1 and Po2 between the connection line forming the closed loop Lo3 and the connection line forming the closed loop Lo4, and connects the connection line forming the closed loop Lo4 to the load connection line.
  • the cancel signal Sk is injected.
  • both output portions of the AC electronic load 23 are connected to the connection points Po1 and Po2.
  • both outputs of the AC electronic load 23 may be directly connected to the connection points Po1 and Po2, or probes (not shown) may be used to connect both outputs of the AC electronic load 23 to the connection points Po1 and Po2.
  • the AC electronic load 23 AC-converts the power stored in the battery Bat at a cycle controlled by the processing unit 5 and outputs an AC signal generated by the AC conversion as an AC signal Sac for measurement.
  • an alternating current Iac based on the alternating signal Sac is supplied to both closed loops Lo3 and Lo4.
  • the cancellation signal Sk output from the inverting amplifier circuit 43 is supplied across the winding W1, whereby the magnetic flux based on the cancellation signal Sk is A cancellation current Ik generated in the magnetic core Mc1 and having a current value corresponding to the magnitude of the magnetic flux is injected into the load connection line L (closed loop Lo4) as a normal mode signal.
  • the processing unit 5 performs arithmetic processing (measurement processing) of the internal impedance Zb.
  • the impedance measuring device 1B as an "impedance measuring device" will be described.
  • the impedance measuring device 1B includes a measuring section 2B, a non-contact current sensor 3, a cancellation signal injection section 4, a processing section 5, and an output section 6.
  • the internal impedance Zb of the battery Bat is measured based on the current detection signal S1 and the voltage detection signal S2.
  • the measuring section 2B includes an AC voltage detection circuit 22 and an AC bipolar power supply 24 in place of the AC electronic load 23 in the impedance measuring apparatus 1A.
  • the AC bipolar power supply 24 constitutes a "measurement signal supply section” and a “current detection section”, and generates an AC signal generated by high-speed high-voltage amplification of an AC voltage from an AC voltage source (not shown) provided therein. Output as AC signal Sac for measurement.
  • the AC bipolar power supply 24 also processes an AC reference signal Sr as a reference signal indicating the voltage value, frequency and phase of the AC signal Sac, and a current detection signal S1 indicating the current value, frequency and phase of the output AC current Iac. Output to part 5.
  • the battery Bat and the AC bipolar power supply 24 are connected by a connection line to form a closed loop Lo5 (first closed loop), and the AC bipolar power supply 24 and the load Load are connected by the connection line. are connected to form a closed loop Lo6 (second closed loop).
  • the current cancellation device 10 connects two connection points (intersection points) Po1 and Po2 between the connection line forming the closed loop Lo5 and the connection line forming the closed loop Lo6, and connects the connection line forming the closed loop Lo6 to the load connection line.
  • the cancel signal Sk is injected.
  • both output portions of the AC bipolar power supply 24 are connected to the connection points Po1 and Po2.
  • both outputs of AC bipolar power supply 24 may be directly connected to connection points Po1 and Po2, or both outputs of AC bipolar power supply 24 may be connected to connection points Po1 and Po2 using a probe (not shown).
  • the AC bipolar power supply 24 is controlled by the processing unit 5 to change the period of the AC voltage of the internal AC voltage source, and the AC signal generated by high-speed high-voltage amplification is used as the AC signal Sac for measurement. Output.
  • an alternating current Iac based on the alternating signal Sac is supplied to both closed loops Lo5 and Lo6.
  • the cancellation signal Sk output from the inverting amplifier circuit 43 is supplied across the winding W1, whereby the magnetic flux based on the cancellation signal Sk is A cancellation current Ik generated in the magnetic core Mc1 and having a current value corresponding to the magnitude of the magnetic flux is supplied to the load connection line L (closed loop Lo6) as a normal mode signal.
  • the load connection line L the alternating current Iac and the noise current In and the canceling current Ik of the same current level and in opposite phase to the alternating current Iac and the noise current In cancel each other out, so that the load connection line
  • the current levels of alternating current Iac and noise current In flowing through L (closed loop Lo6) are sufficiently reduced.
  • the alternating current flowing in the battery Bat is only the alternating current Iac flowing through the closed loop Lo5 composed of the battery Bat and the alternating current supply circuit 21 .
  • the processing unit 5 performs arithmetic processing (measurement processing) of the internal impedance Zb.
  • the impedance measuring device 1C as an "impedance measuring device" will be described.
  • the impedance measuring device 1C includes a measuring section 2, a non-contact current sensor 3, a cancellation signal injection section 4, a processing section 5, an output section 6, and a bypass capacitor Cb. Similar to the device 1, the internal impedance Zb of the battery Bat is measured based on the current detection signal S1 and the voltage detection signal S2.
  • the bypass capacitor Cb is composed of a multilayer capacitor having a capacity of, for example, about 100 ⁇ F so that the impedance is sufficiently small against the AC signal Sac and switching noise.
  • the battery Bat and the bypass capacitor Cb are connected by a connection line to form a closed loop Lo7 (first closed loop), and the bypass capacitor Cb and the load Load are connected by a connection line to form a closed loop Lo8 (second closed loop).
  • the current cancellation device 10 connects the two connection points Po1 and Po2 of the connection line forming the closed loop Lo7 and the connection line forming the closed loop Lo8, and defines the connection line forming the closed loop Lo8 as the load connection line L. It supplies the cancel signal Sk.
  • both output portions of the bypass capacitor Cb are connected to the connection points Po1 and Po2.
  • both outputs of the bypass capacitor Cb may be directly connected to the connection points Po1 and Po2, or may be connected to the connection points Po1 and Po2 using a probe (not shown). good.
  • the processing section 5 controls the AC current supply circuit 21 of the measuring section 2 to generate the AC signal Sac.
  • the AC current supply circuit 21 supplies the generated AC signal Sac across the battery Bat via the probes P1 and P2.
  • the alternating current Iac based on the alternating signal Sac is generated by a closed loop Lo1 consisting of the battery Bat, the load Load, and the load connection line L connecting the battery Bat and the load Load, the battery Bat and the bypass capacitor Cb, the battery Bat and the bypass capacitor Cb.
  • the connection point Po1 and the connection point Po2 are alternately switched. Almost short-circuited. Therefore, the noise current In based on the switching noise generated in the load Load hardly flows through the closed loop Lo1, and the closed loop Lo8 consisting of the connection line connecting the bypass capacitor Cb and the load Load and the bypass capacitor Cb and the load Load also hardly flows. do not have.
  • the cancellation signal Sk output from the inverting amplifier circuit 43 is supplied across the winding W1, whereby the magnetic flux based on the cancellation signal Sk is A cancellation current Ik generated in the magnetic core Mc1 and having a current value corresponding to the magnitude of the magnetic flux is supplied to the load connection line L (closed loop Lo8) as a normal mode signal.
  • the alternating current Iac and the noise current In whose current levels are sufficiently reduced by the bypass capacitor Cb and the canceling current Ik of the same current level and in opposite phase to the alternating current Iac and the noise current In cancel each other out, so that the current levels of the alternating current Iac and the noise current In flowing through the load connection line L (closed loop Lo8) further sufficiently decrease. Therefore, the alternating current flowing through the battery Bat is only the alternating current Iac flowing through the closed loop Lo2.
  • the processing unit 5 similarly to the impedance measuring device 1, the processing unit 5 performs arithmetic processing (measurement processing) of the internal impedance Zb.
  • the impedance measuring device 1D as an "impedance measuring device" will be described.
  • the impedance measuring device 1D includes a measuring section 2C, a non-contact current sensor 3, a cancellation signal injection section 4, a processing section 5, and an output section 6.
  • the internal impedance Zb of the battery Bat is measured based on the current detection signal S1 and the voltage detection signal S2.
  • the measurement unit 2C includes an AC voltage detection circuit 22, and an AC signal generation circuit 21A, a supply circuit 25, and a non-contact current sensor 26 instead of the AC current supply circuit 21 in the impedance measurement device 1. It is configured.
  • the AC signal generation circuit 21A constitutes an "AC signal generation circuit” and together with the supply circuit 25 constitutes a "measurement signal supply section".
  • the AC signal generation circuit 21A has the same configuration as the AC current supply circuit 21 in terms of the configuration for generating the AC signal Sac. The only difference from the AC current supply circuit 21 is the configuration in which the current value of the current Iac is not measured.
  • the supply circuit 25 connects the two connection points Po1 and Po2 and forms a closed loop Lo7 (first closed loop). 2 magnetic core) and a winding W2 (second winding) wound around the magnetic core Mc2.
  • the AC signal Sac is supplied to the battery Bat.
  • the magnetic core Mc2 is made of the same material as the magnetic core Mc1 described above.
  • the non-contact current sensor 26 is a so-called clamp-type current sensor and functions as a non-contact current detection section.
  • the non-contact current sensor 26 has the same configuration as the non-contact current sensor 3, and detects the current value of the alternating current flowing through the load connection line L (the core wire (conductor) of the load connection line L). , and outputs to the processing unit 5 a current detection signal S1 indicating the current value, frequency and phase of the detected alternating current.
  • the load connection line L is inserted through the supply circuits 25 and 44 and the load connection line L is connected between the battery Bat and the load Load. Further, both output portions of the bypass capacitor Cb are connected to the connection points Po1 and Po2 in the same manner as when using the impedance measuring device 1C.
  • the processing unit 5 controls the AC signal generation circuit 21A of the measurement unit 2 to generate the AC signal Sac and output it to the supply circuit 25.
  • the AC signal Sac is supplied to both ends of the winding W2 of the supply circuit 25, thereby causing the AC current Iac to flow through the load connection line L inserted through the magnetic core Mc2.
  • the alternating current Iac connects the closed loop Lo1 consisting of the battery Bat, the load Load, and the load connection line L connecting the battery Bat and the load Load, the battery Bat and the bypass capacitor Cb, and the battery Bat and the bypass capacitor Cb.
  • connection point Po1 and connection point Po2 are almost AC short-circuited. Therefore, the alternating current Iac hardly flows through the closed loop Lo1 and flows only through the closed loop Lo7. As a result, the alternating current flowing through the battery Bat is only the alternating current Iac flowing through the closed loop Lo7. Further, even if switching noise occurs in the load Load, since the impedance of the bypass capacitor Cb with respect to the frequency of the noise current In (noise signal) is sufficiently small, the connection point Po1 and the connection point Po2 are alternately switched.
  • the noise current In based on the switching noise generated in the load Load hardly flows through the closed loop Lo1, and the closed loop Lo8 consisting of the connection line connecting the bypass capacitor Cb and the load Load and the bypass capacitor Cb and the load Load also hardly flows. do not have.
  • the cancellation signal Sk output from the inverting amplifier circuit 43 is supplied across the winding W1, whereby the magnetic flux based on the cancellation signal Sk is A cancellation current Ik generated in the magnetic core Mc1 and having a current value corresponding to the magnitude of the magnetic flux is supplied to the load connection line L (closed loop Lo8) as a normal mode signal.
  • the alternating current Iac and the noise current In whose current levels are sufficiently reduced by the bypass capacitor Cb and the canceling current Ik of the same current level and in opposite phase to the alternating current Iac and the noise current In cancel each other out, so that the current levels of the alternating current Iac and the noise current In flowing through the load connection line L (closed loop Lo8) further sufficiently decrease. Therefore, the alternating current flowing through the battery Bat is only the alternating current Iac flowing through the closed loop Lo7.
  • the processor 5 similarly to the impedance measuring device 1, the processor 5 performs arithmetic processing (measurement processing) of the internal impedance Zb.
  • the current cancellation device 10 detects the current components (the noise current In and the alternating current Iac) flowing through the load connection line L connected to the load Load without contacting the load connection line L. and a cancel signal injection unit that generates a cancel signal Sk for canceling the current component detected by the non-contact current sensor 3 and injects the generated cancel signal Sk into the load connection line L in a non-contact manner. 4. Therefore, according to the current cancellation device 10, even if switching noise occurs in the load Load, the noise current In flowing through the load connection line L can be sufficiently reduced. In addition, according to the current cancellation device 10, even if a large current flows through the load connection line L, the current flowing through the load connection line L is sufficiently reduced. Load failure can be avoided.
  • the cancellation signal injection unit 4 includes a cancellation signal generation circuit (amplifier circuit 41, phase adjustment circuit 42, and inverting amplification circuit 43) that generates the cancellation signal Sk, and a cancellation signal generation circuit generated by the cancellation signal generation circuit. and an injection circuit 44 for injecting the cancel signal Sk into the load connection line L.
  • the cancel signal generating circuit inverts and amplifies the current component detected by the non-contact current sensor 3 and adjusts the phase to generate the cancel signal. It is output to the injection circuit 44 as Sk. Therefore, according to the current cancellation device 10, for example, compared with a configuration in which an oscillator is provided and a cancellation signal having the same signal level as the current component detected by the non-contact type current sensor 3 is generated by the oscillator. Therefore, the current component on the load connection line L can be reliably canceled with a simple configuration.
  • the injection circuit 44 includes the magnetic core Mc1 through which the load connection line L is inserted, and the winding W1 wound around the magnetic core Mc1.
  • the cancellation signal Sk generated by the amplifier circuit 41, the phase adjustment circuit 42, and the inverting amplifier circuit 43) is supplied to both ends of the winding W1 to inject the cancellation signal Sk.
  • the current component on the connection line L can be reliably canceled.
  • the current cancellation device 10 by providing the gap G1 in the magnetic core Mc1, magnetic saturation of the magnetic core Mc1 can be effectively avoided even if the level of the cancellation signal Sk injected into the load connection line L is increased. be able to.
  • each of the impedance measuring devices 1, 1A, 1B, 1C, and 1D includes a current cancellation device 10, and a measurement signal supply unit (alternating current supply unit) that supplies an alternating signal Sac to a measurement object (battery Bat in this example).
  • the impedance measuring devices 1, 1A, 1B, 1C, and 1D the influence of the noise current In on the current detection signal S1 and the voltage detection signal S2 is avoided, so that the current detection signal S1 and the voltage detection signal S2 are It is possible to increase the ratio (S/N) of the signal level (S) to the noise level (N). can be measured.
  • the current cancellation device 10 even if the level of the AC signal Sac supplied to the load connection line L (current value of the AC current Iac) is increased, the current cancellation device 10 , to sufficiently reduce the alternating current Iac flowing through the closed loop Lo1, it is possible to avoid failure of the load Load due to the flow of the alternating current Iac of a large current value.
  • the battery Bat and the load Load are connected by the load connection line L to form a closed loop Lo1, and the AC current supply circuit 21 supplies the AC signal Sac across the battery Bat.
  • the impedance measuring devices 1 and 1C can be configured at low cost due to the simple configuration of doing.
  • the AC electronic load 23 constitutes the measurement signal supply unit
  • the battery Bat and the AC electronic load 23 are connected by a connection line to form a closed loop Lo3
  • the AC electronic load 23 and The load Load is connected by a connection line to form a closed loop Lo4
  • the current cancellation device 10 connects two connection points Po1 and Po2 of the connection line forming the closed loop Lo3 and the connection line forming the closed loop Lo4
  • the closed loop Since the signal level of the AC signal Sac can be increased by the AC electronic load 23 by supplying the cancellation signal Sk with the connection line forming Lo4 as the load connection line L, the noise of the current detection signal S1 and the voltage detection signal S2
  • the internal impedance Zb can be accurately measured in the arithmetic processing (measurement processing) of the internal impedance Zb performed by the arithmetic circuit 57. be able to.
  • the AC bipolar power supply 24 constitutes the measurement signal supply unit
  • the battery Bat and the AC bipolar power supply 24 are connected by a connection line to form a closed loop Lo5
  • the AC bipolar power supply 24 and The load Load is connected by a connection line to form a closed loop Lo6
  • the current cancellation device 10 connects two connection points Po1 and Po2 of the connection line forming the closed loop Lo5 and the connection line forming the closed loop Lo6, and the closed loop Since the signal level of the AC signal Sac can be increased by the AC bipolar power supply 24 by supplying the cancellation signal Sk with the connection line forming Lo6 as the load connection line L, the noise of the current detection signal S1 and the voltage detection signal S2 As a result of being able to increase the ratio (S/N) of the signal level (S) to the level (N), the internal impedance Zb can be accurately measured in the arithmetic processing (measurement processing) of the internal impedance Zb performed by the arithmetic circuit 57
  • the impedance measuring devices 1C and 1D are provided with a bypass capacitor Cb, the battery Bat and the bypass capacitor Cb are connected by a connection line to form a closed loop Lo7, and the bypass capacitor Cb and the load Load are connected by a connection line to form a closed loop Lo7.
  • the current cancellation device 10 connects the two connection points Po1 and Po2 of the connection line forming the closed loop Lo7 and the connection line forming the closed loop Lo8, and the connection line forming the closed loop Lo8 as the load connection line.
  • the cancel signal Sk is supplied. Therefore, according to the impedance measuring devices 1C and 1D, the bypass capacitor Cb sufficiently reduces the noise current In flowing through the closed loop Lo1.
  • the internal impedance Zb can be measured with higher accuracy.
  • the impedance measuring device 1C or the impedance measuring device 1D
  • the bypass capacitor Cb is in a state in which the connection point Po1 and the connection point Po2 are almost AC-shorted, and the AC current Iac is applied to the closed loop Lo2 (or closed loop Lo7).
  • the current value of the alternating current Iac supplied to the battery Bat can be increased.
  • the internal impedance Zb can be measured with higher accuracy.
  • the measurement signal supply unit (in this example, the AC signal generation circuit 21A and the supply circuit 25) connects the two connection points Po1 and Po2 to the connection line forming the closed loop Lo7. supplies the AC signal Sac in a non-contact manner.
  • the measurement signal supply unit (in this example, the AC signal generation circuit 21A and the supply circuit 25) includes the AC signal generation circuit 21A that generates the AC signal Sac and the generated AC signal Sac.
  • the supply circuit 25 connects the two connection points Po1 and Po2, and the annular magnetic core Mc2 through which the connection line forming the closed loop Lo7 is inserted, and the magnetic core Mc2 is wound around the magnetic core Mc2.
  • the AC signal Sac generated by the AC signal generating circuit 21A is supplied to both ends of the winding W2, thereby supplying the AC signal Sac to the load connection line L in a non-contact manner. Therefore, according to the impedance measuring device 1D, even when the connection line forming the closed loop Lo7 is composed of an insulation-coated wire, the AC signal Sac can be supplied without stripping the insulation-coated wire.
  • the impedance measuring device 1D by providing the gap G2 in the magnetic core Mc2, even if the level of the AC signal Sac (current value of the AC current Iac) supplied to the load connection line L is increased, the magnetic core Magnetic saturation of Mc2 can be effectively avoided.
  • the arithmetic circuit 57 of the processing unit 5 detects the in-phase component and the quadrature component of the AC signal Sac (current detection signal S1) output from the quadrature detection circuit 55. and the in-phase component and the quadrature component of the AC signal Sac (voltage detection signal S2) output from the quadrature detection circuit 56, the internal impedance Zb of the battery Bat to be measured is calculated. Even when the signal level of the supplied AC signal Sac is small, the ratio (S/N) of the signal level (S) to the noise level (N) can be increased to accurately measure the internal impedance Zb.
  • the clock signal CL1 which is the operation clock of each of the A/D conversion circuits 51 to 53
  • the class D amplifier circuit at the final stage of the inverting amplifier circuit 43 Since the clock signal CL2, which is an operating clock, is synchronized with each other, even if the clock signal CL2 of the inverting amplifier circuit 43 is superimposed on the load connection line L or propagates by radio waves, noise caused by the clock signal CL2 is Since it is sufficiently reduced by the A/D conversion circuits 51 to 53, the internal impedance Zb can be measured with higher accuracy in the arithmetic processing (measurement processing) of the internal impedance Zb performed by the arithmetic circuit 57.
  • the configurations of the "current cancellation device” and the “impedance measurement device” are not limited to the above examples, and can be modified as appropriate.
  • Injection circuit 44A can also be configured with coil AC.
  • the load connection line L is inserted into the injection circuit 44A, and the cancel signal Sk generated by the inverting amplifier circuit 43 is supplied to both ends of the air-core coil AC, thereby transmitting the cancel signal Sk to the load connection line L. supply.
  • the cancellation signal Sk can be reliably injected into the load connection line L with a simple configuration.
  • an injection circuit 25A can be configured with an air-core coil AC.
  • the supply circuit 25A is inserted with a connection line (load connection line L) connecting the two connection points Po1 and Po2 and forming a closed loop Lo7, and the AC signal generated by the AC current supply circuit 21A is inserted.
  • the AC signal Sac (AC current Iac) is supplied to the battery Bat by supplying Sac to both ends of the air-core coil AC. According to the impedance measuring device 1D having this configuration, it is possible to reliably supply the AC signal Sac to the load connection line L while having a simple configuration.
  • the current cancellation device 10 can be applied not only to the impedance measurement device, but also to various measuring instruments that need to cancel the current component flowing through the load connection line L.
  • the impedance measuring device can measure not only the internal impedance Zb of the battery Bat and the internal impedance of the battery cells of the battery Bat, but also the impedance of various measurement objects including various batteries.
  • a water electrolysis cell that produces hydrogen by electrolyzing water is used as a measurement target, and a power supply for the water electrolysis cell instead of the load Load is connected by a load connection line L
  • the internal impedance of the water electrolysis cell can also be measured by connecting a pair of probes to the anode and cathode of the cell.
  • a current transformer, a current detection resistor, or the like is arranged in the load connection line L to detect the current component and the current value of the alternating current Iac. configuration can be employed.
  • the impedance measuring devices 1, 1A, 1B, 1C, and 1D an example of performing digital processing for calculating the impedance such as the internal impedance Zb of the battery Bat has been described. It is also possible to employ a configuration in which the impedance is calculated by an analog circuit based on the signal S2.
  • the direct current of the battery Bat flows through the load connection line L, and the magnetism of the non-contact current sensor 3 and the non-contact current sensor 26 is detected.
  • a DC current canceling circuit for canceling the DC current flowing through the load connection line L may be provided when there is a risk of saturation or the like.
  • the current cancellation device reduces the level of the current component flowing through the load connection line connected to the load and avoids failure of the load when increasing the level of the AC signal supplied to the load connection line.
  • An impedance measuring device equipped with such a current cancellation device can reliably and accurately measure the impedance of a measurement object connected in series with a load connection line.
  • the present invention can be widely applied to such current cancellation devices and impedance measurement devices that measure impedance.

Abstract

The present invention reduces the level of an electric current component flowing in a load connection line connected to a load, and prevents failure of the load when the level of an AC signal supplied to the load connection line is increased. The present invention is provided with: a contactless electric current sensor 3 that detects, in a contactless manner, an electric current component flowing in a load connection line L connected to a load Load; and a cancellation signal injection unit 4 that generates a cancellation signal Sk for cancelling a noise signal Sn detected by the contactless electric current sensor 3 and that injects, in a contactless manner, the generated cancellation signal Sk to the load connection line L.

Description

電流キャンセル装置およびインピーダンス測定装置Current cancellation device and impedance measurement device
 本発明は、負荷に接続されている負荷接続ラインを流れる電流成分をキャンセルする電流キャンセル装置、およびその電流キャンセル装置を備えて負荷接続ラインに直列接続されている測定対象のインピーダンスを測定するインピーダンス測定装置に関するものである。 The present invention provides a current cancellation device that cancels a current component flowing through a load connection line connected to a load, and an impedance measurement device that includes the current cancellation device and measures the impedance of an object to be measured that is connected in series to the load connection line. It is related to the device.
 この種のインピーダンス測定装置として、下記の特許文献に開示された電池用内部インピーダンス測定装置(以下、「測定装置」ともいう)が知られている。この測定装置は、交流電源供給部、交流電圧検出部、交流電流検出部および演算制御部を備え、一対の電源ラインを介して接続された負荷に直流電流を供給している状態における二次電池の内部インピーダンスを測定可能に構成されている。 As this type of impedance measuring device, a battery internal impedance measuring device (hereinafter also referred to as "measuring device") disclosed in the following patent document is known. This measuring device includes an AC power supply unit, an AC voltage detection unit, an AC current detection unit, and an arithmetic control unit, and measures the secondary battery in a state where a DC current is supplied to a load connected via a pair of power supply lines. is configured to be able to measure the internal impedance of the
 この測定装置では、交流電流供給部が、二次電池に対して測定用の交流電流を供給する。この際に、交流電圧検出部が、交流電流の供給時における二次電池の両端子間に発生する交流電圧を検出し、交流電流検出部が、交流電流の供給時における二次電池に流れる交流電流を検出する。次いで、演算制御部が、交流電圧検出部によって検出された交流電圧と交流電流検出部によって検出された交流電流とに基づいて二次電池の内部インピーダンスを算出する。したがって、この測定装置では、導体で形成されている一対の電源ラインに測定用の交流信号が供給されている状態において、一対の電源ラインに直列接続されている測定対象としての二次電池のインピーダンスを測定することが可能となっている。 In this measuring device, an alternating current supply unit supplies an alternating current for measurement to the secondary battery. At this time, the AC voltage detection unit detects the AC voltage generated between both terminals of the secondary battery when the AC current is supplied, and the AC current detection unit detects the AC current flowing through the secondary battery when the AC current is supplied. Detect current. Next, the arithmetic control unit calculates the internal impedance of the secondary battery based on the AC voltage detected by the AC voltage detection unit and the AC current detected by the AC current detection unit. Therefore, in this measuring device, in a state in which an AC signal for measurement is supplied to a pair of power supply lines formed of conductors, the impedance of the secondary battery as a measurement object connected in series to the pair of power supply lines is measured. can be measured.
特開2004-251625号公報(第3-7頁、第1図)Japanese Patent Application Laid-Open No. 2004-251625 (pages 3-7, FIG. 1)
 ところが、上記の測定装置には、以下のような課題が存在する。具体的には、スイッチング電源装置などのスイッチングノイズを発生する装置を負荷としたときに、その負荷と二次電池とを接続する接続ライン(負荷接続ライン)にスイッチングノイズが重畳して、そのスイッチングノイズが二次電池内を通過する。その際には、交流電流検出部が二次電池を流れる交流電流だけでなくスイッチングノイズも検出し、交流電圧検出部も、交流電流が流れることによる電圧だけでなく、スイッチングノイズも検出することになるため、二次電池のインピーダンスを測定する測定精度が低下する。このため、この測定精度の低下を改善すべきとの要請が存在する。また、インピーダンス測定の測定精度を高めるべく、測定用の交流信号のレベルを大きくしたときには、耐圧の低い回路素子などを負荷としたときに、大きな電流値の交流信号が負荷を通過した際に、負荷を故障させるおそれがある。このため、この負荷の故障を回避すべきとの要請も存在する。 However, the above measuring device has the following problems. Specifically, when a device that generates switching noise, such as a switching power supply, is used as a load, the switching noise is superimposed on the connection line (load connection line) that connects the load and the secondary battery, Noise passes through the secondary battery. At that time, the AC current detector detects not only the AC current flowing through the secondary battery but also the switching noise, and the AC voltage detector detects not only the voltage caused by the AC current but also the switching noise. Therefore, the measurement accuracy for measuring the impedance of the secondary battery is lowered. Therefore, there is a demand to improve this decrease in measurement accuracy. In addition, when the level of the AC signal for measurement is increased in order to improve the measurement accuracy of impedance measurement, when the load is a circuit element with a low withstand voltage, when an AC signal with a large current value passes through the load, It may damage the load. Therefore, there is also a demand to avoid failure of this load.
 本発明は、かかる改善すべき課題に鑑みてなされたものであり、負荷に接続されている負荷接続ラインを流れる電流成分のレベルを低減すると共に負荷接続ラインに供給する交流信号のレベルを大きくしたときに負荷の故障を回避し得る電流キャンセル装置、およびそのような電流キャンセル装置を備えて負荷接続ラインに直列接続されている測定対象のインピーダンスを確実かつ正確に測定するインピーダンス測定装置を提供することを主目的とする。 SUMMARY OF THE INVENTION The present invention has been made in view of such problems to be solved. To provide a current canceling device capable of avoiding failure of a load in some cases, and an impedance measuring device equipped with such a current canceling device and capable of reliably and accurately measuring the impedance of an object to be measured which is connected in series to a load connection line. The main purpose is
 上記目的を達成すべく、本発明に係る電流キャンセル装置は、負荷に接続されている負荷接続ラインを流れる電流成分を当該負荷接続ラインに対して非接触で検出する電流成分検出部と、前記電流成分検出部によって検出される前記電流成分をキャンセルするキャンセル信号を生成すると共に当該生成したキャンセル信号を前記負荷接続ラインに対して非接触で注入するキャンセル信号注入部とを備えている。 In order to achieve the above object, a current cancellation device according to the present invention includes a current component detection unit that detects a current component flowing through a load connection line connected to a load without contacting the load connection line; A cancel signal injection unit that generates a cancel signal for canceling the current component detected by the component detection unit and injects the generated cancel signal into the load connection line without contact.
 この電流キャンセル装置によれば、負荷においてスイッチングノイズが発生していたとしても、負荷接続ラインを流れるノイズ電流を十分に低減させることができる。また、この電流キャンセル装置によれば、負荷接続ラインに大きな電流が流れたとしても、負荷接続ラインを流れる電流を十分に低減させるため、大きな電流値の電流が流れることに起因する負荷の故障を回避することができる。 According to this current cancellation device, even if switching noise occurs in the load, it is possible to sufficiently reduce the noise current flowing through the load connection line. In addition, according to this current cancellation device, even if a large current flows through the load connection line, the current flowing through the load connection line is sufficiently reduced, so that the load failure caused by the flow of a large current value can be prevented. can be avoided.
 また、本発明に係る電流キャンセル装置は、前記キャンセル信号注入部は、前記キャンセル信号を生成するキャンセル信号生成回路と、前記キャンセル信号生成回路によって生成された前記キャンセル信号を前記負荷接続ラインに注入する注入回路とを備えて構成され、前記キャンセル信号生成回路は、前記電流成分検出部によって検出された前記電流成分を増幅すると共に位相調整して前記キャンセル信号として前記注入回路に出力する。 Further, in the current cancellation device according to the present invention, the cancellation signal injection unit includes a cancellation signal generation circuit that generates the cancellation signal, and injects the cancellation signal generated by the cancellation signal generation circuit into the load connection line. The cancel signal generation circuit amplifies the current component detected by the current component detector, adjusts the phase of the current component, and outputs the amplified current component as the cancel signal to the injection circuit.
 この電流キャンセル装置によれば、例えば、発振器を備えて、電流成分検出部によって検出された電流成分とは逆位相で同じ信号レベルのキャンセル信号を発振器で生成する構成と比較して、簡易な構成でありながら、負荷接続ライン上の電流成分を確実にキャンセルすることができる。 According to this current cancellation device, for example, the configuration is simpler than a configuration in which an oscillator is provided and a cancellation signal having the same signal level as the current component detected by the current component detection unit is generated by the oscillator in the opposite phase. However, it is possible to reliably cancel the current component on the load connection line.
 また、本発明に係る電流キャンセル装置は、前記注入回路は、前記負荷接続ラインが挿通される環状の第1の磁気コアと、前記第1の磁気コアに巻回された第1の巻線とで構成されて、前記キャンセル信号生成回路によって生成された前記キャンセル信号が前記巻線の両端に供給されることで前記キャンセル信号を注入する。この電流キャンセル装置によれば、簡易な構成でありながら、負荷接続ライン上の電流成分を確実にキャンセルすることができる。 Further, in the current cancellation device according to the present invention, the injection circuit includes a first ring-shaped magnetic core through which the load connection line is inserted, and a first winding wound around the first magnetic core. and the cancellation signal is injected by supplying the cancellation signal generated by the cancellation signal generation circuit to both ends of the winding. According to this current cancellation device, it is possible to reliably cancel the current component on the load connection line while having a simple configuration.
 また、本発明に係る電流キャンセル装置は、前記第1の磁気コアは、ギャップが設けられている。この電流キャンセル装置によれば、第1の磁気コアにギャップを設けたことにより、負荷接続ラインに注入するキャンセル信号のレベルを大きくしたとしても第1の磁気コアの磁気飽和を有効に回避することができる。 Also, in the current cancellation device according to the present invention, the first magnetic core is provided with a gap. According to this current cancellation device, by providing a gap in the first magnetic core, magnetic saturation of the first magnetic core can be effectively avoided even if the level of the cancellation signal injected into the load connection line is increased. can be done.
 また、本発明に係る電流キャンセル装置は、前記キャンセル信号注入部は、前記キャンセル信号を生成するキャンセル信号生成回路と、前記キャンセル信号生成回路によって生成された前記キャンセル信号を前記負荷接続ラインに注入する注入回路とを備えて構成され、前記注入回路は、前記負荷接続ラインが挿通される空芯コイルで構成され、前記キャンセル信号生成回路によって生成された前記キャンセル信号が前記空芯コイルの両端に供給されることで前記負荷接続ラインに前記キャンセル信号を注入する。この電流キャンセル装置によれば、簡易な構成でありながら、キャンセル信号を負荷接続ラインに確実に注入することができる。 Further, in the current cancellation device according to the present invention, the cancellation signal injection unit includes a cancellation signal generation circuit that generates the cancellation signal, and injects the cancellation signal generated by the cancellation signal generation circuit into the load connection line. and an injection circuit, wherein the injection circuit comprises an air-core coil through which the load connection line is inserted, and the cancel signal generated by the cancel signal generation circuit is supplied to both ends of the air-core coil. to inject the cancellation signal into the load connection line. According to this current cancellation device, it is possible to reliably inject the cancellation signal into the load connection line while having a simple configuration.
 また、本発明に係るインピーダンス測定装置は、上記の電流キャンセル装置を備えて、前記負荷接続ラインに直列接続されている測定対象のインピーダンスを測定するインピーダンス測定装置であって、測定用の交流信号を生成すると共に前記測定対象に前記交流信号を供給する測定用信号供給部と、前記測定対象の両端に生じている前記交流電圧の電圧値を当該両端に接触して検出して電圧検出信号を出力する電圧検出部と、前記電圧検出信号を入力すると共に前記測定用信号供給部から前記測定対象に供給される前記交流信号の電流値および当該当該電圧検出信号によって示される前記交流電圧の電圧値に基づいて前記測定対象のインピーダンスを測定する処理部とを備えて構成されている。 Further, an impedance measuring device according to the present invention is an impedance measuring device that includes the current cancellation device described above and measures the impedance of an object to be measured that is connected in series with the load connection line. a measurement signal supply unit that generates and supplies the AC signal to the object to be measured; a current value of the AC signal supplied to the object to be measured from the measurement signal supply unit while receiving the voltage detection signal, and a voltage value of the AC voltage indicated by the voltage detection signal. and a processing unit for measuring the impedance of the object to be measured based on.
 このインピーダンス測定装置によれば、電流検出信号および電圧検出信号に対する電流成分の影響が回避されるため、電流検出信号や電圧検出信号の雑音レベル(N)に対する信号レベル(S)の比率(S/N)を高めることができ、これにより、処理部によって行われるインピーダンスの演算処理(測定処理)において、精度良くインピーダンスを測定することができる。また、このインピーダンス測定装置によれば、負荷接続ラインに供給する交流信号のレベル(交流電流の電流値)を大きくしたとしても、電流キャンセル装置が、第1の閉ループを流れる交流電流を十分に低減させるため、大きな電流値の交流電流が流れることに起因する負荷の故障を回避することができる。 According to this impedance measuring device, since the influence of the current component on the current detection signal and the voltage detection signal is avoided, the ratio (S/ N) can be increased, whereby the impedance can be measured with high accuracy in the impedance arithmetic processing (measurement processing) performed by the processing unit. Further, according to this impedance measuring device, even if the level of the AC signal (the current value of the AC current) supplied to the load connection line is increased, the current cancellation device sufficiently reduces the AC current flowing through the first closed loop. Therefore, it is possible to avoid failure of the load due to the flow of an alternating current with a large current value.
 また、本発明に係るインピーダンス測定装置は、前記測定対象および前記負荷が前記負荷接続ラインで接続されて閉ループを形成し、前記測定用信号供給部は、前記測定対象の両端間に前記交流電流を供給する。このインピーダンス測定装置によれば、簡易な構成のため、安価にインピーダンス測定装置を構成することができる。 Also, in the impedance measuring apparatus according to the present invention, the object to be measured and the load are connected by the load connection line to form a closed loop, and the measurement signal supply unit supplies the alternating current across the object to be measured. supply. According to this impedance measuring device, it is possible to configure the impedance measuring device at low cost due to its simple configuration.
 また、本発明に係るインピーダンス測定装置は、前記測定対象は電池であって、前記測定用信号供給部は、前記電池の畜電力を交流変換する交流電子負荷で構成されると共に当該交流変換によって生成される交流信号を前記測定用の交流信号として供給し、前記測定対象および前記測定用信号供給部は接続ラインで接続されて第1の閉ループを形成し、かつ前記測定用信号供給部および前記負荷は接続ラインで接続されて第2の閉ループを形成し、前記電流キャンセル装置は、前記第1の閉ループを形成する前記接続ラインと前記第2の閉ループを形成する前記接続ラインとの2つの接続点を結び、かつ前記第2の閉ループを形成する前記接続ラインを前記負荷接続ラインとして前記キャンセル信号を注入する。 Further, in the impedance measuring device according to the present invention, the object to be measured is a battery, and the measurement signal supply unit is composed of an AC electronic load that converts the stored power of the battery into an AC current, and generates a signal by the AC conversion. the measurement object and the measurement signal supply unit are connected by a connection line to form a first closed loop, and the measurement signal supply unit and the load are connected by a connecting line to form a second closed loop, and the current canceling device comprises two connecting points of the connecting line forming the first closed loop and the connecting line forming the second closed loop. and forming the second closed loop is used as the load connection line to inject the cancellation signal.
 このインピーダンス測定装置によれば、交流電子負荷によって交流信号の信号レベルを高めることができるため、電流検出信号や電圧検出信号の雑音レベル(N)に対する信号レベル(S)の比率(S/N)を高めることができる結果、処理部によって行われるインピーダンスの演算処理(測定処理)において、精度良くインピーダンスを測定することができる。 According to this impedance measuring device, since the signal level of the AC signal can be increased by the AC electronic load, the ratio (S/N) of the signal level (S) to the noise level (N) of the current detection signal or the voltage detection signal can be increased, the impedance can be measured with high accuracy in the impedance arithmetic processing (measurement processing) performed by the processing unit.
 また、本発明に係るインピーダンス測定装置は、前記測定用信号供給部は、前記交流信号を生成するバイポーラ電源で構成され、前記測定対象および前記測定用信号供給部は接続ラインで接続されて第1の閉ループを形成し、かつ前記測定用信号供給部および前記負荷は接続ラインで接続されて第2の閉ループを形成し、前記電流キャンセル装置は、前記第1の閉ループを形成する前記接続ラインと前記第2の閉ループを形成する前記接続ラインとの2つの接続点を結び、かつ前記第2の閉ループを形成する前記接続ラインを前記負荷接続ラインとして前記キャンセル信号を注入する。 Further, in the impedance measuring apparatus according to the present invention, the measurement signal supply section is configured by a bipolar power supply that generates the AC signal, and the measurement object and the measurement signal supply section are connected by a connection line to form a first and the measurement signal supply unit and the load are connected by a connection line to form a second closed loop, and the current canceling device is connected to the connection line forming the first closed loop and the Two connection points with the connection line forming a second closed loop are connected, and the cancellation signal is injected with the connection line forming the second closed loop as the load connection line.
 このインピーダンス測定装置によれば、交流バイポーラ電源によって交流信号の信号レベルを高めることができるため、電流検出信号や電圧検出信号の雑音レベル(N)に対する信号レベル(S)の比率(S/N)を高めることができる結果、処理部によって行われるインピーダンスの演算処理(測定処理)において、精度良くインピーダンスを測定することができる。 According to this impedance measuring device, since the signal level of the AC signal can be increased by the AC bipolar power supply, the ratio (S/N) of the signal level (S) to the noise level (N) of the current detection signal or the voltage detection signal can be increased, the impedance can be measured with high accuracy in the impedance arithmetic processing (measurement processing) performed by the processing unit.
 また、本発明に係るインピーダンス測定装置は、バイパスコンデンサを備え、前記測定対象および前記バイパスコンデンサは接続ラインで接続されて第1の閉ループを形成し、かつ前記バイパスコンデンサおよび前記負荷は接続ラインで接続されて第2の閉ループを形成し、前記電流キャンセル装置は、前記第1の閉ループを形成する前記接続ラインと前記第2の閉ループを形成する前記接続ラインとの2つの接続点を結び、かつ前記第2の閉ループを形成する前記接続ラインを前記負荷接続ラインとして前記キャンセル信号を注入する。 Also, the impedance measuring apparatus according to the present invention includes a bypass capacitor, the object to be measured and the bypass capacitor are connected by a connection line to form a first closed loop, and the bypass capacitor and the load are connected by a connection line. to form a second closed loop, the current cancellation device connects two connection points of the connection line forming the first closed loop and the connection line forming the second closed loop, and The cancellation signal is injected with the connection line forming the second closed loop as the load connection line.
 このインピーダンス測定装置によれば、バイパスコンデンサが、第1の閉ループを流れる電流成分を十分に低減させるため、電流検出信号および電圧検出信号に対する電流成分の影響が確実に回避される結果、処理部によって行われるインピーダンスの演算処理(測定処理)において、より精度良くインピーダンスを測定することができる。また、このインピーダンス測定装置によれば、バイパスコンデンサが2つの接続点の間を交流的に殆ど短絡した状態として交流電流を第2閉ループにだけ流すため、測定対象内に供給する交流電流の電流値を大きくすることができる結果、処理部によって行われるインピーダンスの演算処理(測定処理)において、雑音レベル(N)に対する信号レベル(S)の比率(S/N)を高めて、より精度良くインピーダンスを測定することができる。 According to this impedance measuring device, since the bypass capacitor sufficiently reduces the current component flowing through the first closed loop, the effect of the current component on the current detection signal and the voltage detection signal is reliably avoided. Impedance can be measured with higher accuracy in the impedance arithmetic processing (measurement processing) that is performed. Further, according to this impedance measuring device, since the bypass capacitor is in a state in which the two connection points are almost AC short-circuited and the AC current flows only through the second closed loop, the current value of the AC current supplied to the object to be measured is As a result, in the impedance arithmetic processing (measurement processing) performed by the processing unit, the ratio (S/N) of the signal level (S) to the noise level (N) is increased, and the impedance can be measured more accurately. can be measured.
 また、本発明に係るインピーダンス測定装置は、前記測定用信号供給部は、前記2つの接続点を結び、かつ前記第1の閉ループを形成する前記接続ラインに対して非接触で前記交流信号を供給する。 Further, in the impedance measuring device according to the present invention, the measurement signal supply unit connects the two connection points and supplies the AC signal in a non-contact manner to the connection line forming the first closed loop. do.
 また、本発明に係るインピーダンス測定装置は、前記測定用信号供給部は、前記交流信号を生成する交流信号生成回路と、前記交流信号生成回路によって生成された前記交流信号を供給する供給回路とを備え、前記供給回路は、前記2つの接続点を結び、かつ前記第1の閉ループを形成する前記接続ラインが挿通される環状の第2の磁気コアと、前記第2の磁気コアに巻回された第2の巻線とで構成されて、前記交流信号生成回路によって生成された前記交流信号が前記第2の巻線の両端に供給されることで前記交流信号を供給する。 Further, in the impedance measuring device according to the present invention, the measurement signal supply unit includes an AC signal generation circuit that generates the AC signal, and a supply circuit that supplies the AC signal generated by the AC signal generation circuit. wherein the supply circuit includes: a second annular magnetic core through which the connection line connecting the two connection points and forming the first closed loop is inserted; The AC signal generated by the AC signal generating circuit is supplied to both ends of the second winding to supply the AC signal.
 上記のインピーダンス測定装置によれば、第1の閉ループを形成する接続ラインを絶縁被覆電線で構成した場合であっても、絶縁被覆電線の被覆を剥がすことなく交流信号を供給することができる。 According to the impedance measuring device described above, even when the connection line forming the first closed loop is composed of an insulation-coated wire, an AC signal can be supplied without stripping the insulation-coated wire.
 また、本発明に係るインピーダンス測定装置は、前記第2の磁気コアは、ギャップが設けられている。このインピーダンス測定装置によれば、第2の磁気コアにギャップを設けたことにより、負荷接続ラインに供給する交流信号のレベル(交流電流の電流値)を大きくしたとしても、第2の磁気コアの磁気飽和を有効に回避することができる。 Also, in the impedance measuring device according to the present invention, the second magnetic core is provided with a gap. According to this impedance measuring device, by providing the gap in the second magnetic core, even if the level of the AC signal (current value of the AC current) supplied to the load connection line is increased, the second magnetic core Magnetic saturation can be effectively avoided.
 また、本発明に係るインピーダンス測定装置は、前記測定用信号供給部は、前記交流信号を生成する交流信号生成回路と、前記交流信号生成回路によって生成された前記交流信号を供給する供給回路とを備えて構成され、前記供給回路は、前記2つの接続点を結び、かつ前記第1の閉ループを形成する前記接続ラインが挿通される空芯コイルで構成され、前記交流信号生成回路によって生成された前記交流信号が前記空芯コイルの両端に供給されることで前記測定対象に前記交流信号を供給する。このインピーダンス測定装置によれば、簡易な構成でありながら、交流信号を負荷接続ラインに確実に供給することができる。 Further, in the impedance measuring device according to the present invention, the measurement signal supply unit includes an AC signal generation circuit that generates the AC signal, and a supply circuit that supplies the AC signal generated by the AC signal generation circuit. The supply circuit is composed of an air-core coil that connects the two connection points and through which the connection line that forms the first closed loop is inserted, and is generated by the AC signal generation circuit The AC signal is supplied to the object to be measured by supplying the AC signal to both ends of the air-core coil. According to this impedance measuring device, although it has a simple configuration, it is possible to reliably supply an AC signal to the load connection line.
 また、本発明に係るインピーダンス測定装置は、前記測定用信号供給部は、前記測定対象の両端間に前記交流電流を供給する。このインピーダンス測定装置によれば、簡易な構成のため、安価にインピーダンス測定装置を構成することができる。 Also, in the impedance measuring device according to the present invention, the measurement signal supply unit supplies the alternating current across the object to be measured. According to this impedance measuring device, it is possible to configure the impedance measuring device at low cost due to its simple configuration.
 また、本発明に係るインピーダンス測定装置は、前記測定対象に供給される前記交流信号の前記電流値を検出して電流検出信号として前記処理部に出力する電流検出部を備え、前記処理部は、前記交流信号を入力すると共に前記電流検出信号を直交検波して交流電流の同相成分および直交成分を生成する第1直交検波回路と、前記交流信号を入力すると共に前記電圧検出信号を直交検波して交流電圧の同相成分および直交成分を生成する第2直交検波回路と、前記第1直交検波回路から出力される前記交流電流の同相成分および直交成分と、前記第2直交検波回路から出力される前記交流電圧の同相成分および直交成分とに基づいて前記測定対象のインピーダンスを演算する演算回路とを備えている。 Further, the impedance measuring apparatus according to the present invention includes a current detection unit that detects the current value of the AC signal supplied to the measurement target and outputs the current value as a current detection signal to the processing unit, and the processing unit includes: a first quadrature detection circuit that receives the AC signal and quadrature-detects the current detection signal to generate an in-phase component and a quadrature component of the AC current; and a first quadrature detection circuit that receives the AC signal and quadrature-detects the voltage detection signal. a second quadrature detection circuit for generating an in-phase component and a quadrature component of an alternating voltage; an in-phase component and a quadrature component of the alternating current output from the first quadrature detection circuit; and an arithmetic circuit for calculating the impedance of the object to be measured based on the in-phase component and the quadrature component of the AC voltage.
 このインピーダンス測定装置によれば、負荷接続ラインに供給された交流信号の信号レベルが小さいときであっても、ノイズレベル(N)に対する信号レベル(S)の比率(S/N)を高めて精度良くインピーダンスを測定することができる。 According to this impedance measuring device, even when the signal level of the AC signal supplied to the load connection line is small, the ratio (S/N) of the signal level (S) to the noise level (N) is increased to improve accuracy. Impedance can be measured well.
 また、本発明に係るインピーダンス測定装置は、前記電流キャンセル装置の前記キャンセル信号注入部は、終段としてのD級増幅回路を備え、当該D級増幅回路によって増幅した前記キャンセル信号を注入し、前記電流検出部によって検出された前記電流検出信号をアナログディジタル変換して電流データとして前記処理部に出力するA/D変換回路、および前記電圧検出部によって検出された電圧検出信号をアナログディジタル変換して電圧データとして前記処理部に出力するA/D変換回路を備え、前記各A/D変換回路は、前記測定用信号供給部の前記D級増幅回路の動作クロックと共通の動作クロックに同期して前記アナログディジタル変換を実行する。 Further, in the impedance measuring device according to the present invention, the cancellation signal injection unit of the current cancellation device includes a class D amplifier circuit as a final stage, injects the cancellation signal amplified by the class D amplifier circuit, an A/D conversion circuit that analog-to-digital converts the current detection signal detected by the current detection unit and outputs it as current data to the processing unit; and an analog-to-digital conversion of the voltage detection signal detected by the voltage detection unit. An A/D conversion circuit for outputting voltage data to the processing unit is provided, and each A/D conversion circuit is synchronized with an operation clock common to the operation clock of the class D amplifier circuit of the measurement signal supply unit. Perform the analog-to-digital conversion.
 このインピーダンス測定装置によれば、D級増幅回路の動作クロックが負荷接続ラインに重畳したり電波伝搬したりしたとしても、動作クロックに起因するノイズが各A/D変換回路によって十分に低減されるため、処理部によって行われるインピーダンスの演算処理(測定処理)において、さらに精度良くインピーダンスを測定することができる。 According to this impedance measuring device, even if the operation clock of the class D amplifier circuit is superimposed on the load connection line or propagated by radio waves, the noise caused by the operation clock is sufficiently reduced by each A/D conversion circuit. Therefore, the impedance can be measured with higher accuracy in the impedance arithmetic processing (measurement processing) performed by the processing unit.
 本発明に係る電流キャンセル装置によれば、負荷に接続されている負荷接続ラインを流れる電流成分のレベルを低減すると共に負荷接続ラインに供給する交流信号のレベルを大きくしたときに負荷の故障を回避することができる。また、本発明に係るインピーダンス測定装置によれば、そのような電流キャンセル装置を備えたことにより、負荷接続ラインに直列接続されている測定対象のインピーダンスを確実かつ正確に測定することができる。 According to the current cancellation device of the present invention, when the level of the current component flowing through the load connection line connected to the load is reduced and the level of the AC signal supplied to the load connection line is increased, failure of the load is avoided. can do. Further, according to the impedance measuring apparatus of the present invention, by including such a current cancellation device, it is possible to reliably and accurately measure the impedance of the object to be measured that is connected in series to the load connection line.
インピーダンス測定装置1の構成を示す構成図である。1 is a configuration diagram showing the configuration of an impedance measuring device 1; FIG. インピーダンス測定装置1の他の構成を示す構成図である。3 is a configuration diagram showing another configuration of the impedance measuring device 1; FIG. キャンセル信号注入部4によるノイズ信号Snをキャンセルする能力を示す周波数特性図である。4 is a frequency characteristic diagram showing the ability of the cancel signal injection unit 4 to cancel the noise signal Sn. FIG. インピーダンス測定装置1Aの構成を示す構成図である。It is a block diagram which shows a structure of 1 A of impedance measuring apparatuses. インピーダンス測定装置1Bの構成を示す構成図である。1 is a configuration diagram showing a configuration of an impedance measuring device 1B; FIG. インピーダンス測定装置1Cの構成を示す構成図である。It is a block diagram which shows a structure of 1 C of impedance measuring apparatuses. インピーダンス測定装置1Dの構成を示す構成図である。1 is a configuration diagram showing the configuration of an impedance measuring device 1D; FIG. 注入回路44Aの構成を示す構成図である。It is a block diagram which shows the structure of 44 A of injection circuits. 注入回路25Aの構成を示す構成図である。3 is a configuration diagram showing the configuration of an injection circuit 25A; FIG.
 以下、電流キャンセル装置およびインピーダンス測定装置の実施の形態について、添付図面を参照して説明する。 Embodiments of a current cancellation device and an impedance measurement device will be described below with reference to the accompanying drawings.
 図1に示すインピーダンス測定装置1は、「電流キャンセル装置(本例では、電流キャンセル装置10)」を備えた「インピーダンス測定装置」の一例であって、例えば、負荷Loadが測定対象に接続されて閉ループLo1の状態となっているときの測定対象としての電池(バッテリー)Batのインピーダンス(本例では、内部インピーダンスZb)を測定可能に構成されている。この場合、測定対象の具体例としては、例えば、電池の両端電圧がDC650V程度と高い電圧の燃料電池車(FCV:Fuel Cell Vehicle)などに用いられる電池Bat(電池の一例)が挙げられる。また、インピーダンス測定装置1は、電池Batに正弦波信号である後述の交流信号Sacを供給してその周波数応答を測定可能なFRA(Frequency Response Analyzer )として構成されて、高精度なインピーダンス測定が可能となっている。 The impedance measuring device 1 shown in FIG. 1 is an example of an "impedance measuring device" provided with a "current canceling device (current canceling device 10 in this example)". It is configured to be able to measure the impedance (internal impedance Zb in this example) of the battery Bat as the object to be measured in the closed loop Lo1 state. In this case, a specific example of the object to be measured is a battery Bat (an example of a battery) used in a fuel cell vehicle (FCV) having a voltage across the battery as high as about DC650V. In addition, the impedance measurement device 1 is configured as an FRA (Frequency Response Analyzer) capable of measuring the frequency response of an AC signal Sac, which is a sine wave signal, which will be described later, to the battery Bat, and is capable of highly accurate impedance measurement. It has become.
 以下、例えば、回転時に電気ノイズを発生する燃料電池車のモータを負荷Loadとして、例えば導体である芯線が絶縁被覆された絶縁被覆ケーブル、エナメル線、および絶縁被覆されていない電線などの導体で形成されたパワーライン(以下、「負荷接続ラインL」ともいう)で電池Batと負荷Loadとを接続した状態で、電池Batの内部インピーダンスZbを測定する例について説明する。なお、電池Batは複数の電池セルを直列接続して構成されているが、図1では、全体として1つの電池で図示している。 In the following, for example, a motor of a fuel cell vehicle that generates electrical noise when rotating is used as a load Load, and the core wire is formed of conductors such as an insulation coated cable, an enameled wire, and an electric wire that is not coated with insulation. An example will be described in which the internal impedance Zb of the battery Bat is measured in a state in which the battery Bat and the load Load are connected by a power line (hereinafter also referred to as “load connection line L”). Although the battery Bat is configured by connecting a plurality of battery cells in series, FIG. 1 shows one battery as a whole.
 インピーダンス測定装置1は、測定部2、非接触型電流センサ3、キャンセル信号注入部4、処理部5および出力部6を備えて構成されている。この場合、非接触型電流センサ3およびキャンセル信号注入部4によって電流キャンセル装置10が構成される。 The impedance measuring device 1 comprises a measuring section 2, a non-contact current sensor 3, a cancellation signal injection section 4, a processing section 5 and an output section 6. In this case, the non-contact current sensor 3 and the cancellation signal injection unit 4 constitute the current cancellation device 10 .
 測定部2は、交流電流供給回路21、交流電圧検出回路22、接触型の一対のプローブP1,P2および接触型の一対のプローブP3,P4を備えて構成されている。この場合、交流電流供給回路21は、「測定用信号供給部」および「電流検出部」を構成し、測定用の交流信号Sacを生成すると共に測定対象としての電池Batの両端にプローブP1,P2を介して交流信号Sacを印加することにより、電池Batおよび負荷Loadからなる閉ループLo1内、並びに電池Batおよび交流電流供給回路21からなる閉ループLo2内に交流電流Iacを供給する。また、交流電流供給回路21は、交流信号Sacの信号レベルおよび周波数を処理部5から出力される制御信号によって制御されて周波数をスイープ(例えば、1Hz~10MHz)させる。ただし、周波数のスイープは必須ではなく、スイープが不要の場合には、固定周波数の交流信号Sacを生成する構成を交流電流供給回路21に適用することもできる。また、交流電流供給回路21は、交流信号Sacの電圧値、周波数および位相を示す基準信号としての交流基準信号Srを出力する。また、交流電流供給回路21は、内部に備えたカレントトランスや電流検出用抵抗などにより、電池Bat(閉ループLo2)に流れている交流電流Iacを検出して、交流電流Iacの電流値、周波数および位相を示す電流検出信号S1を出力する。交流電圧検出回路22は、交流電流供給回路21から交流電流Iacが供給されているときに電池Batの両端に発生する両端電圧をプローブP3,P4を介して検出して、両端電圧の電圧値、周波数および位相を示す電圧検出信号S2として出力する。 The measurement unit 2 includes an alternating current supply circuit 21, an alternating voltage detection circuit 22, a pair of contact-type probes P1 and P2, and a pair of contact-type probes P3 and P4. In this case, the AC current supply circuit 21 constitutes a "measurement signal supply section" and a "current detection section", generates an AC signal Sac for measurement, and connects the probes P1 and P2 to both ends of the battery Bat as the object to be measured. By applying the AC signal Sac via the , the AC current Iac is supplied in the closed loop Lo1 consisting of the battery Bat and the load Load and in the closed loop Lo2 consisting of the battery Bat and the AC current supply circuit 21 . Also, the alternating current supply circuit 21 sweeps the frequency (for example, 1 Hz to 10 MHz) by controlling the signal level and frequency of the alternating signal Sac by the control signal output from the processing unit 5 . However, frequency sweeping is not essential, and if sweeping is not required, a configuration for generating a fixed-frequency AC signal Sac may be applied to the AC current supply circuit 21 . Also, the AC current supply circuit 21 outputs an AC reference signal Sr as a reference signal indicating the voltage value, frequency and phase of the AC signal Sac. In addition, the alternating current supply circuit 21 detects the alternating current Iac flowing in the battery Bat (closed loop Lo2) by means of an internal current transformer, a current detection resistor, etc., and detects the current value, frequency and frequency of the alternating current Iac. A current detection signal S1 indicating the phase is output. The AC voltage detection circuit 22 detects the voltage across the battery Bat through probes P3 and P4 when the AC current Iac is supplied from the AC current supply circuit 21, and detects the voltage value of the voltage across the battery Bat. Output as a voltage detection signal S2 indicating frequency and phase.
 非接触型電流センサ3は、いわゆるクランプ型の電流センサであって、非接触型の電流成分検出部として機能する。この非接触型電流センサ5は、負荷接続ラインLを流れる交流の電流成分を負荷接続ラインL(負荷接続ラインLの芯線(導線))に対して非接触で検出して、検出した電流成分をノイズ信号Snとしてキャンセル信号注入部4に出力する。具体的には、非接触型電流センサ5は、図1に示すように、図示しない半環状のケース内に、一対の磁気コア3a,3a、磁気コア3a,3aに巻回されて絶縁被覆電線で構成される1本の巻線、および電流検出回路を備えて構成されている。なお、同図では、巻線および電流検出回路の図示を省略している。この非接触型電流センサ5では、一対の磁気コア3a,3aが開閉可能に構成されており、負荷接続ラインLをクランプする際には、図外の操作スイッチを操作することで開状態にした磁気コア3a,3aの開口部位から負荷接続ラインLを進入させ、その後に、操作スイッチを操作して磁気コア3a,3aを閉状態(円環状)にすることで、磁気コア3a,3aによって負荷接続ラインLがクランプされる。負荷接続ラインLをクランプした状態では、負荷接続ラインLを流れる電流成分の大きさに応じて大きさが変化する磁束が磁気コア3a,3aに発生し、その磁束の大きさに応じて大きさが変化する電流が巻線から出力される。電流検出回路は、巻線から出力された電流を電圧に変換することによってノイズ信号Snを生成してキャンセル信号注入部4に出力する。 The non-contact current sensor 3 is a so-called clamp-type current sensor and functions as a non-contact current component detector. This non-contact current sensor 5 detects an AC current component flowing through the load connection line L without contacting the load connection line L (the core wire (conductor) of the load connection line L), and detects the detected current component. It is output to the cancel signal injection unit 4 as a noise signal Sn. Specifically, as shown in FIG. 1, the non-contact current sensor 5 includes a pair of magnetic cores 3a, 3a and an insulated wire wound around the magnetic cores 3a, 3a in a semi-annular case (not shown). and a current detection circuit. It should be noted that illustration of windings and a current detection circuit is omitted in the figure. In this non-contact current sensor 5, a pair of magnetic cores 3a, 3a are configured to be openable and closable, and when clamping the load connection line L, they are opened by operating an operation switch (not shown). The load connection line L is inserted through the openings of the magnetic cores 3a, 3a, and then the operation switch is operated to close (annularly) the magnetic cores 3a, 3a. The connecting line L is clamped. When the load connection line L is clamped, a magnetic flux whose magnitude changes according to the magnitude of the current component flowing through the load connection line L is generated in the magnetic cores 3a and 3a. A varying current is output from the winding. The current detection circuit converts the current output from the winding into a voltage to generate a noise signal Sn and output it to the cancel signal injection unit 4 .
 キャンセル信号注入部4は、増幅回路41、位相調整回路42、反転増幅回路43および注入回路44を備えて構成され、負荷接続ラインLを流れている電流成分をキャンセルするキャンセル信号Skを生成すると共に生成したキャンセル信号Skを負荷接続ラインLに対して非接触で注入する。この場合、増幅回路41、位相調整回路42および反転増幅回路43によって「キャンセル信号生成回路」が構成される。増幅回路41は、非接触型電流センサ3から出力されたノイズ信号Snを所定の利得で増幅して位相調整回路42に出力する。位相調整回路42は、入力したノイズ信号Snの位相を調整して、負荷接続ラインLを流れている電流成分と同じ位相となるようにノイズ信号Snの位相を調整して反転増幅回路43に出力する。具体的には、位相調整回路42は、入力したノイズ信号Snの信号レベルが最小となるように、ノイズ信号Snの位相を調整する。反転増幅回路43は、処理部5から出力されるクロック信号CL2に同期して作動するD級増幅回路が出力段に配置されて構成され、入力したノイズ信号Snを所定の利得でD級増幅すると共に反転増幅して注入回路44にキャンセル信号Skとして出力する。なお、反転増幅回路43および位相調整回路42の各利得は、負荷接続ラインL上を流れる電流成分の大きさと、非接触型電流センサ3によって検出された電流成分(ノイズ信号Sn)を位相調整回路42、反転増幅回路43および反転増幅回路43と通過して、注入回路44から負荷接続ラインLに注入されたときのキャンセル信号Skの大きさとが等しくなるように予め規定されている。また、反転増幅回路43には、後述するクロック信号CL2が処理部5から供給されており、このクロック信号CL2に同期してD級増幅動作を行う。したがって、反転増幅回路43は、終段としてのD級増幅回路を備えたことにより、負荷変動に対してもキャンセル信号Skの信号レベルを必要レベルに維持することができる。 The cancel signal injection unit 4 includes an amplifier circuit 41, a phase adjustment circuit 42, an inverting amplifier circuit 43, and an injection circuit 44, and generates a cancel signal Sk for canceling the current component flowing through the load connection line L. The generated cancel signal Sk is injected into the load connection line L without contact. In this case, the amplifying circuit 41, the phase adjusting circuit 42 and the inverting amplifying circuit 43 constitute a "cancellation signal generating circuit". The amplifier circuit 41 amplifies the noise signal Sn output from the non-contact current sensor 3 with a predetermined gain and outputs the amplified noise signal to the phase adjustment circuit 42 . The phase adjustment circuit 42 adjusts the phase of the input noise signal Sn so that the noise signal Sn has the same phase as the current component flowing through the load connection line L, and outputs the noise signal Sn to the inverting amplifier circuit 43. do. Specifically, the phase adjustment circuit 42 adjusts the phase of the noise signal Sn so that the signal level of the input noise signal Sn is minimized. The inverting amplifier circuit 43 has a class D amplifier circuit that operates in synchronization with the clock signal CL2 output from the processing unit 5 and is arranged at the output stage, and class D-amplifies the input noise signal Sn with a predetermined gain. Together with this, it is inverted and amplified and output to the injection circuit 44 as a cancel signal Sk. The gains of the inverting amplifier circuit 43 and the phase adjustment circuit 42 are determined by adjusting the magnitude of the current component flowing on the load connection line L and the current component (noise signal Sn) detected by the non-contact current sensor 3 to the phase adjustment circuit. 42 and the inverting amplifier circuit 43 and the inverting amplifier circuit 43, and is predetermined to be equal to the magnitude of the cancel signal Sk when injected into the load connection line L from the injection circuit 44. FIG. A clock signal CL2, which will be described later, is supplied from the processing unit 5 to the inverting amplifier circuit 43, and the class D amplification operation is performed in synchronization with this clock signal CL2. Therefore, the inverting amplifier circuit 43 can maintain the signal level of the cancel signal Sk at the required level even with load fluctuations by including the class D amplifier circuit as the final stage.
 また、「キャンセル信号生成回路」は、図3に示すように、直流電圧よりもやや高い周波数から、測定用の交流信号Sacよりも高い周波数までの範囲で、ほぼフラットな周波数特性となるように、広い周波数帯域に亘ってノイズ信号Snを検出すると共にノイズ信号Snをキャンセル可能なキャンセル信号Skを生成する能力を有している。なお、本例とは異なる構成として、反転増幅回路43に代えて非反転増幅回路を備え、位相調整回路42が負荷接続ラインLを流れている電流成分と逆位相となるようにノイズ信号Snの位相を調整する構成を採用することもできる。また、キャンセル信号注入部4において、各回路での必要な利得が確保されている場合には、増幅回路41の配設を省くことができる。 In addition, as shown in FIG. 3, the "cancellation signal generation circuit" has a substantially flat frequency characteristic in the range from a frequency slightly higher than the DC voltage to a frequency higher than the AC signal Sac for measurement. , has the ability to detect the noise signal Sn over a wide frequency band and to generate a cancellation signal Sk capable of canceling the noise signal Sn. As a configuration different from this example, a non-inverting amplifier circuit is provided in place of the inverting amplifier circuit 43, and the phase adjustment circuit 42 adjusts the noise signal Sn so that the phase of the current component flowing through the load connection line L is opposite to that of the noise signal Sn. A configuration that adjusts the phase can also be adopted. Further, in the cancellation signal injection unit 4, if the necessary gain is ensured in each circuit, the provision of the amplifier circuit 41 can be omitted.
 注入回路44は、第1の磁気コアとしての磁気コアMc1、および磁気コアMc1に巻回された第1の巻線としての巻線W1を備えて構成されて、反転増幅回路43から出力されたキャンセル信号Skに基づくキャンセル電流Ikを負荷接続ラインLの芯線に対して非接触で注入する。磁気コアMc1は、例えば、フェライト、パーマロイ、パーメンジュール、ケイ素鋼板および純鉄などの材料を用いて、負荷接続ラインLを挿通可能に、円形状、楕円形状、矩形状および多角形状状などの環状に形成されている。なお、磁気コアMc1には、ギャップG1が設けられており、磁気コアMc1の磁気飽和がし難くなっている。また、磁気コアMc1については、分割可能なクランプ型の構成を採用することもできる。この注入回路44では、巻線W1の両端にキャンセル信号Skを印加することにより、トランス方式(巻線W1が複数ターンの一次巻線で負荷接続ラインLが1ターンの二次巻線)でキャンセル信号Skを負荷接続ラインLに注入する。この際には、キャンセル信号Skに基づく電流が巻線W1を流れて、キャンセル信号Skに基づく磁束が磁気コアMc1に発生すると共にその磁束の大きさに応じた電流値のキャンセル電流Ikがノーマルモード信号として負荷接続ラインLに注入される(供給される)。 The injection circuit 44 includes a magnetic core Mc1 as a first magnetic core and a winding W1 as a first winding wound around the magnetic core Mc1. A cancel current Ik based on the cancel signal Sk is injected into the core wire of the load connection line L without contact. The magnetic core Mc1 is made of a material such as ferrite, permalloy, permendur, silicon steel plate, or pure iron, and has a circular, elliptical, rectangular, or polygonal shape so that the load connection line L can be inserted therethrough. It is formed in an annular shape. The magnetic core Mc1 is provided with a gap G1, which makes it difficult for the magnetic core Mc1 to be magnetically saturated. Further, the magnetic core Mc1 may employ a separable clamp type configuration. In the injection circuit 44, by applying a cancel signal Sk to both ends of the winding W1, cancellation is performed by a transformer method (the winding W1 is a primary winding with a plurality of turns and the load connection line L is a secondary winding with a single turn). A signal Sk is injected into the load connection line L. At this time, a current based on the cancel signal Sk flows through the winding W1, a magnetic flux based on the cancel signal Sk is generated in the magnetic core Mc1, and a cancel current Ik having a current value corresponding to the magnitude of the magnetic flux is generated in the normal mode. It is injected (provided) into the load connection line L as a signal.
 処理部5は、例えば、CPUで構成されて、図2に示すように、A/D変換回路51~53、移相回路54、直交検波回路55,56、演算回路57、内部メモリ58およびクロック生成回路59を備えて構成され、電流検出信号S1および電圧検出信号S2を入力すると共に電流検出信号S1および電圧検出信号S2に基づいて測定対象である電池Batの内部インピーダンスZbを測定する。この場合、A/D変換回路51は、交流電流供給回路21から出力された交流基準信号Srを入力すると共にA/D変換(アナログ/デジタル変換)して正弦波の交流信号Sacの電圧値、周波数および位相を示す信号データD11(sinωt)を移相回路54および直交検波回路55,56に出力する。A/D変換回路52は、交流電流供給回路21から出力された電流検出信号S1を入力すると共にA/D変換して電流検出信号S1(交流電流Iac)の電流値、周波数および位相を示す信号データD12を直交検波回路55に出力する。A/D変換回路53は、交流電圧検出回路22から出力された電圧検出信号S2を入力すると共にA/D変換して電圧検出信号S2の電圧値、周波数および位相を示す信号データD13を直交検波回路56に出力する。 The processing unit 5 is composed of, for example, a CPU, and as shown in FIG. It is configured with a generation circuit 59, receives the current detection signal S1 and the voltage detection signal S2, and measures the internal impedance Zb of the battery Bat to be measured based on the current detection signal S1 and the voltage detection signal S2. In this case, the A/D conversion circuit 51 inputs the AC reference signal Sr output from the AC current supply circuit 21 and performs A/D conversion (analog/digital conversion) to obtain the voltage value of the sinusoidal AC signal Sac, Signal data D11 (sin ωt) indicating frequency and phase is output to phase shift circuit 54 and quadrature detection circuits 55 and 56 . The A/D conversion circuit 52 receives the current detection signal S1 output from the alternating current supply circuit 21 and A/D converts it into a signal indicating the current value, frequency and phase of the current detection signal S1 (alternating current Iac). Data D12 is output to the quadrature detection circuit 55. FIG. The A/D conversion circuit 53 receives the voltage detection signal S2 output from the AC voltage detection circuit 22 and performs A/D conversion to perform quadrature detection of signal data D13 indicating the voltage value, frequency and phase of the voltage detection signal S2. Output to circuit 56 .
 移相回路54は、A/D変換回路51から出力された信号データD11(sinωt)を入力すると共に信号データD11で示される正弦波信号である交流信号Sacの位相を90°移相させて余弦波信号を生成すると共にその余弦波信号の電流値、周波数および位相を示す信号データD11(cosωt)を生成して直交検波回路55,56に出力する。直交検波回路55は、A/D変換回路52から出力された電流検出信号S1(交流電流Iacの交流電流値)を示す信号データD12を入力すると共に、A/D変換回路51から出力された正弦波の交流信号Sacを示す信号データD11(sinωt)および移相回路54から出力された余弦波の交流信号Sacを示す信号データD11(cosωt)で信号データD12を直交検波して、交流電流Iacの電流値の同相成分(I成分:In-phse 成分)および直交成分(Q成分:Quadrature 成分)を複素数で示す電流データDiを生成して演算回路57に出力する。直交検波回路56は、A/D変換回路53から出力された電圧検出信号S2(交流電流Iacが流れることに起因して電池Batの両端に発生する交流電圧の電圧値)を示す信号データD13を入力すると共に、A/D変換回路51から出力された正弦波の交流信号Sacを示す信号データD11(sinωt)および移相回路54から出力された余弦波の交流信号Sacを示す信号データD11(cosωt)で信号データD13を直交検波して、電圧検出信号S2の電圧値の同相成分(I成分:In-phse 成分)および直交成分(Q成分:Quadrature 成分)を複素数で示す電圧データDvを生成して演算回路57に出力する。 The phase shift circuit 54 receives the signal data D11 (sinωt) output from the A/D conversion circuit 51, and shifts the phase of the AC signal Sac, which is a sinusoidal signal indicated by the signal data D11, by 90° to obtain a cosine signal. A wave signal is generated, and signal data D11 (cosωt) indicating the current value, frequency and phase of the cosine wave signal is generated and output to quadrature detection circuits 55 and 56 . The quadrature detection circuit 55 receives the signal data D12 indicating the current detection signal S1 (the alternating current value of the alternating current Iac) output from the A/D conversion circuit 52, and detects the sine output from the A/D conversion circuit 51. The signal data D12 is quadrature-detected using the signal data D11 (sinωt) representing the wave AC signal Sac and the signal data D11 (cosωt) representing the cosine wave AC signal Sac output from the phase shift circuit 54, thereby obtaining the AC current Iac. Current data Di indicating the in-phase component (I component: In-phse component) and the quadrature component (Q component: Quadrature component) of the current value by a complex number is generated and output to the arithmetic circuit 57 . The quadrature detection circuit 56 receives signal data D13 representing the voltage detection signal S2 (the voltage value of the AC voltage generated across the battery Bat due to the flow of the AC current Iac) output from the A/D conversion circuit 53. Signal data D11 (sin ωt) indicating the sine wave AC signal Sac output from the A/D conversion circuit 51 and signal data D11 (cos ωt) indicating the cosine wave AC signal Sac output from the phase shift circuit 54 are input. ) to perform quadrature detection on the signal data D13 to generate voltage data Dv indicating the in-phase component (I component: In-phase component) and the quadrature component (Q component: Quadrature component) of the voltage value of the voltage detection signal S2 in complex numbers. is output to the arithmetic circuit 57.
 演算回路57は、直交検波回路55から出力された電流データDiを入力すると共に直交検波回路56から出力された電圧データDvを入力して、電流データDiおよび電圧データDvに基づいて電池Batの内部インピーダンスZbを演算する。また、演算回路57は、演算結果としての電池Batの内部インピーダンスZbを示すインピーダンスデータDzを内部メモリ58に出力して記憶させると共に出力部6に出力する。また、内部メモリ58は、半導体メモリやハードディスク装置などで構成されて、インピーダンスデータDzなどを記憶する。また、クロック生成回路59は、各A/D変換回路51~53の動作クロックとしてのクロック信号CL1を生成して出力すると共にキャンセル信号注入部4の反転増幅回路43における終段のD級増幅回路の動作クロックとしてのクロック信号CL2を生成して出力する。この場合、クロック生成回路59は、クロック信号CL1およびクロック信号CL2について、いずれか一方に対して他方がN(Nは1以上の整数)倍でかつ互いに同期するように生成する。 The arithmetic circuit 57 receives the current data Di output from the quadrature detection circuit 55 and the voltage data Dv output from the quadrature detection circuit 56, and calculates the internal voltage of the battery Bat based on the current data Di and the voltage data Dv. Calculate the impedance Zb. Further, the arithmetic circuit 57 outputs the impedance data Dz indicating the internal impedance Zb of the battery Bat as the arithmetic result to the internal memory 58 for storage and to the output unit 6 . The internal memory 58 is composed of a semiconductor memory, a hard disk device, or the like, and stores impedance data Dz and the like. In addition, the clock generation circuit 59 generates and outputs a clock signal CL1 as an operation clock for each of the A/D conversion circuits 51 to 53, and outputs the final class D amplifier circuit in the inverting amplifier circuit 43 of the cancel signal injection unit 4. generates and outputs a clock signal CL2 as an operation clock of the . In this case, the clock generation circuit 59 generates the clock signal CL1 and the clock signal CL2 such that the other is N (N is an integer equal to or greater than 1) times the clock signal CL1 and the clock signal CL2 and is synchronized with each other.
 出力部6は、一例として、液晶パネルや有機ELパネルなどの表示装置(ディスプレイ)で構成されて、処理部5から出力されたインピーダンスデータDzを入力して電池Batの内部インピーダンスZbを画面上に表示する。なお、出力部6は、表示装置に代えて、外部装置とデータ通信を行うインターフェース装置で構成して、この外部装置にインピーダンスデータDzを出力する構成を採用することもできる。 The output unit 6 is composed of, for example, a display device (display) such as a liquid crystal panel or an organic EL panel, and inputs the impedance data Dz output from the processing unit 5 to display the internal impedance Zb of the battery Bat on the screen. indicate. It should be noted that the output unit 6 may be configured by an interface device that performs data communication with an external device instead of the display device, and may employ a configuration that outputs the impedance data Dz to this external device.
 次に、インピーダンス測定装置1による測定対象としての電池Batの内部インピーダンスZbを測定する測定処理について添付図面を参照して説明する。 Next, the measurement process for measuring the internal impedance Zb of the battery Bat as the object to be measured by the impedance measuring device 1 will be described with reference to the accompanying drawings.
 最初に、注入回路44に負荷接続ラインLを挿通すると共に電池Batと負荷Loadとを負荷接続ラインLで接続する。この状態で負荷Loadが作動したときには、図1に示すように、電池Batから負荷接続ラインLを介して負荷Loadに直流電流Ibが流れる。この状態において、負荷接続ラインLに非接触型電流センサ3をクランプさせると共に電池Batの両端にプローブP1~P4を接触させる。 First, the load connection line L is inserted into the injection circuit 44 and the battery Bat and the load Load are connected by the load connection line L. When the load Load operates in this state, a DC current Ib flows from the battery Bat through the load connection line L to the load Load, as shown in FIG. In this state, the non-contact current sensor 3 is clamped to the load connection line L, and the probes P1 to P4 are brought into contact with both ends of the battery Bat.
 次いで、図外の測定開始スイッチを操作する。これにより、処理部5が、測定部2の交流電流供給回路21を制御して交流信号Sacを生成させる。この際には、交流電流供給回路21が、周波数をスイープさせつつ交流信号Sacを生成し、生成した交流信号SacをプローブP1,P2を介して電池Batの両端間に供給すると共に交流信号Sacに基づく交流基準信号Srを処理部5に出力する。この場合、交流信号Sacに基づく交流電流Iacが、電池Bat、負荷Load、並びに電池Batおよび負荷Loadを接続する負荷接続ラインLからなる閉ループLo1を流れると共に、プローブP1、電池Bat、プローブP2および交流電流供給回路21内の回路からなる閉ループLo2を流れる。 Next, operate the measurement start switch (not shown). Thereby, the processing unit 5 controls the AC current supply circuit 21 of the measuring unit 2 to generate the AC signal Sac. At this time, the alternating current supply circuit 21 sweeps the frequency to generate the alternating signal Sac, and supplies the generated alternating signal Sac across the battery Bat via the probes P1 and P2, and supplies the alternating current signal Sac to the alternating current signal Sac. The AC reference signal Sr based on this is output to the processing unit 5 . In this case, an alternating current Iac based on the alternating signal Sac flows through a closed loop Lo1 composed of the battery Bat, the load Load, and the load connection line L connecting the battery Bat and the load Load, and the probe P1, the battery Bat, the probe P2, and the alternating current Iac. The current flows through the closed loop Lo2 formed by the circuits in the current supply circuit 21 .
 一方、負荷Loadは、回転時に電気ノイズを発生し、この電気ノイズは、ノイズ電流Inとなって閉ループLo1内の負荷接続ラインLを流れる。この場合、電流キャンセル装置10内では、非接触型電流センサ3が、負荷接続ラインLを流れている交流電流Iacおよびノイズ電流Inの電流成分を負荷接続ラインL(負荷接続ラインLの芯線(導線))に対して非接触で検出して、検出した電流成分をノイズ信号Snとしてキャンセル信号注入部4に出力する。キャンセル信号注入部4では、増幅回路41が、非接触型電流センサ3から出力されたノイズ信号Snを所定の利得で増幅して位相調整回路42に出力する。この際に、位相調整回路42は、負荷接続ラインLを流れている電流成分と同じ位相となるように、つまり入力したノイズ信号Snの信号レベルが最小となるように、入力したノイズ信号Snの位相を調整して反転増幅回路43に出力する。反転増幅回路43は、入力したノイズ信号Snを所定の利得でD級増幅すると共に反転増幅して注入回路44にキャンセル信号Skとして出力する。 On the other hand, the load Load generates electrical noise during rotation, and this electrical noise becomes noise current In and flows through the load connection line L in the closed loop Lo1. In this case, in the current cancellation device 10, the non-contact current sensor 3 senses the current components of the alternating current Iac and the noise current In flowing through the load connection line L (the core wire (conductor) of the load connection line L). )) is detected in a non-contact manner, and the detected current component is output to the cancel signal injection unit 4 as a noise signal Sn. In the cancel signal injection unit 4 , the amplifier circuit 41 amplifies the noise signal Sn output from the non-contact current sensor 3 with a predetermined gain and outputs the amplified noise signal to the phase adjustment circuit 42 . At this time, the phase adjustment circuit 42 adjusts the input noise signal Sn so that it has the same phase as the current component flowing through the load connection line L, that is, so that the signal level of the input noise signal Sn is minimized. The phase is adjusted and output to the inverting amplifier circuit 43 . The inverting amplifier circuit 43 amplifies the input noise signal Sn by class D with a predetermined gain, inverts and amplifies it, and outputs it to the injection circuit 44 as a cancel signal Sk.
 この際に、注入回路44では、反転増幅回路43から出力されたキャンセル信号Skが巻線W1の両端間に供給されることにより、キャンセル信号Skに基づく磁束が磁気コアMc1に発生すると共にその磁束の大きさに応じた電流値のキャンセル電流Ikがノーマルモード信号として負荷接続ラインLに注入される。これにより、負荷接続ラインLでは、交流電流Iacおよびノイズ電流Inと、交流電流Iacおよびノイズ電流Inとは逆位相で同じ電流レベルのキャンセル電流Ikとが、互いに相殺し合うことで、負荷接続ラインL(閉ループLo1)を流れる交流電流Iacおよびノイズ電流Inの電流レベルが十分に低下する。したがって、電池Bat内を流れる交流電流は、電池Batおよび交流電流供給回路21からなる閉ループLo2を流れる交流電流Iacのみとなる。 At this time, in the injection circuit 44, the cancellation signal Sk output from the inverting amplifier circuit 43 is supplied across the winding W1, whereby magnetic flux based on the cancellation signal Sk is generated in the magnetic core Mc1 and the magnetic flux A cancellation current Ik having a current value corresponding to the magnitude of the current is injected into the load connection line L as a normal mode signal. As a result, in the load connection line L, the alternating current Iac and the noise current In and the canceling current Ik of the same current level and in opposite phase to the alternating current Iac and the noise current In cancel each other out, so that the load connection line The current levels of alternating current Iac and noise current In flowing through L (closed loop Lo1) are sufficiently reduced. Therefore, the alternating current flowing in the battery Bat is only the alternating current Iac flowing through the closed loop Lo2 composed of the battery Bat and the alternating current supply circuit 21 .
 測定部2では、交流電流供給回路21が、閉ループLo2を流れる交流電流Iacを検出して電流検出信号S1を処理部5に出力すると共に交流基準信号Srを処理部5に出力する。また、交流電圧検出回路22は、交流電流供給回路21から交流電流Iacが供給されているときに、電池Batの内部を流れる交流電流Iacに基づいて電池Batの両端に発生する両端電圧をプローブP3,P4を介して検出して電圧検出信号S2として処理部5に出力する。この場合、電池Bat内を流れる交流電流は、上記したように、閉ループLo2を流れる交流電流Iacのみのため、電流検出信号S1および電圧検出信号S2は、交流電流Iacのみに基づく検出信号となるため、後述する処理部5によるインピーダンス測定処理において、内部インピーダンスZbが精度良く測定される。 In the measurement unit 2, the AC current supply circuit 21 detects the AC current Iac flowing through the closed loop Lo2 and outputs the current detection signal S1 to the processing unit 5 and the AC reference signal Sr to the processing unit 5. Further, the AC voltage detection circuit 22 detects the voltage generated across the battery Bat based on the AC current Iac flowing inside the battery Bat when the AC current Iac is supplied from the AC current supply circuit 21 as a probe P3. , P4 and output to the processing unit 5 as a voltage detection signal S2. In this case, since the alternating current flowing in the battery Bat is only the alternating current Iac flowing through the closed loop Lo2 as described above, the current detection signal S1 and the voltage detection signal S2 are detection signals based only on the alternating current Iac. , the internal impedance Zb is accurately measured in the impedance measurement process by the processing unit 5, which will be described later.
 一方、処理部5では、A/D変換回路51が、交流基準信号Srを入力すると共にクロック信号CL1に同期してA/D変換して正弦波の交流信号Sacの電圧値、周波数および位相を示す信号データD11(sinωt)を移相回路54および直交検波回路55,56に出力する。また、A/D変換回路52が、電流検出信号S1を入力すると共にクロック信号CL1に同期してA/D変換して交流電流Iacの電流値、周波数および位相を示す信号データD12を直交検波回路55に出力する。また、A/D変換回路53が、電圧検出信号S2を入力すると共にクロック信号CL1に同期してA/D変換して電池Batの両端における交流信号Sacの電圧値、周波数および位相を示す信号データD12を直交検波回路56に出力する。また、移相回路54が、信号データD11を入力すると共に信号データD11で示される正弦波信号である交流信号Sacの位相を90°移相させて余弦波信号を生成すると共にその余弦波信号の電流値、周波数および位相を示す信号データD11(cosωt)を生成して直交検波回路55,56に出力する。 On the other hand, in the processing unit 5, the A/D conversion circuit 51 receives the AC reference signal Sr and performs A/D conversion in synchronization with the clock signal CL1 to convert the voltage value, frequency and phase of the sinusoidal AC signal Sac. is output to the phase shift circuit 54 and the quadrature detection circuits 55 and 56. Further, the A/D conversion circuit 52 receives the current detection signal S1 and performs A/D conversion in synchronization with the clock signal CL1 to generate signal data D12 indicating the current value, frequency and phase of the alternating current Iac as a quadrature detection circuit. 55. Further, the A/D conversion circuit 53 receives the voltage detection signal S2 and performs A/D conversion in synchronization with the clock signal CL1 to obtain signal data indicating the voltage value, frequency and phase of the AC signal Sac at both ends of the battery Bat. D12 is output to the quadrature detection circuit 56. In addition, the phase shift circuit 54 receives the signal data D11, shifts the phase of the AC signal Sac, which is a sine wave signal indicated by the signal data D11, by 90° to generate a cosine wave signal, and the phase of the cosine wave signal. Signal data D11 (cos ωt) indicating the current value, frequency and phase is generated and output to quadrature detection circuits 55 and 56 .
 また、直交検波回路55は、電流検出信号S1を示す信号データD12を入力すると共に、正弦波の交流信号Sacを示す信号データD11(sinωt)および余弦波の交流信号Sacを示す信号データD11(cosωt)で信号データD12を直交検波して、電池Batを流れる交流電流Iacの電流値の同相成分および直交成分を複素数で示す電流データDiを生成して演算回路57に出力する。また、直交検波回路56は、電池Batの両端電圧(交流信号Sac)を示す信号データD13を入力すると共に、信号データD11(sinωt)および信号データD11(cosωt)で信号データD13を直交検波して、電池Batの両端電圧の電圧値の同相成分および直交成分を複素数で示す電圧データDvを生成して演算回路57に出力する。次いで、演算回路57が、電流データDiおよび電圧データDvを入力して、電流データDiおよび電圧データDvに基づいて電池Batの内部インピーダンスZbを演算してインピーダンスデータDzを内部メモリ58に出力して記憶させると共に出力部6に出力する。この際に、出力部6は、インピーダンスデータDzを入力して電池Batの内部インピーダンスZbを表示装置の画面上に表示する。なお、演算回路57は、交流信号Sacの周波数情報をインピーダンスデータDzに含めることにより、交流信号Sacの周波数に対する電池Batの内部インピーダンスZbの周波数特性を表示装置の画面上に表示させることもできる。また、演算回路57は、入力した電流データDi(A/D変換回路52から出力される信号データD12でもよい)に基づいて、負荷接続ラインLを流れる直流電流Ibの電流値情報を生成し、その電流値情報をインピーダンスデータDzに含めることにより、直流電流Ibの電流値に対する電池Batの内部インピーダンスZbの特性を表示装置の画面上に表示させることもできる。 The quadrature detection circuit 55 receives signal data D12 representing the current detection signal S1, and also receives signal data D11 (sinωt) representing the sine wave AC signal Sac and signal data D11 (cosωt) representing the cosine wave AC signal Sac. ) quadrature-detects the signal data D 12 to generate current data Di representing the in-phase component and quadrature component of the current value of the alternating current Iac flowing through the battery Bat in complex numbers and output to the arithmetic circuit 57 . Further, the quadrature detection circuit 56 inputs the signal data D13 indicating the voltage across the battery Bat (AC signal Sac), and quadrature-detects the signal data D13 with the signal data D11 (sin ωt) and the signal data D11 (cos ωt). , the voltage data Dv indicating the in-phase component and the quadrature component of the voltage value across the battery Bat by a complex number, and output to the arithmetic circuit 57 . Next, the arithmetic circuit 57 inputs the current data Di and the voltage data Dv, calculates the internal impedance Zb of the battery Bat based on the current data Di and the voltage data Dv, and outputs the impedance data Dz to the internal memory 58. It is stored and output to the output section 6 . At this time, the output unit 6 receives the impedance data Dz and displays the internal impedance Zb of the battery Bat on the screen of the display device. The arithmetic circuit 57 can display the frequency characteristic of the internal impedance Zb of the battery Bat with respect to the frequency of the AC signal Sac on the screen of the display device by including the frequency information of the AC signal Sac in the impedance data Dz. Further, the arithmetic circuit 57 generates current value information of the DC current Ib flowing through the load connection line L based on the input current data Di (which may be the signal data D12 output from the A/D conversion circuit 52), By including the current value information in the impedance data Dz, it is possible to display the characteristics of the internal impedance Zb of the battery Bat with respect to the current value of the direct current Ib on the screen of the display device.
 また、演算回路57は、入力した電流データDi(A/D変換回路52から出力される信号データD12でもよい)に基づき、閉ループLo2を流れている交流電流Iacの電流値を監視しつつ、交流電流Iacの電流値がインピーダンス測定の際に必要な目標電流値範囲内に含まれるように交流電流供給回路21を制御する。これにより、交流電流Iacが目標電流値範囲内に含まれるため、電流検出信号S1や電圧検出信号S2のノイズ(雑音)レベル(N)に対する信号レベル(S)の比率(S/N)を高めることができる結果、演算回路57によって行われる内部インピーダンスZbの演算処理(測定処理)において、精度良く内部インピーダンスZbを測定することができる。 Further, the arithmetic circuit 57 monitors the current value of the alternating current Iac flowing through the closed loop Lo2 based on the input current data Di (which may be the signal data D12 output from the A/D conversion circuit 52). The alternating current supply circuit 21 is controlled so that the current value of the current Iac is within the target current value range required for impedance measurement. As a result, since the alternating current Iac is included in the target current value range, the ratio (S/N) of the signal level (S) to the noise level (N) of the current detection signal S1 and the voltage detection signal S2 is increased. As a result, in the arithmetic processing (measurement processing) of the internal impedance Zb performed by the arithmetic circuit 57, the internal impedance Zb can be measured with high accuracy.
 また、インピーダンス測定装置1では、負荷Loadにおいてスイッチングノイズが発生していたとしても、電流キャンセル装置10が、負荷接続ラインLを流れるノイズ電流Inを低減させるため、電流検出信号S1および電圧検出信号S2に対するノイズ電流Inの影響が回避される結果、電流検出信号S1や電圧検出信号S2の雑音レベル(N)に対する信号レベル(S)の比率(S/N)を高めることができ、これにより、演算回路57によって行われる内部インピーダンスZbの演算処理(測定処理)において、より精度良く内部インピーダンスZbを測定することができる。また、インピーダンス測定装置1では、各A/D変換回路51~53の動作クロックであるクロック信号CL1と、反転増幅回路43における終段のD級増幅回路の動作クロックであるクロック信号CL2とが互いに同期しているため、反転増幅回路43のクロック信号CL2が負荷接続ラインLに重畳したり電波伝搬したりしたとしても、クロック信号CL2に起因するノイズが各A/D変換回路51~53によって低減されるため、演算回路57によって行われる内部インピーダンスZbの演算処理(測定処理)において、さらに精度良く内部インピーダンスZbが測定される。これにより、インピーダンス測定装置1による電池Batの内部インピーダンスZbの測定が終了する。 Further, in the impedance measuring device 1, even if switching noise occurs in the load Load, the current canceling device 10 reduces the noise current In flowing through the load connection line L, so that the current detection signal S1 and the voltage detection signal S2 As a result of avoiding the influence of the noise current In on, the ratio (S/N) of the signal level (S) to the noise level (N) of the current detection signal S1 or the voltage detection signal S2 can be increased. In the arithmetic processing (measurement processing) of the internal impedance Zb performed by the circuit 57, the internal impedance Zb can be measured with higher accuracy. Further, in the impedance measuring device 1, the clock signal CL1, which is the operation clock of each of the A/D conversion circuits 51 to 53, and the clock signal CL2, which is the operation clock of the class D amplifier circuit at the final stage in the inverting amplifier circuit 43, are connected to each other. Because of synchronization, even if the clock signal CL2 of the inverting amplifier circuit 43 is superimposed on the load connection line L or propagated by radio waves, the noise caused by the clock signal CL2 is reduced by the A/D conversion circuits 51 to 53. Therefore, in the arithmetic processing (measurement processing) of the internal impedance Zb performed by the arithmetic circuit 57, the internal impedance Zb can be measured with higher accuracy. This completes the measurement of the internal impedance Zb of the battery Bat by the impedance measuring device 1 .
 次に、「インピーダンス測定装置」としてのインピーダンス測定装置1Aについて説明する。なお、以下に説明するインピーダンス測定装置1A~1Dの構成において、上記したインピーダンス測定装置1における各構成要素と同じ機能を有する構成要素については、同一の符号を付して、重複する説明を省略する。 Next, the impedance measuring device 1A as the "impedance measuring device" will be described. In the configurations of the impedance measuring devices 1A to 1D described below, components having the same functions as the components in the impedance measuring device 1 described above are denoted by the same reference numerals, and duplicate descriptions are omitted. .
 インピーダンス測定装置1Aは、図4に示すように、測定部2A、非接触型電流センサ3、キャンセル信号注入部4、処理部5および出力部6を備えて構成されて、インピーダンス測定装置1と同様にして、電流検出信号S1および電圧検出信号S2に基づいて電池Batの内部インピーダンスZbを測定する。この場合、測定部2Aは、交流電圧検出回路22を備えると共に、インピーダンス測定装置1における交流電流供給回路21に代えて交流電子負荷23を備えて構成されている。 As shown in FIG. 4, the impedance measuring device 1A includes a measuring section 2A, a non-contact current sensor 3, a cancellation signal injection section 4, a processing section 5, and an output section 6. Then, the internal impedance Zb of the battery Bat is measured based on the current detection signal S1 and the voltage detection signal S2. In this case, the measurement section 2A includes an AC voltage detection circuit 22 and an AC electronic load 23 in place of the AC current supply circuit 21 in the impedance measurement device 1 .
 交流電子負荷23は、「測定用信号供給部」および「電流検出部」を構成し、電池Batの蓄電力を交流変換すると共にその交流変換によって生成される交流信号を測定用の交流信号Sacとして出力する。また、交流電子負荷23は、交流信号Sacの電圧値、周波数および位相を示す基準信号としての交流基準信号Sr、および出力した交流電流Iacの電流値、周波数および位相を示す電流検出信号S1を処理部5に出力する。この場合、インピーダンス測定装置1Aによるインピーダンス測定系では、電池Batおよび交流電子負荷23が接続ラインで接続されて閉ループLo3(第1の閉ループ)を形成し、かつ交流電子負荷23および負荷Loadが接続ラインで接続されて閉ループLo4(第2の閉ループ)を形成している。また、電流キャンセル装置10は、閉ループLo3を形成する接続ラインと閉ループLo4を形成する接続ラインとの2つの接続点(交点)Po1,Po2を結び、かつ閉ループLo4を形成する接続ラインを負荷接続ラインLとしてキャンセル信号Skを注入する。 The AC electronic load 23 constitutes a "measurement signal supply unit" and a "current detection unit", converts the power stored in the battery Bat into an AC signal, and outputs an AC signal generated by the AC conversion as an AC signal Sac for measurement. Output. The AC electronic load 23 also processes an AC reference signal Sr as a reference signal indicating the voltage value, frequency and phase of the AC signal Sac, and a current detection signal S1 indicating the current value, frequency and phase of the output AC current Iac. Output to part 5. In this case, in the impedance measurement system by the impedance measuring device 1A, the battery Bat and the AC electronic load 23 are connected by a connection line to form a closed loop Lo3 (first closed loop), and the AC electronic load 23 and the load Load are connected to the connection line. are connected to form a closed loop Lo4 (second closed loop). In addition, the current cancellation device 10 connects two connection points (intersection points) Po1 and Po2 between the connection line forming the closed loop Lo3 and the connection line forming the closed loop Lo4, and connects the connection line forming the closed loop Lo4 to the load connection line. As L, the cancel signal Sk is injected.
 次に、インピーダンス測定装置1Aの動作について説明する。なお、測定対象としての電池Batの内部インピーダンスZbを測定する測定処理自体はインピーダンス測定装置1と同様のため、重複した説明を省略して異なる処理について説明する。まず、測定開始に先立ち、交流電子負荷23の両出力部を接続点Po1,Po2に接続する。この場合、交流電子負荷23の両出力部を接続点Po1,Po2に直接接続してもよいし、図示しないプローブを利用して交流電子負荷23の両出力部を接続点Po1,Po2に接続してもよい。測定開始時には、交流電子負荷23が処理部5によって制御された周期で電池Batの蓄電力を交流変換すると共にその交流変換によって生成される交流信号を測定用の交流信号Sacとして出力する。この際には、交流信号Sacに基づく交流電流Iacは、両閉ループLo3,Lo4内に供給される。 Next, the operation of the impedance measuring device 1A will be explained. Note that the measurement process itself for measuring the internal impedance Zb of the battery Bat as the object to be measured is the same as that of the impedance measuring apparatus 1, so redundant description will be omitted and different processes will be described. First, before starting measurement, both output portions of the AC electronic load 23 are connected to the connection points Po1 and Po2. In this case, both outputs of the AC electronic load 23 may be directly connected to the connection points Po1 and Po2, or probes (not shown) may be used to connect both outputs of the AC electronic load 23 to the connection points Po1 and Po2. may At the start of measurement, the AC electronic load 23 AC-converts the power stored in the battery Bat at a cycle controlled by the processing unit 5 and outputs an AC signal generated by the AC conversion as an AC signal Sac for measurement. At this time, an alternating current Iac based on the alternating signal Sac is supplied to both closed loops Lo3 and Lo4.
 この際に、インピーダンス測定装置1における電流キャンセル装置10と同様にして、反転増幅回路43から出力されたキャンセル信号Skが巻線W1の両端間に供給されることにより、キャンセル信号Skに基づく磁束が磁気コアMc1に発生すると共にその磁束の大きさに応じた電流値のキャンセル電流Ikがノーマルモード信号として負荷接続ラインL(閉ループLo4)に注入される。これにより、負荷接続ラインLでは、交流電流Iacおよびノイズ電流Inと、交流電流Iacおよびノイズ電流Inとは逆位相で同じ電流レベルのキャンセル電流Ikとが、互いに相殺し合うことで、負荷接続ラインL(閉ループLo4)を流れる交流電流Iacおよびノイズ電流Inの電流レベルが十分に低下する。したがって、電池Bat内を流れる交流電流は、電池Batおよび交流電流供給回路21からなる閉ループLo3を流れる交流電流Iacのみとなる。次いで、インピーダンス測定装置1Aにおいても、インピーダンス測定装置1と同様にして、処理部5によって内部インピーダンスZbの演算処理(測定処理)が行われる。 At this time, similarly to the current cancellation device 10 in the impedance measurement device 1, the cancellation signal Sk output from the inverting amplifier circuit 43 is supplied across the winding W1, whereby the magnetic flux based on the cancellation signal Sk is A cancellation current Ik generated in the magnetic core Mc1 and having a current value corresponding to the magnitude of the magnetic flux is injected into the load connection line L (closed loop Lo4) as a normal mode signal. As a result, in the load connection line L, the alternating current Iac and the noise current In and the canceling current Ik of the same current level and in opposite phase to the alternating current Iac and the noise current In cancel each other out, so that the load connection line The current levels of alternating current Iac and noise current In flowing through L (closed loop Lo4) are sufficiently reduced. Therefore, the alternating current flowing in the battery Bat is only the alternating current Iac flowing through the closed loop Lo3 composed of the battery Bat and the alternating current supply circuit 21 . Next, in the impedance measuring device 1A, similarly to the impedance measuring device 1, the processing unit 5 performs arithmetic processing (measurement processing) of the internal impedance Zb.
 次に、「インピーダンス測定装置」としてのインピーダンス測定装置1Bについて説明する。インピーダンス測定装置1Bは、図5に示すように、測定部2B、非接触型電流センサ3、キャンセル信号注入部4、処理部5および出力部6を備えて構成されて、インピーダンス測定装置1と同様にして、電流検出信号S1および電圧検出信号S2に基づいて電池Batの内部インピーダンスZbを測定する。この場合、測定部2Bは、交流電圧検出回路22を備えると共に、インピーダンス測定装置1Aにおける交流電子負荷23に代えて交流バイポーラ電源24を備えて構成されている。 Next, the impedance measuring device 1B as an "impedance measuring device" will be described. As shown in FIG. 5, the impedance measuring device 1B includes a measuring section 2B, a non-contact current sensor 3, a cancellation signal injection section 4, a processing section 5, and an output section 6. Then, the internal impedance Zb of the battery Bat is measured based on the current detection signal S1 and the voltage detection signal S2. In this case, the measuring section 2B includes an AC voltage detection circuit 22 and an AC bipolar power supply 24 in place of the AC electronic load 23 in the impedance measuring apparatus 1A.
 交流バイポーラ電源24は、「測定用信号供給部」および「電流検出部」を構成し、内部に備えている図示しない交流電圧源の交流電圧を高速で高圧増幅することによって生成される交流信号を測定用の交流信号Sacとして出力する。また、交流バイポーラ電源24は、交流信号Sacの電圧値、周波数および位相を示す基準信号としての交流基準信号Sr、および出力した交流電流Iacの電流値、周波数および位相を示す電流検出信号S1を処理部5に出力する。この場合、インピーダンス測定装置1Bによるインピーダンス測定系では、電池Batおよび交流バイポーラ電源24が接続ラインで接続されて閉ループLo5(第1の閉ループ)を形成し、かつ交流バイポーラ電源24および負荷Loadが接続ラインで接続されて閉ループLo6(第2の閉ループ)を形成している。また、電流キャンセル装置10は、閉ループLo5を形成する接続ラインと閉ループLo6を形成する接続ラインとの2つの接続点(交点)Po1,Po2を結び、かつ閉ループLo6を形成する接続ラインを負荷接続ラインLとしてキャンセル信号Skを注入する。 The AC bipolar power supply 24 constitutes a "measurement signal supply section" and a "current detection section", and generates an AC signal generated by high-speed high-voltage amplification of an AC voltage from an AC voltage source (not shown) provided therein. Output as AC signal Sac for measurement. The AC bipolar power supply 24 also processes an AC reference signal Sr as a reference signal indicating the voltage value, frequency and phase of the AC signal Sac, and a current detection signal S1 indicating the current value, frequency and phase of the output AC current Iac. Output to part 5. In this case, in the impedance measurement system by the impedance measuring device 1B, the battery Bat and the AC bipolar power supply 24 are connected by a connection line to form a closed loop Lo5 (first closed loop), and the AC bipolar power supply 24 and the load Load are connected by the connection line. are connected to form a closed loop Lo6 (second closed loop). In addition, the current cancellation device 10 connects two connection points (intersection points) Po1 and Po2 between the connection line forming the closed loop Lo5 and the connection line forming the closed loop Lo6, and connects the connection line forming the closed loop Lo6 to the load connection line. As L, the cancel signal Sk is injected.
 次に、インピーダンス測定装置1Bの動作について説明する。なお、測定対象としての電池Batの内部インピーダンスZbを測定する測定処理自体はインピーダンス測定装置1と同様のため、重複した説明を省略して異なる処理について説明する。まず、測定開始に先立ち、交流バイポーラ電源24の両出力部を接続点Po1,Po2に接続する。この場合、交流バイポーラ電源24の両出力部を接続点Po1,Po2に直接接続してもよいし、図示しないプローブを利用して交流バイポーラ電源24の両出力部を接続点Po1,Po2に接続してもよい。測定開始時には、交流バイポーラ電源24が処理部5によって制御されて内部の交流電圧源の交流電圧の周期を変更すると共に高速で高圧増幅することによって生成される交流信号を測定用の交流信号Sacとして出力する。この際には、交流信号Sacに基づく交流電流Iacは、両閉ループLo5,Lo6内に供給される。 Next, the operation of the impedance measuring device 1B will be described. Note that the measurement process itself for measuring the internal impedance Zb of the battery Bat as the object to be measured is the same as that of the impedance measuring apparatus 1, so redundant description will be omitted and different processes will be described. First, before starting measurement, both output portions of the AC bipolar power supply 24 are connected to the connection points Po1 and Po2. In this case, both outputs of AC bipolar power supply 24 may be directly connected to connection points Po1 and Po2, or both outputs of AC bipolar power supply 24 may be connected to connection points Po1 and Po2 using a probe (not shown). may At the start of measurement, the AC bipolar power supply 24 is controlled by the processing unit 5 to change the period of the AC voltage of the internal AC voltage source, and the AC signal generated by high-speed high-voltage amplification is used as the AC signal Sac for measurement. Output. At this time, an alternating current Iac based on the alternating signal Sac is supplied to both closed loops Lo5 and Lo6.
 この際に、インピーダンス測定装置1における電流キャンセル装置10と同様にして、反転増幅回路43から出力されたキャンセル信号Skが巻線W1の両端間に供給されることにより、キャンセル信号Skに基づく磁束が磁気コアMc1に発生すると共にその磁束の大きさに応じた電流値のキャンセル電流Ikがノーマルモード信号として負荷接続ラインL(閉ループLo6)に供給される。これにより、負荷接続ラインLでは、交流電流Iacおよびノイズ電流Inと、交流電流Iacおよびノイズ電流Inとは逆位相で同じ電流レベルのキャンセル電流Ikとが、互いに相殺し合うことで、負荷接続ラインL(閉ループLo6)を流れる交流電流Iacおよびノイズ電流Inの電流レベルが十分に低下する。したがって、電池Bat内を流れる交流電流は、電池Batおよび交流電流供給回路21からなる閉ループLo5を流れる交流電流Iacのみとなる。次いで、インピーダンス測定装置1Bにおいても、インピーダンス測定装置1と同様にして、処理部5によって内部インピーダンスZbの演算処理(測定処理)が行われる。 At this time, similarly to the current cancellation device 10 in the impedance measurement device 1, the cancellation signal Sk output from the inverting amplifier circuit 43 is supplied across the winding W1, whereby the magnetic flux based on the cancellation signal Sk is A cancellation current Ik generated in the magnetic core Mc1 and having a current value corresponding to the magnitude of the magnetic flux is supplied to the load connection line L (closed loop Lo6) as a normal mode signal. As a result, in the load connection line L, the alternating current Iac and the noise current In and the canceling current Ik of the same current level and in opposite phase to the alternating current Iac and the noise current In cancel each other out, so that the load connection line The current levels of alternating current Iac and noise current In flowing through L (closed loop Lo6) are sufficiently reduced. Therefore, the alternating current flowing in the battery Bat is only the alternating current Iac flowing through the closed loop Lo5 composed of the battery Bat and the alternating current supply circuit 21 . Next, in the impedance measuring device 1B, similarly to the impedance measuring device 1, the processing unit 5 performs arithmetic processing (measurement processing) of the internal impedance Zb.
 次に、「インピーダンス測定装置」としてのインピーダンス測定装置1Cについて説明する。インピーダンス測定装置1Cは、図6に示すように、測定部2、非接触型電流センサ3、キャンセル信号注入部4、処理部5、出力部6およびバイパスコンデンサCbを備えて構成されて、インピーダンス測定装置1と同様にして、電流検出信号S1および電圧検出信号S2に基づいて電池Batの内部インピーダンスZbを測定する。 Next, the impedance measuring device 1C as an "impedance measuring device" will be described. As shown in FIG. 6, the impedance measuring device 1C includes a measuring section 2, a non-contact current sensor 3, a cancellation signal injection section 4, a processing section 5, an output section 6, and a bypass capacitor Cb. Similar to the device 1, the internal impedance Zb of the battery Bat is measured based on the current detection signal S1 and the voltage detection signal S2.
 バイパスコンデンサCbは、交流信号Sacやスイッチングノイズに対して十分に小さなインピーダンスとなるように、例えば、100μF程度の容量を有する積層コンデンサで構成されている、この場合、インピーダンス測定装置1Cによるインピーダンス測定系では、電池BatおよびバイパスコンデンサCbが接続ラインで接続されて閉ループLo7(第1の閉ループ)を形成し、かつバイパスコンデンサCbおよび負荷Loadが接続ラインで接続されて閉ループLo8(第2の閉ループ)を形成し、電流キャンセル装置10は、閉ループLo7を形成する接続ラインと閉ループLo8を形成する接続ラインとの2つの接続点Po1,Po2を結び、かつ閉ループLo8を形成する接続ラインを負荷接続ラインLとしてキャンセル信号Skを供給する。 The bypass capacitor Cb is composed of a multilayer capacitor having a capacity of, for example, about 100 μF so that the impedance is sufficiently small against the AC signal Sac and switching noise. , the battery Bat and the bypass capacitor Cb are connected by a connection line to form a closed loop Lo7 (first closed loop), and the bypass capacitor Cb and the load Load are connected by a connection line to form a closed loop Lo8 (second closed loop). The current cancellation device 10 connects the two connection points Po1 and Po2 of the connection line forming the closed loop Lo7 and the connection line forming the closed loop Lo8, and defines the connection line forming the closed loop Lo8 as the load connection line L. It supplies the cancel signal Sk.
 次に、インピーダンス測定装置1Cの動作について説明する。なお、測定対象としての電池Batの内部インピーダンスZbを測定する測定処理自体はインピーダンス測定装置1と同様のため、重複した説明を省略して異なる処理について説明する。まず、測定開始に先立ち、バイパスコンデンサCbの両出力部を接続点Po1,Po2に接続する。この場合、バイパスコンデンサCbの両出力部を接続点Po1,Po2に直接接続してもよいし、図示しないプローブを利用してバイパスコンデンサCbの両出力部を接続点Po1,Po2に接続してもよい。 Next, the operation of the impedance measuring device 1C will be described. Note that the measurement process itself for measuring the internal impedance Zb of the battery Bat as the object to be measured is the same as that of the impedance measuring apparatus 1, so redundant description will be omitted and different processes will be described. First, before starting measurement, both output portions of the bypass capacitor Cb are connected to the connection points Po1 and Po2. In this case, both outputs of the bypass capacitor Cb may be directly connected to the connection points Po1 and Po2, or may be connected to the connection points Po1 and Po2 using a probe (not shown). good.
 このインピーダンス測定装置1Cでは、インピーダンス測定装置1と同様にして、処理部5が、測定部2の交流電流供給回路21を制御して交流信号Sacを生成させる。この際には、交流電流供給回路21が、生成した交流信号SacをプローブP1,P2を介して電池Batの両端間に供給する。この場合、交流信号Sacに基づく交流電流Iacが、電池Bat、負荷Load、並びに電池Batおよび負荷Loadを接続する負荷接続ラインLからなる閉ループLo1と、電池BatおよびバイパスコンデンサCb並びに電池BatおよびバイパスコンデンサCbを接続する接続ラインからなる閉ループLo7と、プローブP1、電池Bat、プローブP2および交流電流供給回路21内の回路からなる閉ループLo2を流れる。しかしながら、交流電流Iac(交流信号Sac)の周波数に対するバイパスコンデンサCbのインピーダンスが十分に小さいため、接続点Po1および接続点Po2の間は、交流的に殆ど短絡した状態となる。したがって、交流電流Iacは、閉ループLo1,Lo7を殆ど流れず、閉ループLo2のみを流れることとなる。この結果、電池Bat内を流れる交流電流は、閉ループLo2を流れる交流電流Iacのみとなる。また、負荷Loadにおいてスイッチングノイズが発生していたとしても、ノイズ電流In(ノイズ信号)の周波数に対するバイパスコンデンサCbのインピーダンスが十分に小さいため、接続点Po1および接続点Po2の間は、交流的に殆ど短絡した状態となる。したがって、負荷Loadにおいて発生していたスイッチングノイズに基づくノイズ電流Inは、閉ループLo1を殆ど流れず、バイパスコンデンサCbおよび負荷Load並びにバイパスコンデンサCbおよび負荷Loadを接続する接続ラインからなる閉ループLo8も殆ど流れない。 In this impedance measuring device 1C, similarly to the impedance measuring device 1, the processing section 5 controls the AC current supply circuit 21 of the measuring section 2 to generate the AC signal Sac. At this time, the AC current supply circuit 21 supplies the generated AC signal Sac across the battery Bat via the probes P1 and P2. In this case, the alternating current Iac based on the alternating signal Sac is generated by a closed loop Lo1 consisting of the battery Bat, the load Load, and the load connection line L connecting the battery Bat and the load Load, the battery Bat and the bypass capacitor Cb, the battery Bat and the bypass capacitor Cb. It flows through a closed loop Lo7 consisting of a connection line connecting Cb and a closed loop Lo2 consisting of a circuit in the probe P1, battery Bat, probe P2 and the alternating current supply circuit 21. However, since the impedance of bypass capacitor Cb with respect to the frequency of AC current Iac (AC signal Sac) is sufficiently small, connection point Po1 and connection point Po2 are almost AC short-circuited. Therefore, the alternating current Iac hardly flows through the closed loops Lo1 and Lo7, and flows only through the closed loop Lo2. As a result, the alternating current flowing through the battery Bat is only the alternating current Iac flowing through the closed loop Lo2. Further, even if switching noise occurs in the load Load, since the impedance of the bypass capacitor Cb with respect to the frequency of the noise current In (noise signal) is sufficiently small, the connection point Po1 and the connection point Po2 are alternately switched. Almost short-circuited. Therefore, the noise current In based on the switching noise generated in the load Load hardly flows through the closed loop Lo1, and the closed loop Lo8 consisting of the connection line connecting the bypass capacitor Cb and the load Load and the bypass capacitor Cb and the load Load also hardly flows. do not have.
 この際に、インピーダンス測定装置1における電流キャンセル装置10と同様にして、反転増幅回路43から出力されたキャンセル信号Skが巻線W1の両端間に供給されることにより、キャンセル信号Skに基づく磁束が磁気コアMc1に発生すると共にその磁束の大きさに応じた電流値のキャンセル電流Ikがノーマルモード信号として負荷接続ラインL(閉ループLo8)に供給される。これにより、負荷接続ラインLでは、バイパスコンデンサCbによって電流レベルが十分に低下させられた交流電流Iacおよびノイズ電流Inと、交流電流Iacおよびノイズ電流Inとは逆位相で同じ電流レベルのキャンセル電流Ikとが、互いに相殺し合うことで、負荷接続ラインL(閉ループLo8)を流れる交流電流Iacおよびノイズ電流Inの電流レベルがさらに十分に低下する。したがって、電池Bat内を流れる交流電流は、閉ループLo2を流れる交流電流Iacのみとなる。次いで、インピーダンス測定装置1Cにおいても、インピーダンス測定装置1と同様にして、処理部5によって内部インピーダンスZbの演算処理(測定処理)が行われる。 At this time, similarly to the current cancellation device 10 in the impedance measurement device 1, the cancellation signal Sk output from the inverting amplifier circuit 43 is supplied across the winding W1, whereby the magnetic flux based on the cancellation signal Sk is A cancellation current Ik generated in the magnetic core Mc1 and having a current value corresponding to the magnitude of the magnetic flux is supplied to the load connection line L (closed loop Lo8) as a normal mode signal. As a result, in the load connection line L, the alternating current Iac and the noise current In whose current levels are sufficiently reduced by the bypass capacitor Cb and the canceling current Ik of the same current level and in opposite phase to the alternating current Iac and the noise current In cancel each other out, so that the current levels of the alternating current Iac and the noise current In flowing through the load connection line L (closed loop Lo8) further sufficiently decrease. Therefore, the alternating current flowing through the battery Bat is only the alternating current Iac flowing through the closed loop Lo2. Next, in the impedance measuring device 1C, similarly to the impedance measuring device 1, the processing unit 5 performs arithmetic processing (measurement processing) of the internal impedance Zb.
 次に、「インピーダンス測定装置」としてのインピーダンス測定装置1Dについて説明する。インピーダンス測定装置1Dは、図7に示すように、測定部2C、非接触型電流センサ3、キャンセル信号注入部4、処理部5および出力部6を備えて構成されて、インピーダンス測定装置1と同様にして、電流検出信号S1および電圧検出信号S2に基づいて電池Batの内部インピーダンスZbを測定する。この場合、測定部2Cは、交流電圧検出回路22を備えると共に、インピーダンス測定装置1における交流電流供給回路21に代えて、交流信号生成回路21A、供給回路25および非接触型電流センサ26を備えて構成されている。 Next, the impedance measuring device 1D as an "impedance measuring device" will be described. As shown in FIG. 7, the impedance measuring device 1D includes a measuring section 2C, a non-contact current sensor 3, a cancellation signal injection section 4, a processing section 5, and an output section 6. Then, the internal impedance Zb of the battery Bat is measured based on the current detection signal S1 and the voltage detection signal S2. In this case, the measurement unit 2C includes an AC voltage detection circuit 22, and an AC signal generation circuit 21A, a supply circuit 25, and a non-contact current sensor 26 instead of the AC current supply circuit 21 in the impedance measurement device 1. It is configured.
 交流信号生成回路21Aは、「交流信号生成回路」を構成すると共に供給回路25と相俟って「測定用信号供給部」を構成する。この交流信号生成回路21Aでは、交流信号Sacを生成する構成については、交流電流供給回路21と同様に構成され、生成した交流信号Sacを供給回路25に出力する構成、および電池Bat内を流れる交流電流Iacの電流値を測定しない構成だけが交流電流供給回路21と相違する。また、供給回路25は、上記の2つの接続点Po1,Po2を結び、かつ閉ループLo7(第1の閉ループ)を形成する負荷接続ラインL(接続ライン)が挿通される環状の磁気コアMc2(第2の磁気コア)と、磁気コアMc2に巻回された巻線W2(第2の巻線)とで構成されて、交流信号生成回路21Aによって生成された交流信号Sacが巻線W2の両端に供給されることで交流信号Sacを電池Batに供給する。この場合、磁気コアMc2は、上記した磁気コアMc1と同じ材料で構成されている。また、非接触型電流センサ26は、いわゆるクランプ型の電流センサであって、非接触型の電流検出部として機能する。この非接触型電流センサ26は、非接触型電流センサ3と同一に構成されており、負荷接続ラインLを流れる交流電流の電流値を負荷接続ラインL(負荷接続ラインLの芯線(導線))に対して非接触で検出して、検出した交流電流の電流値、周波数および位相を示すを示す電流検出信号S1を処理部5に出力する。 The AC signal generation circuit 21A constitutes an "AC signal generation circuit" and together with the supply circuit 25 constitutes a "measurement signal supply section". The AC signal generation circuit 21A has the same configuration as the AC current supply circuit 21 in terms of the configuration for generating the AC signal Sac. The only difference from the AC current supply circuit 21 is the configuration in which the current value of the current Iac is not measured. The supply circuit 25 connects the two connection points Po1 and Po2 and forms a closed loop Lo7 (first closed loop). 2 magnetic core) and a winding W2 (second winding) wound around the magnetic core Mc2. By being supplied, the AC signal Sac is supplied to the battery Bat. In this case, the magnetic core Mc2 is made of the same material as the magnetic core Mc1 described above. The non-contact current sensor 26 is a so-called clamp-type current sensor and functions as a non-contact current detection section. The non-contact current sensor 26 has the same configuration as the non-contact current sensor 3, and detects the current value of the alternating current flowing through the load connection line L (the core wire (conductor) of the load connection line L). , and outputs to the processing unit 5 a current detection signal S1 indicating the current value, frequency and phase of the detected alternating current.
 次に、インピーダンス測定装置1Dの動作について説明する。なお、測定対象としての電池Batの内部インピーダンスZbを測定する測定処理自体はインピーダンス測定装置1と同様のため、重複した説明を省略して異なる処理について説明する。まず、測定開始に先立ち、供給回路25,44に負荷接続ラインLを挿通すると共に電池Batと負荷Loadとを負荷接続ラインLで接続する。また、インピーダンス測定装置1Cを用いるときと同様にして、バイパスコンデンサCbの両出力部を接続点Po1,Po2に接続する。 Next, the operation of the impedance measuring device 1D will be explained. Note that the measurement process itself for measuring the internal impedance Zb of the battery Bat as the object to be measured is the same as that of the impedance measuring apparatus 1, so redundant description will be omitted and different processes will be described. First, prior to the start of measurement, the load connection line L is inserted through the supply circuits 25 and 44 and the load connection line L is connected between the battery Bat and the load Load. Further, both output portions of the bypass capacitor Cb are connected to the connection points Po1 and Po2 in the same manner as when using the impedance measuring device 1C.
 このインピーダンス測定装置1Dでは、処理部5が、測定部2の交流信号生成回路21Aを制御して交流信号Sacを生成させて供給回路25に出力させる。この場合、交流信号Sacが供給回路25の巻線W2の両端に供給されることにより、磁気コアMc2に挿通されている負荷接続ラインLに交流電流Iacが流れる。この際には、交流電流Iacが、電池Bat、負荷Load、並びに電池Batおよび負荷Loadを接続する負荷接続ラインLからなる閉ループLo1と、電池BatおよびバイパスコンデンサCb並びに電池BatおよびバイパスコンデンサCbを接続する接続ラインからなる閉ループLo7とを流れる。しかしながら、交流電流Iac(交流信号Sac)の周波数に対するバイパスコンデンサCbのインピーダンスが十分に小さいため、接続点Po1および接続点Po2の間は、交流的に殆ど短絡した状態となる。したがって、交流電流Iacは、閉ループLo1を殆ど流れず、閉ループLo7のみを流れることとなる。この結果、電池Bat内を流れる交流電流は、閉ループLo7を流れる交流電流Iacのみとなる。また、負荷Loadにおいてスイッチングノイズが発生していたとしても、ノイズ電流In(ノイズ信号)の周波数に対するバイパスコンデンサCbのインピーダンスが十分に小さいため、接続点Po1および接続点Po2の間は、交流的に殆ど短絡した状態となる。したがって、負荷Loadにおいて発生していたスイッチングノイズに基づくノイズ電流Inは、閉ループLo1を殆ど流れず、バイパスコンデンサCbおよび負荷Load並びにバイパスコンデンサCbおよび負荷Loadを接続する接続ラインからなる閉ループLo8も殆ど流れない。 In this impedance measuring device 1D, the processing unit 5 controls the AC signal generation circuit 21A of the measurement unit 2 to generate the AC signal Sac and output it to the supply circuit 25. In this case, the AC signal Sac is supplied to both ends of the winding W2 of the supply circuit 25, thereby causing the AC current Iac to flow through the load connection line L inserted through the magnetic core Mc2. At this time, the alternating current Iac connects the closed loop Lo1 consisting of the battery Bat, the load Load, and the load connection line L connecting the battery Bat and the load Load, the battery Bat and the bypass capacitor Cb, and the battery Bat and the bypass capacitor Cb. flow through a closed loop Lo7 consisting of a connection line that However, since the impedance of bypass capacitor Cb with respect to the frequency of AC current Iac (AC signal Sac) is sufficiently small, connection point Po1 and connection point Po2 are almost AC short-circuited. Therefore, the alternating current Iac hardly flows through the closed loop Lo1 and flows only through the closed loop Lo7. As a result, the alternating current flowing through the battery Bat is only the alternating current Iac flowing through the closed loop Lo7. Further, even if switching noise occurs in the load Load, since the impedance of the bypass capacitor Cb with respect to the frequency of the noise current In (noise signal) is sufficiently small, the connection point Po1 and the connection point Po2 are alternately switched. Almost short-circuited. Therefore, the noise current In based on the switching noise generated in the load Load hardly flows through the closed loop Lo1, and the closed loop Lo8 consisting of the connection line connecting the bypass capacitor Cb and the load Load and the bypass capacitor Cb and the load Load also hardly flows. do not have.
 この際に、インピーダンス測定装置1における電流キャンセル装置10と同様にして、反転増幅回路43から出力されたキャンセル信号Skが巻線W1の両端間に供給されることにより、キャンセル信号Skに基づく磁束が磁気コアMc1に発生すると共にその磁束の大きさに応じた電流値のキャンセル電流Ikがノーマルモード信号として負荷接続ラインL(閉ループLo8)に供給される。これにより、負荷接続ラインLでは、バイパスコンデンサCbによって電流レベルが十分に低下させられた交流電流Iacおよびノイズ電流Inと、交流電流Iacおよびノイズ電流Inとは逆位相で同じ電流レベルのキャンセル電流Ikとが、互いに相殺し合うことで、負荷接続ラインL(閉ループLo8)を流れる交流電流Iacおよびノイズ電流Inの電流レベルがさらに十分に低下する。したがって、電池Bat内を流れる交流電流は、閉ループLo7を流れる交流電流Iacのみとなる。次いで、インピーダンス測定装置1Dにおいても、インピーダンス測定装置1と同様にして、処理部5によって内部インピーダンスZbの演算処理(測定処理)が行われる。 At this time, similarly to the current cancellation device 10 in the impedance measurement device 1, the cancellation signal Sk output from the inverting amplifier circuit 43 is supplied across the winding W1, whereby the magnetic flux based on the cancellation signal Sk is A cancellation current Ik generated in the magnetic core Mc1 and having a current value corresponding to the magnitude of the magnetic flux is supplied to the load connection line L (closed loop Lo8) as a normal mode signal. As a result, in the load connection line L, the alternating current Iac and the noise current In whose current levels are sufficiently reduced by the bypass capacitor Cb and the canceling current Ik of the same current level and in opposite phase to the alternating current Iac and the noise current In cancel each other out, so that the current levels of the alternating current Iac and the noise current In flowing through the load connection line L (closed loop Lo8) further sufficiently decrease. Therefore, the alternating current flowing through the battery Bat is only the alternating current Iac flowing through the closed loop Lo7. Next, in the impedance measuring device 1D, similarly to the impedance measuring device 1, the processor 5 performs arithmetic processing (measurement processing) of the internal impedance Zb.
 以上のように、電流キャンセル装置10では、負荷Loadに接続されている負荷接続ラインLを流れる電流成分(ノイズ電流Inおよび交流電流Iac)を負荷接続ラインLに対して非接触で検出する非接触型電流センサ3と、非接触型電流センサ3によって検出される電流成分をキャンセルするキャンセル信号Skを生成すると共に生成したキャンセル信号Skを負荷接続ラインLに対して非接触で注入するキャンセル信号注入部4とを備えて構成されている。したがって、この電流キャンセル装置10によれば、負荷Loadにおいてスイッチングノイズが発生していたとしても、負荷接続ラインLを流れるノイズ電流Inを十分に低減させることができる。また、この電流キャンセル装置10によれば、負荷接続ラインLに大きな電流が流れたとしても、負荷接続ラインLを流れる電流を十分に低減させるため、大きな電流値の電流が流れることに起因する負荷Loadの故障を回避することができる。 As described above, the current cancellation device 10 detects the current components (the noise current In and the alternating current Iac) flowing through the load connection line L connected to the load Load without contacting the load connection line L. and a cancel signal injection unit that generates a cancel signal Sk for canceling the current component detected by the non-contact current sensor 3 and injects the generated cancel signal Sk into the load connection line L in a non-contact manner. 4. Therefore, according to the current cancellation device 10, even if switching noise occurs in the load Load, the noise current In flowing through the load connection line L can be sufficiently reduced. In addition, according to the current cancellation device 10, even if a large current flows through the load connection line L, the current flowing through the load connection line L is sufficiently reduced. Load failure can be avoided.
 また、電流キャンセル装置10では、キャンセル信号注入部4が、キャンセル信号Skを生成するキャンセル信号生成回路(増幅回路41、位相調整回路42および反転増幅回路43)と、キャンセル信号生成回路によって生成されたキャンセル信号Skを負荷接続ラインLに注入する注入回路44とを備えて構成され、キャンセル信号生成回路が、非接触型電流センサ3によって検出された電流成分を反転増幅すると共に位相調整してキャンセル信号Skとして注入回路44に出力する。したがって、この電流キャンセル装置10によれば、例えば、発振器を備えて、非接触型電流センサ3によって検出された電流成分とは逆位相で同じ信号レベルのキャンセル信号を発振器で生成する構成と比較して、簡易な構成でありながら、負荷接続ラインL上の電流成分を確実にキャンセルすることができる。 In the current cancellation device 10, the cancellation signal injection unit 4 includes a cancellation signal generation circuit (amplifier circuit 41, phase adjustment circuit 42, and inverting amplification circuit 43) that generates the cancellation signal Sk, and a cancellation signal generation circuit generated by the cancellation signal generation circuit. and an injection circuit 44 for injecting the cancel signal Sk into the load connection line L. The cancel signal generating circuit inverts and amplifies the current component detected by the non-contact current sensor 3 and adjusts the phase to generate the cancel signal. It is output to the injection circuit 44 as Sk. Therefore, according to the current cancellation device 10, for example, compared with a configuration in which an oscillator is provided and a cancellation signal having the same signal level as the current component detected by the non-contact type current sensor 3 is generated by the oscillator. Therefore, the current component on the load connection line L can be reliably canceled with a simple configuration.
 また、電流キャンセル装置10によれば、注入回路44は、負荷接続ラインLが挿通される磁気コアMc1と、磁気コアMc1に巻回された巻線W1とで構成されて、キャンセル信号生成回路(増幅回路41、位相調整回路42および反転増幅回路43)によって生成されたキャンセル信号Skが巻線W1の両端に供給されることでキャンセル信号Skを注入することにより、簡易な構成でありながら、負荷接続ラインL上の電流成分を確実にキャンセルすることができる。 Further, according to the current cancellation device 10, the injection circuit 44 includes the magnetic core Mc1 through which the load connection line L is inserted, and the winding W1 wound around the magnetic core Mc1. The cancellation signal Sk generated by the amplifier circuit 41, the phase adjustment circuit 42, and the inverting amplifier circuit 43) is supplied to both ends of the winding W1 to inject the cancellation signal Sk. The current component on the connection line L can be reliably canceled.
 また、電流キャンセル装置10によれば、磁気コアMc1にギャップG1を設けたことにより、負荷接続ラインLに注入するキャンセル信号Skのレベルを大きくしたとしても磁気コアMc1の磁気飽和を有効に回避することができる。 Further, according to the current cancellation device 10, by providing the gap G1 in the magnetic core Mc1, magnetic saturation of the magnetic core Mc1 can be effectively avoided even if the level of the cancellation signal Sk injected into the load connection line L is increased. be able to.
 また、インピーダンス測定装置1,1A,1B,1C,1Dでは、電流キャンセル装置10を備えて、測定対象(本例では、電池Bat)に交流信号Sacを供給する測定用信号供給部(交流電流供給回路21,21A、交流電子負荷23または交流バイポーラ電源24)と、電池Batの両端に生じている交流信号Sacの電圧値を検出して電圧検出信号S2を出力する交流電圧検出回路22と、測定用信号供給部から電池Batに供給される交流信号Sacの電流値(本例では、電流検出信号S1)および電圧検出信号S2によって示される交流信号Sacの電圧値に基づいて電池Batのインピーダンス(本例では、内部インピーダンスZb)を測定する処理部5とを備えて構成されている。したがって、このインピーダンス測定装置1,1A,1B,1C,1Dによれば、電流検出信号S1および電圧検出信号S2に対するノイズ電流Inの影響が回避されるため、電流検出信号S1や電圧検出信号S2の雑音レベル(N)に対する信号レベル(S)の比率(S/N)を高めることができ、これにより、演算回路57によって行われる内部インピーダンスZbの演算処理(測定処理)において、精度良く内部インピーダンスZbを測定することができる。また、このインピーダンス測定装置1,1A,1B,1C,1Dによれば、負荷接続ラインLに供給する交流信号Sacのレベル(交流電流Iacの電流値)を大きくしたとしても、電流キャンセル装置10が、閉ループLo1を流れる交流電流Iacを十分に低減させるため、大きな電流値の交流電流Iacが流れることに起因する負荷Loadの故障を回避することができる。 Further, each of the impedance measuring devices 1, 1A, 1B, 1C, and 1D includes a current cancellation device 10, and a measurement signal supply unit (alternating current supply unit) that supplies an alternating signal Sac to a measurement object (battery Bat in this example). circuits 21 and 21A, an AC electronic load 23 or an AC bipolar power supply 24), an AC voltage detection circuit 22 that detects the voltage value of an AC signal Sac generated across the battery Bat and outputs a voltage detection signal S2, and a measurement The impedance of the battery Bat (this In the example, it comprises a processing unit 5 for measuring the internal impedance Zb). Therefore, according to the impedance measuring devices 1, 1A, 1B, 1C, and 1D, the influence of the noise current In on the current detection signal S1 and the voltage detection signal S2 is avoided, so that the current detection signal S1 and the voltage detection signal S2 are It is possible to increase the ratio (S/N) of the signal level (S) to the noise level (N). can be measured. Further, according to the impedance measuring devices 1, 1A, 1B, 1C, and 1D, even if the level of the AC signal Sac supplied to the load connection line L (current value of the AC current Iac) is increased, the current cancellation device 10 , to sufficiently reduce the alternating current Iac flowing through the closed loop Lo1, it is possible to avoid failure of the load Load due to the flow of the alternating current Iac of a large current value.
 また、インピーダンス測定装置1,1Cによれば、電池Batおよび負荷Loadが負荷接続ラインLで接続されて閉ループLo1を形成し、交流電流供給回路21が、電池Batの両端間に交流信号Sacを供給するという簡易な構成のため、安価にインピーダンス測定装置1,1Cを構成することができる。 Further, according to the impedance measuring devices 1 and 1C, the battery Bat and the load Load are connected by the load connection line L to form a closed loop Lo1, and the AC current supply circuit 21 supplies the AC signal Sac across the battery Bat. The impedance measuring devices 1 and 1C can be configured at low cost due to the simple configuration of doing.
 また、インピーダンス測定装置1Aによれば、交流電子負荷23で測定用信号供給部を構成し、電池Batおよび交流電子負荷23は接続ラインで接続されて閉ループLo3を形成し、かつ交流電子負荷23および負荷Loadは接続ラインで接続されて閉ループLo4を形成し、電流キャンセル装置10が、閉ループLo3を形成する接続ラインと閉ループLo4を形成する接続ラインとの2つの接続点Po1,Po2を結び、かつ閉ループLo4を形成する接続ラインを負荷接続ラインLとしてキャンセル信号Skを供給することにより、交流電子負荷23によって交流信号Sacの信号レベルを高めることができるため、電流検出信号S1や電圧検出信号S2の雑音レベル(N)に対する信号レベル(S)の比率(S/N)を高めることができる結果、演算回路57によって行われる内部インピーダンスZbの演算処理(測定処理)において、精度良く内部インピーダンスZbを測定することができる。 According to the impedance measuring device 1A, the AC electronic load 23 constitutes the measurement signal supply unit, the battery Bat and the AC electronic load 23 are connected by a connection line to form a closed loop Lo3, and the AC electronic load 23 and The load Load is connected by a connection line to form a closed loop Lo4, the current cancellation device 10 connects two connection points Po1 and Po2 of the connection line forming the closed loop Lo3 and the connection line forming the closed loop Lo4, and the closed loop Since the signal level of the AC signal Sac can be increased by the AC electronic load 23 by supplying the cancellation signal Sk with the connection line forming Lo4 as the load connection line L, the noise of the current detection signal S1 and the voltage detection signal S2 As a result of being able to increase the ratio (S/N) of the signal level (S) to the level (N), the internal impedance Zb can be accurately measured in the arithmetic processing (measurement processing) of the internal impedance Zb performed by the arithmetic circuit 57. be able to.
 また、インピーダンス測定装置1Bによれば、交流バイポーラ電源24で測定用信号供給部を構成し、電池Batおよび交流バイポーラ電源24は接続ラインで接続されて閉ループLo5を形成し、かつ交流バイポーラ電源24および負荷Loadは接続ラインで接続されて閉ループLo6を形成し、電流キャンセル装置10が、閉ループLo5を形成する接続ラインと閉ループLo6を形成する接続ラインとの2つの接続点Po1,Po2を結び、かつ閉ループLo6を形成する接続ラインを負荷接続ラインLとしてキャンセル信号Skを供給することにより、交流バイポーラ電源24によって交流信号Sacの信号レベルを高めることができるため、電流検出信号S1や電圧検出信号S2の雑音レベル(N)に対する信号レベル(S)の比率(S/N)を高めることができる結果、演算回路57によって行われる内部インピーダンスZbの演算処理(測定処理)において、精度良く内部インピーダンスZbを測定することができる。 Further, according to the impedance measuring device 1B, the AC bipolar power supply 24 constitutes the measurement signal supply unit, the battery Bat and the AC bipolar power supply 24 are connected by a connection line to form a closed loop Lo5, and the AC bipolar power supply 24 and The load Load is connected by a connection line to form a closed loop Lo6, the current cancellation device 10 connects two connection points Po1 and Po2 of the connection line forming the closed loop Lo5 and the connection line forming the closed loop Lo6, and the closed loop Since the signal level of the AC signal Sac can be increased by the AC bipolar power supply 24 by supplying the cancellation signal Sk with the connection line forming Lo6 as the load connection line L, the noise of the current detection signal S1 and the voltage detection signal S2 As a result of being able to increase the ratio (S/N) of the signal level (S) to the level (N), the internal impedance Zb can be accurately measured in the arithmetic processing (measurement processing) of the internal impedance Zb performed by the arithmetic circuit 57. be able to.
 また、インピーダンス測定装置1C,1Dでは、バイパスコンデンサCbを備え、電池BatおよびバイパスコンデンサCbは接続ラインで接続されて閉ループLo7を形成し、かつバイパスコンデンサCbおよび負荷Loadは接続ラインで接続されて閉ループLo8を形成し、電流キャンセル装置10が、閉ループLo7を形成する接続ラインと閉ループLo8を形成する接続ラインとの2つの接続点Po1,Po2を結び、かつ閉ループLo8を形成する接続ラインを負荷接続ラインLとしてキャンセル信号Skを供給する。したがって、このインピーダンス測定装置1C,1Dによれば、バイパスコンデンサCbが、閉ループLo1を流れるノイズ電流Inを十分に低減させるため、電流検出信号S1および電圧検出信号S2に対するノイズ電流Inの影響が確実に回避される結果、演算回路57によって行われる内部インピーダンスZbの演算処理(測定処理)において、より精度良く内部インピーダンスZbを測定することができる。また、インピーダンス測定装置1C(またはインピーダンス測定装置1D)によれば、バイパスコンデンサCbが接続点Po1および接続点Po2の間を交流的に殆ど短絡した状態として交流電流Iacを閉ループLo2(または閉ループLo7)にだけ流すため、電池Bat内に供給する交流電流Iacの電流値を大きくすることができる結果、演算回路57によって行われる内部インピーダンスZbの演算処理(測定処理)において、雑音レベル(N)に対する信号レベル(S)の比率(S/N)を高めて、より精度良く内部インピーダンスZbを測定することができる。 Moreover, the impedance measuring devices 1C and 1D are provided with a bypass capacitor Cb, the battery Bat and the bypass capacitor Cb are connected by a connection line to form a closed loop Lo7, and the bypass capacitor Cb and the load Load are connected by a connection line to form a closed loop Lo7. The current cancellation device 10 connects the two connection points Po1 and Po2 of the connection line forming the closed loop Lo7 and the connection line forming the closed loop Lo8, and the connection line forming the closed loop Lo8 as the load connection line. As L, the cancel signal Sk is supplied. Therefore, according to the impedance measuring devices 1C and 1D, the bypass capacitor Cb sufficiently reduces the noise current In flowing through the closed loop Lo1. As a result of the avoidance, in the arithmetic processing (measurement processing) of the internal impedance Zb performed by the arithmetic circuit 57, the internal impedance Zb can be measured with higher accuracy. Further, according to the impedance measuring device 1C (or the impedance measuring device 1D), the bypass capacitor Cb is in a state in which the connection point Po1 and the connection point Po2 are almost AC-shorted, and the AC current Iac is applied to the closed loop Lo2 (or closed loop Lo7). , the current value of the alternating current Iac supplied to the battery Bat can be increased. By increasing the ratio (S/N) of the level (S), the internal impedance Zb can be measured with higher accuracy.
 また、インピーダンス測定装置1Dでは、測定用信号供給部(本例では、交流信号生成回路21Aおよび供給回路25)が、2つの接続点Po1,Po2を結び、かつ閉ループLo7を形成する接続ラインに対して非接触で交流信号Sacを供給する。また、インピーダンス測定装置1Dでは、測定用信号供給部(本例では、交流信号生成回路21Aおよび供給回路25)が、交流信号Sacを生成する交流信号生成回路21Aと、生成された交流信号Sacを供給する供給回路25とを備え、供給回路25が、2つの接続点Po1,Po2を結び、かつ閉ループLo7を形成する接続ラインが挿通される環状の磁気コアMc2と、磁気コアMc2に巻回された巻線W2とで構成されて、交流信号生成回路21Aによって生成された交流信号Sacが巻線W2の両端に供給されることで交流信号Sacを非接触で負荷接続ラインLに供給する。したがって、このインピーダンス測定装置1Dによれば、閉ループLo7を形成する接続ラインを絶縁被覆電線で構成した場合であっても、絶縁被覆電線の被覆を剥がすことなく交流信号Sacを供給することができる。 Further, in the impedance measuring device 1D, the measurement signal supply unit (in this example, the AC signal generation circuit 21A and the supply circuit 25) connects the two connection points Po1 and Po2 to the connection line forming the closed loop Lo7. supplies the AC signal Sac in a non-contact manner. Further, in the impedance measuring device 1D, the measurement signal supply unit (in this example, the AC signal generation circuit 21A and the supply circuit 25) includes the AC signal generation circuit 21A that generates the AC signal Sac and the generated AC signal Sac. The supply circuit 25 connects the two connection points Po1 and Po2, and the annular magnetic core Mc2 through which the connection line forming the closed loop Lo7 is inserted, and the magnetic core Mc2 is wound around the magnetic core Mc2. The AC signal Sac generated by the AC signal generating circuit 21A is supplied to both ends of the winding W2, thereby supplying the AC signal Sac to the load connection line L in a non-contact manner. Therefore, according to the impedance measuring device 1D, even when the connection line forming the closed loop Lo7 is composed of an insulation-coated wire, the AC signal Sac can be supplied without stripping the insulation-coated wire.
 また、インピーダンス測定装置1Dによれば、磁気コアMc2にギャップG2を設けたことにより、負荷接続ラインLに供給する交流信号Sacのレベル(交流電流Iacの電流値)を大きくしたとしても、磁気コアMc2の磁気飽和を有効に回避することができる。 Further, according to the impedance measuring device 1D, by providing the gap G2 in the magnetic core Mc2, even if the level of the AC signal Sac (current value of the AC current Iac) supplied to the load connection line L is increased, the magnetic core Magnetic saturation of Mc2 can be effectively avoided.
 また、インピーダンス測定装置1,1A,1B,1C,1Dによれば、処理部5の演算回路57が、直交検波回路55から出力される交流信号Sac(電流検出信号S1)の同相成分および直交成分と、直交検波回路56から出力される交流信号Sac(電圧検出信号S2)の同相成分および直交成分とに基づいて測定対象としての電池Batの内部インピーダンスZbを演算することにより、負荷接続ラインLに供給された交流信号Sacの信号レベルが小さいときであっても、ノイズレベル(N)に対する信号レベル(S)の比率(S/N)を高めて精度良く内部インピーダンスZbを測定することができる。 Further, according to the impedance measuring devices 1, 1A, 1B, 1C, and 1D, the arithmetic circuit 57 of the processing unit 5 detects the in-phase component and the quadrature component of the AC signal Sac (current detection signal S1) output from the quadrature detection circuit 55. and the in-phase component and the quadrature component of the AC signal Sac (voltage detection signal S2) output from the quadrature detection circuit 56, the internal impedance Zb of the battery Bat to be measured is calculated. Even when the signal level of the supplied AC signal Sac is small, the ratio (S/N) of the signal level (S) to the noise level (N) can be increased to accurately measure the internal impedance Zb.
 また、インピーダンス測定装置1,1A,1B,1C,1Dによれば、各A/D変換回路51~53の動作クロックであるクロック信号CL1と、反転増幅回路43における終段のD級増幅回路の動作クロックであるクロック信号CL2とが互いに同期しているため、反転増幅回路43のクロック信号CL2が負荷接続ラインLに重畳したり電波伝搬したりしたとしても、クロック信号CL2に起因するノイズが各A/D変換回路51~53によって十分に低減されるため、演算回路57によって行われる内部インピーダンスZbの演算処理(測定処理)において、さらに精度良く内部インピーダンスZbを測定することができる。 Further, according to the impedance measuring apparatuses 1, 1A, 1B, 1C, and 1D, the clock signal CL1, which is the operation clock of each of the A/D conversion circuits 51 to 53, and the class D amplifier circuit at the final stage of the inverting amplifier circuit 43 Since the clock signal CL2, which is an operating clock, is synchronized with each other, even if the clock signal CL2 of the inverting amplifier circuit 43 is superimposed on the load connection line L or propagates by radio waves, noise caused by the clock signal CL2 is Since it is sufficiently reduced by the A/D conversion circuits 51 to 53, the internal impedance Zb can be measured with higher accuracy in the arithmetic processing (measurement processing) of the internal impedance Zb performed by the arithmetic circuit 57. FIG.
 なお、「電流キャンセル装置」および「インピーダンス測定装置」の構成については、上記の例に限らず、適宜変更が可能である、例えば、図8に示すように、注入回路44に代えて、空芯コイルACで注入回路44Aを構成することもできる。この場合、注入回路44Aは、負荷接続ラインLが挿通されて、反転増幅回路43によって生成されたキャンセル信号Skが空芯コイルACの両端に供給されることで負荷接続ラインLにキャンセル信号Skを供給する。この構成を有する電流キャンセル装置10およびインピーダンス測定装置1,1A,1B,1C,1Dによれば、簡易な構成でありながら、キャンセル信号Skを負荷接続ラインLに確実に注入することができる。 The configurations of the "current cancellation device" and the "impedance measurement device" are not limited to the above examples, and can be modified as appropriate. For example, instead of the injection circuit 44, as shown in FIG. Injection circuit 44A can also be configured with coil AC. In this case, the load connection line L is inserted into the injection circuit 44A, and the cancel signal Sk generated by the inverting amplifier circuit 43 is supplied to both ends of the air-core coil AC, thereby transmitting the cancel signal Sk to the load connection line L. supply. According to the current cancellation device 10 and the impedance measurement devices 1, 1A, 1B, 1C, and 1D having this configuration, the cancellation signal Sk can be reliably injected into the load connection line L with a simple configuration.
 また、図9に示すように、注入回路25に代えて、空芯コイルACで注入回路25Aを構成することもできる。この場合、供給回路25Aは、上記の2つの接続点Po1,Po2を結び、かつ閉ループLo7を形成する接続ライン(負荷接続ラインL)が挿通されて、交流電流供給回路21Aによって生成された交流信号Sacが空芯コイルACの両端に供給されることで電池Batに交流信号Sac(交流電流Iac)を供給する。この構成を有するインピーダンス測定装置1Dによれば、簡易な構成でありながら、交流信号Sacを負荷接続ラインLに確実に供給することができる。 Also, as shown in FIG. 9, instead of the injection circuit 25, an injection circuit 25A can be configured with an air-core coil AC. In this case, the supply circuit 25A is inserted with a connection line (load connection line L) connecting the two connection points Po1 and Po2 and forming a closed loop Lo7, and the AC signal generated by the AC current supply circuit 21A is inserted. The AC signal Sac (AC current Iac) is supplied to the battery Bat by supplying Sac to both ends of the air-core coil AC. According to the impedance measuring device 1D having this configuration, it is possible to reliably supply the AC signal Sac to the load connection line L while having a simple configuration.
 なお、電流キャンセル装置10は、インピーダンス測定装置への適用に限らず、負荷接続ラインLを流れる電流成分をキャンセルする必要のある各種の計測器に適用が可能である。また、インピーダンス測定装置は、電池Batの内部インピーダンスZbや電池Batの電池セルの内部インピーダンスの測定に限らず、各種の電池を初めとして、各種測定対象のインピーダンスを測定することができる。例えば、水を電気分解して水素を製造する水電解セルを測定対象として、水電解セルと、負荷Loadに代えて水電解セル用の電源とを負荷接続ラインLで接続した閉ループにおいて、水電解セルの陽極と陰極とに一対のプローブを接続して水電解セルの内部インピーダンスを測定することもできる。 It should be noted that the current cancellation device 10 can be applied not only to the impedance measurement device, but also to various measuring instruments that need to cancel the current component flowing through the load connection line L. Moreover, the impedance measuring device can measure not only the internal impedance Zb of the battery Bat and the internal impedance of the battery cells of the battery Bat, but also the impedance of various measurement objects including various batteries. For example, in a closed loop in which a water electrolysis cell that produces hydrogen by electrolyzing water is used as a measurement target, and a power supply for the water electrolysis cell instead of the load Load is connected by a load connection line L, water electrolysis is performed. The internal impedance of the water electrolysis cell can also be measured by connecting a pair of probes to the anode and cathode of the cell.
 また、非接触型電流センサ3や非接触型電流センサ26に代えて、負荷接続ラインL中にカレントトランスや電流検出用抵抗などを配設して電流成分や交流電流Iacの電流値を検出する構成を採用することができる。 Further, instead of the non-contact current sensor 3 and the non-contact current sensor 26, a current transformer, a current detection resistor, or the like is arranged in the load connection line L to detect the current component and the current value of the alternating current Iac. configuration can be employed.
 また、インピーダンス測定装置1,1A,1B,1C,1Dにおいて、電池Batの内部インピーダンスZbなどのインピーダンスの演算をデジタル処理で行う例について説明したが、交流基準信号Sr、電流検出信号S1および電圧検出信号S2に基づいて、アナログ回路によるアナログ演算でインピーダンスを求める構成を採用することもできる。 Moreover, in the impedance measuring devices 1, 1A, 1B, 1C, and 1D, an example of performing digital processing for calculating the impedance such as the internal impedance Zb of the battery Bat has been described. It is also possible to employ a configuration in which the impedance is calculated by an analog circuit based on the signal S2.
 なお、図示はしないが、インピーダンス測定装置1,1A,1B,1C,1Dにおいて、負荷接続ラインLを電池Batの直流電流などが流れて非接触型電流センサ3や非接触型電流センサ26の磁気飽和などを招くおそれのあるときには、負荷接続ラインLを流れる直流電流を相殺する直流電流キャンセル回路を備えて構成することもできる。 Although not shown, in the impedance measuring devices 1, 1A, 1B, 1C, and 1D, the direct current of the battery Bat flows through the load connection line L, and the magnetism of the non-contact current sensor 3 and the non-contact current sensor 26 is detected. A DC current canceling circuit for canceling the DC current flowing through the load connection line L may be provided when there is a risk of saturation or the like.
 本願発明によれば、電流キャンセル装置は負荷に接続されている負荷接続ラインを流れる電流成分のレベルを低減すると共に負荷接続ラインに供給する交流信号のレベルを大きくしたときに負荷の故障を回避することができ、そのような電流キャンセル装置を備えたインピーダンス測定装置は負荷接続ラインに直列接続されている測定対象のインピーダンスを確実かつ正確に測定することができる。これにより、本願発明は、このような電流キャンセル装置や、インピーダンス測定を行うインピーダンス測定装置に広く適用することができる。 According to the present invention, the current cancellation device reduces the level of the current component flowing through the load connection line connected to the load and avoids failure of the load when increasing the level of the AC signal supplied to the load connection line. An impedance measuring device equipped with such a current cancellation device can reliably and accurately measure the impedance of a measurement object connected in series with a load connection line. As a result, the present invention can be widely applied to such current cancellation devices and impedance measurement devices that measure impedance.
   1,1A~1D インピーダンス測定装置
   2,2A~2C 測定部
  21,21A 交流電流供給回路
  22 交流電圧検出回路
  23 交流電子負荷
  24 交流バイポーラ電源
  25,25A 注入回路
  26 非接触型電流センサ
   3 非接触型電流センサ
   4 キャンセル信号注入部
  41 増幅回路
  42 位相調整回路
  43 反転増幅回路
  44,44A 注入回路
   5 処理部
  51 A/D変換回路
  52 A/D変換回路
  53 A/D変換回路
  54 移相回路
  55 直交検波回路
  56 直交検波回路
  57 演算回路
  58 内部メモリ
  59 クロック生成回路
   6 出力部
  AC 空芯コイル
 Bat 電池
 CL1,CL2 クロック信号
  G1,G2 ギャップ
  Ik キャンセル電流
Load 負荷
 Mc1,Mc2 磁気コア
  S1 電流検出信号
  S2 電圧検出信号
  Sk キャンセル信号
  Sn ノイズ信号
  Sr 交流基準信号
  Zb 内部インピーダンス
  W1,W2 巻線
1, 1A to 1D impedance measuring device 2, 2A to 2C measuring part 21, 21A AC current supply circuit 22 AC voltage detection circuit 23 AC electronic load 24 AC bipolar power supply 25, 25A injection circuit 26 non-contact type current sensor 3 non-contact type Current sensor 4 Cancel signal injection unit 41 Amplifier circuit 42 Phase adjustment circuit 43 Inverting amplifier circuit 44, 44A Injection circuit 5 Processing unit 51 A/D conversion circuit 52 A/D conversion circuit 53 A/D conversion circuit 54 Phase shift circuit 55 Quadrature Detection circuit 56 Quadrature detection circuit 57 Arithmetic circuit 58 Internal memory 59 Clock generation circuit 6 Output part AC Air core coil Bat Battery CL1, CL2 Clock signal G1, G2 Gap Ik Cancel current Load Load Mc1, Mc2 Magnetic core S1 Current detection signal S2 Voltage Detection signal Sk Cancel signal Sn Noise signal Sr AC reference signal Zb Internal impedance W1, W2 Winding

Claims (17)

  1.  負荷に接続されている負荷接続ラインを流れる電流成分を当該負荷接続ラインに対して非接触で検出する電流成分検出部と、前記電流成分検出部によって検出される前記電流成分をキャンセルするキャンセル信号を生成すると共に当該生成したキャンセル信号を前記負荷接続ラインに対して非接触で注入するキャンセル信号注入部とを備えている電流キャンセル装置。 A current component detector that detects a current component flowing through a load connection line connected to a load without contacting the load connection line, and a cancel signal that cancels the current component detected by the current component detector. and a cancel signal injection unit that generates and injects the generated cancel signal into the load connection line in a non-contact manner.
  2.  前記キャンセル信号注入部は、前記キャンセル信号を生成するキャンセル信号生成回路と、前記キャンセル信号生成回路によって生成された前記キャンセル信号を前記負荷接続ラインに注入する注入回路とを備えて構成され、
     前記キャンセル信号生成回路は、前記電流成分検出部によって検出された前記電流成分を増幅すると共に位相調整して前記キャンセル信号として前記注入回路に出力する請求項1記載の電流キャンセル装置。
    The cancel signal injection unit includes a cancel signal generation circuit that generates the cancel signal, and an injection circuit that injects the cancel signal generated by the cancel signal generation circuit into the load connection line,
    2. The current cancellation device according to claim 1, wherein the cancellation signal generation circuit amplifies the current component detected by the current component detection unit, adjusts the phase of the current component, and outputs the amplified current component as the cancellation signal to the injection circuit.
  3.  前記注入回路は、前記負荷接続ラインが挿通される環状の第1の磁気コアと、前記第1の磁気コアに巻回された第1の巻線とで構成されて、前記キャンセル信号生成回路によって生成された前記キャンセル信号が前記巻線の両端に供給されることで前記キャンセル信号を注入する請求項2記載の電流キャンセル装置。 The injection circuit includes a first annular magnetic core through which the load connection line is inserted, and a first winding wound around the first magnetic core. 3. The current cancellation device according to claim 2, wherein the cancellation signal is injected by supplying the generated cancellation signal to both ends of the winding.
  4.  前記第1の磁気コアは、ギャップが設けられている請求項3記載の電流キャンセル装置。 The current cancellation device according to claim 3, wherein the first magnetic core is provided with a gap.
  5.  前記キャンセル信号注入部は、前記キャンセル信号を生成するキャンセル信号生成回路と、前記キャンセル信号生成回路によって生成された前記キャンセル信号を前記負荷接続ラインに注入する注入回路とを備えて構成され、
     前記注入回路は、前記負荷接続ラインが挿通される空芯コイルで構成され、前記キャンセル信号生成回路によって生成された前記キャンセル信号が前記空芯コイルの両端に供給されることで前記負荷接続ラインに前記キャンセル信号を注入する請求項2記載の電流キャンセル装置。
    The cancel signal injection unit includes a cancel signal generation circuit that generates the cancel signal, and an injection circuit that injects the cancel signal generated by the cancel signal generation circuit into the load connection line,
    The injection circuit is composed of an air-core coil through which the load connection line is inserted, and the cancellation signal generated by the cancellation signal generation circuit is supplied to both ends of the air-core coil, thereby supplying the load connection line with the cancellation signal. 3. The current cancellation device according to claim 2, wherein said cancellation signal is injected.
  6.  請求項1から5のいずれかに記載の電流キャンセル装置を備えて、前記負荷接続ラインに直列接続されている測定対象のインピーダンスを測定するインピーダンス測定装置であって、
     測定用の交流信号を生成すると共に前記測定対象に前記交流信号を供給する測定用信号供給部と、
     前記測定対象の両端に生じている前記交流電圧の電圧値を当該両端に接触して検出して電圧検出信号を出力する電圧検出部と、
     前記電圧検出信号を入力すると共に前記測定用信号供給部から前記測定対象に供給される前記交流信号の電流値および当該当該電圧検出信号によって示される前記交流電圧の電圧値に基づいて前記測定対象のインピーダンスを測定する処理部とを備えて構成されているインピーダンス測定装置。
    An impedance measuring device comprising the current cancellation device according to any one of claims 1 to 5 and measuring impedance of a measurement target connected in series with the load connection line,
    a measurement signal supply unit that generates an AC signal for measurement and supplies the AC signal to the object to be measured;
    a voltage detection unit that detects the voltage value of the AC voltage generated at both ends of the object to be measured by contacting the both ends and outputs a voltage detection signal;
    When the voltage detection signal is input, the measurement target is measured based on the current value of the AC signal supplied from the measurement signal supply unit to the measurement target and the voltage value of the AC voltage indicated by the voltage detection signal. and a processor for measuring impedance.
  7.  前記測定対象および前記負荷が前記負荷接続ラインで接続されて閉ループを形成し、
     前記測定用信号供給部は、前記測定対象の両端間に前記交流電流を供給する請求項6記載のインピーダンス測定装置。
    the object to be measured and the load are connected by the load connection line to form a closed loop;
    7. The impedance measuring device according to claim 6, wherein the measurement signal supply unit supplies the alternating current across the object to be measured.
  8.  前記測定対象は電池であって、
     前記測定用信号供給部は、前記電池の畜電力を交流変換する交流電子負荷で構成されると共に当該交流変換によって生成される交流信号を前記測定用の交流信号として供給し、
     前記測定対象および前記測定用信号供給部は接続ラインで接続されて第1の閉ループを形成し、かつ前記測定用信号供給部および前記負荷は接続ラインで接続されて第2の閉ループを形成し、
     前記電流キャンセル装置は、前記第1の閉ループを形成する前記接続ラインと前記第2の閉ループを形成する前記接続ラインとの2つの接続点を結び、かつ前記第2の閉ループを形成する前記接続ラインを前記負荷接続ラインとして前記キャンセル信号を注入する請求項6記載のインピーダンス測定装置。
    The object to be measured is a battery,
    The measurement signal supply unit is composed of an AC electronic load that converts the stored power of the battery into an AC signal, and supplies an AC signal generated by the AC conversion as the AC signal for measurement,
    The object to be measured and the measurement signal supply unit are connected by a connection line to form a first closed loop, and the measurement signal supply unit and the load are connected by a connection line to form a second closed loop,
    The current cancellation device connects two connection points of the connection line forming the first closed loop and the connection line forming the second closed loop, and the connection line forming the second closed loop. 7. The impedance measuring apparatus according to claim 6, wherein the cancellation signal is injected as the load connection line.
  9.  前記測定用信号供給部は、前記交流信号を生成するバイポーラ電源で構成され、
     前記測定対象および前記測定用信号供給部は接続ラインで接続されて第1の閉ループを形成し、かつ前記測定用信号供給部および前記負荷は接続ラインで接続されて第2の閉ループを形成し、
     前記電流キャンセル装置は、前記第1の閉ループを形成する前記接続ラインと前記第2の閉ループを形成する前記接続ラインとの2つの接続点を結び、かつ前記第2の閉ループを形成する前記接続ラインを前記負荷接続ラインとして前記キャンセル信号を注入する請求項6記載のインピーダンス測定装置。
    The measurement signal supply unit is composed of a bipolar power supply that generates the AC signal,
    The object to be measured and the measurement signal supply unit are connected by a connection line to form a first closed loop, and the measurement signal supply unit and the load are connected by a connection line to form a second closed loop,
    The current cancellation device connects two connection points of the connection line forming the first closed loop and the connection line forming the second closed loop, and the connection line forming the second closed loop. 7. The impedance measuring apparatus according to claim 6, wherein the cancellation signal is injected as the load connection line.
  10.  バイパスコンデンサを備え、
     前記測定対象および前記バイパスコンデンサは接続ラインで接続されて第1の閉ループを形成し、かつ前記バイパスコンデンサおよび前記負荷は接続ラインで接続されて第2の閉ループを形成し、
     前記電流キャンセル装置は、前記第1の閉ループを形成する前記接続ラインと前記第2の閉ループを形成する前記接続ラインとの2つの接続点を結び、かつ前記第2の閉ループを形成する前記接続ラインを前記負荷接続ラインとして前記キャンセル信号を注入する請求項6記載のインピーダンス測定装置。
    with a bypass capacitor,
    the object to be measured and the bypass capacitor are connected by a connection line to form a first closed loop, and the bypass capacitor and the load are connected by a connection line to form a second closed loop;
    The current cancellation device connects two connection points of the connection line forming the first closed loop and the connection line forming the second closed loop, and the connection line forming the second closed loop. 7. The impedance measuring apparatus according to claim 6, wherein the cancellation signal is injected as the load connection line.
  11.  前記測定用信号供給部は、前記2つの接続点を結び、かつ前記第1の閉ループを形成する前記接続ラインに対して非接触で前記交流信号を供給する請求項10記載のインピーダンス測定装置。 11. The impedance measuring device according to claim 10, wherein said measurement signal supply unit supplies said AC signal in a non-contact manner to said connection line connecting said two connection points and forming said first closed loop.
  12.  前記測定用信号供給部は、前記交流信号を生成する交流信号生成回路と、前記交流信号生成回路によって生成された前記交流信号を供給する供給回路とを備え、
     前記供給回路は、前記2つの接続点を結び、かつ前記第1の閉ループを形成する前記接続ラインが挿通される環状の第2の磁気コアと、前記第2の磁気コアに巻回された第2の巻線とで構成されて、前記交流信号生成回路によって生成された前記交流信号が前記第2の巻線の両端に供給されることで前記交流信号を供給する請求項11記載のインピーダンス測定装置。
    The measurement signal supply unit includes an AC signal generation circuit that generates the AC signal, and a supply circuit that supplies the AC signal generated by the AC signal generation circuit,
    The supply circuit includes a second annular magnetic core through which the connection line connecting the two connection points and forming the first closed loop is inserted, and a second magnetic core wound around the second magnetic core. 12. The impedance measurement of claim 11, wherein the AC signal generated by the AC signal generating circuit is applied across the second winding to provide the AC signal. Device.
  13.  前記第2の磁気コアは、ギャップが設けられている請求項12記載のインピーダンス測定装置。 The impedance measuring device according to claim 12, wherein the second magnetic core is provided with a gap.
  14.  前記測定用信号供給部は、前記交流信号を生成する交流信号生成回路と、前記交流信号生成回路によって生成された前記交流信号を供給する供給回路とを備えて構成され、
     前記供給回路は、前記2つの接続点を結び、かつ前記第1の閉ループを形成する前記接続ラインが挿通される空芯コイルで構成され、前記交流信号生成回路によって生成された前記交流信号が前記空芯コイルの両端に供給されることで前記測定対象に前記交流信号を供給する請求項11記載のインピーダンス測定装置。
    The measurement signal supply unit includes an AC signal generation circuit that generates the AC signal, and a supply circuit that supplies the AC signal generated by the AC signal generation circuit,
    The supply circuit connects the two connection points and is composed of an air-core coil through which the connection line forming the first closed loop is inserted, and the AC signal generated by the AC signal generation circuit is the 12. The impedance measuring device according to claim 11, wherein the AC signal is supplied to the object to be measured by being supplied to both ends of an air-core coil.
  15.  前記測定用信号供給部は、前記測定対象の両端間に前記交流電流を供給する請求項10記載のインピーダンス測定装置。 11. The impedance measuring device according to claim 10, wherein the measurement signal supply unit supplies the alternating current across the object to be measured.
  16.  前記測定対象に供給される前記交流信号の前記電流値を検出して電流検出信号として前記処理部に出力する電流検出部を備え、
     前記処理部は、前記交流信号を入力すると共に前記電流検出信号を直交検波して交流電流の同相成分および直交成分を生成する第1直交検波回路と、前記交流信号を入力すると共に前記電圧検出信号を直交検波して交流電圧の同相成分および直交成分を生成する第2直交検波回路と、
     前記第1直交検波回路から出力される前記交流電流の同相成分および直交成分と、前記第2直交検波回路から出力される前記交流電圧の同相成分および直交成分とに基づいて前記測定対象のインピーダンスを演算する演算回路とを備えている請求項6から15のいずれかに記載のインピーダンス測定装置。
    a current detection unit that detects the current value of the AC signal supplied to the measurement target and outputs the current value as a current detection signal to the processing unit;
    The processing unit includes: a first quadrature detection circuit that receives the AC signal and quadrature-detects the current detection signal to generate an in-phase component and a quadrature component of the AC current; and a first quadrature detection circuit that receives the AC signal and the voltage detection signal. a second quadrature detection circuit that quadrature-detects the AC voltage to generate an in-phase component and a quadrature component of the AC voltage;
    The impedance of the object to be measured is determined based on the in-phase component and quadrature component of the alternating current output from the first quadrature detection circuit and the in-phase component and quadrature component of the ac voltage output from the second quadrature detection circuit. 16. The impedance measuring device according to any one of claims 6 to 15, further comprising an arithmetic circuit for arithmetic operation.
  17.  前記電流キャンセル装置の前記キャンセル信号注入部は、終段としてのD級増幅回路を備え、当該D級増幅回路によって増幅した前記キャンセル信号を注入し、
     前記電流検出部によって検出された前記電流検出信号をアナログディジタル変換して電流データとして前記処理部に出力するA/D変換回路、および前記電圧検出部によって検出された電圧検出信号をアナログディジタル変換して電圧データとして前記処理部に出力するA/D変換回路を備え、
     前記各A/D変換回路は、前記測定用信号供給部の前記D級増幅回路の動作クロックと共通の動作クロックに同期して前記アナログディジタル変換を実行する請求項16記載のインピーダンス測定装置。
    The cancel signal injection unit of the current cancellation device includes a class D amplifier circuit as a final stage, and injects the cancel signal amplified by the class D amplifier circuit,
    an A/D conversion circuit for analog-to-digital converting the current detection signal detected by the current detection unit and outputting it as current data to the processing unit; and analog-to-digital conversion for the voltage detection signal detected by the voltage detection unit. an A/D conversion circuit for outputting to the processing unit as voltage data,
    17. The impedance measuring apparatus according to claim 16, wherein each A/D conversion circuit performs the analog-to-digital conversion in synchronization with an operation clock common to the operation clock of the class D amplifier circuit of the measurement signal supply section.
PCT/JP2022/029876 2021-08-06 2022-08-04 Electric current cancellation device and impedance measurement device WO2023013713A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021129591A JP2023023772A (en) 2021-08-06 2021-08-06 Current cancellation device and impedance measurement device
JP2021-129591 2021-08-06

Publications (1)

Publication Number Publication Date
WO2023013713A1 true WO2023013713A1 (en) 2023-02-09

Family

ID=85155791

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/029876 WO2023013713A1 (en) 2021-08-06 2022-08-04 Electric current cancellation device and impedance measurement device

Country Status (2)

Country Link
JP (1) JP2023023772A (en)
WO (1) WO2023013713A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150168500A1 (en) * 2013-12-16 2015-06-18 Battelle Energy Alliance, Llc Circuits and methods for impedance determination using active measurement cancelation
JP2017058176A (en) * 2015-09-15 2017-03-23 日置電機株式会社 Impedance measurement device and method for measuring impedance
JP2017512372A (en) * 2014-02-12 2017-05-18 ブルーム エネルギー コーポレイション STRUCTURE AND METHOD FOR FUEL CELL SYSTEM WITH MULTIPLE FUEL CELLS AND POWER ELECTRONICS POWERING A LOAD IN PARALLEL CONSIDERING INTEGRATED ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY
KR102133498B1 (en) * 2020-03-17 2020-07-13 울산과학기술원 Active compensation device for using parallel aplifier

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150168500A1 (en) * 2013-12-16 2015-06-18 Battelle Energy Alliance, Llc Circuits and methods for impedance determination using active measurement cancelation
JP2017512372A (en) * 2014-02-12 2017-05-18 ブルーム エネルギー コーポレイション STRUCTURE AND METHOD FOR FUEL CELL SYSTEM WITH MULTIPLE FUEL CELLS AND POWER ELECTRONICS POWERING A LOAD IN PARALLEL CONSIDERING INTEGRATED ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY
JP2017058176A (en) * 2015-09-15 2017-03-23 日置電機株式会社 Impedance measurement device and method for measuring impedance
KR102133498B1 (en) * 2020-03-17 2020-07-13 울산과학기술원 Active compensation device for using parallel aplifier

Also Published As

Publication number Publication date
JP2023023772A (en) 2023-02-16

Similar Documents

Publication Publication Date Title
Buticchi et al. Detection method of the DC bias in distribution power transformers
JP6457026B2 (en) Current measuring device and current measuring method
Chen et al. Interference‐rejecting current measurement method with tunnel magnetoresistive magnetic sensor array
CN113866477A (en) Four-magnetic-core six-coil magnetic modulation high-precision ultra-large aperture current detection method and system
Rietveld et al. Accurate DC current ratio measurements for primary currents up to 600 A
van den Brom et al. Sampling Current Ratio Measurement System for Calibration of Current Transducers up to 10 kA With $5\cdot 10^{\mathrm {-6}} $ Uncertainty
WO2023013713A1 (en) Electric current cancellation device and impedance measurement device
Zhang et al. Design and test of a new high-current electronic current transformer with a Rogowski coil
JP5998824B2 (en) AC loss measurement method for superconducting coils
CN116930589A (en) AC/DC multi-air gap magnetic resistance current sensor and current measuring method
WO2022249709A1 (en) Impedance measurement device
Rietveld et al. High-current CT calibration using a sampling current ratio bridge
Trinchera et al. A digitally assisted current comparator bridge for impedance scaling at audio frequencies
CN103339515B (en) For the method and apparatus of linearization transformer
US20230184812A1 (en) Residual current monitoring type b with integrated self-test system and method
JP2018031672A (en) Power measurement system, power measurement sub-system, and determination method
WO2022249708A1 (en) Signal injection device and impedance measurement device
JP2022180295A (en) Signal injection device and impedance measurement device
Xiang et al. Impact of Careless Current Transformer Position on Current Measurement
Harano et al. Development of a wideband high-precision current sensor for next generation power electronics applications
Djokić et al. Calibration of Electrical Instruments Under Nonsinusoidal Conditions at NRC Canada
JP4943046B2 (en) Electricity meter testing equipment
JP2022180277A (en) Impedance measurement device
KR20230064631A (en) Vehicle battery current sensing system
JP4215244B2 (en) Coil loss state monitoring system and coil loss measurement method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22853131

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE