WO2023013687A1 - Antibacterial/antiviral agent composition, antibacterial/antiviral structure, and antibacterial/antiviral structure production method - Google Patents

Antibacterial/antiviral agent composition, antibacterial/antiviral structure, and antibacterial/antiviral structure production method Download PDF

Info

Publication number
WO2023013687A1
WO2023013687A1 PCT/JP2022/029827 JP2022029827W WO2023013687A1 WO 2023013687 A1 WO2023013687 A1 WO 2023013687A1 JP 2022029827 W JP2022029827 W JP 2022029827W WO 2023013687 A1 WO2023013687 A1 WO 2023013687A1
Authority
WO
WIPO (PCT)
Prior art keywords
meth
acrylate
antibacterial
antiviral
acid
Prior art date
Application number
PCT/JP2022/029827
Other languages
French (fr)
Japanese (ja)
Inventor
真一 坂下
深雪 梅村
泰士郎 堀口
Original Assignee
日華化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日華化学株式会社 filed Critical 日華化学株式会社
Priority to JP2022550183A priority Critical patent/JP7265097B1/en
Priority to CN202280053983.8A priority patent/CN117794373A/en
Priority to JP2022166426A priority patent/JP2023024422A/en
Publication of WO2023013687A1 publication Critical patent/WO2023013687A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/08Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests containing solids as carriers or diluents
    • A01N25/10Macromolecular compounds
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N57/00Biocides, pest repellants or attractants, or plant growth regulators containing organic phosphorus compounds
    • A01N57/10Biocides, pest repellants or attractants, or plant growth regulators containing organic phosphorus compounds having phosphorus-to-oxygen bonds or phosphorus-to-sulfur bonds
    • A01N57/12Biocides, pest repellants or attractants, or plant growth regulators containing organic phosphorus compounds having phosphorus-to-oxygen bonds or phosphorus-to-sulfur bonds containing acyclic or cycloaliphatic radicals
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01PBIOCIDAL, PEST REPELLANT, PEST ATTRACTANT OR PLANT GROWTH REGULATORY ACTIVITY OF CHEMICAL COMPOUNDS OR PREPARATIONS
    • A01P1/00Disinfectants; Antimicrobial compounds or mixtures thereof
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01PBIOCIDAL, PEST REPELLANT, PEST ATTRACTANT OR PLANT GROWTH REGULATORY ACTIVITY OF CHEMICAL COMPOUNDS OR PREPARATIONS
    • A01P3/00Fungicides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/16Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using chemical substances
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D201/00Coating compositions based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/14Paints containing biocides, e.g. fungicides, insecticides or pesticides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/63Additives non-macromolecular organic

Definitions

  • This application discloses an antibacterial/antiviral agent composition, an antibacterial/antiviral structure, and a method for producing the antibacterial/antiviral structure.
  • Patent Document 1 discloses a virus inactivating agent containing sodium dodecyl sulfate as an active ingredient.
  • Patent Document 2 discloses a method of inactivating lipid-enveloped viruses with a nonionic surfactant selected from the group of polysorbates.
  • an antibacterial/antiviral composition comprising at least one of:
  • R 1 , R 2 and R 3 are each independently an alkyl group having 8 to 20 carbon atoms
  • a 1 , A 2 and A 3 are each independently an alkylene group having 2 to 4 carbon atoms
  • x, y and z are each independently an integer of 0-10.
  • R 1 , R 2 and R 3 may have branches.
  • the present application discloses an antibacterial/antiviral structure comprising a base material and the antibacterial/antiviral agent composition of the present disclosure.
  • the present application discloses a method for producing an antibacterial/antiviral structure, which comprises bringing the antibacterial/antiviral agent composition of the present disclosure into contact with a substrate.
  • the antibacterial/antiviral agent composition of the present disclosure has excellent antiviral properties.
  • An antibacterial/antiviral agent composition according to one embodiment comprises a phosphoric acid monoester or a salt thereof represented by the following general formula (1), and a general formula (2) below. Phosphate diester or its salt, and at least one of.
  • R 1 , R 2 and R 3 are each independently an alkyl group having 8 to 20 carbon atoms
  • a 1 , A 2 and A 3 are each independently an alkylene group having 2 to 4 carbon atoms
  • x, y and z are each independently an integer of 0-10.
  • R 1 , R 2 and R 3 are each independently an alkyl group having 8 to 20 carbon atoms. Thus, excellent antiviral properties are exhibited when R 1 , R 2 and R 3 have 8 to 20 carbon atoms.
  • the lower limit of the carbon number is preferably 9 or more, and the upper limit is preferably 18 or less, more preferably 16 or less, and even more preferably 15 or less.
  • R 1 , R 2 and R 3 may each be linear or branched, but particularly when R 1 , R 2 and R 3 are branched, It can easily become better.
  • x, y and z are each independently an integer of 0-10. From the viewpoint of antiviral properties, x, y and z are preferably smaller. Specifically, when x, y and z are each independently an integer of 0 to 8, particularly an integer of 0 to 5, the antiviral properties tend to be more excellent.
  • At least part of the above mono/diester may be contained in the form of a salt.
  • Salts include alkali metal salts, alkylamine salts, alkanolamine salts, quaternary ammonium salts and the like.
  • Alkali metals that make up alkali metal salts include sodium, potassium, lithium, rubidium, and cesium.
  • alkylamines constituting alkylamine salts include trimethylamine, triethylamine, dibutylamine, and butyldimethylamine.
  • alkanolamines constituting alkanolamine salts include dimethylmonoethanolamine, methyldiethanolamine, monoethanolamine, diethanolamine, triethanolamine, and isopropylethanolamine.
  • the ratio (mass ratio) of the phosphate monoester or its salt and the phosphate diester or its salt is not particularly limited.
  • the ratio of phosphoric acid monoester or its salt to phosphoric acid diester or its salt is 0:100 to 100:0, preferably 10:90 to 90:10, more preferably 20:80. ⁇ 80:20.
  • the content of the mono/diester or salt thereof may be appropriately adjusted according to the use of the composition.
  • the antibacterial/antiviral agent composition according to the present embodiment may contain at least one of the monoester or salt thereof and the diester or salt thereof, and may contain both. may The details of the component contents in the composition will be described later.
  • the antibacterial/antiviral agent composition according to the present embodiment may contain other ingredients in addition to the above mono/diester or salt thereof.
  • Other components include, for example, water and organic solvents.
  • various resins described later may be contained as other components.
  • various additives may be contained as other components.
  • the antibacterial/antiviral agent composition according to the present embodiment may contain other antiviral components in addition to the above mono/diester or salt thereof.
  • the antibacterial/antiviral agent composition according to this embodiment may contain only the above mono/diester or a salt thereof as an antiviral component.
  • the above mono/diester or a salt thereof and optionally a resin may be used and treated in an aqueous system.
  • it may be treated in a non-aqueous system (including the case where an organic solvent is used and the case where no solvent is used).
  • Resins used together with mono/diesters or salts thereof include, for example, compounds having a radically polymerizable carbon-carbon double bond, epoxy compounds, melamine compounds, phenol compounds, oxetane resins, urea resins, acrylic resins, urethane resins, Polyester resin, ethylene vinyl acetate resin, styrene-butadiene rubber, vinyl chloride resin, silicone resin, acrylic silicone copolymer resin, polyolefin resin, acrylonitrile butadiene rubber (NBR), chlorinated polyolefin resin and the like. These resins may be used alone or in combination of two or more. Preferred components contained in the antibacterial/antiviral agent composition according to the present embodiment are exemplified below for both cases of aqueous treatment and non-aqueous treatment.
  • Water-based polyurethane resin For various structures, water-based In the case of treating with, it is preferable to use a water-based polyurethane resin as the resin.
  • the antibacterial/antiviral agent composition according to this embodiment may contain the above mono/diester or a salt thereof, a water-based polyurethane resin, and water.
  • the aqueous polyurethane resin has, for example, a polyisocyanate compound, a polyol compound, an anionic group (at least one of a carboxyl group, a carboxylate group, a sulfo group, a sulfonate group, etc.) and two or more active hydrogens.
  • compound, the neutralized product of the isocyanate group-terminated prepolymer obtained by reacting with is emulsified and dispersed in water (hereinafter, dispersing or emulsifying is referred to as "emulsification dispersion"), and then an amine-based chain extender is added. obtained by a chain elongation reaction in water.
  • the water-based polyurethane resin referred to in the present application means a polyurethane resin having emulsifying dispersibility in water.
  • the water-based polyurethane resin referred to in the present application is obtained by preparing an emulsified dispersion (solvent: water) having a polyurethane resin concentration of 35% by mass, and then exposing the emulsified dispersion at atmospheric pressure to 20°C. Separation or sedimentation is not observed even after standing for 12 hours at room temperature.
  • the polyisocyanate compound that constitutes the aqueous polyurethane resin is not particularly limited, and examples thereof include aromatic polyisocyanate compounds, aliphatic polyisocyanate compounds, and alicyclic polyisocyanate compounds.
  • aromatic polyisocyanate compounds include toluene diisocyanate (TDI), xylylene diisocyanate (XDI), diphenylmethane diisocyanate (MDI), naphthalene diisocyanate (NDI), and tetramethylxylylene diisocyanate.
  • aliphatic polyisocyanate compounds include hexamethylene diisocyanate (HDI).
  • alicyclic polyisocyanate compounds examples include 1,3-bis(isocyanatomethyl)cyclohexane, isophorone diisocyanate (IPDI), dicyclohexylmethane diisocyanate (H12MDI) and norbornane diisocyanate. These polyisocyanate compounds can be used singly or in combination of two or more. Among such polyisocyanates, aliphatic polyisocyanates and alicyclic polyisocyanate compounds can impart non-yellowing properties to substrates.
  • At least one of hexamethylene diisocyanate, isophorone diisocyanate, dicyclohexylmethane diisocyanate, norbornane diisocyanate and 1,3-bis(isocyanatomethyl)cyclohexane is particularly preferred.
  • the polyol compound that constitutes the water-based polyurethane resin is not particularly limited, and examples include polyether polyol, polyester polyol, and polycarbonate polyol. These polyol compounds can be used singly or in combination of two or more. In particular, when polycarbonate polyol is used, abrasion resistance is improved.
  • the number average molecular weight of the polyol compound is not particularly limited, it may be, for example, 1,000 or more and 3,000 or less. When the number average molecular weight is within this range, the appearance quality and wear resistance are improved.
  • Polyether polyols include, for example, homo-addition polymers or co-addition polymers of alkylene oxides having 2 to 4 carbon atoms such as ethylene oxide, propylene oxide and tetramethylene oxide (block copolymerization or random copolymerization may be used). A polyol and the like can be mentioned.
  • polycarbonate polyols include those obtained by dealcoholization reaction and dephenolation reaction between polyols and carbonates.
  • Polyols are, for example, ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 1,5-pentanediol , 1,6-hexanediol, 3-methyl-1,5-pentanediol, neopentyl glycol, 1,8-octanediol, 1,9-nonanediol, diethylene glycol, dipropylene glycol, 1,4-cyclohexanedimethanol , or one or more selected from ethylene oxide or propylene oxide adducts of bisphenol A and the like.
  • the carbonates may be, for example, one or more selected from diethyl carbonate, dimethyl carbonate,
  • polyester polyols include those obtained by a polycondensation reaction between a dibasic acid and the above polyols.
  • Dibasic acid is selected from, for example, phthalic acid, isophthalic acid, terephthalic acid, naphthalenedicarboxylic acid, succinic acid, malonic acid, adipic acid, sebacic acid, 1,4-cyclohexyldicarboxylic acid, maleic acid, fumaric acid, etc.
  • phthalic acid is selected from, for example, phthalic acid, isophthalic acid, terephthalic acid, naphthalenedicarboxylic acid, succinic acid, malonic acid, adipic acid, sebacic acid, 1,4-cyclohexyldicarboxylic acid, maleic acid, fumaric acid, etc.
  • the above polyester polyols may be used singly or in combination of two or more.
  • compounds having at least one of a carboxyl group and a carboxylate group include, for example, 2,2-dimethylolpropionic acid , 2,2-dimethylolbutanoic acid, and salts thereof.
  • a polyester polyol having a pendant carboxyl group obtained by reacting a diol compound having a carboxyl group with an aromatic dicarboxylic acid, an aliphatic dicarboxylic acid, or the like can also be used.
  • the diol compound having a carboxyl group may be mixed with a diol compound having no carboxyl group as a diol component and reacted.
  • compounds having at least one of a sulfo group and a sulfonate group include, for example, 3,4-diaminobutanesulfonic acid, 3,6-diamino-2-toluenesulfonic acid, 2-(2-aminoethylamino)ethanesulfonic acid, ethylenediaminepropylsulfonic acid, ethylenediaminebutylsulfonic acid, 1,2- or 1,3-propylenediamine- ⁇ -ethyl sulfonic acids, diaminosulfonic acids such as 2-(3-aminopropylamino)-ethanesulfonic acid, 2,4-diaminobenzenesulfonic acid; and salts thereof.
  • These compounds can be used individually by 1 type or in combination of 2 or more types.
  • the content of anionic groups in the aqueous polyurethane resin is not particularly limited.
  • the aqueous polyurethane resin contains at least one anionic group of 0.5% by mass or more and 4.0% by mass. % or less.
  • the total content of the anionic groups may be 0.5% by mass or more and 4.0% by mass or less.
  • the contents of carboxyl groups and carboxylate groups can be obtained by calculating the amount of COO per 100 g of polyurethane resin from the amount of charged raw materials.
  • the content of sulfo groups and sulfonate groups can be obtained by calculating the amount of SO 3 per 100 g of polyurethane resin from the amount of raw materials charged.
  • the content of the anionic group is 4.0% by mass or less, the texture becomes softer and the problem of whitening during bending can be more easily suppressed.
  • the content of the anionic group is 0.5% by mass or more, the storage stability of the aqueous polyurethane resin is improved, and more stable processing becomes possible.
  • low-molecular-weight polyhydric alcohols such as ethylene glycol, 1,4-butanediol, and hexamethylene glycol may be used as polyol compounds.
  • chain extenders examples include ethylenediamine, propylenediamine, tetramethylenediamine, hexamethylenediamine, hydrazine, 4,4'-diaminodicyclohexylmethane, piperazine, 2-methylpiperazine, isophoronediamine, norboranediamine, diaminodiphenylmethane, tri Low molecular weight polyamines such as diamine, xylylenediamine, diethylenetriamine, triethylenetetramine, triethylenetetramine, tetraethylenepentamine, iminobispropylamine (at least one selected from the group consisting of primary amino groups and secondary amino groups) polyamine compounds containing two or more of the above amino groups in one molecule). These chain extenders can be used singly or in combination of two or more.
  • the water-based polyurethane resin may be, for example, a flame retardant-blended urethane resin containing a phosphorus compound as a flame retardant component disclosed in JP-A-2006-206839.
  • the specific method for producing the above-mentioned isocyanate group-terminated prepolymer is not particularly limited, and for example, it can be produced by a conventionally known one-stage so-called one-shot method, a multi-stage isocyanate polyaddition reaction method, or the like.
  • the reaction temperature at this time is preferably 40 to 150°C.
  • an organic solvent that does not react with isocyanate groups may be added during or after the reaction.
  • an organic solvent for example, acetone, methyl ethyl ketone, toluene, tetrahydrofuran, etc. can be used.
  • dibutyltin dilaurate stannous octoate, dibutyltin di-2-ethylhexoate, triethylamine, triethylenediamine, N-methylmorpholine, bismath tris (2-ethylhexanoate) or a reaction inhibitor such as phosphoric acid, sodium hydrogen phosphate, p-toluenesulfonic acid, adipic acid and benzoyl chloride.
  • the content of residual isocyanate groups in the isocyanate group-terminated prepolymer is preferably 0.2 to 4.5% by mass. Within this range, the film formability of the water-based polyurethane resin composition obtained by subsequent chain extension with polyamine is good, and the formed film is soft and exhibits appropriate flexibility. Incidentally, the residual isocyanate group content can be obtained by the following method.
  • 0.3 g of the resulting urethane prepolymer is placed in an Erlenmeyer flask, mixed with 10 ml of 0.1N dibutylamine toluene solution, and dissolved. Then, several drops of bromophenol blue solution are added, titration is performed with a 0.1N hydrochloric acid methanol solution, and the free isocyanate group content NCO% can be determined by the following formula.
  • NCO % (ab) x 0.42 x f/x a: Titration amount of 0.1N hydrochloric acid methanol solution when only 10 ml of 0.1N dibutylamine toluene solution was titrated b: Titration amount of 0.1N hydrochloric acid methanol solution when titrating the composition during reaction f: 0. Factor x of 1N hydrochloric acid methanol solution: Amount of sampling.
  • the isocyanate group-terminated prepolymer has an appropriate viscosity and is easily emulsified.
  • the texture of the structure treated with the antibacterial/antiviral agent composition can be made softer, and whitening during bending can be more easily prevented.
  • Neutralization of the anionic groups of the isocyanate group-terminated prepolymer can be carried out using a suitable known method before, during or after the preparation of the isocyanate group-terminated prepolymer.
  • the compound used for neutralizing the isocyanate group-terminated prepolymer having such an anionic group examples include trimethylamine, triethylamine, tri-n-propylamine, tributylamine, N-methyl-diethanolamine, Examples include amines such as N-dimethylmonoethanolamine, N,N-diethylmonoethanolamine and triethanolamine, potassium hydroxide, sodium hydroxide and ammonia.
  • tertiary amines such as trimethylamine, triethylamine, tri-n-propylamine and tributylamine are particularly preferred.
  • the emulsifying and dispersing equipment used when emulsifying and dispersing the neutralized isocyanate group-terminated prepolymer in water there are no particular restrictions on the emulsifying and dispersing equipment used when emulsifying and dispersing the neutralized isocyanate group-terminated prepolymer in water, and examples include homomixers, homogenizers, and dispersers. Further, when emulsifying and dispersing the neutralized isocyanate group-terminated prepolymer in water, the neutralized isocyanate group-terminated prepolymer is emulsified and dispersed in water in a temperature range of 0 to 40 ° C., and the isocyanate group and It is preferable to suppress the reaction with water as much as possible.
  • reaction inhibitors such as phosphoric acid, sodium dihydrogen phosphate, disodium hydrogen phosphate, paratoluenesulfonic acid, adipic acid, and benzoyl chloride can be added as necessary. .
  • the isocyanate group-terminated prepolymer emulsified and dispersed in water uses a polyamine compound containing two or more amino groups per molecule of at least one selected from the group consisting of primary amino groups and secondary amino groups. May be chain extended.
  • the reaction between the isocyanate group-terminated prepolymer and the polyamine compound is completed at a reaction temperature of 20 to 50° C. usually in 30 to 120 minutes.
  • the above-mentioned organic solvent when producing the isocyanate group-terminated prepolymer, it is desirable to distill off the organic solvent at 30 to 80°C under reduced pressure, for example, after the chain extension reaction or emulsification and dispersion.
  • An emulsified dispersion of a water-based polyurethane resin can be obtained by such a preparation method.
  • the resin solid content (non-volatile content) concentration in the emulsified dispersion of the water-based polyurethane resin may be, for example, 20% or more and 60% or less.
  • the resin solid content concentration can also be adjusted by adding or distilling off water.
  • the antibacterial/antiviral agent composition according to the present embodiment may contain the above mono/diester or a salt thereof, a water-based acrylic resin, and water. You may use together with resin.
  • a water-based polyurethane resin and a water-based acrylic resin are used together, the mass ratio is not particularly limited. may be:
  • Examples of the monomer constituting the water-based acrylic resin include (meth)acrylates having a hydroxyl group, and (meth)acrylates having a carboxyl group which are reaction products of a (meth)acrylate having a hydroxyl group and a dicarboxylic acid or a derivative thereof. .
  • Examples of (meth)acrylates having a hydroxyl group include 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 3-hydroxypropyl (meth)acrylate, 2-hydroxybutyl (meth)acrylate, 3 - hydroxybutyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate, glycerin mono(meth)acrylate, glycerin di(meth)acrylate, trimethylolpropane mono(meth)acrylate, trimethylolpropane di(meth)acrylate, penta Erythritol mono (meth) acrylate, pentaerythritol di (meth) acrylate, pentaerythritol tri (meth) acrylate, neopentyl glycol mono (meth) acrylate, and the like.
  • dicarboxylic acid examples include oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, maleic acid, fumaric acid, phthalic acid, tetrahydrophthalic acid, hexahydrophthalic acid and the like.
  • hydroxyl-containing (meth)acrylates and dicarboxylic acids may be used singly or in combination of two or more.
  • (meth)acrylate is a generic term for acrylate and methacrylate, and means one or both of acrylate and methacrylate.
  • the content of the water-based resin (water-based polyurethane resin or water-based acrylic resin) is not particularly limited.
  • the water-based antibacterial/antiviral agent composition may contain the water-based resin in an amount of 0.01% by mass or more or 0.02% by mass or more, and may contain 50% by mass or less or 20% by mass or less. .
  • the composition after dilution contains the water-based resin in an amount of 0.001% by mass or more, 0.005% by mass or more, or It may be contained in an amount of 0.1% by mass or more, and may be contained in an amount of 20% by mass or less or 10% by mass or less.
  • additives may be contained in the water-based antibacterial/antiviral agent composition.
  • it may contain emulsifiers, thickeners, preservatives, buffers, pH adjusters, leveling agents, fillers, antifoaming agents and the like.
  • thickeners include alkali-thickened acrylic resins, associative thickeners, and water-soluble organic polymers. These thickeners may be used alone or in combination of two or more. A commercially available one can be used as the alkali-thickening acrylic resin.
  • alkali-thickening acrylic resins examples include Nikasol VT-253A (manufactured by Nippon Carbide Industry Co., Ltd.), Aron A-20P, Aron A-7150, Aron A-7070, Aron B-300, and Aron B.
  • the content of the above mono/diester or salt thereof in the water-based antibacterial/antiviral agent composition is not particularly limited.
  • the water-based antibacterial/antiviral composition may contain 0.01% by mass or more or 0.02% by mass or more of the above mono/diester or a salt thereof, and 50% by mass or less or 20% by mass or less. may contain.
  • the antibacterial/antiviral agent composition is used after being diluted with a solvent such as water, the diluted composition contains 0.001% by mass or more and 0.002% by mass of the above mono/diester or salt thereof. % or more, 0.01 mass % or more, or 0.02 mass % or more, and may contain 5 mass % or less, or 4 mass % or less.
  • Non-Aqueous Antibacterial/Antiviral Agent Compositions (1) Curing Components Various structures are treated with the above mono/diesters or salts thereof in a non-aqueous system.
  • the curing component may be used with the above mono/diesters or salts thereof.
  • the antibacterial/antiviral agent composition according to this embodiment contains the above mono/diester or salt thereof, a curing component, and optionally a solvent (organic solvent).
  • the curing component include a thermosetting component, an active energy ray curing component, and the like, which will be described later.
  • thermosetting component is at least one selected from the group consisting of thermosetting compounds and thermosetting resins.
  • a thermosetting compound means a compound having a characteristic of reacting and curing by heating, for example, a prepolymer having a polymerizable functional group that polymerizes by heating in the presence of a polymerization initiator, a curing agent, or the like. Examples include thermosetting monomers and oligomers that are cured (cross-linked) by heating in the presence of a cross-linking agent.
  • thermosetting resin means that the thermosetting compound is polymerized (cured) by heating, for example, a polymer obtained by polymerizing the prepolymer having the polymerizable functional group, the thermosetting monomer or A cured product or a semi-cured product of an oligomer may be mentioned.
  • a prepolymer obtained by thermally polymerizing a monomer having a polymerizable functional group can be used as a thermosetting resin as it is without using a polymerization initiator.
  • thermosetting component is a concept that includes both the thermosetting compound and the thermosetting resin.
  • thermosetting resin is not particularly limited, but for example, (I) Copolymerizing a monomer having a polymerizable functional group with another monomer, or introducing a polymerizable functional group into a polymer chain constituting the prepolymer to prepare a prepolymer having the polymerizable functional group.
  • thermosetting monomer or oligomer by heating in the presence of a curing agent or crosslinking agent to obtain a cured or semi-cured product of the thermosetting monomer or oligomer.
  • thermosetting compound examples include compounds having radically polymerizable carbon-carbon double bonds, epoxy compounds, melamine compounds, phenol compounds, oxetane resins, urea resins, acrylic resins, urethane resins, polyester resins, and ethylene acetic acid. vinyl resin, styrene-butadiene rubber, and the like. These thermosetting compounds may be used alone or in combination of two or more. Among these thermosetting compounds, acrylic resins, urethane resins, polyester resins, ethylene vinyl acetate resins, and styrene-butadiene rubbers can also be used as thermosetting resins. Acrylic resins, urethane resins, polyester resins, ethylene vinyl acetate resins, and styrene-butadiene rubbers (that is, thermosets thereof) after curing can also be used as thermosetting resins.
  • thermosetting component is preferably liquid at room temperature (25°C).
  • a compound having a radically polymerizable carbon-carbon double bond is a compound having a carbon-carbon double bond in the molecule. , is a compound that hardens when carbon-carbon double bonds react. In compounds having such a radically polymerizable carbon-carbon double bond, from the viewpoint of improving hardness, wear resistance, heat resistance, etc., a radically polymerizable carbon-carbon double bond is included in one molecule. Compounds with two or more are preferred.
  • Compounds having radically polymerizable carbon-carbon double bonds include, for example, polyethers, polyesters, polycarbonates, poly(meth)acrylates, polybutadiene or butadiene acrylonitrile copolymers having acrylic groups; polyethers, Polyester, polycarbonate, poly(meth)acrylate, polybutadiene or butadiene-acrylonitrile copolymer having an allyl group; a compound having a maleimide group; a thermally reactive monomer;
  • Preferred radically polymerizable carbon-carbon double bond compounds are exemplified below, but the radically polymerizable carbon-carbon double bond compound used in the antibacterial/antiviral agent composition is limited to these. not something.
  • polyether polyester, polycarbonate, poly(meth)acrylate, polybutadiene or butadiene-acrylonitrile copolymer compound having an acrylic group
  • a polyether in which organic groups having 3 to 6 carbon atoms are repeated through ether bonds is preferable.
  • a polyether having such an acrylic group can be obtained by reacting a polyether polyol with (meth)acrylic acid or a derivative thereof.
  • polyester constituting the acrylic group-containing polyester those in which organic groups having 3 to 6 carbon atoms are repeated via ester bonds are preferable.
  • a polyester having such an acrylic group can be obtained by reacting a polyester polyol with (meth)acrylic acid or a derivative thereof.
  • polycarbonate constituting a polycarbonate having an acrylic group one in which organic groups having 3 to 6 carbon atoms are repeated via carbonate bonds is preferable.
  • a polycarbonate having acrylic groups can be obtained by reacting a polycarbonate polyol with (meth)acrylic acid or a derivative thereof.
  • Poly(meth)acrylates constituting poly(meth)acrylates having acrylic groups include copolymers of (meth)acrylic acid and (meth)acrylates, and (meth)acrylates having hydroxyl groups and having no polar groups.
  • a copolymer with (meth)acrylate, a copolymer of (meth)acrylate having a glycidyl group and (meth)acrylate having no polar group, and the like are preferable.
  • Poly (meth) acrylate having such an acrylic group is a copolymer having a carboxy group (for example, a copolymer of (meth) acrylic acid and (meth) acrylate) and a (meth) acrylate having a hydroxyl group or glycidyl Reaction with (meth)acrylate having a group, a copolymer having a hydroxyl group (e.g., a copolymer of a (meth)acrylate having a hydroxyl group and a (meth)acrylate having no polar group) and (meth)acrylic acid or a reaction with a derivative thereof, or a copolymer having a glycidyl group (for example, a copolymer of a (meth)acrylate having a glycidyl group and a (meth)acrylate having no polar group) and (meth)acrylic acid or by reaction with a derivative thereof.
  • Polybutadiene having an acrylic group is a reaction of a polybutadiene having a carboxyl group with a (meth)acrylate having a hydroxyl group or a (meth)acrylate having a glycidyl group, a reaction of a polybutadiene having a hydroxyl group with (meth)acrylic acid or a derivative thereof, Alternatively, it can be obtained by reacting polybutadiene to which maleic anhydride is added and a (meth)acrylate having a hydroxyl group.
  • a butadiene-acrylonitrile copolymer having an acrylic group can be obtained by reacting a butadiene-acrylonitrile copolymer having a carboxy group with a (meth)acrylate having a hydroxyl group or a (meth)acrylate having a glycidyl group.
  • Polyether polyester, polycarbonate, poly(meth)acrylate, polybutadiene or butadiene-acrylonitrile copolymer compound having an allyl group
  • compounds having an allyl group include reaction products of diallyl esters and diols.
  • diallyl esters include reaction products of dicarboxylic acids or derivatives thereof with allyl alcohol.
  • dicarboxylic acids examples include oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, Azelaic acid, sebacic acid, maleic acid, fumaric acid, phthalic acid, tetrahydrophthalic acid, hexahydrophthalic acid and the like.
  • diol examples include ethylene glycol, propylene glycol, tetramethylene glycol and the like.
  • Compounds having a maleimide group include, for example, N,N'-(4,4'-diphenylmethane)bismaleimide, bis(3-ethyl-5-methyl-4-maleimidophenyl)methane, 2,2-bis[4 -bismaleimide compounds such as (4-maleimidophenoxy)phenyl]propane; reaction products of dimer acid diamine and maleic anhydride; reaction products of maleimidated amino acids such as maleimidoacetic acid and maleimidocaproic acid with polyols; Among them, a reaction product of diamine dimer acid and maleic anhydride; a reaction product of maleimidated amino acid such as maleimidoacetic acid and maleimidocaproic acid and a polyol are preferable.
  • the maleimidated amino acid is obtained by reacting maleic anhydride with aminoacetic acid or aminocaproic acid.
  • Polyether polyols, polyester polyols, polycarbonate polyols, polyacrylate polyols, and polymethacrylate polyols are preferred as polyols.
  • thermally reactive monomers examples include hydroxyl group-containing (meth)acrylates and carboxyl group-containing (meth)acrylates that are reaction products of hydroxyl group-containing (meth)acrylates and dicarboxylic acids or derivatives thereof.
  • Examples of (meth)acrylates having a hydroxyl group include 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 3-hydroxypropyl (meth)acrylate, 2-hydroxybutyl (meth)acrylate, 3 - hydroxybutyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate, glycerin mono(meth)acrylate, glycerin di(meth)acrylate, trimethylolpropane mono(meth)acrylate, trimethylolpropane di(meth)acrylate, penta Erythritol mono (meth) acrylate, pentaerythritol di (meth) acrylate, pentaerythritol tri (meth) acrylate, neopentyl glycol mono (meth) acrylate, and the like.
  • dicarboxylic acid examples include oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, maleic acid, fumaric acid, phthalic acid, tetrahydrophthalic acid, hexahydrophthalic acid and the like.
  • hydroxyl-containing (meth)acrylates and dicarboxylic acids may be used singly or in combination of two or more.
  • the thermal radical polymerization initiator for the compound having a radically polymerizable carbon-carbon double bond is not particularly limited, but a rapid heating test (1 g of the sample was placed on an electric heating plate, and the temperature was raised at 4 ° C./min. It is preferable that the decomposition temperature is 40° C. or more and 140° C. or less in the decomposition start temperature when the decomposition is performed. When the decomposition temperature is less than the lower limit, the composition containing the radically polymerizable compound having a carbon-carbon double bond and the thermal radical polymerization initiator tends to have poor storage stability at room temperature. exceeds, the curing time tends to be extremely long.
  • thermal radical polymerization initiators include methyl ethyl ketone peroxide, methylcyclohexanone peroxide, methyl acetoacetate peroxide, acetylacetone peroxide, 1,1-bis(t-butylperoxy)3,3,5 -trimethylcyclohexane, 1,1-bis(t-hexylperoxy)cyclohexane, 1,1-bis(t-hexylperoxy)3,3,5-trimethylcyclohexane, 1,1-bis(t-butylperoxy) ) cyclohexane, 2,2-bis(4,4-di-t-butylperoxycyclohexyl)propane, 1,1-bis(t-butylperoxy)cyclododecane, n-butyl 4,4-bis(t- butylperoxy)valerate, 2,2-bis(t-butylperoxy)butane, 1,1-bis(t-butyl
  • Epoxy compounds are compounds having one or more glycidyl groups in the molecule, and are compounds that form a three-dimensional network structure and cure when the glycidyl groups react with heating. .
  • compounds containing two or more glycidyl groups in one molecule are preferable from the viewpoint of exhibiting sufficient cured product properties.
  • the epoxy compound is not particularly limited, but examples include bisphenol compounds such as bisphenol A, bisphenol F and biphenol, or derivatives thereof, hydrogenated bisphenol A, hydrogenated bisphenol F, hydrogenated biphenol, cyclohexanediol, cyclohexanedimethanol, Bifunctional compounds obtained by epoxidizing diols having an alicyclic structure such as cyclohexanediethanol or derivatives thereof, aliphatic diols such as butanediol, hexanediol, octanediol, nonanediol, decanediol, or derivatives thereof, trihydroxy Polyfunctional epoxy resins obtained by epoxidizing trifunctional compounds having a phenylmethane skeleton or aminophenol skeleton, phenol novolac resin, cresol novolak resin, phenol aralkyl resin, biphenyl aralkyl resin, naphthol aralkyl resin, and the
  • such epoxy compounds are preferably liquid at room temperature either singly or as a mixture.
  • an antibacterial/antiviral agent composition that is liquid at room temperature is obtained.
  • a method for epoxidizing a diol or a derivative thereof a method of epoxidizing by reacting two hydroxyl groups of the diol or a derivative thereof with epichlorohydrin to convert them into glycidyl ether, and the like can be mentioned.
  • an epoxy compound can be diluted with a reactive diluent before use.
  • reactive diluents include monofunctional aromatic glycidyl ethers such as phenyl glycidyl ether, tert-butyl phenyl glycidyl ether and cresyl glycidyl ether, and aliphatic glycidyl ethers.
  • curing agent for epoxy compound examples include aliphatic amines, aromatic amines, dicyandiamides, dihydrazide compounds, acid anhydrides, and phenol compounds.
  • dihydrazide compound examples include carboxylic acid dihydrazide such as adipic acid dihydrazide, dodecanoic acid dihydrazide, isophthalic acid dihydrazide, and p-oxybenzoic acid dihydrazide.
  • Examples of the acid anhydride include phthalic anhydride, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, 4-methylhexahydrophthalic anhydride, endomethylenetetrahydrophthalic anhydride, dodecenylsuccinic anhydride, and maleic anhydride. be done.
  • the phenol compound used as the curing agent for the epoxy compound is a compound having two or more phenolic hydroxyl groups in one molecule.
  • a compound having only one phenolic hydroxyl group in one molecule cannot form a crosslinked structure, resulting in deterioration of cured product properties.
  • the phenol compound may have two or more phenolic hydroxyl groups in one molecule, but preferably has two to five phenolic hydroxyl groups in one molecule. Those having two or three phenolic hydroxyl groups in the molecule are more preferable.
  • phenol compounds include bisphenol F, bisphenol A, bisphenol S, tetramethylbisphenol A, tetramethylbisphenol F, tetramethylbisphenol S, dihydroxydiphenyl ether, dihydroxybenzophenone, tetramethylbisphenol, ethylidenebisphenol, methylethylidenebis(methyl phenol), cyclohexylidenebisphenol, biphenol and other bisphenols and their derivatives, trifunctional phenols and their derivatives such as tri(hydroxyphenyl)methane and tri(hydroxyphenyl)ethane, reacting phenols with formaldehyde Phenol resins such as phenol novolak and cresol novolac obtained by the above and derivatives thereof.
  • formaldehyde Phenol resins such as phenol novolak and cresol novolac obtained by the above and derivatives thereof.
  • curing accelerators for the epoxy compounds include imidazoles, salts of triphenylphosphine or tetraphenylphosphonium, amine compounds such as diazabicycloundecene, and salts thereof.
  • these curing accelerators 2-methylimidazole, 2-ethylimidazole-2-phenylimidazole, 2-phenyl-4-methylimidazole, 2-phenyl-4-methyl-5-hydroxymethylimidazole, 2-phenyl- Imidazole compounds such as 4,5-dihydroxymethylimidazole, 2-C 11 H 23 -imidazole, adducts of 2-methylimidazole and 2,4-diamino-6-vinyltriazine are preferred, and imidazoles having a melting point of 180° C. or higher Compounds are particularly preferred.
  • the melamine compound is melamine or a derivative thereof.
  • Derivatives of melamine include, for example, derivatives having functional groups such as imino groups, methylol groups, methoxymethyl groups, and alkoxymethyl groups such as butoxymethyl groups.
  • Specific examples of such melamine compounds include derivatives having a methylol group such as monomethylolmelamine, dimethylolmelamine, trimethylolmelamine, tetramethylolmelamine, pentamethylolmelamine, and hexamethylolmelamine.
  • Phenol compound A phenol compound is a compound having two or more phenolic hydroxyl groups in one molecule.
  • examples of the phenolic compound used in the present invention include the phenolic compounds exemplified as the curing agent for the epoxy compound.
  • Urethane resin is a reaction product of raw materials including polyol and polyisocyanate, and may be chain-extended if necessary.
  • a urethane resin is preferably a urethane resin having at least one functional group selected from a hydroxyl group, an amino group and an imino group.
  • a urethane resin having such a functional group can be obtained by using a polyol and a chain extender in an amount in which the total amount thereof exceeds the equivalent amount with respect to the polyisocyanate.
  • Each component of the raw material of the urethane resin will be described below.
  • a polyol is a compound having two or more hydroxyl groups in one molecule.
  • the polyol is not particularly limited, and examples thereof include polyether polyols, polycarbonate polyols, polyester polyols, polyether ester polyols, polyolefin polyols, silicon polyols, aliphatic polyols, alicyclic polyols, aromatic polyols, and the like. . These polyols may be used alone or in combination of two or more.
  • polycarbonate polyols are preferable from the viewpoint of improving the weather resistance, mechanical strength and wear resistance of the cured film.
  • the amount of polycarbonate polyol used relative to the total amount of polyol used is preferably 25 mol% or more, more preferably 50 mol% or more, and further preferably 70 mol% or more, from the viewpoint of improving the hardness and weather resistance of the cured film. preferable.
  • Polyether polyols include, for example, homo-addition polymers or co-addition polymers of alkylene oxides having 2 to 4 carbon atoms such as ethylene oxide, propylene oxide and tetramethylene oxide (block copolymerization or random copolymerization may be used).
  • a polyol and the like are exemplified.
  • polycarbonate polyols include those obtained by dealcoholization reaction and dephenolation reaction between polyols and carbonates.
  • Polyols include, for example, ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 1,5-pentane Diol, 1,6-hexanediol, 3-methyl-1,5-pentanediol, neopentyl glycol, 1,8-octanediol, 1,9-nonanediol, 1,10-decanediol, diethylene glycol, dipropylene glycol , 1,4-cyclohexanedimethanol, ethylene oxide or propylene oxide adducts of bisphenol A, and the like.
  • polyols may be used alone or in combination of two or more.
  • carbonates include diethyl carbonate, dimethyl carbonate, diphenyl carbonate and the like. These carbonates may be used individually by 1 type, or may use 2 or more types together. Polycarbonate polyols composed of combinations of such polyols and carbonates may be used singly or in combination of two or more.
  • polyester polyols include those obtained by a polycondensation reaction between a dibasic acid and the above-mentioned polyols.
  • dibasic acids include phthalic acid, isophthalic acid, terephthalic acid, naphthalenedicarboxylic acid, succinic acid, malonic acid, adipic acid, sebacic acid, 1,4-cyclohexyldicarboxylic acid, maleic acid, fumaric acid, and the like. .
  • These dibasic acids may be used individually by 1 type, or may use 2 or more types together.
  • polyester polyols comprising a combination of dibasic acid and polyols may be used singly or in combination of two or more.
  • polyether ester polyols examples include compounds obtained by ring-opening polymerization of cyclic ethers in the above polyester polyols, and compounds obtained by polycondensing the above polyether polyols and the above dicarboxylic acids. Among them, poly(polytetramethylene ether) adipate. preferable.
  • a polyolefin polyol is a polyolefin having two or more hydroxyl groups.
  • the said polyolefin polyol may be used individually by 1 type, or may use 2 or more types together.
  • Examples of the polyolefin polyol include polybutadiene polyol, hydrogenated polybutadiene polyol, and polyisoprene polyol.
  • a silicone polyol is a silicone having two or more hydroxyl groups.
  • the silicone polyols may be used singly or in combination of two or more.
  • Examples of the silicone polyol include polydimethylsiloxane polyol.
  • aliphatic polyols examples include ethylene glycol, propylene glycol, 1,2-propanediol, 1,3-propanediol, 2-methyl-1,3-propanediol, neopentyl glycol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 1,5-pentanediol, 2-methyl-1,5-pentanediol, 3-methyl-1,5-pentanediol, 2,2,4-trimethyl -1,5-pentanediol, 2,3,5-trimethyl-1,5-pentanediol, 1,6-hexanediol, 2-ethyl-1,6-hexanediol, 2,2,4-trimethyl-1 ,6-hexanediol, 3,3-dimethylolheptane, 1,8-octanediol,
  • Alicyclic polyols include cyclopropanediol, cyclopropanedimethanol, cyclopropanediethanol, cyclopropanedipropanol, cyclopropanedibutanol, cyclopentanediol, cyclopentanedimethanol, cyclopentanediethanol, cyclopentanedipropanol, cyclopentane Dibutanol, cyclohexanediol, cyclohexanedimethanol, cyclohexanediethanol, cyclohexanedipropanol, cyclohexanedibutanol, cyclohexenediol, cyclohexenedimethanol, cyclohexenediethanol, cyclohexenedipropanol, cyclohexenedibutanol, cyclohexadienediol, cyclohexa
  • ethylene glycol, propylene glycol, 1,2-propanediol, and 1,3-propanediol are used from the viewpoint of improving the weather resistance and mechanical strength of the resulting cured film.
  • aromatic polyols examples include bishydroxyethoxybenzene, bishydroxyethyl terephthalate, and bisphenol-A.
  • dialkanolamines such as N-methyldiethanolamine; pentaerythritol; sorbitol; mannitol; glycerin; trimethylolpropane, etc. can also be used as other polyol components.
  • polyisocyanate A polyisocyanate is a compound having one or both of two or more isocyanate groups and substituents containing isocyanate groups (also referred to as "isocyanate groups") in one molecule. Polyisocyanate may be used individually by 1 type, or may use 2 or more types together. It may also be a polymer of polyisocyanate (a modified product obtained by reacting polyisocyanate monomers with each other). Furthermore, in one polyisocyanate, the isocyanate groups may be the same or different.
  • polyisocyanate may be modified with urethane, urea, buret, allophanate, carbodiimide, oxazoline, amide, imide, polyol and the like.
  • polynuclear isomers may contain isomers other than these.
  • substituents containing an isocyanate group include alkyl groups, alkenyl groups, or alkoxyl groups containing one or more isocyanate groups and having 1 to 5 carbon atoms.
  • the number of carbon atoms in the alkyl group or the like as a substituent containing an isocyanate group is preferably 1 to 3.
  • polyisocyanate examples include aliphatic polyisocyanate, polyisocyanate having an alicyclic structure, and aromatic polyisocyanate.
  • An aliphatic polyisocyanate is a compound having an aliphatic structure and two or more isocyanate groups bonded thereto. Aliphatic polyisocyanates are preferable from the viewpoint of enhancing the weather resistance of the cured film and imparting flexibility.
  • the aliphatic structure in the aliphatic polyisocyanate is not particularly limited, but a linear or branched alkylene group having 1 to 6 carbon atoms is preferred.
  • aliphatic polyisocyanates examples include methylene diisocyanate, tetramethylene diisocyanate, hexamethylene diisocyanate, 2,2,4-trimethylhexamethylene diisocyanate, 2,4,4-trimethylhexamethylene diisocyanate, propylene diisocyanate, and lysine diisocyanate.
  • aliphatic diisocyanates such as dimer diisocyanate obtained by converting the carboxyl group of dimer acid to an isocyanate group
  • aliphatic triisocyanates such as tris(isocyanatohexyl)isocyanurate.
  • hexamethylene diisocyanate is preferred.
  • the polyisocyanate preferably has an alicyclic structure in terms of the mechanical strength and stain resistance of the cured film.
  • a polyisocyanate having an alicyclic structure is a compound having an alicyclic structure and two or more isocyanate groups bonded thereto.
  • the alicyclic structure in the polyisocyanate having an alicyclic structure is not particularly limited, a cycloalkylene group having 3 to 6 carbon atoms is preferred.
  • polyisocyanates having an alicyclic structure examples include bis(isocyanatomethyl)cyclohexane, cyclohexanediisocyanate, bis(isocyanatocyclohexyl)methane, bis(isocyanatocyclohexyl)propane, isophorone diisocyanate, methylcyclohexane diisocyanate (hydrogenated TDI:), and the like. and triisocyanates having an alicyclic structure such as tris(isocyanatoisophorone)isocyanurate.
  • polyisocyanates having an alicyclic structure from the viewpoint of increasing the strength and adhesiveness of the cured film, from the viewpoint of less coloring over time, and from the viewpoint of being suitable for materials that require transparency, Bis(isocyanatomethyl)cyclohexane, cyclohexane diisocyanate, bis(isocyanatocyclohexyl)methane, and isophorone diisocyanate are preferred.
  • Aromatic polyisocyanates are compounds having an aromatic structure and two or more isocyanate groups bonded thereto. Although the aromatic structure in the aromatic polyisocyanate is not particularly limited, a divalent aromatic group having 6 to 13 carbon atoms is preferred. Examples of such aromatic polyisocyanates include xylylene diisocyanate, 4,4′-diphenyl diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, m-phenylene diisocyanate, p-phenylene diisocyanate, 4,4'-diphenylmethane diisocyanate (4,4'-MDI), 2,4'-diphenylmethane diisocyanate (2,4'-MDI), 4,4'-diphenyldimethylmethane diisocyanate, 4,4'-dibenzyl diisocyanate , dialkyldiphenylmethane diisocyanate, tetraalkyldipheny
  • Chain extenders are mainly classified into compounds having two or more hydroxyl groups (short-chain polyols), compounds having two or more amino groups (polyamine compounds), and water. Among these, water is preferably reduced as much as possible in order to stably carry out the reaction.
  • Compounds having two or more hydroxyl groups include, for example, ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, dipropylene glycol, tripropylene glycol, 1,3-propanediol, 1,2-butanediol, 1, 3-butanediol, 1,4-butanediol, 2,3-butanediol, 3-methyl-1,5-pentanediol, neopentyl glycol, 2-methyl-1,3-propanediol, 2-methyl-2 -propyl-1,3-propanediol, 2-butyl-2-ethyl-1,3-propanediol, 1,5-pentanediol, 1,6-hexanediol, 2-methyl-2,4-pentanediol, 2,2,4-trimethyl-1,3-pentanediol, 2-ethyl-1,3-hexan
  • Examples of compounds having two or more amino groups include aromatic diamines such as 2,4- or 2,6-tolylenediamine, xylylenediamine, 4,4'-diphenylmethanediamine, ethylenediamine, 1,2- propylenediamine, 1,6-hexanediamine, 2,2-dimethyl-1,3-propanediamine, 2-methyl-1,5-pentanediamine, 1,3-diaminopentane, 2,2,4- or 2, Aliphatic diamines such as 4,4-trimethylhexanediamine, 2-butyl-2-ethyl-1,5-pentanediamine, 1,8-octanediamine, 1,9-nonanediamine, 1,10-decanediamine, 1- Amino-3-aminomethyl-3,5,5-trimethylcyclohexane (IPDA), 4,4'-dicyclohexylmethanediamine (hydrogenated MDA), isopropylidenecyclohexyl-4,4'-d
  • Chain terminating agent for the purpose of controlling the molecular weight of the urethane resin, a chain terminating agent having one active hydrogen group can be used, if necessary.
  • chain terminators aliphatic monools such as ethanol, propanol, butanol, hexanol, and the like, and one hydroxyl group as an active hydrogen group, and one amino group are included as chain terminators.
  • Chain terminators include aliphatic monoamines such as diethylamine, dibutylamine, monoethanolamine, and diethanolamine. These chain terminators may be used alone or in combination of two or more.
  • the method for producing the urethane resin is not particularly limited, and known methods generally used experimentally/industrially can be adopted. Specifically, (1) a method of reacting a polyol, a polyisocyanate and a chain extender together (one-step method), and (2) first, a polyol and a polyisocyanate are reacted to obtain a prepolymer having isocyanate groups at both ends. and then reacting this prepolymer with a chain extender (two-step method).
  • This two-step method includes a step of reacting a polyol with one or more equivalents of polyisocyanate in advance to prepare an intermediate (prepolymer) in which both ends corresponding to the soft segments of the urethane resin are blocked with isocyanate groups. It is a way to go through. By preparing a prepolymer in advance and then reacting it with a chain extender, it is easy to adjust the molecular weight of the soft segment part, and the phase separation between the soft segment and the hard segment is easily achieved, and it is easy to demonstrate the performance as a urethane resin. Characteristic.
  • the chain extender is a diamine
  • the reaction rate with the isocyanate group is significantly different from that with the hydroxyl group of the polyol, so it is more preferable to carry out polyurethane urea formation by a two-step method (prepolymer method).
  • the one-step method which is also called a one-shot method, is a method in which a polyol, a polyisocyanate and a chain extender are charged together to carry out the reaction.
  • the reaction temperature in the one-step process is usually 0 to 250° C., but can be appropriately set depending on the amount of solvent, reactivity of raw materials used, reaction equipment and the like. If the reaction temperature is too low, the reaction progresses too slowly and the solubility of the raw materials and polymer tends to decrease, resulting in a decrease in productivity. It may happen. Also, the reaction may be carried out while defoaming under reduced pressure. Furthermore, catalysts, stabilizers and the like may be added as necessary.
  • catalysts include triethylamine, tributylamine, dibutyltin dilaurate, stannous octoate, acetic acid, phosphoric acid, sulfuric acid, hydrochloric acid, sulfonic acid, etc.
  • Stabilizers include, for example, 2,6-dibutyl -4-methylphenol, distearylthiodipropionate, di ⁇ -naphthylphenylenediamine, tri(dinonylphenyl)phosphite and the like.
  • the two-stage method is also called a prepolymer method, in which a prepolymer is produced by reacting a polyisocyanate and a polyol in advance, usually at a reaction equivalent ratio of 1.0 to 10.00, and then polyisocyanate or polyol is added thereto. It is a method of reacting in two stages by adding a compound having active hydrogen such as a hydric alcohol or an amine.
  • a method of preparing a prepolymer containing isocyanate groups at both ends by reacting a polyisocyanate in an equivalent amount or more with a polyol, and then reacting the prepolymer with a chain extender such as a short-chain diol or diamine to obtain a urethane resin. is useful.
  • a prepolymer may be synthesized by directly reacting a polyisocyanate and a polyol without using a solvent, and a chain extender may act as it is, or (2) the above ( A prepolymer may be synthesized by the method of 1), then the prepolymer may be dissolved in a solvent and then treated with a chain extender, or (3) a polyisocyanate and a polyol may be reacted in a solvent to produce a prepolymer. may be synthesized and directly reacted with a chain extender in a solvent. In the method (2), the chain extender may be dissolved in the solvent and then acted on the prepolymer, or the chain extender may be dissolved at the same time as the prepolymer is dissolved in the solvent. .
  • the reaction temperature in the two-step method is usually 0 to 250°C, but can be appropriately set depending on the amount of solvent, the reactivity of the raw materials used, the reaction equipment, and the like. If the reaction temperature is too low, the reaction progresses too slowly and the solubility of the raw materials and polymer tends to decrease, resulting in a decrease in productivity. It may happen. Also, the reaction may be carried out while defoaming under reduced pressure. Furthermore, catalysts, stabilizers and the like may be added as necessary.
  • catalysts include triethylamine, tributylamine, dibutyltin dilaurate, stannous octoate, acetic acid, phosphoric acid, sulfuric acid, hydrochloric acid, sulfonic acid, etc.
  • Stabilizers include, for example, 2,6-dibutyl -4-methylphenol, distearylthiodipropionate, di ⁇ -naphthylphenylenediamine, tri(dinonylphenyl)phosphite and the like.
  • the chain extender is highly reactive such as a short-chain aliphatic amine, it is preferable to carry out the reaction without adding a catalyst.
  • a solvent can be used for the purpose of adjusting the viscosity.
  • Solvents may be used alone or in combination of two or more, and any known solvent can be used. Examples of such solvents include aliphatic hydrocarbon solvents such as hexane, cyclohexane, methylcyclohexane, ethylcyclohexane, heptane, nonane, octane, isooctane, and decane; aromatic hydrocarbon solvents such as benzene, toluene, xylene, cumene, and ethylbenzene; hydrogen; ester solvents such as ethyl acetate and butyl acetate; ether solvents such as diethyl ether, diisopropyl ether and methyl-tert-butyl ether; ketone solvents such as cyclohexanone, methyl
  • toluene, xylene, ethyl acetate, butyl acetate, cyclohexanone, methyl ethyl ketone, and methyl isobutyl ketone are preferred.
  • thermosetting compound contained in the antibacterial/antiviral agent composition is at least one of a hydroxyl group, an amino group, and an imino group.
  • a thermosetting compound having a functional group is preferable, and the urethane resin having the functional group, the acrylic resin having the functional group, the polyester resin having the functional group, the ethylene vinyl acetate resin having the functional group, the functional group styrene-butadiene rubber having a functional group, epoxy resin having the above functional group is more preferable, urethane resin having a hydroxyl group, acrylic resin having a hydroxyl group, polyester resin having a hydroxyl group, ethylene vinyl acetate resin having a hydroxyl group, styrene-butadiene rubber having a hydroxyl group , hydroxyl group-containing epoxy resins are more preferred, and hydroxyl group-containing urethane resins, hydroxyl group-containing acrylic resins, hydroxyl group-containing polyester
  • thermosetting compounds having a hydroxyl group include, for example, acrylic resins manufactured by Toray Fine Chemicals Co., Ltd. (trade names “Kotax LH-601” and “Kotax LH-591”), acrylic resins manufactured by Mitsui Chemicals, Inc. (trade names “Almatex 646”, “Almatex 646SB”, “Orester Q810”, “Orester Q519”), acrylic resin manufactured by DIC Corporation (trade name “Acrydic A-811”), manufactured by DIC Corporation Examples include polyester resin (trade name “Barnock D-161”), urethane resin (trade name “Polyurex Eco V-HK500 Clear P liquid (main agent)”) manufactured by Wasin Chemical Industry Co., Ltd., and the like.
  • thermosetting compound having a functional group examples include isocyanate curing agents, epoxy curing agents, melamine curing agents, and oxazoline curing agents. be done.
  • the isocyanate-based curing agent is a polyisocyanate having two or more isocyanate groups in one molecule.
  • isocyanate-based curing agents include monomers and modified polyisocyanates exemplified as raw materials for the urethane resin, and among them, aliphatic polyisocyanates and polymers thereof are preferred. These polyisocyanates may be used alone or in combination of two or more.
  • the epoxy-based curing agent is a crosslinkable epoxy compound having two or more glycidyl groups in one molecule.
  • examples of such an epoxy-based curing agent include those exemplified as the epoxy compounds. Among them, bisphenol A type liquid epoxy resin, alicyclic epoxy compound, and trimethylolpropane polyglycidyl ether are preferable.
  • the bisphenol A liquid epoxy resin is not particularly limited as long as it is liquid at room temperature, and commercially available products may be used.
  • commercial products include EPICLON840, 840-S, 850, 850-S, EXA-850CRP, 850-LC (trade name, manufactured by DIC Corporation), jER828EL, 827 (trade name, Mitsubishi Chemical Corporation (manufactured by Mitsui Chemicals, Inc.) and Epomic R-140P (trade name, manufactured by Mitsui Chemicals, Inc.).
  • the alicyclic epoxy compound is a compound having two or more epoxycycloalkyl groups or epoxycycloalkenyl groups in the molecule, or two groups in which at least one epoxy group is bonded to an alicyclic ring by a single bond. It is a compound having one or more.
  • alicyclic epoxy compounds examples include 3,4-epoxycyclohexenylmethyl-3′,4′-epoxycyclohexenecarboxylate, 3′,4′-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate, 3,4-epoxycyclohexyloctyl-3,4-epoxycyclohexanecarboxylate, 2-(3,4-epoxycyclohexyl-5,5-spiro-3,4-epoxy)cyclohexane-m-dioxane, bis(3 ,4-epoxycyclohexylmethyl)adipate, vinylcyclohexene dioxide, bis(3,4-epoxy-6-methylcyclohexylmethyl)adipate, 3,4-epoxy-6-methylcyclohexyl-3,4-epoxy-6-methyl Cyclohexane carboxylate, methylenebis(3,4-epoxy
  • alicyclic epoxy compound commercial products such as Celoxide 2021P, EHPE3150, EHPE3150CE, Epolead GT401 (trade name, manufactured by Daicel Corporation) may be used.
  • Celoxide 2021P EHPE3150
  • EHPE3150CE Epolead GT401
  • 1,2-epoxy-4-(2-oxiranyl of 2,2-bis(hydroxymethyl)-1-butanol is preferred from the viewpoint of improving the adhesiveness of the cured film to members.
  • cyclohexane adducts are preferred.
  • trimethylolpropane polyglycidyl ether examples include trimethylolpropane diglycidyl ether, trimethylolpropane triglycidyl ether, and mixtures thereof.
  • a commercial product such as EX-321L (trade name, manufactured by Nagase ChemteX Corporation) may be used.
  • the melamine-based curing agent is melamine or its derivative.
  • melamine curing agents include those exemplified as the melamine compounds.
  • the oxazoline-based curing agent is a crosslinkable oxazoline compound having two or more oxazoline groups in one molecule.
  • oxazoline curing agents include oxazoline group-containing polymers such as polymers of oxazoline group-containing monomers and copolymers of oxazoline group-containing monomers and other monomers.
  • commercially available products such as "Epocross” series (trade name, manufactured by Nippon Shokubai Co., Ltd.) may be used.
  • Examples of the oxazoline group-containing monomer include 2-vinyl-2-oxazoline, 2-vinyl-4-methyl-2-oxazoline, 2-vinyl-5-methyl-2-oxazoline, and 2-isopropenyl-2-oxazoline. , 2-isopropenyl-4-methyl-2-oxazoline, 2-isopropenyl-5-ethyl-2-oxazoline, 2-isopropenyl-2-oxazoline, 2-isopropenyl-4,4-dimethyl-2-oxazoline are mentioned.
  • One of these oxazoline group-containing monomers may be used alone, or two or more may be used in combination.
  • alkyl (meth)acrylates alkyl group having about 1 to 14 carbon atoms
  • Unsaturated carboxylic acids such as (sodium salts, potassium salts, ammonium salts, tertiary amine salts, etc.); unsaturated nitriles such as acrylonitrile and methacrylonitrile; , N-dialkyl (meth)acrylamide, (alkyl group: methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, t-butyl group, 2-ethylhexyl group, cyclohexyl group, etc.), etc.
  • unsaturated carboxylic acids such as (sodium salts, potassium salts, ammonium salts, tertiary amine salts, etc.); unsaturated nitriles such as acrylonitrile and methacrylonitrile; , N-dialkyl (meth)acrylamide, (alkyl group: methyl group, ethyl group, n
  • vinyl esters such as vinyl acetate and vinyl propionate; vinyl ethers such as methyl vinyl ether and ethyl vinyl ether; ⁇ -olefins such as ethylene and propylene; Halogen ⁇ , ⁇ -unsaturated monomers; ⁇ , ⁇ -unsaturated aromatic monomers such as styrene and ⁇ -methylstyrene. These may be used individually by 1 type, or may use 2 or more types together.
  • the active energy ray-curable component contains a compound having a radically polymerizable carbon-carbon double bond, and is polymerized and cured in a short time by an active energy ray such as ultraviolet rays. It has the characteristic of Such a compound having a radically polymerizable carbon-carbon double bond has two or more radically polymerizable carbon-carbon double bonds in one molecule from the viewpoint of facilitating the formation of a three-dimensional network structure. It is preferably a compound having
  • Examples of the compound having a radically polymerizable carbon-carbon double bond include, for example, polyol, polyisocyanate, and polyurethane (meth)acrylate-based oligomer which is a reaction product of raw materials containing hydroxyalkyl (meth)acrylate; Reactive monomer; polyether, polyester, polycarbonate, poly(meth)acrylate, polybutadiene or butadiene-acrylonitrile copolymer compound having an acrylic group; polyether, polyester, polycarbonate, poly(meth)acrylate, polybutadiene or butadiene - A compound that is an acrylonitrile copolymer and has an allyl group; a compound that has a maleimide group;
  • Polyurethane (meth)acrylate Oligomer is a reaction product of raw materials including polyol, polyisocyanate, and hydroxyalkyl (meth)acrylate. Such polyurethane (meth)acrylate oligomers may be used alone or in combination of two or more. Each component of the raw material for the polyurethane (meth)acrylate oligomer will be described below.
  • polyol The polyol may be appropriately selected and used from among the polyols exemplified as those used in the urethane resin as the thermosetting component. Preferred polyols may also be the same as above.
  • polyisocyanate The polyisocyanate may be appropriately selected and used from the polyisocyanates exemplified as those used in the urethane resin as the thermosetting component. Preferred polyisocyanates may also be the same as above
  • hydroxyalkyl (meth)acrylate is a compound having one or more hydroxyl groups, one or more (meth)acryloyl groups and a hydrocarbon group having 1 to 30 carbon atoms. Hydroxyalkyl (meth)acrylates may be used alone or in combination of two or more.
  • hydroxyalkyl (meth)acrylates examples include 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate, 6-hydroxyhexyl (meth)acrylate, cyclohexanedi Methanol mono(meth)acrylate, addition reaction product of 2-hydroxyethyl (meth)acrylate and caprolactone, addition reaction product of 4-hydroxybutyl (meth)acrylate and caprolactone, addition of glycidyl ether and (meth)acrylic acid
  • Examples include reactants, mono(meth)acrylate forms of glycol, pentaerythritol tri(meth)acrylate, and dipentaerythritol penta(meth)acrylate.
  • a hydroxyalkyl (meth)acrylate having an alkylene group having 2 to 4 carbon atoms between the hydroxyl group is particularly preferred.
  • the above polyurethane (meth)acrylate oligomer may further contain other components in its starting material.
  • Such other components include, for example, chain extenders.
  • the chain extender may be appropriately selected from the chain extenders exemplified as those used in the urethane resin as the thermosetting component.
  • the amount of all isocyanate groups in the polyurethane (meth)acrylate oligomer and the amount of all functional groups that react with isocyanate groups such as hydroxyl groups and amino groups are usually theoretically equimolar and expressed in mol%.
  • the amounts of the polyisocyanate, polyol, hydroxyalkyl (meth)acrylate, and other raw material compounds used in the polyurethane (meth)acrylate-based oligomer are determined by the total amount of isocyanate groups in the polyurethane (meth)acrylate-based oligomer and the reaction therewith.
  • the amount of all the functional groups is an equimolar amount, or an amount that is 50 mol % or more and 200 mol % or less in terms of mol % of the functional groups to the isocyanate group.
  • the amount of hydroxyalkyl (meth)acrylate used is reacted with a hydroxyalkyl (meth)acrylate, a polyol compound having two or more hydroxyl groups, and an isocyanate such as a chain extender.
  • a hydroxyalkyl (meth)acrylate a polyol compound having two or more hydroxyl groups
  • an isocyanate such as a chain extender.
  • 10 mol% or more preferably 15 mol% or more, more preferably 25 mol% or more
  • 70 mol% or less preferably 50 mol% or less
  • the amount of the polyol used relative to the total amount of the compound including the polyol and the chain extender improves the liquid stability. Therefore, it is preferably 70 mol % or more, more preferably 80 mol % or more, still more preferably 90 mol % or more, and particularly preferably 95 mol % or more.
  • the polyurethane (meth)acrylate-based oligomer can be produced by subjecting the polyisocyanate to addition reaction of the polyol and the hydroxyalkyl (meth)acrylate.
  • the polyurethane (meth)acrylate oligomer can be produced by subjecting the polyisocyanate to an addition reaction with the other raw material compounds described above.
  • addition reactions can be carried out by any known method. Examples of such methods include the following methods (i) to (iii).
  • the polyisocyanate and the hydroxyalkyl (meth)acrylate are first reacted to synthesize a urethane (meth)acrylate prepolymer having both a (meth)acryloyl group and an isocyanate group in the molecule; A method of reacting the prepolymer with other raw material components.
  • the urethane prepolymer is formed by the urethanization reaction of the polyisocyanate and the polyol, and the polyurethane (meth)acrylate oligomer is a urethane compound having an isocyanate group at its end. Since it has a structure obtained by urethanizing the prepolymer and the hydroxyalkyl (meth)acrylate, the molecular weight can be controlled and acryloyl groups can be introduced at both ends. From such a point of view, the method (i) is preferable.
  • a solvent can be used to adjust the viscosity during the production of the polyurethane (meth)acrylate oligomer.
  • Solvents may be used alone or in combination of two or more, and any known solvent can be used. Examples of such solvents include aliphatic hydrocarbon solvents such as hexane, cyclohexane, methylcyclohexane, ethylcyclohexane, heptane, nonane, octane, isooctane, and decane; aromatic hydrocarbon solvents such as benzene, toluene, xylene, cumene, and ethylbenzene; hydrogen; ester solvents such as ethyl acetate and butyl acetate; ether solvents such as diethyl ether, diisopropyl ether and methyl-tert-butyl ether; ketone solvents such as cyclohexanone, methyl ethy
  • the solvent can usually be used in an amount of 300 parts by mass or less per 100 parts by mass of the active energy ray-curable polymer composition.
  • the reaction temperature is usually 20° C. or higher (preferably 40° C. or higher, more preferably 60° C. or higher) from the viewpoint of increasing the reaction rate and improving the production efficiency. be. Moreover, the reaction temperature is usually 120° C. or lower (preferably 100° C. or lower) from the viewpoint that side reactions such as allophanate-forming reactions are unlikely to occur.
  • the reaction liquid contains a solvent
  • the temperature is preferably below the boiling point of the solvent, and when (meth)acrylate is contained, the temperature is preferably 70°C or less from the viewpoint of preventing the reaction of the (meth)acryloyl group.
  • the reaction time is usually about 5 to 20 hours.
  • the addition reaction catalyst used in the production of the polyurethane (meth)acrylate oligomer can be selected from the range in which the effect of the present invention can be obtained.
  • ate bisma tris(2-ethylhexanoate), diisopropoxytitanium bis(acetylacetonate), titanium tetra(acetylacetonate), dioctanoxytitanium dioctanate, diisopropoxytitanium bis(ethylacetoacetate), etc. and known urethane polymerization catalysts represented by
  • the addition reaction catalyst may be used alone or in combination of two or more.
  • bismath tris(2-ethylhexanoate) is preferred from the viewpoint of environmental adaptability, catalytic activity and storage stability.
  • a polymerization inhibitor When producing a polyurethane (meth)acrylate oligomer, if the reaction solution contains (meth)acryloyl groups, a polymerization inhibitor can be used in combination.
  • polymerization inhibitors include phenols such as hydroquinone, hydroquinone monoethyl ether, and dibutylhydroxytoluene; amines such as phenothiazine and diphenylamine; dibutyldithiocarbamic acid; copper salts such as copper; and manganese salts such as manganese acetate. , nitro compounds, nitroso compounds and the like.
  • a polymerization inhibitor may be used individually by 1 type, or may use 2 or more types together. Among these polymerization inhibitors, phenols are preferred.
  • each raw material component is substantially the same (preferably the same) as the composition of the polyurethane (meth)acrylate oligomer described above.
  • active energy ray-reactive monomers include aromatic vinyl-based monomers, vinyl ester monomers, vinyl ethers, allyl compounds, (meth)acrylamides, and (Meth)acrylates, specifically, for example, aromatic vinyl monomers such as styrene, ⁇ -methylstyrene, ⁇ -chlorostyrene, vinyltoluene, divinylbenzene; vinyl acetate, vinyl butyrate, N- vinyl ester monomers such as vinylformamide, N-vinylacetamide, N-vinyl-2-pyrrolidone, N-vinylcaprolactam and divinyl adipate; vinyl ethers such as ethyl vinyl ether and phenyl vinyl ether; diallyl phthalate, trimethylolpropane diallyl ether, Allyl compounds such as allyl glycidyl ether; acrylamide, N,N-dimethylacrylamide, N,
  • (1-2-5) Compound having a maleimide group
  • the compound having a maleimide group is also appropriately selected from compounds exemplified as compounds having a radically polymerizable carbon-carbon double bond that is a thermosetting component. It may be selected and used. Preferable ones may be the same as above.
  • one of these compounds having a radically polymerizable carbon-carbon double bond may be used alone, or two or more thereof may be used in combination.
  • Preferred active energy ray-curing component provides a cured film with high hardness, excellent flexibility, and good adhesion to members (structures), and can be used in a wide range of compositions.
  • a polyurethane (meth)acrylate oligomer a compound having an acrylic group, a compound having an allyl group, and a compound having a maleimide group, and an active energy ray and a reactive monomer are preferred.
  • one or more of a polyurethane (meth)acrylate oligomer, a compound having an acrylic group, a compound having an allyl group, and a compound having a maleimide group is added to the entire component. It is preferably contained at a ratio of 1% by mass or more and 45% by mass or less, and preferably contains an active energy ray-reactive monomer at a ratio of 55% by mass or more and 99% by mass or less.
  • Active energy ray polymerization initiator In the antibacterial/antiviral agent composition, it is mainly necessary to improve the initiation efficiency of the polymerization reaction that proceeds when irradiated with active energy rays such as ultraviolet rays and electron beams. For the purpose, it is preferable that an active energy ray polymerization initiator is further included.
  • an active energy ray polymerization initiator a photoradical polymerization initiator which is a compound having a property of generating radicals by light is generally used, and any known photoradical polymerization initiator can be used.
  • the polymerization initiator may be used alone or in combination of two or more.
  • photoradical polymerization initiators include benzophenone, 2,4,6-trimethylbenzophenone, 4,4-bis(diethylamino)benzophenone, 4-phenylbenzophenone, methylorthobenzoylbenzoate, thioxanthone, diethylthioxanthone, isopropylthioxanthone, chloro Thioxanthone, 2-ethylanthraquinone, t-butylanthraquinone, diethoxyacetophenone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, benzyldimethylketal, 1-hydroxycyclohexylphenylketone, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether, methylbenzoylformate, 2-methyl-1-[4-(methylthio)phenyl]-2-morpholinopropan-1-one
  • benzophenone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, 1-hydroxycyclohexylphenyl ketone, 2 are preferred from the viewpoint that the curing speed is fast and the crosslink density can be sufficiently increased.
  • 4,6-trimethylbenzoyldiphenylphosphine oxide, and 2-hydroxy-1-[4-[4-(2-hydroxy-2-methyl-propionyl)-benzyl]-phenyl]-2-methyl-propane-1 -ones are preferred
  • 1-hydroxycyclohexylphenyl ketone, 2,4,6-trimethylbenzoyldiphenylphosphine oxide, and 2-hydroxy-1-[4-[4-(2-hydroxy-2-methyl-propionyl)-benzyl ]-Phenyl]-2-methyl-propan-1-one is more preferred.
  • the photocationic polymerization initiator is used as a polymerization initiator together with the photoradical polymerization initiator.
  • agents may be included. Any known photocationic polymerization initiator can be used.
  • the content of these photopolymerization initiators is preferably 10 parts by mass or less with respect to a total of 100 parts by mass of active energy ray-reactive components, from the viewpoint that deterioration of mechanical strength due to decomposition products of the initiator is unlikely to occur. , 5 parts by mass or less is more preferable.
  • the photoradical polymerization initiator and photosensitizer may be used in combination.
  • a photosensitizer can be used for the same purpose as the polymerization initiator.
  • the photosensitizer may be used alone or in combination of two or more, and any known photosensitizer can be used. Examples of such photosensitizers include ethanolamine, diethanolamine, triethanolamine, N-methyldiethanolamine, methyl 4-dimethylaminobenzoate, ethyl 4-dimethylaminobenzoate, amyl 4-dimethylaminobenzoate, and 4-dimethylaminoacetophenone.
  • the content of the photosensitizer is preferably 10 parts by mass or less with respect to a total of 100 parts by mass of the active energy ray-reactive components, from the viewpoint that a decrease in mechanical strength due to a decrease in cross-linking density is unlikely to occur. 5 parts by mass or less is more preferable.
  • additives can be used singly or in combination of two or more.
  • Such other additives include, for example, antioxidants (e.g., 2,6-dibutyl-4-methylphenol (BHT), "CYANOX1790” manufactured by Sun Chemical Co., Ltd., "IRGANOX245" manufactured by BASF Japan Ltd.
  • antioxidants e.g., 2,6-dibutyl-4-methylphenol (BHT)
  • CYANOX1790 manufactured by Sun Chemical Co., Ltd.
  • IRGANOX245" manufactured by BASF Japan Ltd.
  • UV absorbers e.g., BASF Japan Co., Ltd., "TINUVIN328" and "TINUVIN234", etc.
  • silicone compounds e.g., dimethylsiloxane polyoxy alkylene copolymers, etc.
  • additive and reactive flame retardants e.g., red phosphorus, organic phosphorus compounds, phosphorus- and halogen-containing organic compounds, bromine- or chlorine-containing organic compounds, ammonium polyphosphate, aluminum hydroxide, antimony oxide, etc.
  • pigments e.g., titanium dioxide, etc.
  • dyes e.g., coloring agents (e.g., carbon black, etc.); hydrolysis inhibitors (e.g., carbodiimide compounds, etc.); Calcium, mica, zinc oxide, titanium oxide, mica, talc
  • the content of such other additives is preferably 10 parts by mass or less, and 5 parts by mass with respect to 100 parts by mass of the curing component, from the viewpoint that a decrease in mechanical strength due to a decrease in crosslink density is unlikely to occur.
  • the following are more preferred.
  • the content of the above mono/diester or salt thereof is not particularly limited, but it is said that there is little decrease in the hardness of the cured film and excellent antiviral properties can be obtained. From the viewpoint, it is preferably 0.1 to 50 parts by mass, more preferably 0.2 to 30 parts by mass, and 0.5 to 20 parts by mass with respect to 100 parts by mass of the curing component. The following are particularly preferred.
  • a solvent can be added to the antibacterial/antiviral agent composition for the purpose of adjusting the viscosity, depending on the coating method used to form the coating film.
  • Solvents may be used alone or in combination of two or more, and any known solvent can be used. Examples of such solvents include ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone; alcohols such as isopropanol and isobutanol; ethers such as dioxane and tetrahydrofuran; hydrocarbons; aromatic hydrocarbons such as toluene and xylene; esters such as ethyl acetate and butyl acetate; halogenated hydrocarbons such as chlorobenzene, trichlene and perchlene; Aprotic polar solvents such as 2-pyrrolidone, dimethylformamide and dimethylacetamide are preferred.
  • the solvent can usually be used in an amount of 500 parts by mass or less with respect to 100 parts by mass of the curing component.
  • concentration of the mono/diester or salt thereof is not particularly limited, but is 0.01% by mass or more and 30% by mass based on the total composition. The following is preferable, 0.02 mass % or more and 20 mass % or less is more preferable, and 0.04 mass % or more and 10 mass % or less is particularly preferable.
  • the viscosity of the antibacterial/antiviral agent composition can be appropriately adjusted according to its application and usage mode.
  • the viscosity measured at 25° C. with (rotor 1°34′ ⁇ R24) is preferably 10 mPa s or more, more preferably 100 mPa s or more, and 100,000 mPa s or less. , and more preferably 50,000 mPa ⁇ s or less.
  • the adjustment of the viscosity can be appropriately adjusted depending on the content of the curing component, the type and content of other components, and the like.
  • the antibacterial/antiviral agent composition can be produced by mixing the mono/diester or its salt, the curing component, and, if necessary, a curing agent, other additives, and a solvent.
  • the mixing method is not particularly limited, and includes conventionally known mixing and dispersing methods. Homomixer, disper, double roll, triple roll, bead mill, ball mill, sand mill, pebble mill, tron mill, sand grinder, segvariator, planetary stirrer, high speed impeller disperser, high speed stone mill, high speed impact mill, kneader , a homogenizer, an ultrasonic disperser, or the like may be used.
  • the method of coating the antibacterial/antiviral agent composition includes the bar coater method, applicator method, curtain flow coater method, roll coater method, spray method, gravure coater method, comma coater method, reverse roll coater method, lip coater method, Known methods such as a die coater method, a slot die coater method, an air knife coater method and a dip coater method can be applied, and among them, a bar coater method and a gravure coater method are preferred.
  • the antibacterial/antiviral agent composition according to the present embodiment can be used as a treatment agent for imparting at least antiviral properties to various structures. For example, by bringing the antibacterial/antiviral agent composition according to the present embodiment into contact with various structures, at least antiviral properties can be imparted to the structures.
  • the antibacterial/antiviral agent composition is used in a liquid form such as a treatment liquid or paint.
  • the surface of various other structures may be wiped with the various structures to which the antibacterial/antiviral agent composition according to the present embodiment is attached.
  • the antibacterial/antiviral agent composition according to the present embodiment can be used to disinfect fingers, utensils, and the like.
  • a spray bottle may be filled with the antibacterial/antiviral agent composition and used.
  • the antibacterial/antiviral agent composition according to the present embodiment can be used to impart antiviral properties to various structures.
  • the antibacterial/antiviral structure according to the present embodiment includes a base material and the above antibacterial/antiviral agent composition.
  • the method for producing an antibacterial/antiviral structure according to this embodiment includes bringing the above antibacterial/antiviral agent composition into contact with a substrate.
  • substrates can be used to construct the structure.
  • the substrate may be plastic, glass, metal, wood, paint film, synthetic leather, or the like.
  • the shape of the substrate is not particularly limited, and may be appropriately determined according to the use of the structure.
  • the amount of the antibacterial/antiviral agent composition adhered to the substrate is particularly limited. not something.
  • the amount of the antibacterial/antiviral agent (mono/diester or salt thereof) attached to the substrate may be 0.01 g/m 2 or more, or 0.02 g/m 2 or more, and 20 g/m 2 or less, or 10 g. /m 2 or less.
  • the amount of the antibacterial/antiviral agent attached is 0.01 g/m 2 or more, a higher antiviral effect can be obtained.
  • the adhesion amount of the water-based polyurethane resin to the substrate may be 0.01 g/m 2 or more, or 0.06 g/m 2 or more, and may be 20 g/m 2 or more. m 2 or less, or 10 g/m 2 or less.
  • the adhesion amount of the water-based polyurethane resin is 0.01 g/m 2 or more, the durability of the antiviral agent is further improved.
  • the adhesion amount of the water-based polyurethane resin is 20 g/m 2 or less, the texture can be further softened.
  • the antibacterial/antiviral structure may have additional additives.
  • additives include coloring agents, antioxidants, light stabilizers, ultraviolet absorbers, flame retardants, softeners, cross-linking agents, and other thermoplastic resins.
  • the antibacterial/antiviral agent composition When the antibacterial/antiviral agent composition according to the present embodiment is used to treat a substrate in an aqueous system, the antibacterial/antiviral agent composition contains a mono/diester or a salt thereof and an aqueous resin as described above.
  • the antibacterial/antiviral agent composition can be attached to the substrate by bringing the treatment liquid into contact with the substrate.
  • a treatment liquid for imparting antiviral properties to the substrate is obtained. be able to.
  • the concentration of the mono/diester or its salt in the treatment liquid is, for example, 0.001% by mass or more, 0.002% by mass or more, 0.01% by mass or more, or 0.02% by mass. It may be at least 5% by mass, or at most 4% by mass. When it is 0.001% by mass or more and 4% by mass or less, the balance between performance and cost is excellent.
  • An aqueous solvent water or a mixture of water and an organic solvent
  • organic solvents examples include ethanol, propanol, acetone, and acetonitrile.
  • the concentration of the water-based resin in the treatment liquid may be, for example, 0.001% by mass or more, 0.005% by mass or more, or 0.1% by mass or more, and 20% by mass or less, or It may be 10% by mass or less. When it is 0.001% by mass or more and 20% by mass or less, the balance between performance and cost is excellent.
  • the above mono/diester or salt thereof, water-based polyurethane resin, etc. are diluted with a water-based solvent to a predetermined concentration to prepare a treatment liquid. Subsequently, the treatment liquid is brought into contact with the substrate to produce a structure having antiviral properties.
  • Examples of methods for bringing the treatment liquid into contact with the substrate include a coating method and a spray method.
  • the antibacterial/antiviral agent composition is adjusted to have an appropriate viscosity, and the composition (treatment liquid) is coated on the substrate and then dried to remove the mono/diester or its salt. It can be immobilized on a substrate.
  • the coating method is not particularly limited, and examples thereof include gravure roll processing, spray processing, roll coater processing, jet printing processing, transfer printing processing, screen printing processing and the like.
  • the base material After treating the base material with a treatment liquid containing a mono/diester or its salt, and a water-based polyurethane resin, etc., it may be washed as necessary and dried naturally or dried by heating.
  • heat drying devices such as loop dryers, net dryers, ovens and heat setters can be used.
  • the drying/heating temperature of the substrate to which the treatment liquid containing the mono/diester or its salt and the water-based polyurethane resin is applied can be 80 to 190°C, preferably 100 to 160°C. Treatment times may be 30 seconds or longer, or 1 minute or longer, 10 minutes or shorter, or 30 minutes or shorter.
  • the above antibacterial/antiviral agent composition may be of a two-liquid type. That is, a first liquid containing a water-based polyurethane resin and a second liquid containing a mono/diester or a salt thereof are prepared, and after one liquid is brought into contact with the substrate, the other liquid is brought into contact. may produce an antiviral structure. Also in this case, the antibacterial/antiviral agent composition can be adhered to the surface of the substrate.
  • Non-aqueous treatment When the antibacterial/antiviral agent composition according to the present embodiment is used to treat a substrate in a non-aqueous system, the treated structure has a cured film on its surface. good too. A cured film and a structure including the cured film will be described below.
  • the cured film is a cured product of the above antibacterial/antiviral agent composition, and in addition to antiviral properties, it can have, for example, immediate antiviral effects and transparency.
  • a cured film can be formed by subjecting a coating film made of the above antibacterial/antiviral agent composition to a curing treatment after washing as necessary.
  • the curing treatment may be selected depending on the curing component, and examples thereof include heat curing treatment by natural drying or heat drying, and curing treatment by active energy rays.
  • Heat drying can be performed using a known heat drying device such as a loop dryer, a net dryer, an oven, or a heat setter.
  • the treatment temperature in natural drying or heat drying can be appropriately set according to the thermosetting component contained in the antibacterial/antiviral agent composition, but is preferably 5 to 190°C, more preferably 10 to 160°C. .
  • the treatment time for natural drying or heat drying can be appropriately set according to the thermosetting component contained in the antibacterial/antiviral agent composition, but is preferably 30 seconds to 24 hours, and 1 to 30 minutes. is more preferred.
  • the thickness of the cured film can be appropriately determined according to the intended use, but is preferably 1 ⁇ m or more, more preferably 3 ⁇ m or more, particularly preferably 5 ⁇ m or more, and preferably 200 ⁇ m or less, and 100 ⁇ m or less. is more preferable, 50 ⁇ m or less is particularly preferable, and 20 ⁇ m or less is most preferable. If the thickness of the cured film is less than the lower limit, the design and functionality after curing may be insufficient. may be.
  • the structure provided with the above cured film includes a substrate and a layer made of the cured film disposed on the surface of the substrate. This structure has excellent antiviral properties. Moreover, when the base material has transparency, the transparency is also excellent.
  • the layer composed of the cured film may be directly disposed on the surface of the substrate, and between the layer composed of the cured film and the substrate, other than the cured film and the substrate other layers may be further arranged.
  • a layer other than the cured film and the base material may be further arranged outside the laminate composed of the layer composed of the cured film and the base material.
  • a method for producing a structure provided with such a cured film for example, (1) all layers including a coating film made of an antibacterial/antiviral agent composition are laminated on the base material in an uncured state. , and a method of curing by natural drying or heat drying after washing as necessary.
  • the method of laminating a plurality of layers in an uncured state is not particularly limited. Known coating methods such as a simultaneous multi-layer coating method in which two or more layers are simultaneously formed in an uncured state using a slit can be used.
  • the structure comprises a layer made of the cured film and other layers (that is, when comprising a plurality of layers)
  • an uncured lower layer is placed on the base material.
  • the method (1) is preferably adopted from the viewpoint of improving the interlayer adhesion.
  • the amount of the antibacterial/antiviral agent composition attached to the base material when producing a structure having a cured film is not particularly limited, but the hardness of the cured film is less reduced, and excellent antiviral properties are obtained. From the viewpoint of obtaining the antibacterial/antiviral agent (mono/diester or its salt) on the substrate, the amount is preferably 0.01 g/m 2 or more and 50 g/m 2 or less, and is preferably 0.02 g/m A more preferable amount is 2 or more and 25 g/m 2 or less.
  • the adhesion amount of the thermosetting component to the substrate is 0.05 g/m2 or more and 100 g/m2. It is preferably m 2 or less, more preferably 0.1 g/m 2 or more and 50 g/m 2 or less.
  • active energy rays examples include infrared rays, visible rays, ultraviolet rays, X-rays, electron beams, ⁇ rays, ⁇ rays, and ⁇ rays. From the viewpoint of equipment cost and productivity, it is preferable to use electron beams or ultraviolet rays. Ar laser, He-Cd laser, solid-state laser, xenon lamp, high-frequency induction mercury lamp, sunlight, etc. are suitable. When curing by electron beam irradiation, the irradiation dose is preferably 1 to 10 Mrad. In the case of ultraviolet irradiation, 50 to 1,000 mJ/cm 2 is preferable.
  • the atmosphere during curing may be air or an inert gas such as nitrogen or argon. Alternatively, irradiation may be performed in a closed space between the film or glass and the metal mold.
  • the thickness of the film cured by the active energy ray can be appropriately determined depending on the intended use, but is preferably 1 ⁇ m or more, more preferably 3 ⁇ m or more, particularly preferably 5 ⁇ m or more, and 200 ⁇ m or less. It is preferably 100 ⁇ m or less, particularly preferably 50 ⁇ m or less, and most preferably 20 ⁇ m or less. If the thickness of the cured film is less than the lower limit, the design and functionality after curing may be insufficient. may be.
  • the structure comprises a substrate and a layer composed of the cured film arranged on the surface of the substrate.
  • This structure has excellent antiviral and immediate antiviral properties. Moreover, when the member has transparency, the transparency is also excellent.
  • the layer composed of the cured film may be directly disposed on the surface of the substrate, and between the layer composed of the cured film and the substrate, other than the cured film and the substrate other layers may be further arranged.
  • a layer other than the cured film and the base material may be further arranged outside the laminate composed of the layer composed of the cured film and the base material.
  • a method for producing a structure having a film cured by such an active energy ray for example, (1) all layers including a coating film made of the above antibacterial/antiviral agent composition are uncoated on the base material.
  • a method of curing by irradiating an active energy ray after lamination in a cured state can be mentioned.
  • the method of laminating a plurality of layers in an uncured state is not particularly limited.
  • Known coating methods such as a simultaneous multi-layer coating method in which two or more layers are simultaneously formed in an uncured state using a slit can be used.
  • the structure comprises a layer made of the cured film and other layers (that is, when comprising a plurality of layers)
  • an uncured lower layer is placed on the base material.
  • the upper layer After laminating in a state and curing or semi-curing by irradiation with active energy rays, the upper layer is laminated on it in an uncured state and cured by irradiation with active energy rays again;
  • a method may also be adopted in which each layer is formed in an uncured or semi-cured state on the mold film or the base film, these layers are bonded together, and then cured by irradiation with active energy rays.
  • the method (1) is preferably adopted from the viewpoint of improving the interlayer adhesion.
  • the amount of the antibacterial/antiviral agent composition adhered to the base material when manufacturing a structure having a film cured by active energy rays is not particularly limited, but there is little decrease in the hardness of the cured film, and it is excellent.
  • the amount of the antibacterial/antiviral agent (mono/diester or salt thereof) attached to the member is preferably 0.01 g/m 2 or more and 20 g/m 2 or less. An amount of 02 g/m 2 or more and 10 g/m 2 or less is more preferable.
  • the adhesion amount of the active energy ray-curable component to the substrate is 0.05 g/m 2 or more and 50 g. /m 2 or less, more preferably 0.1 g/m 2 or more and 20 g/m 2 or less.
  • the structure may be used as various products.
  • the antibacterial/antiviral agent composition according to the present embodiment can be used in various forms. For example, it can be used by carrying it on products that may come into contact with viruses.
  • Examples of products that can carry the antibacterial/antiviral agent composition include textile products and products other than textile products (eg, breathable sheets, medical instruments, and interior materials such as wall materials).
  • An antibacterial/antiviral textile product will be described in detail below as an example of the structure.
  • the type of the fiber is not particularly limited, and may be a natural fiber or a chemical fiber.
  • fibers include natural fibers such as cotton, hemp, silk, and wool; semi-synthetic fibers such as rayon and acetate; synthetic fibers such as polyamide (nylon, etc.), polyester, polyurethane, and polypropylene; Blended fibers are mentioned.
  • Polyamides include nylon 6, nylon 6,6 and the like.
  • polyesters include polyethylene terephthalate, polytrimethylene terephthalate, and polylactic acid.
  • the fibers may be in the form of yarn, knitted fabric (including mixed knit), woven fabric (including mixed weave), non-woven fabric, carpet, paper, wood, and the like.
  • the fibers may be dyed.
  • the fibers may have undergone some modification treatment on their surface.
  • the amount of the antibacterial/antiviral composition adhered to the fiber is not particularly limited.
  • the amount of the antibacterial/antiviral agent (mono/diester or its salt) is preferably 0.001 to 10 parts by mass per 100 parts by mass of the fiber. Below the lower limit, the antiviral effect tends to decrease. On the other hand, when the upper limit is exceeded, the antiviral effect tends to saturate.
  • the antibacterial/antiviral agent composition may contain water, or may contain an organic solvent and water.
  • the antibacterial/antiviral agent composition may also contain an acid component, an alkaline component, a chelating agent, a preservative, a melamine resin, a glyoxal resin, an isocyanate compound, an antifoaming agent, a water repellent, a softening agent, and the like.
  • the method for producing antibacterial/antiviral textile products includes contacting the antibacterial/antiviral agent composition with the antibacterial/antiviral agent composition. .
  • the method of bringing the antibacterial/antiviral agent composition into contact with the fiber is not particularly limited. For example, by bringing an object into contact with a treatment liquid (which may be a solution or a dispersion) containing an antibacterial/antiviral agent composition, the object is treated with the antibacterial/antiviral agent composition. You can attach things.
  • the timing of performing the treatment with the treatment liquid is not particularly limited.
  • the treatment liquid may contain, for example, the above mono/diester or a salt thereof. Moreover, the treatment liquid may contain other components such as an acid component, an alkali component, a surfactant, and a chelating agent.
  • the pH of the treatment liquid is not particularly limited, but may be, for example, 2 or more and 8 or less. If you want to improve the durability, use melamine resin, glyoxal resin, isocyanate compound, etc. in combination in the above-mentioned process of treating the object with the treatment liquid containing the antibacterial / antiviral agent composition.
  • the object can also be treated by a method that includes applying it to the object and heating it.
  • Specific examples of the method of treating the fiber, which is the object, with the treatment liquid include padding treatment, immersion treatment, and coating treatment (for example, at least one treatment selected from spray treatment, inkjet treatment, bubble treatment, coating treatment, etc.). There may be) and the like.
  • the concentration of the treatment liquid at this time and the treatment conditions such as heat treatment after application may be appropriately adjusted in consideration of various conditions such as the purpose and performance.
  • washing treatment such as washing with water may be performed in order to remove excess antibacterial/antiviral agent.
  • a drying treatment may be performed to remove the water after the treatment liquid is adhered to the object.
  • the drying method is not particularly limited, and may be either a dry heat method or a wet heat method.
  • the drying temperature and drying time are not particularly limited, either. For example, drying may be performed at room temperature to 200° C. for 10 seconds to several days. 20 seconds to 60 minutes at 40 to 130° C. is more preferable.
  • the antibacterial/antiviral agent composition according to the present embodiment can be used in various fields.
  • the fibers described above can be used in, for example, the following fields.
  • the antibacterial/antiviral agent composition according to the present embodiment can be widely used for elastomers, paints, adhesives, flooring materials, sealants, medical materials, artificial leather, coating agents, etc. In these applications, Various characteristics can be expressed. In particular, when the antibacterial/antiviral agent composition according to the present embodiment is used for applications such as artificial leather, synthetic leather, medical materials, flooring materials, and coating agents, in addition to antiviral properties, abrasion resistance and blocking resistance can be obtained. Because of its excellent toughness, it is possible to impart good surface properties such as being less likely to be scratched or the like and less likely to be deteriorated by friction.
  • the antibacterial/antiviral agent composition according to this embodiment can also be used as a thermoplastic elastomer.
  • a thermoplastic elastomer for example, it can be used for tubes and hoses, spiral tubes, fire hoses, etc. in pneumatic equipment used in the food and medical fields, coating equipment, analytical equipment, physical and chemical equipment, metering pumps, water treatment equipment, industrial robots, and the like.
  • it can be used as a belt such as a round belt, a V belt, a flat belt, etc. for various transmission mechanisms, spinning machines, packing machines, printing machines, and the like.
  • it can be used for heel tops and soles of footwear, couplings, packings, pole joints, bushes, gears, machine parts such as rolls, sporting goods, leisure goods, watch belts, and the like.
  • automotive parts such as oil stoppers, gearboxes, spacers, chassis parts, interior parts, and tire chain substitutes.
  • films such as keyboard films and films for automobiles, curled cords, cable sheaths, bellows, conveyor belts, flexible containers, binders, synthetic leathers, dipping products, adhesives and the like.
  • the antibacterial/antiviral agent composition according to this embodiment can be applied to wood products such as musical instruments, Buddhist altars, furniture, decorative plywood, and sporting goods. It can also be used for automobile repair.
  • the antibacterial/antiviral agent composition according to the present embodiment includes, for example, paints for plastic bumpers, strippable paints, coating agents for magnetic tapes, floor tiles, flooring materials, paper, overprint varnishes such as wood grain printed films, and wood. It can be applied to varnish, coil coat for high processing, optical fiber protective coating, solder resist, top coat for metal printing, base coat for vapor deposition, white coat for food cans, etc.
  • the antibacterial/antiviral agent composition according to this embodiment can be applied as an adhesive to food packaging, shoes, footwear, magnetic tape binders, decorative paper, wood, structural members, OCR materials inside liquid crystal panels, and the like.
  • the antibacterial/antiviral agent composition according to the present embodiment includes metal materials such as iron, copper, aluminum, ferrite, and plated steel sheets, and resins such as acrylic resins, polyester resins, ABS resins, polyamide resins, polycarbonate resins, and vinyl chloride resins.
  • resins such as acrylic resins, polyester resins, ABS resins, polyamide resins, polycarbonate resins, and vinyl chloride resins.
  • Inorganic materials such as materials, glass, and ceramics can be efficiently bonded.
  • the antibacterial/antiviral agent composition according to the present embodiment includes binders such as magnetic recording media, inks, castings, baked bricks, graft materials, microcapsules, granular fertilizers, granular pesticides, polymer cement mortar, resin mortar, rubber chip binders, It can be used for recycled foam, glass fiber sizing, etc.
  • binders such as magnetic recording media, inks, castings, baked bricks, graft materials, microcapsules, granular fertilizers, granular pesticides, polymer cement mortar, resin mortar, rubber chip binders, It can be used for recycled foam, glass fiber sizing, etc.
  • the antibacterial/antiviral agent composition according to the present embodiment can be used as a sealant/caulk for concrete rammed walls, induced joints, around sashes, wall-type PC joints, ALC joints, board joints, composite glass sealants, and heat-insulating sash sealants. , automotive sealants, etc.
  • the antibacterial/antiviral agent composition according to this embodiment can be used as a medical material, such as tubes, catheters, artificial hearts, artificial blood vessels, artificial valves, etc. as blood compatible materials, and catheters as disposable materials. , tubes, bags, surgical gloves, artificial kidney potting materials, etc.
  • the antibacterial/antiviral agent composition according to the present embodiment is used as a raw material for UV curable coatings, electron beam curable coatings, photosensitive resin compositions for flexographic printing plates, photocurable optical fiber coating compositions, and the like. be able to.
  • the antibacterial/antiviral agent composition when a water-based resin is used together with the above mono/diester or salt thereof, the antibacterial/antiviral agent composition is particularly suitable for leather (artificial leather, synthetic leather ) as an antiviral treatment agent.
  • a non-aqueous resin when used together with the above mono/diester or salt thereof, it can be used as a coating agent for flexible materials such as bendable films.
  • it can be effectively applied to electronic devices such as touch panels of mobile phones, monitors, tablets, etc., and optical devices such as spectacle lenses.
  • the technology of the present disclosure also has an aspect as a virus inactivating method using an antibacterial/antiviral agent composition.
  • the antibacterial/antiviral agent composition according to the present embodiment can be applied to doorknobs, bed rails, handrails, floor surfaces, walls, ceilings, drains, bathtubs, and sinks in hospital rooms, bathrooms, kitchens, toilets, etc. , toilet bowls, washstands, etc., and doorknobs, handrails, etc. in toilets, floors, walls, ceilings, drains, toilet bowls, washstands, etc. in each factory such as food factories, and surfaces of various manufacturing equipment. It can also be used when performing an activation treatment. In particular, it is useful for use as a frequently touched finger surface in medical institutions such as hospitals and food factories.
  • the antibacterial/antiviral agent composition includes a chelating agent, a rust inhibitor, an antifoaming agent, an antiseptic, a surfactant, an antioxidant, a coloring agent, a deodorant, a fragrance, an acid component, and an alkali component. etc. can be blended.
  • the antibacterial/antiviral agent composition may be used as it is, or the composition may be diluted with water and used as a treatment liquid.
  • water in this case tap water, well water, ion-exchanged water, or distilled water can be suitably used.
  • the concentration of the mono/diester or its salt in the antibacterial/antiviral agent composition can be appropriately adjusted depending on the application.
  • the virus inactivation method using the antibacterial/antiviral agent composition according to the present embodiment includes the step of contacting the composition with an object such as a device to be subjected to virus inactivation treatment. It is not particularly limited. Spraying the treatment liquid on the surface to be treated, equipment, etc. using a device equipped with a nozzle, etc., simply moistening or immersing the surface to be treated, equipment, etc. in the treatment liquid, wiping, etc. Examples include impregnating a substrate and using it as a cleaning article, circulating the inside of equipment, and the like.
  • the temperature during the treatment is not particularly limited, but from the viewpoint of antiviral properties, washing properties, and economy, it is preferably 10 to 60°C, more preferably 10 to 30°C.
  • the processing time varies depending on the shape/size of the object, the processing method, and the processing conditions, and is not particularly limited.
  • Antiviral treatment for textiles 1.1 Preparation of solutions of compounds A to C and E to K To an alkyl phosphate ester prepared from an alcohol shown in Table 1 below and phosphoric anhydride (diphosphorus pentoxide), water and A neutralized salt shown in Table 1 below was added to adjust the alkyl phosphate salt to 15% by mass. When a uniform liquid was not obtained, an organic solvent was added as appropriate to adjust the amount of the alkyl phosphate to 15% by mass.
  • the types of alkyl groups and salts are shown in Table 1 below.
  • Example 16 A 100% wool fabric (basis weight: 100 g/m 2 ) is immersed in the above treatment liquid, treated at a squeezing rate of 80%, and then heat-treated at 120 ° C. for 1 minute to have antiviral properties. A textile product was obtained.
  • the antiviral activity value was measured according to JIS L1922 (2016) to evaluate the antiviral performance of the textile product.
  • influenza A virus H3N2 ATCC VR-1679 was used.
  • Antiviral activity value was evaluated as log(Va)-log(Vc).
  • log(Va) is the common logarithm of the viral infectivity titer recovered from the unprocessed sample immediately after virus inoculation
  • log(Vc) is the common logarithm of the viral infectivity titer recovered from the processed sample after 2 hours of virus action. .
  • the higher the activity value the better the antiviral properties.
  • an antiviral activity value of 2.0 or more is considered to be effective, but viruses are reduced even if the activity value is 2.0 or less. In this example, it is determined that even an activity value of 1.4 has an antiviral effect.
  • the antibacterial activity value was measured by JIS L1902 (2015) quantitative test (8.2 bacterial liquid absorption method) to evaluate the antibacterial performance of the textile product. Klebsiella pneumoniae NBRC13277 was used as the bacterium used. The higher the activity value, the better the antibacterial properties. In this example, the antibacterial activity was judged to be good when the antibacterial activity value was 2.0 or more.
  • Water-based polyurethane resins used in this example are as follows. The following water-based polyurethane resins were obtained by preparing an emulsified dispersion (solvent: water) having a concentration of 35% by mass of the polyurethane resin, and then standing the emulsified dispersion at atmospheric pressure at 20°C for 12 hours. Separation and sedimentation were not observed even when placed.
  • solvent water
  • 1,6-hexanediol polycarbonate polyol molecular weight 1,000
  • DMPA dimethylolpropionic acid
  • 3 parts, 3.4 parts of 1,4-BD (butanediol), and 114.5 parts of methyl ethyl ketone as a solvent are weighed and mixed uniformly, and then 77.0 parts of HDI (hexamethylene diisocyanate) as a polyisocyanate is added. , and 80 ⁇ 5° C.
  • 7.3 parts of triethylamine was added at 60° C. to carry out a neutralization reaction.
  • 643.2 parts of water was gradually added and stirred to emulsify and disperse the terminal isocyanate group-containing urethane prepolymer.
  • a polyamine aqueous solution prepared by dissolving 9.2 parts of hydrazine monohydrate and 1.9 parts of diethylenetriamine in 33.1 parts of water was added, stirred at 40 ⁇ 5° C.
  • the monomer emulsion used above is a monomer mixture of 25 parts of methyl methacrylate and 75 parts of butyl acrylate, and sodium polyoxyethylene alkyl ether sulfate (manufactured by Kao Corporation, trade name: Latemul E-118B). 4 parts and 30 parts of ion-exchanged water were mixed and emulsified. In parallel with the dropping of the monomer emulsion, 4 parts of a 5% concentration ammonium persulfate aqueous solution was dropped. After completion of dropping, the mixture was aged at 80° C. for 4 hours, and then cooled to room temperature. Finally, the mixture was neutralized with aqueous ammonia and adjusted with water to obtain a water-based acrylic resin composition having a non-volatile content of 60%.
  • Antibacterial/Antiviral Agent Composition A solution of compound A or a solution of compound L, the water-based polyurethane resin composition, the water-based acrylic resin composition, other additives, etc., were prepared according to Table 3 below. were mixed at the mass ratio shown in , to obtain antibacterial/antiviral agent compositions according to Examples 1A, 2A and Comparative Example 1A.
  • the antiviral activity value was measured according to ISO21702:2019, and the antiviral performance of the leather-like laminate after the antibacterial/antiviral agent composition was fixed was evaluated.
  • influenza A virus H3N2 ATCC VR-1679 was used.
  • Antiviral activity value R (Ut-U0)-(At-U0).
  • U0 is the average common logarithm (PFU/cm 2 ) of the number of plaques recovered from the raw sample immediately after inoculation
  • Ut is the average common logarithm (PFU/cm 2 ) of the number of plaques recovered from the raw sample after 24 hours.
  • At is the mean common logarithm (PFU/cm 2 ) of the number of plaques recovered from the processed samples after 24 hours.
  • PFU/cm 2 the mean common logarithm
  • the antibacterial activity value was measured according to JIS Z2801:2010 to evaluate the antibacterial performance of the leather-like laminate after the antibacterial/antiviral agent composition was fixed.
  • Staphylococcus aureus NBRC12732 was used as the bacterium. The higher the activity value, the better the antibacterial properties. In this example, the antibacterial activity was judged to be good when the antibacterial activity value was 2.0 or more.
  • Antiviral spray 3.1 Preparation of spray composition As shown in Table 4 below, the spray compositions according to Example 1B and Comparative Example 1B consisted of a solution of compound A (isodecyl phosphate ester Na) and compound L ( A solution of dodecyl sulfate (Na) was prepared respectively.
  • the antiviral activity value was measured according to ISO21702:2019, and the antiviral performance of the leather-like laminate after the antiviral agent composition was fixed was evaluated.
  • influenza A virus H3N2 ATCC VR-1679 was used.
  • Antiviral activity value R (Ut-U0)-(At-U0).
  • U0 is the average common logarithm (PFU/cm 2 ) of the number of plaques recovered from the raw sample immediately after inoculation
  • Ut is the average common logarithm (PFU/cm 2 ) of the number of plaques recovered from the raw sample after 24 hours.
  • At is the mean common logarithm (PFU/cm 2 ) of the number of plaques recovered from the processed samples after 24 hours.
  • a bacterial solution was prepared as follows. (1) A given bacterium was cultured in a soybean-casein digest liquid medium at 37° C. for 24 hours. (2) After culturing, the number of bacteria was adjusted to 10 7 to 10 9 CFU/ml with pH 7.4 phosphate-buffered saline to prepare a bacterial solution.
  • Example 1B or Comparative Example 1B instead of 9.9 mL of the spray composition according to Example 1B or Comparative Example 1B, the same operation was performed using 9.9 mL of physiological saline as a control operation, and the number of surviving bacteria after the control operation and the number of surviving bacteria after contact with the composition of Example 1B or Comparative Example 1B was calculated as an index of sterilization performance, and a logarithmic difference of 3 or more was considered good.
  • Example 1B containing isodecyl phosphate is superior to the composition according to Comparative Example 1B containing dodecyl sulfate instead of isodecyl phosphate. It had antiviral properties (sterilizing properties) and antiviral properties, and was also excellent in durable antiviral properties (antiviral properties after wiping).
  • Non-aqueous processing using active energy curable (UV curable) resins 4.1 Preparation of compound N , the neutralized salt shown in Table 1 above was added to adjust the alkyl phosphate salt to 100% by mass. The types of alkyl groups and salts are shown in Table 1 above.
  • Antibacterial/Antiviral Agent Composition Phosphate mono/diester as an antibacterial/antiviral agent, polyurethane (meth)acrylate oligomer, pentaerythritol tri/tetraacrylate, and photopolymerization initiator. , and further mixed with methyl ethyl ketone to prepare an antibacterial/antiviral agent composition having an active ingredient amount (amount of ingredients other than catalyst and solvent) of 50% by mass.
  • the blending amounts shown in Table 5 are values converted into the solid content of each component. Also, the amount of the photopolymerization initiator to be blended was set to 5.3 parts by mass with respect to 100 parts by mass of the active ingredient.
  • the antiviral activity value was measured according to ISO21702:2019, and the antiviral performance of the leather-like laminate after the antibacterial/antiviral agent composition was fixed was evaluated.
  • influenza A virus H3N2 ATCC VR-1679 was used.
  • Antiviral activity value R (Ut-U0)-(At-U0).
  • U0 is the average common logarithm (PFU/cm 2 ) of the number of plaques recovered from the raw sample immediately after inoculation
  • Ut is the average common logarithm (PFU/cm 2 ) of the number of plaques recovered from the raw sample after 24 hours.
  • At is the mean common logarithm (PFU/cm 2 ) of the number of plaques recovered from the processed samples after 24 hours.
  • PFU/cm 2 the mean common logarithm
  • the antibacterial activity value was measured according to JIS Z2801:2010 to evaluate the antibacterial performance of the leather-like laminate after the antibacterial/antiviral agent composition was fixed.
  • Staphylococcus aureus NBRC12732 was used as the bacterium. The higher the activity value, the better the antibacterial properties. In this example, the antibacterial activity was judged to be good when the antibacterial activity value was 2.0 or more.
  • the composition according to Example 1C containing isodecyl phosphate is the composition according to Comparative Example 1C that does not contain an antibacterial/antiviral agent, and the composition according to Comparative Example 1C that does not contain an isodecyl phosphate. It was possible to impart superior antibacterial and antiviral properties to the leather-like laminate as compared with the composition according to Comparative Example 2C containing a sulfate ester.
  • urethane resin (1) having no hydroxyl group A lacquer-type urethane resin ("Barnock 16-411" manufactured by DIC Corporation, weight average molecular weight: 29796, glass transition point (Tg): 20 ° C.) was used. .
  • HDI-based isocyanurate-type curing agent Isocyanurate-type hexamethylene diisocyanate (“Duranate TPA-100” manufactured by Asahi Kasei Corporation, viscosity: 1350 mPa ⁇ s/25° C.) was used.
  • the antiviral activity value was measured according to ISO21702:2019, and the antiviral performance of the polyester film after coating treatment with the antibacterial/antiviral agent composition was evaluated.
  • influenza A virus H3N2 ATCC VR-1679 was used.
  • Antiviral activity R (Ut-U0)-(At-U0).
  • U0 is the average common logarithm (PFU/cm 2 ) of the number of plaques recovered from the raw sample immediately after inoculation
  • Ut is the average common logarithm (PFU/cm 2 ) of the number of plaques recovered from the raw sample after 24 hours.
  • At is the mean common logarithm (PFU/cm 2 ) of the number of plaques recovered from the processed samples after 24 hours.
  • compositions according to Examples 1D to 4D containing isodecyl phosphate are more polyester than the composition according to Comparative Example 1D containing dodecyl sulfate instead of isodecyl phosphate. It was possible to impart excellent antiviral properties to the film.
  • a phosphate monoester having an alkyl group having 8 to 20 carbon atoms or a salt thereof (general formula (A) above) and a phosphate diester having an alkyl group having 8 to 20 carbon atoms or a salt thereof (general formula (B) ) and/or antibacterial and antiviral composition.
  • anionic surfactants tend to be less irritating to the skin than cationic surfactants.
  • the antibacterial/antiviral agent composition of the present disclosure also has the advantage of low skin irritation.

Abstract

Herein, there is disclosed an antibacterial/antiviral agent composition excelling in an antiviral property. The antibacterial/antiviral agent composition of the present disclosure includes at least one among a phosphoric acid monoester having an 8-20C alkyl group, or a salt thereof, and a phosphoric acid diester having an 8-20C alkyl group, or a salt thereof.

Description

抗菌・抗ウイルス剤組成物、抗菌・抗ウイルス性構造体、及び、抗菌・抗ウイルス性構造体の製造方法Antibacterial/Antiviral Agent Composition, Antibacterial/Antiviral Structure, and Method for Producing Antibacterial/Antiviral Structure
 本願は抗菌・抗ウイルス剤組成物、抗菌・抗ウイルス性構造体、及び、抗菌・抗ウイルス性構造体の製造方法を開示する。 This application discloses an antibacterial/antiviral agent composition, an antibacterial/antiviral structure, and a method for producing the antibacterial/antiviral structure.
 界面活性剤を有効成分とする種々の抗菌・抗ウイルス剤組成物が公知である。例えば、特許文献1には、ドデシル硫酸ナトリウムを有効成分とするウイルス不活化剤が開示されている。また、特許文献2には、ポリソルベートの群から選ばれる非イオン性界面活性剤によって脂質エンベロープウイルスを不活化する方法が開示されている。 Various antibacterial/antiviral agent compositions containing surfactants as active ingredients are known. For example, Patent Document 1 discloses a virus inactivating agent containing sodium dodecyl sulfate as an active ingredient. In addition, Patent Document 2 discloses a method of inactivating lipid-enveloped viruses with a nonionic surfactant selected from the group of polysorbates.
特開2005-095112号公報JP 2005-095112 A 特開平10-234362号公報JP-A-10-234362
 従来の抗菌・抗ウイルス剤組成物は抗ウイルス性に関して改善の余地がある。 Conventional antibacterial/antiviral agent compositions have room for improvement in terms of antiviral properties.
 本願は上記課題を解決するための手段の一つとして、
 下記一般式(1)で表されるリン酸モノエステル又はその塩と、
 下記一般式(2)で表されるリン酸ジエステル又はその塩と、
 の少なくとも一方を含む、抗菌・抗ウイルス剤組成物
を開示する。
As one means for solving the above problems, the present application provides
Phosphate monoester represented by the following general formula (1) or a salt thereof,
a phosphate diester represented by the following general formula (2) or a salt thereof;
Disclosed is an antibacterial/antiviral composition comprising at least one of:
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 式(1)及び(2)において、
 R、R及びRは、各々独立して、炭素数8~20のアルキル基であり、
 A、A及びAは、各々独立して、炭素数2~4のアルキレン基であり、
 x、y及びzは、各々独立して、0~10の整数である。
In formulas (1) and (2),
R 1 , R 2 and R 3 are each independently an alkyl group having 8 to 20 carbon atoms,
A 1 , A 2 and A 3 are each independently an alkylene group having 2 to 4 carbon atoms,
x, y and z are each independently an integer of 0-10.
 本開示の抗菌・抗ウイルス剤組成物において、前記R、R及びRが、分岐を有するものであってもよい。 In the antibacterial/antiviral agent composition of the present disclosure, R 1 , R 2 and R 3 may have branches.
 本願は上記課題を解決するための手段の一つとして、基材と、本開示の抗菌・抗ウイルス剤組成物とを備える、抗菌・抗ウイルス性構造体を開示する。 As one means for solving the above problems, the present application discloses an antibacterial/antiviral structure comprising a base material and the antibacterial/antiviral agent composition of the present disclosure.
 本願は上記課題を解決するための手段の一つとして、本開示の抗菌・抗ウイルス剤組成物を基材に接触させることを含む、抗菌・抗ウイルス性構造体の製造方法を開示する。 As one means for solving the above problems, the present application discloses a method for producing an antibacterial/antiviral structure, which comprises bringing the antibacterial/antiviral agent composition of the present disclosure into contact with a substrate.
 本開示の抗菌・抗ウイルス剤組成物は優れた抗ウイルス性を有する。 The antibacterial/antiviral agent composition of the present disclosure has excellent antiviral properties.
1.抗菌・抗ウイルス剤組成物
 一実施形態に係る抗菌・抗ウイルス剤組成物は、下記一般式(1)で表されるリン酸モノエステル又はその塩と、下記一般式(2)で表されるリン酸ジエステル又はその塩と、のうちの少なくとも一方を含む。
1. Antibacterial/Antiviral Agent Composition An antibacterial/antiviral agent composition according to one embodiment comprises a phosphoric acid monoester or a salt thereof represented by the following general formula (1), and a general formula (2) below. Phosphate diester or its salt, and at least one of.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 式(1)及び(2)において、
 R、R及びRは、各々独立して、炭素数8~20のアルキル基であり、
 A、A及びAは、各々独立して、炭素数2~4のアルキレン基であり、
 x、y及びzは、各々独立して、0~10の整数である。
In formulas (1) and (2),
R 1 , R 2 and R 3 are each independently an alkyl group having 8 to 20 carbon atoms,
A 1 , A 2 and A 3 are each independently an alkylene group having 2 to 4 carbon atoms,
x, y and z are each independently an integer of 0-10.
1.1 リン酸モノ/ジエステルの化学構造
 式(1)及び(2)において、R、R及びRは、各々独立して、炭素数8~20のアルキル基である。このように、R、R及びRの炭素数が8~20である場合に、優れた抗ウイルス性が発現する。当該炭素数の下限は好ましくは9以上であり、上限は好ましくは18以下、より好ましくは16以下、さらに好ましくは15以下である。R、R及びRは、各々、直鎖であっても分岐を有するものであってもよいが、特に、R、R及びRが分岐を有する場合に、抗ウイルス性に一層優れたものとなり易い。
1.1 Chemical Structure of Phosphate Mono/Diesters In formulas (1) and (2), R 1 , R 2 and R 3 are each independently an alkyl group having 8 to 20 carbon atoms. Thus, excellent antiviral properties are exhibited when R 1 , R 2 and R 3 have 8 to 20 carbon atoms. The lower limit of the carbon number is preferably 9 or more, and the upper limit is preferably 18 or less, more preferably 16 or less, and even more preferably 15 or less. R 1 , R 2 and R 3 may each be linear or branched, but particularly when R 1 , R 2 and R 3 are branched, It can easily become better.
 式(1)及び(2)において、x、y及びzは、各々独立して、0~10の整数である。抗ウイルス性の観点からは、x、y及びzが小さいほうが好ましい。具体的には、x、y及びzが、各々独立して、0~8の整数、特に0~5の整数である場合に、抗ウイルス性に一層優れたものとなり易い。 In formulas (1) and (2), x, y and z are each independently an integer of 0-10. From the viewpoint of antiviral properties, x, y and z are preferably smaller. Specifically, when x, y and z are each independently an integer of 0 to 8, particularly an integer of 0 to 5, the antiviral properties tend to be more excellent.
 本実施形態に係る抗菌・抗ウイルス剤組成物においては、上記のモノ/ジエステルの少なくとも一部が塩の形態で含まれていてもよい。塩としては、アルカリ金属塩、アルキルアミン塩、アルカノールアミン塩、第4級アンモニウム塩等が挙げられる。 In the antibacterial/antiviral agent composition according to the present embodiment, at least part of the above mono/diester may be contained in the form of a salt. Salts include alkali metal salts, alkylamine salts, alkanolamine salts, quaternary ammonium salts and the like.
 アルカリ金属塩を構成するアルカリ金属としては、ナトリウム、カリウム、リチウム、ルビジウム、セシウム等が挙げられる。 Alkali metals that make up alkali metal salts include sodium, potassium, lithium, rubidium, and cesium.
 アルキルアミン塩を構成するアルキルアミンとしては、トリメチルアミン、トリエチルアミン、ジブチルアミン、ブチルジメチルアミン等が挙げられる。 Examples of alkylamines constituting alkylamine salts include trimethylamine, triethylamine, dibutylamine, and butyldimethylamine.
 アルカノールアミン塩を構成するアルカノールアミンとしては、ジメチルモノエタノールアミン、メチルジエタノールアミン、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、イソプロピルエタノールアミン等が挙げられる。 Examples of alkanolamines constituting alkanolamine salts include dimethylmonoethanolamine, methyldiethanolamine, monoethanolamine, diethanolamine, triethanolamine, and isopropylethanolamine.
 本実施形態に係る抗菌・抗ウイルス剤組成物において、上記のリン酸モノエステル又はその塩と、上記のリン酸ジエステル又はその塩との比率(質量比)は特に限定されるものではない。例えば、リン酸モノエステル又はその塩と、リン酸ジエステル又はその塩との比率は、0:100~100:0であり、好ましくは10:90~90:10であり、より好ましくは20:80~80:20である。 In the antibacterial/antiviral agent composition according to the present embodiment, the ratio (mass ratio) of the phosphate monoester or its salt and the phosphate diester or its salt is not particularly limited. For example, the ratio of phosphoric acid monoester or its salt to phosphoric acid diester or its salt is 0:100 to 100:0, preferably 10:90 to 90:10, more preferably 20:80. ~80:20.
 本実施形態に係る抗菌・抗ウイルス剤組成物において、上記のモノ/ジエステル又はその塩の含有量は、当該組成物の用途に応じて適宜調整されればよい。本実施形態に係る抗菌・抗ウイルス剤組成物においては、上記のモノエステル又はその塩と、上記のジエステル又はその塩と、のうちの少なくとも一方が含まれていればよく、双方が含まれていてもよい。組成物における成分含有量の詳細については後述する。 In the antibacterial/antiviral agent composition according to the present embodiment, the content of the mono/diester or salt thereof may be appropriately adjusted according to the use of the composition. The antibacterial/antiviral agent composition according to the present embodiment may contain at least one of the monoester or salt thereof and the diester or salt thereof, and may contain both. may The details of the component contents in the composition will be described later.
1.2 その他の成分
 本実施形態に係る抗菌・抗ウイルス剤組成物は、上記のモノ/ジエステル又はその塩に加えて、その他の成分を含んでいてもよい。その他の成分としては、例えば、水や有機溶媒が挙げられる。また、その他の成分として後述する各種の樹脂が含まれていてもよい。さらに、その他の成分として各種の添加剤が含まれていてもよい。尚、本実施形態に係る抗菌・抗ウイルス剤組成物は、上記のモノ/ジエステル又はその塩に加えて、これ以外の抗ウイルス成分を含んでいてもよい。或いは、本実施形態に係る抗菌・抗ウイルス剤組成物は、抗ウイルス成分として上記のモノ/ジエステル又はその塩のみを含んでいてもよい。
1.2 Other Ingredients The antibacterial/antiviral agent composition according to the present embodiment may contain other ingredients in addition to the above mono/diester or salt thereof. Other components include, for example, water and organic solvents. In addition, various resins described later may be contained as other components. Furthermore, various additives may be contained as other components. The antibacterial/antiviral agent composition according to the present embodiment may contain other antiviral components in addition to the above mono/diester or salt thereof. Alternatively, the antibacterial/antiviral agent composition according to this embodiment may contain only the above mono/diester or a salt thereof as an antiviral component.
 本実施形態に係る抗菌・抗ウイルス剤組成物を用いて各種の構造体を処理する際は、例えば、上記のモノ/ジエステル又はその塩と任意に樹脂とを用いて、水系で処理してもよいし、非水系(有機溶媒を用いる場合のほか、溶媒を用いない場合も含む)で処理してもよい。モノ/ジエステル又はその塩とともに用いられる樹脂としては、例えば、ラジカル重合性の炭素-炭素二重結合を有する化合物、エポキシ化合物、メラミン化合物、フェノール化合物、オキセタン樹脂、ユリア樹脂、アクリル樹脂、ウレタン樹脂、ポリエステル樹脂、エチレン酢酸ビニル樹脂、スチレン-ブタジエンゴム、塩化ビニル樹脂、シリコーン樹脂、アクリルシリコーン共重合樹脂、ポリオレフィン樹脂、アクリロニトリルブタジエンゴム(NBR)、塩素化ポリオレフィン樹脂等が挙げられる。これらの樹脂は1種を単独で使用しても2種以上を併用してもよい。以下、水系で処理する場合と非水系で処理する場合との各々について、本実施形態に係る抗菌・抗ウイルス剤組成物に含まれる好適な成分を例示する。 When treating various structures with the antibacterial/antiviral agent composition according to the present embodiment, for example, the above mono/diester or a salt thereof and optionally a resin may be used and treated in an aqueous system. Alternatively, it may be treated in a non-aqueous system (including the case where an organic solvent is used and the case where no solvent is used). Resins used together with mono/diesters or salts thereof include, for example, compounds having a radically polymerizable carbon-carbon double bond, epoxy compounds, melamine compounds, phenol compounds, oxetane resins, urea resins, acrylic resins, urethane resins, Polyester resin, ethylene vinyl acetate resin, styrene-butadiene rubber, vinyl chloride resin, silicone resin, acrylic silicone copolymer resin, polyolefin resin, acrylonitrile butadiene rubber (NBR), chlorinated polyolefin resin and the like. These resins may be used alone or in combination of two or more. Preferred components contained in the antibacterial/antiviral agent composition according to the present embodiment are exemplified below for both cases of aqueous treatment and non-aqueous treatment.
1.2.1 水系の抗菌・抗ウイルス剤組成物に含まれる好適な成分
(1)水系ポリウレタン樹脂
 各種の構造体に対して、上記のモノ/ジエステル又はその塩と、樹脂とを用いて水系で処理する場合は、当該樹脂として水系ポリウレタン樹脂を用いるとよい。言い換えれば、本実施形態に係る抗菌・抗ウイルス剤組成物は、上記のモノ/ジエステル又はその塩と、水系ポリウレタン樹脂と、水とを含むものであってよい。
1.2.1 Suitable components contained in water-based antibacterial/antiviral agent compositions (1) Water-based polyurethane resin For various structures, water-based In the case of treating with, it is preferable to use a water-based polyurethane resin as the resin. In other words, the antibacterial/antiviral agent composition according to this embodiment may contain the above mono/diester or a salt thereof, a water-based polyurethane resin, and water.
 水系ポリウレタン樹脂は、例えば、ポリイソシアネート化合物と、ポリオール化合物と、アニオン性基(カルボキシル基、カルボキシレート基、スルホ基、スルホネート基などのうちの少なくとも1種)と2個以上の活性水素とを有する化合物と、を反応して得られるイソシアネート基末端プレポリマーの中和物を、水中に乳化分散(以下、分散又は乳化することを「乳化分散」という。)させたのち、アミン系鎖伸長剤を用いて水中で鎖伸長反応して得られたものであってよい。尚、本願にいう水系ポリウレタン樹脂とは、水に対して乳化分散性を有するポリウレタン樹脂を意味する。具体的には、本願にいう水系ポリウレタン樹脂は、当該ポリウレタン樹脂の濃度が35質量%である乳化分散液(溶媒:水)を調製した後に、当該乳化分散液を、大気圧にて、20℃で12時間静置しても、分離や沈降が観察されないものである。 The aqueous polyurethane resin has, for example, a polyisocyanate compound, a polyol compound, an anionic group (at least one of a carboxyl group, a carboxylate group, a sulfo group, a sulfonate group, etc.) and two or more active hydrogens. compound, the neutralized product of the isocyanate group-terminated prepolymer obtained by reacting with is emulsified and dispersed in water (hereinafter, dispersing or emulsifying is referred to as "emulsification dispersion"), and then an amine-based chain extender is added. obtained by a chain elongation reaction in water. The water-based polyurethane resin referred to in the present application means a polyurethane resin having emulsifying dispersibility in water. Specifically, the water-based polyurethane resin referred to in the present application is obtained by preparing an emulsified dispersion (solvent: water) having a polyurethane resin concentration of 35% by mass, and then exposing the emulsified dispersion at atmospheric pressure to 20°C. Separation or sedimentation is not observed even after standing for 12 hours at room temperature.
 水系ポリウレタン樹脂を構成するポリイソシアネート化合物に特に制限はなく、例えば、芳香族ポリイソシアネート化合物、脂肪族ポリイソシアネート化合物、脂環式ポリイソシアネート化合物などを挙げることができる。芳香族ポリイソシアネート化合物としては、例えば、トルエンジイソシアネート(TDI)、キシリレンジイソシアネート(XDI)、ジフェニルメタンジイソシアネート(MDI)、ナフタレンジイソシアネート(NDI)、テトラメチルキシリレンジイソシアネートなどを挙げることができる。脂肪族ポリイソシアネート化合物としては、例えば、ヘキサメチレンジイソシアネート(HDI)などを挙げることができる。脂環式ポリイソシアネート化合物としては、例えば、1,3-ビス(イソシアナトメチル)シクロヘキサン、イソホロンジイソシアネート(IPDI)、ジシクロへキシルメタンジイソシアネート(H12MDI)、ノルボルナンジイソシアネートなどを挙げることができる。これらのポリイソシアネート化合物は、1種を単独で、又は、2種以上を組み合わせて用いることができる。このようなポリイソシアネートの中でも、脂肪族ポリイソシアネート及び脂環式ポリイソシアネート化合物は、基材に対して無黄変性を与えることができる。特に、ヘキサメチレンジイソシアネート、イソホロンジイソシアネート、ジシクロヘキシルメタンジイソシアネート、ノルボルナンジイソシアネート及び1,3-ビス(イソシアナトメチル)シクロヘキサンのうちの少なくとも1種が好適である。 The polyisocyanate compound that constitutes the aqueous polyurethane resin is not particularly limited, and examples thereof include aromatic polyisocyanate compounds, aliphatic polyisocyanate compounds, and alicyclic polyisocyanate compounds. Examples of aromatic polyisocyanate compounds include toluene diisocyanate (TDI), xylylene diisocyanate (XDI), diphenylmethane diisocyanate (MDI), naphthalene diisocyanate (NDI), and tetramethylxylylene diisocyanate. Examples of aliphatic polyisocyanate compounds include hexamethylene diisocyanate (HDI). Examples of alicyclic polyisocyanate compounds include 1,3-bis(isocyanatomethyl)cyclohexane, isophorone diisocyanate (IPDI), dicyclohexylmethane diisocyanate (H12MDI) and norbornane diisocyanate. These polyisocyanate compounds can be used singly or in combination of two or more. Among such polyisocyanates, aliphatic polyisocyanates and alicyclic polyisocyanate compounds can impart non-yellowing properties to substrates. At least one of hexamethylene diisocyanate, isophorone diisocyanate, dicyclohexylmethane diisocyanate, norbornane diisocyanate and 1,3-bis(isocyanatomethyl)cyclohexane is particularly preferred.
 水系ポリウレタン樹脂を構成するポリオール化合物に特に制限はなく、例えば、ポリエーテルポリオール、ポリエステルポリオール、ポリカーボネートポリオールなどを挙げることができる。これらのポリオール化合物は、1種を単独で、又は、2種以上を組み合わせて用いることができる。特に、ポリカーボネートポリオールを用いた場合、耐摩耗性が良好となる。ポリオール化合物の数平均分子量は、特に限定されるものではないが、例えば、1,000以上3,000以下であってもよい。数平均分子量がその範囲であると外観品位と耐摩耗性とが良好となる。 The polyol compound that constitutes the water-based polyurethane resin is not particularly limited, and examples include polyether polyol, polyester polyol, and polycarbonate polyol. These polyol compounds can be used singly or in combination of two or more. In particular, when polycarbonate polyol is used, abrasion resistance is improved. Although the number average molecular weight of the polyol compound is not particularly limited, it may be, for example, 1,000 or more and 3,000 or less. When the number average molecular weight is within this range, the appearance quality and wear resistance are improved.
 ポリエーテルポリオールとしては、例えば、エチレンオキサイド、プロピレンオキサイド及びテトラメチレンオキサイドなどの炭素数2~4のアルキレンオキサイドの単独付加重合物又は共付加重合物(ブロック共重合でも、ランダム共重合でもかまわない)であるポリオールなどを挙げることができる。 Polyether polyols include, for example, homo-addition polymers or co-addition polymers of alkylene oxides having 2 to 4 carbon atoms such as ethylene oxide, propylene oxide and tetramethylene oxide (block copolymerization or random copolymerization may be used). A polyol and the like can be mentioned.
 ポリカーボネートポリオールとしては、例えば、ポリオール類とカーボネート類との脱アルコール反応、脱フェノール反応等で得られるものが挙げられる。ポリオール類は、例えば、エチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、3-メチル-1,5-ペンタンジオール、ネオペンチルグリコール、1,8-オクタンジオール、1,9-ノナンジオール、ジエチレングリコール、ジプロピレングリコール、1,4-シクロヘキサンジメタノール、あるいはビスフェノールAのエチレンオキサイド又はプロピレンオキサイド付加物等から選ばれる1種または2種以上であってよい。カーボネート類は、例えば、ジエチルカーボネート、ジメチルカーボネート、ジフェニルカーボネート等から選ばれる1種または2種以上であってよい。上記ポリカーボネートポリオールは、1種を単独で、又は、2種以上を組み合わせて用いることができる。 Examples of polycarbonate polyols include those obtained by dealcoholization reaction and dephenolation reaction between polyols and carbonates. Polyols are, for example, ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 1,5-pentanediol , 1,6-hexanediol, 3-methyl-1,5-pentanediol, neopentyl glycol, 1,8-octanediol, 1,9-nonanediol, diethylene glycol, dipropylene glycol, 1,4-cyclohexanedimethanol , or one or more selected from ethylene oxide or propylene oxide adducts of bisphenol A and the like. The carbonates may be, for example, one or more selected from diethyl carbonate, dimethyl carbonate, diphenyl carbonate and the like. The polycarbonate polyols may be used singly or in combination of two or more.
 ポリエステルポリオールとしては、例えば、二塩基酸と、上述のポリオール類との重縮合反応により得られるものが挙げられる。二塩基酸は、例えば、フタル酸、イソフタル酸、テレフタル酸、ナフタレンジカルボン酸、コハク酸、マロン酸、アジピン酸、セバシン酸、1,4-シクロヘキシルジカルボン酸、マレイン酸、フマル酸等から選ばれる1種または2種以上であってよい。上記ポリエステルポリオールは、1種を単独で、又は、2種以上を組み合わせて用いることができる。 Examples of polyester polyols include those obtained by a polycondensation reaction between a dibasic acid and the above polyols. Dibasic acid is selected from, for example, phthalic acid, isophthalic acid, terephthalic acid, naphthalenedicarboxylic acid, succinic acid, malonic acid, adipic acid, sebacic acid, 1,4-cyclohexyldicarboxylic acid, maleic acid, fumaric acid, etc. There may be one species or two or more species. The above polyester polyols may be used singly or in combination of two or more.
 水系ポリウレタン樹脂を構成するアニオン性基と2個以上の活性水素とを有する化合物のうち、カルボキシル基及びカルボキシレート基のうちの少なくとも一方を有する化合物としては、例えば、2,2-ジメチロールプロピオン酸、2,2-ジメチロールブタン酸、及びこれらの塩を挙げることができる。さらに、このようなジオール化合物として、カルボキシル基を有するジオール化合物と、芳香族ジカルボン酸、脂肪族ジカルボン酸等とを反応させて得られるペンダント型カルボキシル基を有するポリエステルポリオールを用いることもできる。なお、前記カルボキシル基を有するジオール化合物に、ジオール成分としてカルボキシル基を有しないジオール化合物を混合して反応させても良い。これらのジオール化合物は、1種を単独で、又は、2種以上を組み合わせて用いることができる。 Among the compounds having an anionic group and two or more active hydrogens constituting the aqueous polyurethane resin, compounds having at least one of a carboxyl group and a carboxylate group include, for example, 2,2-dimethylolpropionic acid , 2,2-dimethylolbutanoic acid, and salts thereof. Furthermore, as such a diol compound, a polyester polyol having a pendant carboxyl group obtained by reacting a diol compound having a carboxyl group with an aromatic dicarboxylic acid, an aliphatic dicarboxylic acid, or the like can also be used. The diol compound having a carboxyl group may be mixed with a diol compound having no carboxyl group as a diol component and reacted. These diol compounds can be used singly or in combination of two or more.
 水系ポリウレタン樹脂を構成するアニオン性基と2個以上の活性水素とを有する化合物のうち、スルホ基及びスルホネート基のうちの少なくとも一方を有する化合物としては、例えば、3,4-ジアミノブタンスルホン酸、3,6-ジアミノ-2-トルエンスルホン酸、2-(2-アミノエチルアミノ)エタンスルホン酸、エチレンジアミンプロピルスルホン酸、エチレンジアミンブチルスルホン酸、1,2-または1,3-プロピレンジアミン-β-エチルスルホン酸、2-(3-アミノプロピルアミノ)-エタンスルホン酸、2,4-ジアミノベンゼンスルホン酸などのジアミノスルホン酸;及びそれらの塩が挙げられる。これら化合物は、1種を単独で、又は、2種以上を組み合わせて用いることができる。 Among the compounds having an anionic group and two or more active hydrogens constituting the aqueous polyurethane resin, compounds having at least one of a sulfo group and a sulfonate group include, for example, 3,4-diaminobutanesulfonic acid, 3,6-diamino-2-toluenesulfonic acid, 2-(2-aminoethylamino)ethanesulfonic acid, ethylenediaminepropylsulfonic acid, ethylenediaminebutylsulfonic acid, 1,2- or 1,3-propylenediamine-β-ethyl sulfonic acids, diaminosulfonic acids such as 2-(3-aminopropylamino)-ethanesulfonic acid, 2,4-diaminobenzenesulfonic acid; and salts thereof. These compounds can be used individually by 1 type or in combination of 2 or more types.
 水系ポリウレタン樹脂中のアニオン性基の含有量は、特に限定されるものではない。例えば、抗菌・抗ウイルス剤(上記のリン酸モノ/ジエステル)との相溶性の観点から、水系ポリウレタン樹脂は、アニオン性基のうちの少なくとも1種を、0.5質量%以上4.0質量%以下含んでいてよい。また、水系ポリウレタン樹脂が、複数のアニオン性基を有する場合、当該アニオン性基の合計の含有量が、0.5質量%以上4.0質量%以下であってよい。尚、カルボキシル基及びカルボキシレート基の含有量は、ポリウレタン樹脂100gあたりのCOO量を原料仕込み量から計算することで求めることができる。また、スルホ基及びスルホネート基の含有量は、ポリウレタン樹脂100g当たりのSO量を原料仕込み量から計算することで求めることができる。アニオン性基の含有量が4.0質量%以下であることで、風合いが一層軟らかくなり、また、屈曲時の白化の問題を一層抑制し易い。また、アニオン性基の含有量が0.5質量%以上であることで、水系ポリウレタン樹脂の貯蔵安定性が向上し、より安定的な加工が可能となる。 The content of anionic groups in the aqueous polyurethane resin is not particularly limited. For example, from the viewpoint of compatibility with an antibacterial/antiviral agent (the mono/diester of phosphoric acid), the aqueous polyurethane resin contains at least one anionic group of 0.5% by mass or more and 4.0% by mass. % or less. Moreover, when the aqueous polyurethane resin has a plurality of anionic groups, the total content of the anionic groups may be 0.5% by mass or more and 4.0% by mass or less. The contents of carboxyl groups and carboxylate groups can be obtained by calculating the amount of COO per 100 g of polyurethane resin from the amount of charged raw materials. Also, the content of sulfo groups and sulfonate groups can be obtained by calculating the amount of SO 3 per 100 g of polyurethane resin from the amount of raw materials charged. When the content of the anionic group is 4.0% by mass or less, the texture becomes softer and the problem of whitening during bending can be more easily suppressed. Moreover, when the content of the anionic group is 0.5% by mass or more, the storage stability of the aqueous polyurethane resin is improved, and more stable processing becomes possible.
 上述のイソシアネート基末端プレポリマーを調製する際、ポリオール化合物として、例えば、エチレングリコール、1,4-ブタンジオール、ヘキサメチレングリコールなどの低分子量多価アルコールを用いてもよい。 When preparing the isocyanate group-terminated prepolymer described above, low-molecular-weight polyhydric alcohols such as ethylene glycol, 1,4-butanediol, and hexamethylene glycol may be used as polyol compounds.
 鎖伸長剤としては、エチレンジアミン、プロピレンジアミン、テトラメチレンジアミン、ヘキサメチレンジアミン、ヒドラジン、4,4’-ジアミノジシクロへキシルメタン、ピペラジン、2-メチルピペラジン、イソホロンジアミン、ノルボランジアミン、ジアミノジフェニルメタン、トリレンジアミン、キシリレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、トリエチレンテトラミン、テトラエチレンペンタミン、イミノビスプロピルアミンなどの低分子量ポリアミン(1級アミノ基及び2級アミノ基からなる群から選択される少なくとも1種のアミノ基を1分子中に2個以上含有するポリアミン化合物)などを挙げることができる。これらの鎖伸長剤は、1種を単独で、又は、2種以上を組み合わせて用いることができる。 Examples of chain extenders include ethylenediamine, propylenediamine, tetramethylenediamine, hexamethylenediamine, hydrazine, 4,4'-diaminodicyclohexylmethane, piperazine, 2-methylpiperazine, isophoronediamine, norboranediamine, diaminodiphenylmethane, tri Low molecular weight polyamines such as diamine, xylylenediamine, diethylenetriamine, triethylenetetramine, triethylenetetramine, tetraethylenepentamine, iminobispropylamine (at least one selected from the group consisting of primary amino groups and secondary amino groups) polyamine compounds containing two or more of the above amino groups in one molecule). These chain extenders can be used singly or in combination of two or more.
 尚、水系ポリウレタン樹脂は、例えば、特開2006-206839号公報に開示されたリン系化合物を難燃成分として含む難燃剤ブレンドウレタン系樹脂であってもよい。 The water-based polyurethane resin may be, for example, a flame retardant-blended urethane resin containing a phosphorus compound as a flame retardant component disclosed in JP-A-2006-206839.
 次に、上記水系ポリウレタン樹脂の製造方法について説明する。 Next, a method for producing the water-based polyurethane resin will be described.
 上述のイソシアネート基末端プレポリマーを製造する具体的な方法としては特に制限はなく、例えば、従来公知の一段式のいわゆるワンショット法、多段式のイソシアネート重付加反応法等により製造することができる。この時の反応温度は、40~150℃であることが好ましい。また、反応中又は反応終了後に、イソシアネート基と反応しない有機溶剤を添加してもよい。このような有機溶剤としては、例えば、アセトン、メチルエチルケトン、トルエン、テトラヒドロフラン等を使用することができる。反応中には、必要に応じて、ジブチル錫ジラウレート、スタナスオクトエート、ジブチル錫ジ-2-エチルヘキソエート、トリエチルアミン、トリエチレンジアミン、N-メチルモルホリン、ビスマストリス(2-エチルヘキサノエート)等の反応触媒、あるいは燐酸、燐酸水素ナトリウム、パラトルエンスルホン酸、アジピン酸、塩化ベンゾイル等の反応抑制剤を添加してもよい。 The specific method for producing the above-mentioned isocyanate group-terminated prepolymer is not particularly limited, and for example, it can be produced by a conventionally known one-stage so-called one-shot method, a multi-stage isocyanate polyaddition reaction method, or the like. The reaction temperature at this time is preferably 40 to 150°C. Also, an organic solvent that does not react with isocyanate groups may be added during or after the reaction. As such an organic solvent, for example, acetone, methyl ethyl ketone, toluene, tetrahydrofuran, etc. can be used. During the reaction, if necessary, dibutyltin dilaurate, stannous octoate, dibutyltin di-2-ethylhexoate, triethylamine, triethylenediamine, N-methylmorpholine, bismath tris (2-ethylhexanoate) or a reaction inhibitor such as phosphoric acid, sodium hydrogen phosphate, p-toluenesulfonic acid, adipic acid and benzoyl chloride.
 イソシアネート基末端プレポリマーにおける残存イソシアネート基の含有率は、0.2~4.5質量%であることが好ましい。この範囲であると、その後ポリアミンにより鎖伸張して得られる水系ポリウレタン樹脂組成物の成膜性が良好となり、また、形成されるフィルムが柔らかくなり適度な柔軟性を示す。尚、残存イソシアネート基含有率は以下の方法で求めることができる。 The content of residual isocyanate groups in the isocyanate group-terminated prepolymer is preferably 0.2 to 4.5% by mass. Within this range, the film formability of the water-based polyurethane resin composition obtained by subsequent chain extension with polyamine is good, and the formed film is soft and exhibits appropriate flexibility. Incidentally, the residual isocyanate group content can be obtained by the following method.
 得られたウレタンプレポリマー0.3gを三角フラスコに採取し、0.1N ジブチルアミントルエン溶液10mlを配合し、溶解させる。次いで、ブロモフェノールブルー液を数滴加え、0.1N塩酸メタノール溶液で滴定し、下記式により遊離イソシアネート基含有量NCO%を求めることができる。
  NCO%=(a-b)×0.42×f/x
  a:0.1N ジブチルアミントルエン溶液10mlのみを滴定した場合の0.1N塩酸メタノール液の滴定量
  b:反応中の組成物を滴定した場合の0.1N塩酸メタノール液の滴定量
  f:0.1N 塩酸メタノール液のファクター
  x:サンプリング量。
0.3 g of the resulting urethane prepolymer is placed in an Erlenmeyer flask, mixed with 10 ml of 0.1N dibutylamine toluene solution, and dissolved. Then, several drops of bromophenol blue solution are added, titration is performed with a 0.1N hydrochloric acid methanol solution, and the free isocyanate group content NCO% can be determined by the following formula.
NCO % = (ab) x 0.42 x f/x
a: Titration amount of 0.1N hydrochloric acid methanol solution when only 10 ml of 0.1N dibutylamine toluene solution was titrated b: Titration amount of 0.1N hydrochloric acid methanol solution when titrating the composition during reaction f: 0. Factor x of 1N hydrochloric acid methanol solution: Amount of sampling.
 残存イソシアネート基の含有率を上記範囲とするには、プレポリマー製造時の、原料のイソシアネート基/ヒドロキシル基のモル比を100/80~100/60に調整することが好ましい。イソシアネート基/ヒドロキシル基のモル比をこの範囲に調整することで、イソシアネート基末端プレポリマーが適度な粘度を有し、乳化し易くなる。また、抗菌・抗ウイルス剤組成物で処理した構造体において、風合いを一層軟らかくすることができ、屈曲時における白化を一層防止し易くなる。 In order to keep the content of residual isocyanate groups within the above range, it is preferable to adjust the molar ratio of isocyanate groups/hydroxyl groups in the starting material to 100/80 to 100/60 during prepolymer production. By adjusting the isocyanate group/hydroxyl group molar ratio within this range, the isocyanate group-terminated prepolymer has an appropriate viscosity and is easily emulsified. In addition, the texture of the structure treated with the antibacterial/antiviral agent composition can be made softer, and whitening during bending can be more easily prevented.
 イソシアネート基末端プレポリマーのアニオン性基の中和は、イソシアネート基末端プレポリマーの調製前、調製中又は調製後に適宜公知の方法を用いて行うことができる。このようなアニオン性基を有するイソシアネート基末端プレポリマーの中和に用いる化合物には特に制限はなく、例えば、トリメチルアミン、トリエチルアミン、トリ-n-プロピルアミン、トリブチルアミン、N-メチル-ジエタノールアミン、N,N-ジメチルモノエタノールアミン、N,N-ジエチルモノエタノールアミン、トリエタノールアミン等のアミン類、水酸化カリウム、水酸化ナトリウム、アンモニア等を挙げることができる。中でも、トリメチルアミン、トリエチルアミン、トリ-n-プロピルアミン、トリブチルアミン等の第3級アミン類が特に好ましい。 Neutralization of the anionic groups of the isocyanate group-terminated prepolymer can be carried out using a suitable known method before, during or after the preparation of the isocyanate group-terminated prepolymer. There are no particular restrictions on the compound used for neutralizing the isocyanate group-terminated prepolymer having such an anionic group. Examples include trimethylamine, triethylamine, tri-n-propylamine, tributylamine, N-methyl-diethanolamine, Examples include amines such as N-dimethylmonoethanolamine, N,N-diethylmonoethanolamine and triethanolamine, potassium hydroxide, sodium hydroxide and ammonia. Among them, tertiary amines such as trimethylamine, triethylamine, tri-n-propylamine and tributylamine are particularly preferred.
 イソシアネート基末端プレポリマーの中和物を水に乳化分散させる際に用いる乳化分散機器に特に制限はなく、例えば、ホモミキサー、ホモジナイザー、ディスパー等を挙げることができる。また、イソシアネート基末端プレポリマーの中和物を水に乳化分散させる際には、イソシアネート基末端プレポリマーの中和物を、0~40℃の温度範囲で水に乳化分散させて、イソシアネート基と水との反応を極力抑えることが好ましい。さらに、このように乳化分散させる際には、必要に応じて、燐酸、燐酸二水素ナトリウム、燐酸水素二ナトリウム、パラトルエンスルホン酸、アジピン酸、塩化ベンゾイル等の反応抑制剤を添加することができる。 There are no particular restrictions on the emulsifying and dispersing equipment used when emulsifying and dispersing the neutralized isocyanate group-terminated prepolymer in water, and examples include homomixers, homogenizers, and dispersers. Further, when emulsifying and dispersing the neutralized isocyanate group-terminated prepolymer in water, the neutralized isocyanate group-terminated prepolymer is emulsified and dispersed in water in a temperature range of 0 to 40 ° C., and the isocyanate group and It is preferable to suppress the reaction with water as much as possible. Furthermore, when emulsifying and dispersing in this manner, reaction inhibitors such as phosphoric acid, sodium dihydrogen phosphate, disodium hydrogen phosphate, paratoluenesulfonic acid, adipic acid, and benzoyl chloride can be added as necessary. .
 水に乳化分散させたイソシアネート基末端プレポリマーは、1級アミノ基及び2級アミノ基からなる群から選択される少なくとも1種のアミノ基を1分子中に2個以上含有するポリアミン化合物を用いて鎖伸長させてよい。イソシアネート基末端プレポリマーとポリアミン化合物との反応は、20~50℃の反応温度で、通常、30~120分間で完結する。 The isocyanate group-terminated prepolymer emulsified and dispersed in water uses a polyamine compound containing two or more amino groups per molecule of at least one selected from the group consisting of primary amino groups and secondary amino groups. May be chain extended. The reaction between the isocyanate group-terminated prepolymer and the polyamine compound is completed at a reaction temperature of 20 to 50° C. usually in 30 to 120 minutes.
 イソシアネート基末端プレポリマーを製造する際に前述の有機溶剤を使用した場合には、例えば、鎖伸長反応又は乳化分散後に、減圧下、30~80℃で当該有機溶剤を留去することが望ましい。このような調製方法によって水系ポリウレタン樹脂の乳化分散液が得られる。水系ポリウレタン樹脂の乳化分散液中の樹脂固形分(不揮発分)濃度は、例えば、20%以上60%以下であってよい。樹脂固形分濃度は、水を追加または留去することで調整することも可能である。 When the above-mentioned organic solvent is used when producing the isocyanate group-terminated prepolymer, it is desirable to distill off the organic solvent at 30 to 80°C under reduced pressure, for example, after the chain extension reaction or emulsification and dispersion. An emulsified dispersion of a water-based polyurethane resin can be obtained by such a preparation method. The resin solid content (non-volatile content) concentration in the emulsified dispersion of the water-based polyurethane resin may be, for example, 20% or more and 60% or less. The resin solid content concentration can also be adjusted by adding or distilling off water.
(2)水系アクリル樹脂
 各種の構造体に対して、上記のモノ/ジエステル又はその塩と樹脂とを用いて水系で処理する場合は、当該樹脂として水系アクリル樹脂を用いるとよい。言い換えれば、本実施形態に係る抗菌・抗ウイルス剤組成物は、上記のモノ/ジエステル又はその塩と、水系アクリル樹脂と、水とを含むものであってよく、上記の水系ポリウレタン樹脂と水系アクリル樹脂とを併用してもよい。水系ポリウレタン樹脂と水系アクリル樹脂とを併用する場合、その質量比率は、特に限定されるものではないが、例えば、水系ポリウレタン樹脂100質量部に対して、水系アクリル樹脂が10質量部以上1000質量部以下であってよい。
(2) Water-Based Acrylic Resin When various structures are treated in a water-based manner using the above mono/diester or a salt thereof and a resin, it is preferable to use a water-based acrylic resin as the resin. In other words, the antibacterial/antiviral agent composition according to the present embodiment may contain the above mono/diester or a salt thereof, a water-based acrylic resin, and water. You may use together with resin. When a water-based polyurethane resin and a water-based acrylic resin are used together, the mass ratio is not particularly limited. may be:
 水系アクリル樹脂を構成するモノマーとしては、例えば、水酸基を有する(メタ)アクリレート、水酸基を有する(メタ)アクリレートとジカルボン酸又はその誘導体との反応物であるカルボキシ基を有する(メタ)アクリレートが挙げられる。前記水酸基を有する(メタ)アクリレートとしては、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、3-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、グリセリンモノ(メタ)アクリレート、グリセリンジ(メタ)アクリレート、トリメチロールプロパンモノ(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート、ペンタエリスリトールモノ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ネオペンチルグリコールモノ(メタ)アクリレート等が挙げられ、前記ジカルボン酸としては、例えば、しゅう酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、マレイン酸、フマル酸、フタル酸、テトラヒドロフタル酸、ヘキサヒドロフタル酸等が挙げられる。これらの水酸基を有する(メタ)アクリレート及びジカルボン酸は1種を単独で使用しても2種以上を併用してもよい。なお、「(メタ)アクリレート」とは、アクリレートとメタクリレートとの総称であり、アクリレート及びメタクリレートの一方又は両方を意味する。 Examples of the monomer constituting the water-based acrylic resin include (meth)acrylates having a hydroxyl group, and (meth)acrylates having a carboxyl group which are reaction products of a (meth)acrylate having a hydroxyl group and a dicarboxylic acid or a derivative thereof. . Examples of (meth)acrylates having a hydroxyl group include 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 3-hydroxypropyl (meth)acrylate, 2-hydroxybutyl (meth)acrylate, 3 - hydroxybutyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate, glycerin mono(meth)acrylate, glycerin di(meth)acrylate, trimethylolpropane mono(meth)acrylate, trimethylolpropane di(meth)acrylate, penta Erythritol mono (meth) acrylate, pentaerythritol di (meth) acrylate, pentaerythritol tri (meth) acrylate, neopentyl glycol mono (meth) acrylate, and the like. Examples of the dicarboxylic acid include oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, maleic acid, fumaric acid, phthalic acid, tetrahydrophthalic acid, hexahydrophthalic acid and the like. These hydroxyl-containing (meth)acrylates and dicarboxylic acids may be used singly or in combination of two or more. In addition, "(meth)acrylate" is a generic term for acrylate and methacrylate, and means one or both of acrylate and methacrylate.
 また、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、ターシャリーブチル(メタ)アクリレート、イソデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、トリデシル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ステアリル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、その他のアルキル(メタ)アクリレート、ベンジル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、グリシジル(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ジンクモノ(メタ)アクリレート、ジンクジ(メタ)アクリレート、ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、トリフロロエチル(メタ)アクリレート、2,2,3,3-テトラフロロプロピル(メタ)アクリレート、2,2,3,3,4,4-ヘキサフロロブチル(メタ)アクリレート、パーフロロオクチル(メタ)アクリレート、パーフロロオクチルエチル(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、1,3-ブタンジオールジ(メタ)アクリレート、1,10-デカンジオールジ(メタ)アクリレート、テトラメチレングリコールジ(メタ)アクリレート、メトキシエチル(メタ)アクリレート、ブトキシエチル(メタ)アクリレート、エトキシジエチレングリコール(メタ)アクリレート、N,N'-メチレンビス(メタ)アクリルアミド、N,N'-エチレンビス(メタ)アクリルアミド、1,2-ジ(メタ)アクリルアミドエチレングリコール、ジ(メタ)アクリロイロキシメチルトリシクロデカン、N-(メタ)アクリロイロキシエチルマレイミド、N-(メタ)アクリロイロキシエチルヘキサヒドロフタルイミド、N-(メタ)アクリロイロキシエチルフタルイミド等の(メタ)アクリレート化合物;塩化ビニル、アクリロニトリル、ビニルエーテル、ビニルケトン、ビニルアミド、n-ビニル-2-ピロリドン、スチレン誘導体、α-メチルスチレン誘導体等のビニル化合物;アクリルアミド、ダイアセトンアクリルアミド、メタクリルアミド、マレイン酸アミド等のアクリルアミド類;エチレン、プロピレン等のα-オレフィン;(メタ)アクリル酸も、モノマーとして用いることができる。これらのモノマーは1種を単独で使用しても2種以上を併用してもよい。 In addition, methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, tertiary butyl (meth) acrylate, isodecyl (meth) acrylate, lauryl (meth) acrylate, tridecyl ( meth)acrylate, 2-ethylhexyl (meth)acrylate, stearyl (meth)acrylate, cyclohexyl (meth)acrylate, isobornyl (meth)acrylate, other alkyl (meth)acrylates, benzyl (meth)acrylate, phenoxyethyl (meth)acrylate , glycidyl (meth)acrylate, trimethylolpropane tri(meth)acrylate, zinc mono(meth)acrylate, zinc di(meth)acrylate, dimethylaminoethyl (meth)acrylate, diethylaminoethyl (meth)acrylate, neopentyl glycol di(meth)acrylate acrylates, trifluoroethyl (meth)acrylate, 2,2,3,3-tetrafluoropropyl (meth)acrylate, 2,2,3,3,4,4-hexafluorobutyl (meth)acrylate, perfluorooctyl ( meth)acrylate, perfluorooctylethyl (meth)acrylate, ethylene glycol di(meth)acrylate, propylene glycol di(meth)acrylate, 1,4-butanediol di(meth)acrylate, 1,6-hexanediol di(meth)acrylate ) acrylate, 1,9-nonanediol di(meth)acrylate, 1,3-butanediol di(meth)acrylate, 1,10-decanediol di(meth)acrylate, tetramethylene glycol di(meth)acrylate, methoxyethyl (meth) acrylate, butoxyethyl (meth) acrylate, ethoxydiethylene glycol (meth) acrylate, N,N'-methylenebis(meth)acrylamide, N,N'-ethylenebis(meth)acrylamide, 1,2-di(meth) Acrylamide ethylene glycol, di(meth)acryloyloxymethyltricyclodecane, N-(meth)acryloyloxyethylmaleimide, N-(meth)acryloyloxyethylhexahydrophthalimide, N-(meth)acryloyloxyethylphthalimide (meth)acrylate compounds such as; vinyl chloride, acrylonitrile, vinyl ether, vinyl ketone, vinylamide, n-vinyl-2-pyrrolidone, vinyl Vinyl compounds such as ethylene derivatives and α-methylstyrene derivatives; acrylamides such as acrylamide, diacetone acrylamide, methacrylamide and maleic acid amide; α-olefins such as ethylene and propylene; (meth)acrylic acid can also be used as monomers. can be done. These monomers may be used alone or in combination of two or more.
(3)水系樹脂の含有量
 水系の抗菌・抗ウイルス剤組成物において、水系樹脂(水系ポリウレタン樹脂や水系アクリル樹脂)の含有量は、特に限定されるものではない。例えば、水系の抗菌・抗ウイルス剤組成物は、前記水系樹脂を0.01質量%以上又は0.02質量%以上含んでいてもよく、50質量%以下又は20質量%以下含んでいてもよい。また、水系の抗菌・抗ウイルス剤組成物が水等の溶媒で希釈して使用される場合、希釈後の組成物は、前記水系樹脂を0.001質量%以上、0.005質量%以上又は0.1質量%以上含んでいてもよく、20質量%以下又は10質量%以下含んでいてもよい。
(3) Content of water-based resin In the water-based antibacterial/antiviral agent composition, the content of the water-based resin (water-based polyurethane resin or water-based acrylic resin) is not particularly limited. For example, the water-based antibacterial/antiviral agent composition may contain the water-based resin in an amount of 0.01% by mass or more or 0.02% by mass or more, and may contain 50% by mass or less or 20% by mass or less. . In addition, when the water-based antibacterial/antiviral agent composition is diluted with a solvent such as water and used, the composition after dilution contains the water-based resin in an amount of 0.001% by mass or more, 0.005% by mass or more, or It may be contained in an amount of 0.1% by mass or more, and may be contained in an amount of 20% by mass or less or 10% by mass or less.
(4)その他の成分及び成分含有量
 水系の抗菌・抗ウイルス剤組成物には、各種の添加剤等が含まれていてもよい。例えば、乳化剤、増粘剤、防腐剤、緩衝材、pH調整剤、レベリング剤、フィラー、消泡剤等が含まれていてもよい。増粘剤としては、例えば、アルカリ増粘型アクリル樹脂、会合型増粘剤、水溶性有機高分子等が挙げられる。これらの増粘剤は1種を単独で使用しても2種以上を併用してもよい。前記アルカリ増粘型アクリル樹脂として市販のものを用いることができる。前記アルカリ増粘型アクリル樹脂の市販品としては、例えば、ニカゾールVT-253A(日本カーバイド工業株式会社製)、アロンA-20P、アロンA-7150、アロンA-7070、アロンB-300、アロンB-300K、アロンB-500(以上、東亞合成株式会社製)、ジュリマーAC-10LHP、ジュリマーAC-10SHP、レオジック835H、ジュンロンPW-110、ジュンロンPW-150(以上日本純薬株式会社製)、プライマルASE-60、プライマルTT-615、プライマルRM-5(以上、ローム・アンド・ハース・ジャパン株式会社製)、SNシックナーA-818、SNシックナーA-850(以上、サンノプコ株式会社製)、パラガム500(パラケム・サザン株式会社製)、レオレート430(エレメンティス・ジャパン株式会社製)、ネオステッカーV-420(日華化学株式会社製)等が挙げられる。このようなアルカリ増粘型アクリル樹脂は、通常、樹脂の乳化分散物として市販されており、乳化分散させた状態で使用することが好ましい。
(4) Other components and component content Various additives may be contained in the water-based antibacterial/antiviral agent composition. For example, it may contain emulsifiers, thickeners, preservatives, buffers, pH adjusters, leveling agents, fillers, antifoaming agents and the like. Examples of thickeners include alkali-thickened acrylic resins, associative thickeners, and water-soluble organic polymers. These thickeners may be used alone or in combination of two or more. A commercially available one can be used as the alkali-thickening acrylic resin. Examples of commercially available alkali-thickening acrylic resins include Nikasol VT-253A (manufactured by Nippon Carbide Industry Co., Ltd.), Aron A-20P, Aron A-7150, Aron A-7070, Aron B-300, and Aron B. -300K, Aron B-500 (manufactured by Toagosei Co., Ltd.), Julimer AC-10LHP, Julimer AC-10SHP, Rheologic 835H, Junron PW-110, Junron PW-150 (manufactured by Nippon Junyaku Co., Ltd.), Primal ASE-60, Primal TT-615, Primal RM-5 (manufactured by Rohm and Haas Japan Co., Ltd.), SN Thickener A-818, SN Thickener A-850 (manufactured by San Nopco Co., Ltd.), Paragum 500 (manufactured by Parachem Southern Co., Ltd.), Leoleate 430 (manufactured by Elementis Japan Co., Ltd.), Neosticker V-420 (manufactured by Nicca Chemical Co., Ltd.), and the like. Such alkali-thickening acrylic resins are usually commercially available as emulsified dispersions of resins, and are preferably used in an emulsified and dispersed state.
 水系の抗菌・抗ウイルス剤組成物における、上記のモノ/ジエステル又はその塩の含有量は、特に限定されるものではない。例えば、水系の抗菌・抗ウイルス剤組成物は、上記のモノ/ジエステル又はその塩を0.01質量%以上又は0.02質量%以上含んでいてもよく、50質量%以下又は20質量%以下含んでいてもよい。また、抗菌・抗ウイルス剤組成物が水等の溶媒で希釈して使用される場合、希釈後の組成物は、上記のモノ/ジエステル又はその塩を0.001質量%以上、0.002質量%以上、0.01質量%以上又は0.02質量%以上含んでいてもよく、5質量%以下又は4質量%以下含んでいてもよい。 The content of the above mono/diester or salt thereof in the water-based antibacterial/antiviral agent composition is not particularly limited. For example, the water-based antibacterial/antiviral composition may contain 0.01% by mass or more or 0.02% by mass or more of the above mono/diester or a salt thereof, and 50% by mass or less or 20% by mass or less. may contain. In addition, when the antibacterial/antiviral agent composition is used after being diluted with a solvent such as water, the diluted composition contains 0.001% by mass or more and 0.002% by mass of the above mono/diester or salt thereof. % or more, 0.01 mass % or more, or 0.02 mass % or more, and may contain 5 mass % or less, or 4 mass % or less.
1.2.2 非水系の抗菌・抗ウイルス剤組成物に含まれる好適な成分
(1)硬化成分
 各種の構造体に対して、上記のモノ/ジエステル又はその塩を用いて非水系で処理する場合は、上記のモノ/ジエステル又はその塩とともに硬化成分を用いるとよい。言い換えれば、本実施形態に係る抗菌・抗ウイルス剤組成物は、上記のモノ/ジエステル又はその塩と、硬化成分とを含み、さらに任意に溶剤(有機溶媒)を含むものであってよい。硬化成分としては、後述の熱硬化成分や、活性エネルギー線硬化成分等が挙げられる。
1.2.2 Preferred Components Contained in Non-Aqueous Antibacterial/Antiviral Agent Compositions (1) Curing Components Various structures are treated with the above mono/diesters or salts thereof in a non-aqueous system. In some cases, the curing component may be used with the above mono/diesters or salts thereof. In other words, the antibacterial/antiviral agent composition according to this embodiment contains the above mono/diester or salt thereof, a curing component, and optionally a solvent (organic solvent). Examples of the curing component include a thermosetting component, an active energy ray curing component, and the like, which will be described later.
(1-1)熱硬化成分
 熱硬化成分は、熱硬化性化合物及び熱硬化樹脂からなる群から選択される少なくとも1種である。熱硬化性化合物とは、加熱により反応して硬化する特性を有する化合物を意味し、例えば、重合開始剤の存在下で加熱することによって重合する重合性官能基を有するプレポリマー等、硬化剤や架橋剤の存在下で加熱することによって硬化(架橋)する熱硬化性のモノマーやオリゴマー等が挙げられる。また、熱硬化樹脂とは、前記熱硬化性化合物が加熱により重合(硬化)したものを意味し、例えば、前記重合性官能基を有するプレポリマーが重合したポリマー等、前記熱硬化性のモノマーやオリゴマーの硬化物や半硬化物等が挙げられる。また、前記重合性官能基を有するプレポリマーのうち、重合性官能基を有するモノマーが熱重合したプレポリマーは、重合開始剤を使用せずにそのままの状態で熱硬化樹脂として使用することもできる。以上の通り、「熱硬化成分」とは、前記熱硬化性化合物と前記熱硬化樹脂の両者を包含する概念である。
(1-1) Thermosetting Component The thermosetting component is at least one selected from the group consisting of thermosetting compounds and thermosetting resins. A thermosetting compound means a compound having a characteristic of reacting and curing by heating, for example, a prepolymer having a polymerizable functional group that polymerizes by heating in the presence of a polymerization initiator, a curing agent, or the like. Examples include thermosetting monomers and oligomers that are cured (cross-linked) by heating in the presence of a cross-linking agent. Further, the thermosetting resin means that the thermosetting compound is polymerized (cured) by heating, for example, a polymer obtained by polymerizing the prepolymer having the polymerizable functional group, the thermosetting monomer or A cured product or a semi-cured product of an oligomer may be mentioned. Further, among the prepolymers having a polymerizable functional group, a prepolymer obtained by thermally polymerizing a monomer having a polymerizable functional group can be used as a thermosetting resin as it is without using a polymerization initiator. . As described above, the term "thermosetting component" is a concept that includes both the thermosetting compound and the thermosetting resin.
 前記熱硬化樹脂の製造方法としては特に制限はないが、例えば、
(I)重合性官能基を有するモノマーと他のモノマーとを共重合したり、プレポリマーの構成するポリマー鎖に重合性官能基を導入したりして前記重合性官能基を有するプレポリマーを調製した後、この重合性官能基を有するプレポリマーを、重合開始剤の存在下で加熱することによって重合させ、ポリマーを形成する方法、
(II)重合性官能基を有するモノマーを、重合開始剤の存在下で加熱することによって重合させ、ポリマーを形成する方法、
(III)熱硬化性のモノマーやオリゴマーを、硬化剤や架橋剤の存在下で加熱することによって硬化(架橋)させ、前記熱硬化性のモノマーやオリゴマーの硬化物や半硬化物を得る方法等が挙げられる。
The method for producing the thermosetting resin is not particularly limited, but for example,
(I) Copolymerizing a monomer having a polymerizable functional group with another monomer, or introducing a polymerizable functional group into a polymer chain constituting the prepolymer to prepare a prepolymer having the polymerizable functional group. and then polymerizing the prepolymer having a polymerizable functional group by heating in the presence of a polymerization initiator to form a polymer;
(II) a method of polymerizing a monomer having a polymerizable functional group by heating in the presence of a polymerization initiator to form a polymer;
(III) A method of curing (crosslinking) a thermosetting monomer or oligomer by heating in the presence of a curing agent or crosslinking agent to obtain a cured or semi-cured product of the thermosetting monomer or oligomer. is mentioned.
 前記熱硬化性化合物としては、例えば、ラジカル重合性の炭素-炭素二重結合を有する化合物、エポキシ化合物、メラミン化合物、フェノール化合物、オキセタン樹脂、ユリア樹脂、アクリル樹脂、ウレタン樹脂、ポリエステル樹脂、エチレン酢酸ビニル樹脂、スチレン-ブタジエンゴム等が挙げられる。これらの熱硬化性化合物は1種を単独で使用しても2種以上を併用してもよい。これらの熱硬化性化合物のうち、アクリル樹脂、ウレタン樹脂、ポリエステル樹脂、エチレン酢酸ビニル樹脂、スチレン-ブタジエンゴムは、熱硬化樹脂としても使用することができる。また、硬化後のアクリル樹脂、ウレタン樹脂、ポリエステル樹脂、エチレン酢酸ビニル樹脂、スチレン-ブタジエンゴム(すなわち、これらの熱硬化物)も、熱硬化樹脂として使用することができる。 Examples of the thermosetting compound include compounds having radically polymerizable carbon-carbon double bonds, epoxy compounds, melamine compounds, phenol compounds, oxetane resins, urea resins, acrylic resins, urethane resins, polyester resins, and ethylene acetic acid. vinyl resin, styrene-butadiene rubber, and the like. These thermosetting compounds may be used alone or in combination of two or more. Among these thermosetting compounds, acrylic resins, urethane resins, polyester resins, ethylene vinyl acetate resins, and styrene-butadiene rubbers can also be used as thermosetting resins. Acrylic resins, urethane resins, polyester resins, ethylene vinyl acetate resins, and styrene-butadiene rubbers (that is, thermosets thereof) after curing can also be used as thermosetting resins.
 また、熱硬化成分は、抗菌・抗ウイルス剤組成物の作業性の観点から、室温(25℃)で液状であることが好ましい。 Also, from the viewpoint of workability of the antibacterial/antiviral agent composition, the thermosetting component is preferably liquid at room temperature (25°C).
(1-1-1)ラジカル重合性の炭素-炭素二重結合を有する化合物
 ラジカル重合性の炭素-炭素二重結合を有する化合物とは、分子内に炭素-炭素二重結合を有する化合物であり、炭素-炭素二重結合が反応することで、硬化する化合物である。このようなラジカル重合性の炭素-炭素二重結合を有する化合物においては、硬度・耐摩耗性・耐熱性等が向上するという観点から、ラジカル重合性の炭素-炭素二重結合を1分子内に2つ以上有する化合物が好ましい。
(1-1-1) Compound having a radically polymerizable carbon-carbon double bond A compound having a radically polymerizable carbon-carbon double bond is a compound having a carbon-carbon double bond in the molecule. , is a compound that hardens when carbon-carbon double bonds react. In compounds having such a radically polymerizable carbon-carbon double bond, from the viewpoint of improving hardness, wear resistance, heat resistance, etc., a radically polymerizable carbon-carbon double bond is included in one molecule. Compounds with two or more are preferred.
 ラジカル重合性の炭素-炭素二重結合を有する化合物としては、例えば、ポリエーテル、ポリエステル、ポリカーボネート、ポリ(メタ)アクリレート、ポリブタジエン又はブタジエンアクリロニトリル共重合体であってアクリル基を有する化合物;ポリエーテル、ポリエステル、ポリカーボネート、ポリ(メタ)アクリレート、ポリブタジエン又はブタジエンアクリロニトリル共重合体であってアリル基を有する化合物;マレイミド基を有する化合物、熱反応性モノマー等が挙げられる。 Compounds having radically polymerizable carbon-carbon double bonds include, for example, polyethers, polyesters, polycarbonates, poly(meth)acrylates, polybutadiene or butadiene acrylonitrile copolymers having acrylic groups; polyethers, Polyester, polycarbonate, poly(meth)acrylate, polybutadiene or butadiene-acrylonitrile copolymer having an allyl group; a compound having a maleimide group; a thermally reactive monomer;
 以下に、好ましいラジカル重合性の炭素-炭素二重結合を有する化合物を例示するが、抗菌・抗ウイルス剤組成物に用いられるラジカル重合性の炭素-炭素二重結合を有する化合物はこれらに限定されるものではない。 Preferred radically polymerizable carbon-carbon double bond compounds are exemplified below, but the radically polymerizable carbon-carbon double bond compound used in the antibacterial/antiviral agent composition is limited to these. not something.
(ポリエーテル、ポリエステル、ポリカーボネート、ポリ(メタ)アクリレート、ポリブタジエン又はブタジエン-アクリロニトリル共重合体であってアクリル基を有する化合物)
 アクリル基を有するポリエーテルを構成するポリエーテルとしては、炭素数3~6の有機基がエーテル結合を介して繰り返したものが好ましい。このようなアクリル基を有するポリエーテルは、ポリエーテルポリオールと(メタ)アクリル酸又はその誘導体との反応により得ることができる。
(Polyether, polyester, polycarbonate, poly(meth)acrylate, polybutadiene or butadiene-acrylonitrile copolymer compound having an acrylic group)
As the polyether constituting the polyether having an acrylic group, a polyether in which organic groups having 3 to 6 carbon atoms are repeated through ether bonds is preferable. A polyether having such an acrylic group can be obtained by reacting a polyether polyol with (meth)acrylic acid or a derivative thereof.
 アクリル基を有するポリエステルを構成するポリエステルとしては、炭素数3~6の有機基がエステル結合を介して繰り返したものが好ましい。このようなアクリル基を有するポリエステルは、ポリエステルポリオールと(メタ)アクリル酸又はその誘導体との反応により得ることができる。 As the polyester constituting the acrylic group-containing polyester, those in which organic groups having 3 to 6 carbon atoms are repeated via ester bonds are preferable. A polyester having such an acrylic group can be obtained by reacting a polyester polyol with (meth)acrylic acid or a derivative thereof.
 アクリル基を有するポリカーボネートを構成するポリカーボネートとしては、炭素数3~6の有機基がカーボネート結合を介して繰り返したものが好ましい。このようなアクリル基を有するポリカーボネートは、ポリカーボネートポリオールと(メタ)アクリル酸又はその誘導体との反応により得ることができる。 As a polycarbonate constituting a polycarbonate having an acrylic group, one in which organic groups having 3 to 6 carbon atoms are repeated via carbonate bonds is preferable. Such a polycarbonate having acrylic groups can be obtained by reacting a polycarbonate polyol with (meth)acrylic acid or a derivative thereof.
 アクリル基を有するポリ(メタ)アクリレートを構成するポリ(メタ)アクリレートとしては、(メタ)アクリル酸と(メタ)アクリレートとの共重合体、水酸基を有する(メタ)アクリレートと極性基を有さない(メタ)アクリレートとの共重合体、グリシジル基を有する(メタ)アクリレートと極性基を有さない(メタ)アクリレートとの共重合体等が好ましい。このようなアクリル基を有するポリ(メタ)アクリレートは、カルボキシ基を有する共重合体(例えば、(メタ)アクリル酸と(メタ)アクリレートとの共重合体)と水酸基を有する(メタ)アクリレート又はグリシジル基を有する(メタ)アクリレートとの反応、水酸基を有する共重合体(例えば、水酸基を有する(メタ)アクリレートと極性基を有さない(メタ)アクリレートとの共重合体)と(メタ)アクリル酸又はその誘導体との反応、或いは、グリシジル基を有する共重合体(例えば、グリシジル基を有する(メタ)アクリレートと極性基を有さない(メタ)アクリレートとの共重合体)と(メタ)アクリル酸又はその誘導体との反応によって、得ることができる。 Poly(meth)acrylates constituting poly(meth)acrylates having acrylic groups include copolymers of (meth)acrylic acid and (meth)acrylates, and (meth)acrylates having hydroxyl groups and having no polar groups. A copolymer with (meth)acrylate, a copolymer of (meth)acrylate having a glycidyl group and (meth)acrylate having no polar group, and the like are preferable. Poly (meth) acrylate having such an acrylic group is a copolymer having a carboxy group (for example, a copolymer of (meth) acrylic acid and (meth) acrylate) and a (meth) acrylate having a hydroxyl group or glycidyl Reaction with (meth)acrylate having a group, a copolymer having a hydroxyl group (e.g., a copolymer of a (meth)acrylate having a hydroxyl group and a (meth)acrylate having no polar group) and (meth)acrylic acid or a reaction with a derivative thereof, or a copolymer having a glycidyl group (for example, a copolymer of a (meth)acrylate having a glycidyl group and a (meth)acrylate having no polar group) and (meth)acrylic acid or by reaction with a derivative thereof.
 アクリル基を有するポリブタジエンは、カルボキシ基を有するポリブタジエンと水酸基を有する(メタ)アクリレート又はグリシジル基を有する(メタ)アクリレートとの反応、水酸基を有するポリブタジエンと(メタ)アクリル酸又はその誘導体との反応、或いは、無水マレイン酸を付加したポリブタジエンと水酸基を有する(メタ)アクリレートとの反応により得ることができる。 Polybutadiene having an acrylic group is a reaction of a polybutadiene having a carboxyl group with a (meth)acrylate having a hydroxyl group or a (meth)acrylate having a glycidyl group, a reaction of a polybutadiene having a hydroxyl group with (meth)acrylic acid or a derivative thereof, Alternatively, it can be obtained by reacting polybutadiene to which maleic anhydride is added and a (meth)acrylate having a hydroxyl group.
 アクリル基を有するブタジエン-アクリロニトリル共重合体は、カルボキシ基を有するブタジエン-アクリロニトリル共重合体と水酸基を有する(メタ)アクリレート又はグリシジル基を有する(メタ)アクリレートとの反応によって得ることができる。 A butadiene-acrylonitrile copolymer having an acrylic group can be obtained by reacting a butadiene-acrylonitrile copolymer having a carboxy group with a (meth)acrylate having a hydroxyl group or a (meth)acrylate having a glycidyl group.
(ポリエーテル、ポリエステル、ポリカーボネート、ポリ(メタ)アクリレート、ポリブタジエン又はブタジエン-アクリロニトリル共重合体であってアリル基を有する化合物)
 アリル基を有する化合物としては、ジアリルエステルとジオールとの反応物等が挙げられる。前記ジアリルエステルとしては、ジカルボン酸又はその誘導体とアリルアルコールとの反応物等が挙げられ、前記ジカルボン酸としては、しゅう酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、マレイン酸、フマル酸、フタル酸、テトラヒドロフタル酸、ヘキサヒドロフタル酸等が挙げられる。前記ジオールとしては、エチレングリコール、プロピレングリコール、テトラメチレングリコール等が挙げられる。
(Polyether, polyester, polycarbonate, poly(meth)acrylate, polybutadiene or butadiene-acrylonitrile copolymer compound having an allyl group)
Examples of compounds having an allyl group include reaction products of diallyl esters and diols. Examples of the diallyl esters include reaction products of dicarboxylic acids or derivatives thereof with allyl alcohol. Examples of the dicarboxylic acids include oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, Azelaic acid, sebacic acid, maleic acid, fumaric acid, phthalic acid, tetrahydrophthalic acid, hexahydrophthalic acid and the like. Examples of the diol include ethylene glycol, propylene glycol, tetramethylene glycol and the like.
(マレイミド基を有する化合物)
 マレイミド基を有する化合物としては、例えば、N,N’-(4,4’-ジフェニルメタン)ビスマレイミド、ビス(3-エチル-5-メチル-4-マレイミドフェニル)メタン、2,2-ビス[4-(4-マレイミドフェノキシ)フェニル]プロパン等のビスマレイミド化合物;ダイマー酸ジアミンと無水マレイン酸との反応物;マレイミド酢酸、マレイミドカプロン酸等のマレイミド化アミノ酸とポリオールとの反応物等が挙げられ、中でも、ダイマー酸ジアミンと無水マレイン酸との反応物;マレイミド酢酸、マレイミドカプロン酸等のマレイミド化アミノ酸とポリオールとの反応物が好ましい。前記マレイミド化アミノ酸は、無水マレイン酸とアミノ酢酸又はアミノカプロン酸とを反応させることによって得られるものである。ポリオールとしては、ポリエーテルポリオール、ポリエステルポリオール、ポリカーボネートポリオール、ポリアクリレートポリオール、ポリメタクリレートポリオールが好ましい。
(Compound having maleimide group)
Compounds having a maleimide group include, for example, N,N'-(4,4'-diphenylmethane)bismaleimide, bis(3-ethyl-5-methyl-4-maleimidophenyl)methane, 2,2-bis[4 -bismaleimide compounds such as (4-maleimidophenoxy)phenyl]propane; reaction products of dimer acid diamine and maleic anhydride; reaction products of maleimidated amino acids such as maleimidoacetic acid and maleimidocaproic acid with polyols; Among them, a reaction product of diamine dimer acid and maleic anhydride; a reaction product of maleimidated amino acid such as maleimidoacetic acid and maleimidocaproic acid and a polyol are preferable. The maleimidated amino acid is obtained by reacting maleic anhydride with aminoacetic acid or aminocaproic acid. Polyether polyols, polyester polyols, polycarbonate polyols, polyacrylate polyols, and polymethacrylate polyols are preferred as polyols.
(熱反応性モノマー)
 熱反応性モノマーとしては、例えば、水酸基を有する(メタ)アクリレート、水酸基を有する(メタ)アクリレートとジカルボン酸又はその誘導体との反応物であるカルボキシ基を有する(メタ)アクリレートが挙げられる。前記水酸基を有する(メタ)アクリレートとしては、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、3-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、グリセリンモノ(メタ)アクリレート、グリセリンジ(メタ)アクリレート、トリメチロールプロパンモノ(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート、ペンタエリスリトールモノ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ネオペンチルグリコールモノ(メタ)アクリレート等が挙げられ、前記ジカルボン酸としては、例えば、しゅう酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、マレイン酸、フマル酸、フタル酸、テトラヒドロフタル酸、ヘキサヒドロフタル酸等が挙げられる。これらの水酸基を有する(メタ)アクリレート及びジカルボン酸は1種を単独で使用しても2種以上を併用してもよい。
(Heat-reactive monomer)
Examples of thermally reactive monomers include hydroxyl group-containing (meth)acrylates and carboxyl group-containing (meth)acrylates that are reaction products of hydroxyl group-containing (meth)acrylates and dicarboxylic acids or derivatives thereof. Examples of (meth)acrylates having a hydroxyl group include 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 3-hydroxypropyl (meth)acrylate, 2-hydroxybutyl (meth)acrylate, 3 - hydroxybutyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate, glycerin mono(meth)acrylate, glycerin di(meth)acrylate, trimethylolpropane mono(meth)acrylate, trimethylolpropane di(meth)acrylate, penta Erythritol mono (meth) acrylate, pentaerythritol di (meth) acrylate, pentaerythritol tri (meth) acrylate, neopentyl glycol mono (meth) acrylate, and the like. Examples of the dicarboxylic acid include oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, maleic acid, fumaric acid, phthalic acid, tetrahydrophthalic acid, hexahydrophthalic acid and the like. These hydroxyl-containing (meth)acrylates and dicarboxylic acids may be used singly or in combination of two or more.
 また、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、ターシャリーブチル(メタ)アクリレート、イソデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、トリデシル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、その他のアルキル(メタ)アクリレート、ベンジル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、グリシジル(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ジンクモノ(メタ)アクリレート、ジンクジ(メタ)アクリレート、ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、トリフロロエチル(メタ)アクリレート、2,2,3,3-テトラフロロプロピル(メタ)アクリレート、2,2,3,3,4,4-ヘキサフロロブチル(メタ)アクリレート、パーフロロオクチル(メタ)アクリレート、パーフロロオクチルエチル(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、1,3-ブタンジオールジ(メタ)アクリレート、1,10-デカンジオールジ(メタ)アクリレート、テトラメチレングリコールジ(メタ)アクリレート、メトキシエチル(メタ)アクリレート、ブトキシエチル(メタ)アクリレート、エトキシジエチレングリコール(メタ)アクリレート、N,N'-メチレンビス(メタ)アクリルアミド、N,N'-エチレンビス(メタ)アクリルアミド、1,2-ジ(メタ)アクリルアミドエチレングリコール、ジ(メタ)アクリロイロキシメチルトリシクロデカン、N-(メタ)アクリロイロキシエチルマレイミド、N-(メタ)アクリロイロキシエチルヘキサヒドロフタルイミド、N-(メタ)アクリロイロキシエチルフタルイミド等の(メタ)アクリレート化合物;n-ビニル-2-ピロリドン、スチレン誘導体、α-メチルスチレン誘導体等のビニル化合物も、熱反応性モノマーとして用いることができる。これらの熱反応性モノマーは1種を単独で使用しても2種以上を併用してもよい。 In addition, methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, tertiary butyl (meth) acrylate, isodecyl (meth) acrylate, lauryl (meth) acrylate, tridecyl ( meth)acrylate, 2-ethylhexyl (meth)acrylate, other alkyl (meth)acrylates, benzyl (meth)acrylate, phenoxyethyl (meth)acrylate, glycidyl (meth)acrylate, trimethylolpropane tri(meth)acrylate, zinc mono ( meth)acrylate, zinc di(meth)acrylate, dimethylaminoethyl (meth)acrylate, diethylaminoethyl (meth)acrylate, neopentyl glycol di(meth)acrylate, trifluoroethyl (meth)acrylate, 2,2,3,3- Tetrafluoropropyl (meth)acrylate, 2,2,3,3,4,4-hexafluorobutyl (meth)acrylate, perfluorooctyl (meth)acrylate, perfluorooctylethyl (meth)acrylate, ethylene glycol di(meth)acrylate ) acrylate, propylene glycol di(meth)acrylate, 1,4-butanediol di(meth)acrylate, 1,6-hexanediol di(meth)acrylate, 1,9-nonanediol di(meth)acrylate, 1,3 -butanediol di(meth)acrylate, 1,10-decanediol di(meth)acrylate, tetramethylene glycol di(meth)acrylate, methoxyethyl (meth)acrylate, butoxyethyl (meth)acrylate, ethoxydiethylene glycol (meth)acrylate , N,N'-methylenebis(meth)acrylamide, N,N'-ethylenebis(meth)acrylamide, 1,2-di(meth)acrylamide ethylene glycol, di(meth)acryloyloxymethyltricyclodecane, N- (Meth)acrylate compounds such as (meth)acryloyloxyethylmaleimide, N-(meth)acryloyloxyethylhexahydrophthalimide, N-(meth)acryloyloxyethylphthalimide; n-vinyl-2-pyrrolidone, styrene derivatives , and α-methylstyrene derivatives can also be used as thermally reactive monomers. These thermoreactive monomers may be used singly or in combination of two or more.
(熱ラジカル重合開始剤)
 前記ラジカル重合性の炭素-炭素二重結合を有する化合物の熱ラジカル重合開始剤としては、特に制限はないが、急速加熱試験(試料1gを電熱板の上にのせ、4℃/分で昇温した時の分解開始温度)における分解温度が40℃以上140℃以下となるものが好ましい。分解温度が前記下限未満になると、前記ラジカル重合性の炭素-炭素二重結合を有する化合物と熱ラジカル重合開始剤とを含む組成物の常温における保存性が悪くなる傾向にあり、他方、前記上限を越えると、硬化時間が極端に長くなる傾向にある。
(Thermal radical polymerization initiator)
The thermal radical polymerization initiator for the compound having a radically polymerizable carbon-carbon double bond is not particularly limited, but a rapid heating test (1 g of the sample was placed on an electric heating plate, and the temperature was raised at 4 ° C./min. It is preferable that the decomposition temperature is 40° C. or more and 140° C. or less in the decomposition start temperature when the decomposition is performed. When the decomposition temperature is less than the lower limit, the composition containing the radically polymerizable compound having a carbon-carbon double bond and the thermal radical polymerization initiator tends to have poor storage stability at room temperature. exceeds, the curing time tends to be extremely long.
 このような熱ラジカル重合開始剤として具体的には、メチルエチルケトンパーオキサイド、メチルシクロヘキサノンパーオキサイド、メチルアセトアセテートパーオキサイド、アセチルアセトンパーオキサイド、1,1-ビス(t-ブチルパーオキシ)3,3,5-トリメチルシクロヘキサン、1,1-ビス(t-ヘキシルパーオキシ)シクロヘキサン、1,1-ビス(t-ヘキシルパーオキシ)3,3,5-トリメチルシクロヘキサン、1,1-ビス(t-ブチルパーオキシ)シクロヘキサン、2,2-ビス(4,4-ジ-t-ブチルパーオキシシクロヘキシル)プロパン、1,1-ビス(t-ブチルパーオキシ)シクロドデカン、n-ブチル4,4-ビス(t-ブチルパーオキシ)バレレート、2,2-ビス(t-ブチルパーオキシ)ブタン、1,1-ビス(t-ブチルパーオキシ)-2-メチルシクロヘキサン、t-ブチルハイドロパーオキサイド、P-メンタンハイドロパーオキサイド、1,1,3,3-テトラメチルブチルハイドロパーオキサイド、t-ヘキシルハイドロパーオキサイド、ジクミルパーオキサイド、2,5-ジメチル-2,5-ビス(t-ブチルパーオキシ)ヘキサン、α,α'-ビス(t-ブチルパーオキシ)ジイソプロピルベンゼン、t-ブチルクミルパーオキサイド、ジ-t-ブチルパーオキサイド、2,5-ジメチル-2,5-ビス(t-ブチルパーオキシ)-3-ヘキシン、イソブチリルパーオキサイド、3,5,5-トリメチルヘキサノイルパーオキサイド、オクタノイルパーオキサイド、ラウロイルパーオキサイド、桂皮酸パーオキサイド、m-トルオイルパーオキサイド、ベンゾイルパーオキサイド、ジイソプロピルパーオキシジカーボネート、ビス(4-t-ブチルシクロヘキシル)パーオキシジカーボネート、ジ-3-メトキシブチルパーオキシジカーボネート、ジ-2-エチルヘキシルパーオキシジカーボネート、ジ-sec-ブチルパーオキシジカーボネート、ジ(3-メチル-3-メトキシブチル)パーオキシジカーボネート、ジ(4-t-ブチルシクロヘキシル)パーオキシジカーボネート、α,α'-ビス(ネオデカノイルパーオキシ)ジイソプロピルベンゼン、クミルパーオキシネオデカノエート、1,1,3,3,-テトラメチルブチルパーオキシネオデカノエート、1-シクロヘキシル-1-メチルエチルパーオキシネオデカノエート、t-ヘキシルパーオキシネオデカノエート、t-ブチルパーオキシネオデカノエート、t-ヘキシルパーオキシピバレート、t-ブチルパーオキシピバレート、2,5-ジメチル-2,5-ビス(2-エチルヘキサノイルパーオキシ)ヘキサン、1,1,3,3-テトラメチルブチルパーオキシ-2-エチルへキサノエート、1-シクロヘキシル-1-メチルエチルパーオキシ-2-エチルヘキサノエート、t-ヘキシルパーオキシ-2-エチルヘキサノエート、t-ブチルパーオキシ-2-エチルヘキサノエート、t-ブチルパーオキシイソブチレート、t-ブチルパーオキシマレイックアシッド、t-ブチルパーオキシラウレート、t-ブチルパーオキシ-3,5,5-トリメチルヘキサノエート、t-ブチルパーオキシイソプロピルモノカーボネート、t-ブチルパーオキシ-2-エチルヘキシルモノカーボネート、2,5-ジメチル-2,5-ビス(ベンゾイルパーオキシ)ヘキサン、t-ブチルパーオキシアセテート、t-ヘキシルパーオキシベンゾエート、t-ブチルパーオキシ-m-トルオイルベンゾエート、t-ブチルパーオキシベンゾエート、ビス(t-ブチルパーオキシ)イソフタレート、t-ブチルパーオキシアリルモノカーボネート、3,3',4,4'-テトラ(t-ブチルパーオキシカルボニル)ベンゾフェノン等が挙げられる。これらの熱ラジカル重合開始剤は1種を単独で使用しても2種以上を併用してもよい。 Specific examples of such thermal radical polymerization initiators include methyl ethyl ketone peroxide, methylcyclohexanone peroxide, methyl acetoacetate peroxide, acetylacetone peroxide, 1,1-bis(t-butylperoxy)3,3,5 -trimethylcyclohexane, 1,1-bis(t-hexylperoxy)cyclohexane, 1,1-bis(t-hexylperoxy)3,3,5-trimethylcyclohexane, 1,1-bis(t-butylperoxy) ) cyclohexane, 2,2-bis(4,4-di-t-butylperoxycyclohexyl)propane, 1,1-bis(t-butylperoxy)cyclododecane, n-butyl 4,4-bis(t- butylperoxy)valerate, 2,2-bis(t-butylperoxy)butane, 1,1-bis(t-butylperoxy)-2-methylcyclohexane, t-butyl hydroperoxide, p-menthane hydroper oxide, 1,1,3,3-tetramethylbutyl hydroperoxide, t-hexyl hydroperoxide, dicumyl peroxide, 2,5-dimethyl-2,5-bis(t-butylperoxy)hexane, α , α'-bis(t-butylperoxy)diisopropylbenzene, t-butylcumyl peroxide, di-t-butylperoxide, 2,5-dimethyl-2,5-bis(t-butylperoxy)-3 - hexyne, isobutyryl peroxide, 3,5,5-trimethylhexanoyl peroxide, octanoyl peroxide, lauroyl peroxide, cinnamic acid peroxide, m-toluoyl peroxide, benzoyl peroxide, diisopropyl peroxydicarbonate , bis(4-t-butylcyclohexyl)peroxydicarbonate, di-3-methoxybutylperoxydicarbonate, di-2-ethylhexylperoxydicarbonate, di-sec-butylperoxydicarbonate, di(3- methyl-3-methoxybutyl)peroxydicarbonate, di(4-t-butylcyclohexyl)peroxydicarbonate, α,α'-bis(neodecanoylperoxy)diisopropylbenzene, cumyl peroxyneodecanoate, 1,1,3,3,-tetramethylbutyl peroxyneodecanoate, 1-cyclohexyl-1-methylethyl peroxyneodecanoate, t-hexylpa -oxyneodecanoate, t-butyl peroxyneodecanoate, t-hexyl peroxypivalate, t-butyl peroxypivalate, 2,5-dimethyl-2,5-bis(2-ethylhexanoyl peroxy)hexane, 1,1,3,3-tetramethylbutylperoxy-2-ethylhexanoate, 1-cyclohexyl-1-methylethylperoxy-2-ethylhexanoate, t-hexylperoxy-2 -ethylhexanoate, t-butylperoxy-2-ethylhexanoate, t-butylperoxyisobutyrate, t-butylperoxymaleic acid, t-butylperoxylaurate, t-butylperoxy -3,5,5-trimethylhexanoate, t-butylperoxyisopropyl monocarbonate, t-butylperoxy-2-ethylhexylmonocarbonate, 2,5-dimethyl-2,5-bis(benzoylperoxy)hexane , t-butyl peroxyacetate, t-hexyl peroxybenzoate, t-butyl peroxy-m-toluoyl benzoate, t-butyl peroxybenzoate, bis (t-butyl peroxy) isophthalate, t-butyl peroxy allyl monocarbonate, 3,3′,4,4′-tetra(t-butylperoxycarbonyl)benzophenone and the like. These thermal radical polymerization initiators may be used alone or in combination of two or more.
(1-1-2)エポキシ化合物
 エポキシ化合物は、グリシジル基を分子内に1つ以上有する化合物であり、加熱によりグリシジル基が反応することで3次元的網目構造を形成し、硬化する化合物である。このようなエポキシ化合物においては、十分な硬化物特性を示すという観点から、1分子にグリシジル基が2つ以上含まれている化合物が好ましい。
(1-1-2) Epoxy compounds Epoxy compounds are compounds having one or more glycidyl groups in the molecule, and are compounds that form a three-dimensional network structure and cure when the glycidyl groups react with heating. . Among such epoxy compounds, compounds containing two or more glycidyl groups in one molecule are preferable from the viewpoint of exhibiting sufficient cured product properties.
 エポキシ化合物としては、特に制限はないが、例えば、ビスフェノールA、ビスフェノールF、ビフェノール等のビスフェノール化合物又はこれらの誘導体、水素添加ビスフェノールA、水素添加ビスフェノールF、水素添加ビフェノール、シクロヘキサンジオール、シクロヘキサンジメタノール、シクロヘキサンジエタノール等の脂環構造を有するジオール又はこれらの誘導体、ブタンジオール、ヘキサンジオール、オクタンジオール、ノナンジオール、デカンジオール等の脂肪族ジオール又はこれらの誘導体等をエポキシ化した2官能の化合物、トリヒドロキシフェニルメタン骨格、アミノフェノール骨格を有する3官能の化合物、フェノールノボラック樹脂、クレゾールノボラック樹脂、フェノールアラルキル樹脂、ビフェニルアラルキル樹脂、ナフトールアラルキル樹脂等をエポキシ化した多官能のエポキシ樹脂等が挙げられる。また、このようなエポキシ化合物は、単独で又は混合物として室温で液状のものが好ましい。これにより、室温で液状の抗菌・抗ウイルス剤組成物が得られる。なお、ジオール又はその誘導体をエポキシ化する方法としては、ジオール又はその誘導体の2つの水酸基と、エピクロルヒドリンとを反応させて、グリシジルエーテルに変換することにより、エポキシ化する方法等が挙げられる。また、3官能以上のものについても、同様である。 The epoxy compound is not particularly limited, but examples include bisphenol compounds such as bisphenol A, bisphenol F and biphenol, or derivatives thereof, hydrogenated bisphenol A, hydrogenated bisphenol F, hydrogenated biphenol, cyclohexanediol, cyclohexanedimethanol, Bifunctional compounds obtained by epoxidizing diols having an alicyclic structure such as cyclohexanediethanol or derivatives thereof, aliphatic diols such as butanediol, hexanediol, octanediol, nonanediol, decanediol, or derivatives thereof, trihydroxy Polyfunctional epoxy resins obtained by epoxidizing trifunctional compounds having a phenylmethane skeleton or aminophenol skeleton, phenol novolac resin, cresol novolak resin, phenol aralkyl resin, biphenyl aralkyl resin, naphthol aralkyl resin, and the like. Further, such epoxy compounds are preferably liquid at room temperature either singly or as a mixture. As a result, an antibacterial/antiviral agent composition that is liquid at room temperature is obtained. As a method for epoxidizing a diol or a derivative thereof, a method of epoxidizing by reacting two hydroxyl groups of the diol or a derivative thereof with epichlorohydrin to convert them into glycidyl ether, and the like can be mentioned. In addition, the same applies to tri- or more functional ones.
 また、このようなエポキシ化合物は、反応性の希釈剤を用いて希釈して使用することも可能である。反応性の希釈剤としては、フェニルグリシジルエーテル、ターシャリーブチルフェニルグリシジルエーテル、クレジルグリシジルエーテル等の1官能の芳香族グリシジルエーテル類、脂肪族グリシジルエーテル類等が挙げられる。 Also, such an epoxy compound can be diluted with a reactive diluent before use. Examples of reactive diluents include monofunctional aromatic glycidyl ethers such as phenyl glycidyl ether, tert-butyl phenyl glycidyl ether and cresyl glycidyl ether, and aliphatic glycidyl ethers.
(エポキシ化合物の硬化剤)
 前記エポキシ化合物の硬化剤としては、例えば、脂肪族アミン、芳香族アミン、ジシアンジアミド、ジヒドラジド化合物、酸無水物、フェノール化合物等が挙げられる。前記ジヒドラジド化合物としては、例えば、アジピン酸ジヒドラジド、ドデカン酸ジヒドラジド、イソフタル酸ジヒドラジド、p-オキシ安息香酸ジヒドラジド等のカルボン酸ジヒドラジドが挙げられる。前記酸無水物としては、フタル酸無水物、テトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、4-メチルヘキサヒドロ無水フタル酸、エンドメチレンテトラヒドロフタル酸無水物、ドデセニルコハク酸無水物、無水マレイン酸等が挙げられる。
(Curing agent for epoxy compound)
Examples of curing agents for epoxy compounds include aliphatic amines, aromatic amines, dicyandiamides, dihydrazide compounds, acid anhydrides, and phenol compounds. Examples of the dihydrazide compound include carboxylic acid dihydrazide such as adipic acid dihydrazide, dodecanoic acid dihydrazide, isophthalic acid dihydrazide, and p-oxybenzoic acid dihydrazide. Examples of the acid anhydride include phthalic anhydride, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, 4-methylhexahydrophthalic anhydride, endomethylenetetrahydrophthalic anhydride, dodecenylsuccinic anhydride, and maleic anhydride. be done.
 また、前記エポキシ化合物の硬化剤として用いられるフェノール化合物は、1分子内にフェノール性水酸基を2つ以上有する化合物である。1分子内にフェノール性水酸基を1つのみ有する化合物の場合には、架橋構造を形成することができず、硬化物特性が低下する。また、前記フェノール化合物としては、1分子内にフェノール性水酸基を2つ以上有しているものであればよいが、1分子内にフェノール性水酸基を2つ以上5つ以下有するものが好ましく、1分子内にフェノール性水酸基を2つ又は3つ有するものがより好ましい。1分子内のフェノール性水酸基数が前記上限を超えると、分子量が大きくなりすぎ、抗菌・抗ウイルス剤組成物の粘度が高くなりすぎる傾向にある。このようなフェノール化合物としては、ビスフェノールF、ビスフェノールA、ビスフェノールS、テトラメチルビスフェノールA、テトラメチルビスフェノールF、テトラメチルビスフェノールS、ジヒドロキシジフェニルエーテル、ジヒドロキシベンゾフェノン、テトラメチルビフェノール、エチリデンビスフェノール、メチルエチリデンビス(メチルフェノール)、シクロへキシリデンビスフェノール、ビフェノール等のビスフェノール類及びその誘導体、トリ(ヒドロキシフェニル)メタン、トリ(ヒドロキシフェニル)エタン等の3官能のフェノール類及びその誘導体、フェノール類とホルムアルデヒドとを反応することで得られるフェノールノボラック、クレゾールノボラック等のフェノール樹脂及びその誘導体等が挙げられる。 Also, the phenol compound used as the curing agent for the epoxy compound is a compound having two or more phenolic hydroxyl groups in one molecule. A compound having only one phenolic hydroxyl group in one molecule cannot form a crosslinked structure, resulting in deterioration of cured product properties. Further, the phenol compound may have two or more phenolic hydroxyl groups in one molecule, but preferably has two to five phenolic hydroxyl groups in one molecule. Those having two or three phenolic hydroxyl groups in the molecule are more preferable. If the number of phenolic hydroxyl groups in one molecule exceeds the above upper limit, the molecular weight tends to be too large and the viscosity of the antibacterial/antiviral agent composition tends to be too high. Examples of such phenol compounds include bisphenol F, bisphenol A, bisphenol S, tetramethylbisphenol A, tetramethylbisphenol F, tetramethylbisphenol S, dihydroxydiphenyl ether, dihydroxybenzophenone, tetramethylbisphenol, ethylidenebisphenol, methylethylidenebis(methyl phenol), cyclohexylidenebisphenol, biphenol and other bisphenols and their derivatives, trifunctional phenols and their derivatives such as tri(hydroxyphenyl)methane and tri(hydroxyphenyl)ethane, reacting phenols with formaldehyde Phenol resins such as phenol novolak and cresol novolac obtained by the above and derivatives thereof.
 さらに、前記エポキシ化合物の硬化促進剤としては、イミダゾール類、トリフェニルホスフィン又はテトラフェニルホスホニウムの塩類、ジアザビシクロウンデセン等のアミン系化合物及びその塩類等が挙げられる。これらの硬化促進剤の中でも、2-メチルイミダゾール、2-エチルイミダゾール-2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾール、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール、2-フェニル-4,5-ジヒドロキシメチルイミダゾール、2-C1123-イミダゾール、2-メチルイミダゾールと2,4-ジアミノ-6-ビニルトリアジンとの付加物等のイミダゾール化合物が好ましく、融点が180℃以上のイミダゾール化合物が特に好ましい。 Furthermore, examples of curing accelerators for the epoxy compounds include imidazoles, salts of triphenylphosphine or tetraphenylphosphonium, amine compounds such as diazabicycloundecene, and salts thereof. Among these curing accelerators, 2-methylimidazole, 2-ethylimidazole-2-phenylimidazole, 2-phenyl-4-methylimidazole, 2-phenyl-4-methyl-5-hydroxymethylimidazole, 2-phenyl- Imidazole compounds such as 4,5-dihydroxymethylimidazole, 2-C 11 H 23 -imidazole, adducts of 2-methylimidazole and 2,4-diamino-6-vinyltriazine are preferred, and imidazoles having a melting point of 180° C. or higher Compounds are particularly preferred.
(1-1-3)メラミン化合物
 メラミン化合物は、メラミン又はその誘導体である。メラミンの誘導体としては、例えば、イミノ基やメチロール基、メトキシメチル基、ブトキシメチル基等のアルコキシメチル基等の官能基を有する誘導体が挙げられる。また、メチロール基を有するメラミン誘導体に低級アルコールを反応させて部分的或いは完全にエーテル化した化合物も挙げられる。このようなメラミン化合物として具体的には、モノメチロールメラミン、ジメチロールメラミン、トリメチロールメラミン、テトラメチロールメラミン、ペンタメチロールメラミン、ヘキサメチロールメラミン等のメチロール基を有する誘導体が挙げられる。
(1-1-3) Melamine Compound The melamine compound is melamine or a derivative thereof. Derivatives of melamine include, for example, derivatives having functional groups such as imino groups, methylol groups, methoxymethyl groups, and alkoxymethyl groups such as butoxymethyl groups. Also included are compounds obtained by partially or completely etherifying a melamine derivative having a methylol group by reacting it with a lower alcohol. Specific examples of such melamine compounds include derivatives having a methylol group such as monomethylolmelamine, dimethylolmelamine, trimethylolmelamine, tetramethylolmelamine, pentamethylolmelamine, and hexamethylolmelamine.
(1-1-4)フェノール化合物
 フェノール化合物は、1分子内にフェノール性水酸基を2つ以上有する化合物である。本発明に用いられるフェノール化合物としては、前記エポキシ化合物の硬化剤として例示したフェノール化合物が挙げられる。
(1-1-4) Phenol compound A phenol compound is a compound having two or more phenolic hydroxyl groups in one molecule. Examples of the phenolic compound used in the present invention include the phenolic compounds exemplified as the curing agent for the epoxy compound.
(1-1-5)ウレタン樹脂
 ウレタン樹脂は、ポリオール及びポリイソシアネートを含む原料の反応物であり、必要に応じて、鎖延長させてもよい。このようなウレタン樹脂は、水酸基、アミノ基、イミノ基のうちの少なくとも1種の官能基を有するウレタン樹脂が好ましい。このような官能基を有するウレタン樹脂は、ポリイソシアネートに対して、ポリオールと鎖延長剤とを、それらの合計量が当量を超える量で使用することにより得ることができる。以下に、ウレタン樹脂の原料の各成分について説明する。
(1-1-5) Urethane resin Urethane resin is a reaction product of raw materials including polyol and polyisocyanate, and may be chain-extended if necessary. Such a urethane resin is preferably a urethane resin having at least one functional group selected from a hydroxyl group, an amino group and an imino group. A urethane resin having such a functional group can be obtained by using a polyol and a chain extender in an amount in which the total amount thereof exceeds the equivalent amount with respect to the polyisocyanate. Each component of the raw material of the urethane resin will be described below.
(ポリオール)
 ポリオールは、1分子中に2個以上の水酸基を有する化合物である。前記ポリオールとしては、特に制限はなく、例えば、ポリエーテルポリオール、ポリカーボネートポリオール、ポリエステルポリオール、ポリエーテルエステルポリオール、ポリオレフィンポリオール、シリコンポリオール、脂肪族ポリオール、脂環式ポリオール、芳香族系ポリオール等が挙げられる。これらのポリオールは1種を単独で使用しても2種以上を併用してもよい。これらのポリオールの中でも、硬化膜の耐候性、機械的強度、耐摩耗性が向上するという観点から、ポリカーボネートポリオールが好ましい。
(polyol)
A polyol is a compound having two or more hydroxyl groups in one molecule. The polyol is not particularly limited, and examples thereof include polyether polyols, polycarbonate polyols, polyester polyols, polyether ester polyols, polyolefin polyols, silicon polyols, aliphatic polyols, alicyclic polyols, aromatic polyols, and the like. . These polyols may be used alone or in combination of two or more. Among these polyols, polycarbonate polyols are preferable from the viewpoint of improving the weather resistance, mechanical strength and wear resistance of the cured film.
 ポリオールの総使用量に対するポリカーボネートポリオールの使用量としては、硬化膜の硬度及び耐候性が良好になるという観点から、25モル%以上が好ましく、50モル%以上がより好ましく、70モル%以上が更に好ましい。 The amount of polycarbonate polyol used relative to the total amount of polyol used is preferably 25 mol% or more, more preferably 50 mol% or more, and further preferably 70 mol% or more, from the viewpoint of improving the hardness and weather resistance of the cured film. preferable.
 ポリエーテルポリオールとしては、例えば、エチレンオキサイド、プロピレンオキサイド及びテトラメチレンオキサイドなどの炭素数2~4のアルキレンオキサイドの単独付加重合物又は共付加重合物(ブロック共重合でも、ランダム共重合でもかまわない)であるポリオール等が挙げられる。 Polyether polyols include, for example, homo-addition polymers or co-addition polymers of alkylene oxides having 2 to 4 carbon atoms such as ethylene oxide, propylene oxide and tetramethylene oxide (block copolymerization or random copolymerization may be used). A polyol and the like are exemplified.
 ポリカーボネートポリオールとしては、例えば、ポリオール類とカーボネート類との脱アルコール反応、脱フェノール反応等で得られるものが挙げられる。ポリオール類としては、例えば、エチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、3-メチル-1,5-ペンタンジオール、ネオペンチルグリコール、1,8-オクタンジオール、1,9-ノナンジオール、1,10-デカンジオール、ジエチレングリコール、ジプロピレングリコール、1,4-シクロヘキサンジメタノール、ビスフェノールAのエチレンオキサイド又はプロピレンオキサイド付加物等が挙げられる。これらのポリオール類は1種を単独で使用しても2種以上を併用してもよい。カーボネート類としては、例えば、ジエチルカーボネート、ジメチルカーボネート、ジフェニルカーボネート等が挙げられる。これらのカーボネート類は1種を単独で使用しても2種以上を併用してもよい。また、このようなポリオール類とカーボネート類との組合せからなるポリカーボネートポリオールは1種を単独で使用しても2種以上を併用してもよい。 Examples of polycarbonate polyols include those obtained by dealcoholization reaction and dephenolation reaction between polyols and carbonates. Polyols include, for example, ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 1,5-pentane Diol, 1,6-hexanediol, 3-methyl-1,5-pentanediol, neopentyl glycol, 1,8-octanediol, 1,9-nonanediol, 1,10-decanediol, diethylene glycol, dipropylene glycol , 1,4-cyclohexanedimethanol, ethylene oxide or propylene oxide adducts of bisphenol A, and the like. These polyols may be used alone or in combination of two or more. Examples of carbonates include diethyl carbonate, dimethyl carbonate, diphenyl carbonate and the like. These carbonates may be used individually by 1 type, or may use 2 or more types together. Polycarbonate polyols composed of combinations of such polyols and carbonates may be used singly or in combination of two or more.
 ポリエステルポリオールとしては、例えば、二塩基酸と、上述のポリオール類との重縮合反応により得られるものが挙げられる。二塩基酸としては、例えば、フタル酸、イソフタル酸、テレフタル酸、ナフタレンジカルボン酸、コハク酸、マロン酸、アジピン酸、セバシン酸、1,4-シクロヘキシルジカルボン酸、マレイン酸、フマル酸等が挙げられる。これらの二塩基酸は1種を単独で使用しても2種以上を併用してもよい。また、このような二塩基酸とポリオール類との組合せからなるポリエステルポリオールは1種を単独で使用しても2種以上を併用してもよい。 Examples of polyester polyols include those obtained by a polycondensation reaction between a dibasic acid and the above-mentioned polyols. Examples of dibasic acids include phthalic acid, isophthalic acid, terephthalic acid, naphthalenedicarboxylic acid, succinic acid, malonic acid, adipic acid, sebacic acid, 1,4-cyclohexyldicarboxylic acid, maleic acid, fumaric acid, and the like. . These dibasic acids may be used individually by 1 type, or may use 2 or more types together. Moreover, such polyester polyols comprising a combination of dibasic acid and polyols may be used singly or in combination of two or more.
 ポリエーテルエステルポリオールとしては、前記ポリエステルポリオールに環状エーテルを開環重合した化合物や、前記ポリエーテルポリオールと前記ジカルボン酸とを重縮合した化合物が挙げられ、中でも、ポリ(ポリテトラメチレンエーテル)アジペートが好ましい。 Examples of polyether ester polyols include compounds obtained by ring-opening polymerization of cyclic ethers in the above polyester polyols, and compounds obtained by polycondensing the above polyether polyols and the above dicarboxylic acids. Among them, poly(polytetramethylene ether) adipate. preferable.
 ポリオレフィンポリオールは、2個以上の水酸基を有するポリオレフィンである。前記ポリオレフィンポリオールは1種を単独で使用しても2種以上を併用してもよい。前記ポリオレフィンポリオールとしては、例えば、ポリブタジエンポリオール、水添ポリブタジエンポリオール、及びポリイソプレンポリオールが挙げられる。 A polyolefin polyol is a polyolefin having two or more hydroxyl groups. The said polyolefin polyol may be used individually by 1 type, or may use 2 or more types together. Examples of the polyolefin polyol include polybutadiene polyol, hydrogenated polybutadiene polyol, and polyisoprene polyol.
 シリコンポリオールは、2個以上の水酸基を有するシリコーンである。前記シリコンポリオールは1種を単独で使用しても2種以上を併用してもよい。前記シリコンポリオールとしては、例えば、ポリジメチルシロキサンポリオールが挙げられる。 A silicone polyol is a silicone having two or more hydroxyl groups. The silicone polyols may be used singly or in combination of two or more. Examples of the silicone polyol include polydimethylsiloxane polyol.
 脂肪族ポリオールとしては、例えば、エチレングリコール、プロピレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、2-メチル-1,3-プロパンジオール、ネオペンチルグリコール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、2-メチル-1,5-ペンタンジオール、3-メチル-1,5-ペンタンジオール、2,2,4-トリメチル-1,5-ペンタンジオール、2,3,5-トリメチル-1,5-ペンタンジオール、1,6-ヘキサンジオール、2-エチル-1,6-ヘキサンジオール、2,2,4-トリメチル-1,6-ヘキサンジオール、3,3-ジメチロールヘプタン、1,8-オクタンジオール、2-メチル-1,8-オクタンジオール、1,9-ノナンジオール等が挙げられる。 Examples of aliphatic polyols include ethylene glycol, propylene glycol, 1,2-propanediol, 1,3-propanediol, 2-methyl-1,3-propanediol, neopentyl glycol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 1,5-pentanediol, 2-methyl-1,5-pentanediol, 3-methyl-1,5-pentanediol, 2,2,4-trimethyl -1,5-pentanediol, 2,3,5-trimethyl-1,5-pentanediol, 1,6-hexanediol, 2-ethyl-1,6-hexanediol, 2,2,4-trimethyl-1 ,6-hexanediol, 3,3-dimethylolheptane, 1,8-octanediol, 2-methyl-1,8-octanediol, 1,9-nonanediol and the like.
 脂環式ポリオールとしては、シクロプロパンジオール、シクロプロパンジメタノール、シクロプロパンジエタノール、シクロプロパンジプロパノール、シクロプロパンジブタノール、シクロペンタンジオール、シクロペンタンジメタノール、シクロペンタンジエタノール、シクロペンタンジプロパノール、シクロペンタンジブタノール、シクロヘキサンジオール、シクロヘキサンジメタノール、シクロヘキサンジエタノール、シクロヘキサンジプロパノール、シクロヘキサンジブタノール、シクロヘキセンジオール、シクロヘキセンジメタノール、シクロヘキセンジエタノール、シクロヘキセンジプロパノール、シクロヘキセンジブタノール、シクロヘキサジエンジオール、シクロヘキサジエンジメタノール、シクロヘキサジエンジエタノール、シクロヘキサジエンジプロパノール、シクロヘキサジエンジブタノール、水添ビスフェノールA、トリシクロデカンジオール、アダマンチルジオール等が挙げられる。 Alicyclic polyols include cyclopropanediol, cyclopropanedimethanol, cyclopropanediethanol, cyclopropanedipropanol, cyclopropanedibutanol, cyclopentanediol, cyclopentanedimethanol, cyclopentanediethanol, cyclopentanedipropanol, cyclopentane Dibutanol, cyclohexanediol, cyclohexanedimethanol, cyclohexanediethanol, cyclohexanedipropanol, cyclohexanedibutanol, cyclohexenediol, cyclohexenedimethanol, cyclohexenediethanol, cyclohexenedipropanol, cyclohexenedibutanol, cyclohexadienediol, cyclohexadienedimethanol, cyclohexadiene Diethanol, cyclohexadiene dipropanol, cyclohexadiene dibutanol, hydrogenated bisphenol A, tricyclodecanediol, adamantyldiol, and the like.
 これらの脂肪族ポリオールや脂環式ポリオールの中でも、得られる硬化膜の耐候性、機械的強度が向上するという観点から、エチレングリコール、プロピレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、2-メチル-1,3-プロパンジオール、ネオペンチルグリコール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール等の水酸基間の炭素数が1~4のポリオール;1,4-シクロヘキサンジメタノール、水添ビスフェノールA等の水酸基が脂環式構造を挟んで対称な位置に存在している脂環式ポリオールが特に好ましい。 Among these aliphatic polyols and alicyclic polyols, ethylene glycol, propylene glycol, 1,2-propanediol, and 1,3-propanediol are used from the viewpoint of improving the weather resistance and mechanical strength of the resulting cured film. , 2-methyl-1,3-propanediol, neopentyl glycol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol and other polyols having 1 to 4 carbon atoms between hydroxyl groups; Alicyclic polyols such as 1,4-cyclohexanedimethanol and hydrogenated bisphenol A in which the hydroxyl groups are present at symmetrical positions across the alicyclic structure are particularly preferred.
 芳香族系ポリオールとしては、ビスヒドロキシエトキシベンゼン、ビスヒドロキシエチルテレフタレート、ビスフェノール-A等が挙げられる。 Examples of aromatic polyols include bishydroxyethoxybenzene, bishydroxyethyl terephthalate, and bisphenol-A.
 また、N-メチルジエタノールアミン等のジアルカノールアミン;ペンタエリスリトール;ソルビトール;マンニトール;グリセリン;トリメチロールプロパン等もその他のポリオール成分として使用することができる。 In addition, dialkanolamines such as N-methyldiethanolamine; pentaerythritol; sorbitol; mannitol; glycerin; trimethylolpropane, etc. can also be used as other polyol components.
(ポリイソシアネート)
 ポリイソシアネートは、1分子中に2個以上のイソシアネート基及びイソシアネート基を含む置換基の一方又は両方(「イソシアネート基類」とも言う)を有する化合物である。ポリイソシアネートは1種を単独で使用しても2種以上を併用してもよい。また、ポリイソシアネートの多量体(ポリイソシアネート単量体同士が反応した変性体)であってもよい。さらに、1種のポリイソシアネートにおいて、イソシアネート基類は同一であってもよいし、異なっていてもよい。また、ポリイソシアネートのNCO基の一部をウレタン、ウレア、ビュレット、アロファネート、カルボジイミド、オキサゾリン、アミド、イミド、ポリオール等に変性したものであってもよい。さらに、多核体にはこれら以外の異性体が含まれていてもよい。
(polyisocyanate)
A polyisocyanate is a compound having one or both of two or more isocyanate groups and substituents containing isocyanate groups (also referred to as "isocyanate groups") in one molecule. Polyisocyanate may be used individually by 1 type, or may use 2 or more types together. It may also be a polymer of polyisocyanate (a modified product obtained by reacting polyisocyanate monomers with each other). Furthermore, in one polyisocyanate, the isocyanate groups may be the same or different. Further, a part of the NCO groups of polyisocyanate may be modified with urethane, urea, buret, allophanate, carbodiimide, oxazoline, amide, imide, polyol and the like. Furthermore, polynuclear isomers may contain isomers other than these.
 イソシアネート基を含む置換基としては、例えば1個以上のイソシアネート基を含む、炭素数1~5のアルキル基、アルケニル基、又はアルコキシル基が挙げられる。イソシアネート基を含む置換基としての前記アルキル基等の炭素数としては1~3が好ましい。 Examples of substituents containing an isocyanate group include alkyl groups, alkenyl groups, or alkoxyl groups containing one or more isocyanate groups and having 1 to 5 carbon atoms. The number of carbon atoms in the alkyl group or the like as a substituent containing an isocyanate group is preferably 1 to 3.
 前記ポリイソシアネートとしては、例えば、脂肪族ポリイソシアネート、脂環式構造を有するポリイソシアネート、及び芳香族ポリイソシアネートが挙げられる。 Examples of the polyisocyanate include aliphatic polyisocyanate, polyisocyanate having an alicyclic structure, and aromatic polyisocyanate.
 脂肪族ポリイソシアネートは、脂肪族構造とそれに結合する2以上のイソシアネート基類とを有する化合物である。脂肪族ポリイソシアネートは、硬化膜の耐候性を高め、かつ屈曲性を付与する観点から好ましい。脂肪族ポリイソシアネートにおける脂肪族構造としては特に限定はされないが、炭素数1~6の直鎖又は分岐のアルキレン基が好ましい。このような脂肪族ポリイソシアネートとしては、例えば、メチレンジイソシアネート、テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート、2,2,4-トリメチルヘキサメチレンジイソシアネート、2,4,4-トリメチルヘキサメチレンジイソシアネート、プロピレンジイソシアネート、リジンジイソシアネート、及びダイマー酸のカルボキシル基をイソシアネート基に転化したダイマージイソシアネート等の脂肪族ジイソシアネート、及びトリス(イソシアネートヘキシル)イソシアヌレート等の脂肪族トリイソシアネートが挙げられる。これらの中でも、ヘキサメチレンジイソシアネートが好ましい。 An aliphatic polyisocyanate is a compound having an aliphatic structure and two or more isocyanate groups bonded thereto. Aliphatic polyisocyanates are preferable from the viewpoint of enhancing the weather resistance of the cured film and imparting flexibility. The aliphatic structure in the aliphatic polyisocyanate is not particularly limited, but a linear or branched alkylene group having 1 to 6 carbon atoms is preferred. Examples of such aliphatic polyisocyanates include methylene diisocyanate, tetramethylene diisocyanate, hexamethylene diisocyanate, 2,2,4-trimethylhexamethylene diisocyanate, 2,4,4-trimethylhexamethylene diisocyanate, propylene diisocyanate, and lysine diisocyanate. , and aliphatic diisocyanates such as dimer diisocyanate obtained by converting the carboxyl group of dimer acid to an isocyanate group, and aliphatic triisocyanates such as tris(isocyanatohexyl)isocyanurate. Among these, hexamethylene diisocyanate is preferred.
 ポリイソシアネートは、硬化膜の機械的強度、耐汚染性の点から、脂環式構造を有するものが好ましい。脂環式構造を有するポリイソシアネートは、脂環式構造とそれに結合する2以上のイソシアネート基類とを有する化合物である。脂環式構造を有するポリイソシアネートにおける脂環式構造としては特に限定はされないが、炭素数3~6のシクロアルキレン基が好ましい。脂環式構造を有するポリイソシアネートとしては、例えば、ビス(イソシアネートメチル)シクロヘキサン、シクロヘキサンジイソシアネート、ビス(イソシアネートシクロヘキシル)メタン、ビス(イソシアネートシクロヘキシル)プロパン、イソホロンジイソシアネート、メチルシクロヘキサンジイソシアネート(水添TDI:)等の脂環式構造を有するジイソシアネート、及びトリス(イソシアネートイソホロン)イソシアヌレート等の脂環式構造を有するトリイソシアネートが挙げられる。これらの脂環式構造を有するポリイソシアネートのうち、硬化膜の強度及び密着性を高める観点や、経時での着色も少なく、透明性を必要とする材料に好適に用いることができるという観点から、ビス(イソシアネートメチル)シクロヘキサン、シクロヘキサンジイソシアネート、ビス(イソシアネートシクロヘキシル)メタン、及びイソホロンジイソシアネートが好ましい。 The polyisocyanate preferably has an alicyclic structure in terms of the mechanical strength and stain resistance of the cured film. A polyisocyanate having an alicyclic structure is a compound having an alicyclic structure and two or more isocyanate groups bonded thereto. Although the alicyclic structure in the polyisocyanate having an alicyclic structure is not particularly limited, a cycloalkylene group having 3 to 6 carbon atoms is preferred. Examples of polyisocyanates having an alicyclic structure include bis(isocyanatomethyl)cyclohexane, cyclohexanediisocyanate, bis(isocyanatocyclohexyl)methane, bis(isocyanatocyclohexyl)propane, isophorone diisocyanate, methylcyclohexane diisocyanate (hydrogenated TDI:), and the like. and triisocyanates having an alicyclic structure such as tris(isocyanatoisophorone)isocyanurate. Among these polyisocyanates having an alicyclic structure, from the viewpoint of increasing the strength and adhesiveness of the cured film, from the viewpoint of less coloring over time, and from the viewpoint of being suitable for materials that require transparency, Bis(isocyanatomethyl)cyclohexane, cyclohexane diisocyanate, bis(isocyanatocyclohexyl)methane, and isophorone diisocyanate are preferred.
 芳香族ポリイソシアネートは、芳香族構造とそれに結合する2以上のイソシアネート基類とを有する化合物である。芳香族ポリイソシアネートにおける芳香族構造としては特に限定はされないが、炭素数6~13の2価の芳香族基が好ましい。このような芳香族ポリイソシアネートとしては、例えば、キシリレンジイソシアネート、4,4’-ジフェニルジイソシアネート、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、m-フェニレンジイソシアネート、p-フェニレンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート(4,4’-MDI)、2,4’-ジフェニルメタンジイソシアネート(2,4’-MDI)、4,4’-ジフェニルジメチルメタンジイソシアネート、4,4’-ジベンジルジイソシアネート、ジアルキルジフェニルメタンジイソシアネート、テトラアルキルジフェニルメタンジイソシアネート、1,5-ナフチレンジイソシアネート、3,3’-ジメチル-4,4’-ビフェニレンジイソシアネート、ポリメチレンポリフェニルイソシアネート、フェニレンジイソシアネート、及びm-テトラメチルキシリレンジイソシアネート、トリジンジイソシアネート等の芳香族ジイソシアネートが挙げられる。これらの芳香族ポリイソシアネートのうち、硬化膜の機械的強度を高める観点から、トリレンジイソシアネート、及び4,4’-ジフェニルメタンジイソシアネートが好ましい。 Aromatic polyisocyanates are compounds having an aromatic structure and two or more isocyanate groups bonded thereto. Although the aromatic structure in the aromatic polyisocyanate is not particularly limited, a divalent aromatic group having 6 to 13 carbon atoms is preferred. Examples of such aromatic polyisocyanates include xylylene diisocyanate, 4,4′-diphenyl diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, m-phenylene diisocyanate, p-phenylene diisocyanate, 4,4'-diphenylmethane diisocyanate (4,4'-MDI), 2,4'-diphenylmethane diisocyanate (2,4'-MDI), 4,4'-diphenyldimethylmethane diisocyanate, 4,4'-dibenzyl diisocyanate , dialkyldiphenylmethane diisocyanate, tetraalkyldiphenylmethane diisocyanate, 1,5-naphthylene diisocyanate, 3,3′-dimethyl-4,4′-biphenylene diisocyanate, polymethylene polyphenyl isocyanate, phenylene diisocyanate, and m-tetramethylxylylene diisocyanate , tolidine diisocyanate and the like. Among these aromatic polyisocyanates, tolylene diisocyanate and 4,4'-diphenylmethane diisocyanate are preferred from the viewpoint of increasing the mechanical strength of the cured film.
(鎖延長剤)
 鎖延長剤は、主として、2個以上のヒドロキシル基を有する化合物(短鎖ポリオール)、2個以上のアミノ基を有する化合物(ポリアミン化合物)、水に分類される。この中で水については反応を安定に行うために、できるだけ低減することが好ましい。
(chain extender)
Chain extenders are mainly classified into compounds having two or more hydroxyl groups (short-chain polyols), compounds having two or more amino groups (polyamine compounds), and water. Among these, water is preferably reduced as much as possible in order to stably carry out the reaction.
 2個以上のヒドロキシル基を有する化合物としては、例えば、エチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、ジプロピレングリコール、トリプロピレングリコール、1,3-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、2,3-ブタンジオール、3-メチル-1,5-ペンタンジオール、ネオペンチルグリコール、2-メチル-1,3-プロパンジオール、2-メチル-2-プロピル-1,3-プロパンジオール、2-ブチル-2-エチル-1,3-プロパンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、2-メチル-2,4-ペンタンジオール、2,2,4-トリメチル-1,3-ペンタンジオール、2-エチル-1,3-ヘキサンジオール、2,5-ジメチル-2,5-ヘキサンジオール、2-ブチル-2-ヘキシル-1,3-プロパンジオール、1,8-オクタンジオール、2-メチル-1,8-オクタンジオール、1,9-ノナンジオール等の脂肪族グリコール、シクロヘキサンジオール、ビスヒドロキシメチルシクロヘキサン等の脂環族グリコール、キシリレングリコール、ビスヒドロキシエトキシベンゼン等の芳香環を有するグリコール、グリセリン、トリメチロールメタン、トリメチロールエタン、及びトリメチロールプロパンなどの3価アルコール;ペンタエリスリトール、ジペンタエリスリトールなど、4つ以上の水酸基を有するアルコール等が挙げられる。 Compounds having two or more hydroxyl groups include, for example, ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, dipropylene glycol, tripropylene glycol, 1,3-propanediol, 1,2-butanediol, 1, 3-butanediol, 1,4-butanediol, 2,3-butanediol, 3-methyl-1,5-pentanediol, neopentyl glycol, 2-methyl-1,3-propanediol, 2-methyl-2 -propyl-1,3-propanediol, 2-butyl-2-ethyl-1,3-propanediol, 1,5-pentanediol, 1,6-hexanediol, 2-methyl-2,4-pentanediol, 2,2,4-trimethyl-1,3-pentanediol, 2-ethyl-1,3-hexanediol, 2,5-dimethyl-2,5-hexanediol, 2-butyl-2-hexyl-1,3 -aliphatic glycols such as propanediol, 1,8-octanediol, 2-methyl-1,8-octanediol and 1,9-nonanediol; alicyclic glycols such as cyclohexanediol and bishydroxymethylcyclohexane; xylylene Glycols, glycols having aromatic rings such as bishydroxyethoxybenzene, trihydric alcohols such as glycerin, trimethylolmethane, trimethylolethane, and trimethylolpropane; alcohols having four or more hydroxyl groups such as pentaerythritol and dipentaerythritol etc.
 2個以上のアミノ基を有する化合物としては、例えば、2,4-もしくは2,6-トリレンジアミン、キシリレンジアミン、4,4’-ジフェニルメタンジアミン等の芳香族ジアミン、エチレンジアミン、1,2-プロピレンジアミン、1,6-ヘキサンジアミン、2,2-ジメチル-1,3-プロパンジアミン、2-メチル-1,5-ペンタンジアミン、1,3-ジアミノペンタン、2,2,4-もしくは2,4,4-トリメチルヘキサンジアミン、2-ブチル-2-エチル-1,5-ペンタンジアミン、1,8-オクタンジアミン、1,9-ノナンジアミン、1,10-デカンジアミン等の脂肪族ジアミン、1-アミノ-3-アミノメチル-3,5,5-トリメチルシクロヘキサン(IPDA)、4,4’-ジシクロヘキシルメタンジアミン(水添MDA)、イソプロピリデンシクロヘキシル-4,4’-ジアミン、1,4-ジアミノシクロヘキサン、1,3-ビスアミノメチルシクロヘキサン、トリシクロデカンジアミン等の脂環族ジアミン等が挙げられる。これらの鎖延長剤は1種を単独で使用しても2種以上を併用してもよい。 Examples of compounds having two or more amino groups include aromatic diamines such as 2,4- or 2,6-tolylenediamine, xylylenediamine, 4,4'-diphenylmethanediamine, ethylenediamine, 1,2- propylenediamine, 1,6-hexanediamine, 2,2-dimethyl-1,3-propanediamine, 2-methyl-1,5-pentanediamine, 1,3-diaminopentane, 2,2,4- or 2, Aliphatic diamines such as 4,4-trimethylhexanediamine, 2-butyl-2-ethyl-1,5-pentanediamine, 1,8-octanediamine, 1,9-nonanediamine, 1,10-decanediamine, 1- Amino-3-aminomethyl-3,5,5-trimethylcyclohexane (IPDA), 4,4'-dicyclohexylmethanediamine (hydrogenated MDA), isopropylidenecyclohexyl-4,4'-diamine, 1,4-diaminocyclohexane , 1,3-bisaminomethylcyclohexane, and alicyclic diamines such as tricyclodecanediamine. These chain extenders may be used alone or in combination of two or more.
(鎖停止剤)
 また、ウレタン樹脂の分子量を制御する目的で、必要に応じて、1個の活性水素基を有する鎖停止剤を使用することができる。このような鎖停止剤のうち、活性水素基として1個の水酸基を鎖停止剤としては、エタノール、プロパノール、ブタノール、ヘキサノール等の脂肪族モノオールが挙げられ、また、1個のアミノ基を有する鎖停止剤としては、ジエチルアミン、ジブチルアミン、モノエタノールアミン、ジエタノールアミン等の脂肪族モノアミンが挙げられる。これらの鎖停止剤は1種を単独で使用しても2種以上を併用してもよい。
(Chain terminating agent)
Moreover, for the purpose of controlling the molecular weight of the urethane resin, a chain terminating agent having one active hydrogen group can be used, if necessary. Among such chain terminators, aliphatic monools such as ethanol, propanol, butanol, hexanol, and the like, and one hydroxyl group as an active hydrogen group, and one amino group are included as chain terminators. Chain terminators include aliphatic monoamines such as diethylamine, dibutylamine, monoethanolamine, and diethanolamine. These chain terminators may be used alone or in combination of two or more.
(ウレタン樹脂の製造方法)
 前記ウレタン樹脂の製造方法としては特に制限はなく、一般的に実験的/工業的に用いられる公知の方法を採用することができる。具体的には、(1)ポリオール、ポリイソシアネート及び鎖延長剤を一緒に反応させる方法(一段法)や、(2)先ず、ポリオールとポリイソシアネートとを反応させて両末端がイソシアネート基のプレポリマーを調製した後、このプレポリマーと鎖延長剤を反応させる方法(二段法)が挙げられる。この二段法は、ポリオールを予め1当量以上のポリイソシアネートと反応させることにより、ウレタン樹脂のソフトセグメントに相当する両末端がイソシアネート基で封止された中間体(プレポリマー)を調製する工程を経る方法である。予めプレポリマーを調製した後に鎖延長剤と反応させることにより、ソフトセグメント部分の分子量を調整しやすく、ソフトセグメントとハードセグメントの相分離がしっかりとなされやすく、ウレタン樹脂としての性能を発揮しやすいという特徴がある。特に、鎖延長剤がジアミンの場合には、ポリオールの水酸基と比較して、イソシアネート基との反応速度が大きく異なるため、二段法(プレポリマー法)でポリウレタンウレア化を実施することがより好ましい。
(Method for producing urethane resin)
The method for producing the urethane resin is not particularly limited, and known methods generally used experimentally/industrially can be adopted. Specifically, (1) a method of reacting a polyol, a polyisocyanate and a chain extender together (one-step method), and (2) first, a polyol and a polyisocyanate are reacted to obtain a prepolymer having isocyanate groups at both ends. and then reacting this prepolymer with a chain extender (two-step method). This two-step method includes a step of reacting a polyol with one or more equivalents of polyisocyanate in advance to prepare an intermediate (prepolymer) in which both ends corresponding to the soft segments of the urethane resin are blocked with isocyanate groups. It is a way to go through. By preparing a prepolymer in advance and then reacting it with a chain extender, it is easy to adjust the molecular weight of the soft segment part, and the phase separation between the soft segment and the hard segment is easily achieved, and it is easy to demonstrate the performance as a urethane resin. Characteristic. In particular, when the chain extender is a diamine, the reaction rate with the isocyanate group is significantly different from that with the hydroxyl group of the polyol, so it is more preferable to carry out polyurethane urea formation by a two-step method (prepolymer method). .
(一段法)
 一段法とは、ワンショット法とも呼ばれ、ポリオール、ポリイソシアネート及び鎖延長剤を一緒に仕込むことにより反応を行う方法である。一段法における反応温度は、通常、0~250℃であるが、溶剤の量、使用原料の反応性、反応設備等により適宜設定することができる。反応温度が低すぎると、反応の進行が遅すぎたり、原料や重合物の溶解性が低くなるため、生産性が低下する傾向にあり、他方、高すぎると、副反応やウレタン樹脂の分解が起こる場合がある。また、反応は、減圧下で脱泡しながら行ってもよい。さらに、必要に応じて、触媒、安定剤等を添加してもよい。触媒としては、例えば、トリエチルアミン、トリブチルアミン、ジブチル錫ジラウレ-ト、オクチル酸第一錫、酢酸、燐酸、硫酸、塩酸、スルホン酸等が挙げられ、安定剤としては、例えば、2,6-ジブチル-4-メチルフェノール、ジステアリルチオジプロピオネ-ト、ジβ-ナフチルフェニレンジアミン、トリ(ジノニルフェニル)フォスファイト等が挙げられる。
(single stage method)
The one-step method, which is also called a one-shot method, is a method in which a polyol, a polyisocyanate and a chain extender are charged together to carry out the reaction. The reaction temperature in the one-step process is usually 0 to 250° C., but can be appropriately set depending on the amount of solvent, reactivity of raw materials used, reaction equipment and the like. If the reaction temperature is too low, the reaction progresses too slowly and the solubility of the raw materials and polymer tends to decrease, resulting in a decrease in productivity. It may happen. Also, the reaction may be carried out while defoaming under reduced pressure. Furthermore, catalysts, stabilizers and the like may be added as necessary. Examples of catalysts include triethylamine, tributylamine, dibutyltin dilaurate, stannous octoate, acetic acid, phosphoric acid, sulfuric acid, hydrochloric acid, sulfonic acid, etc. Stabilizers include, for example, 2,6-dibutyl -4-methylphenol, distearylthiodipropionate, diβ-naphthylphenylenediamine, tri(dinonylphenyl)phosphite and the like.
(二段法)
 二段法は、プレポリマー法ともよばれ、予めポリイソシアネートとポリオールとを、通常、反応当量比=1.0~10.00で反応させたプレポリマーを製造し、次いで、これにポリイソシアネート又は多価アルコール、アミン等の活性水素を有する化合物を加えることにより二段階で反応させる方法である。特に、ポリオールに対して当量以上のポリイソシアネートを反応させて両末端イソシアネート基含有プレポリマーを調製し、次いで、これに鎖延長剤である短鎖ジオールやジアミン等を作用させてウレタン樹脂を得る方法が有用である。
(two-step method)
The two-stage method is also called a prepolymer method, in which a prepolymer is produced by reacting a polyisocyanate and a polyol in advance, usually at a reaction equivalent ratio of 1.0 to 10.00, and then polyisocyanate or polyol is added thereto. It is a method of reacting in two stages by adding a compound having active hydrogen such as a hydric alcohol or an amine. In particular, a method of preparing a prepolymer containing isocyanate groups at both ends by reacting a polyisocyanate in an equivalent amount or more with a polyol, and then reacting the prepolymer with a chain extender such as a short-chain diol or diamine to obtain a urethane resin. is useful.
 二段法により製造する場合、(1)溶媒を使用せずに直接ポリイソシアネートとポリオールとを反応させてプレポリマーを合成し、そのまま鎖延長剤を作用させてもよいし、(2)前記(1)の方法でプレポリマーを合成し、次いで、プレポリマーを溶媒に溶解した後、鎖延長剤を作用させてもよいし、(3)ポリイソシアネートとポリオールとを溶媒中で反応させてプレポリマーを合成し、そのまま、溶媒中で鎖延長剤を作用させてもよい。また、前記(2)の方法においては、鎖延長剤を溶媒に溶解した後、プレポリマーに作用させてもよいし、プレポリマーを溶媒に溶解する際に同時に鎖延長剤も溶解してもよい。 In the case of production by a two-step method, (1) a prepolymer may be synthesized by directly reacting a polyisocyanate and a polyol without using a solvent, and a chain extender may act as it is, or (2) the above ( A prepolymer may be synthesized by the method of 1), then the prepolymer may be dissolved in a solvent and then treated with a chain extender, or (3) a polyisocyanate and a polyol may be reacted in a solvent to produce a prepolymer. may be synthesized and directly reacted with a chain extender in a solvent. In the method (2), the chain extender may be dissolved in the solvent and then acted on the prepolymer, or the chain extender may be dissolved at the same time as the prepolymer is dissolved in the solvent. .
 二段法における反応温度は、通常、0~250℃であるが、溶剤の量、使用原料の反応性、反応設備等により適宜設定することができる。反応温度が低すぎると、反応の進行が遅すぎたり、原料や重合物の溶解性が低くなるため、生産性が低下する傾向にあり、他方、高すぎると、副反応やウレタン樹脂の分解が起こる場合がある。また、反応は、減圧下で脱泡しながら行ってもよい。さらに、必要に応じて、触媒、安定剤等を添加してもよい。触媒としては、例えば、トリエチルアミン、トリブチルアミン、ジブチル錫ジラウレ-ト、オクチル酸第一錫、酢酸、燐酸、硫酸、塩酸、スルホン酸等が挙げられ、安定剤としては、例えば、2,6-ジブチル-4-メチルフェノール、ジステアリルチオジプロピオネ-ト、ジβ-ナフチルフェニレンジアミン、トリ(ジノニルフェニル)フォスファイト等が挙げられる。なお、鎖延長剤が短鎖脂肪族アミン等の反応性の高いものの場合には、触媒を添加せずに前記反応を実施することが好ましい。 The reaction temperature in the two-step method is usually 0 to 250°C, but can be appropriately set depending on the amount of solvent, the reactivity of the raw materials used, the reaction equipment, and the like. If the reaction temperature is too low, the reaction progresses too slowly and the solubility of the raw materials and polymer tends to decrease, resulting in a decrease in productivity. It may happen. Also, the reaction may be carried out while defoaming under reduced pressure. Furthermore, catalysts, stabilizers and the like may be added as necessary. Examples of catalysts include triethylamine, tributylamine, dibutyltin dilaurate, stannous octoate, acetic acid, phosphoric acid, sulfuric acid, hydrochloric acid, sulfonic acid, etc. Stabilizers include, for example, 2,6-dibutyl -4-methylphenol, distearylthiodipropionate, diβ-naphthylphenylenediamine, tri(dinonylphenyl)phosphite and the like. When the chain extender is highly reactive such as a short-chain aliphatic amine, it is preferable to carry out the reaction without adding a catalyst.
 このようなウレタン樹脂の製造方法(一段法及び二段法)においては、粘度の調整を目的に溶剤を使用することができる。溶剤は1種を単独で使用しても2種以上を併用してもよく、公知の溶剤のいずれも使用することができる。このような溶剤としては、ヘキサン、シクロヘキサン、メチルシクロヘキサン、エチルシクロヘキサン、ヘプタン、ノナン、オクタン、イソオクタン、デカン等の脂肪族系炭化水素溶媒;ベンゼン、トルエン、キシレン、クメン、エチルベンゼン等の芳香族系炭化水素;酢酸エチル、酢酸ブチル等のエステル系溶媒;ジエチルエーテル、ジイソプロピルエーテル、メチル-tert-ブチルエーテル等のエーテル系溶媒;シクロヘキサノン、メチルエチルケトン、ジメチルケトン、ジエチルケトン、ジイソプロピルケトン、メチルイソブチルケトン等のケトン系溶媒が挙げられる。これらの溶剤のうち、トルエン、キシレン、酢酸エチル、酢酸ブチル、シクロヘキサノン、メチルエチルケトン、及びメチルイソブチルケトンが好ましい。 In such urethane resin production methods (one-step method and two-step method), a solvent can be used for the purpose of adjusting the viscosity. Solvents may be used alone or in combination of two or more, and any known solvent can be used. Examples of such solvents include aliphatic hydrocarbon solvents such as hexane, cyclohexane, methylcyclohexane, ethylcyclohexane, heptane, nonane, octane, isooctane, and decane; aromatic hydrocarbon solvents such as benzene, toluene, xylene, cumene, and ethylbenzene; hydrogen; ester solvents such as ethyl acetate and butyl acetate; ether solvents such as diethyl ether, diisopropyl ether and methyl-tert-butyl ether; ketone solvents such as cyclohexanone, methyl ethyl ketone, dimethyl ketone, diethyl ketone, diisopropyl ketone and methyl isobutyl ketone Solvents may be mentioned. Among these solvents, toluene, xylene, ethyl acetate, butyl acetate, cyclohexanone, methyl ethyl ketone, and methyl isobutyl ketone are preferred.
(1-1-6)好ましい熱硬化性化合物
 抗菌・抗ウイルス剤組成物に含まれる熱硬化性化合物は、上記の熱硬化性化合物の中でも、水酸基、アミノ基、イミノ基のうちの少なくとも1種の官能基を有する熱硬化性化合物が好ましく、前記官能基を有するウレタン樹脂、前記官能基を有するアクリル樹脂、前記官能基を有するポリエステル樹脂、前記官能基を有するエチレン酢酸ビニル樹脂、前記官能基を有するスチレン-ブタジエンゴム、前記官能基を有するエポキシ樹脂がより好ましく、水酸基を有するウレタン樹脂、水酸基を有するアクリル樹脂、水酸基を有するポリエステル樹脂、水酸基を有するエチレン酢酸ビニル樹脂、水酸基を有するスチレン-ブタジエンゴム、水酸基を有するエポキシ樹脂が更に好ましく、水酸基を有するウレタン樹脂、水酸基を有するアクリル樹脂、水酸基を有するポリエステル樹脂、水酸基を有するエポキシ樹脂が特に好ましい。また、このような官能基を有する熱硬化性化合物の硬化剤としては、ポリイソシアネート単量体、ポリイソシアネート変性体、エポキシ化合物、メラミン化合物、オキサゾリン化合物等が挙げられる。
(1-1-6) Preferred thermosetting compound Among the above thermosetting compounds, the thermosetting compound contained in the antibacterial/antiviral agent composition is at least one of a hydroxyl group, an amino group, and an imino group. A thermosetting compound having a functional group is preferable, and the urethane resin having the functional group, the acrylic resin having the functional group, the polyester resin having the functional group, the ethylene vinyl acetate resin having the functional group, the functional group styrene-butadiene rubber having a functional group, epoxy resin having the above functional group is more preferable, urethane resin having a hydroxyl group, acrylic resin having a hydroxyl group, polyester resin having a hydroxyl group, ethylene vinyl acetate resin having a hydroxyl group, styrene-butadiene rubber having a hydroxyl group , hydroxyl group-containing epoxy resins are more preferred, and hydroxyl group-containing urethane resins, hydroxyl group-containing acrylic resins, hydroxyl group-containing polyester resins, and hydroxyl group-containing epoxy resins are particularly preferred. Curing agents for thermosetting compounds having such functional groups include polyisocyanate monomers, modified polyisocyanates, epoxy compounds, melamine compounds, and oxazoline compounds.
 水酸基を有する熱硬化性化合物の市販品としては、例えば、東レ・ファインケミカル株式会社製アクリル樹脂(商品名「コータックスLH-601」、「コータックスLH-591」)、三井化学株式会社製アクリル樹脂(商品名「アルマテックス646」、「アルマテックス646SB」、「オレスターQ810」、「オレスターQ519」)、DIC株式会社製アクリル樹脂(商品名「アクリディックA-811」)、DIC株式会社製ポリエステル樹脂(商品名「バーノックD-161」)、和信化学工業株式会社製ウレタン樹脂(商品名「ポリウレックスエコV-HK500クリヤーP液(主剤)」)等が挙げられる。 Commercial products of thermosetting compounds having a hydroxyl group include, for example, acrylic resins manufactured by Toray Fine Chemicals Co., Ltd. (trade names “Kotax LH-601” and “Kotax LH-591”), acrylic resins manufactured by Mitsui Chemicals, Inc. (trade names “Almatex 646”, “Almatex 646SB”, “Orester Q810”, “Orester Q519”), acrylic resin manufactured by DIC Corporation (trade name “Acrydic A-811”), manufactured by DIC Corporation Examples include polyester resin (trade name “Barnock D-161”), urethane resin (trade name “Polyurex Eco V-HK500 Clear P liquid (main agent)”) manufactured by Wasin Chemical Industry Co., Ltd., and the like.
(1-1-7)熱硬化性化合物の硬化剤
 前記官能基を有する熱硬化性化合物の硬化剤としては、イソシアネート系硬化剤、エポキシ系硬化剤、メラミン系硬化剤、オキサゾリン系硬化剤が挙げられる。
(1-1-7) Curing Agent for Thermosetting Compound Examples of the curing agent for the thermosetting compound having a functional group include isocyanate curing agents, epoxy curing agents, melamine curing agents, and oxazoline curing agents. be done.
 前記イソシアネート系硬化剤は1分子中に2個以上のイソシアネート基を有するポリイソシアネートである。このようなイソシアネート系硬化剤としては、例えば、前記ウレタン樹脂の原料として例示したポリイソシアネートの単量体及び変性体が挙げられ、中でも、脂肪族ポリイソシアネート及びその多量体が好ましい。これらのポリイソシアネートは1種を単独で使用しても2種以上を併用してもよい。 The isocyanate-based curing agent is a polyisocyanate having two or more isocyanate groups in one molecule. Examples of such isocyanate-based curing agents include monomers and modified polyisocyanates exemplified as raw materials for the urethane resin, and among them, aliphatic polyisocyanates and polymers thereof are preferred. These polyisocyanates may be used alone or in combination of two or more.
 前記エポキシ系硬化剤は1分子中に2個以上のグリシジル基を有する架橋可能なエポキシ化合物である。このようなエポキシ系硬化剤としては、前記エポキシ化合物として例示したものが挙げられ、中でも、ビスフェノールA型液状エポキシ樹脂、脂環式エポキシ化合物、トリメチロールプロパンポリグリシジルエーテルが好ましい。 The epoxy-based curing agent is a crosslinkable epoxy compound having two or more glycidyl groups in one molecule. Examples of such an epoxy-based curing agent include those exemplified as the epoxy compounds. Among them, bisphenol A type liquid epoxy resin, alicyclic epoxy compound, and trimethylolpropane polyglycidyl ether are preferable.
 前記ビスフェノールA型液状エポキシ樹脂としては、常温で液状である樹脂であれば特に制限されず、市販品を用いてもよい。このような市販品としては、例えば、EPICLON840、840-S、850、850-S、EXA-850CRP、850-LC(商品名、DIC株式会社製)、jER828EL、827(商品名、三菱ケミカル株式会社製)、エポミックR-140P(商品名、三井化学株式会社製)が挙げられる。 The bisphenol A liquid epoxy resin is not particularly limited as long as it is liquid at room temperature, and commercially available products may be used. Examples of such commercial products include EPICLON840, 840-S, 850, 850-S, EXA-850CRP, 850-LC (trade name, manufactured by DIC Corporation), jER828EL, 827 (trade name, Mitsubishi Chemical Corporation (manufactured by Mitsui Chemicals, Inc.) and Epomic R-140P (trade name, manufactured by Mitsui Chemicals, Inc.).
 前記脂環式エポキシ化合物は、エポキシシクロアルキル基又はエポキシシクロアルケニル基を分子内に2個以上有する化合物、或いは、少なくとも1個のエポキシ基が脂環に単結合で結合した基を分子内に2個以上有する化合物である。このような脂環式エポキシ化合物としては、例えば、3,4-エポキシシクロヘキセニルメチル-3',4'-エポキシシクロヘキセンカルボキシレート、3',4'-エポキシシクロヘキシルメチル-3,4-エポキシシクロヘキサンカルボキシレート、3,4-エポキシシクロヘキシルオクチル-3,4-エポキシシクロヘキサンカルボキシレート、2-(3,4-エポキシシクロヘキシル-5,5-スピロ-3,4-エポキシ)シクロヘキサン-m-ジオキサン、ビス(3,4-エポキシシクロヘキシルメチル)アジペート、ビニルシクロヘキセンジオキサイド、ビス(3,4-エポキシ-6-メチルシクロヘキシルメチル)アジペート、3,4-エポキシ-6-メチルシクロヘキシル-3,4-エポキシ-6-メチルシクロヘキサンカルボキシレート、メチレンビス(3,4-エポキシシクロヘキサン)、ジシクロペンタジエンジエポキサイド、エチレングリコールジ(3,4-エポキシシクロヘキシルメチル)エーテル、エチレンビス(3,4-エポキシシクロヘキサンカルボキシレート)、1,2,8,9-ジエポキシリモネン、2,2-ビス(ヒドロキシメチル)-1-ブタノールの1,2-エポキシ-4-(2-オキシラニル)シクロヘキサン付加物、特開2008-214555号公報に記載の化合物が挙げられる。また、前記脂環式エポキシ化合物としては、セロキサイド2021P、EHPE3150、EHPE3150CE、エポリードGT401(商品名、株式会社ダイセル製)等の市販品を用いてもよい。これらの脂環式エポキシ化合物の中でも、部材に対する硬化膜の接着性が向上するという観点から、2,2-ビス(ヒドロキシメチル)-1-ブタノールの1,2-エポキシ-4-(2-オキシラニル)シクロヘキサン付加物が好ましい。 The alicyclic epoxy compound is a compound having two or more epoxycycloalkyl groups or epoxycycloalkenyl groups in the molecule, or two groups in which at least one epoxy group is bonded to an alicyclic ring by a single bond. It is a compound having one or more. Examples of such alicyclic epoxy compounds include 3,4-epoxycyclohexenylmethyl-3′,4′-epoxycyclohexenecarboxylate, 3′,4′-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate, 3,4-epoxycyclohexyloctyl-3,4-epoxycyclohexanecarboxylate, 2-(3,4-epoxycyclohexyl-5,5-spiro-3,4-epoxy)cyclohexane-m-dioxane, bis(3 ,4-epoxycyclohexylmethyl)adipate, vinylcyclohexene dioxide, bis(3,4-epoxy-6-methylcyclohexylmethyl)adipate, 3,4-epoxy-6-methylcyclohexyl-3,4-epoxy-6-methyl Cyclohexane carboxylate, methylenebis(3,4-epoxycyclohexane), dicyclopentadiene diepoxide, ethylene glycol di(3,4-epoxycyclohexylmethyl)ether, ethylenebis(3,4-epoxycyclohexanecarboxylate), 1,2 ,8,9-diepoxylimonene, 1,2-epoxy-4-(2-oxiranyl)cyclohexane adduct of 2,2-bis(hydroxymethyl)-1-butanol, described in JP-A-2008-214555 compound. As the alicyclic epoxy compound, commercial products such as Celoxide 2021P, EHPE3150, EHPE3150CE, Epolead GT401 (trade name, manufactured by Daicel Corporation) may be used. Among these alicyclic epoxy compounds, 1,2-epoxy-4-(2-oxiranyl of 2,2-bis(hydroxymethyl)-1-butanol is preferred from the viewpoint of improving the adhesiveness of the cured film to members. ) cyclohexane adducts are preferred.
 前記トリメチロールプロパンポリグリシジルエーテルとしては、例えば、トリメチロールプロパンジグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、及びこれらの混合物が挙げられる。また、前記トリメチロールプロパンポリグリシジルエーテルとしては、EX-321L(商品名、ナガセケムテックス株式会社製)等の市販品を用いてもよい。 Examples of the trimethylolpropane polyglycidyl ether include trimethylolpropane diglycidyl ether, trimethylolpropane triglycidyl ether, and mixtures thereof. As the trimethylolpropane polyglycidyl ether, a commercial product such as EX-321L (trade name, manufactured by Nagase ChemteX Corporation) may be used.
 前記メラミン系硬化剤はメラミン又はその誘導体である。このようなメラミン系硬化剤としては、例えば、前記メラミン化合物として例示したものが挙げられる。 The melamine-based curing agent is melamine or its derivative. Examples of such melamine curing agents include those exemplified as the melamine compounds.
 前記オキサゾリン系硬化剤は、1分子中に2個以上のオキサゾリン基を有する架橋可能なオキサゾリン化合物である。このようなオキサゾリン系硬化剤としては、例えば、オキサゾリン基含有モノマーの重合体、オキサゾリン基含有モノマーと他のモノマーとの共重合体等のオキサゾリン基含有ポリマーが挙げられる。また、前記オキサゾリン系硬化剤としては、「エポクロス」シリーズ(商品名、日本触媒株式会社製)等の市販品を用いてもよい。 The oxazoline-based curing agent is a crosslinkable oxazoline compound having two or more oxazoline groups in one molecule. Examples of such oxazoline curing agents include oxazoline group-containing polymers such as polymers of oxazoline group-containing monomers and copolymers of oxazoline group-containing monomers and other monomers. As the oxazoline-based curing agent, commercially available products such as "Epocross" series (trade name, manufactured by Nippon Shokubai Co., Ltd.) may be used.
 前記オキサゾリン基含有モノマーとしては、例えば、2-ビニル-2-オキサゾリン、2-ビニル-4-メチル-2-オキサゾリン、2-ビニル-5-メチル-2-オキサゾリン、2-イソプロペニル-2-オキサゾリン、2-イソプロペニル-4-メチル-2-オキサゾリン、2-イソプロペニル-5-エチル-2-オキサゾリン、2-イソプロペニル-2-オキサゾリン、2-イソプロペニル-4,4-ジメチル-2-オキサゾリンが挙げられる。これらのオキサゾリン基含有モノマー1種を単独で使用しても2種以上を併用してもよい。 Examples of the oxazoline group-containing monomer include 2-vinyl-2-oxazoline, 2-vinyl-4-methyl-2-oxazoline, 2-vinyl-5-methyl-2-oxazoline, and 2-isopropenyl-2-oxazoline. , 2-isopropenyl-4-methyl-2-oxazoline, 2-isopropenyl-5-ethyl-2-oxazoline, 2-isopropenyl-2-oxazoline, 2-isopropenyl-4,4-dimethyl-2-oxazoline are mentioned. One of these oxazoline group-containing monomers may be used alone, or two or more may be used in combination.
 前記他のモノマーとしては、例えば、アルキル(メタ)アクリレート(アルキル基の炭素数1~14程度);アクリル酸、メタクリル酸、イタコン酸、マレイン酸、フマル酸、クロトン酸、スチレンスルホン酸及びその塩(ナトリウム塩、カリウム塩、アンモニウム塩、第三級アミン塩等)等の不飽和カルボン酸類;アクリロニトリル、メタクリロニトリル等の不飽和ニトリル類;(メタ)アクリルアミド、N-アルキル(メタ)アクリルアミド、N,N-ジアルキル(メタ)アクリルアミド、(アルキル基:メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基、2-エチルヘキシル基、シクロヘキシル基等)等の不飽和アミド類;酢酸ビニル、プロピオン酸ビニル等のビニルエステル類;メチルビニルエーテル、エチルビニルエーテル等のビニルエーテル類;エチレン、プロピレン等のα-オレフィン類;塩化ビニル、塩化ビニリデン、フッ化ビニル等の含ハロゲンα,β-不飽和モノマー類;スチレン、α-メチルスチレン等のα,β-不飽和芳香族モノマーが挙げられる。これらは1種を単独で使用しても2種以上を併用してもよい。 Examples of the other monomers include alkyl (meth)acrylates (alkyl group having about 1 to 14 carbon atoms); acrylic acid, methacrylic acid, itaconic acid, maleic acid, fumaric acid, crotonic acid, styrenesulfonic acid and salts thereof. Unsaturated carboxylic acids such as (sodium salts, potassium salts, ammonium salts, tertiary amine salts, etc.); unsaturated nitriles such as acrylonitrile and methacrylonitrile; , N-dialkyl (meth)acrylamide, (alkyl group: methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, t-butyl group, 2-ethylhexyl group, cyclohexyl group, etc.), etc. vinyl esters such as vinyl acetate and vinyl propionate; vinyl ethers such as methyl vinyl ether and ethyl vinyl ether; α-olefins such as ethylene and propylene; Halogen α,β-unsaturated monomers; α,β-unsaturated aromatic monomers such as styrene and α-methylstyrene. These may be used individually by 1 type, or may use 2 or more types together.
(1-2)活性エネルギー線硬化成分
 活性エネルギー線硬化成分は、ラジカル重合性の炭素-炭素二重結合を有する化合物を含有するものであり、紫外線等の活性エネルギー線により短時間で重合し硬化する特性を持つものである。このようなラジカル重合性の炭素-炭素二重結合を有する化合物としては、3次元的網目構造を形成しやすいという観点から、ラジカル重合性の炭素-炭素二重結合を1分子内に2つ以上有する化合物であることが好ましい。
(1-2) Active energy ray-curable component The active energy ray-curable component contains a compound having a radically polymerizable carbon-carbon double bond, and is polymerized and cured in a short time by an active energy ray such as ultraviolet rays. It has the characteristic of Such a compound having a radically polymerizable carbon-carbon double bond has two or more radically polymerizable carbon-carbon double bonds in one molecule from the viewpoint of facilitating the formation of a three-dimensional network structure. It is preferably a compound having
 前記ラジカル重合性の炭素-炭素二重結合を有する化合物としては、例えば、ポリオール、ポリイソシアネート、及びヒドロキシアルキル(メタ)アクリレートを含む原料の反応物であるポリウレタン(メタ)アクリレート系オリゴマー;活性エネルギー線反応性モノマー;ポリエーテル、ポリエステル、ポリカーボネート、ポリ(メタ)アクリレート、ポリブタジエン又はブタジエン-アクリロニトリル共重合体であってアクリル基を有する化合物;ポリエーテル、ポリエステル、ポリカーボネート、ポリ(メタ)アクリレート、ポリブタジエン又はブタジエン-アクリロニトリル共重合体であってアリル基を有する化合物;マレイミド基を有する化合物等が挙げられる。 Examples of the compound having a radically polymerizable carbon-carbon double bond include, for example, polyol, polyisocyanate, and polyurethane (meth)acrylate-based oligomer which is a reaction product of raw materials containing hydroxyalkyl (meth)acrylate; Reactive monomer; polyether, polyester, polycarbonate, poly(meth)acrylate, polybutadiene or butadiene-acrylonitrile copolymer compound having an acrylic group; polyether, polyester, polycarbonate, poly(meth)acrylate, polybutadiene or butadiene - A compound that is an acrylonitrile copolymer and has an allyl group; a compound that has a maleimide group;
(1-2-1)ポリウレタン(メタ)アクリレート系オリゴマー
 ポリウレタン(メタ)アクリレート系オリゴマーは、ポリオール、ポリイソシアネート、及びヒドロキシアルキル(メタ)アクリレートを含む原料の反応物である。このようなポリウレタン(メタ)アクリレート系オリゴマーは1種を単独で使用しても2種以上を併用してもよい。以下に、ポリウレタン(メタ)アクリレート系オリゴマーの原料の各成分について説明する。
(1-2-1) Polyurethane (meth)acrylate Oligomer Polyurethane (meth)acrylate oligomer is a reaction product of raw materials including polyol, polyisocyanate, and hydroxyalkyl (meth)acrylate. Such polyurethane (meth)acrylate oligomers may be used alone or in combination of two or more. Each component of the raw material for the polyurethane (meth)acrylate oligomer will be described below.
(ポリオール)
 ポリオールは、熱硬化成分としてのウレタン樹脂において用いられるものとして例示したポリオールの中から適宜選択して使用されればよい。好ましいポリオールについても、上記と同様であってよい。
(polyol)
The polyol may be appropriately selected and used from among the polyols exemplified as those used in the urethane resin as the thermosetting component. Preferred polyols may also be the same as above.
(ポリイソシアネート)
 ポリイソシアネートは、熱硬化成分としてのウレタン樹脂において用いられるものとして例示したポリイソシアネートの中から適宜選択して使用されればよい。好ましいポリイソシアネートについても、上記と同様であってよい
(polyisocyanate)
The polyisocyanate may be appropriately selected and used from the polyisocyanates exemplified as those used in the urethane resin as the thermosetting component. Preferred polyisocyanates may also be the same as above
(ヒドロキシアルキル(メタ)アクリレート)
 ヒドロキシアルキル(メタ)アクリレートは、1個以上の水酸基と1個以上の(メタ)アクリロイル基と炭素数1~30の炭化水素基とを有する化合物である。ヒドロキシアルキル(メタ)アクリレートは1種を単独で使用しても2種以上を併用してもよい。
(Hydroxyalkyl (meth)acrylate)
A hydroxyalkyl (meth)acrylate is a compound having one or more hydroxyl groups, one or more (meth)acryloyl groups and a hydrocarbon group having 1 to 30 carbon atoms. Hydroxyalkyl (meth)acrylates may be used alone or in combination of two or more.
 前記ヒドロキシアルキル(メタ)アクリレートとしては、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、6-ヒドロキシヘキシル(メタ)アクリレート、シクロヘキサンジメタノールモノ(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレートとカプロラクトンとの付加反応物、4-ヒドロキシブチル(メタ)アクリレートとカプロラクトンとの付加反応物、グリシジルエーテルと(メタ)アクリル酸との付加反応物、グリコールのモノ(メタ)アクリレート体、ペンタエリスリトールトリ(メタ)アクリレート、及びジペンタエリスリトールペンタ(メタ)アクリレートが挙げられる。これらの中でも、得られる硬化膜の機械的強度の観点から、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート等の(メタ)アクリロイル基と水酸基との間に炭素数が2~4のアルキレン基を有するヒドロキシアルキル(メタ)アクリレートが特に好ましい。 Examples of the hydroxyalkyl (meth)acrylates include 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate, 6-hydroxyhexyl (meth)acrylate, cyclohexanedi Methanol mono(meth)acrylate, addition reaction product of 2-hydroxyethyl (meth)acrylate and caprolactone, addition reaction product of 4-hydroxybutyl (meth)acrylate and caprolactone, addition of glycidyl ether and (meth)acrylic acid Examples include reactants, mono(meth)acrylate forms of glycol, pentaerythritol tri(meth)acrylate, and dipentaerythritol penta(meth)acrylate. Among these, from the viewpoint of the mechanical strength of the resulting cured film, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate and the like (meth) acryloyl groups and A hydroxyalkyl (meth)acrylate having an alkylene group having 2 to 4 carbon atoms between the hydroxyl group is particularly preferred.
(その他の成分)
 上記のポリウレタン(メタ)アクリレート系オリゴマーは、その原料に、他の成分を更に含有していてもよい。このような他の成分としては、例えば、鎖延長剤が挙げられる。鎖延長剤は、熱硬化成分としてのウレタン樹脂にて用いられるものとして例示した鎖延長剤の中から適宜選択して使用されればよい。
(other ingredients)
The above polyurethane (meth)acrylate oligomer may further contain other components in its starting material. Such other components include, for example, chain extenders. The chain extender may be appropriately selected from the chain extenders exemplified as those used in the urethane resin as the thermosetting component.
 ポリウレタン(メタ)アクリレート系オリゴマーにおける全イソシアネート基の量と水酸基及びアミノ基等のイソシアネート基と反応する全官能基の量は、通常、理論的に当モルであり、モル%で表される。 The amount of all isocyanate groups in the polyurethane (meth)acrylate oligomer and the amount of all functional groups that react with isocyanate groups such as hydroxyl groups and amino groups are usually theoretically equimolar and expressed in mol%.
 すなわち、前記ポリウレタン(メタ)アクリレート系オリゴマーにおける前記ポリイソシアネート、ポリオール、ヒドロキシアルキル(メタ)アクリレート、及びその他の原料化合物の使用量は、ポリウレタン(メタ)アクリレート系オリゴマーにおける全イソシアネート基の量とそれと反応する全官能基の量とが当モル、又はイソシアネート基に対する官能基のモル%で50モル%以上200モル%以下になる量である。 That is, the amounts of the polyisocyanate, polyol, hydroxyalkyl (meth)acrylate, and other raw material compounds used in the polyurethane (meth)acrylate-based oligomer are determined by the total amount of isocyanate groups in the polyurethane (meth)acrylate-based oligomer and the reaction therewith. The amount of all the functional groups is an equimolar amount, or an amount that is 50 mol % or more and 200 mol % or less in terms of mol % of the functional groups to the isocyanate group.
 ポリウレタン(メタ)アクリレート系オリゴマーを製造するときは、ヒドロキシアルキル(メタ)アクリレートの使用量を、ヒドロキシアルキル(メタ)アクリレート、2個以上の水酸基を有するポリオール化合物、及び鎖延長剤等のイソシアネートと反応する官能基を含む化合物の総使用量に対して、通常10モル%以上(好ましくは15モル%以上、更に好ましくは25モル%以上)、また、通常70モル%以下(好ましくは50モル%以下)とする。この割合に応じて、得られるポリウレタン(メタ)アクリレート系オリゴマーの分子量を制御することができる。ヒドロキシアルキル(メタ)アクリレートの割合が多くなるにつれて、ポリウレタン(メタ)アクリレート系オリゴマーの分子量は小さくなる傾向となり、割合が少なくなるにつれて、分子量は大きくなる傾向となる。 When producing a polyurethane (meth)acrylate-based oligomer, the amount of hydroxyalkyl (meth)acrylate used is reacted with a hydroxyalkyl (meth)acrylate, a polyol compound having two or more hydroxyl groups, and an isocyanate such as a chain extender. Usually 10 mol% or more (preferably 15 mol% or more, more preferably 25 mol% or more), and usually 70 mol% or less (preferably 50 mol% or less), relative to the total amount of the compound containing a functional group to be used ). The molecular weight of the resulting polyurethane (meth)acrylate oligomer can be controlled according to this ratio. As the proportion of hydroxyalkyl (meth)acrylate increases, the molecular weight of the polyurethane (meth)acrylate oligomer tends to decrease, and as the proportion decreases, the molecular weight tends to increase.
 ポリウレタン(メタ)アクリレート系オリゴマーが鎖延長剤を含む反応物の場合には、ポリオールと鎖延長剤とを合わせた化合物の総使用量に対するポリオールの使用量としては、液安定性が向上するという観点から、70モル%以上が好ましく、80モル%以上がより好ましく、90モル%以上が更に好ましく、95モル%以上が特に好ましい。 In the case where the polyurethane (meth)acrylate-based oligomer contains a chain extender, the amount of the polyol used relative to the total amount of the compound including the polyol and the chain extender improves the liquid stability. Therefore, it is preferably 70 mol % or more, more preferably 80 mol % or more, still more preferably 90 mol % or more, and particularly preferably 95 mol % or more.
(ポリウレタン(メタ)アクリレート系オリゴマーの製造方法)
 ポリウレタン(メタ)アクリレート系オリゴマーは、前記ポリイソシアネートに、前記ポリオールと前記ヒドロキシアルキル(メタ)アクリレートを付加反応させることにより製造することができる。ここで、前記鎖延長剤等を原料に併用する場合、ポリウレタン(メタ)アクリレート系オリゴマーは、前記ポリイソシアネートに、前述のそれ以外の他の原料化合物を付加反応させることにより製造することができる。これらの付加反応は、公知の何れの方法でも行うことができる。このような方法としては、例えば、以下の(i)~(iii)の方法が挙げられる。
(i)前記ヒドロキシアルキル(メタ)アクリレート以外の成分を、イソシアネート基が過剰となるような条件下で反応させたイソシアネート末端ウレタンプレポリマーを得た後、このイソシアネート末端ウレタンプレポリマーと前記ヒドロキシアルキル(メタ)アクリレートとを反応させるプレポリマー法。
(ii)全成分を同時に一括添加して反応させるワンショット法。
(iii)前記ポリイソシアネートと前記ヒドロキシアルキル(メタ)アクリレートとを先に反応させ、分子中に(メタ)アクリロイル基とイソシアネート基とを同時に有するウレタン(メタ)アクリレートプレポリマーを合成した後、得られたプレポリマーに、それら以外の原料成分を反応させる方法。
(Method for producing polyurethane (meth)acrylate oligomer)
The polyurethane (meth)acrylate-based oligomer can be produced by subjecting the polyisocyanate to addition reaction of the polyol and the hydroxyalkyl (meth)acrylate. Here, when the chain extender and the like are used together as raw materials, the polyurethane (meth)acrylate oligomer can be produced by subjecting the polyisocyanate to an addition reaction with the other raw material compounds described above. These addition reactions can be carried out by any known method. Examples of such methods include the following methods (i) to (iii).
(i) After obtaining an isocyanate-terminated urethane prepolymer by reacting a component other than the hydroxyalkyl (meth)acrylate under conditions such that the isocyanate groups are excessive, the isocyanate-terminated urethane prepolymer and the hydroxyalkyl ( A prepolymer method in which meth)acrylate is reacted.
(ii) A one-shot method in which all components are simultaneously added together and reacted.
(iii) the polyisocyanate and the hydroxyalkyl (meth)acrylate are first reacted to synthesize a urethane (meth)acrylate prepolymer having both a (meth)acryloyl group and an isocyanate group in the molecule; A method of reacting the prepolymer with other raw material components.
 これらのうち、(i)の方法によれば、前記ウレタンプレポリマーが前記ポリイソシアネートと前記ポリオールとをウレタン化反応させてなり、前記ポリウレタン(メタ)アクリレート系オリゴマーは、末端にイソシアネート基を有するウレタンプレポリマーと前記ヒドロキシアルキル(メタ)アクリレートとをウレタン化反応させてなる構造を有することから、分子量が制御可能で両末端にアクリロイル基が導入可能である。このような観点から、(i)の方法が好ましい。 Among these, according to the method (i), the urethane prepolymer is formed by the urethanization reaction of the polyisocyanate and the polyol, and the polyurethane (meth)acrylate oligomer is a urethane compound having an isocyanate group at its end. Since it has a structure obtained by urethanizing the prepolymer and the hydroxyalkyl (meth)acrylate, the molecular weight can be controlled and acryloyl groups can be introduced at both ends. From such a point of view, the method (i) is preferable.
 ポリウレタン(メタ)アクリレート系オリゴマーの製造時において、粘度の調整を目的に溶剤を使用することができる。溶剤は1種を単独で使用しても2種以上を併用してもよく、公知の溶剤のいずれも使用することができる。このような溶剤としては、ヘキサン、シクロヘキサン、メチルシクロヘキサン、エチルシクロヘキサン、ヘプタン、ノナン、オクタン、イソオクタン、デカン等の脂肪族系炭化水素溶媒;ベンゼン、トルエン、キシレン、クメン、エチルベンゼン等の芳香族系炭化水素;酢酸エチル、酢酸ブチル等のエステル系溶媒;ジエチルエーテル、ジイソプロピルエーテル、メチル-tert-ブチルエーテル等のエーテル系溶媒;シクロヘキサノン、メチルエチルケトン、ジメチルケトン、ジエチルケトン、ジイソプロピルケトン、メチルイソブチルケトン等のケトン系溶媒が挙げられる。これらの溶剤のうち、トルエン、キシレン、酢酸エチル、酢酸ブチル、シクロヘキサノン、メチルエチルケトン、及びメチルイソブチルケトンが好ましい。溶剤は、通常、活性エネルギー線硬化性重合体組成物100質量部に対して300質量部以下で使用可能である。 A solvent can be used to adjust the viscosity during the production of the polyurethane (meth)acrylate oligomer. Solvents may be used alone or in combination of two or more, and any known solvent can be used. Examples of such solvents include aliphatic hydrocarbon solvents such as hexane, cyclohexane, methylcyclohexane, ethylcyclohexane, heptane, nonane, octane, isooctane, and decane; aromatic hydrocarbon solvents such as benzene, toluene, xylene, cumene, and ethylbenzene; hydrogen; ester solvents such as ethyl acetate and butyl acetate; ether solvents such as diethyl ether, diisopropyl ether and methyl-tert-butyl ether; ketone solvents such as cyclohexanone, methyl ethyl ketone, dimethyl ketone, diethyl ketone, diisopropyl ketone and methyl isobutyl ketone Solvents may be mentioned. Among these solvents, toluene, xylene, ethyl acetate, butyl acetate, cyclohexanone, methyl ethyl ketone, and methyl isobutyl ketone are preferred. The solvent can usually be used in an amount of 300 parts by mass or less per 100 parts by mass of the active energy ray-curable polymer composition.
 ポリウレタン(メタ)アクリレート系オリゴマーの製造時においては、反応速度が高くなり、製造効率が向上するという観点から、反応温度は通常20℃以上(好ましくは40℃以上、より好ましくは60℃以上)である。また、アロハナート化反応等の副反応が起きにくくなるという観点から、反応温度は通常120℃以下(好ましくは100℃以下)である。また、反応液に溶剤が入っている場合にはその溶媒の沸点以下が好ましく、(メタ)アクリレートが入っている場合には(メタ)アクリロイル基の反応防止の観点から70℃以下が好ましい。反応時間は通常5~20時間程度である。 When producing a polyurethane (meth)acrylate oligomer, the reaction temperature is usually 20° C. or higher (preferably 40° C. or higher, more preferably 60° C. or higher) from the viewpoint of increasing the reaction rate and improving the production efficiency. be. Moreover, the reaction temperature is usually 120° C. or lower (preferably 100° C. or lower) from the viewpoint that side reactions such as allophanate-forming reactions are unlikely to occur. When the reaction liquid contains a solvent, the temperature is preferably below the boiling point of the solvent, and when (meth)acrylate is contained, the temperature is preferably 70°C or less from the viewpoint of preventing the reaction of the (meth)acryloyl group. The reaction time is usually about 5 to 20 hours.
 ポリウレタン(メタ)アクリレート系オリゴマーの製造時における付加反応触媒としては、本発明の効果が得られる範囲から選ぶことができ、例えば、ジブチルスズラウレート、ジブチルスズジオクトエート、ジオクチルスズジラウレート、ジオクチルスズジオクトエート、ビスマストリス(2-エチルヘキサノアート)、ジイソプロポキシチタンビス(アセチルアセトナート)、チタンテトラ(アセチルアセトナート)、ジオクタノキシチタンジオクタネート、ジイソプロポキシチタンビス(エチルアセトアセテート)等に代表される公知のウレタン重合触媒が挙げられる。付加反応触媒は1種を単独で使用しても2種以上を併用してもよい。これらの付加反応触媒のうち、環境適応性、触媒活性及び保存安定性の観点から、ビスマストリス(2-エチルヘキサノアート)が好ましい。 The addition reaction catalyst used in the production of the polyurethane (meth)acrylate oligomer can be selected from the range in which the effect of the present invention can be obtained. ate, bisma tris(2-ethylhexanoate), diisopropoxytitanium bis(acetylacetonate), titanium tetra(acetylacetonate), dioctanoxytitanium dioctanate, diisopropoxytitanium bis(ethylacetoacetate), etc. and known urethane polymerization catalysts represented by The addition reaction catalyst may be used alone or in combination of two or more. Among these addition reaction catalysts, bismath tris(2-ethylhexanoate) is preferred from the viewpoint of environmental adaptability, catalytic activity and storage stability.
 ポリウレタン(メタ)アクリレート系オリゴマーの製造時に、反応液に(メタ)アクリロイル基が入っている場合には、重合禁止剤を併用することができる。このような重合禁止剤としては、例えば、ハイドロキノン、ハイドロキノンモノエチルエーテル、ジブチルヒドロキシトルエン等のフェノール類、フェノチアジン、ジフェニルアミン等のアミン類、ジブチルジチオカルバミン酸、銅等の銅塩、酢酸マンガン等のマンガン塩、ニトロ化合物、ニトロソ化合物等が挙げられる。重合禁止剤は1種を単独で使用しても2種以上を併用してもよい。これらの重合禁止剤のうち、フェノール類が好ましい。 When producing a polyurethane (meth)acrylate oligomer, if the reaction solution contains (meth)acryloyl groups, a polymerization inhibitor can be used in combination. Examples of such polymerization inhibitors include phenols such as hydroquinone, hydroquinone monoethyl ether, and dibutylhydroxytoluene; amines such as phenothiazine and diphenylamine; dibutyldithiocarbamic acid; copper salts such as copper; and manganese salts such as manganese acetate. , nitro compounds, nitroso compounds and the like. A polymerization inhibitor may be used individually by 1 type, or may use 2 or more types together. Among these polymerization inhibitors, phenols are preferred.
 また、各原料成分の仕込み比は、上述のポリウレタン(メタ)アクリレート系オリゴマーの組成と実質的に同等(好ましくは同一)である。 In addition, the charging ratio of each raw material component is substantially the same (preferably the same) as the composition of the polyurethane (meth)acrylate oligomer described above.
(1-2-2)活性エネルギー線反応性モノマー
 活性エネルギー線反応性モノマーとしては、例えば、芳香族ビニル系モノマー類、ビニルエステルモノマー類、ビニルエーテル類、アリル化合物類、(メタ)アクリルアミド類、及び(メタ)アクリレート類が挙げられ、具体的には、例えば、スチレン、α-メチルスチレン、α-クロロスチレン、ビニルトルエン、ジビニルベンゼン等の芳香族ビニル系モノマー類;酢酸ビニル、酪酸ビニル、N-ビニルホルムアミド、N-ビニルアセトアミド、N-ビニル-2-ピロリドン、N-ビニルカプロラクタム、アジピン酸ジビニル等のビニルエステルモノマー類;エチルビニルエーテル、フェニルビニルエーテル等のビニルエーテル類;ジアリルフタレート、トリメチロールプロパンジアリルエーテル、アリルグリシジルエーテル等のアリル化合物類;アクリルアミド、N,N-ジメチルアクリルアミド、N,N-ジメチルメタクリルアミド、N-メチロールアクリルアミド、N-メトキシメチルアクリルアミド、N-ブトキシメチルアクリルアミド、N-t-ブチルアクリルアミド、(メタ)アクリロイルモルホリン、メチレンビスアクリルアミド等の(メタ)アクリルアミド類;(メタ)アクリル酸、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸-n-ブチル、(メタ)アクリル酸-i-ブチル、(メタ)アクリル酸-t-ブチル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸-2-エチルヘキシル、(メタ)アクリル酸ラウリル、(メタ)アクリル酸ステアリル、(メタ)アクリル酸テトラヒドロフルフリル、(メタ)アクリル酸モルフォリル、(メタ)アクリル酸-2-ヒドロキシエチル、(メタ)アクリル酸-2-ヒドロキシプロピル、(メタ)アクリル酸-4-ヒドロキシブチル、(メタ)アクリル酸グリシジル、(メタ)アクリル酸ジメチルアミノエチル、(メタ)アクリル酸ジエチルアミノエチル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸トリメチルシクロヘキシル、(メタ)アクリル酸フェノキシエチル、(メタ)アクリル酸トリシクロデカン、(メタ)アクリル酸ジシクロペンテニル、(メタ)アクリル酸ジシクロペンテニルオキシエチル、(メタ)アクリル酸ジシクロペンタニル、(メタ)アクリル酸アリル、(メタ)アクリル酸-2-エトキシエチル、(メタ)アクリル酸イソボルニル、(メタ)アクリル酸フェニル等の単官能(メタ)アクリレート;及びジ(メタ)アクリル酸エチレングリコール、ジ(メタ)アクリル酸ジエチレングリコール、ジ(メタ)アクリル酸トリエチレングリコール、ジ(メタ)アクリル酸テトラエチレングリコール、ジ(メタ)アクリル酸ポリエチレングリコール(n=5~14)、ジ(メタ)アクリル酸プロピレングリコール、ジ(メタ)アクリル酸ジプロピレングリコール、ジ(メタ)アクリル酸トリプロピレングリコール、ジ(メタ)アクリル酸テトラプロピレングリコール、ジ(メタ)アクリル酸ポリプロピレングリコール(n=5~14)、ジ(メタ)アクリル酸-1,3-ブチレングリコール、ジ(メタ)アクリル酸-1,4-ブタンジオール、ジ(メタ)アクリル酸ポリブチレングリコール(n=3~16)、ジ(メタ)アクリル酸ポリ(1-メチルブチレングリコール)(n=5~20)、ジ(メタ)アクリル酸-1,6-ヘキサンジオール、ジ(メタ)アクリル酸-1,9-ノナンジオール、ジ(メタ)アクリル酸ネオペンチルグリコール、ヒドロキシピバリン酸ネオペンチルグリコールジ(メタ)アクリル酸エステル、ジ(メタ)アクリル酸ジシクロペンタンジオール、ジ(メタ)アクリル酸トリシクロデカン、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、トリメチロールプロパントリオキシエチル(メタ)アクリレート、トリメチロールプロパントリオキシプロピル(メタ)アクリレート、トリメチロールプロパンポリオキシエチル(メタ)アクリレート、トリメチロールプロパンポリオキシプロピル(メタ)アクリレート、トリス(2-ヒドロキシエチル)イソシアヌレートトリ(メタ)アクリレート、トリス(2-ヒドロキシエチル)イソシアヌレートジ(メタ)アクリレート、エチレンオキサイド付加ビスフェノールAジ(メタ)アクリレート、エチレンオキサイド付加ビルフェノールFジ(メタ)アクリレート、プロピレンオキサイド付加ビスフェノールAジ(メタ)アクリレート、プロピレンオキサイド付加ビスフェノールFジ(メタ)アクリレート、トリシクロデカンジメタノールジ(メタ)アクリレート、ビスフェノールAエポキシジ(メタ)アクリレート、ビスフェノールFエポキシジ(メタ)アクリレート等の多官能(メタ)アクリレートが挙げられる。これらの活性エネルギー線反応性モノマーは1種を単独で使用しても2種以上を併用してもよい。
(1-2-2) Active energy ray-reactive monomer Examples of active energy ray-reactive monomers include aromatic vinyl-based monomers, vinyl ester monomers, vinyl ethers, allyl compounds, (meth)acrylamides, and (Meth)acrylates, specifically, for example, aromatic vinyl monomers such as styrene, α-methylstyrene, α-chlorostyrene, vinyltoluene, divinylbenzene; vinyl acetate, vinyl butyrate, N- vinyl ester monomers such as vinylformamide, N-vinylacetamide, N-vinyl-2-pyrrolidone, N-vinylcaprolactam and divinyl adipate; vinyl ethers such as ethyl vinyl ether and phenyl vinyl ether; diallyl phthalate, trimethylolpropane diallyl ether, Allyl compounds such as allyl glycidyl ether; acrylamide, N,N-dimethylacrylamide, N,N-dimethylmethacrylamide, N-methylolacrylamide, N-methoxymethylacrylamide, N-butoxymethylacrylamide, Nt-butylacrylamide, (Meth)acrylamides such as (meth)acryloylmorpholine and methylenebisacrylamide; (meth)acrylic acid, methyl (meth)acrylate, ethyl (meth)acrylate, propyl (meth)acrylate, (meth)acrylic acid- n-butyl, i-butyl (meth)acrylate, t-butyl (meth)acrylate, hexyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, lauryl (meth)acrylate, (meth)acrylate ) stearyl acrylate, tetrahydrofurfuryl (meth) acrylate, morpholyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4 (meth) acrylate - hydroxybutyl, glycidyl (meth)acrylate, dimethylaminoethyl (meth)acrylate, diethylaminoethyl (meth)acrylate, benzyl (meth)acrylate, cyclohexyl (meth)acrylate, trimethylcyclohexyl (meth)acrylate, Phenoxyethyl (meth)acrylate, Tricyclodecane (meth)acrylate, Dicyclopentenyl (meth)acrylate, Dicyclopentenyloxyethyl (meth)acrylate, Dicyclopentanyl (meth)acrylate, (meth)acrylate Allyl acrylate, (meth)acrylic acid -monofunctional (meth)acrylates such as 2-ethoxyethyl, isobornyl (meth)acrylate, and phenyl (meth)acrylate; and ethylene glycol di(meth)acrylate, diethylene glycol di(meth)acrylate, di(meth)acrylate Triethylene glycol acrylate, tetraethylene glycol di(meth)acrylate, polyethylene glycol di(meth)acrylate (n=5-14), propylene glycol di(meth)acrylate, dipropylene glycol di(meth)acrylate , tripropylene glycol di(meth)acrylate, tetrapropylene glycol di(meth)acrylate, polypropylene glycol di(meth)acrylate (n=5 to 14), 1,3-butylene glycol di(meth)acrylate , 1,4-butanediol di(meth)acrylate, polybutylene glycol di(meth)acrylate (n = 3 to 16), poly(1-methylbutylene glycol di(meth)acrylate) (n = 5 ~20), 1,6-hexanediol di(meth)acrylate, 1,9-nonanediol di(meth)acrylate, neopentyl glycol di(meth)acrylate, neopentyl glycol di(hydroxypivalate) meth)acrylate, dicyclopentanediol di(meth)acrylate, tricyclodecane di(meth)acrylate, trimethylolpropane tri(meth)acrylate, pentaerythritol tri(meth)acrylate, pentaerythritol tetra(meth) acrylate, ditrimethylolpropane tetra(meth)acrylate, dipentaerythritol tetra(meth)acrylate, dipentaerythritol penta(meth)acrylate, dipentaerythritol hexa(meth)acrylate, trimethylolpropane trioxyethyl (meth)acrylate, tri Methylolpropane trioxypropyl (meth)acrylate, Trimethylolpropane polyoxyethyl (meth)acrylate, Trimethylolpropane polyoxypropyl (meth)acrylate, Tris(2-hydroxyethyl) isocyanurate tri(meth)acrylate, Tris(2 -hydroxyethyl)isocyanurate di(meth)acrylate, ethylene oxide-added bisphenol A di(meth)acrylate, ethylene oxide-added bisphenol F di(meth)acrylate, propylene oxide-added bisphenol Nol A di(meth)acrylate, propylene oxide-added bisphenol F di(meth)acrylate, tricyclodecanedimethanol di(meth)acrylate, bisphenol A epoxy di(meth)acrylate, bisphenol F epoxy di(meth)acrylate and other polyfunctional ( meth)acrylates. These active energy ray-reactive monomers may be used alone or in combination of two or more.
 これらの活性エネルギー線反応性モノマーの中でも、塗布性が要求される用途では、(メタ)アクリロイルモルホリン、(メタ)アクリル酸テトラヒドロフルフリル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸トリメチルシクロヘキシル、(メタ)アクリル酸フェノキシエチル、(メタ)アクリル酸トリシクロデカン、(メタ)アクリル酸ジシクロペンテニル、(メタ)アクリル酸イソボルニル等の分子内に環構造を有する単官能(メタ)アクリレートが好ましい。一方、得られる硬化膜の機械的強度が求められる用途では、ジ(メタ)アクリル酸-1,4-ブタンジオール、ジ(メタ)アクリル酸-1,6-ヘキサンジオール、ジ(メタ)アクリル酸-1,9-ノナンジオール、ジ(メタ)アクリル酸ネオペンチルグリコール、ジ(メタ)アクリル酸トリシクロデカン、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等の多官能(メタ)アクリレートが好ましい。 Among these active energy ray-reactive monomers, for applications requiring coating properties, (meth)acryloylmorpholine, tetrahydrofurfuryl (meth)acrylate, benzyl (meth)acrylate, cyclohexyl (meth)acrylate, ( Monofunctional compounds having a ring structure in the molecule such as trimethylcyclohexyl methacrylate, phenoxyethyl acrylate (meth), tricyclodecane acrylate (meth), dicyclopentenyl acrylate (meth), and isobornyl acrylate (meth) (Meth)acrylates are preferred. On the other hand, in applications where mechanical strength of the resulting cured film is required, di(meth)acrylic acid-1,4-butanediol, di(meth)acrylic acid-1,6-hexanediol, di(meth)acrylic acid -1,9-nonanediol, neopentyl glycol di(meth)acrylate, tricyclodecane di(meth)acrylate, trimethylolpropane tri(meth)acrylate, pentaerythritol tri(meth)acrylate, pentaerythritol tetra(meth) ) acrylate, dipentaerythritol tetra(meth)acrylate, dipentaerythritol penta(meth)acrylate, dipentaerythritol hexa(meth)acrylate, and other polyfunctional (meth)acrylates are preferred.
(1-2-3)ポリエーテル、ポリエステル、ポリカーボネート、ポリ(メタ)アクリレート、ポリブタジエン又はブタジエン-アクリロニトリル共重合体であってアクリル基を有する化合物
 ポリエーテル、ポリエステル、ポリカーボネート、ポリ(メタ)アクリレート、ポリブタジエン又はブタジエン-アクリロニトリル共重合体であってアクリル基を有する化合物は、上記の熱硬化成分であるラジカル重合性の炭素-炭素二重結合を有する化合物として用いられるものとして例示した化合物の中から適宜選択して使用されればよい。好ましいものについても、上記と同様であってよい。
(1-2-3) Polyether, polyester, polycarbonate, poly(meth)acrylate, polybutadiene or butadiene-acrylonitrile copolymer compound having an acrylic group Polyether, polyester, polycarbonate, poly(meth)acrylate, polybutadiene Alternatively, the butadiene-acrylonitrile copolymer compound having an acrylic group is appropriately selected from the compounds exemplified as the compounds having a radically polymerizable carbon-carbon double bond, which is the thermosetting component. It should be used as Preferable ones may be the same as above.
(1-2-4)ポリエーテル、ポリエステル、ポリカーボネート、ポリ(メタ)アクリレート、ポリブタジエン又はブタジエン-アクリロニトリル共重合体であってアリル基を有する化合物
 ポリエーテル、ポリエステル、ポリカーボネート、ポリ(メタ)アクリレート、ポリブタジエン又はブタジエン-アクリロニトリル共重合体であってアリル基を有する化合物についても、熱硬化成分であるラジカル重合性の炭素-炭素二重結合を有する化合物として用いられるものとして例示した化合物の中から適宜選択して使用されればよい。好ましいものについても、上記と同様であってよい。
(1-2-4) Polyether, polyester, polycarbonate, poly(meth)acrylate, polybutadiene or butadiene-acrylonitrile copolymer compound having an allyl group Polyether, polyester, polycarbonate, poly(meth)acrylate, polybutadiene Alternatively, the compound which is a butadiene-acrylonitrile copolymer and has an allyl group is appropriately selected from the compounds exemplified as compounds having a radically polymerizable carbon-carbon double bond which is a thermosetting component. It should be used as Preferable ones may be the same as above.
(1-2-5)マレイミド基を有する化合物
 マレイミド基を有する化合物についても、熱硬化成分であるラジカル重合性の炭素-炭素二重結合を有する化合物として用いられるものとして例示した化合物の中から適宜選択して使用されればよい。好ましいものについても、上記と同様であってよい。
(1-2-5) Compound having a maleimide group The compound having a maleimide group is also appropriately selected from compounds exemplified as compounds having a radically polymerizable carbon-carbon double bond that is a thermosetting component. It may be selected and used. Preferable ones may be the same as above.
 活性エネルギー線硬化成分としては、これらのラジカル重合性の炭素-炭素二重結合を有する化合物の1種を単独で使用してもよいし、2種以上を併用してもよい。 As the active energy ray-curable component, one of these compounds having a radically polymerizable carbon-carbon double bond may be used alone, or two or more thereof may be used in combination.
(1-2-6)好ましい活性エネルギー線硬化成分
 特に、高硬度でありながら屈曲性に優れ、さらには部材(構造体)に対する密着性が良好な硬化膜が得られ、また、組成物の幅広い粘度調整が可能であるという観点から、ポリウレタン(メタ)アクリレート系オリゴマー、アクリル基を有する化合物、アリル基を有する化合物、及びマレイミド基を有する化合物のうちの1種又は2種以上と、活性エネルギー線反応性モノマーとを含有するものが好ましい。
(1-2-6) Preferred active energy ray-curing component In particular, it provides a cured film with high hardness, excellent flexibility, and good adhesion to members (structures), and can be used in a wide range of compositions. From the viewpoint of being able to adjust the viscosity, one or more of a polyurethane (meth)acrylate oligomer, a compound having an acrylic group, a compound having an allyl group, and a compound having a maleimide group, and an active energy ray and a reactive monomer are preferred.
 さらに、硬化成分においては、当該成分全体に対して、ポリウレタン(メタ)アクリレート系オリゴマー、アクリル基を有する化合物、アリル基を有する化合物、及びマレイミド基を有する化合物のうちの1種又は2種以上を1質量%以上45質量%以下の割合で含有し、活性エネルギー線反応性モノマーを55質量%以上99質量%以下の割合で含有することが好ましい。 Furthermore, in the curing component, one or more of a polyurethane (meth)acrylate oligomer, a compound having an acrylic group, a compound having an allyl group, and a compound having a maleimide group is added to the entire component. It is preferably contained at a ratio of 1% by mass or more and 45% by mass or less, and preferably contains an active energy ray-reactive monomer at a ratio of 55% by mass or more and 99% by mass or less.
(1-2-7)活性エネルギー線重合開始剤
 抗菌・抗ウイルス剤組成物においては、主に、紫外線、電子線等の活性エネルギー線照射で進行する重合反応の開始効率を向上させること等を目的として、活性エネルギー線重合開始剤が更に含まれていることが好ましい。このような活性エネルギー線重合開始剤としては、光によりラジカルを発生する性質を有する化合物である光ラジカル重合開始剤が一般的であり、公知の何れの光ラジカル重合開始剤でも使用可能である。前記重合開始剤は1種を単独で使用しても2種以上を併用してもよい。
(1-2-7) Active energy ray polymerization initiator In the antibacterial/antiviral agent composition, it is mainly necessary to improve the initiation efficiency of the polymerization reaction that proceeds when irradiated with active energy rays such as ultraviolet rays and electron beams. For the purpose, it is preferable that an active energy ray polymerization initiator is further included. As such an active energy ray polymerization initiator, a photoradical polymerization initiator which is a compound having a property of generating radicals by light is generally used, and any known photoradical polymerization initiator can be used. The polymerization initiator may be used alone or in combination of two or more.
 光ラジカル重合開始剤としては、例えば、ベンゾフェノン、2,4,6-トリメチルベンゾフェノン、4,4-ビス(ジエチルアミノ)ベンゾフェノン、4-フェニルベンゾフェノン、メチルオルトベンゾイルベンゾエート、チオキサントン、ジエチルチオキサントン、イソプロピルチオキサントン、クロロチオキサントン、2-エチルアントラキノン、t-ブチルアントラキノン、ジエトキシアセトフェノン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、ベンジルジメチルケタール、1-ヒドロキシシクロヘキシルフェニルケトン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル、メチルベンゾイルホルメート、2-メチル-1-〔4-(メチルチオ)フェニル〕-2-モルホリノプロパン-1-オン、2,6-ジメチルベンゾイルジフェニルホスフィンオキシド、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキシド、ビス(2,6-ジメトキシベンゾイル)-2,4,4-トリメチルペンチルホスフィンオキシド、ビス(2,4,6-トリメチルベンゾイル)フェニルホスフィンオキシド、及び2-ヒドロキシ-1-〔4-[4-(2-ヒドロキシ-2-メチル-プロピオニル)-ベンジル]-フェニル〕-2-メチル-プロパン-1-オンが挙げられる。 Examples of photoradical polymerization initiators include benzophenone, 2,4,6-trimethylbenzophenone, 4,4-bis(diethylamino)benzophenone, 4-phenylbenzophenone, methylorthobenzoylbenzoate, thioxanthone, diethylthioxanthone, isopropylthioxanthone, chloro Thioxanthone, 2-ethylanthraquinone, t-butylanthraquinone, diethoxyacetophenone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, benzyldimethylketal, 1-hydroxycyclohexylphenylketone, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether, methylbenzoylformate, 2-methyl-1-[4-(methylthio)phenyl]-2-morpholinopropan-1-one, 2,6-dimethylbenzoyldiphenylphosphine oxide, 2 , 4,6-trimethylbenzoyldiphenylphosphine oxide, bis(2,6-dimethoxybenzoyl)-2,4,4-trimethylpentylphosphine oxide, bis(2,4,6-trimethylbenzoyl)phenylphosphine oxide, and 2- Hydroxy-1-[4-[4-(2-hydroxy-2-methyl-propionyl)-benzyl]-phenyl]-2-methyl-propan-1-one.
 これらの中でも、硬化速度が速く、架橋密度を十分に増大させることができるという観点から、ベンゾフェノン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、1-ヒドロキシシクロヘキシルフェニルケトン、2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキシド、及び2-ヒドロキシ-1-〔4-[4-(2-ヒドロキシ-2-メチル-プロピオニル)-ベンジル]-フェニル〕-2-メチル-プロパン-1-オンが好ましく、1-ヒドロキシシクロヘキシルフェニルケトン、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキシド、及び2-ヒドロキシ-1-〔4-[4-(2-ヒドロキシ-2-メチル-プロピオニル)-ベンジル]-フェニル〕-2-メチル-プロパン-1-オンがより好ましい。 Among these, benzophenone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, 1-hydroxycyclohexylphenyl ketone, 2 are preferred from the viewpoint that the curing speed is fast and the crosslink density can be sufficiently increased. , 4,6-trimethylbenzoyldiphenylphosphine oxide, and 2-hydroxy-1-[4-[4-(2-hydroxy-2-methyl-propionyl)-benzyl]-phenyl]-2-methyl-propane-1 -ones are preferred, 1-hydroxycyclohexylphenyl ketone, 2,4,6-trimethylbenzoyldiphenylphosphine oxide, and 2-hydroxy-1-[4-[4-(2-hydroxy-2-methyl-propionyl)-benzyl ]-Phenyl]-2-methyl-propan-1-one is more preferred.
 また、抗菌・抗ウイルス剤組成物において、ラジカル重合性基と共にエポキシ基等のカチオン重合性基を有する化合物が含まれる場合には、重合開始剤として、前記光ラジカル重合開始剤と共に光カチオン重合開始剤が含まれていてもよい。光カチオン重合開始剤も、公知の何れのものも使用可能である。 Further, when the antibacterial/antiviral agent composition contains a compound having a cationically polymerizable group such as an epoxy group together with a radically polymerizable group, the photocationic polymerization initiator is used as a polymerization initiator together with the photoradical polymerization initiator. agents may be included. Any known photocationic polymerization initiator can be used.
 これらの光重合開始剤の含有量としては、開始剤分解物による機械的強度の低下が起こり難いという観点から、活性エネルギー線反応性成分の合計100質量部に対して、10質量部以下が好ましく、5質量部以下がより好ましい。 The content of these photopolymerization initiators is preferably 10 parts by mass or less with respect to a total of 100 parts by mass of active energy ray-reactive components, from the viewpoint that deterioration of mechanical strength due to decomposition products of the initiator is unlikely to occur. , 5 parts by mass or less is more preferable.
(1-2-8)光増感剤
 また、抗菌・抗ウイルス剤組成物においては、前記光ラジカル重合開始剤と光増感剤とを併用してもよい。光増感剤は、重合開始剤と同じ目的で用いることができる。光増感剤は1種を単独で使用しても2種以上を併用してもよく、公知の光増感剤のいずれをも使用することができる。このような光増感剤としては、例えば、エタノールアミン、ジエタノールアミン、トリエタノールアミン、N-メチルジエタノールアミン、4-ジメチルアミノ安息香酸メチル、4-ジメチルアミノ安息香酸エチル、4-ジメチルアミノ安息香酸アミル、及び4-ジメチルアミノアセトフェノンが挙げられる。前記光増感剤の含有量としては、架橋密度の低下による機械的強度の低下が起こり難いという観点から、活性エネルギー線反応性成分の合計100質量部に対して、10質量部以下が好ましく、5質量部以下がより好ましい。
(1-2-8) Photosensitizer In the antibacterial/antiviral agent composition, the photoradical polymerization initiator and photosensitizer may be used in combination. A photosensitizer can be used for the same purpose as the polymerization initiator. The photosensitizer may be used alone or in combination of two or more, and any known photosensitizer can be used. Examples of such photosensitizers include ethanolamine, diethanolamine, triethanolamine, N-methyldiethanolamine, methyl 4-dimethylaminobenzoate, ethyl 4-dimethylaminobenzoate, amyl 4-dimethylaminobenzoate, and 4-dimethylaminoacetophenone. The content of the photosensitizer is preferably 10 parts by mass or less with respect to a total of 100 parts by mass of the active energy ray-reactive components, from the viewpoint that a decrease in mechanical strength due to a decrease in cross-linking density is unlikely to occur. 5 parts by mass or less is more preferable.
(2)その他の成分及び成分含有量
 非水系の抗菌・抗ウイルス剤組成物においても、種々の材料をその他の添加剤として用いることができる。その他の添加剤は1種を単独で使用しても2種以上を併用してもよい。このようなその他の添加剤としては、例えば、酸化防止剤(例えば、2,6-ジブチル-4-メチルフェノール(BHT)のほか、サンケミカル株式会社製「CYANOX1790」、BASFジャパン株式会社製「IRGANOX245」及び「IRGANOX1010」、住友化学株式会社製「Sumilizer GA-80」等の市販品);光安定剤(例えば、BASFジャパン株式会社製「TINUVIN622LD」及び「TINUVIN765」、三共ライフテック株式会社製「SANOL LS-2626」及び「SANOL LS-765」等の市販品);紫外線吸収剤(例えば、BASFジャパン株式会社製「TINUVIN328」及び「TINUVIN234」等の市販品);シリコーン化合物(例えば、ジメチルシロキサンポリオキシアルキレン共重合体等);添加型及び反応型難燃剤(例えば、赤リン、有機リン化合物、燐及びハロゲン含有有機化合物、臭素又は塩素含有有機化合物、ポリ燐酸アンモニウム、水酸化アルミニウム、酸化アンチモン等);顔料(例えば、二酸化チタン等);染料;着色剤(例えば、カーボンブラック等);加水分解防止剤(例えば、カルボジイミド化合物等);フィラー類(例えば、ガラス繊維、ガラスビーズ、シリカ、アルミナ、炭酸カルシウム、雲母、酸化亜鉛、酸化チタン、マイカ、タルク、カオリン、金属酸化物、金属繊維、鉄、鉛、金属粉、炭素繊維、カーボンブラック、黒鉛、カーボンナノチューブ、C60等のフラーレン類、メラミン、白土等);熱安定剤、耐指紋剤、表面親水化剤、帯電防止剤、滑り性付与剤、可塑剤、離型剤、消泡剤、レベリング剤、沈降防止剤、界面活性剤、チクソトロピー付与剤、滑剤、難燃助剤、重合禁止剤、充填剤、シランカップリング剤、油剤、柔軟剤、架橋剤、撥水撥油剤、防曇剤、触感付与剤等の改質剤類;色相調整剤等の着色剤類;並びに前記熱硬化成分以外のモノマー又は/及びそのオリゴマー、触媒、硬化促進剤類等が挙げられる。このようなその他の添加剤の含有量としては、架橋密度の低下による機械的強度の低下が起こり難いという観点から、前記硬化成分100質量部に対して、10質量部以下が好ましく、5質量部以下がより好ましい。
(2) Other components and component content Various materials can be used as other additives in the non-aqueous antibacterial/antiviral agent composition. Other additives may be used singly or in combination of two or more. Such other additives include, for example, antioxidants (e.g., 2,6-dibutyl-4-methylphenol (BHT), "CYANOX1790" manufactured by Sun Chemical Co., Ltd., "IRGANOX245" manufactured by BASF Japan Ltd. ” and “IRGANOX1010”, commercially available products such as “Sumilizer GA-80” manufactured by Sumitomo Chemical Co., Ltd.); LS-2626" and "SANOL LS-765", etc.); UV absorbers (e.g., BASF Japan Co., Ltd., "TINUVIN328" and "TINUVIN234", etc.); silicone compounds (e.g., dimethylsiloxane polyoxy alkylene copolymers, etc.); additive and reactive flame retardants (e.g., red phosphorus, organic phosphorus compounds, phosphorus- and halogen-containing organic compounds, bromine- or chlorine-containing organic compounds, ammonium polyphosphate, aluminum hydroxide, antimony oxide, etc.) ; pigments (e.g., titanium dioxide, etc.); dyes; coloring agents (e.g., carbon black, etc.); hydrolysis inhibitors (e.g., carbodiimide compounds, etc.); Calcium, mica, zinc oxide, titanium oxide, mica, talc, kaolin, metal oxides, metal fibers, iron, lead, metal powder, carbon fibers, carbon black, graphite, carbon nanotubes, fullerenes such as C60, melamine, clay etc.); heat stabilizer, anti-fingerprint agent, surface hydrophilizing agent, antistatic agent, lubricity imparting agent, plasticizer, release agent, antifoaming agent, leveling agent, anti-settling agent, surfactant, thixotropy imparting agent , Lubricants, flame retardant aids, polymerization inhibitors, fillers, silane coupling agents, oils, softeners, cross-linking agents, water and oil repellents, anti-fogging agents, modifiers such as texture imparting agents; and other monomers and/or oligomers thereof, catalysts, and curing accelerators other than the thermosetting component. The content of such other additives is preferably 10 parts by mass or less, and 5 parts by mass with respect to 100 parts by mass of the curing component, from the viewpoint that a decrease in mechanical strength due to a decrease in crosslink density is unlikely to occur. The following are more preferred.
 非水系の抗菌・抗ウイルス剤組成物において、上記のモノ/ジエステル又はその塩の含有量としては、特に制限はないが、硬化膜の硬度の低下が少なく、優れた抗ウイルス性が得られるという観点から、上記の硬化成分100質量部に対して、0.1質量部以上50質量部以下が好ましく、0.2質量部以上30質量部以下がより好ましく、0.5質量部以上20質量部以下が特に好ましい。 In the non-aqueous antibacterial/antiviral agent composition, the content of the above mono/diester or salt thereof is not particularly limited, but it is said that there is little decrease in the hardness of the cured film and excellent antiviral properties can be obtained. From the viewpoint, it is preferably 0.1 to 50 parts by mass, more preferably 0.2 to 30 parts by mass, and 0.5 to 20 parts by mass with respect to 100 parts by mass of the curing component. The following are particularly preferred.
 抗菌・抗ウイルス剤組成物には、塗膜を形成するためのコーティング方式に応じて、粘度の調整を目的として、溶剤を配合することができる。溶剤は1種を単独で使用しても2種以上を併用してもよく、公知の溶剤のいずれも使用することができる。このような溶剤としては、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン類;イソプロパノール、イソブタノール等のアルコール類;ジオキサン、テトラヒドロフラン等のエーテル類;ヘキサン、シクロヘキサン等の脂肪族又は脂環式の炭化水素類;トルエン、キシレン等の芳香族炭化水素類;酢酸エチル、酢酸ブチル等のエステル類;クロルベンゼン、トリクレン、パークレン等のハロゲン化炭化水素類;γ-ブチロラクトン、ジメチルスルホキシド、N-メチル-2-ピロリドン、ジメチルホルムアミド、ジメチルアセトアミド等の非プロトン性極性溶媒が好ましい。溶剤は、通常、前記硬化成分100質量部に対して500質量部以下で使用可能である。また、溶剤を配合した抗菌・抗ウイルス剤組成物において、上記のモノ/ジエステル又はその塩の濃度としては、特に制限はないが、組成物全体に対して、0.01質量%以上30質量%以下が好ましく、0.02質量%以上20質量%以下がより好ましく、0.04質量%以上10質量%以下が特に好ましい。 A solvent can be added to the antibacterial/antiviral agent composition for the purpose of adjusting the viscosity, depending on the coating method used to form the coating film. Solvents may be used alone or in combination of two or more, and any known solvent can be used. Examples of such solvents include ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone; alcohols such as isopropanol and isobutanol; ethers such as dioxane and tetrahydrofuran; hydrocarbons; aromatic hydrocarbons such as toluene and xylene; esters such as ethyl acetate and butyl acetate; halogenated hydrocarbons such as chlorobenzene, trichlene and perchlene; Aprotic polar solvents such as 2-pyrrolidone, dimethylformamide and dimethylacetamide are preferred. The solvent can usually be used in an amount of 500 parts by mass or less with respect to 100 parts by mass of the curing component. In the antibacterial/antiviral composition containing a solvent, the concentration of the mono/diester or salt thereof is not particularly limited, but is 0.01% by mass or more and 30% by mass based on the total composition. The following is preferable, 0.02 mass % or more and 20 mass % or less is more preferable, and 0.04 mass % or more and 10 mass % or less is particularly preferable.
 抗菌・抗ウイルス剤組成物の粘度は、その用途や使用態様等に応じて適宜調節することができるが、取り扱い性、塗工性、成形性、立体造形性等の観点から、E型粘度計(ローター1°34’×R24)により25℃で測定される粘度が、10mPa・s以上であることが好ましく、100mPa・s以上であることがより好ましく、また、100,000mPa・s以下であることが好ましく、50,000mPa・s以下であることがより好ましい。粘度の調節は、前記硬化成分の含有量、その他の成分の種類や含有量等によって適宜調整することができる。 The viscosity of the antibacterial/antiviral agent composition can be appropriately adjusted according to its application and usage mode. The viscosity measured at 25° C. with (rotor 1°34′×R24) is preferably 10 mPa s or more, more preferably 100 mPa s or more, and 100,000 mPa s or less. , and more preferably 50,000 mPa·s or less. The adjustment of the viscosity can be appropriately adjusted depending on the content of the curing component, the type and content of other components, and the like.
 抗菌・抗ウイルス剤組成物は、モノ/ジエステル又はその塩と、前記硬化成分と、必要に応じて、硬化剤、その他の添加剤、溶媒とを混合することによって製造することができる。混合方法としては特に限定はなく、従来公知の混合、分散方法等が挙げられる。ホモミキサー、ディスパー、二本ロール、三本ロール、ビーズミル、ボールミル、サンドミル、ペブルミル、トロンミル、サンドグラインダー、セグバリアトライター、遊星式攪拌機、高速インペラー分散機、高速ストーンミル、高速度衝撃ミル、ニーダー、ホモジナイザー、超音波分散機等の分散機を用いてもよい。 The antibacterial/antiviral agent composition can be produced by mixing the mono/diester or its salt, the curing component, and, if necessary, a curing agent, other additives, and a solvent. The mixing method is not particularly limited, and includes conventionally known mixing and dispersing methods. Homomixer, disper, double roll, triple roll, bead mill, ball mill, sand mill, pebble mill, tron mill, sand grinder, segvariator, planetary stirrer, high speed impeller disperser, high speed stone mill, high speed impact mill, kneader , a homogenizer, an ultrasonic disperser, or the like may be used.
 抗菌・抗ウイルス剤組成物の塗工方法としては、バーコーター法、アプリケーター法、カーテンフローコーター法、ロールコーター法、スプレー法、グラビアコーター法、コンマコーター法、リバースロールコーター法、リップコーター法、ダイコーター法、スロットダイコーター法、エアーナイフコーター法、ディップコーター法等の公知の方法を適用可能であるが、その中でもバーコーター法及びグラビアコーター法が好ましい。 The method of coating the antibacterial/antiviral agent composition includes the bar coater method, applicator method, curtain flow coater method, roll coater method, spray method, gravure coater method, comma coater method, reverse roll coater method, lip coater method, Known methods such as a die coater method, a slot die coater method, an air knife coater method and a dip coater method can be applied, and among them, a bar coater method and a gravure coater method are preferred.
2.抗菌・抗ウイルス性構造体及びその製造方法
 本実施形態に係る抗菌・抗ウイルス剤組成物は、各種の構造体に少なくとも抗ウイルス性を付与するための処理剤として用いることができる。例えば、本実施形態に係る抗菌・抗ウイルス剤組成物を各種の構造体に接触させることで、当該構造体に少なくとも抗ウイルス性を付与することができる。この場合、抗菌・抗ウイルス剤組成物は、処理液や塗料といった液状にて使用される。或いは、本実施形態に係る抗菌・抗ウイルス剤組成物を付着させた各種の構造体によって、その他の各種の構造体の表面を拭き取ってもよい。具体的には、例えば、抗菌・抗ウイルス剤組成物を基材等に浸み込ませた拭き取り用シートとして使用されてもよい。或いは、本実施形態に係る抗菌・抗ウイルス剤組成物によって手指や器物等の消毒を行うことも可能である。この場合、例えば、スプレーボトルに抗菌・抗ウイルス剤組成物を充填して使用されてもよい。
2. Antibacterial/Antiviral Structure and Manufacturing Method Thereof The antibacterial/antiviral agent composition according to the present embodiment can be used as a treatment agent for imparting at least antiviral properties to various structures. For example, by bringing the antibacterial/antiviral agent composition according to the present embodiment into contact with various structures, at least antiviral properties can be imparted to the structures. In this case, the antibacterial/antiviral agent composition is used in a liquid form such as a treatment liquid or paint. Alternatively, the surface of various other structures may be wiped with the various structures to which the antibacterial/antiviral agent composition according to the present embodiment is attached. Specifically, for example, it may be used as a wiping sheet in which a substrate or the like is impregnated with an antibacterial/antiviral agent composition. Alternatively, the antibacterial/antiviral agent composition according to the present embodiment can be used to disinfect fingers, utensils, and the like. In this case, for example, a spray bottle may be filled with the antibacterial/antiviral agent composition and used.
 上記の通り、本実施形態に係る抗菌・抗ウイルス剤組成物を用いて各種の構造体に抗ウイルス性を付与することができる。例えば、本実施形態に係る抗菌・抗ウイルス性構造体は、基材と、上記の抗菌・抗ウイルス剤組成物とを備える。また、本実施形態に係る抗菌・抗ウイルス性構造体の製造方法は、上記の抗菌・抗ウイルス剤組成物を基材に接触させることを含む。 As described above, the antibacterial/antiviral agent composition according to the present embodiment can be used to impart antiviral properties to various structures. For example, the antibacterial/antiviral structure according to the present embodiment includes a base material and the above antibacterial/antiviral agent composition. In addition, the method for producing an antibacterial/antiviral structure according to this embodiment includes bringing the above antibacterial/antiviral agent composition into contact with a substrate.
2.1 基材
 構造体を構成する基材としては、種々のものが挙げられる。例えば、基材は、プラスチック、ガラス、金属、木材、塗装塗膜又は合成皮革等であってよい。基材の形状は特に限定されるものではなく、構造体の用途に応じて適宜決定されればよい。
2.1 Substrate A variety of substrates can be used to construct the structure. For example, the substrate may be plastic, glass, metal, wood, paint film, synthetic leather, or the like. The shape of the substrate is not particularly limited, and may be appropriately determined according to the use of the structure.
2.2 水系処理
 本実施形態に係る抗菌・抗ウイルス剤組成物を用いて基材に対して水系で処理を行う場合、基材に対する抗菌・抗ウイルス剤組成物の付着量は、特に限定されるものではない。例えば、基材に対する抗菌・抗ウイルス剤(モノ/ジエステル又はその塩)の付着量は、0.01g/m以上又は0.02g/m以上であってよく、20g/m以下又は10g/m以下であってよい。抗菌・抗ウイルス剤の付着量が0.01g/m以上である場合、一層高い抗ウイルス効果が得られる。抗菌・抗ウイルス剤の付着量が20g/mを超えた場合、抗菌・抗ウイルス剤による効果が飽和し、それ以上の性能向上が少ないおそれがある。また、抗菌・抗ウイルス剤組成物が水系ポリウレタン樹脂を含む場合、基材に対する水系ポリウレタン樹脂の付着量は、0.01g/m以上又は0.06g/m以上であってよく、20g/m以下又は10g/m以下であってよい。水系ポリウレタン樹脂の付着量が0.01g/m以上である場合、抗ウイルス剤の耐久性が一層向上する。水系ポリウレタン樹脂の付着量が20g/m以下である場合、風合いを一層柔らかくすることができる。
2.2 Aqueous Treatment When the antibacterial/antiviral agent composition according to the present embodiment is used to treat a substrate in an aqueous system, the amount of the antibacterial/antiviral agent composition adhered to the substrate is particularly limited. not something. For example, the amount of the antibacterial/antiviral agent (mono/diester or salt thereof) attached to the substrate may be 0.01 g/m 2 or more, or 0.02 g/m 2 or more, and 20 g/m 2 or less, or 10 g. /m 2 or less. When the amount of the antibacterial/antiviral agent attached is 0.01 g/m 2 or more, a higher antiviral effect can be obtained. If the amount of the antibacterial/antiviral agent adhered exceeds 20 g/m 2 , the effect of the antibacterial/antiviral agent may be saturated, and further improvement in performance may be small. In addition, when the antibacterial/antiviral agent composition contains a water-based polyurethane resin, the adhesion amount of the water-based polyurethane resin to the substrate may be 0.01 g/m 2 or more, or 0.06 g/m 2 or more, and may be 20 g/m 2 or more. m 2 or less, or 10 g/m 2 or less. When the adhesion amount of the water-based polyurethane resin is 0.01 g/m 2 or more, the durability of the antiviral agent is further improved. When the adhesion amount of the water-based polyurethane resin is 20 g/m 2 or less, the texture can be further softened.
 抗菌・抗ウイルス性構造体は、さらなる添加剤等を有していてもよい。このような添加剤等としては、例えば、着色剤、酸化防止剤、光安定剤、紫外線吸収剤、難燃剤、柔軟剤、架橋剤や他の熱可塑性樹脂等が挙げられる。 The antibacterial/antiviral structure may have additional additives. Examples of such additives include coloring agents, antioxidants, light stabilizers, ultraviolet absorbers, flame retardants, softeners, cross-linking agents, and other thermoplastic resins.
 本実施形態に係る抗菌・抗ウイルス剤組成物を用いて基材に対して水系で処理を行う場合、当該抗菌・抗ウイルス剤組成物は、上記の通りモノ/ジエステル又はその塩と水系樹脂とを含む処理液(分散液)からなっていてもよく、この場合、当該処理液を基材に接触させることで、基材に抗菌・抗ウイルス剤組成物を付着させることができる。例えば、上記のモノ/ジエステル又はその塩を10~80重量%含む水系分散体又は溶液、水/アルコール溶液、或いは乳化液とし、水系ポリウレタン樹脂を、固形分(不揮発分)が10~50重量%である水系分散体又は乳化液としたうえで、これらを、アルコール及び/又は水で、所定の濃度になるように希釈することで、基材に抗ウイルス性を付与するための処理液とすることができる。 When the antibacterial/antiviral agent composition according to the present embodiment is used to treat a substrate in an aqueous system, the antibacterial/antiviral agent composition contains a mono/diester or a salt thereof and an aqueous resin as described above. In this case, the antibacterial/antiviral agent composition can be attached to the substrate by bringing the treatment liquid into contact with the substrate. For example, an aqueous dispersion or solution, water/alcohol solution, or emulsion containing 10 to 80% by weight of the above mono/diester or salt thereof, and an aqueous polyurethane resin having a solid content (nonvolatile content) of 10 to 50% by weight. After making an aqueous dispersion or emulsion, which is diluted with alcohol and / or water to a predetermined concentration, a treatment liquid for imparting antiviral properties to the substrate is obtained. be able to.
 処理液におけるモノ/ジエステル又はその塩の濃度(抗菌・抗ウイルス剤の有効成分濃度)は、例えば、0.001質量%以上、0.002質量%以上、0.01質量%以上又は0.02質量%以上であってよく、5質量%以下又は4質量%以下であってよい。0.001質量%以上4質量%以下であると性能及びコストのバランスに優れる。処理液を構成する溶媒としては、水系溶媒(水又は水と有機溶媒との混合物)を用いればよい。有機溶媒としては、例えば、エタノール、プロパノール、アセトン、アセトニトリル等を用いることができる。また、処理液における水系樹脂の濃度(樹脂の有効成分濃度)は、例えば、0.001質量%以上、0.005質量%以上又は0.1質量%以上であってよく、20質量%以下又は10質量%以下であってよい。0.001質量%以上20質量%以下であると性能及びコストのバランスに優れる。 The concentration of the mono/diester or its salt in the treatment liquid (active ingredient concentration of the antibacterial/antiviral agent) is, for example, 0.001% by mass or more, 0.002% by mass or more, 0.01% by mass or more, or 0.02% by mass. It may be at least 5% by mass, or at most 4% by mass. When it is 0.001% by mass or more and 4% by mass or less, the balance between performance and cost is excellent. An aqueous solvent (water or a mixture of water and an organic solvent) may be used as the solvent constituting the treatment liquid. Examples of organic solvents that can be used include ethanol, propanol, acetone, and acetonitrile. Further, the concentration of the water-based resin in the treatment liquid (the concentration of the active ingredient of the resin) may be, for example, 0.001% by mass or more, 0.005% by mass or more, or 0.1% by mass or more, and 20% by mass or less, or It may be 10% by mass or less. When it is 0.001% by mass or more and 20% by mass or less, the balance between performance and cost is excellent.
 いずれの場合も、まず、上述のモノ/ジエステル又はその塩、及び、水系ポリウレタン樹脂等を、所定の濃度になるように、水系溶媒で希釈して処理液を調製する。続いて、当該処理液と基材とを接触させて、抗ウイルス性を有する構造体を製造する。 In any case, first, the above mono/diester or salt thereof, water-based polyurethane resin, etc. are diluted with a water-based solvent to a predetermined concentration to prepare a treatment liquid. Subsequently, the treatment liquid is brought into contact with the substrate to produce a structure having antiviral properties.
 処理液と基材とを接触させる方法としては、例えばコーティング法、スプレー法等が挙げられる。 Examples of methods for bringing the treatment liquid into contact with the substrate include a coating method and a spray method.
 コーティング法で処理を行う場合、抗菌・抗ウイルス剤組成物を適切な粘度を有するように調整し、組成物(処理液)を基材にコーティングした後乾燥させて、モノ/ジエステル又はその塩を基材に固定化することができる。コーティング方法としては、特に限定されるものではないが、例えばグラビアロール加工、スプレー加工、ロールコーター加工、ジェットプリント加工、転写プリント加工、スクリーンプリント加工等が挙げられる。 When the treatment is performed by the coating method, the antibacterial/antiviral agent composition is adjusted to have an appropriate viscosity, and the composition (treatment liquid) is coated on the substrate and then dried to remove the mono/diester or its salt. It can be immobilized on a substrate. The coating method is not particularly limited, and examples thereof include gravure roll processing, spray processing, roll coater processing, jet printing processing, transfer printing processing, screen printing processing and the like.
 モノ/ジエステル又はその塩、及び、水系ポリウレタン樹脂等を含む処理液で基材を処理した後は、必要に応じて洗浄し、自然乾燥させてもよいし、加熱乾燥を行うこともできる。加熱乾燥の場合、例えば、ループ式乾燥機、ネット式ドライヤー、オーブン、ヒートセッターなどの装置を用いることができる。モノ/ジエステル又はその塩及び水系ポリウレタン樹脂等を含む処理液を付与した基材の乾燥・熱処理温度は、80~190℃とすることができ、100~160℃であることが好ましい。処理時間は30秒以上又は1分以上、10分以下又は30分以下であってよい。 After treating the base material with a treatment liquid containing a mono/diester or its salt, and a water-based polyurethane resin, etc., it may be washed as necessary and dried naturally or dried by heating. In the case of heat drying, devices such as loop dryers, net dryers, ovens and heat setters can be used. The drying/heating temperature of the substrate to which the treatment liquid containing the mono/diester or its salt and the water-based polyurethane resin is applied can be 80 to 190°C, preferably 100 to 160°C. Treatment times may be 30 seconds or longer, or 1 minute or longer, 10 minutes or shorter, or 30 minutes or shorter.
 尚、上記の抗菌・抗ウイルス剤組成物は2液型であってもよい。すなわち、水系ポリウレタン樹脂を含む第1液と、モノ/ジエステル又はその塩を含む第2液とを用意し、基材に対して一方の液を接触させた後に、もう一方の液を接触させることで、抗ウイルス性構造体を製造してもよい。この場合も、基材の表面に抗菌・抗ウイルス剤組成物を付着させることができる。 The above antibacterial/antiviral agent composition may be of a two-liquid type. That is, a first liquid containing a water-based polyurethane resin and a second liquid containing a mono/diester or a salt thereof are prepared, and after one liquid is brought into contact with the substrate, the other liquid is brought into contact. may produce an antiviral structure. Also in this case, the antibacterial/antiviral agent composition can be adhered to the surface of the substrate.
2.3 非水系処理
 本実施形態に係る抗菌・抗ウイルス剤組成物を用いて基材に対して非水系で処理を行う場合、処理後の構造体は、その表面に硬化膜を備えていてもよい。以下、硬化膜及び当該硬化膜を備える構造体について説明する。
2.3 Non-aqueous treatment When the antibacterial/antiviral agent composition according to the present embodiment is used to treat a substrate in a non-aqueous system, the treated structure has a cured film on its surface. good too. A cured film and a structure including the cured film will be described below.
 硬化膜は、上記の抗菌・抗ウイルス剤組成物の硬化物であり、抗ウイルス性のほか、例えば、抗ウイルス即効性及び透明性を備え得る。このような硬化膜は、上記の抗菌・抗ウイルス剤組成物からなる塗膜に対して、必要に応じて洗浄を行った後、硬化処理を施すことによって形成することができる。硬化処理は、硬化成分によって選択されればよく、例えば、自然乾燥や加熱乾燥による熱硬化処理、活性エネルギー線による硬化処理などが挙げられる。 The cured film is a cured product of the above antibacterial/antiviral agent composition, and in addition to antiviral properties, it can have, for example, immediate antiviral effects and transparency. Such a cured film can be formed by subjecting a coating film made of the above antibacterial/antiviral agent composition to a curing treatment after washing as necessary. The curing treatment may be selected depending on the curing component, and examples thereof include heat curing treatment by natural drying or heat drying, and curing treatment by active energy rays.
2.3.1 熱硬化処理
 加熱乾燥は、ループ式乾燥機、ネット式ドライヤー、オーブン、ヒートセッター等の公知の加熱乾燥装置を用いて行うことができる。
2.3.1 Heat Curing Treatment Heat drying can be performed using a known heat drying device such as a loop dryer, a net dryer, an oven, or a heat setter.
 自然乾燥又は加熱乾燥における処理温度としては、抗菌・抗ウイルス剤組成物に含まれる前記熱硬化成分に応じて適宜設定することができるが、5~190℃が好ましく、10~160℃がより好ましい。また、自然乾燥又は加熱乾燥における処理時間についても、抗菌・抗ウイルス剤組成物に含まれる前記熱硬化成分に応じて適宜設定することができるが、30秒~24時間が好ましく、1~30分間がより好ましい。 The treatment temperature in natural drying or heat drying can be appropriately set according to the thermosetting component contained in the antibacterial/antiviral agent composition, but is preferably 5 to 190°C, more preferably 10 to 160°C. . In addition, the treatment time for natural drying or heat drying can be appropriately set according to the thermosetting component contained in the antibacterial/antiviral agent composition, but is preferably 30 seconds to 24 hours, and 1 to 30 minutes. is more preferred.
 硬化膜の膜厚としては、目的とされる用途に応じて適宜決定することができるが、1μm以上が好ましく、3μm以上がより好ましく、5μm以上が特に好ましく、また、200μm以下が好ましく、100μm以下がより好ましく、50μm以下が特に好ましく、20μm以下が最も好ましい。硬化膜の膜厚が前記下限未満になると、硬化後の意匠性や機能性の発現が不十分となる場合があり、他方、前記上限を超えると、内部硬化性、三次元加工適性が不十分となる場合がある。 The thickness of the cured film can be appropriately determined according to the intended use, but is preferably 1 μm or more, more preferably 3 μm or more, particularly preferably 5 μm or more, and preferably 200 μm or less, and 100 μm or less. is more preferable, 50 μm or less is particularly preferable, and 20 μm or less is most preferable. If the thickness of the cured film is less than the lower limit, the design and functionality after curing may be insufficient. may be.
 上記の硬化膜を備える構造体は、基材と、前記基材の表面に配置された前記硬化膜からなる層とを備えるものである。この構造体は、優れた抗ウイルス性を有する。また、基材が透明性を有するものである場合には、透明性にも優れている。 The structure provided with the above cured film includes a substrate and a layer made of the cured film disposed on the surface of the substrate. This structure has excellent antiviral properties. Moreover, when the base material has transparency, the transparency is also excellent.
 構造体においては、前記硬化膜からなる層が前記基材の表面に直接配置されていてもよいし、前記硬化膜からなる層と前記基材との間に、前記硬化膜及び前記基材以外の他の層が更に配置されていてもよい。また、構造体においては、前記硬化膜からなる層と前記基材とからなる積層体の外側に、前記硬化膜及び前記基材以外の他の層が更に配置されていてもよい。 In the structure, the layer composed of the cured film may be directly disposed on the surface of the substrate, and between the layer composed of the cured film and the substrate, other than the cured film and the substrate other layers may be further arranged. In addition, in the structure, a layer other than the cured film and the base material may be further arranged outside the laminate composed of the layer composed of the cured film and the base material.
 このような硬化膜を備える構造体の製造方法としては、例えば、(1)前記基材上に、抗菌・抗ウイルス剤組成物からなる塗膜を含む全ての層を未硬化の状態で積層し、必要に応じて洗浄した後、自然乾燥又は加熱乾燥により硬化させる方法が挙げられる。複数の層を未硬化の状態で積層する方法としては、特に制限はないが、下層を未硬化の状態で形成した後、その上に上層を未硬化の状態で形成する逐次塗工法や、多重スリットを用いて2層以上の層を未硬化の状態で同時に形成する同時多層塗工法等の公知の塗工方法が挙げられる。また、構造体が前記硬化膜からなる層と他の層とを備えている場合(すなわち、複数の層を備えている場合)においては、(2)前記基材上に、下層を未硬化の状態で積層し、必要に応じて洗浄した後、自然乾燥又は加熱乾燥により硬化又は半硬化させ、さらに、その上に上層を未硬化の状態で積層し、再度、必要に応じて洗浄した後、自然乾燥又は加熱乾燥により硬化させる方法や、(3)離型フィルムやベースフィルムの上に、未硬化又は半硬化の状態で各層を形成し、これらの層を貼り合わせ、必要に応じて洗浄した後、自然乾燥又は加熱乾燥により硬化させる方法を採用してもよい。これらの方法のうち、層間密着性が向上するという観点から、前記方法(1)を採用することが好ましい。 As a method for producing a structure provided with such a cured film, for example, (1) all layers including a coating film made of an antibacterial/antiviral agent composition are laminated on the base material in an uncured state. , and a method of curing by natural drying or heat drying after washing as necessary. The method of laminating a plurality of layers in an uncured state is not particularly limited. Known coating methods such as a simultaneous multi-layer coating method in which two or more layers are simultaneously formed in an uncured state using a slit can be used. In addition, when the structure comprises a layer made of the cured film and other layers (that is, when comprising a plurality of layers), (2) an uncured lower layer is placed on the base material. After laminating in a state, washing as necessary, curing or semi-curing by natural drying or heat drying, further laminating the upper layer in an uncured state on it, washing again as necessary, A method of curing by natural drying or heat drying, or (3) forming each layer in an uncured or semi-cured state on a release film or a base film, bonding these layers, and washing as necessary. After that, a method of curing by natural drying or heat drying may be employed. Among these methods, the method (1) is preferably adopted from the viewpoint of improving the interlayer adhesion.
 硬化膜を有する構造体を製造する際の前記基材に対する前記抗菌・抗ウイルス剤組成物の付着量としては、特に制限はないが、硬化膜の硬度の低下が少なく、優れた抗ウイルス性が得られるという観点から、前記基材に対する抗菌・抗ウイルス剤(モノ/ジエステル又はその塩)の付着量が0.01g/m以上50g/m以下となる量が好ましく、0.02g/m以上25g/m以下となる量がより好ましい。また、優れた抗ウイルス性と優れた透明性及び部材に対する密着性とを兼ね備える硬化膜が得られるという観点から、前記基材に対する前記熱硬化成分の付着量が0.05g/m以上100g/m以下であることが好ましく、0.1g/m以上50g/m以下であることがより好ましい。 The amount of the antibacterial/antiviral agent composition attached to the base material when producing a structure having a cured film is not particularly limited, but the hardness of the cured film is less reduced, and excellent antiviral properties are obtained. From the viewpoint of obtaining the antibacterial/antiviral agent (mono/diester or its salt) on the substrate, the amount is preferably 0.01 g/m 2 or more and 50 g/m 2 or less, and is preferably 0.02 g/m A more preferable amount is 2 or more and 25 g/m 2 or less. In addition, from the viewpoint of obtaining a cured film having excellent antiviral properties, excellent transparency, and adhesion to members, the adhesion amount of the thermosetting component to the substrate is 0.05 g/m2 or more and 100 g/m2. It is preferably m 2 or less, more preferably 0.1 g/m 2 or more and 50 g/m 2 or less.
2.3.2 活性エネルギー線による硬化処理
 活性エネルギー線としては、赤外線、可視光線、紫外線、X線、電子線、α線、β線、γ線等が挙げられる。装置コストや生産性の観点から、電子線又は紫外線を利用することが好ましく、光源としては、電子線照射装置、超高圧水銀ランプ、高圧水銀ランプ、中圧水銀ランプ、低圧水銀ランプ、メタルハライドランプ、Arレーザー、He-Cdレーザー、固体レーザー、キセノンランプ、高周波誘導水銀ランプ、太陽光等が適している
 活性エネルギー線の照射量は、活性エネルギー線の種類に応じて適宜設定することができ、例えば、電子線照射で硬化する場合、その照射量としては1~10Mradが好ましい。また、紫外線照射の場合は50~1,000mJ/cmが好ましい。硬化時の雰囲気は、空気、窒素やアルゴン等の不活性ガスでもよい。また、フィルムやガラスと金属金型との間の密閉空間で照射してもよい。
2.3.2 Curing treatment with active energy rays Examples of active energy rays include infrared rays, visible rays, ultraviolet rays, X-rays, electron beams, α rays, β rays, and γ rays. From the viewpoint of equipment cost and productivity, it is preferable to use electron beams or ultraviolet rays. Ar laser, He-Cd laser, solid-state laser, xenon lamp, high-frequency induction mercury lamp, sunlight, etc. are suitable. When curing by electron beam irradiation, the irradiation dose is preferably 1 to 10 Mrad. In the case of ultraviolet irradiation, 50 to 1,000 mJ/cm 2 is preferable. The atmosphere during curing may be air or an inert gas such as nitrogen or argon. Alternatively, irradiation may be performed in a closed space between the film or glass and the metal mold.
 活性エネルギー線による硬化膜の膜厚としては、目的とされる用途に応じて適宜決定することができるが、1μm以上が好ましく、3μm以上がより好ましく、5μm以上が特に好ましく、また、200μm以下が好ましく、100μm以下がより好ましく、50μm以下が特に好ましく、20μm以下が最も好ましい。硬化膜の膜厚が前記下限未満になると、硬化後の意匠性や機能性の発現が不十分となる場合があり、他方、前記上限を超えると、内部硬化性、三次元加工適性が不十分となる場合がある。 The thickness of the film cured by the active energy ray can be appropriately determined depending on the intended use, but is preferably 1 μm or more, more preferably 3 μm or more, particularly preferably 5 μm or more, and 200 μm or less. It is preferably 100 μm or less, particularly preferably 50 μm or less, and most preferably 20 μm or less. If the thickness of the cured film is less than the lower limit, the design and functionality after curing may be insufficient. may be.
 構造体は、基材と、前記基材の表面に配置された前記硬化膜からなる層とを備えるものである。この構造体は、優れた抗ウイルス性及び抗ウイルス即効性を有するものである。また、部材が透明性を有するものである場合には、透明性にも優れている。 The structure comprises a substrate and a layer composed of the cured film arranged on the surface of the substrate. This structure has excellent antiviral and immediate antiviral properties. Moreover, when the member has transparency, the transparency is also excellent.
 構造体においては、前記硬化膜からなる層が前記基材の表面に直接配置されていてもよいし、前記硬化膜からなる層と前記基材との間に、前記硬化膜及び前記基材以外の他の層が更に配置されていてもよい。また、構造体においては、前記硬化膜からなる層と前記基材とからなる積層体の外側に、前記硬化膜及び前記基材以外の他の層が更に配置されていてもよい。 In the structure, the layer composed of the cured film may be directly disposed on the surface of the substrate, and between the layer composed of the cured film and the substrate, other than the cured film and the substrate other layers may be further arranged. In addition, in the structure, a layer other than the cured film and the base material may be further arranged outside the laminate composed of the layer composed of the cured film and the base material.
 このような活性エネルギー線による硬化膜を備える構造体の製造方法としては、例えば、(1)前記基材上に、上記の抗菌・抗ウイルス剤組成物からなる塗膜を含む全ての層を未硬化の状態で積層した後、活性エネルギー線を照射して硬化させる方法が挙げられる。複数の層を未硬化の状態で積層する方法としては、特に制限はないが、下層を未硬化の状態で形成した後、その上に上層を未硬化の状態で形成する逐次塗工法や、多重スリットを用いて2層以上の層を未硬化の状態で同時に形成する同時多層塗工法等の公知の塗工方法が挙げられる。また、構造体が前記硬化膜からなる層と他の層とを備えている場合(すなわち、複数の層を備えている場合)においては、(2)前記基材上に、下層を未硬化の状態で積層し、活性エネルギー線を照射して硬化又は半硬化させた後、その上に上層を未硬化の状態で積層し、再度活性エネルギー線を照射して硬化させる方法や、(3)離型フィルムやベースフィルムの上に、未硬化又は半硬化の状態で各層を形成し、これらの層を貼り合わせた後、活性エネルギー線を照射して硬化させる方法を採用してもよい。これらの方法のうち、層間密着性が向上するという観点から、前記方法(1)を採用することが好ましい。 As a method for producing a structure having a film cured by such an active energy ray, for example, (1) all layers including a coating film made of the above antibacterial/antiviral agent composition are uncoated on the base material. A method of curing by irradiating an active energy ray after lamination in a cured state can be mentioned. The method of laminating a plurality of layers in an uncured state is not particularly limited. Known coating methods such as a simultaneous multi-layer coating method in which two or more layers are simultaneously formed in an uncured state using a slit can be used. In addition, when the structure comprises a layer made of the cured film and other layers (that is, when comprising a plurality of layers), (2) an uncured lower layer is placed on the base material. After laminating in a state and curing or semi-curing by irradiation with active energy rays, the upper layer is laminated on it in an uncured state and cured by irradiation with active energy rays again; A method may also be adopted in which each layer is formed in an uncured or semi-cured state on the mold film or the base film, these layers are bonded together, and then cured by irradiation with active energy rays. Among these methods, the method (1) is preferably adopted from the viewpoint of improving the interlayer adhesion.
 活性エネルギー線による硬化膜を備える構造体の製造する際の前記基材に対する前記抗菌・抗ウイルス剤組成物の付着量としては、特に制限はないが、硬化膜の硬度の低下が少なく、優れた抗ウイルス性が得られるという観点から、前記部材に対する抗菌・抗ウイルス剤(モノ/ジエステル又はその塩)の付着量が0.01g/m以上20g/m以下となる量が好ましく、0.02g/m以上10g/m以下となる量がより好ましい。また、優れた抗ウイルス性と優れた透明性及び部材に対する密着性とを兼ね備える硬化膜が得られるという観点から、前記基材に対する活性エネルギー線硬化成分の付着量が0.05g/m以上50g/m以下であることが好ましく、0.1g/m以上20g/m以下であることがより好ましい。 The amount of the antibacterial/antiviral agent composition adhered to the base material when manufacturing a structure having a film cured by active energy rays is not particularly limited, but there is little decrease in the hardness of the cured film, and it is excellent. From the viewpoint of obtaining antiviral properties, the amount of the antibacterial/antiviral agent (mono/diester or salt thereof) attached to the member is preferably 0.01 g/m 2 or more and 20 g/m 2 or less. An amount of 02 g/m 2 or more and 10 g/m 2 or less is more preferable. In addition, from the viewpoint of obtaining a cured film having excellent antiviral properties, excellent transparency, and adhesion to members, the adhesion amount of the active energy ray-curable component to the substrate is 0.05 g/m 2 or more and 50 g. /m 2 or less, more preferably 0.1 g/m 2 or more and 20 g/m 2 or less.
3.抗菌・抗ウイルス性繊維製品及びその製造方法
 上記の構造体は、各種の製品として用いられるものであってもよい。上述の通り、本実施形態に係る抗菌・抗ウイルス剤組成物は、種々の形態により利用することができ、例えば、ウイルスと接触する可能性のある製品に担持させることにより、利用することができる。抗菌・抗ウイルス剤組成物を担持させることのできる製品としては、例えば、繊維製品や、繊維製品以外の製品(例えば、通気性シート、医療用器具、壁材等の内装材)が挙げられる。以下、構造体の一例として抗菌・抗ウイルス性繊維製品について詳細に説明する。
3. Antibacterial/Antiviral Textile Product and Manufacturing Method Thereof The structure may be used as various products. As described above, the antibacterial/antiviral agent composition according to the present embodiment can be used in various forms. For example, it can be used by carrying it on products that may come into contact with viruses. . Examples of products that can carry the antibacterial/antiviral agent composition include textile products and products other than textile products (eg, breathable sheets, medical instruments, and interior materials such as wall materials). An antibacterial/antiviral textile product will be described in detail below as an example of the structure.
3.1 繊維
 抗ウイルス性を付与する対象が繊維である場合、当該繊維の種類は特に限定されるものではなく、天然繊維であってもよいし化学繊維であってもよい。繊維の具体例としては、綿、麻、絹、羊毛等の天然繊維、レーヨン、アセテート等の半合成繊維、ポリアミド(ナイロン等)、ポリエステル、ポリウレタン、ポリプロピレン等の合成繊維、及びこれらの複合繊維、混紡繊維が挙げられる。ポリアミドとしてはナイロン6、ナイロン6,6等が挙げられる。ポリエステルとしてはポリエチレンテレフタレート、ポリトリメチレンテレフタレート、ポリ乳酸等が挙げられる。繊維は、糸、編物(交編を含む)、織物(交織を含む)、不織布、カーペット、紙、木材などの形態を採るものであってもよい。繊維は染色されたものであってもよい。繊維は、その表面に何らかの修飾処理が施されたものであってもよい。
3.1 Fibers When the object to be imparted with antiviral properties is a fiber, the type of the fiber is not particularly limited, and may be a natural fiber or a chemical fiber. Specific examples of fibers include natural fibers such as cotton, hemp, silk, and wool; semi-synthetic fibers such as rayon and acetate; synthetic fibers such as polyamide (nylon, etc.), polyester, polyurethane, and polypropylene; Blended fibers are mentioned. Polyamides include nylon 6, nylon 6,6 and the like. Examples of polyesters include polyethylene terephthalate, polytrimethylene terephthalate, and polylactic acid. The fibers may be in the form of yarn, knitted fabric (including mixed knit), woven fabric (including mixed weave), non-woven fabric, carpet, paper, wood, and the like. The fibers may be dyed. The fibers may have undergone some modification treatment on their surface.
3.2 付着量
 繊維に対する抗菌・抗ウイルス剤組成物の付着量は、特に限定されるものではない。例えば、繊維100質量部に対して抗菌・抗ウイルス剤(モノ/ジエステル又はその塩)が0.001~10質量部となるような付着量が好ましい。下限未満では抗ウイルス効果が低下する傾向にある。一方、上限を超える場合は、抗ウイルス性に係る効果が飽和する傾向にある。
3.2 Adhesion Amount The amount of the antibacterial/antiviral composition adhered to the fiber is not particularly limited. For example, the amount of the antibacterial/antiviral agent (mono/diester or its salt) is preferably 0.001 to 10 parts by mass per 100 parts by mass of the fiber. Below the lower limit, the antiviral effect tends to decrease. On the other hand, when the upper limit is exceeded, the antiviral effect tends to saturate.
3.3 組成物に含まれるその他の成分
 繊維製品に適用される場合、抗菌・抗ウイルス剤組成物は、水を含んでいてもよく、有機溶媒及び水を含んでいてもよい。また、抗菌・抗ウイルス剤組成物は、酸成分、アルカリ成分、キレート剤、防腐剤、メラミン樹脂、グリオキザール樹脂、イソシアネート化合物、消泡剤、撥水剤、柔軟剤等を含んでいてもよい。
3.3 Other Components Contained in the Composition When applied to textile products, the antibacterial/antiviral agent composition may contain water, or may contain an organic solvent and water. The antibacterial/antiviral agent composition may also contain an acid component, an alkaline component, a chelating agent, a preservative, a melamine resin, a glyoxal resin, an isocyanate compound, an antifoaming agent, a water repellent, a softening agent, and the like.
3.4 抗菌・抗ウイルス性繊維製品の製造方法
 抗菌・抗ウイルス性繊維製品の製造方法は、抗ウイルス性を付与する繊維に、上記の抗菌・抗ウイルス剤組成物を接触させること、を含む。繊維に上記の抗菌・抗ウイルス剤組成物を接触させる方法としては、特に限定されるものではない。例えば、抗菌・抗ウイルス剤組成物を含む処理液(溶液であってもよいし、分散液であってもよい)に対象物を接触させることで、当該対象物に当該抗菌・抗ウイルス剤組成物を付着させてもよい。処理液による処理を行うタイミングは特に限定されるものではない。
3.4 Method for producing antibacterial/antiviral textile products The method for producing antibacterial/antiviral textile products includes contacting the antibacterial/antiviral agent composition with the antibacterial/antiviral agent composition. . The method of bringing the antibacterial/antiviral agent composition into contact with the fiber is not particularly limited. For example, by bringing an object into contact with a treatment liquid (which may be a solution or a dispersion) containing an antibacterial/antiviral agent composition, the object is treated with the antibacterial/antiviral agent composition. You can attach things. The timing of performing the treatment with the treatment liquid is not particularly limited.
 処理液は、例えば、上記のモノ/ジエステル又はその塩を含むものであればよい。また、処理液は、酸成分、アルカリ成分、界面活性剤、キレート剤等のその他の成分を含んでいてもよい。処理液のpHは、特に限定されないが、例えば、2以上8以下であってもよい。耐久性を向上させたい場合には、抗菌・抗ウイルス剤組成物が含まれる処理液で対象物を処理する上述の工程において、メラミン樹脂、グリオキザール樹脂、イソシアネート化合物などを併用し、処理液を対象物に付着させてこれを加熱する工程を含む方法によって、対象物を処理することもできる。 The treatment liquid may contain, for example, the above mono/diester or a salt thereof. Moreover, the treatment liquid may contain other components such as an acid component, an alkali component, a surfactant, and a chelating agent. The pH of the treatment liquid is not particularly limited, but may be, for example, 2 or more and 8 or less. If you want to improve the durability, use melamine resin, glyoxal resin, isocyanate compound, etc. in combination in the above-mentioned process of treating the object with the treatment liquid containing the antibacterial / antiviral agent composition. The object can also be treated by a method that includes applying it to the object and heating it.
 処理液で対象物である繊維を処理する方法の具体例としては、パディング処理、浸漬処理、塗布処理(例えば、スプレー処理、インクジェット加工、泡加工及びコーティング処理等から選ばれる少なくとも1種の処理であってもよい)等が挙げられる。このときの処理液の濃度や付与後の熱処理等の処理条件は、その目的や性能等の諸条件を考慮して、適宜調整すればよい。処理液で対象物を処理した後は、余分な抗菌・抗ウイルス剤を除去するために、水洗等の洗浄処理を行ってもよい。また、処理液が水を含有する場合は、対象物に処理液を付着させた後に水を除去するために、乾燥処理を行ってもよい。乾燥方法としては、特に制限はなく、乾熱法、湿熱法のいずれであってもよい。乾燥温度や乾燥時間も特に制限されず、例えば、室温~200℃で10秒~数日間乾燥させればよい。40~130℃で20秒~60分がさらに好ましい。 Specific examples of the method of treating the fiber, which is the object, with the treatment liquid include padding treatment, immersion treatment, and coating treatment (for example, at least one treatment selected from spray treatment, inkjet treatment, bubble treatment, coating treatment, etc.). There may be) and the like. The concentration of the treatment liquid at this time and the treatment conditions such as heat treatment after application may be appropriately adjusted in consideration of various conditions such as the purpose and performance. After the object is treated with the treatment liquid, washing treatment such as washing with water may be performed in order to remove excess antibacterial/antiviral agent. Moreover, when the treatment liquid contains water, a drying treatment may be performed to remove the water after the treatment liquid is adhered to the object. The drying method is not particularly limited, and may be either a dry heat method or a wet heat method. The drying temperature and drying time are not particularly limited, either. For example, drying may be performed at room temperature to 200° C. for 10 seconds to several days. 20 seconds to 60 minutes at 40 to 130° C. is more preferable.
4.用途についての補足
 上述したように、本実施形態に係る抗菌・抗ウイルス剤組成物は、様々な分野に用いることができる。上記した繊維以外にも、例えば、以下の分野に用いることができる。
4. Supplementary Uses As described above, the antibacterial/antiviral agent composition according to the present embodiment can be used in various fields. In addition to the fibers described above, the fibers can be used in, for example, the following fields.
 本実施形態に係る抗菌・抗ウイルス剤組成物は、エラストマー、塗料、接着剤、床材、シーラント、医療用材料、人工皮革、コーティング剤等に広く用いることが可能であり、これらの用途において、多様な特性を発現させることができる。特に、人工皮革、合成皮革、医療用材料、床材、コーティング剤等の用途に、本実施形態に係る抗菌・抗ウイルス剤組成物を用いると、抗ウイルス性に加え、耐摩擦性、耐ブロッキング性に優れるため、引っ掻き等による傷がつきにくく、摩擦による劣化が少ないという良好な表面特性を付与することができる。 The antibacterial/antiviral agent composition according to the present embodiment can be widely used for elastomers, paints, adhesives, flooring materials, sealants, medical materials, artificial leather, coating agents, etc. In these applications, Various characteristics can be expressed. In particular, when the antibacterial/antiviral agent composition according to the present embodiment is used for applications such as artificial leather, synthetic leather, medical materials, flooring materials, and coating agents, in addition to antiviral properties, abrasion resistance and blocking resistance can be obtained. Because of its excellent toughness, it is possible to impart good surface properties such as being less likely to be scratched or the like and less likely to be deteriorated by friction.
 本実施形態に係る抗菌・抗ウイルス剤組成物は、熱可塑性エラストマーとしての用途にも適用できる。例えば、食品、医療分野で用いる空圧機器、塗装装置、分析機器、理化学機器、定量ポンプ、水処理機器、産業用ロボット等におけるチューブやホース類、スパイラルチューブ、消防ホース等に使用できる。また、丸ベルト、Vべルト、平ベルト等のベルトとして、各種伝動機構、紡績機械、荷造り機器、印刷機械等に用いることができる。さらに、履物のヒールトップや靴底、カップリング、パッキング、ポールジョイント、ブッシュ、歯車、ロール等の機器部品、スポーツ用品、レジャー用品、時計のベルト等に使用できる。また、オイルストッパー、ギアボックス、スペーサー、シャーシー部品、内装品、タイヤチェーン代替品等の自動車部品にも用いることができる。さらに、キーボードフィルム、自動車用フィルム等のフィルム、カールコード、ケーブルシース、ベロー、搬送ベルト、フレキシブルコンテナー、バインダー、合成皮革、ディピンイング製品、接着剤等に使用できる。 The antibacterial/antiviral agent composition according to this embodiment can also be used as a thermoplastic elastomer. For example, it can be used for tubes and hoses, spiral tubes, fire hoses, etc. in pneumatic equipment used in the food and medical fields, coating equipment, analytical equipment, physical and chemical equipment, metering pumps, water treatment equipment, industrial robots, and the like. In addition, it can be used as a belt such as a round belt, a V belt, a flat belt, etc. for various transmission mechanisms, spinning machines, packing machines, printing machines, and the like. Furthermore, it can be used for heel tops and soles of footwear, couplings, packings, pole joints, bushes, gears, machine parts such as rolls, sporting goods, leisure goods, watch belts, and the like. It can also be used for automotive parts such as oil stoppers, gearboxes, spacers, chassis parts, interior parts, and tire chain substitutes. Further, it can be used for films such as keyboard films and films for automobiles, curled cords, cable sheaths, bellows, conveyor belts, flexible containers, binders, synthetic leathers, dipping products, adhesives and the like.
 本実施形態に係る抗菌・抗ウイルス剤組成物は、楽器、仏壇、家具、化粧合板、スポーツ用品等の木材製品に適用できる。また、自動車補修用にも使用できる。 The antibacterial/antiviral agent composition according to this embodiment can be applied to wood products such as musical instruments, Buddhist altars, furniture, decorative plywood, and sporting goods. It can also be used for automobile repair.
 本実施形態に係る抗菌・抗ウイルス剤組成物は、例えば、プラスチックバンパー用塗料、ストリッパブルペイント、磁気テープ用コーティング剤、床タイル、床材、紙、木目印刷フィルム等のオーバープリントワニス、木材用ワニス、高加工用コイルコート、光ファイバー保護コーティング、ソルダーレジスト、金属印刷用トップコート、蒸着用ベースコート、食品缶用ホワイトコート等に適用できる。 The antibacterial/antiviral agent composition according to the present embodiment includes, for example, paints for plastic bumpers, strippable paints, coating agents for magnetic tapes, floor tiles, flooring materials, paper, overprint varnishes such as wood grain printed films, and wood. It can be applied to varnish, coil coat for high processing, optical fiber protective coating, solder resist, top coat for metal printing, base coat for vapor deposition, white coat for food cans, etc.
 本実施形態に係る抗菌・抗ウイルス剤組成物は、接着剤として、食品包装、靴、履物、磁気テープバインダー、化粧紙、木材、構造部材、液晶パネル内部のOCR材料等に適用できる。 The antibacterial/antiviral agent composition according to this embodiment can be applied as an adhesive to food packaging, shoes, footwear, magnetic tape binders, decorative paper, wood, structural members, OCR materials inside liquid crystal panels, and the like.
 本実施形態に係る抗菌・抗ウイルス剤組成物は、鉄、銅、アルミニウム、フェライト、メッキ鋼板等の金属材料、アクリル樹脂、ポリエステル樹脂、ABS樹脂、ポリアミド樹脂、ポリカーボネート樹脂、塩化ビニル樹脂等の樹脂材料、ガラス、セラミック等の無機材料を効率良く接着することができる。 The antibacterial/antiviral agent composition according to the present embodiment includes metal materials such as iron, copper, aluminum, ferrite, and plated steel sheets, and resins such as acrylic resins, polyester resins, ABS resins, polyamide resins, polycarbonate resins, and vinyl chloride resins. Inorganic materials such as materials, glass, and ceramics can be efficiently bonded.
 本実施形態に係る抗菌・抗ウイルス剤組成物は、バインダーとして、磁気記録媒体、インキ、鋳物、焼成煉瓦、グラフト材、マイクロカプセル、粒状肥料、粒状農薬、ポリマーセメントモルタル、レジンモルタル、ゴムチップバインダー、再生フォーム、ガラス繊維サイジング等に使用可能である。 The antibacterial/antiviral agent composition according to the present embodiment includes binders such as magnetic recording media, inks, castings, baked bricks, graft materials, microcapsules, granular fertilizers, granular pesticides, polymer cement mortar, resin mortar, rubber chip binders, It can be used for recycled foam, glass fiber sizing, etc.
 本実施形態に係る抗菌・抗ウイルス剤組成物は、シーラント・コーキングとして、コンクリート打ち壁、誘発目地、サッシ周り、壁式PC目地、ALC目地、ボード類目地、複合ガラス用シーラント、断熱サッシシーラント、自動車用シーラント等に使用できる。 The antibacterial/antiviral agent composition according to the present embodiment can be used as a sealant/caulk for concrete rammed walls, induced joints, around sashes, wall-type PC joints, ALC joints, board joints, composite glass sealants, and heat-insulating sash sealants. , automotive sealants, etc.
 本実施形態に係る抗菌・抗ウイルス剤組成物は、医療用材料としての使用が可能であり、血液適合材料として、チューブ、カテーテル、人工心臓、人工血管、人工弁等、また、使い捨て素材としてカテーテル、チューブ、バッグ、手術用手袋、人工腎臓ポッティング材料等に使用できる。 The antibacterial/antiviral agent composition according to this embodiment can be used as a medical material, such as tubes, catheters, artificial hearts, artificial blood vessels, artificial valves, etc. as blood compatible materials, and catheters as disposable materials. , tubes, bags, surgical gloves, artificial kidney potting materials, etc.
 本実施形態に係る抗菌・抗ウイルス剤組成物は、UV硬化型塗料、電子線硬化型塗料、フレキソ印刷版用の感光性樹脂組成物、光硬化型の光ファイバー被覆材組成物等の原料として用いることができる。 The antibacterial/antiviral agent composition according to the present embodiment is used as a raw material for UV curable coatings, electron beam curable coatings, photosensitive resin compositions for flexographic printing plates, photocurable optical fiber coating compositions, and the like. be able to.
 本実施形態に係る抗菌・抗ウイルス剤組成物において、上記のモノ/ジエステル又はその塩とともに水系の樹脂を用いる場合は、当該抗菌・抗ウイルス剤組成物は、特に、皮革(人工皮革、合成皮革)に対する抗ウイルス処理剤として好適に用いられる。また、本実施形態に係る抗菌・抗ウイルス剤組成物において、上記のモノ/ジエステル又はその塩とともに非水系の樹脂を用いる場合は、折り曲げ可能なフィルム等のフレキシブル材料のコーティング剤として使用することが好ましく、例えば、携帯電話、モニター、タブレット等のタッチパネル等の電子機器やメガネレンズ等の光学機器に有効に適用することができる。 In the antibacterial/antiviral agent composition according to the present embodiment, when a water-based resin is used together with the above mono/diester or salt thereof, the antibacterial/antiviral agent composition is particularly suitable for leather (artificial leather, synthetic leather ) as an antiviral treatment agent. In addition, in the antibacterial/antiviral agent composition according to the present embodiment, when a non-aqueous resin is used together with the above mono/diester or salt thereof, it can be used as a coating agent for flexible materials such as bendable films. Preferably, for example, it can be effectively applied to electronic devices such as touch panels of mobile phones, monitors, tablets, etc., and optical devices such as spectacle lenses.
5.抗菌・抗ウイルス剤組成物によるウイルス不活化方法
 本開示の技術は、抗菌・抗ウイルス剤組成物によるウイルス不活化方法としての側面も有する。例えば、本実施形態に係る抗菌・抗ウイルス剤組成物は、病院などの各病室、浴室、台所、トイレ等におけるドアノブ、ベッド柵、手すり等、床面、壁、天井、排水口、浴槽、シンク、便器、洗面台等や、食品工場等の各工場における、トイレ等におけるドアノブ、手すり等、床面、壁、天井、排水口、便器、洗面台等や各種製造装置の表面に対してウイルス不活化処理を施す場合にも使用できる。特に、病院等医療機関や食品工場における高頻度手指接触面等の使用に有用である。
5. Virus Inactivation Method Using Antibacterial/Antiviral Agent Composition The technology of the present disclosure also has an aspect as a virus inactivating method using an antibacterial/antiviral agent composition. For example, the antibacterial/antiviral agent composition according to the present embodiment can be applied to doorknobs, bed rails, handrails, floor surfaces, walls, ceilings, drains, bathtubs, and sinks in hospital rooms, bathrooms, kitchens, toilets, etc. , toilet bowls, washstands, etc., and doorknobs, handrails, etc. in toilets, floors, walls, ceilings, drains, toilet bowls, washstands, etc. in each factory such as food factories, and surfaces of various manufacturing equipment. It can also be used when performing an activation treatment. In particular, it is useful for use as a frequently touched finger surface in medical institutions such as hospitals and food factories.
 この場合、抗菌・抗ウイルス剤組成物には、キレート剤、防錆剤、消泡剤、防腐剤、界面活性剤、酸化防止剤、着色剤、消臭剤、芳香剤、酸成分、アルカリ成分等を配合することができる。 In this case, the antibacterial/antiviral agent composition includes a chelating agent, a rust inhibitor, an antifoaming agent, an antiseptic, a surfactant, an antioxidant, a coloring agent, a deodorant, a fragrance, an acid component, and an alkali component. etc. can be blended.
 また、この場合、抗菌・抗ウイルス剤組成物をそのまま使用してもよいが、当該組成物を水で希釈してそれを処理液として使用してもよい。この場合の水としては、水道水、井戸水、イオン交換水、又は蒸留水を好適に用いることができる。この場合、抗菌・抗ウイルス剤組成物におけるモノ/ジエステル又はその塩の濃度は、用途に応じて適宜調整可能である。 In this case, the antibacterial/antiviral agent composition may be used as it is, or the composition may be diluted with water and used as a treatment liquid. As water in this case, tap water, well water, ion-exchanged water, or distilled water can be suitably used. In this case, the concentration of the mono/diester or its salt in the antibacterial/antiviral agent composition can be appropriately adjusted depending on the application.
 本実施形態に係る抗菌・抗ウイルス剤組成物を用いたウイルス不活化方法は、当該組成物と、ウイルスの不活化処理を施したい器具などの対象物とを接触させる工程を含むものであれば特に限定されるものではない。処理すべき対象表面、及び機器等上にノズル等を備えた器具を用いて処理液を噴霧すること、処理すべき対象表面、及び機器を処理液で単純に湿潤又は浸漬させること、ワイプ等の基体に含浸させて清掃用物品として使用すること、並びに、機器の内部を循環させること等が挙げられる。また、処理する際の温度は、特に限定されるものではないが、抗ウイルス性、洗浄性、経済性の観点から10~60℃であることが好ましく、10~30℃がより好ましい。処理時間は、対象物の形状・大きさ、処理方法、処理条件に応じて変わり、特に限定されるものではない。 The virus inactivation method using the antibacterial/antiviral agent composition according to the present embodiment includes the step of contacting the composition with an object such as a device to be subjected to virus inactivation treatment. It is not particularly limited. Spraying the treatment liquid on the surface to be treated, equipment, etc. using a device equipped with a nozzle, etc., simply moistening or immersing the surface to be treated, equipment, etc. in the treatment liquid, wiping, etc. Examples include impregnating a substrate and using it as a cleaning article, circulating the inside of equipment, and the like. In addition, the temperature during the treatment is not particularly limited, but from the viewpoint of antiviral properties, washing properties, and economy, it is preferably 10 to 60°C, more preferably 10 to 30°C. The processing time varies depending on the shape/size of the object, the processing method, and the processing conditions, and is not particularly limited.
 以下、本発明について、実施例を示しつつさらに説明するが、本発明はこれらの実施例により何ら制限されるものではない。 The present invention will be further described below with reference to examples, but the present invention is not limited by these examples.
1.繊維に対する抗ウイルス処理
1.1 化合物A~C、E~Kの溶液の調製
 下記表1に示されるアルコールと、無水リン酸(五酸化二リン)とから調整したアルキルリン酸エステルに、水と下記表1に示される中和塩とを添加し、アルキルリン酸エステル塩が15質量%となるように調整した。均一な液体が得られない場合は、適宜有機溶剤を添加してアルキルリン酸エステル塩が15質量%となるように調整した。アルキル基や塩の種類については下記表1の通りである。
1. Antiviral treatment for textiles 1.1 Preparation of solutions of compounds A to C and E to K To an alkyl phosphate ester prepared from an alcohol shown in Table 1 below and phosphoric anhydride (diphosphorus pentoxide), water and A neutralized salt shown in Table 1 below was added to adjust the alkyl phosphate salt to 15% by mass. When a uniform liquid was not obtained, an organic solvent was added as appropriate to adjust the amount of the alkyl phosphate to 15% by mass. The types of alkyl groups and salts are shown in Table 1 below.
1.2 化合物Dの溶液の調製
 大八化学社製MP-10(有効成分濃度100質量%)に、水と下記表1に示される中和塩とを添加し、イソデシルリン酸エステルNa塩が15質量%となるように調整した。
1.2 Preparation of a solution of compound D To MP-10 manufactured by Daihachi Chemical Co., Ltd. (active ingredient concentration 100% by mass), water and a neutralized salt shown in Table 1 below are added, and isodecyl phosphate Na salt is 15. It was adjusted to be % by mass.
1.3 化合物Lの溶液の調製
 花王社製エマール2F-30(有効成分濃度30質量%)を水で50%に希釈して、有効成分濃度15質量%とした。
1.3 Preparation of Solution of Compound L Emal 2F-30 (active ingredient concentration: 30% by mass) manufactured by Kao Corporation was diluted to 50% with water to give an active ingredient concentration of 15% by mass.
1.4 化合物Mの用意
 東京化成工業株式会社製Tween80(有効成分濃度100質量%)を用いた。
1.4 Preparation of Compound M Tween 80 manufactured by Tokyo Chemical Industry Co., Ltd. (active ingredient concentration: 100% by mass) was used.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
1.5 処理液の調製
 上記の化合物A~Mの溶液の各々を下記表2に示される濃度にまで水で希釈して、実施例1~18、比較例1~5に係る処理液を得た。
1.5 Preparation of Treatment Liquid Each of the above solutions of Compounds A to M was diluted with water to the concentrations shown in Table 2 below to obtain treatment liquids for Examples 1 to 18 and Comparative Examples 1 to 5. rice field.
1.6 処理条件
 実施例1~13、比較例1~3:ポリエステルニット(目付120g/m、株式会社色染社製)を上記の各処理液に浸漬させ、絞り率110%にて処理し、次いで、130℃で2分間熱処理することで、抗ウイルス性を有する繊維製品を得た。
 実施例14、15:綿100%ニット(目付165g/m)を上記の各処理液に浸漬させ、絞り率90%にて処理し、次いで、130℃で2分間熱処理することで、抗ウイルス性を有する繊維製品を得た。
 実施例16:ウール100%織物(目付100g/m)を上記の処理液に浸漬させ、絞り率80%にて処理し、次いで、120℃で1分間熱処理することで、抗ウイルス性を有する繊維製品を得た。
 実施例17、比較例4:ポリプロピレン100%不織布(目付22g/m)を上記の各処理液に浸漬させ、絞り率100%にて処理し、次いで、100℃で1分間熱処理することで、抗ウイルス性を有する繊維製品を得た。
 実施例18、比較例5:ナイロン100%タイルカーペットを上記の各処理液に浸漬させ、絞り率120%にて処理し、次いで、150℃で4分間熱処理することで、抗ウイルス性を有する繊維製品を得た。
1.6 Treatment Conditions Examples 1 to 13, Comparative Examples 1 to 3: Polyester knit (weight per unit area: 120 g/m 2 , manufactured by Shikisen Co., Ltd.) was immersed in each of the above treatment solutions and treated at a drawing rate of 110%. and then heat-treated at 130° C. for 2 minutes to obtain a textile product having antiviral properties.
Examples 14 and 15: A 100% cotton knit (basis weight: 165 g/m 2 ) was immersed in each of the above treatment solutions, treated at a squeezing rate of 90%, and then heat-treated at 130 ° C. for 2 minutes to obtain an antiviral A textile product having properties was obtained.
Example 16: A 100% wool fabric (basis weight: 100 g/m 2 ) is immersed in the above treatment liquid, treated at a squeezing rate of 80%, and then heat-treated at 120 ° C. for 1 minute to have antiviral properties. A textile product was obtained.
Example 17, Comparative Example 4: A 100% polypropylene nonwoven fabric (basis weight: 22 g/m 2 ) was immersed in each of the above treatment solutions, treated at a drawing rate of 100%, and then heat-treated at 100°C for 1 minute, A textile product having antiviral properties was obtained.
Example 18, Comparative Example 5: A 100% nylon tile carpet is immersed in each of the above treatment solutions, treated at a drawing rate of 120%, and then heat-treated at 150 ° C. for 4 minutes to prepare fibers having antiviral properties. got the product.
1.7 抗ウイルス性の評価方法
 JIS L1922(2016)により抗ウイルス活性値を測定し、繊維製品の抗ウイルス性能を評価した。使用ウイルスとして、A型インフルエンザウイルス(H3N2) ATCC VR-1679を使用した。抗ウイルス活性値=log(Va)-log(Vc)として評価した。log(Va)はウイルス接種直後の無加工試料から回収したウイルス感染価の常用対数値であり、log(Vc)はウイルス2時間作用後の加工試料から回収したウイルス感染価の常用対数値である。活性値が高いものほど抗ウイルス性に優れる。尚、JISにおいては、抗ウイルス性の活性値が2.0以上の場合を効果ありとしているが、活性値2.0以下でもウイルスは減少する。本実施例では活性値が1.4でも抗ウイルス効果があるものと判定する。
1.7 Antiviral evaluation method The antiviral activity value was measured according to JIS L1922 (2016) to evaluate the antiviral performance of the textile product. As the virus used, influenza A virus (H3N2) ATCC VR-1679 was used. Antiviral activity value was evaluated as log(Va)-log(Vc). log(Va) is the common logarithm of the viral infectivity titer recovered from the unprocessed sample immediately after virus inoculation, and log(Vc) is the common logarithm of the viral infectivity titer recovered from the processed sample after 2 hours of virus action. . The higher the activity value, the better the antiviral properties. According to JIS, an antiviral activity value of 2.0 or more is considered to be effective, but viruses are reduced even if the activity value is 2.0 or less. In this example, it is determined that even an activity value of 1.4 has an antiviral effect.
1.8 抗菌性の評価方法
 JIS L1902(2015)定量試験(8.2菌液吸収法)により抗菌活性値を測定し、繊維製品の抗菌性能を評価した。使用菌として肺炎桿菌Klebsiella pneumoniae NBRC13277を用いた。活性値が高いものほど抗菌性に優れる。本実施例においては、抗菌活性値2.0以上である場合に抗菌性が良好であると判断した。
1.8 Antibacterial evaluation method The antibacterial activity value was measured by JIS L1902 (2015) quantitative test (8.2 bacterial liquid absorption method) to evaluate the antibacterial performance of the textile product. Klebsiella pneumoniae NBRC13277 was used as the bacterium used. The higher the activity value, the better the antibacterial properties. In this example, the antibacterial activity was judged to be good when the antibacterial activity value was 2.0 or more.
1.9 評価結果
 結果を下記表2に示す。
1.9 Evaluation Results Results are shown in Table 2 below.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 表2に示される結果から明らかなように、抗菌・抗ウイルス剤として炭素数9~18のアルキル基を有するリン酸エステルを使用した場合に、繊維製品に優れた抗菌性及び抗ウイルス性を付与することができる。また、分岐のアルキル基を有するリン酸エステルを使用した場合にも繊維製品に優れた抗菌性及び抗ウイルス性を付与することができる。また、炭素数8のアルキル基を有するリン酸エステルについては、処理液におけるリン酸エステルの濃度を高めることで、繊維製品に優れた抗菌性及び抗ウイルス性を付与することができる。 As is clear from the results shown in Table 2, when a phosphate ester having an alkyl group of 9 to 18 carbon atoms is used as an antibacterial/antiviral agent, it imparts excellent antibacterial and antiviral properties to textile products. can do. Also, when a phosphate ester having a branched alkyl group is used, it is possible to impart excellent antibacterial and antiviral properties to the textile product. Further, with respect to the phosphate ester having an alkyl group having 8 carbon atoms, by increasing the concentration of the phosphate ester in the treatment liquid, excellent antibacterial and antiviral properties can be imparted to the textile product.
2.皮革に対する抗ウイルス処理
2.1 化合物Aの溶液及び化合物Lの溶液の調製
 上記と同様にして、化合物A(イソデシルリン酸エステルNa)の溶液及び化合物L(ドデシル硫酸エステルNa)の溶液を得た。
2. Antiviral Treatment of Leather 2.1 Preparation of Compound A Solution and Compound L Solution A solution of compound A (isodecyl phosphate Na) and a solution of compound L (dodecyl sulfate Na) were obtained in the same manner as described above.
2.2 水系ポリウレタン樹脂の合成
 本実施例で用いた水系ポリウレタン樹脂は以下の通りである。尚、以下の水系ポリウレタン樹脂は、当該ポリウレタン樹脂の濃度が35質量%である乳化分散液(溶媒:水)を調製した後に、当該乳化分散液を、大気圧にて、20℃で12時間静置しても、分離や沈降が観察されないものであった。
2.2 Synthesis of water-based polyurethane resin Water-based polyurethane resins used in this example are as follows. The following water-based polyurethane resins were obtained by preparing an emulsified dispersion (solvent: water) having a concentration of 35% by mass of the polyurethane resin, and then standing the emulsified dispersion at atmospheric pressure at 20°C for 12 hours. Separation and sedimentation were not observed even when placed.
 攪拌機、還流冷却管、温度計及び窒素吹込み管を備えた4ツ口フラスコに、1,6-ヘキサンジオールポリカーボネートポリオール(分子量1,000)251.9部、DMPA(ジメチロールプロピオン酸)10.3部、1,4-BD(ブタンジオール)3.4部、溶媒としてメチルエチルケトン 114.5部を量り取り、均一に混合した後、ポリイソシアネートとしてとしてHDI(ヘキサメチレンジイソシアネート)77.0部を加え、80±5℃で180分間反応させ、イソシアネート基の含有量が1.68質量%である末端イソシアネート基含有ウレタンプレポリマーのメチルエチルケトン溶液を得た。その後60℃でトリエチルアミン7.3部を加え中和反応を行った。次に水643.2部を徐々に加えて攪拌し、前記末端イソシアネート基含有ウレタンプレポリマーを乳化分散させた。この乳化分散液に、ヒドラジン一水和物を9.2部及びジエチレントリアミン1.9部を水33.1部に溶解したポリアミン水溶液を添加し、40±5℃で90分間攪拌した後、減圧下に40℃で脱溶剤(脱メチルエチルケトン)を行い、得量:1kg、不揮発分35%の水系ポリウレタン樹脂組成物を得た。 251.9 parts of 1,6-hexanediol polycarbonate polyol (molecular weight 1,000), DMPA (dimethylolpropionic acid) 10.0 parts, are added to a four-necked flask equipped with a stirrer, reflux condenser, thermometer and nitrogen sparge. 3 parts, 3.4 parts of 1,4-BD (butanediol), and 114.5 parts of methyl ethyl ketone as a solvent are weighed and mixed uniformly, and then 77.0 parts of HDI (hexamethylene diisocyanate) as a polyisocyanate is added. , and 80±5° C. for 180 minutes to obtain a methyl ethyl ketone solution of a terminal isocyanate group-containing urethane prepolymer having an isocyanate group content of 1.68 mass %. After that, 7.3 parts of triethylamine was added at 60° C. to carry out a neutralization reaction. Next, 643.2 parts of water was gradually added and stirred to emulsify and disperse the terminal isocyanate group-containing urethane prepolymer. To this emulsified dispersion, a polyamine aqueous solution prepared by dissolving 9.2 parts of hydrazine monohydrate and 1.9 parts of diethylenetriamine in 33.1 parts of water was added, stirred at 40±5° C. for 90 minutes, and then under reduced pressure. Solvent removal (methyl ethyl ketone removal) was carried out at 40° C. to obtain an aqueous polyurethane resin composition having a yield of 1 kg and a non-volatile content of 35%.
2.3 水系アクリル樹脂の合成
 本実施例で用いたアクリル樹脂は以下の通りである。
2.3 Synthesis of water-based acrylic resin The acrylic resins used in this example are as follows.
 温度計、撹拌機、滴下装置、還流冷却管及び窒素導入管を備えた反応装置に、イオン交換水28部を秤量し、窒素を封入して内温を80℃まで昇温させた。そして、その温度に保ちながら、10%濃度の過硫酸アンモニウム水溶液2部を添加し、直ちに、別に準備しておいた、下記のようにして調製した単量体乳化物を連続的に4時間滴下して乳化重合した。上記で用いた単量体乳化物は、メタクリル酸メチル25部及びアクリル酸ブチル75部の単量体混合物に、ポリオキシエチレンアルキルエーテル硫酸ナトリウム(花王株式会社製、商品名:ラテムルE-118B)4部とイオン交換水30部を混合し、乳化することで調製した。また、この単量体乳化物の滴下に並行して、5%濃度の過硫酸アンモニウム水溶液4部を滴下した。滴下終了後、80℃で4時間熟成し、その後、室温まで冷却した。最後に、アンモニア水で中和し、水で調整して、不揮発分60%である水系アクリル樹脂組成物を得た。  Twenty-eight parts of ion-exchanged water was weighed into a reactor equipped with a thermometer, a stirrer, a dropping device, a reflux condenser, and a nitrogen introduction tube, and nitrogen was sealed to raise the internal temperature to 80°C. Then, while maintaining that temperature, 2 parts of a 10% concentration ammonium persulfate aqueous solution was added, and immediately, a separately prepared monomer emulsion prepared as described below was added dropwise continuously for 4 hours. was emulsion polymerized. The monomer emulsion used above is a monomer mixture of 25 parts of methyl methacrylate and 75 parts of butyl acrylate, and sodium polyoxyethylene alkyl ether sulfate (manufactured by Kao Corporation, trade name: Latemul E-118B). 4 parts and 30 parts of ion-exchanged water were mixed and emulsified. In parallel with the dropping of the monomer emulsion, 4 parts of a 5% concentration ammonium persulfate aqueous solution was dropped. After completion of dropping, the mixture was aged at 80° C. for 4 hours, and then cooled to room temperature. Finally, the mixture was neutralized with aqueous ammonia and adjusted with water to obtain a water-based acrylic resin composition having a non-volatile content of 60%.
2.4 抗菌・抗ウイルス剤組成物の調製
 上記の化合物Aの溶液又は化合物Lの溶液と、水系ポリウレタン樹脂組成物と、水系アクリル樹脂組成物と、その他の添加剤等とを、下記表3に示される質量比にて混合し、実施例1A、2A及び比較例1Aに係る抗菌・抗ウイルス剤組成物を得た。
2.4 Preparation of Antibacterial/Antiviral Agent Composition A solution of compound A or a solution of compound L, the water-based polyurethane resin composition, the water-based acrylic resin composition, other additives, etc., were prepared according to Table 3 below. were mixed at the mass ratio shown in , to obtain antibacterial/antiviral agent compositions according to Examples 1A, 2A and Comparative Example 1A.
2.5 表皮層形成用水性ポリウレタン樹脂組成物の調製
 水系ポリウレタン樹脂と、会合型増粘剤と、消泡剤とを、下記組成を有するように調液し、調液後、1日間25℃にて静置して表皮層形成用水性ポリウレタン樹脂組成物を得た。得られた組成物の粘度は3200mPa・s(BM型粘度計、4号ローター、60rpm)であった。
2.5 Preparation of Water-based Polyurethane Resin Composition for Forming Skin Layer A water-based polyurethane resin, an associative thickener, and an antifoaming agent were prepared so as to have the following composition. to obtain an aqueous polyurethane resin composition for forming a skin layer. The resulting composition had a viscosity of 3200 mPa·s (BM type viscometer, No. 4 rotor, 60 rpm).
(表皮層形成用水性ポリウレタン樹脂組成物の組成)
エバファノールHA-107C(日華化学株式会社製、水性ポリウレタン樹脂)100g
ネオステッカーN(日華化学株式会社製、会合型増粘剤)3g
NXH-6022(日華化学株式会社製、消泡剤)0.1g
(Composition of water-based polyurethane resin composition for forming skin layer)
Evaphanol HA-107C (manufactured by Nicca Chemical Co., Ltd., aqueous polyurethane resin) 100 g
Neosticker N (manufactured by Nicca Chemical Co., Ltd., associative thickener) 3 g
NXH-6022 (manufactured by Nicca Chemical Co., Ltd., antifoaming agent) 0.1 g
2.6 表皮層の作製
 離型紙(朝日ロール株式会社、アサヒリリースAR-148)上に、表皮層形成用水性ポリウレタン樹脂組成物を、乾燥後の膜厚が30μmとなるように塗布し、ピンテンターを用いて温度80℃で2分間乾燥させた後、さらに温度120℃で時間1分の条件で乾燥し、離型紙上に表皮層を形成した。次いで、表皮層上に、下記接着剤を乾燥後の厚さが50μmとなるよう塗布し、ピンテンターを用いて温度80℃で1分間乾燥し、更に温度110℃、時間1分の条件で乾燥した。乾燥後、直ちに、基材となるポリエステルニットと貼り合わせ、更にカレンダーを用いて温度150℃及び圧力30kg/cmの条件でラミネートを行った。その後、温度45℃及び湿度40%RHの条件に調整した恒温恒湿器中で2日熟成を行い、離型紙を剥がして皮革状積層体を得た。
2.6 Preparation of skin layer On release paper (Asahi Roll Co., Ltd., Asahi Release AR-148), the water-based polyurethane resin composition for skin layer formation is applied so that the film thickness after drying is 30 μm, and a pin tenter is applied. was dried at a temperature of 80° C. for 2 minutes, and further dried at a temperature of 120° C. for 1 minute to form a skin layer on the release paper. Next, the following adhesive was applied onto the skin layer so that the thickness after drying was 50 μm, dried using a pin tenter at a temperature of 80° C. for 1 minute, and further dried at a temperature of 110° C. for 1 minute. . Immediately after drying, it was laminated with a polyester knit as a substrate, and further laminated under the conditions of a temperature of 150° C. and a pressure of 30 kg/cm 2 using a calender. After that, aging was performed for 2 days in a constant temperature and humidity chamber adjusted to a temperature of 45° C. and a humidity of 40% RH, and the release paper was peeled off to obtain a leather-like laminate.
(接着剤の組成)
エバファノールHO-38(日華化学株式会社製、二液型水性ポリウレタン樹脂系接着剤の主剤)100g
バイヒジュール3100(住化バイエルウレタン株式会社製、架橋剤)10g
ネオステッカーN(日華化学株式会社、会合型増粘剤)1g
(Composition of adhesive)
Evaphanol HO-38 (manufactured by Nicca Chemical Co., Ltd., the main component of a two-component water-based polyurethane resin adhesive) 100 g
Bayhydur 3100 (manufactured by Sumika Bayer Urethane Co., Ltd., cross-linking agent) 10 g
1 g of Neosticker N (Nicca Chemical Co., Ltd., associative thickener)
2.7 皮革状積層体に対する抗菌・抗ウイルス剤組成物の固定化処理
 皮革状積層体の表面に、下記表3に示す各組成物を20g/mとなるよう均一に塗布した後、120℃で2分乾燥を行い、抗菌・抗ウイルス剤組成物の固定化処理を行った。
2.7 Immobilization Treatment of Antibacterial/Antiviral Agent Composition on Leather-Like Laminate Each composition shown in Table 3 below was uniformly applied to the surface of the leather-like laminate at 20 g/m 2 , and then 120 g/m 2 of each composition was applied. The antibacterial/antiviral agent composition was immobilized by drying at ℃ for 2 minutes.
2.8 抗ウイルス性の評価方法
 ISO21702:2019に準じて抗ウイルス活性値を測定し、抗菌・抗ウイルス剤組成物の固定処理後の皮革状積層体の抗ウイルス性能を評価した。使用ウイルスとして、A型インフルエンザウイルス(H3N2) ATCC VR-1679を使用した。抗ウイルス活性値R=(Ut-U0)-(At-U0)とした。U0は接種直後の未加工試料から回収したプラーク数の平均常用対数(PFU/cm)であり、Utは24時間後の未加工試料から回収したプラーク数の平均常用対数(PFU/cm)であり、Atは24時間後の加工処理した試料から回収したプラーク数の平均常用対数(PFU/cm)である。活性値が高いものほど抗ウイルス性に優れる。本実施例においては、抗ウイルス活性Rが1.5以上である場合に抗ウイルス性が良好であると判断した。
2.8 Evaluation method of antiviral property The antiviral activity value was measured according to ISO21702:2019, and the antiviral performance of the leather-like laminate after the antibacterial/antiviral agent composition was fixed was evaluated. As the virus used, influenza A virus (H3N2) ATCC VR-1679 was used. Antiviral activity value R=(Ut-U0)-(At-U0). U0 is the average common logarithm (PFU/cm 2 ) of the number of plaques recovered from the raw sample immediately after inoculation, and Ut is the average common logarithm (PFU/cm 2 ) of the number of plaques recovered from the raw sample after 24 hours. and At is the mean common logarithm (PFU/cm 2 ) of the number of plaques recovered from the processed samples after 24 hours. The higher the activity value, the better the antiviral properties. In this example, antiviral activity was judged to be good when the antiviral activity R was 1.5 or more.
2.9 抗菌性の評価方法
 JIS Z2801:2010により抗菌活性値を測定し、抗菌・抗ウイルス剤組成物の固定処理後の皮革状積層体の抗菌性能を評価した。使用菌として黄色ぶどう球菌Staphylococcus aureus NBRC12732を用いた。活性値が高いものほど抗菌性に優れる。本実施例においては、抗菌活性値2.0以上である場合に抗菌性が良好であると判断した。
2.9 Antibacterial evaluation method The antibacterial activity value was measured according to JIS Z2801:2010 to evaluate the antibacterial performance of the leather-like laminate after the antibacterial/antiviral agent composition was fixed. Staphylococcus aureus NBRC12732 was used as the bacterium. The higher the activity value, the better the antibacterial properties. In this example, the antibacterial activity was judged to be good when the antibacterial activity value was 2.0 or more.
2.10 評価結果
 結果を下記表3に示す。
2.10 Evaluation results The results are shown in Table 3 below.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 表3に示される結果から明らかなように、イソデシルリン酸エステルを含む実施例1A及び2Aによって処理された皮革状積層体は、イソデシルリン酸エステルに替えてドデシル硫酸エステルを含む比較例1Aによって処理された皮革状積層体と比べて、抗菌性及び抗ウイルス性に優れるものであった。 As is clear from the results shown in Table 3, leather laminates treated with Examples 1A and 2A containing isodecyl phosphate were treated with Comparative Example 1A containing dodecyl sulfate instead of isodecyl phosphate. It was superior in antibacterial and antiviral properties compared to the leather-like laminate.
3.抗ウイルススプレー
3.1 スプレー用組成物の調製
 下記表4に示されるように、実施例1B及び比較例1Bに係るスプレー用組成物として、化合物A(イソデシルリン酸エステルNa)の溶液と化合物L(ドデシル硫酸エステルNa)の溶液とを各々準備した。
3. Antiviral spray 3.1 Preparation of spray composition As shown in Table 4 below, the spray compositions according to Example 1B and Comparative Example 1B consisted of a solution of compound A (isodecyl phosphate ester Na) and compound L ( A solution of dodecyl sulfate (Na) was prepared respectively.
3.2 スプレー処理方法
 100μm厚のコロナ処理ポリエステルフィルム(東洋紡株式会社製「コスモシャインA4160」に抗菌・抗ウイルス剤組成物をスプレー噴霧し(0.012g/cm)、自然乾燥後の抗ウイルス性を測定した。また、同様にスプレー噴霧した後に綿布で拭き取った試料の抗ウイルス性を測定することで耐久性を評価した。
3.2 Spray treatment method A 100 μm thick corona-treated polyester film (“Cosmoshine A4160” manufactured by Toyobo Co., Ltd.) was sprayed with an antibacterial/antiviral agent composition (0.012 g/cm 2 ), and the antiviral agent after natural drying was applied. In addition, durability was evaluated by measuring the antiviral properties of a sample wiped off with a cotton cloth after spraying in the same manner.
3.3 抗ウイルス性の評価方法
 ISO21702:2019に準じて抗ウイルス活性値を測定し、抗ウイルス剤組成物の固定処理後の皮革状積層体の抗ウイルス性能を評価した。使用ウイルスとして、A型インフルエンザウイルス(H3N2) ATCC VR-1679を使用した。抗ウイルス活性値R=(Ut-U0)-(At-U0)とした。U0は接種直後の未加工試料から回収したプラーク数の平均常用対数(PFU/cm)であり、Utは24時間後の未加工試料から回収したプラーク数の平均常用対数(PFU/cm)であり、Atは24時間後の加工処理した試料から回収したプラーク数の平均常用対数(PFU/cm)である。
3.3 Method for evaluating antiviral property The antiviral activity value was measured according to ISO21702:2019, and the antiviral performance of the leather-like laminate after the antiviral agent composition was fixed was evaluated. As the virus used, influenza A virus (H3N2) ATCC VR-1679 was used. Antiviral activity value R=(Ut-U0)-(At-U0). U0 is the average common logarithm (PFU/cm 2 ) of the number of plaques recovered from the raw sample immediately after inoculation, and Ut is the average common logarithm (PFU/cm 2 ) of the number of plaques recovered from the raw sample after 24 hours. and At is the mean common logarithm (PFU/cm 2 ) of the number of plaques recovered from the processed samples after 24 hours.
3.4 除菌性の評価
 除菌性の評価については、第十七改正日本薬局方における消毒法及び除染法を参考に実施した。以下の実験は25℃の環境下で行った。 
3.4 Evaluation of sterilization performance Evaluation of sterilization performance was performed with reference to the disinfection method and decontamination method in the 17th revision of the Japanese Pharmacopoeia. The following experiments were conducted in an environment of 25°C.
3.4.1 菌液の調製
 黄色ぶどう球菌(菌株NBRC13276)を用いて、以下の通りにして菌液を調製した。
  (1)所定の菌をソイビーン・カゼイン・ダイジェスト液体培地で37℃、24時間培養した。
  (2)培養後、pH7.4リン酸緩衝生理食塩水で10~10CFU/mlになるよう菌数を調製したものを菌液とした。
3.4.1 Preparation of Bacterial Solution Using Staphylococcus aureus (strain NBRC13276), a bacterial solution was prepared as follows.
(1) A given bacterium was cultured in a soybean-casein digest liquid medium at 37° C. for 24 hours.
(2) After culturing, the number of bacteria was adjusted to 10 7 to 10 9 CFU/ml with pH 7.4 phosphate-buffered saline to prepare a bacterial solution.
3.4.2 除菌性の評価方法 
 実施例1B又は比較例1Bに係るスプレー用組成物9.9mLに上記菌液0.1mLを添加して懸濁液とし、1分間接触させた。次に懸濁液1mLを中和液9mLに素早く投入して不活化を行った。ここで、上記中和液はLP希釈液「ダイゴ」(日本製薬株式会社製)6.5g(内訳:カゼインペプトン0.22g、レシチン0.15g、ポリソルベート804.33g、精製水1.8g)をpH7.2リン酸緩衝生理食塩水で1Lに希釈し、120℃、20分間オートクレーブ処理したものである。引き続いて、中和液にて10倍希釈を段階的に行い、希釈段階ごとに1mLを滅菌シャーレに取り、あらかじめ45℃以下に保温したソイビーン・カゼイン・ダイジェスト寒天培地で混和した。寒天培地の冷却固化後、37℃で24時間培養した後、発育したコロニー数をカウントし、懸濁液1mL当りの生菌数を算出した。
3.4.2 Evaluation method for sterilization
To 9.9 mL of the spray composition according to Example 1B or Comparative Example 1B, 0.1 mL of the bacterial solution was added to form a suspension, which was brought into contact with the suspension for 1 minute. Next, 1 mL of the suspension was quickly added to 9 mL of the neutralization solution for inactivation. Here, the neutralization solution is 6.5 g of LP dilution solution "Daigo" (manufactured by Nihon Pharmaceutical Co., Ltd.) (breakdown: casein peptone 0.22 g, lecithin 0.15 g, polysorbate 804.33 g, purified water 1.8 g). It was diluted to 1 L with pH 7.2 phosphate-buffered saline and autoclaved at 120° C. for 20 minutes. Subsequently, 10-fold dilution was carried out stepwise with a neutralizing solution, and 1 mL of each dilution step was placed in a sterilized petri dish and mixed with a soybean-casein-digest agar medium previously kept at 45°C or lower. After the agar medium was solidified by cooling, it was cultured at 37° C. for 24 hours, and the number of grown colonies was counted to calculate the number of viable bacteria per 1 mL of suspension.
 また、実施例1B又は比較例1Bに係るスプレー用組成物9.9mLの代わりに、生理食塩水9.9mLを用いて同じ操作を行ったものを対照操作として、対照操作後の生残菌数と、実施例1B又は比較例1Bの組成物に接触させた後の生残菌数との対数差を計算して除菌性能の指標とし、対数差3以上を良好とした。 In addition, instead of 9.9 mL of the spray composition according to Example 1B or Comparative Example 1B, the same operation was performed using 9.9 mL of physiological saline as a control operation, and the number of surviving bacteria after the control operation and the number of surviving bacteria after contact with the composition of Example 1B or Comparative Example 1B was calculated as an index of sterilization performance, and a logarithmic difference of 3 or more was considered good.
3.5 評価結果
 結果を下記表4に示す。表4に示される活性値が高いもの程、抗ウイルス性に優れる。本実施例においては、抗ウイルス活性Rが1.5以上である場合に抗ウイルス性が良好であると判断した。
3.5 Evaluation Results Results are shown in Table 4 below. The higher the activity value shown in Table 4, the better the antiviral properties. In this example, antiviral activity was judged to be good when the antiviral activity R was 1.5 or more.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 表4に示される結果から明らかなように、イソデシルリン酸エステルを含む実施例1Bに係る組成物は、イソデシルリン酸エステルに替えてドデシル硫酸エステルを含む比較例1Bに係る組成物よりも、優れた抗菌性(除菌性)及び抗ウイルス性を有し、且つ、耐久抗ウイルス性(拭き取り後の抗ウイルス性)にも優れるものであった。 As is clear from the results shown in Table 4, the composition according to Example 1B containing isodecyl phosphate is superior to the composition according to Comparative Example 1B containing dodecyl sulfate instead of isodecyl phosphate. It had antiviral properties (sterilizing properties) and antiviral properties, and was also excellent in durable antiviral properties (antiviral properties after wiping).
4.活性エネルギー硬化性(UV硬化性)樹脂を用いた非水系処理
4.1 化合物Nの調製
 上記表1に示されるアルコールと、無水リン酸(五酸化二リン)とから調整したアルキルリン酸エステルに、上記表1に示される中和塩を添加し、アルキルリン酸エステル塩が100質量%となるように調整した。アルキル基や塩の種類については上記表1の通りである。
4. Non-aqueous processing using active energy curable (UV curable) resins 4.1 Preparation of compound N , the neutralized salt shown in Table 1 above was added to adjust the alkyl phosphate salt to 100% by mass. The types of alkyl groups and salts are shown in Table 1 above.
4.2 化合物Oの準備
 化合物Oとして、花王社製エマール0(有効成分≧97%、ドデシル硫酸Na)を用意した。
4.2 Preparation of Compound O As compound O, Emal 0 (active ingredient≧97%, sodium dodecyl sulfate) manufactured by Kao Corporation was prepared.
4.3 ポリウレタン(メタ)アクリレート系オリゴマーの準備
 撹拌機、還流冷却管、温度計、窒素/酸素吹き込み管を備えた4ツ口フラスコに、原料ジオールとして3-メチル-1,5-ペンタンジオールと1,6-ヘキサンジオールを9/1(モル比)で用いたポリカーボネートポリオール(株式会社クラレ製「クラレポリオールC-1090」、数平均分子量:976、平均水酸基価:115mgKOH/g)62.8g、ポリイソシアネートとしてイソホロンジイソシアネート(エボニック・ジャパン株式会社製「VESTANAT IPDI」、数平均分子量:222)28.5g、メチルエチルケトン23.6g、ビスマストリス(2-エチルヘキサノアート)0.009gを加え、80~90℃でポリカーボネートポリオールを反応させた。反応の終了はNCO%を測定することにより確認した。
4.3 Preparation of Polyurethane (Meth)acrylate Oligomer 3-Methyl-1,5-pentanediol and Polycarbonate polyol using 1,6-hexanediol at 9/1 (molar ratio) (“Kuraray Polyol C-1090” manufactured by Kuraray Co., Ltd., number average molecular weight: 976, average hydroxyl value: 115 mgKOH/g) 62.8 g, 28.5 g of isophorone diisocyanate ("VESTANAT IPDI" manufactured by Evonik Japan Co., Ltd., number average molecular weight: 222) as a polyisocyanate, 23.6 g of methyl ethyl ketone, and 0.009 g of bismath tris (2-ethylhexanoate) were added, and 80- The polycarbonate polyol was reacted at 90°C. Completion of the reaction was confirmed by measuring NCO%.
4.4 ペンタエリスリトール・トリ/テトラアクリレートの準備
 東亜合成株式会社製「アロニックス306」を用いた。
4.4 Preparation of pentaerythritol tri/tetraacrylate "Aronix 306" manufactured by Toagosei Co., Ltd. was used.
4.5 光重合開始剤の準備
 光重合開始剤としてヒドロキシシクロヘキシルフェニルケトン(BASFジャパン株式会社製「Omnirad184」)を用いた。
4.5 Preparation of Photopolymerization Initiator Hydroxycyclohexylphenyl ketone (“Omnirad 184” manufactured by BASF Japan Ltd.) was used as a photopolymerization initiator.
4.6 抗菌・抗ウイルス剤組成物の調製
 抗菌・故ウイルス剤としてのリン酸モノ/ジエステルと、ポリウレタン(メタ)アクリレート系オリゴマーと、ペンタエリスリトール・トリ/テトラアクリレートと、光重合開始剤とを、下記表5に示される配合量で混合し、さらに、メチルエチルケトンを混合して、有効成分量(触媒と溶媒以外の成分量)が50質量%の抗菌・抗ウイルス剤組成物を調製した。なお、表5に示された配合量は各成分の固形分量に換算した値である。また、光重合開始剤の配合量は、前記有効成分100質量部に対して5.3質量部となる量とした。
4.6 Preparation of Antibacterial/Antiviral Agent Composition Phosphate mono/diester as an antibacterial/antiviral agent, polyurethane (meth)acrylate oligomer, pentaerythritol tri/tetraacrylate, and photopolymerization initiator. , and further mixed with methyl ethyl ketone to prepare an antibacterial/antiviral agent composition having an active ingredient amount (amount of ingredients other than catalyst and solvent) of 50% by mass. The blending amounts shown in Table 5 are values converted into the solid content of each component. Also, the amount of the photopolymerization initiator to be blended was set to 5.3 parts by mass with respect to 100 parts by mass of the active ingredient.
4.7 皮革状積層体に対する抗菌・抗ウイルス剤組成物の固定化処理
 皮革状積層体の表面に、下記表5に示す各組成物を20g/mとなるよう均一に塗布した後、120℃で2分乾燥を行い、抗菌・抗ウイルス剤組成物の固定化処理を行った。
4.7 Immobilization Treatment of Antibacterial/Antiviral Agent Composition on Leather-Like Laminate Each composition shown in Table 5 below was uniformly applied to the surface of the leather-like laminate at 20 g/m 2 , and then subjected to 120 g/m 2 . The antibacterial/antiviral agent composition was immobilized by drying at ℃ for 2 minutes.
4.8 抗ウイルス性の評価方法
 ISO21702:2019に準じて抗ウイルス活性値を測定し、抗菌・抗ウイルス剤組成物の固定処理後の皮革状積層体の抗ウイルス性能を評価した。使用ウイルスとして、A型インフルエンザウイルス(H3N2) ATCC VR-1679を使用した。抗ウイルス活性値R=(Ut-U0)-(At-U0)とした。U0は接種直後の未加工試料から回収したプラーク数の平均常用対数(PFU/cm)であり、Utは24時間後の未加工試料から回収したプラーク数の平均常用対数(PFU/cm)であり、Atは24時間後の加工処理した試料から回収したプラーク数の平均常用対数(PFU/cm)である。活性値が高いものほど抗ウイルス性に優れる。本実施例においては、抗ウイルス活性Rが1.5以上である場合に抗ウイルス性が良好であると判断した。
4.8 Antiviral Evaluation Method The antiviral activity value was measured according to ISO21702:2019, and the antiviral performance of the leather-like laminate after the antibacterial/antiviral agent composition was fixed was evaluated. As the virus used, influenza A virus (H3N2) ATCC VR-1679 was used. Antiviral activity value R=(Ut-U0)-(At-U0). U0 is the average common logarithm (PFU/cm 2 ) of the number of plaques recovered from the raw sample immediately after inoculation, and Ut is the average common logarithm (PFU/cm 2 ) of the number of plaques recovered from the raw sample after 24 hours. and At is the mean common logarithm (PFU/cm 2 ) of the number of plaques recovered from the processed samples after 24 hours. The higher the activity value, the better the antiviral properties. In this example, antiviral activity was judged to be good when the antiviral activity R was 1.5 or more.
4.9 抗菌性の評価方法
 JIS Z2801:2010により抗菌活性値を測定し、抗菌・抗ウイルス剤組成物の固定処理後の皮革状積層体の抗菌性能を評価した。使用菌として黄色ぶどう球菌Staphylococcus aureus NBRC12732を用いた。活性値が高いものほど抗菌性に優れる。本実施例においては、抗菌活性値2.0以上である場合に抗菌性が良好であると判断した。
4.9 Antibacterial evaluation method The antibacterial activity value was measured according to JIS Z2801:2010 to evaluate the antibacterial performance of the leather-like laminate after the antibacterial/antiviral agent composition was fixed. Staphylococcus aureus NBRC12732 was used as the bacterium. The higher the activity value, the better the antibacterial properties. In this example, the antibacterial activity was judged to be good when the antibacterial activity value was 2.0 or more.
4.10 評価結果
 結果を下記表5に示す。
4.10 Evaluation results The results are shown in Table 5 below.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 表5に示される結果から明らかなように、イソデシルリン酸エステルを含む実施例1Cに係る組成物は、抗菌・抗ウイルス剤を含まない比較例1Cに係る組成物や、イソデシルリン酸エステルに替えてドデシル硫酸エステルを含む比較例2Cに係る組成物よりも、皮革状積層体に対して優れた抗菌性及び抗ウイルス性を付与することができた。 As is clear from the results shown in Table 5, the composition according to Example 1C containing isodecyl phosphate is the composition according to Comparative Example 1C that does not contain an antibacterial/antiviral agent, and the composition according to Comparative Example 1C that does not contain an isodecyl phosphate. It was possible to impart superior antibacterial and antiviral properties to the leather-like laminate as compared with the composition according to Comparative Example 2C containing a sulfate ester.
5.熱硬化性樹脂を用いた非水系処理
5.1 化合物Nの調製及び化合物Oの準備
 上記の活性エネルギー硬化性(UV硬化性)樹脂を用いた非水系処理と同様に化合物Nを得た。また、上記と同様に、化合物Oとして、花王社製エマール0(有効成分≧97%、ドデシル硫酸Na)を用意した。
5. Non-Aqueous Processing with Thermoset Resins 5.1 Preparation of Compound N and Preparation of Compound O Compound N was obtained analogously to the non-aqueous processing with active energy curable (UV curable) resins described above. In addition, Emal 0 (active ingredient≧97%, sodium dodecyl sulfate) manufactured by Kao Corporation was prepared as compound O in the same manner as described above.
5.2 水酸基を有さないウレタン樹脂(1)の準備
 ラッカー型ウレタン樹脂(DIC株式会社製「バーノック16-411」、重量平均分子量:29796、ガラス転移点(Tg):20℃)を用いた。
5.2 Preparation of urethane resin (1) having no hydroxyl group A lacquer-type urethane resin ("Barnock 16-411" manufactured by DIC Corporation, weight average molecular weight: 29796, glass transition point (Tg): 20 ° C.) was used. .
5.3 水酸基を有するウレタン樹脂(2)の準備
 二液型ポリウレタン樹脂塗料用主剤(和信化学工業株式会社製「ポリウレックスエコV-HK500クリヤーP液」)を用いた。
5.3 Preparation of Urethane Resin (2) Having a Hydroxyl Group A two-component polyurethane resin paint main agent ("Polyurex Eco V-HK500 Clear P Liquid" manufactured by Wasin Kagaku Kogyo Co., Ltd.) was used.
5.4 水酸基含有アクリル樹脂の準備
 イソシアネート硬化型アクリル樹脂(DIC株式会社製「アクリディックA-811」、不揮発分:50%、水酸基価:14~20mgKOH/g、酸価:3~5mgKOH/g)を用いた。
5.4 Preparation of hydroxyl-containing acrylic resin Isocyanate-curable acrylic resin ("Acrydic A-811" manufactured by DIC Corporation, nonvolatile content: 50%, hydroxyl value: 14 to 20 mgKOH / g, acid value: 3 to 5 mgKOH / g ) was used.
5.5 水酸基含有ポリエステル樹脂の準備
 イソシアネート硬化型ポリエステル樹脂(DIC株式会社製「バーノックD-161」、不揮発分:100%、水酸基価:155~180mgKOH/g、酸価:max.4.5mgKOH/g)を用いた。
5.5 Preparation of hydroxyl-containing polyester resin Isocyanate-curable polyester resin ("Barnock D-161" manufactured by DIC Corporation, nonvolatile content: 100%, hydroxyl value: 155 to 180 mgKOH / g, acid value: max. 4.5 mgKOH / g) was used.
5.6 二液型ポリウレタン樹脂塗料用硬化剤の準備
 和信化学工業株式会社製「ポリウレックスエコV-HK500フラットクリヤー(1:1用)D液」を用いた。
5.6 Preparation of Curing Agent for Two-component Polyurethane Resin Paint "Polyurex Eco V-HK500 Flat Clear (for 1:1) D Liquid" manufactured by Wasin Chemical Industry Co., Ltd. was used.
5.7 HDI系イソシアヌレート型硬化剤
 イソシアヌレート型ヘキサメチレンジイソシアネート(旭化成株式会社製「デュラネートTPA-100」、粘度:1350mPa・s/25℃)を用いた。
5.7 HDI-based isocyanurate-type curing agent Isocyanurate-type hexamethylene diisocyanate (“Duranate TPA-100” manufactured by Asahi Kasei Corporation, viscosity: 1350 mPa·s/25° C.) was used.
5.8 抗菌・抗ウイルス剤組成物の調製
 上記の各成分を下記表6に示される配合量で配合し、さらに、酢酸ブチルを混合して、有効成分量(溶媒以外の成分量)が45質量%の抗菌・抗ウイルス剤組成物を調製した。なお、表6に示される配合量は各成分の固形分量に換算した値である。
5.8 Preparation of antibacterial/antiviral agent composition Each of the above components was blended in the amounts shown in Table 6 below, and butyl acetate was added to obtain an active ingredient amount (amount of ingredients other than the solvent) of 45 An antibacterial/antiviral agent composition of mass % was prepared. In addition, the compounding amount shown in Table 6 is the value converted into the solid content of each component.
5.9 ポリエステルフィルムに対する抗菌・抗ウイルス剤組成物の被覆処理
 得られた抗菌・抗ウイルス剤組成物を硬化膜厚が5μmとなるように100μm厚のコロナ処理ポリエステルフィルム(東洋紡株式会社製「コスモシャインA4160」)上に塗工し、得られた塗膜を80℃で12時間加熱して、前記ポリエステルフィルム上に硬化膜を備える積層体を得た。
5.9 Coating treatment of antibacterial/antiviral agent composition on polyester film The obtained antibacterial/antiviral agent composition was coated on a 100 μm-thick corona-treated polyester film (manufactured by Toyobo Co., Ltd. “Cosmo Shine A4160"), and the resulting coating film was heated at 80° C. for 12 hours to obtain a laminate comprising a cured film on the polyester film.
5.10 抗ウイルス性の評価方法
 ISO21702:2019に準じて抗ウイルス活性値を測定し、抗菌・抗ウイルス剤組成物で被覆処理後のポリエステルフィルムの抗ウイルス性能を評価した。使用ウイルスとして、A型インフルエンザウイルス(H3N2) ATCC VR-1679を使用した。抗ウイルス活性R=(Ut-U0)-(At-U0)とした。U0は接種直後の未加工試料から回収したプラーク数の平均常用対数(PFU/cm)であり、Utは24時間後の未加工試料から回収したプラーク数の平均常用対数(PFU/cm)であり、Atは24時間後の加工処理した試料から回収したプラーク数の平均常用対数(PFU/cm)である。
5.10 Evaluation method of antiviral property The antiviral activity value was measured according to ISO21702:2019, and the antiviral performance of the polyester film after coating treatment with the antibacterial/antiviral agent composition was evaluated. As the virus used, influenza A virus (H3N2) ATCC VR-1679 was used. Antiviral activity R=(Ut-U0)-(At-U0). U0 is the average common logarithm (PFU/cm 2 ) of the number of plaques recovered from the raw sample immediately after inoculation, and Ut is the average common logarithm (PFU/cm 2 ) of the number of plaques recovered from the raw sample after 24 hours. and At is the mean common logarithm (PFU/cm 2 ) of the number of plaques recovered from the processed samples after 24 hours.
5.11 評価結果
 結果を下記表6に示す。表6に示される活性値が高いもの程、抗ウイルス性に優れる。本実施例においては、抗ウイルス活性Rが1.5以上である場合に抗ウイルス性が良好であると判断した。
5.11 Evaluation results The results are shown in Table 6 below. The higher the activity value shown in Table 6, the better the antiviral properties. In this example, antiviral activity was judged to be good when the antiviral activity R was 1.5 or more.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 表6に示される結果から明らかなように、イソデシルリン酸エステルを含む実施例1D~4Dに係る組成物は、イソデシルリン酸エステルに替えてドデシル硫酸エステルを含む比較例1Dに係る組成物よりも、ポリエステルフィルムに対して優れた抗ウイルス性を付与することができた。 As is clear from the results shown in Table 6, the compositions according to Examples 1D to 4D containing isodecyl phosphate are more polyester than the composition according to Comparative Example 1D containing dodecyl sulfate instead of isodecyl phosphate. It was possible to impart excellent antiviral properties to the film.
6.まとめ
 以上の実施例の結果から、以下の抗菌・抗ウイルス剤組成物は、従来の抗菌・抗ウイルス剤組成物と比較して、優れた抗ウイルス性を発現可能といえる。
6. Conclusion From the results of the above Examples, it can be said that the following antibacterial/antiviral agent compositions can exhibit superior antiviral properties compared to conventional antibacterial/antiviral agent compositions.
 炭素数8~20のアルキル基を有するリン酸モノエステル又はその塩(上記一般式(A))と、炭素数8~20のアルキル基を有するリン酸ジエステル又はその塩(上記一般式(B))と、のうちの少なくとも一方を含む、抗菌・抗ウイルス剤組成物。 A phosphate monoester having an alkyl group having 8 to 20 carbon atoms or a salt thereof (general formula (A) above) and a phosphate diester having an alkyl group having 8 to 20 carbon atoms or a salt thereof (general formula (B) ) and/or antibacterial and antiviral composition.
 尚、一般的に、カチオン界面活性剤よりもアニオン界面活性剤のほうが、皮膚刺激性が低い傾向にある。この点、本開示の抗菌・抗ウイルス剤組成物は皮膚刺激性が低いという利点も有する。 In general, anionic surfactants tend to be less irritating to the skin than cationic surfactants. In this respect, the antibacterial/antiviral agent composition of the present disclosure also has the advantage of low skin irritation.

Claims (4)

  1.  下記一般式(1)で表されるリン酸モノエステル又はその塩と、
     下記一般式(2)で表されるリン酸ジエステル又はその塩と、
     の少なくとも一方を含む、抗菌・抗ウイルス剤組成物。
    Figure JPOXMLDOC01-appb-C000001
    Figure JPOXMLDOC01-appb-C000002
     式(1)及び(2)において、
     R、R及びRは、各々独立して、炭素数8~20のアルキル基であり、
     A、A及びAは、各々独立して、炭素数2~4のアルキレン基であり、
     x、y及びzは、各々独立して、0~10の整数である。
    Phosphate monoester represented by the following general formula (1) or a salt thereof,
    a phosphate diester represented by the following general formula (2) or a salt thereof;
    An antibacterial / antiviral agent composition comprising at least one of
    Figure JPOXMLDOC01-appb-C000001
    Figure JPOXMLDOC01-appb-C000002
    In formulas (1) and (2),
    R 1 , R 2 and R 3 are each independently an alkyl group having 8 to 20 carbon atoms,
    A 1 , A 2 and A 3 are each independently an alkylene group having 2 to 4 carbon atoms,
    x, y and z are each independently an integer of 0-10.
  2.  前記R、R及びRが、分岐を有する、
     請求項1に記載の抗菌・抗ウイルス剤組成物。
    wherein R 1 , R 2 and R 3 are branched;
    The antibacterial/antiviral agent composition according to claim 1.
  3.  基材と、
     請求項1又は2に記載の抗菌・抗ウイルス剤組成物と、
     を備える、抗菌・抗ウイルス性構造体。
    a base material;
    The antibacterial / antiviral agent composition according to claim 1 or 2,
    An antibacterial and antiviral structure with
  4.  請求項1又は2に記載の抗菌・抗ウイルス剤組成物を基材に接触させること、
     を含む、抗菌・抗ウイルス性構造体の製造方法。
    Contacting the antibacterial/antiviral agent composition according to claim 1 or 2 with a substrate,
    A method of making an antibacterial and antiviral structure comprising:
PCT/JP2022/029827 2021-08-05 2022-08-03 Antibacterial/antiviral agent composition, antibacterial/antiviral structure, and antibacterial/antiviral structure production method WO2023013687A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022550183A JP7265097B1 (en) 2021-08-05 2022-08-03 Antibacterial/Antiviral Agent Composition, Antibacterial/Antiviral Structure, and Method for Producing Antibacterial/Antiviral Structure
CN202280053983.8A CN117794373A (en) 2021-08-05 2022-08-03 Antibacterial/antiviral agent composition, antibacterial/antiviral structure, and method for producing antibacterial/antiviral structure
JP2022166426A JP2023024422A (en) 2021-08-05 2022-10-17 Antibacterial/antiviral agent composition, antibacterial/antiviral structure, and antibacterial/antiviral structure production method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-129260 2021-08-05
JP2021129260 2021-08-05

Publications (1)

Publication Number Publication Date
WO2023013687A1 true WO2023013687A1 (en) 2023-02-09

Family

ID=85155829

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/029827 WO2023013687A1 (en) 2021-08-05 2022-08-03 Antibacterial/antiviral agent composition, antibacterial/antiviral structure, and antibacterial/antiviral structure production method

Country Status (3)

Country Link
JP (2) JP7265097B1 (en)
CN (1) CN117794373A (en)
WO (1) WO2023013687A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61502058A (en) * 1984-10-09 1986-09-18 インタ−フエイス リサ−チ コ−ポレ−シヨン Microbicidal mixture and method for its production
JPH02504401A (en) * 1987-08-03 1990-12-13 インターフェイス リサーチ コーポレイション Microbicidal cleaning or disinfecting formulations and methods of making the same
JP2004532942A (en) * 2001-03-12 2004-10-28 キンバリー クラーク ワールドワイド インコーポレイテッド Antimicrobial composition
WO2006076334A1 (en) * 2005-01-11 2006-07-20 Clean Earth Technologies, Llc Peracid/ peroxide composition and use thereof as an anti-microbial and a photosensitizer
WO2011013494A1 (en) * 2009-07-30 2011-02-03 アーチ・ケミカルズ・ジャパン株式会社 Aqueous composition
WO2011080207A1 (en) * 2009-12-30 2011-07-07 Akzo Nobel Chemicals International B.V. The use of a phosphated 2-propylheptanol ethoxylate as a bioefficacy enhancer, and a composition containing the phosphated 2-propylheptanol ethoxylate

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63258812A (en) * 1987-04-16 1988-10-26 Sanyo Chem Ind Ltd Viral infection inhibitor for dental use
JPS63258811A (en) * 1987-04-16 1988-10-26 Sanyo Chem Ind Ltd Viral infection inhibitor for shaving or hairdressing
JPS63258802A (en) * 1987-04-16 1988-10-26 Sanyo Chem Ind Ltd Viral infection inhibitor for public bathhouse
JPS63264509A (en) * 1987-04-17 1988-11-01 Sanyo Chem Ind Ltd Virus infection inhibitor for eating house
JPS63264523A (en) * 1987-04-17 1988-11-01 Sanyo Chem Ind Ltd Impregnating and coating agent for preventing skin contact infection by virus
WO1993008807A1 (en) * 1991-10-28 1993-05-13 Fost Dennis L Phospholipid antimicrobial compositions

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61502058A (en) * 1984-10-09 1986-09-18 インタ−フエイス リサ−チ コ−ポレ−シヨン Microbicidal mixture and method for its production
JPH02504401A (en) * 1987-08-03 1990-12-13 インターフェイス リサーチ コーポレイション Microbicidal cleaning or disinfecting formulations and methods of making the same
JP2004532942A (en) * 2001-03-12 2004-10-28 キンバリー クラーク ワールドワイド インコーポレイテッド Antimicrobial composition
WO2006076334A1 (en) * 2005-01-11 2006-07-20 Clean Earth Technologies, Llc Peracid/ peroxide composition and use thereof as an anti-microbial and a photosensitizer
WO2011013494A1 (en) * 2009-07-30 2011-02-03 アーチ・ケミカルズ・ジャパン株式会社 Aqueous composition
WO2011080207A1 (en) * 2009-12-30 2011-07-07 Akzo Nobel Chemicals International B.V. The use of a phosphated 2-propylheptanol ethoxylate as a bioefficacy enhancer, and a composition containing the phosphated 2-propylheptanol ethoxylate

Also Published As

Publication number Publication date
CN117794373A (en) 2024-03-29
JP2023024422A (en) 2023-02-16
JP7265097B1 (en) 2023-04-25
JPWO2023013687A1 (en) 2023-02-09

Similar Documents

Publication Publication Date Title
TWI636102B (en) Coatings and laminates
TWI652309B (en) Image display device
JP7159051B2 (en) Dual cure soft touch coating
TWI647269B (en) Aqueous resin composition, laminated body using the same, and image display device
JP7187844B2 (en) Polycarbonate diol and aqueous polyurethane dispersion using the same
JP6123428B2 (en) Active energy ray-curable resin composition, cured film of the composition, and laminate having the cured film
CN110167991B (en) Polycarbonate diol, composition containing polycarbonate diol, method for producing polycarbonate diol, and polyurethane
JP6642737B2 (en) Aqueous resin composition, laminate using the same, optical film and image display device
JP6341062B2 (en) Polycarbonate diol and polyurethane and urethane (meth) acrylate using the same
KR101574702B1 (en) A weather resistant paint composition
JP2016186039A (en) Urethane (meth)acrylate oligomer
JP6243929B2 (en) Method for producing polyisocyanate composition
JP2013053249A (en) Film coating agent
JPWO2015170560A1 (en) Laminate and optical film
JP7265097B1 (en) Antibacterial/Antiviral Agent Composition, Antibacterial/Antiviral Structure, and Method for Producing Antibacterial/Antiviral Structure
JP6398535B2 (en) Aqueous resin composition, coating agent and article
WO2014157070A1 (en) Active-energy-ray-curable coating composition
JP2014231591A (en) Urethane (meth)acrylate oligomer, curable resin composition, cured product and laminate
JP2017186412A (en) Composite resin aqueous dispersion
JP2023002258A (en) Antibacterial/antiviral agent composition, and cured film and laminated structure using the same
JP2017186411A (en) Composite resin aqueous dispersion
JP6904076B2 (en) Polycarbonate diol, polyurethane using polycarbonate diol, and method for producing polycarbonate diol
JP2021107490A (en) Active energy ray curable polymer composition, cured film using the same, and laminate having the cured film, as well as manufacturing method for these
JP2019112627A (en) Active energy ray-curable resin composition, coating agent, and coating agent for precoat metal
JP2022190545A (en) Antimicrobial/antiviral agent composition, and cured film and laminate structure that employ the same

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022550183

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22853106

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE