WO2023013548A1 - Communication apparatus and communication control method - Google Patents

Communication apparatus and communication control method Download PDF

Info

Publication number
WO2023013548A1
WO2023013548A1 PCT/JP2022/029309 JP2022029309W WO2023013548A1 WO 2023013548 A1 WO2023013548 A1 WO 2023013548A1 JP 2022029309 W JP2022029309 W JP 2022029309W WO 2023013548 A1 WO2023013548 A1 WO 2023013548A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
pucch
frequency band
uplink
bwp
Prior art date
Application number
PCT/JP2022/029309
Other languages
French (fr)
Japanese (ja)
Inventor
大輝 前本
秀明 ▲高▼橋
Original Assignee
株式会社デンソー
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー, トヨタ自動車株式会社 filed Critical 株式会社デンソー
Publication of WO2023013548A1 publication Critical patent/WO2023013548A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/22Processing or transfer of terminal data, e.g. status or physical capabilities

Definitions

  • the present disclosure relates to communication devices and communication control methods used in mobile communication systems.
  • a communication device when a communication device performs uplink transmission in a first frequency band and then performs uplink transmission in a second frequency band different from the first frequency band, A guard period is created for changing the frequency band from the first frequency band to the second frequency band (see Non-Patent Document 1). Thereby, the communication device performs the switching operation in the guard period.
  • the length of the guard period is the length of the number of symbols defined in advance. Let the last symbol of the transmission and/or the last symbol of the second uplink transmission be the guard period.
  • a communication apparatus includes a communication unit that performs uplink transmission in a second frequency band different from the first frequency band after performing uplink transmission in a first frequency band, and a subcarrier interval used for the uplink transmission. and a control unit that determines the number of symbols for forming a guard period for changing the frequency band from the first frequency band to the second frequency band, based on:
  • a communication control method is a communication control method executed by a communication device, wherein after performing uplink transmission in a first frequency band, uplink transmission is performed in a second frequency band different from the first frequency band. and determining the number of symbols for forming a guard period for changing the frequency band from the first frequency band to the second frequency band based on the subcarrier interval used for the uplink transmission; Prepare.
  • FIG. 1 is a diagram showing the configuration of a mobile communication system according to an embodiment.
  • FIG. 2 is a diagram illustrating a configuration example of a protocol stack according to the embodiment;
  • FIG. 3 is a diagram illustrating the configuration of a UE according to the embodiment;
  • FIG. 4 is a diagram showing the configuration of a base station according to the embodiment.
  • FIG. 5 is a sequence diagram for explaining the first operation example of the mobile communication system according to the embodiment.
  • FIG. 6 is an explanatory diagram for explaining a first operation example of the mobile communication system according to the embodiment.
  • FIG. 7 is a sequence diagram for explaining a second operation example of the mobile communication system according to the embodiment.
  • FIG. 8 is an explanatory diagram for explaining a second operation example of the mobile communication system according to the embodiment.
  • the present disclosure provides a communication device and communication control that can generate an appropriate guard period when performing uplink transmission in a second frequency band different from the first frequency band after performing uplink transmission in the first frequency band.
  • One of the purposes is to provide a method.
  • the mobile communication system 1 is, for example, a system conforming to Technical Specifications (TS) of 3GPP (registered trademark; hereinafter the same) (3rd Generation Partnership Project).
  • TS Technical Specifications
  • 3GPP registered trademark; hereinafter the same
  • 3rd Generation Partnership Project 3rd Generation Partnership Project
  • NR New Radio
  • the mobile communication system 1 has a network 10 and a user equipment (UE) 100 that communicates with the network 10 .
  • the network 10 includes an NG-RAN (Next Generation Radio Access Network) 20, which is a 5G radio access network, and a 5GC (5G Core Network) 30, which is a 5G core network.
  • NG-RAN Next Generation Radio Access Network
  • 5G Core Network 5G Core Network
  • the UE 100 is an example of a communication device.
  • the UE 100 may be a mobile wireless communication device.
  • UE 100 may be a device used by a user.
  • the UE 100 is, for example, a portable device such as a mobile phone terminal such as a smart phone, a tablet terminal, a notebook PC, a communication module, or a communication card.
  • the UE 100 may be a vehicle (eg, car, train, etc.) or a device provided therein (eg, Vehicle UE).
  • the UE 100 may be a transport body other than a vehicle (eg, a ship, an airplane, a squadron, etc.) or a device provided thereon (eg, an Aerial UE).
  • the UE 100 may be a sensor or a device attached thereto.
  • UE 100 includes mobile station, mobile terminal, mobile device, mobile unit, subscriber station, subscriber terminal, subscriber device, subscriber unit, wireless station, wireless terminal, wireless device, wireless unit, remote station, remote terminal. , remote device, or remote unit.
  • a general UE (general communication device, general user device) 100A and a specific UE (specific communication device, specific user device) 100B having communication capacity reduced compared to the general UE 100A Assume two types of UEs.
  • the general UE 100A has advanced communication capabilities such as high-speed, large-capacity (enhanced mobile broadband: eMBB) and ultra-reliable and low-latency communications (URLLC), which are features of NR. Therefore, the general UE 100A has higher communication capability than the specific UE 100B.
  • the specific UE 100B is a UE with reduced device cost and complexity compared to the general UE 100A.
  • the specific UE 100B is a UE 100 having middle-range performance and price for IoT. For example, compared to the general UE 100A, the maximum bandwidth used for wireless communication is set narrower, and the number of receivers is smaller. . Note that the receiver is sometimes called a reception branch.
  • the specific UE 100B is sometimes called a Reduced capability NR device or a RedCap UE.
  • a general UE or a specific UE is also described, but the general UE or the specific UE in this embodiment is a UE. That is, the general UE in this embodiment may be replaced with a UE. Also, the specific UE in this embodiment may be replaced with a UE.
  • the specific UE 100B complies with the LPWA (Low Power Wide Area) standard, such as LTE Cat. (Long Term Evolution UE Category) 1/1bis, LTE Cat. M1 (LTE-M), LTE Cat. It may be possible to communicate at a communication speed equal to or higher than the communication speed specified by NB1 (NB-IoT).
  • the specific UE 100B may be able to communicate with a bandwidth equal to or greater than the bandwidth defined by the LPWA standard.
  • the specific UE 100B may have a limited bandwidth for communication compared to Rel-15 or Rel-16 UEs.
  • the maximum bandwidth (also referred to as UE maximum bandwidth) supported by a particular UE 100B may be 20 MHz.
  • the maximum bandwidth supported by the specific UE 100B may be 100 MHz.
  • the specific UE 100B may have only one receiver that receives radio signals.
  • the specific UE 100B may be, for example, a wearable device, a sensor device, or the like.
  • NG-RAN 20 includes multiple base stations 200 .
  • Each base station 200 manages at least one cell.
  • a cell constitutes the minimum unit of a communication area.
  • One cell belongs to one frequency (carrier frequency).
  • the term “cell” may represent a radio communication resource and may also represent a communication target of UE 100 .
  • Each base station 200 can perform radio communication with the UE 100 residing in its own cell.
  • the base station 200 communicates with the UE 100 using the RAN protocol stack. Details of the protocol stack will be described later.
  • Base stations 200 are also connected to other base stations 200 (which may be referred to as adjacent base stations) via Xn interfaces.
  • Base station 200 communicates with neighboring base stations via the Xn interface.
  • the base station 200 also provides NR user plane and control plane protocol termination towards the UE 100 and is connected to the 5GC 30 via the NG interface.
  • gNodeB gNodeB
  • the 5GC 30 includes a core network device 300.
  • the core network device 300 includes, for example, AMF (Access and Mobility Management Function) and/or UPF (User Plane Function).
  • AMF Access and Mobility Management Function
  • UPF User Plane Function
  • AMF performs mobility management of UE100.
  • UPF provides functions specialized for U-plane processing.
  • the AMF and UPF are connected with the base station 200 via the NG interface.
  • the protocol of the wireless section between the UE 100 and the base station 200 includes a physical (PHY) layer, a MAC (Medium Access Control) layer, an RLC (Radio Link Control) layer, a PDCP (Packet Data Convergence Protocol) layer, It has an RRC (Radio Resource Control) layer.
  • PHY physical
  • MAC Medium Access Control
  • RLC Radio Link Control
  • PDCP Packet Data Convergence Protocol
  • RRC Radio Resource Control
  • the PHY layer performs encoding/decoding, modulation/demodulation, antenna mapping/demapping, and resource mapping/demapping. Data and control information are transmitted between the PHY layer of the UE 100 and the PHY layer of the base station 200 via physical channels.
  • the MAC layer performs data priority control, retransmission processing by hybrid ARQ (HARQ: Hybrid Automatic Repeat reQuest), random access procedures, and the like. Data and control information are transmitted between the MAC layer of the UE 100 and the MAC layer of the base station 200 via transport channels.
  • the MAC layer of base station 200 includes a scheduler. The scheduler determines uplink and downlink transport formats (transport block size, modulation and coding scheme (MCS)) and allocation resources to the UE 100 .
  • MCS modulation and coding scheme
  • the RLC layer uses the functions of the MAC layer and PHY layer to transmit data to the RLC layer on the receiving side. Data and control information are transmitted between the RLC layer of the UE 100 and the RLC layer of the base station 200 via logical channels.
  • the PDCP layer performs header compression/decompression and encryption/decryption.
  • An SDAP (Service Data Adaptation Protocol) layer may be provided as an upper layer of the PDCP layer.
  • the SDAP (Service Data Adaptation Protocol) layer performs mapping between an IP flow, which is the unit of QoS (Quality of Service) control performed by the core network, and a radio bearer, which is the unit of AS (Access Stratum) QoS control.
  • the RRC layer controls logical channels, transport channels and physical channels according to radio bearer establishment, re-establishment and release.
  • RRC signaling for various settings is transmitted between the RRC layer of UE 100 and the RRC layer of base station 200 .
  • UE 100 When there is an RRC connection between the RRC of UE 100 and the RRC of base station 200, UE 100 is in the RRC connected state. If there is no RRC connection between the RRC of the UE 100 and the RRC of the base station 200, the UE 100 is in RRC idle state. When the RRC connection between the RRC of UE 100 and the RRC of base station 200 is suspended, UE 100 is in RRC inactive state.
  • the NAS layer located above the RRC layer in the UE 100 performs session management and mobility management for the UE 100.
  • NAS signaling is transmitted between the NAS layer of UE 100 and the NAS layer of core network device 300 .
  • the UE 100 has an application layer and the like in addition to the radio interface protocol.
  • Radio frame structure In 5G systems, downlink and uplink transmissions are organized within a radio frame of 10 ms duration.
  • a radio frame consists of 10 subframes.
  • one subframe may be 1 ms.
  • one subframe may consist of one or more slots.
  • the number of symbols forming one slot is 14 for normal CP (Cyclic Prefix) and 12 for extended CP.
  • the number of slots forming one subframe changes according to the set subcarrier interval.
  • the number of slots per subframe is 1 (i.e., 14 symbols), and if the subcarrier spacing is set to 30 kHz, the subframe If the number of slots per subframe is 2 (i.e. 28 symbols) and the subcarrier spacing is set to 60kHz, the number of slots per subframe is 4 (i.e. 56 symbols) and the subcarrier spacing is 120kHz. is set, the number of slots per subframe is 8 (ie, 128 symbols). Also, when 60 kHz is set as the subcarrier spacing for the extended CP, the number of slots per subframe is 4 (that is, 48 symbols).
  • the number of slots forming one subframe is determined based on the subcarrier spacing set by base station 200 . Also, based on the subcarrier spacing set by base station 200, the number of symbols forming one subframe is determined. That is, based on the subcarrier interval set by base station 200, the number of symbols forming a 1 ms subframe is determined, and the length of each symbol (length in the time direction) changes.
  • BWP bandwidth portion
  • the base station 200 configures one or more BWPs for the UE100.
  • the base station 200 can notify the UE 100 of the BWP used for communication with the base station 200 (that is, the active BWP) among one or more set BWPs.
  • the base station 200 can transmit to the UE 100 an identifier indicating the BWP to be activated when executing the setting, that is, the BWP that is first used in communication with the base station 200 .
  • an inactive BWP for controlling switching from an active BWP to a BWP that is not an active BWP (hereinafter referred to as an inactive BWP) and switching from an inactive BWP to an active BWP (so-called BWP switching), for example, a physical downlink control channel (e.g., downlink link assignment, uplink assignment), timer (ie bwp-InactivityTimer), RRC signaling, or MAC entity.
  • a physical downlink control channel e.g., downlink link assignment, uplink assignment
  • timer ie bwp-InactivityTimer
  • RRC signaling for controlling switching from an active BWP to a BWP that is not an active BWP
  • MAC entity for example, a physical downlink control channel (e.g., downlink link assignment, uplink assignment), timer (ie bwp-InactivityTimer), RRC signaling, or MAC entity.
  • communication in BWP means transmission on the uplink shared channel (UL-SCH: Uplink-Shared Channel) in the BWP, and random access channel (RACH: Random Access Channel) in the BWP.
  • UL-SCH Uplink-Shared Channel
  • RACH Random Access Channel
  • Transmission of the physical random access channel (PRACH: Physical RACH) opportunity is set), monitoring of the physical downlink control channel (PDCCH: Physical Downlink Control Channel) in the BWP, physical uplink control channel in the BWP ( PUCCH: Physical Uplink Control Channel) transmission (when PUCCH resource is configured), channel state information (CSI: Channel State Information) report for the BWP, and downlink shared channel (DL-SCH) in the BWP : Downlink-Shared Channel).
  • PUCCH Physical Downlink Control Channel
  • CSI Channel State Information
  • the UL-SCH is a transport channel and is mapped to a physical uplink shared channel (PUSCH: Physical Uplink Shared Channel).
  • PUSCH Physical Uplink Shared Channel
  • Data transmitted on the UL-SCH is also referred to as UL-SCH data.
  • UL-SCH is a transport channel and is mapped to a physical downlink shared channel (PDSCH: Physical Downlink Shared Channel).
  • PDSCH Physical Downlink Shared Channel
  • Data transmitted on the DL-SCH is also referred to as DL-SCH data.
  • DL-SCH data For example, it may correspond to DL-SCH data and downlink user data.
  • the PUCCH is used to transmit uplink control information.
  • the uplink control information includes HARQ-ACK (Hybrid Automatic Repeat Request), CSI, and/or SR (Scheduling Request).
  • HARQ-ACK includes positive acknowledgment or negative acknowledgment.
  • PUCCH is used to transmit HARQ-ACK for PDSCH (that is, DL-SCH (DL-SCH data, downlink user data)).
  • DL-SCH data and/or downlink user data are also referred to as downlink transport blocks.
  • the BWP includes an initial bandwidth portion (initial BWP) and a bandwidth portion dedicated to each UE 100 (dedicated BWP).
  • Initial BWP is used at least for initial access of UE 100 .
  • the initial BWP is commonly used for multiple UEs 100 .
  • the initial BWP is set using parameters common to multiple UEs 100 (cell-specific parameters).
  • the initial BWP includes an initial BWP for downlink communication (hereinafter referred to as initial downlink BWP (Initial DL BWP)) and an initial BWP for uplink communication (hereinafter referred to as initial uplink BWP (Initial UL BWP)).
  • initial downlink BWP Initial DL BWP
  • initial uplink BWP Initial UL BWP
  • the value of the identifier (ie, bwp-id) indicating each of the initial downlink BWP and the initial uplink BWP may be 0.
  • the UE 100 can identify the initial BWP (that is, the initial downlink BWP and the initial uplink BWP) using two methods.
  • the UE 100 identifies the initial BWP based on CORESET#0, which is set using information contained in the master information block (MIB) within the physical broadcast channel (PBCH).
  • the UE 100 identifies the initial BWP based on the location and bandwidth in the frequency domain that are set using information included in the system information block (SIB).
  • SIB system information block
  • UE 100 may apply the BWP identified by the first method to communication with base station 200, for example, until reception of message 4 in the random access procedure.
  • UE 100 may apply the BWP identified by the second method to communication with base station 200, for example, after receiving message 4 (Msg.4).
  • message 4 in the random access procedure may include an RRC setup message, an RRC resume message and/or an RRC (re)establishment message.
  • a dedicated BWP is set exclusively for the UE 100.
  • the dedicated BWP includes a dedicated BWP for downlink communication (hereinafter referred to as a dedicated downlink BWP (UE dedicated DL BWP)) and a dedicated BWP for uplink communication (hereinafter referred to as a dedicated uplink BWP (UE dedicated UL BWP)).
  • a dedicated downlink BWP UE dedicated DL BWP
  • UE dedicated uplink BWP UE dedicated UL BWP
  • the value of the identifier indicating each of the dedicated downlink BWP and the dedicated uplink BWP may be other than 0.
  • a dedicated BWP is configured based on information included in the RRC message (eg, information for BWP downlink (ie, BWP-Downlink) and information for uplink BWP (ie, BWP-Uplink)).
  • information for BWP downlink (ie, BWP-Downlink) and information for uplink BWP (ie, BWP-Uplink) For each of the information for downlink BWP and the information for dedicated uplink BWP, for example, information indicating the position and bandwidth in the frequency domain (eg, locationAndBadwidth), information indicating subcarrier spacing (eg, subcarrierSpacing), and extended size At least one of information indicating a click prefix (eg, cyclicPrefix) may be included.
  • a click prefix eg, cyclicPrefix
  • a resource block (RB) is defined as 12 consecutive subcarriers in the frequency domain.
  • RBs for example, common resource blocks (CRBs), physical resource blocks (PRBs), etc. are defined.
  • the common resource blocks are numbered in ascending order from 0 in the frequency domain with a subcarrier spacing setting ⁇ .
  • the physical resource blocks (PRBs) of the subcarrier spacing setting ⁇ are defined within the bandwidth portion and numbered from 0 to the following numbers (PRB numbers to be described later).
  • PRB numbers are also referred to as PRB indexes. That is, in this embodiment, the PRB number and the PRB index may be the same.
  • the UE 100 determines PUCCH resources in the initial uplink BWP based on predefined information.
  • the UE 100 has the first PUCCH configuration information and / or the second PUCCH configuration information (that is, holds) may include
  • the UE 100 does not have the first PUCCH configuration information and / or the second PUCCH configuration information (that is, does not hold) may contain.
  • the case where the UE 100 receives the first PUCCH configuration information but does not receive the second PUCCH configuration information will also be referred to as the first case.
  • the first PUCCH configuration information is PUCCH configuration common information (pucch-ConfigCommon). That is, the first PUCCH configuration information is a PUCCH cell-specific parameter.
  • the second PUCCH configuration information is PUCCH configuration information (PUCCH-Config). That is, the second PUCCH configuration information is the UE specific parameters of PUCCH.
  • an index (eg, an index from 0 to 15) is associated with each of a plurality of PUCCH resources (eg, 16 PUCCH resources), and by specifying the index using the first PUCCH configuration information, a certain one one PUCCH resource may be indicated.
  • each of the plurality of PUCCH resources may include at least one of the PUCCH format, the first symbol used for PUCCH, the period (number of symbols) used for PUCCH, the PRB offset, and the initial CS (cyclic shift) index. .
  • the UE 100 may determine the index by the following formula. Also, UE 100 determines a PUCCH resource based on the determined index.
  • the UE 100 may determine whether or not Equations 1 and 2 are satisfied.
  • UE 100 is provided with PUCCH resources by the PUCCH resource common information, and if one of Equation 1 and Equation 2 is satisfied, UE 100 determines the PRB index of the PUCCH resource hopping in the frequency direction. That is, UE 100 determines PRB indices of one or more PUCCH resources used for frequency hopping applied to PUCCH transmission.
  • UE 100 uses the following formula to calculate the PRB index of the PUCCH resource used for the first hop (first PUCCH resource) and the PUCCH resource used for the second hop (second PUCCH determine the PRB index of the resource);
  • the size of the initial uplink BWP in "Equation 5" may correspond to the size of the bandwidth portion i in "Equation 1". That is, the PRBs of the initial uplink BWP in "Formula 5" may correspond to the PRB numbers (indexes).
  • UE 100 uses the following formula to calculate the PRB index of the PUCCH resource used for the first hop (first PUCCH resource) and the PUCCH resource used for the second hop (second PUCCH determine the PRB index of the resource);
  • the UE 100 may determine the initial CS index within the initial CS index set by the following equation.
  • the UE 100 determines PUCCH resources based on the second PUCCH configuration information. That is, when receiving the second PUCCH configuration information, UE 100 may determine PUCCH resources based on the second PUCCH configuration information regardless of whether or not the first PUCCH configuration information is received.
  • the case where the UE 100 receives at least the second PUCCH configuration information (that is, has the second PUCCH configuration information) will also be referred to as the second case.
  • the second PUCCH configuration information includes PUCCH resource set information (PUCCH-ResourceSet), PUCCH resource identifier (pucch-ResourceId), starting PRB information (startingPRB), second hop PRB information (secondHopPRB), and intra-slot frequency hopping information.
  • PUCCH resource set information indicates a PUCCH resource set.
  • the PUCCH resource identifier indicates a PUCCH resource index.
  • a PUCCH resource set is associated with a PUCCH resource index.
  • the start PRB information indicates the first PRB index before frequency hopping or without frequency hopping.
  • the second hop PRB information indicates the first PRB index after frequency hopping.
  • the intra-slot frequency hopping information indicates whether intra-slot frequency hopping is enabled or disabled. That is, in the second case, the UE 100 may determine the PUCCH resource (PRB index of the PUCCH resource) to be applied for PUCCH transmission based on the start PRB information and/or the second hop PRB information.
  • the PUCCH resource PRB index of the PUCCH resource
  • multiple PUCCH resource sets may be configured for the UE 100.
  • UE 100 determines a PUCCH resource set to be used for PUCCH transmission based on PUCCH resource set information and a PUCCH resource identifier.
  • UE 100 determines the first PRB before frequency hopping or without frequency hopping (that is, the PRB index of the PUCCH resource) based on the starting PRB information.
  • UE 100 determines the first PRB after frequency hopping (that is, the PRB index of the PUCCH resource) based on the second-hop PRB information.
  • the UE 100 determines whether intra-slot frequency hopping is enabled or disabled based on the intra-slot frequency hopping information. That is, UE 100 performs intra-slot frequency hopping when intra-slot frequency hopping is enabled. Also, the UE 100 does not perform intra-slot frequency hopping when intra-slot frequency hopping is disabled.
  • the UE 100 may determine PUCCH resources using another method different from the method described above. For example, when receiving predetermined information (eg, useInterlace PUCCH-PUSCH), UE 100 may determine PUCCH resources by other methods.
  • predetermined information eg, useInterlace PUCCH-PUSCH
  • the UE 100 transmits PUCCH using the determined PUCCH resource.
  • UE 100 determines PRBs to which numbers corresponding to the determined indices of physical resource blocks (PRBs) are assigned as PRBs to be used for PUCCH transmission. That is, in the first case, UE 100 may perform PUCCH transmission with frequency hopping using PUCCH resources (eg, first PUCCH resource and second PUCCH resource) of the determined PRB index. Also, in the second case, the UE 100 uses the determined PUCCH resource of the PRB index (for example, the PUCCH resource determined based on the start PRB information and the PUCCH resource determined based on the second hop PRB information). may be used to perform PUCCH transmission with frequency hopping.
  • PRBs physical resource blocks
  • UE 100 includes communication unit 120 and control unit 140 .
  • the communication unit 120 performs wireless communication with the base station 200 by transmitting and receiving wireless signals to and from the base station 200 .
  • the communication unit 120 has at least one receiver 121 and at least one transmitter 122 .
  • the receiving section 121 and the transmitting section 122 may be configured including an antenna and an RF circuit.
  • An antenna converts a signal into radio waves and radiates the radio waves into space. Also, the antenna receives radio waves in space and converts the radio waves into signals.
  • the RF circuitry performs analog processing of signals transmitted and received through the antenna.
  • the RF circuitry may include high frequency filters, amplifiers, modulators, low pass filters, and the like.
  • the receiving unit 121 may be called a receiver (RX: Receiver).
  • the transmitter 122 may be referred to as a transmitter (TX).
  • TX transmitter
  • the number of receivers included in the communication unit 120 may be two to four.
  • the UE 100 is the specific UE 100B, the number of receivers included in the communication unit 120 may be one or two.
  • the control unit 140 performs various controls in the UE 100.
  • the control unit 140 controls communication with the base station 200 via the communication unit 120 .
  • the operation of the UE 100 which will be described later, may be an operation under the control of the control unit 140.
  • the control unit 140 may include at least one processor capable of executing programs and a memory storing the programs.
  • the processor may execute a program to operate the controller 140 .
  • Control unit 140 may include a digital signal processor that performs digital processing of signals transmitted and received through the antenna and RF circuitry.
  • the digital processing includes processing of the protocol stack of the RAN. Note that the memory stores programs executed by the processor, parameters related to the programs, and data related to the programs.
  • the memory may include at least one of ROM (Read Only Memory), EPROM (Erasable Programmable Read Only Memory), EEPROM (Electrically Erasable Programmable Read Only Memory), RAM (Random Access Memory), and flash memory. All or part of the memory may be included within the processor.
  • the communication unit 120 performs uplink transmission in the first frequency band and then performs uplink transmission in the second frequency band different from the first frequency band.
  • Control section 140 determines the number of symbols for forming a guard period for changing the frequency band from the first frequency band to the second frequency band, based on the subcarrier interval used for uplink transmission. Thereby, UE 100 can appropriately change the length of the guard period according to the subcarrier interval even if the subcarrier interval is not fixed. As a result, the UE 100 can generate an appropriate guard period when performing uplink transmission in the second frequency band different from the first frequency band after performing uplink transmission in the first frequency band.
  • the communication unit 120 may receive from the base station 200 information indicating the subcarrier spacing of the bandwidth portion that is part of the total bandwidth of the cell of the base station 200 .
  • Control section 140 may determine the number of symbols based on information indicating subcarrier intervals. Thereby, UE 100 can generate an appropriate guard period based on the subcarrier interval indicated by the information indicating the subcarrier interval received by base station 200 .
  • control unit 140 may determine the number of symbols based on the capability information indicating the capability of the UE 100. Depending on the capabilities of the UE 100, the time it takes to change the frequency (retuning or switching) may change. UE 100 can generate an appropriate guard period by determining the number of symbols based on its own capability.
  • the communication unit 120 may transmit the capability information to the base station 200 . This allows the base station 200 to grasp the number of symbols determined by the UE 100 as the length of the guard period. As a result, the base station 200 can grasp the period during which the UE 100 does not perform uplink transmission.
  • control unit 140 may determine the number of symbols based on the combination of the channel used for uplink transmission in the first frequency band and the channel used for uplink transmission in the second frequency band. Depending on the combination of the channel used for uplink transmission in the first frequency band and the channel used for uplink transmission in the second frequency band, the time required for frequency change (retuning or switching) may vary. UE 100 can generate an appropriate guard period by determining the number of symbols based on the combination of channels.
  • the operation of the functional unit (specifically, at least one of the communication unit 120 and the control unit 140) included in the UE 100 may be described as the operation of the UE 100.
  • the base station 200 has a radio communication section 220 , a network communication section 230 and a control section 240 .
  • the wireless communication unit 220 communicates with the UE 100 via the antenna.
  • the radio communication unit 220 has a receiving unit 221 and a transmitting unit 222 .
  • the receiving section 221 converts a radio signal received by the antenna into a received signal that is a baseband signal, performs signal processing on the received signal, and outputs the received signal to the control section 240 .
  • the transmission unit 222 performs signal processing on a transmission signal, which is a baseband signal output from the control unit 240, converts the signal into a radio signal, and transmits the radio signal from an antenna.
  • the network communication unit 230 transmits and receives signals to and from the network.
  • the network communication unit 230 receives signals from adjacent base stations connected via an Xn interface, which is an interface between base stations, and transmits signals to the adjacent base stations. Also, the network communication unit 230 receives a signal from the core network device 300 connected via the NG interface, for example, and transmits the signal to the core network device 300 .
  • the control unit 240 performs various controls in the base station 200.
  • the control unit 240 controls communication with the UE 100 via the radio communication unit 220, for example.
  • the control unit 240 also controls communication with nodes (for example, adjacent base stations, core network device 300) via the network communication unit 230, for example. Operations of the base station 200 described later may be operations under the control of the control unit 240 .
  • the control unit 240 may include at least one processor capable of executing a program and a memory that stores the program.
  • the processor may execute a program to operate the controller 240 .
  • Control unit 240 may include a digital signal processor that performs digital processing of signals transmitted and received through the antenna and RF circuitry.
  • the digital processing includes processing of the protocol stack of the RAN.
  • the memory stores programs executed by the processor, parameters related to the programs, and data related to the programs. All or part of the memory may be included within the processor.
  • the operation of the functional units (specifically, at least one of the wireless communication unit 220 (receiving unit 221 and/or transmitting unit 222), the network communication unit 230, and the control unit 240) included in the base station 200 is , may be described as operations of the base station 200 .
  • the UE 100 may be in the RRC idle state or RRC inactive state between the UE 100 and the base station 200.
  • the UE 100 may be in the state in the first case.
  • the UE 100 may be performing initial access.
  • the UE 100 may be in a state before receiving the RRC setup message, RRC resume message, and/or RRC (re)establishment message.
  • UE 100 may send a HARQ-ACK for message 4 (ie PDSCH) in the random access procedure.
  • Step S101 The radio communication unit 220 (transmitting unit 222 ) of the base station 200 transmits common setting information including common parameters for uplink transmission to the UE 100 .
  • the communication unit 120 of the UE 100 receives common setting information from the base station 200 .
  • the wireless communication unit 220 broadcasts the common setting information.
  • the wireless communication unit 220 may, for example, transmit a system information block (eg, SIB1) including common setting information. That is, the common configuration information may be cell-specific parameters.
  • SIB1 system information block
  • the common configuration information may be cell-specific parameters.
  • the common configuration information may be configuration information (specifically, UplinkConfigCommonSIB) for providing common uplink parameters for cells.
  • Common configuration information may include bandwidth portion information for specifying a bandwidth portion for uplink transmission (uplink BWP).
  • the bandwidth portion information may be information for specifying an initial bandwidth portion for uplink transmission (initial uplink BWP).
  • the initial upstream BWP will also be referred to as upstream BWP for the sake of simplicity. That is, in this embodiment, the upstream BWP may be replaced with the initial upstream BWP.
  • the bandwidth portion information may include first bandwidth portion information (hereinafter also referred to as first information) used to set the first bandwidth portion. Also, the bandwidth portion information may include second bandwidth portion information (hereinafter referred to as second information) used to set the second bandwidth portion. Also, the bandwidth portion information may include third bandwidth portion information (hereinafter referred to as third information) used to set the third bandwidth portion.
  • first information bandwidth portion information
  • second information bandwidth portion information
  • third information bandwidth portion information
  • the first bandwidth portion may correspond to the first upstream BWP and the second bandwidth portion may correspond to the second upstream BWP.
  • the first bandwidth portion and/or the second bandwidth portion may be uplink BWP used for a specific UE 100B.
  • the first bandwidth portion configured using the first information may be the initial uplink BWP used for the specific UE 100B.
  • the second bandwidth part may be an uplink BWP used by the specific UE 100B to determine PUCCH resources (that is, PRB indexes of PUCCH resources) for transmission of uplink control information. That is, the first information may be used to identify an uplink BWP (eg, initial uplink BWP) and the second information may be used to determine PUCCH resources.
  • the first information may include information indicating frequency location and/or size (also referred to as locationAndBandwidth). This allows the first information to indicate at least one of frequency position and size.
  • the first information may also include information indicating subcarrier spacing (also referred to as subcarrierSpacing).
  • the UE 100 may identify the first bandwidth portion based on information included in the first information. That is, the first information may include information for identifying the first bandwidth portion.
  • the first bandwidth portion may be the initial upstream BWP.
  • the second information may include information indicating the frequency position and/or size (also referred to as locationAndBandwidth). Thereby, the second information can indicate at least one of frequency position and size.
  • the second information may also include information indicating subcarrier spacing (also referred to as subcarrierSpacing).
  • the UE 100 may identify the second bandwidth portion based on information included in the second information. That is, the second information may include information for identifying the second bandwidth portion.
  • the third bandwidth portion may correspond to the third upstream BWP.
  • the third bandwidth portion may be uplink BWP used at least for general UE 100A.
  • the third bandwidth portion configured using the third information may be the initial uplink BWP used at least for the general UE 100A. That is, the third information may be used to identify the uplink BWP (eg, initial uplink BWP).
  • the third bandwidth part may be an uplink BWP used by the specific UE 100B to determine PUCCH resources (that is, PRB indexes of PUCCH resources) for transmission of uplink control information. That is, the third information may be used to determine PUCCH resources.
  • the third information may include information indicating frequency location and/or size (also referred to as locationAndBandwidth).
  • the third information may also include information indicating subcarrier spacing (also referred to as subcarrierSpacing).
  • the UE 100 may identify the third bandwidth portion based on information included in the third information. That is, the third information may include information for identifying the third bandwidth portion.
  • UE 100 may determine PUCCH resources based on the second information or the third information. For example, when the second information is configured, UE 100 may determine PUCCH resources based on the second information. Also, when the third information is configured and the second information is not configured, the UE 100 may determine PUCCH resources based on the third information. As an example, when the second information is not configured, the specific UE 100B may determine PUCCH resources based on the third information configured for the general UE 100A. That is, the specific UE 100B, if the second bandwidth portion used to determine the PUCCH resource is not configured, PUCCH based on the initial uplink BWP (that is, the third bandwidth portion) used for the general UE 100A resource may be determined.
  • the initial uplink BWP that is, the third bandwidth portion
  • the first information (and/or the first bandwidth portion) and the second information (and/or the second bandwidth portion) are used for description.
  • the second information (and/or the second bandwidth portion) may be replaced by the third information (and/or the third bandwidth portion).
  • UE 100 may determine PUCCH resources used for frequency hopping applied to PUCCH transmission based on the second information. For example, UE 100 may determine PUCCH resources used for frequency hopping applied to PUCCH transmission, based on frequency positions and/or sizes configured based on the second information. Also, UE 100 may determine PUCCH resources used for frequency hopping applied to PUCCH transmission, based on subcarrier intervals configured based on the second information.
  • the UE 100 may determine PUCCH resources by using any one or more of the above “math 1" to "math 7". For example, the UE 100 may use the subcarrier spacing set based on the second information as the setting ⁇ of the subcarrier spacing in "Formula 1" and/or "Formula 2". Also, the UE 100 may use the frequency position and/or size set based on the second information as the size of the bandwidth portion i in "Formula 1" and/or “Formula 2". Also, the UE 100 may use the frequency position and/or size set based on the second information as the size of the initial uplink BWP in "Formula 5" and/or "Formula 6".
  • the UE 100 identifies the first bandwidth portion (eg, initial uplink BWP) based on the first information, and the frequency applied to PUCCH transmission based on the second information.
  • a PUCCH resource used for hopping may be determined.
  • UE 100 may perform PUCCH transmission with frequency hopping using PUCCH resources determined based on the second information.
  • the common configuration information is information for indicating the position of the center frequency of the (assumed) uplink BWP used to determine the PUCCH resource (that is, the PRB index of the PUCCH resource) (hereinafter, also referred to as fourth information described).
  • the UE 100 may assume (specify) an uplink BWP (for example, the frequency position of the uplink BWP) based on the fourth information, and determine PUCCH resources from the assumed uplink BWP.
  • the fourth information includes information for indicating the positions of a plurality of center frequencies (for example, the position of the first center frequency and the position of the second center frequency) with respect to the assumed uplink BWP. good too.
  • the location of the first center frequency may be used to determine the first PUCCH resource
  • the location of the second center frequency may be used to determine the second PUCCH resource. That is, UE 100 may determine PUCCH resources used for frequency hopping applied to PUCCH transmission, based on the position of the center frequency configured based on the fourth information. Also, the UE 100 may perform PUCCH transmission with frequency hopping using the determined PUCCH resource.
  • the common setting information may include information used to enable or disable frequency hopping applied to PUCCH transmission (hereinafter also referred to as fifth information).
  • the fifth information may be set for the UE 100 in the first case.
  • the control unit 140 of the UE 100 may determine whether to apply frequency hopping to PUCCH transmission based on the fifth information. That is, UE 100 may perform PUCCH transmission with frequency hopping when it is set to enable frequency hopping applied to PUCCH transmission using the fifth information.
  • UE 100 performs PUCCH transmission without frequency hopping when frequency hopping applied to PUCCH transmission using the fifth information is not enabled (that is, disabled) is set. good too.
  • UE 100 may perform PUCCH transmission without frequency hopping. That is, the default behavior of UE 100 for frequency hopping applied to PUCCH transmission may be disabled. For example, when the initial uplink BWP is identified based on the first information (case 1), the default behavior of UE 100 for frequency hopping adapted to PUCCH transmission may be disabled.
  • the default operation of UE 100 for frequency hopping adapted to PUCCH transmission is valid. There may be.
  • the fifth information may include information used to indicate whether frequency hopping is enabled or disabled within one slot.
  • frequency hopping within one slot is also called intra-slot frequency hopping.
  • the fifth information may include information used to indicate validity or invalidity of frequency hopping between slots.
  • frequency hopping between slots is also called inter-slot frequency hopping.
  • the control unit 140 of the UE 100 may determine whether to apply intra-slot frequency hopping to PUCCH transmission based on whether intra-slot frequency hopping is enabled or disabled.
  • the control unit 140 of the UE 100 may determine whether to apply inter-slot frequency hopping to PUCCH transmission based on whether inter-slot frequency hopping is enabled or disabled. That is, UE 100 may perform PUCCH transmission with inter-slot frequency hopping or inter-slot frequency hopping based on the fifth information.
  • the fifth information may be set for the PUCCH format used for PUCCH transmission. That is, the fifth information may include information used to indicate validity or invalidity of frequency hopping for each PUCCH format.
  • the fifth information is information indicating the validity or invalidity of frequency hopping applied to PUCCH transmission using PUCCH format 0, and the validity or invalidity of frequency hopping applied to PUCCH transmission using PUCCH format 1. It may contain information and the like.
  • the fifth information may be used to indicate PUCCH formats for which frequency hopping is applicable. That is, UE 100 may identify PUCCH formats to which frequency hopping is applicable based on the fifth information.
  • the common setting information may include the first PUCCH setting information.
  • the first PUCCH configuration information may indicate cell-specific parameters (cell-specific parameters) regarding the associated BWP PUCCH. That is, the common configuration information may include first PUCCH configuration information and bandwidth portion information related to the associated BWP.
  • the first PUCCH configuration information may include PUCCH configuration common information (pucch-ConfigCommon).
  • the PUCCH configuration common information (pucch-ConfigCommon) may include PUCCH resource common information (eg, pucch-ResourceCommon) that provides a PUCCH resource set.
  • the UE 100 may perform the following operations. That is, the UE 100 receives the first PUCCH setting information, and, when not receiving the second PUCCH setting information, the following steps S102, (A), (B), (B1), (B2), and/or , (C) may be performed.
  • the operations described in steps S102, (A-1), (B-1), (B1-1), (B1-2), and/or (C-1) below are the first operations It may be included in example operations.
  • Step S102 For example, UE 100 performs uplink transmission to base station 200 . That is, communication section 120 of UE 100 transmits an uplink signal to base station 200 .
  • the radio communication unit 220 (receiving unit 221) of the base station 200 receives the uplink signal from the UE100.
  • the control unit 140 of the UE 100 can perform the following operations. Note that the control unit 240 of the base station 200 can perform the same operation as the control unit 140 of the UE 100 in order to receive uplink signals from the UE 100 .
  • the control unit 140 of the UE 100 may identify the initial uplink BWP for uplink transmission based on the common setting information. For example, the control unit 140 of the UE 100 may identify the initial uplink BWP1 based on the first information. For example, the control unit 140 of the UE 100 may determine the position and/or size in the frequency domain of the initial uplink BWP1 based on the information indicating the frequency position and/or size included in the first information. Here, size may be replaced with bandwidth. Also, the control unit 140 of the UE 100 may determine the subcarrier spacing used in the initial uplink BWP1 based on the information indicating the subcarrier spacing included in the first information.
  • control unit 140 of the UE 100 may identify the initial uplink BWP1 based on the third information. For example, the control unit 140 of the UE 100 may determine the position and/or size in the frequency domain of the initial uplink BWP1 based on information indicating the frequency position and/or size included in the third information. Also, the control unit 140 of the UE 100 may determine the subcarrier spacing used in the initial uplink BWP1 based on the information indicating the subcarrier spacing included in the third information.
  • the UE 100 may identify the initial uplink BWP1 based on the first information or the third information. For example, when the first information is configured, the UE 100 may identify the initial uplink BWP1 based on the first information. Also, when the third information is set and the first information is not set, the UE 100 may specify the initial uplink BWP1 based on the third information. As an example, when the first information is not set, the specific UE 100B may identify the initial uplink BWP1 based on the third information set for the general UE 100A.
  • the specific UE 100B when the first bandwidth portion used to identify the initial uplink BWP1 is not set, based on the initial uplink BWP (that is, the third bandwidth portion) used for the general UE 100A An initial upstream BWP1 may be identified.
  • control section 140 of UE 100 may determine PUCCH resources used for PUCCH transmission based on common configuration information.
  • the PUCCH resources may include the first PUCCH resource and the second PUCCH resource.
  • the first PUCCH resource is also referred to as the first PUCCH resource R1.
  • the second PUCCH resource is also described as a second PUCCH resource R2.
  • the first PUCCH resource R1 may be a PUCCH resource mapped inside the identified initial uplink BWP1.
  • the second PUCCH resource R2 may be a resource hopped in the frequency domain from the first PUCCH resource R1 (that is, a resource used for frequency hopping applied to PUCCH transmission).
  • the second PUCCH resource R2 may be a PUCCH resource mapped outside the identified initial uplink BWP1.
  • PUCCH resources may include a third PUCCH resource R3 hopped in the frequency domain from the second PUCCH resource R2, and may include a fourth PUCCH resource R4 hopped in the frequency domain from the third PUCCH resource R3.
  • the first PUCCH resource R1 and the third PUCCH resource R3 may be the same PUCCH resource. That is, the third PUCCH resource R3 may be determined by the same method as the first PUCCH resource R1.
  • the second PUCCH resource R2 and the fourth PUCCH resource R4 may be the same PUCCH resource. That is, the fourth PUCCH resource R4 may be determined by the same method as the second PUCCH resource R2.
  • the PUCCH region for general UE 100A may be mapped to both ends of the BWP set for general UE 100A in the frequency direction.
  • the PUCCH region for the specific UE 100B may be mapped so as to overlap with the PUCCH region for the general UE 100A.
  • the first PUCCH resource R1 (and third PUCCH resource R3) is mapped in one PUCCH region (hereinafter referred to as the first PUCCH region) in the frequency direction
  • the second PUCCH resource R2 (and fourth PUCCH resource R4) is mapped within the other PUCCH region (hereinafter referred to as the second PUCCH region) in the frequency direction.
  • the bandwidth of the BWP of the specific UE 100B may be set narrower than the bandwidth of the BWP for the general UE 100A, for example, the BWP of the specific UE 100B overlaps the first PUCCH region, in the second PUCCH region may not overlap.
  • (B1-1) Case of specifying initial uplink BWP1 based on first information (hereinafter also referred to as first case)
  • the control unit 140 of the UE 100 may identify (assume) an uplink BWP different from the initial uplink BWP1 based on the second information.
  • the uplink BWP specified (assumed) based on the second information is also referred to as initial uplink BWP2. That is, the initial upstream BWP2 may be replaced with an upstream BWP.
  • control section 140 of UE 100 may identify (assume) initial uplink BWP2 used to determine PUCCH resources based on the second information.
  • initial uplink BWP1 may be assumed to be located in a first frequency band F1 and initial uplink BWP2 may be assumed to be located in a second frequency band F2.
  • the initial uplink BWP2 may be defined as an uplink BWP used only for performing PUCCH transmission.
  • the initial uplink BWP2 may be defined as an uplink BWP used for performing PUSCH transmission in addition to PUCCH transmission.
  • the UE 100 switches the initial uplink BWP from the initial uplink BWP1 to the initial uplink BWP2, and performs PUCCH transmission and/or PUSCH transmission.
  • control unit 140 of the UE 100 may identify the initial uplink BWP1 based on the first information, and at least determine the second PUCCH resource R2 based on the second information. Also, in the first case, the control unit 140 of the UE 100 may determine the first PUCCH resource R1 based on the first information and determine the second PUCCH resource R2 based on the second information.
  • the control unit 140 of the UE 100 is based on the above-described "determination of PUCCH resources (that is, a method of determining PUCCH resources by using any one or more of 'math 1' to 'math 7')" , the first PUCCH resource R1 (the PUCCH resource at the first hop, ie, the PRB index of the first PUCCH resource R1).
  • the control unit 140 of the UE 100 may determine the second PUCCH resource R2 (the PUCCH resource at the second hop, i.e., the PRB index of the second PUCCH resource R2) based on the above-described "PUCCH resource determination". .
  • the control unit 140 of the UE 100 may identify the frequency position, size and/or subcarrier spacing for the initial uplink BWP2 based on the second information. That is, the control unit 140 of the UE 100, based on the specified frequency position, size, and / or subcarrier spacing, according to any one or more of "Equation 1" to "Equation 7", the first PUCCH resource R1 and / Or the second PUCCH resource R2 may be determined.
  • control unit 140 of the UE 100 may determine the first PUCCH resource R1 and/or the second PUCCH resource R2 based on the fourth information. For example, the control unit 140 of the UE 100 may determine the first PUCCH resource R1 based on information indicating the position of the center frequency for the initial uplink BWP1. Also, the control unit 140 of the UE 100 may determine the second PUCCH resource R2 based on information indicating the position of the center frequency for the initial uplink BWP2.
  • the control section 140 of the UE 100 may determine the second PUCCH resource R2 based on the information indicating the subcarrier spacing included in the second information.
  • the control section 140 of the UE 100 may determine the first PUCCH resource R1 and/or the second PUCCH resource R2 based on information indicating subcarrier intervals included in the first information. For example, if the information indicating the subcarrier spacing is not included in the second information, the control unit 140 of the UE 100, based on the information indicating the subcarrier spacing included in the first information, the first PUCCH resource R1 and / Alternatively, the second PUCCH resource R2 may be determined.
  • (B2-1) Case of specifying initial uplink BWP1 based on third information (hereinafter also referred to as second case)
  • the control unit 140 of the UE 100 may identify (assume) the initial uplink BWP2 based on the third information.
  • the control unit 140 of the UE 100 may identify (assume) the uplink BWP (that is, the initial uplink BWP2) using a method similar to the method of identifying the initial uplink BWP1 based on the third information.
  • control unit 140 of the UE 100 may assume (specify) the initial uplink BWP1 and/or the initial uplink BWP2 based on the third information, and determine the first PUCCH resource R1. Also, the control unit 140 of the UE 100 may assume (specify) the initial uplink BWP1 and/or the initial uplink BWP2 based on the third information, and determine the second PUCCH resource R2.
  • the control unit 140 of the UE 100 uses the above-described “PUCCH resource determination method (that is, any one of “Equation 1” to “Equation 7”
  • the first PUCCH resource R1 and/or the second PUCCH resource R2 may be determined based on "method for determining PUCCH resource by using one or more methods".
  • the control unit 140 of the UE 100 determines the first PUCCH resource R1 and/or the second PUCCH resource R2 based on the fourth information. good.
  • control section 140 of UE 100 may assume that frequency hopping is always applied to PUCCH transmission. That is, in the second case, frequency hopping applied to PUCCH transmission may always be effective. That is, the default behavior of UE 100 for frequency hopping applied to PUCCH transmission in the second case may be valid.
  • the default behavior of UE 100 for frequency hopping applied to PUCCH transmission in the first case may be enabled.
  • the default for frequency hopping applied to PUCCH transmission may be disabled (can be disabled).
  • the UE 100 may enable (or set to enable) the default behavior for frequency hopping applied to PUCCH transmissions.
  • Guard Period Control section 140 of UE 100 may configure guard period GP when uplink transmission is performed by applying frequency hopping.
  • configuration may also be interchanged with generation. That is, for example, the control unit 140 of the UE 100 may determine the number of symbols used in the guard period GP when performing uplink transmission by applying frequency hopping. For example, when the control unit 140 of the UE 100 performs uplink transmission in the first frequency band F1 and then performs uplink transmission in the second frequency band F2 different from the first frequency band F1, the control unit 140 configures the guard period GP. A number of symbols may be determined.
  • the control unit 140 of the UE 100 may determine the number of symbols for configuring the guard period GP when changing (switching) the frequency band from the first frequency band F1 to the second frequency band F2.
  • the control unit 140 of the UE 100 may determine the number of symbols for configuring the guard period GP even when changing (switching) the frequency band from the second frequency band F2 to the first frequency band F1.
  • determining the number of symbols for configuring the guard period GP is also simply referred to as generating (configuring) the guard period GP.
  • the first frequency band F1 and/or the second frequency band F2 may include a bandwidth portion (BWP). That is, the first frequency band F1 and/or the second frequency band F2 may include a downlink bandwidth portion (downlink BWP, initial downlink BWP). Also, the first frequency band F1 and/or the second frequency band F2 may include upstream bandwidth portions (upstream BWP, initial upstream BWP). That is, changing (switching) the frequency band may include changing (switching) the bandwidth portion (BWP). Altering (switching) the frequency band may also include retuning the frequency of the bandwidth portion (BWP).
  • the first frequency band F1 is also described as the first frequency band.
  • the second frequency band F2 is also described as a second frequency band.
  • the control unit 140 of the UE 100 may generate the guard period GP when the first frequency band F1 and the second frequency band F2 are not located within one BWP that the UE 100 uses for uplink transmission. Also, the control unit 140 of the UE 100 may generate the guard period GP when there are two consecutive transmissions, uplink transmission in the first frequency band F1 and uplink transmission in the second frequency band F2. That is, the control unit 140 of the UE 100 may generate the guard period GP when changing (switching) or retuning frequencies by transmission in different frequency bands.
  • the control unit 140 of the UE 100 may generate the guard period GP based on the subcarrier interval of the uplink BWP. That is, the control unit 140 of the UE 100 may generate the guard period GP based on information indicating subcarrier intervals included in the first information. Also, the control unit 140 of the UE 100 may generate the guard period GP based on the information indicating the subcarrier interval included in the second information. Also, the control unit 140 of the UE 100 may generate the guard period GP based on the information indicating the subcarrier interval included in the third information.
  • the UE 100 is based on the information indicating the subcarrier spacing included in the first information, the information indicating the subcarrier spacing included in the second information, or the information indicating the subcarrier spacing included in the third information. may be used to generate the guard period GP.
  • UE 100 when the information indicating the subcarrier spacing included in the second information is set, based on the information indicating the subcarrier spacing included in the second information, generates a guard period GP.
  • the UE 100 is configured with information indicating the subcarrier spacing included in the first information, and when the information indicating the subcarrier spacing included in the second information is not configured, the first information
  • the guard period GP may be generated based on the information indicating the subcarrier spacing included in .
  • UE 100 is configured with information indicating the subcarrier spacing included in the third information, and when the information indicating the subcarrier spacing included in the first information is not configured, the third information The guard period GP may be generated based on the information indicating the subcarrier spacing included in . Further, the UE 100 is configured with information indicating the subcarrier spacing included in the third information, and when the information indicating the subcarrier spacing included in the second information is not configured, the third information The guard period GP may be generated based on the information indicating the subcarrier spacing included in .
  • the number of slots forming one subframe may vary based on the subcarrier spacing set by the base station 200. That is, the number of symbols forming one subframe may change based on the subcarrier spacing set by base station 200 . For example, based on the subcarrier interval set by the base station 200, the number of symbols forming a 1 ms subframe is determined, and the length of each symbol (length in the time direction) changes. That is, based on the subcarrier spacing set by base station 200, the length of symbols included in guard period GP (length in the time direction) may change. That is, the symbol length (length in the time direction) corresponding to the length of the guard period GP may be given based on the subcarrier spacing set by base station 200 .
  • the subcarrier interval set by the base station 200 indicates the subcarrier interval set based on the information indicating the subcarrier interval included in the first information, and the subcarrier interval included in the first information. It includes the subcarrier spacing set based on the information and/or the subcarrier spacing set based on the information indicating the subcarrier spacing included in the third information.
  • the control unit 140 of the UE 100 may determine the number of symbols in each of the two frequency bands. That is, for example, the control unit 140 of the UE 100 may make the number of symbols in the frequency band with wide subcarrier intervals larger than the number of symbols in the frequency band with narrow subcarrier intervals. Also, the control unit 140 of the UE 100 may set the length of the guard period GP to the total length of the number of symbols determined for each of the two frequency bands. Also, the control unit 140 of the UE 100 may set the length of the guard period GP to the number of symbols determined for each of the two frequency bands, whichever has the larger number of symbols (that is, the longer guard period GP). Also, the control unit 140 of the UE 100 may set the length of the guard period GP to the smaller number of symbols (that is, the shorter guard period GP) of the number of symbols determined for each of the two frequency bands.
  • the number of symbols corresponding to the guard period GP may be determined according to the capabilities of the UE 100. That is, the control unit 140 of the UE 100 may hold capability information indicating the capabilities of the UE 100 (for example, UE capability information). The control unit 140 of the UE 100 may determine the number of symbols based on the capability information of the UE 100. For example, when the capability information indicates capability 1, the control unit 140 of the UE 100 may determine the length of the guard period to be 1 symbol. Also, when the capability information indicates capability 2, the control unit 140 of the UE 100 may determine the length of the guard period to be 2 symbols.
  • capability information indicates capability 1
  • the control unit 140 of the UE 100 may determine the length of the guard period to be 1 symbol.
  • the control unit 140 of the UE 100 may determine the length of the guard period to be 2 symbols.
  • the communication unit 120 of the UE 100 may transmit information used to specify the number of symbols corresponding to the guard period GP to the base station 200 as capability information. That is, communication section 120 of UE 100 may transmit capability information corresponding to the number of symbols to base station 200 .
  • the capability information may be any information as long as it is information used for the number of symbols corresponding to the guard period GP.
  • control unit 240 of the base station 200 may specify the length (that is, the number of symbols) of the guard period GP generated by the UE 100 based on the capability information of the UE 100. Also, the control unit 240 of the base station 200 may specify a period during which the UE 100 does not perform uplink transmission based on the length of the guard period GP (that is, the number of symbols).
  • control unit 140 of the UE 100 generates a guard period GP corresponding to the determined number of symbols.
  • control unit 140 of the UE 100 may control not to perform uplink transmission within the guard period GP.
  • uplink transmission includes at least PUSCH transmission and/or PUCCH transmission.
  • communication section 120 of UE 100 transmits PUCCH using the determined PUCCH resource. That is, communication section 120 of UE 100 performs PUCCH transmission with frequency hopping using the determined PUCCH resource. Specifically, communication section 120 of UE 100 performs PUCCH transmission with frequency hopping using first PUCCH resource R1 and/or first PUCCH resource R1. For example, communication section 120 of UE 100 uses PUCCH to transmit Msg. 4 (ie, PDSCH).
  • the control unit 140 of the UE 100 changes the frequency band from the first frequency band F1 to the second frequency band F2. This change may be retuning of the frequency band or switching of the frequency band. For example, the control unit 140 of the UE 100 may perform retuning or switching from the first frequency band F1 to the second frequency band F2 within the generated guard period GP.
  • the first PUCCH resource R1 is mapped to the first frequency band F1.
  • the second PUCCH resource R2 is mapped to the second frequency band F2.
  • the communication unit 120 of the UE 100 after changing the frequency band to the second frequency band, performs PUCCH transmission using the second PUCCH resource R2.
  • the control unit 140 of the UE 100 may perform retuning or switching from the second frequency band F2 to the first frequency band F1 within the generated guard period GP.
  • communication section 120 of UE 100 performs PUCCH transmission using third PUCCH resource R3 after changing the frequency band to the first frequency band.
  • the control unit 140 of the UE 100 may perform retuning or switching from the first frequency band F1 to the second frequency band F2 within the generated guard period GP.
  • communication section 120 of UE 100 performs PUCCH transmission using fourth PUCCH resource R4.
  • the control unit 140 of the UE 100 may perform retuning or switching from the second frequency band F2 to the first frequency band F1 within the generated guard period GP.
  • the UE 100 performs PUCCH transmission based on dedicated setting information.
  • UE 100 may be in an RRC connected state between UE 100 and base station 200 .
  • the UE 100 may be in the state in the second case.
  • the UE 100 may be after executing the initial access.
  • the UE 100 may be in a state after receiving an RRC setup message, an RRC resume message, and/or an RRC (re)establishment message.
  • UE 100 may transmit HARQ-ACK for downlink user data (ie PDSCH).
  • Step S201 The radio communication unit 220 of the base station 200 transmits dedicated setting information including dedicated parameters for uplink transmission to the UE 100 .
  • the communication unit 120 of the UE 100 receives dedicated setting information from the base station 200 .
  • the wireless communication unit 220 transmits dedicated setting information by unicast.
  • the wireless communication unit 220 may, for example, transmit an RRC reconfiguration message including dedicated configuration information. That is, the dedicated configuration information may be UE specific parameters.
  • the dedicated setting information is the setting information included in the serving cell setting information (specifically, ServingCellConfig) used to configure (add or change) the UE 100 in the serving cell managed by the base station 200 (specifically, UplinkConfig).
  • the dedicated setting information may include information similar to the information included in the common setting information in the first operation example.
  • the dedicated setting information includes bandwidth portion information (first information, second information, and/or third information), information indicating the position of the center frequency for uplink BWP (fourth information), and , information (fifth information) indicating validity or invalidity of frequency hopping applied to PUCCH transmission.
  • the information included in the dedicated configuration information may be configured for active uplink BWP.
  • the UE 100 may identify (or assume) an active uplink BWP based on the first information, the second information, and/or the third information. Also, the UE 100 may determine the position of the center frequency for the active uplink BWP based on the fourth information. Also, the UE 100 may determine whether frequency hopping applied to PUCCH transmission in active uplink BWP is enabled or disabled based on the fourth information.
  • the dedicated setting information may include the second PUCCH setting information.
  • the second PUCCH configuration information may be the PUCCH configuration for one BWP of the normal uplink of the serving cell. That is, the second PUCCH configuration information may indicate UE-specific parameters (UE space parameters). That is, the dedicated configuration information may include second PUCCH configuration information, a BWP identifier associated with the second PUCCH configuration information, and bandwidth portion information associated with the BWP identifier.
  • UE 100 when receiving the second PUCCH configuration information, the following step S202, (A-2), (B-2), (B2-1), (B2-2), and / or (C- 2) may be performed.
  • the UE 100 when the UE 100 receives the first PUCCH setting information and does not receive the second PUCCH setting information, the UE 100 may perform the operation of the first operation example.
  • Step S202 For example, UE 100 performs uplink transmission to base station 200 . That is, communication section 120 of UE 100 transmits an uplink signal to base station 200 .
  • the radio communication unit 220 of the base station 200 receives uplink signals from the UE 100 .
  • the control unit 140 of the UE 100 can perform the following operations. Note that the control unit 240 of the base station 200 can perform the same operation as the control unit 140 of the UE 100 in order to receive uplink signals from the UE 100 .
  • Control section 140 of UE 100 may identify an uplink BWP for uplink transmission (active uplink BWP) based on dedicated setting information.
  • the control unit 140 of the UE 100 may identify active uplink BWPs by any of the following methods.
  • control unit 140 of the UE 100 may identify the active uplink BWP1 based on the first information. For example, the control unit 140 of the UE 100 may determine the position and/or size in the frequency domain of the active uplink BWP1 based on the information indicating the frequency position and/or size included in the first information. Here, size may be replaced with bandwidth. Also, the control unit 140 of the UE 100 may determine the subcarrier spacing used in the active uplink BWP1 based on the information indicating the subcarrier spacing included in the first information.
  • control unit 140 of the UE 100 may identify the active uplink BWP1 based on the third information. For example, the control unit 140 of the UE 100 may determine the position and/or size in the frequency domain of the active uplink BWP1 based on information indicating the frequency position and/or size included in the third information. Also, the control unit 140 of the UE 100 may determine the subcarrier spacing used in the active uplink BWP1 based on the information indicating the subcarrier spacing included in the third information.
  • the UE 100 may identify the active uplink BWP1 based on the first information or the third information. For example, when the first information is configured, the UE 100 may identify the active uplink BWP1 based on the first information. Also, when the third information is configured and the first information is not configured, the UE 100 may identify the active uplink BWP1 based on the third information. As an example, when the first information is not set, the specific UE 100B may identify the active uplink BWP1 based on the third information set for the general UE 100A.
  • the specific UE 100B when the first bandwidth portion used to identify the active uplink BWP1 is not set, based on the initial uplink BWP (that is, the third bandwidth portion) used for the general UE 100A An active upstream BWP1 may be identified.
  • control section 140 of UE 100 identifies an active BWP from multiple uplink BWPs based on an identifier indicating the first BWP used in communication with base station 200. you can
  • active upstream BWP1 and active upstream BWP2 are targeted instead of initial upstream BWP1 and initial upstream BWP2. Therefore, in the same parts as in the first operation example, the initial upstream BWP1 can be replaced with the active upstream BWP1, and the initial upstream BWP2 can be replaced with the active upstream BWP2.
  • control section 140 of UE 100 may determine the PUCCH resource to be used for PUCCH transmission based on the dedicated setting information.
  • PUCCH resources include a first PUCCH resource R1 and a second PUCCH resource R2.
  • the first PUCCH resource R1 may be a PUCCH resource mapped within the identified active uplink BWP1.
  • the second PUCCH resource R2 may be a resource hopped in the frequency domain from the first PUCCH resource R1 (that is, a resource used for frequency hopping applied to PUCCH transmission).
  • the second PUCCH resource R2 may be a PUCCH resource mapped outside the identified active uplink BWP1.
  • control section 140 of UE 100 may identify (assume) active uplink BWP2 different from active uplink BWP1 based on the second information.
  • the uplink BWP identified (assumed) based on the second information is also referred to as active uplink BWP2. That is, active upstream BWP2 may be replaced with upstream BWP. That is, control section 140 of UE 100 may identify (assume) active uplink BWP2 to be used for determining PUCCH resources based on the second information.
  • active upstream BWP1 is located in a first frequency band F1 and active upstream BWP2 is located in a second frequency band F2.
  • the active uplink BWP2 may be defined as an active uplink BWP used only for performing PUCCH transmission.
  • the active uplink BWP2 may be defined as an uplink BWP that is used to perform PUSCH transmission in addition to PUCCH transmission.
  • the UE 100 switches the active uplink BWP from the active uplink BWP1 to the active uplink BWP2 to perform PUCCH transmission and/or PUSCH transmission.
  • control unit 140 of the UE 100 may identify the active uplink BWP1 based on the first information and determine at least the second PUCCH resource R2 based on the second information.
  • the control unit 140 of the UE 100 may determine the first PUCCH resource R1 based on the first information and the second PUCCH resource R2 based on the second information. Also, the control unit 140 of the UE 100 may determine the first PUCCH resource R1 and/or the second PUCCH resource R2 based on the fourth information. For example, the control unit 140 of the UE 100 may determine the first PUCCH resource R1 based on information indicating the position of the center frequency for the active uplink BWP1. Also, the control unit 140 of the UE 100 may determine the second PUCCH resource R2 based on information indicating the position of the center frequency for the active uplink BWP1.
  • control section 140 of the UE 100 may determine the second PUCCH resource R2 based on the information indicating the subcarrier spacing included in the second information.
  • the control unit 140 of the UE 100 may determine the first PUCCH resource R1 and/or the second PUCCH resource R2 based on information indicating subcarrier intervals included in the first information. For example, if the information indicating the subcarrier spacing is not included in the second information, the control unit 140 of the UE 100, based on the information indicating the subcarrier spacing included in the first information, the first PUCCH resource R1 and / Alternatively, the second PUCCH resource R2 may be determined.
  • the UE 100 uses the PUCCH resource used for frequency hopping applied to PUCCH transmission based on the start PRB information and/or the second hop PRB information (that is, PUCCH resource PRB index) may be determined. That is, in the second case, the base station 200 uses the start PRB information and/or the second hop PRB information to determine the PUCCH resource used for frequency hopping applied to PUCCH transmission (that is, the PRB of the PUCCH resource). index) may be specified.
  • the physical resource blocks (PRBs) of the subcarrier spacing setting ⁇ are defined within the bandwidth portion and numbered from 0 to the following numbers (PRB number, PRB index).
  • the PUCCH resources specified by the starting PRB information and/or the second-hop PRB information correspond to the PRB indices numbered according to "Formula 1". That is, in order to identify the PUCCH resource (that is, the PRB index of the PUCCH resource) specified by the start PRB information and/or the second hop PRB information, the frequency position and/or size of the uplink BWP (active uplink BWP) is used. Also, the subcarrier spacing of the uplink BWP (active uplink BWP) is used to identify the PUCCH resource (that is, the PRB index of the PUCCH resource) specified by the start PRB information and/or the second hop PRB information. .
  • control unit 140 of the UE 100 determines the frequency position and/or size of the uplink BWP (active uplink BWP) based on the information indicating the frequency position and/or size included in the second information. may decide.
  • control section 140 of UE 100 may determine subcarrier intervals for uplink BWP (active uplink BWP) based on information indicating subcarrier intervals included in the second information.
  • control unit 140 of the UE 100 in order to determine the PRB index of the first PUCCH resource R1 specified using the start PRB information, based on the information indicating the frequency position and / or size included in the second information A set frequency position and/or size may be used.
  • control section 140 of UE 100 determines the PRB index of the first PUCCH resource R1 specified using the starting PRB information, based on the information indicating the subcarrier interval included in the second information. Subcarrier spacing may also be used.
  • control section 140 of UE 100 uses the information indicating the frequency position and/or size included in the second information to determine the PRB index of the second PUCCH resource R2 specified using the second hop PRB information.
  • control section 140 of UE 100 configures based on information indicating subcarrier intervals included in the second information in order to determine the PRB index of second PUCCH resource R2 designated using the second hop PRB information. subcarrier spacing may be used.
  • the control unit 140 of the UE 100 determines the frequency position and/or size of the uplink BWP (active uplink BWP) based on the information indicating the frequency position and/or size included in the first information. may decide. For example, the control unit 140 of the UE 100 is set with information indicating the frequency position and / or size included in the first information, and is set with information indicating the frequency position and / or size included in the second information If not, the frequency position and/or size of the upstream BWP (active upstream BWP) may be determined based on the information indicating the frequency position and/or size included in the first information.
  • control section 140 of UE 100 may determine subcarrier intervals for uplink BWP (active uplink BWP) based on information indicating subcarrier intervals included in the first information. For example, the control unit 140 of the UE 100, when the information indicating the subcarrier interval included in the first information is set and the information indicating the subcarrier interval included in the second information is not set, The subcarrier spacing of the uplink BWP (active uplink BWP) may be determined based on the information indicating the subcarrier spacing included in the first information.
  • control unit 140 of the UE 100 in order to determine the PRB index of the first PUCCH resource R1 specified using the start PRB information, based on the information indicating the frequency position and / or size included in the first information A set frequency position and/or size may be used.
  • the control unit 140 of the UE 100 is configured based on the information indicating the subcarrier interval included in the first information in order to determine the PRB index of the first PUCCH resource R1 specified using the start PRB information. Subcarrier spacing may also be used.
  • control section 140 of UE 100 uses the information indicating the frequency position and/or size included in the first information to determine the PRB index of the second PUCCH resource R2 specified using the second hop PRB information.
  • control section 140 of UE 100 configures based on information indicating subcarrier intervals included in the first information in order to determine the PRB index of second PUCCH resource R2 designated using the second hop PRB information. subcarrier spacing may be used.
  • (B2-2) Case of identifying active uplink BWP1 based on third information (hereinafter also referred to as fourth case)
  • the control unit 140 of the UE 100 may identify (assume) the active uplink BWP2 based on the third information.
  • the control unit 140 of the UE 100 may identify (assume) the uplink BWP (that is, the active uplink BWP2) using the same method as the method of identifying the active uplink BWP1 based on the third information.
  • the control unit 140 of the UE 100 may determine the first PUCCH resource R1 and/or the second PUCCH resource R2 based on the third information. good.
  • the control unit 140 of the UE 100 determines the frequency position and/or size of the uplink BWP (active uplink BWP) based on the information indicating the frequency position and/or size included in the third information. may decide. Also, in the fourth case, control section 140 of UE 100 may determine subcarrier intervals for uplink BWP (active uplink BWP) based on information indicating subcarrier intervals included in the third information. That is, the control unit 140 of the UE 100, in order to determine the PRB index of the first PUCCH resource R1 specified using the start PRB information, based on the information indicating the frequency position and / or size included in the third information A set frequency position and/or size may be used.
  • control unit 140 of the UE 100 is configured based on the information indicating the subcarrier interval included in the third information in order to determine the PRB index of the first PUCCH resource R1 specified using the start PRB information. Subcarrier spacing may also be used.
  • control unit 140 of the UE 100 in order to determine the PRB index of the second PUCCH resource R2 specified using the second hop PRB information, to the information indicating the frequency position and / or size included in the third information A frequency position and/or size set based on this may be used.
  • control section 140 of UE 100 configures based on information indicating subcarrier intervals included in the third information in order to determine the PRB index of second PUCCH resource R2 designated using the second hop PRB information. subcarrier spacing may be used.
  • the control unit 140 of the UE 100 is set with information indicating the frequency position and / or size included in the third information, and information indicating the frequency position and / or size included in the first information is set If not, the frequency position and/or size of the uplink BWP (active uplink BWP) may be determined based on the information indicating the frequency position and/or size included in the third information. Further, the control unit 140 of the UE 100, when the information indicating the subcarrier interval included in the third information is set and the information indicating the subcarrier interval included in the first information is not set, The subcarrier spacing of the uplink BWP (active uplink BWP) may be determined based on the information indicating the subcarrier spacing included in the third information.
  • control unit 140 of the UE 100 is set with information indicating the frequency position and / or size included in the third information, and is set with information indicating the frequency position and / or size included in the second information If not, the frequency position and/or size of the uplink BWP (active uplink BWP) may be determined based on the information indicating the frequency position and/or size included in the third information. Further, the control unit 140 of the UE 100, when the information indicating the subcarrier interval included in the third information is set and the information indicating the subcarrier interval included in the second information is not set, The subcarrier spacing of the uplink BWP (active uplink BWP) may be determined based on the information indicating the subcarrier spacing included in the third information.
  • (C-2) Guard period As in the first operation example, the control unit 140 of the UE 100 performs uplink transmission in the first frequency band F1, and then uplink transmission in the second frequency band F2 different from the first frequency band F1. , the number of symbols for configuring the guard period GP may be determined when changing (switching) the frequency band from the first frequency band F1 to the second frequency band F2. For example, when performing PUCCH transmission based on dedicated setting information, the control unit 140 of the UE 100 may generate the guard period GP based on the dedicated setting information.
  • control unit 140 of the UE 100 may determine the number of symbols forming the guard period GP based on the subcarrier interval of active uplink BWP. Also, the control unit 140 may determine the number of symbols according to the capability of the UE 100 . That is, communication section 120 of UE 100 may transmit information used to specify the number of symbols corresponding to guard period GP to base station 200 as capability information.
  • uplink transmission includes at least PUSCH transmission and/or PUCCH transmission.
  • control unit 140 of the UE 100 generates a guard period GP corresponding to the determined number of symbols. For example, the control unit 140 of the UE 100 may control not to perform uplink transmission within the guard period GP.
  • communication section 120 of UE 100 transmits PUCCH using the determined PUCCH resource. That is, communication section 120 of UE 100 performs PUCCH transmission with frequency hopping using the determined PUCCH resource. Specifically, communication section 120 of UE 100 performs PUCCH transmission with frequency hopping using first PUCCH resource R1 and/or second PUCCH resource R2. For example, communication section 120 of UE 100 may use PUCCH to transmit HARQ-ACK for downlink user data (that is, PDSCH).
  • PDSCH downlink user data
  • the control unit 140 of the UE 100 changes the frequency band from the first frequency band F1 to the second frequency band F2. For example, the control unit 140 of the UE 100 may perform retuning or switching from the first frequency band F1 to the second frequency band F2 within the generated guard period GP. Further, after changing the frequency band to the second frequency band, communication section 120 of UE 100 performs PUCCH transmission using second PUCCH resource R2. For example, the control unit 140 of the UE 100 may perform retuning or switching from the second frequency band F2 to the first frequency band F1 within the generated guard period GP. Similarly, the communication unit 120 of the UE 100 uses the third PUCCH resource R3 and/or the fourth PUCCH resource R4 while changing the frequency band between the first frequency band F1 and the second frequency band F2, and performs PUCCH transmission. Execute.
  • control unit 140 of the UE 100 (a) retunes or switches from the first frequency band that transmits PUSCH to the second frequency band that transmits PUSCH, according to the above operation example, correspond to the guard period. may determine the number of symbols to be used. That is, control section 140 of UE 100 generates a guard period when the frequency band is changed from the first frequency band in which PUSCH transmission is performed to the second frequency band in which PUSCH transmission is performed, and the guard period The number of symbols corresponding to may be given by the subcarrier spacing set by base station 200 .
  • control unit 140 of the UE 100 (b) retunes or switches from the first frequency band that transmits PUCCH to the second frequency band that transmits PUCCH.
  • the number of symbols corresponding to the guard period may be determined. That is, control section 140 of UE 100 generates a guard period when the frequency band is changed from the first frequency band in which PUCCH transmission is performed to the second frequency band in which PUCCH transmission is performed, and the guard period
  • the number of symbols corresponding to may be given by the subcarrier spacing set by base station 200 .
  • control unit 140 of the UE 100 (c) retunes or switches from the first frequency band that transmits PUCCH to the second frequency band that transmits PUSCH, according to the operation example described above, corresponds to the guard period. may determine the number of symbols to be used. That is, control section 140 of UE 100 generates a guard period when the frequency band is changed from the first frequency band in which PUCCH transmission is performed to the second frequency band in which PUSCH transmission is performed, and the guard period The number of symbols corresponding to may be given by the subcarrier spacing set by base station 200 .
  • control unit 140 of the UE 100 (d) retunes or switches from the first frequency band that transmits PUSCH to the second frequency band that transmits PUCCH, according to the operation example described above, corresponds to the guard period. may determine the number of symbols to be used. That is, control section 140 of UE 100 generates a guard period when the frequency band is changed from the first frequency band in which PUSCH transmission is performed to the second frequency band in which PUCCH transmission is performed, and the guard period The number of symbols corresponding to may be given by the subcarrier spacing set by base station 200 .
  • the capability information of the UE 100 may be defined for each of one or more of (a) to (b) above. That is, the capability information of the UE 100 corresponding to each of one or more of (a) to (b) above may be defined.
  • the UE 100 may transmit capability information of the UE 100 corresponding to one or more of (a) to (b) above to the base station 200 .
  • control section 140 of UE 100 determines the number of symbols corresponding to the guard period based on the combination of the channel used for uplink transmission in the first frequency band and the channel used for uplink transmission in the second frequency band. good too. For example, when the channels used for uplink transmission are different between the first frequency band and the second frequency band (case (a) or (b) above), the control unit 140 of the UE 100 uses the first frequency band and the second frequency band. The number of symbols forming the guard period may be increased compared to the case where the frequency band and the channel used for uplink transmission are the same (case (c) or (d) above).
  • the control unit 140 of the UE 100 is a transmission opportunity in the first frequency band (for example, the first hop for PUCCH transmission) from the last symbol to be the card period (hereinafter, the number of first symbols) is determined based on the subcarrier spacing of the BWP in the first frequency band, and the transmission opportunity in the second frequency band (e.g., the second hop for PUCCH transmission) in the card period
  • the number from the first symbol to do (hereinafter referred to as the second number of symbols) may be determined based on the subcarrier spacing of the BWP in the second frequency band.
  • Control section 140 of UE 100 may set the total of the number of first symbols and the number of second symbols as the length of the guard period.
  • control unit 140 of the UE 100 determines the number from the first symbol to be the card period (second number of symbols) may be determined. Control section 140 of UE 100 may use the second number of symbols as the length of the guard period.
  • control unit 140 of the UE 100 is the number from the last symbol to be the card period in the transmission opportunity (for example, the opportunity for PUSCH transmission) in the first frequency band (the first number of symbols ) may be determined.
  • the control unit 140 of the UE 100 may use the number of first symbols as the length of the guard period.
  • the base station 200 may include multiple units.
  • the plurality of units may include a first unit hosting a higher layer included in the protocol stack and a second unit hosting a lower layer included in the protocol stack.
  • the upper layers may include the RRC layer, the SDAP layer and the PDCP layer, and the lower layers may include the RLC layer, the MAC layer and the PHY layer.
  • the first unit may be a CU (central unit), and the second unit may be a DU (Distributed Unit).
  • the plurality of units may include a third unit that performs processing below the PHY layer.
  • the second unit may perform processing above the PHY layer.
  • the third unit may be an RU (Radio Unit).
  • Base station 200 may be one of a plurality of units, and may be connected to other units of the plurality of units. Also, the base station 200 may be an IAB (Integrated Access and Backhaul) donor or an IAB node.
  • IAB Integrated Access and Backhaul
  • the mobile communication system 1 based on NR has been described as an example.
  • the mobile communication system 1 is not limited to this example.
  • the mobile communication system 1 may be a TS-compliant system of either LTE or another generation system (eg, 6th generation) of the 3GPP standard.
  • Base station 200 may be an eNB that provides E-UTRA user plane and control plane protocol termination towards UE 100 in LTE.
  • the mobile communication system 1 may be a system conforming to a TS of a standard other than the 3GPP standard.
  • each operation flow described above is not limited to being implemented independently, but can be implemented by combining two or more operation flows. For example, some steps of one operation flow may be added to another operation flow, or some steps of one operation flow may be replaced with some steps of another operation flow.
  • a program that causes a computer to execute each process performed by the UE 100 or the base station 200 may be provided.
  • the program may be recorded on a computer readable medium.
  • a computer readable medium allows the installation of the program on the computer.
  • the computer-readable medium on which the program is recorded may be a non-transitory recording medium.
  • the non-transitory recording medium is not particularly limited, but may be, for example, a recording medium such as CD-ROM (Compact Disk Read Only Memory) or DVD-ROM (Digital Versatile Disc Read Only Memory). good.
  • circuits that execute each process performed by the UE 100 or the base station 200 may be integrated, and at least a part of the UE 100 or the base station 200 may be configured as a semiconductor integrated circuit (chipset, SoC (System On Chip)).
  • “transmit” may mean performing at least one layer of processing in the protocol stack used for transmission, or physically transmitting the signal wirelessly or by wire. It may mean sending to Alternatively, “transmitting” may mean a combination of performing the at least one layer of processing and physically transmitting the signal wirelessly or by wire.
  • “receive” may mean performing processing of at least one layer in the protocol stack used for reception, or physically receiving a signal wirelessly or by wire. may mean that Alternatively, “receiving” may mean a combination of performing the at least one layer of processing and physically receiving the signal wirelessly or by wire.
  • “obtain/acquire” may mean obtaining information among stored information, and may mean obtaining information among information received from other nodes.
  • references to "based on” and “depending on/in response to” are used unless otherwise specified. does not mean The phrase “based on” means both “based only on” and “based at least in part on.” Similarly, the phrase “depending on” means both “only depending on” and “at least partially depending on.” Similarly, “include” and “comprise” are not meant to include only the recited items, and may include only the recited items or in addition to the recited items. Means that it may contain further items. Similarly, in the present disclosure, “or” does not mean exclusive OR, but means logical OR. Furthermore, any references to elements using the "first,” “second,” etc.
  • the communication unit (120) receives from the base station (200) information indicating subcarrier intervals of a bandwidth portion that is part of the total bandwidth of a cell of the base station (200), The communication device (100) according to appendix 1, wherein the control unit (140) determines the number of symbols based on the information indicating the subcarrier spacing.
  • the control unit (140) determines the number of symbols based on a combination of a channel used for uplink transmission in the first frequency band and a channel used for uplink transmission in the second frequency band.
  • a communication device (100) according to any one of the preceding claims.

Abstract

A communication apparatus (100) comprises: a communication unit (120) that, after performing an uplink transmission in a first frequency band, performs an uplink transmission in a second frequency band which is different from the first frequency band; and a control unit (140) that, on the basis of a sub-carrier interval used in the uplink transmissions, determines a symbol number constituting a guard period for changing the frequency band from the first frequency band to the second frequency band.

Description

通信装置及び通信制御方法Communication device and communication control method 関連出願への相互参照Cross-references to related applications
 本出願は、2021年8月5日に出願された特許出願番号2021-128929号に基づくものであって、その優先権の利益を主張するものであり、その特許出願のすべての内容が、参照により本明細書に組み入れられる。 This application is based on and claims the benefit of priority from patent application number 2021-128929, filed on August 5, 2021, the entire contents of which are incorporated by reference. incorporated herein by.
 本開示は、移動通信システムで用いる通信装置及び通信制御方法に関する。 The present disclosure relates to communication devices and communication control methods used in mobile communication systems.
 第4世代(4G)の移動通信システム(4Gシステム)では、通信装置が第1周波数帯において上り送信を行った後、第1周波数帯と異なる第2周波数帯において上り送信を行う場合に、第1周波数帯から第2周波数帯へ周波数帯を変更するためのガード期間を作成する(非特許文献1参照)。これにより、通信装置が、ガード期間において切り替え動作を行う。 In a fourth generation (4G) mobile communication system (4G system), when a communication device performs uplink transmission in a first frequency band and then performs uplink transmission in a second frequency band different from the first frequency band, A guard period is created for changing the frequency band from the first frequency band to the second frequency band (see Non-Patent Document 1). Thereby, the communication device performs the switching operation in the guard period.
 ガード期間の長さは、予め規定されたシンボル数の長さであり、例えば、第1上り送信及び第2上り送信にて物理上りリンク制御チャネル(PUCCH)を送信する場合には、第1上り送信の最後のシンボル及び/又は第2上り送信の最後のシンボルをガード期間とする。 The length of the guard period is the length of the number of symbols defined in advance. Let the last symbol of the transmission and/or the last symbol of the second uplink transmission be the guard period.
 第1の態様に係る通信装置は、第1周波数帯において上り送信を行った後、前記第1周波数帯と異なる第2周波数帯において上り送信を行う通信部と、前記上り送信に用いるサブキャリア間隔に基づいて、前記第1周波数帯から前記第2周波数帯へ周波数帯を変更するためのガード期間を構成するためのシンボル数を決定する制御部と、を備える。 A communication apparatus according to a first aspect includes a communication unit that performs uplink transmission in a second frequency band different from the first frequency band after performing uplink transmission in a first frequency band, and a subcarrier interval used for the uplink transmission. and a control unit that determines the number of symbols for forming a guard period for changing the frequency band from the first frequency band to the second frequency band, based on:
 第2の態様に係る通信制御方法は、通信装置が実行する通信制御方法であって、第1周波数帯において上り送信を行った後、前記第1周波数帯と異なる第2周波数帯において上り送信を行うステップと、前記上り送信に用いるサブキャリア間隔に基づいて、前記第1周波数帯から前記第2周波数帯へ周波数帯を変更するためのガード期間を構成するためのシンボル数を決定するステップと、を備える。 A communication control method according to a second aspect is a communication control method executed by a communication device, wherein after performing uplink transmission in a first frequency band, uplink transmission is performed in a second frequency band different from the first frequency band. and determining the number of symbols for forming a guard period for changing the frequency band from the first frequency band to the second frequency band based on the subcarrier interval used for the uplink transmission; Prepare.
 本開示についての目的、特徴、及び利点等は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。
図1は、実施形態に係る移動通信システムの構成を示す図である。 図2は、実施形態に係るプロトコルスタックの構成例を示す図である。 図3は、実施形態に係るUEの構成を示す図である。 図4は、実施形態に係る基地局の構成を示す図である。 図5は、実施形態に係る移動通信システムの第1動作例を説明するためのシーケンス図である。 図6は、実施形態に係る移動通信システムの第1動作例を説明するための説明図である。 図7は、実施形態に係る移動通信システムの第2動作例を説明するためのシーケンス図である。 図8は、実施形態に係る移動通信システムの第2動作例を説明するための説明図である。
Objects, features, advantages, etc. of the present disclosure will become clearer from the following detailed description with reference to the accompanying drawings.
FIG. 1 is a diagram showing the configuration of a mobile communication system according to an embodiment. FIG. 2 is a diagram illustrating a configuration example of a protocol stack according to the embodiment; FIG. 3 is a diagram illustrating the configuration of a UE according to the embodiment; FIG. 4 is a diagram showing the configuration of a base station according to the embodiment. FIG. 5 is a sequence diagram for explaining the first operation example of the mobile communication system according to the embodiment. FIG. 6 is an explanatory diagram for explaining a first operation example of the mobile communication system according to the embodiment. FIG. 7 is a sequence diagram for explaining a second operation example of the mobile communication system according to the embodiment. FIG. 8 is an explanatory diagram for explaining a second operation example of the mobile communication system according to the embodiment.
 図面を参照しながら、実施形態に係る移動通信システムについて説明する。図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。 A mobile communication system according to an embodiment will be described with reference to the drawings. In the description of the drawings, the same or similar parts are denoted by the same or similar reference numerals.
 4Gシステムでは、サブキャリア間隔が固定されているのに対して、第5世代(5G)の移動通信システム(5Gシステム)では、サブキャリア間隔(すなわち、シンボル長)を変更可能である。このため、5Gシステムにおいて、4Gシステムと同様にガード期間を生成した場合、作成したガード期間の長さが不適切である虞がある。そこで、本開示は、第1周波数帯において上り送信を行った後、第1周波数帯と異なる第2周波数帯において上り送信を行う場合に、適切なガード期間を生成可能とする通信装置及び通信制御方法を提供することを目的の一つとする。 In the 4G system, the subcarrier spacing is fixed, whereas in the fifth generation (5G) mobile communication system (5G system), the subcarrier spacing (ie, symbol length) can be changed. Therefore, if a guard period is generated in the 5G system in the same way as in the 4G system, the length of the generated guard period may be inappropriate. Therefore, the present disclosure provides a communication device and communication control that can generate an appropriate guard period when performing uplink transmission in a second frequency band different from the first frequency band after performing uplink transmission in the first frequency band. One of the purposes is to provide a method.
 (システム構成)
 まず、図1を参照して、本実施形態に係る移動通信システム1の構成について説明する。移動通信システム1は、例えば、3GPP(登録商標。以下同じ)(3rd Generation Partnership Project)の技術仕様(Technical Specification:TS)に準拠したシステムである。以下において、移動通信システム1として、3GPP規格の第5世代システム(5th Generation System:5Gシステム)、すなわち、NR(New Radio)に基づく移動通信システムを例に挙げて説明する。
(System configuration)
First, the configuration of a mobile communication system 1 according to this embodiment will be described with reference to FIG. The mobile communication system 1 is, for example, a system conforming to Technical Specifications (TS) of 3GPP (registered trademark; hereinafter the same) (3rd Generation Partnership Project). Hereinafter, as the mobile communication system 1, a mobile communication system based on the 3GPP standard 5th Generation System (5G system), that is, NR (New Radio) will be described as an example.
 移動通信システム1は、ネットワーク10と、ネットワーク10と通信するユーザ装置(User Equipment:UE)100とを有する。ネットワーク10は、5Gの無線アクセスネットワークであるNG-RAN(Next Generation Radio Access Network)20と、5Gのコアネットワークである5GC(5G Core Network)30とを含む。 The mobile communication system 1 has a network 10 and a user equipment (UE) 100 that communicates with the network 10 . The network 10 includes an NG-RAN (Next Generation Radio Access Network) 20, which is a 5G radio access network, and a 5GC (5G Core Network) 30, which is a 5G core network.
 UE100は、通信装置の一例である。UE100は、移動可能な無線通信装置であってよい。UE100は、ユーザにより利用される装置であってよい。UE100は、例えば、スマートフォンなどの携帯電話端末、タブレット端末、ノートPC、通信モジュール、又は通信カードなどの移動可能な装置である。UE100は、車両(例えば、車、電車など)又はこれに設けられる装置(例えば、Vehicle UE)であってよい。UE100は、車両以外の輸送機体(例えば、船、飛行機、飛行隊など)又はこれに設けられる装置(例えば、Aerial UE)であってよい。UE100は、センサ又はこれに設けられる装置であってよい。なお、UE100は、移動局、移動端末、移動装置、移動ユニット、加入者局、加入者端末、加入者装置、加入者ユニット、ワイヤレス局、ワイヤレス端末、ワイヤレス装置、ワイヤレスユニット、リモート局、リモート端末、リモート装置、又はリモートユニット等の別の名称で呼ばれてもよい。 The UE 100 is an example of a communication device. The UE 100 may be a mobile wireless communication device. UE 100 may be a device used by a user. The UE 100 is, for example, a portable device such as a mobile phone terminal such as a smart phone, a tablet terminal, a notebook PC, a communication module, or a communication card. The UE 100 may be a vehicle (eg, car, train, etc.) or a device provided therein (eg, Vehicle UE). The UE 100 may be a transport body other than a vehicle (eg, a ship, an airplane, a squadron, etc.) or a device provided thereon (eg, an Aerial UE). The UE 100 may be a sensor or a device attached thereto. UE 100 includes mobile station, mobile terminal, mobile device, mobile unit, subscriber station, subscriber terminal, subscriber device, subscriber unit, wireless station, wireless terminal, wireless device, wireless unit, remote station, remote terminal. , remote device, or remote unit.
 本実施形態において、NRのUE100として、一般UE(一般通信装置、一般ユーザ装置)100Aと、一般UE100Aに比べて低減された通信能力を有する特定UE(特定通信装置、特定ユーザ装置)100Bとの2種類のUEを想定する。一般UE100Aは、NRの特徴である高速大容量(enhanced Mobile Broadband:eMBB)及び超高信頼低遅延(Ultra-Reliable and Low Latency Communications:URLLC)といった高度な通信能力を有する。従って、一般UE100Aは、特定UE100Bよりも高い通信能力を有する。特定UE100Bは、一般UE100Aに比べて装置コスト及び複雑さが低減されたUEである。特定UE100Bは、IoT向けにミドルレンジの性能・価格を有するUE100であって、例えば、一般UE100Aに比べて、無線通信に用いる最大帯域幅が狭く設定されていたり、受信機の数が少なかったりする。なお、受信機は、受信ブランチと称されることがある。特定UE100Bは、Reduced capability NR device又はRedCap UEと称されることがある。以下、説明を明確にするために、一般UE又は特定UEとも記載するが、本実施形態における一般UE又は特定UEは、UEである。すなわち、本実施形態における一般UEは、UEと置き換えられてもよい。また、本実施形態における特定UEは、UEと置き換えられてもよい。 In the present embodiment, as the UE 100 of NR, a general UE (general communication device, general user device) 100A and a specific UE (specific communication device, specific user device) 100B having communication capacity reduced compared to the general UE 100A Assume two types of UEs. The general UE 100A has advanced communication capabilities such as high-speed, large-capacity (enhanced mobile broadband: eMBB) and ultra-reliable and low-latency communications (URLLC), which are features of NR. Therefore, the general UE 100A has higher communication capability than the specific UE 100B. The specific UE 100B is a UE with reduced device cost and complexity compared to the general UE 100A. The specific UE 100B is a UE 100 having middle-range performance and price for IoT. For example, compared to the general UE 100A, the maximum bandwidth used for wireless communication is set narrower, and the number of receivers is smaller. . Note that the receiver is sometimes called a reception branch. The specific UE 100B is sometimes called a Reduced capability NR device or a RedCap UE. Hereinafter, for clarity of explanation, a general UE or a specific UE is also described, but the general UE or the specific UE in this embodiment is a UE. That is, the general UE in this embodiment may be replaced with a UE. Also, the specific UE in this embodiment may be replaced with a UE.
 具体的には、特定UE100Bは、LPWA(Low Power Wide Area)規格、例えば、LTE Cat.(Long Term Evolution UE Category)1/1bis、LTE Cat.M1(LTE-M)、LTE Cat.NB1(NB-IoT)で規定されている通信速度以上の通信速度で通信可能であってもよい。特定UE100Bは、LPWA規格で規定されている帯域幅以上の帯域幅で通信可能であってよい。特定UE100Bは、Rel-15又はRel-16のUEと比較して、通信に用いる帯域幅が限定されていてよい。例えば、FR1(Frequency Range 1)について、特定UE100Bによってサポートされる最大帯域幅(UE最大帯域幅とも称される)は、20MHzであってよい。また、FR2(Frequency Range 2)について、特定UE100Bによってサポートされる最大帯域幅は、100MHzであってよい。特定UE100Bは、無線信号を受信する受信機を1つのみ有していてよい。特定UE100Bは、例えば、ウェアラブル装置又はセンサ装置等であってよい。 Specifically, the specific UE 100B complies with the LPWA (Low Power Wide Area) standard, such as LTE Cat. (Long Term Evolution UE Category) 1/1bis, LTE Cat. M1 (LTE-M), LTE Cat. It may be possible to communicate at a communication speed equal to or higher than the communication speed specified by NB1 (NB-IoT). The specific UE 100B may be able to communicate with a bandwidth equal to or greater than the bandwidth defined by the LPWA standard. The specific UE 100B may have a limited bandwidth for communication compared to Rel-15 or Rel-16 UEs. For example, for FR1 (Frequency Range 1), the maximum bandwidth (also referred to as UE maximum bandwidth) supported by a particular UE 100B may be 20 MHz. Also, for FR2 (Frequency Range 2), the maximum bandwidth supported by the specific UE 100B may be 100 MHz. The specific UE 100B may have only one receiver that receives radio signals. The specific UE 100B may be, for example, a wearable device, a sensor device, or the like.
 NG-RAN20は、複数の基地局200を含む。各基地局200は、少なくとも1つのセルを管理する。セルは、通信エリアの最小単位を構成する。1つのセルは、1つの周波数(キャリア周波数)に属する。用語「セル」は、無線通信リソースを表すことがあり、UE100の通信対象を表すこともある。各基地局200は、自セルに在圏するUE100との無線通信を行うことができる。基地局200は、RANのプロトコルスタックを使用してUE100と通信する。プロトコルスタックの詳細については後述する。また、基地局200は、Xnインターフェイスを介して他の基地局200(隣接基地局と称されてもよい)に接続される。基地局200は、Xnインターフェイスを介して隣接基地局と通信する。また、基地局200は、UE100へ向けたNRユーザプレーン及び制御プレーンプロトコル終端を提供し、NGインターフェイスを介して5GC30に接続される。
このようなNRの基地局200は、gNodeB(gNB)と称されることがある。
NG-RAN 20 includes multiple base stations 200 . Each base station 200 manages at least one cell. A cell constitutes the minimum unit of a communication area. One cell belongs to one frequency (carrier frequency). The term “cell” may represent a radio communication resource and may also represent a communication target of UE 100 . Each base station 200 can perform radio communication with the UE 100 residing in its own cell. The base station 200 communicates with the UE 100 using the RAN protocol stack. Details of the protocol stack will be described later. Base stations 200 are also connected to other base stations 200 (which may be referred to as adjacent base stations) via Xn interfaces. Base station 200 communicates with neighboring base stations via the Xn interface. The base station 200 also provides NR user plane and control plane protocol termination towards the UE 100 and is connected to the 5GC 30 via the NG interface.
Such an NR base station 200 is sometimes referred to as a gNodeB (gNB).
 5GC30は、コアネットワーク装置300を含む。コアネットワーク装置300は、例えば、AMF(Access and Mobility Management Function)及び/又はUPF(User Plane Function)を含む。AMFは、UE100のモビリティ管理を行う。UPFは、U-plane処理に特化した機能を提供する。AMF及びUPFは、NGインターフェイスを介して基地局200と接続される。 The 5GC 30 includes a core network device 300. The core network device 300 includes, for example, AMF (Access and Mobility Management Function) and/or UPF (User Plane Function). AMF performs mobility management of UE100. UPF provides functions specialized for U-plane processing. The AMF and UPF are connected with the base station 200 via the NG interface.
 (プロトコルスタックの構成例)
 次に、図2を参照して、本実施形態に係るプロトコルスタックの構成例について説明する。
(Example of protocol stack configuration)
Next, a configuration example of a protocol stack according to this embodiment will be described with reference to FIG.
 UE100と基地局200との間の無線区間のプロトコルは、物理(PHY)レイヤと、MAC(Medium Access Control)レイヤと、RLC(Radio Link Control)レイヤと、PDCP(Packet Data Convergence Protocol)レイヤと、RRC(Radio Resource Control)レイヤとを有する。 The protocol of the wireless section between the UE 100 and the base station 200 includes a physical (PHY) layer, a MAC (Medium Access Control) layer, an RLC (Radio Link Control) layer, a PDCP (Packet Data Convergence Protocol) layer, It has an RRC (Radio Resource Control) layer.
 PHYレイヤは、符号化・復号、変調・復調、アンテナマッピング・デマッピング、及びリソースマッピング・デマッピングを行う。UE100のPHYレイヤと基地局200のPHYレイヤとの間では、物理チャネルを介してデータ及び制御情報が伝送される。 The PHY layer performs encoding/decoding, modulation/demodulation, antenna mapping/demapping, and resource mapping/demapping. Data and control information are transmitted between the PHY layer of the UE 100 and the PHY layer of the base station 200 via physical channels.
 MACレイヤは、データの優先制御、ハイブリッドARQ(HARQ:Hybrid Automatic Repeat reQuest)による再送処理、及びランダムアクセスプロシージャ等を行う。UE100のMACレイヤと基地局200のMACレイヤとの間では、トランスポートチャネルを介してデータ及び制御情報が伝送される。基地局200のMACレイヤはスケジューラを含む。スケジューラは、上下リンクのトランスポートフォーマット(トランスポートブロックサイズ、変調・符号化方式(MCS))及びUE100への割当リソースを決定する。 The MAC layer performs data priority control, retransmission processing by hybrid ARQ (HARQ: Hybrid Automatic Repeat reQuest), random access procedures, and the like. Data and control information are transmitted between the MAC layer of the UE 100 and the MAC layer of the base station 200 via transport channels. The MAC layer of base station 200 includes a scheduler. The scheduler determines uplink and downlink transport formats (transport block size, modulation and coding scheme (MCS)) and allocation resources to the UE 100 .
 RLCレイヤは、MACレイヤ及びPHYレイヤの機能を利用してデータを受信側のRLCレイヤに伝送する。UE100のRLCレイヤと基地局200のRLCレイヤとの間では、論理チャネルを介してデータ及び制御情報が伝送される。 The RLC layer uses the functions of the MAC layer and PHY layer to transmit data to the RLC layer on the receiving side. Data and control information are transmitted between the RLC layer of the UE 100 and the RLC layer of the base station 200 via logical channels.
 PDCPレイヤは、ヘッダ圧縮・伸張、及び暗号化・復号化を行う。 The PDCP layer performs header compression/decompression and encryption/decryption.
 PDCPレイヤの上位レイヤとしてSDAP(Service Data Adaptation Protocol)レイヤが設けられていてもよい。SDAP(Service Data Adaptation Protocol)レイヤは、コアネットワークがQoS(Quality of Service)制御を行う単位であるIPフローとAS(Access Stratum)がQoS制御を行う単位である無線ベアラとのマッピングを行う。 An SDAP (Service Data Adaptation Protocol) layer may be provided as an upper layer of the PDCP layer. The SDAP (Service Data Adaptation Protocol) layer performs mapping between an IP flow, which is the unit of QoS (Quality of Service) control performed by the core network, and a radio bearer, which is the unit of AS (Access Stratum) QoS control.
 RRCレイヤは、無線ベアラの確立、再確立及び解放に応じて、論理チャネル、トランスポートチャネル、及び物理チャネルを制御する。UE100のRRCレイヤと基地局200のRRCレイヤとの間では、各種設定のためのRRCシグナリングが伝送される。UE100のRRCと基地局200のRRCとの間にRRC接続がある場合、UE100はRRCコネクティッド状態にある。UE100のRRCと基地局200のRRCとの間にRRC接続がない場合、UE100はRRCアイドル状態にある。UE100のRRCと基地局200のRRCとの間のRRC接続がサスペンドされている場合、UE100はRRCインアクティブ状態にある。 The RRC layer controls logical channels, transport channels and physical channels according to radio bearer establishment, re-establishment and release. RRC signaling for various settings is transmitted between the RRC layer of UE 100 and the RRC layer of base station 200 . When there is an RRC connection between the RRC of UE 100 and the RRC of base station 200, UE 100 is in the RRC connected state. If there is no RRC connection between the RRC of the UE 100 and the RRC of the base station 200, the UE 100 is in RRC idle state. When the RRC connection between the RRC of UE 100 and the RRC of base station 200 is suspended, UE 100 is in RRC inactive state.
 UE100においてRRCレイヤの上位に位置するNASレイヤは、UE100のセッション管理及びモビリティ管理を行う。UE100のNASレイヤとコアネットワーク装置300のNASレイヤとの間では、NASシグナリングが伝送される。 The NAS layer located above the RRC layer in the UE 100 performs session management and mobility management for the UE 100. NAS signaling is transmitted between the NAS layer of UE 100 and the NAS layer of core network device 300 .
 なお、UE100は、無線インターフェイスのプロトコル以外にアプリケーションレイヤ等を有する。 Note that the UE 100 has an application layer and the like in addition to the radio interface protocol.
 (無線フレーム構成)
 5Gシステムにおいて、下り送信及び上り送信は、10msの持続時間の無線フレーム内で構成される。例えば、無線フレームは、10個のサブフレームにより構成される。例えば、1つのサブフレームは、1msであってもよい。また、1つのサブフレームは、1以上のスロットにより構成されてもよい。例えば、1つのスロットを構成するシンボルの数は、通常CP(Cyclic Prefix)で14個であり、拡張CPで12個である。また、1つのサブフレームを構成するスロットの数は、設定されたサブキャリア間隔に応じて変化する。例えば、通常CPに対して、サブキャリア間隔として15kHzが設定された場合、サブフレーム当たりのスロットの数は1(すなわち、14シンボル)であり、サブキャリア間隔として30kHzが設定された場合、サブフレーム当たりのスロットの数は2(すなわち、28シンボル)であり、サブキャリア間隔として60kHzが設定された場合、サブフレーム当たりのスロットの数は4(すなわち、56シンボル)であり、サブキャリア間隔として120kHzが設定された場合、サブフレーム当たりのスロットの数は8(すなわち、128シンボル)である。また、拡張CPに対して、サブキャリア間隔として60kHzが設定された場合、サブフレーム当たりのスロットの数は4(すなわち、48シンボル)である。すなわち、基地局200によって設定されたサブキャリア間隔に基づいて、1つのサブフレームを構成するスロットの数が決定される。また、基地局200によって設定されたサブキャリア間隔に基づいて、1つのサブフレームを構成するシンボルの数が決定される。すなわち、基地局200によって設定されたサブキャリア間隔に基づいて、1msのサブフレームを構成するシンボルの数が決定され、各シンボルの長さ(時間方向の長さ)が変化する。
(Radio frame structure)
In 5G systems, downlink and uplink transmissions are organized within a radio frame of 10 ms duration. For example, a radio frame consists of 10 subframes. For example, one subframe may be 1 ms. Also, one subframe may consist of one or more slots. For example, the number of symbols forming one slot is 14 for normal CP (Cyclic Prefix) and 12 for extended CP. Also, the number of slots forming one subframe changes according to the set subcarrier interval. For example, for normal CP, if the subcarrier spacing is set to 15 kHz, the number of slots per subframe is 1 (i.e., 14 symbols), and if the subcarrier spacing is set to 30 kHz, the subframe If the number of slots per subframe is 2 (i.e. 28 symbols) and the subcarrier spacing is set to 60kHz, the number of slots per subframe is 4 (i.e. 56 symbols) and the subcarrier spacing is 120kHz. is set, the number of slots per subframe is 8 (ie, 128 symbols). Also, when 60 kHz is set as the subcarrier spacing for the extended CP, the number of slots per subframe is 4 (that is, 48 symbols). That is, the number of slots forming one subframe is determined based on the subcarrier spacing set by base station 200 . Also, based on the subcarrier spacing set by base station 200, the number of symbols forming one subframe is determined. That is, based on the subcarrier interval set by base station 200, the number of symbols forming a 1 ms subframe is determined, and the length of each symbol (length in the time direction) changes.
 (帯域幅部分)
 UE100と基地局200とは、セルの全帯域幅の一部分である帯域幅部分(BWP)を用いて通信を行う。具体的には、基地局200は、1つ又は複数のBWPをUE100に設定する。基地局200は、設定された1つ又は複数のBWPのうち、基地局200との通信に用いるBWP(すなわち、アクティブBWP)をUE100へ通知できる。具体的には、基地局200は、設定の実行時にアクティブにするBWP、すなわち、基地局200との通信で最初に用いるBWPを示す識別子をUE100へ送信できる。また、アクティブBWPからアクティブBWPでないBWP(以下、非アクティブBWP)への切り替え及び非アクティブBWPからアクティブBWPへの切り替え(いわゆる、BWPスイッチング)の制御には、例えば、物理下り制御チャネル(例えば、下りリンクアサインメント、上りリンクアサインメント)、タイマ(すなわち、bwp-InactivityTimer)、RRCシグナリング、又はMACエンティティなどが用いられる。
(Bandwidth part)
UE 100 and base station 200 communicate using a bandwidth portion (BWP), which is a portion of the total bandwidth of a cell. Specifically, the base station 200 configures one or more BWPs for the UE100. The base station 200 can notify the UE 100 of the BWP used for communication with the base station 200 (that is, the active BWP) among one or more set BWPs. Specifically, the base station 200 can transmit to the UE 100 an identifier indicating the BWP to be activated when executing the setting, that is, the BWP that is first used in communication with the base station 200 . In addition, for controlling switching from an active BWP to a BWP that is not an active BWP (hereinafter referred to as an inactive BWP) and switching from an inactive BWP to an active BWP (so-called BWP switching), for example, a physical downlink control channel (e.g., downlink link assignment, uplink assignment), timer (ie bwp-InactivityTimer), RRC signaling, or MAC entity.
 ここで、BWP(すなわち、アクティブBWP)における通信とは、当該BWPにおける上りリンク共用チャネル(UL-SCH:Uplink-Shared Channel)での送信、当該BWPにおけるランダムアクセスチャネル(RACH:Random Acces Channel)での送信(物理ランダムアクセスチャネル(PRACH:Physical RACH)機会が設定されている場合)、当該BWPにおける物理下りリンク制御チャネル(PDCCH:Physical Downlink Control Channel)のモニタ、当該BWPにおける物理上りリンク制御チャネル(PUCCH:Physical Uplink Control Channel)での送信(PUCCHリソースが設定されている場合)、当該BWPに対するチャネル状態情報(CSI:Channel State Information)のレポート、及び、当該BWPにおける下りリンク共用チャネル(DL-SCH:Downlink-Shared Channel)の受信の少なくともいずれかが含まれてもよい。 Here, communication in BWP (that is, active BWP) means transmission on the uplink shared channel (UL-SCH: Uplink-Shared Channel) in the BWP, and random access channel (RACH: Random Access Channel) in the BWP. Transmission of the physical random access channel (PRACH: Physical RACH) opportunity is set), monitoring of the physical downlink control channel (PDCCH: Physical Downlink Control Channel) in the BWP, physical uplink control channel in the BWP ( PUCCH: Physical Uplink Control Channel) transmission (when PUCCH resource is configured), channel state information (CSI: Channel State Information) report for the BWP, and downlink shared channel (DL-SCH) in the BWP : Downlink-Shared Channel).
 ここで、UL-SCHはトランスポートチャネルであり、物理チャネルである物理上りリンク共用チャネル(PUSCH:Physical Uplink Shared Channel)にマップされる。また、UL-SCHで送信されるデータは、UL-SCHデータとも称される。例えば、UL-SCHデータ、上りユーザーデータに対応してもよい。また、DL-SCHはトランスポートチャネルであり、物理チャネルである物理下りリンク共用チャネル(PDSCH:Phsyical downlink Shared Channel)にマップされる。また、DL-SCHで送信されるデータは、DL-SCHデータとも称される。例えば、DL-SCHデータ、下りユーザーデータに対応してもよい。 Here, the UL-SCH is a transport channel and is mapped to a physical uplink shared channel (PUSCH: Physical Uplink Shared Channel). Data transmitted on the UL-SCH is also referred to as UL-SCH data. For example, it may correspond to UL-SCH data and uplink user data. DL-SCH is a transport channel and is mapped to a physical downlink shared channel (PDSCH: Physical Downlink Shared Channel). Data transmitted on the DL-SCH is also referred to as DL-SCH data. For example, it may correspond to DL-SCH data and downlink user data.
 また、PUCCHは、上りリンク制御情報を送信するために用いられる。例えば、上りリンク制御情報は、HARQ-ACK(Hybrid Automatic Repeat Request)、CSI、及び/又は、SR(Scheduling Request)を含む。HARQ-ACKは、肯定応答(Positive Acknowledgment)、又は、否定応答(Negative Acknowledgment)を含む。例えば、PUCCHは、PDSCH(すなわち、DL-SCH(DL-SCHデータ、下りユーザーデータ))に対するHARQ-ACKの送信に用いられる。ここで、DL-SCHデータ、及び/又は、下りユーザーデータは、下りトランスポートブロックとも称される。 Also, the PUCCH is used to transmit uplink control information. For example, the uplink control information includes HARQ-ACK (Hybrid Automatic Repeat Request), CSI, and/or SR (Scheduling Request). HARQ-ACK includes positive acknowledgment or negative acknowledgment. For example, PUCCH is used to transmit HARQ-ACK for PDSCH (that is, DL-SCH (DL-SCH data, downlink user data)). Here, DL-SCH data and/or downlink user data are also referred to as downlink transport blocks.
 BWPは、初期の帯域幅部分(初期BWP:Initial BWP)と各UE100に専用に設定される帯域幅部分(専用BWP)とを含む。初期BWPは、少なくともUE100の初期アクセスに用いられる。初期BWPは、複数のUE100に共通に用いられる。例えば、初期BWPは、複数のUE100に共通のパラメータ(セルスペシフィックパラメータ)を用いて設定される。初期BWPは、下り通信用の初期BWP(以下、初期下りBWP(Initial DL BWP))と上り通信用の初期BWP(以下、初期上りBWP(Initial UL BWP))とを含む。例えば、初期下りBWP及び初期上りBWPのそれぞれを示す識別子(すなわち、bwp-id)の値は、0であってもよい。 The BWP includes an initial bandwidth portion (initial BWP) and a bandwidth portion dedicated to each UE 100 (dedicated BWP). Initial BWP is used at least for initial access of UE 100 . The initial BWP is commonly used for multiple UEs 100 . For example, the initial BWP is set using parameters common to multiple UEs 100 (cell-specific parameters). The initial BWP includes an initial BWP for downlink communication (hereinafter referred to as initial downlink BWP (Initial DL BWP)) and an initial BWP for uplink communication (hereinafter referred to as initial uplink BWP (Initial UL BWP)). For example, the value of the identifier (ie, bwp-id) indicating each of the initial downlink BWP and the initial uplink BWP may be 0.
 UE100は、例えば、2つの方法で、初期BWP(すなわち、初期下りBWP及び初期上りBWP)を特定できる。第1の方法では、UE100は、物理ブロードキャストチャネル(PBCH)内のマスター情報ブロック(MIB)に含まれる情報を用いて設定されるCORESET#0に基づいて、初期BWPを特定する。第2の方法では、UE100は、システム情報ブロック(SIB)に含まれる情報を用いて設定される周波数領域における位置及び帯域幅に基づいて、初期BWPを特定する。UE100は、例えば、ランダムアクセス手順におけるメッセージ4の受信までは、第1の方法により特定されたBWPを、基地局200との通信に適用してよい。UE100は、例えば、メッセージ4(Msg.4)の受信後は、第2の方法により特定されたBWPを、基地局200との通信に適用してよい。ここで、ランダムアクセス手順におけるメッセージ4は、RRCセットアップメッセージ、RRC再開メッセージ、及び/又は、RRC(再)確立メッセージを含んでもよい。 For example, the UE 100 can identify the initial BWP (that is, the initial downlink BWP and the initial uplink BWP) using two methods. In the first method, the UE 100 identifies the initial BWP based on CORESET#0, which is set using information contained in the master information block (MIB) within the physical broadcast channel (PBCH). In the second method, the UE 100 identifies the initial BWP based on the location and bandwidth in the frequency domain that are set using information included in the system information block (SIB). UE 100 may apply the BWP identified by the first method to communication with base station 200, for example, until reception of message 4 in the random access procedure. UE 100 may apply the BWP identified by the second method to communication with base station 200, for example, after receiving message 4 (Msg.4). Here, message 4 in the random access procedure may include an RRC setup message, an RRC resume message and/or an RRC (re)establishment message.
 専用BWPは、UE100に専用に設定される。専用BWPは、下り通信用の専用BWP(以下、専用下りBWP(UE dedicated DL BWP))と上り通信用の専用BWP(以下、専用上りBWP(UE dedicated UL BWP))とを含む。例えば、専用下りBWP及び専用上りBWPのそれぞれを示す識別子の値は0以外であってもよい。 A dedicated BWP is set exclusively for the UE 100. The dedicated BWP includes a dedicated BWP for downlink communication (hereinafter referred to as a dedicated downlink BWP (UE dedicated DL BWP)) and a dedicated BWP for uplink communication (hereinafter referred to as a dedicated uplink BWP (UE dedicated UL BWP)). For example, the value of the identifier indicating each of the dedicated downlink BWP and the dedicated uplink BWP may be other than 0.
 UE100には、例えば、RRCメッセージに含まれる情報(例えば、下りBWP用の情報(すなわち、BWP-Downlink)及び上りBWP用の情報(すなわち、BWP-Uplink))に基づいて、専用BWPが設定される。下りBWP用の情報及び専用上りBWP用の情報のそれぞれに、例えば、周波数ドメインにおける位置及び帯域幅を示す情報(例えば、locationAndBadwidth)、サブキャリア間隔を示す情報(例えば、subcarrierSpacing)、及び、拡張サイクリックプレフィックスを示す情報(例えば、cyclicPrefix)の少なくともいずれかの情報が含まれてよい。 In the UE 100, for example, a dedicated BWP is configured based on information included in the RRC message (eg, information for BWP downlink (ie, BWP-Downlink) and information for uplink BWP (ie, BWP-Uplink)). be. For each of the information for downlink BWP and the information for dedicated uplink BWP, for example, information indicating the position and bandwidth in the frequency domain (eg, locationAndBadwidth), information indicating subcarrier spacing (eg, subcarrierSpacing), and extended size At least one of information indicating a click prefix (eg, cyclicPrefix) may be included.
 (リソースブロック)
 リソースブロック(RB)は、周波数ドメイン内で連続する12個のサブキャリアとして定義される。RBとして、例えば、共通リソースブロック(CRB)、物理リソースブロック(PRB)などが定義される。共通リソースブロックは、サブキャリア間隔の設定μの周波数ドメインで0から昇順で番号が付けられる。サブキャリア間隔の設定μの物理リソースブロック(PRB)は、帯域幅部分内で定義され、0から以下の数まで番号(後述するPRBの番号)が付けられる。以下、PRBの番号を、PRBインデックスとも記載する。すなわち、本実施形態において、PRBの番号とPRBインデックスは、同一のものであってよい。
(resource block)
A resource block (RB) is defined as 12 consecutive subcarriers in the frequency domain. As RBs, for example, common resource blocks (CRBs), physical resource blocks (PRBs), etc. are defined. The common resource blocks are numbered in ascending order from 0 in the frequency domain with a subcarrier spacing setting μ. The physical resource blocks (PRBs) of the subcarrier spacing setting μ are defined within the bandwidth portion and numbered from 0 to the following numbers (PRB numbers to be described later). Hereinafter, PRB numbers are also referred to as PRB indexes. That is, in this embodiment, the PRB number and the PRB index may be the same.
Figure JPOXMLDOC01-appb-M000001
 また、共通リソースブロックと物理リソースブロックとの関係は、以下の式で与えられる。
Figure JPOXMLDOC01-appb-M000001
Also, the relationship between common resource blocks and physical resource blocks is given by the following equation.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 (PUCCHリソース)
 例えば、UE100は、第1PUCCH設定情報を受信している場合であって、第2PUCCH設定情報を受信していない場合、予め規定された情報に基づいて、初期上りBWP内のPUCCHリソースを決定する。ここで、第1PUCCH設定情報及び/又は第2PUCCH設定情報を受信している場合とは、UE100が、第1PUCCH設定情報及び/又は第2PUCCH設定情報を持っている(すなわち、保持している)場合を含んでもよい。また、第1PUCCH設定情報及び/又は第2PUCCH設定情報を受信していない場合とは、UE100が、第1PUCCH設定情報及び/又は第2PUCCH設定情報を持っていない(すなわち、保持していない)場合を含んでもよい。以下、UE100が、第1PUCCH設定情報を受信している場合であって、第2PUCCH設定情報を受信していない場合を、第1の場合とも記載する。
(PUCCH resource)
For example, when receiving the first PUCCH configuration information but not receiving the second PUCCH configuration information, the UE 100 determines PUCCH resources in the initial uplink BWP based on predefined information. Here, when the first PUCCH configuration information and / or the second PUCCH configuration information is received, the UE 100 has the first PUCCH configuration information and / or the second PUCCH configuration information (that is, holds) may include Further, when the first PUCCH configuration information and / or the second PUCCH configuration information is not received, the UE 100 does not have the first PUCCH configuration information and / or the second PUCCH configuration information (that is, does not hold) may contain. Hereinafter, the case where the UE 100 receives the first PUCCH configuration information but does not receive the second PUCCH configuration information will also be referred to as the first case.
 例えば、第1PUCCH設定情報は、PUCCH設定共通情報(pucch-ConfigCommon)である。すなわち、第1PUCCH設定情報は、PUCCHのセルスペシフィックパラメータである。また、例えば、第2PUCCH設定情報は、PUCCH設定情報(PUCCH-Config)である。すなわち、第2PUCCH設定情報は、PUCCHのUEスペシフィックパラメータである。 For example, the first PUCCH configuration information is PUCCH configuration common information (pucch-ConfigCommon). That is, the first PUCCH configuration information is a PUCCH cell-specific parameter. Also, for example, the second PUCCH configuration information is PUCCH configuration information (PUCCH-Config). That is, the second PUCCH configuration information is the UE specific parameters of PUCCH.
 例えば、複数のPUCCHリソース(例えば、16個のPUCCHリソース)のそれぞれにインデックス(例えば、0から15のインデックス)が対応付けられ、第1PUCCH設定情報を用いてインデックスが指定されることによって、ある1つのPUCCHリソースが指示されてもよい。ここで、複数のPUCCHリソースのそれぞれは、PUCCHフォーマット、PUCCHに用いられる最初のシンボル、PUCCHに用いられる期間(シンボル数)、PRBオフセット、初期CS(cyclic shift)インデックスの少なくともいずれかを含んでもよい。 For example, an index (eg, an index from 0 to 15) is associated with each of a plurality of PUCCH resources (eg, 16 PUCCH resources), and by specifying the index using the first PUCCH configuration information, a certain one one PUCCH resource may be indicated. Here, each of the plurality of PUCCH resources may include at least one of the PUCCH format, the first symbol used for PUCCH, the period (number of symbols) used for PUCCH, the PRB offset, and the initial CS (cyclic shift) index. .
 例えば、第1の場合において、UE100は、以下の式により、インデックスを決定してもよい。また、UE100は、決定したインデックスに基づいて、PUCCHリソースを決定する。 For example, in the first case, the UE 100 may determine the index by the following formula. Also, UE 100 determines a PUCCH resource based on the determined index.
Figure JPOXMLDOC01-appb-M000003
 また、第1の場合において、UE100は、式1及び式2を満たすか否かを判定してもよい。UE100は、PUCCHリソース共通情報によりPUCCHリソースが提供されており、式1及び式2のいずれか一方が満たされる場合、周波数方向へホッピングするPUCCHリソースのPRBインデックスを決定する。すなわち、UE100は、PUCCH送信に対して適用される周波数ホッピングに用いられる1つ又は複数のPUCCHリソースのPRBインデックスを決定する。
Figure JPOXMLDOC01-appb-M000003
Also, in the first case, the UE 100 may determine whether or not Equations 1 and 2 are satisfied. UE 100 is provided with PUCCH resources by the PUCCH resource common information, and if one of Equation 1 and Equation 2 is satisfied, UE 100 determines the PRB index of the PUCCH resource hopping in the frequency direction. That is, UE 100 determines PRB indices of one or more PUCCH resources used for frequency hopping applied to PUCCH transmission.
Figure JPOXMLDOC01-appb-M000004
 例えば、UE100は、式1が満たされる場合、以下の式により、第1ホップに対して用いられるPUCCHリソース(第1PUCCHリソース)のPRBインデックスと、第2ホップに対して用いられるPUCCHリソース(第2PUCCHリソース)のPRBインデックスと、を決定する。ここで、「数5」における初期上りBWPのサイズは、「数1」における帯域幅部分iのサイズに対応してもよい。すなわち、「数5」における初期上りBWPのPRBは、PRBの番号(インデックス)に対応してもよい。
Figure JPOXMLDOC01-appb-M000004
For example, when formula 1 is satisfied, UE 100 uses the following formula to calculate the PRB index of the PUCCH resource used for the first hop (first PUCCH resource) and the PUCCH resource used for the second hop (second PUCCH determine the PRB index of the resource); Here, the size of the initial uplink BWP in "Equation 5" may correspond to the size of the bandwidth portion i in "Equation 1". That is, the PRBs of the initial uplink BWP in "Formula 5" may correspond to the PRB numbers (indexes).
Figure JPOXMLDOC01-appb-M000005
 また、UE100は、式2が満たされる場合、以下の式により、第1ホップに対して用いられるPUCCHリソース(第1PUCCHリソース)のPRBインデックスと、第2ホップに対して用いられるPUCCHリソース(第2PUCCHリソース)のPRBインデックスと、を決定する。
Figure JPOXMLDOC01-appb-M000005
Further, when formula 2 is satisfied, UE 100 uses the following formula to calculate the PRB index of the PUCCH resource used for the first hop (first PUCCH resource) and the PUCCH resource used for the second hop (second PUCCH determine the PRB index of the resource);
Figure JPOXMLDOC01-appb-M000006
 なお、UE100は、初期CSインデックスのセット内での初期CSインデックスを、以下の式により決定してもよい。
Figure JPOXMLDOC01-appb-M000006
Note that the UE 100 may determine the initial CS index within the initial CS index set by the following equation.
Figure JPOXMLDOC01-appb-M000007
 また、UE100は、第2PUCCH設定情報を受信している場合、第2PUCCH設定情報に基づいて、PUCCHリソースを決定する。すなわち、UE100は、第2PUCCH設定情報を受信している場合、第1PUCCH設定情報を受信しているか否かに関わらず、第2PUCCH設定情報に基づいてPUCCHリソースを決定してもよい。以下、UE100が、少なくとも、第2PUCCH設定情報を受信している(すなわち、第2PUCCH設定情報を持っている)場合を、第2の場合とも記載する。
Figure JPOXMLDOC01-appb-M000007
Also, when receiving the second PUCCH configuration information, the UE 100 determines PUCCH resources based on the second PUCCH configuration information. That is, when receiving the second PUCCH configuration information, UE 100 may determine PUCCH resources based on the second PUCCH configuration information regardless of whether or not the first PUCCH configuration information is received. Hereinafter, the case where the UE 100 receives at least the second PUCCH configuration information (that is, has the second PUCCH configuration information) will also be referred to as the second case.
 例えば、第2PUCCH設定情報は、PUCCHリソースセット情報(PUCCH-ResourceSet)、PUCCHリソース識別子(pucch-ResourceId)、開始PRB情報(startingPRB)、第2ホップPRB情報(secondHopPRB)、及び、イントラスロット周波数ホッピング情報(intraSlotFrequencyHopping)の少なくともいずれかを含んでよい。例えば、PUCCHリソースセット情報は、PUCCHリソースセットを示す。また、PUCCHリソース識別子は、PUCCHリソースインデックスを示す。また、PUCCHリソースセットは、PUCCHリソースインデックスと関連付けられている。また、開始PRB情報は、周波数ホッピング前又は周波数ホッピングなしの最初のPRBインデックスを示す。また、第2ホップPRB情報は、周波数ホッピング後の最初のPRBインデックスを示す。また、イントラスロット周波数ホッピング情報は、イントラスロット周波数ホッピングの有効又は無効を示す。すなわち、第2の場合において、UE100は、開始PRB情報及び/又は第2ホップPRB情報に基づいて、PUCCH送信に対して適用されるPUCCHリソース(PUCCHリソースのPRBインデックス)を決定してもよい。 For example, the second PUCCH configuration information includes PUCCH resource set information (PUCCH-ResourceSet), PUCCH resource identifier (pucch-ResourceId), starting PRB information (startingPRB), second hop PRB information (secondHopPRB), and intra-slot frequency hopping information. (intraSlotFrequencyHopping). For example, PUCCH resource set information indicates a PUCCH resource set. Also, the PUCCH resource identifier indicates a PUCCH resource index. Also, a PUCCH resource set is associated with a PUCCH resource index. Also, the start PRB information indicates the first PRB index before frequency hopping or without frequency hopping. Also, the second hop PRB information indicates the first PRB index after frequency hopping. Also, the intra-slot frequency hopping information indicates whether intra-slot frequency hopping is enabled or disabled. That is, in the second case, the UE 100 may determine the PUCCH resource (PRB index of the PUCCH resource) to be applied for PUCCH transmission based on the start PRB information and/or the second hop PRB information.
 例えば、第2の場合において、UE100に対して、複数のPUCCHリソースセットが設定可能であってもよい。例えば、UE100は、PUCCHリソースセット情報とPUCCHリソース識別子とに基づいて、PUCCH送信に用いるPUCCHリソースセットを決定する。また、UE100は、開始PRB情報に基づいて、周波数ホッピング前又は周波数ホッピングなしの最初のPRB(すなわち、PUCCHリソースのPRBインデックス)を決定する。また、UE100は、第2ホップPRB情報に基づいて、周波数ホッピング後の最初のPRB(すなわち、PUCCHリソースのPRBインデックス)を決定する。また、UE100は、イントラスロット周波数ホッピング情報に基づいて、イントラスロット周波数ホッピングの有効又は無効を判定する。すなわち、UE100は、イントラスロット周波数ホッピングが有効に設定されている場合には、イントラスロット周波数ホッピングを実行する。また、UE100は、イントラスロット周波数ホッピングが無効に設定されている場合には、イントラスロット周波数ホッピングを実行しない。 For example, in the second case, multiple PUCCH resource sets may be configured for the UE 100. For example, UE 100 determines a PUCCH resource set to be used for PUCCH transmission based on PUCCH resource set information and a PUCCH resource identifier. Also, UE 100 determines the first PRB before frequency hopping or without frequency hopping (that is, the PRB index of the PUCCH resource) based on the starting PRB information. Also, UE 100 determines the first PRB after frequency hopping (that is, the PRB index of the PUCCH resource) based on the second-hop PRB information. Also, the UE 100 determines whether intra-slot frequency hopping is enabled or disabled based on the intra-slot frequency hopping information. That is, UE 100 performs intra-slot frequency hopping when intra-slot frequency hopping is enabled. Also, the UE 100 does not perform intra-slot frequency hopping when intra-slot frequency hopping is disabled.
 なお、UE100は、上述の方法と異なる他の方法により、PUCCHリソースを決定してもよい。例えば、UE100は、所定の情報(例えば、useInterlacePUCCH-PUSCH)を受信している場合には、他の方法により、PUCCHリソースを決定してもよい。 Note that the UE 100 may determine PUCCH resources using another method different from the method described above. For example, when receiving predetermined information (eg, useInterlace PUCCH-PUSCH), UE 100 may determine PUCCH resources by other methods.
 また、UE100は、決定したPUCCHリソースを用いて、PUCCHを送信する。なお、UE100は、決定した物理リソースブロック(PRB)のインデックスに対応する番号が付けられたPRBを、PUCCHの送信に用いるPRBとして決定する。すなわち、第1の場合において、UE100は、決定したPRBインデックスのPUCCHリソース(例えば、第1PUCCHリソース、及び、第2PUCCHリソース)を用いて、周波数ホッピングを伴うPUCCH送信を実行してもよい。また、第2の場合において、UE100は、決定したPRBインデックスのPUCCHリソース(例えば、開始PRB情報に基づいて決定されるPUCCHリソース、及び、第2ホップPRB情報に基づいて決定されるPUCCHリソース)を用いて、周波数ホッピングを伴うPUCCH送信を実行してもよい。 Also, the UE 100 transmits PUCCH using the determined PUCCH resource. Note that UE 100 determines PRBs to which numbers corresponding to the determined indices of physical resource blocks (PRBs) are assigned as PRBs to be used for PUCCH transmission. That is, in the first case, UE 100 may perform PUCCH transmission with frequency hopping using PUCCH resources (eg, first PUCCH resource and second PUCCH resource) of the determined PRB index. Also, in the second case, the UE 100 uses the determined PUCCH resource of the PRB index (for example, the PUCCH resource determined based on the start PRB information and the PUCCH resource determined based on the second hop PRB information). may be used to perform PUCCH transmission with frequency hopping.
 (ユーザ装置の構成)
 次に、図3を参照して、本実施形態に係るUE100の構成について説明する。UE100は、通信部120及び制御部140を備える。
(Configuration of user device)
Next, the configuration of the UE 100 according to this embodiment will be described with reference to FIG. UE 100 includes communication unit 120 and control unit 140 .
 通信部120は、無線信号を基地局200と送受信することによって基地局200との無線通信を行う。通信部120は、少なくとも1つの受信部121と、少なくとも1つの送信部122とを有する。受信部121及び送信部122は、アンテナ及びRF回路を含んで構成されてもよい。アンテナは、信号を電波に変換し、当該電波を空間に放射する。また、アンテナは、空間における電波を受信し、当該電波を信号に変換する。RF回路は、アンテナを介して送受信される信号のアナログ処理を行う。RF回路は、高周波フィルタ、増幅器、変調器及びローパスフィルタ等を含んでもよい。 The communication unit 120 performs wireless communication with the base station 200 by transmitting and receiving wireless signals to and from the base station 200 . The communication unit 120 has at least one receiver 121 and at least one transmitter 122 . The receiving section 121 and the transmitting section 122 may be configured including an antenna and an RF circuit. An antenna converts a signal into radio waves and radiates the radio waves into space. Also, the antenna receives radio waves in space and converts the radio waves into signals. The RF circuitry performs analog processing of signals transmitted and received through the antenna. The RF circuitry may include high frequency filters, amplifiers, modulators, low pass filters, and the like.
 受信部121は、受信機(RX:Receiver)と称されてよい。送信部122は、送信機(TX:Transmitter)と称されてよい。UE100が一般UE100Aである場合、通信部120が有する受信機の数は、2つ乃至4つであってもよい。UE100が特定UE100Bである場合、通信部120が有する受信機の数は、1つ又は2つであってもよい。 The receiving unit 121 may be called a receiver (RX: Receiver). The transmitter 122 may be referred to as a transmitter (TX). When the UE 100 is the general UE 100A, the number of receivers included in the communication unit 120 may be two to four. When the UE 100 is the specific UE 100B, the number of receivers included in the communication unit 120 may be one or two.
 制御部140は、UE100における各種の制御を行う。制御部140は、通信部120を介した基地局200との通信を制御する。後述のUE100の動作は、制御部140の制御による動作であってよい。制御部140は、プログラムを実行可能な少なくとも1つのプロセッサ及びプログラムを記憶するメモリを含んでよい。プロセッサは、プログラムを実行して、制御部140の動作を行ってもよい。制御部140は、アンテナ及びRF回路を介して送受信される信号のデジタル処理を行うデジタル信号プロセッサを含んでもよい。当該デジタル処理は、RANのプロトコルスタックの処理を含む。なお、メモリは、プロセッサにより実行されるプログラム、当該プログラムに関するパラメータ、及び、当該プログラムに関するデータを記憶する。メモリは、ROM(Read Only Memory)、EPROM(Erasable Programmable Read Only Memory)、EEPROM(Electrically Erasable Programmable Read Only Memory)、RAM(Random Access Memory)及びフラッシュメモリの少なくとも1つを含んでよい。メモリの全部又は一部は、プロセッサ内に含まれていてよい。 The control unit 140 performs various controls in the UE 100. The control unit 140 controls communication with the base station 200 via the communication unit 120 . The operation of the UE 100, which will be described later, may be an operation under the control of the control unit 140. The control unit 140 may include at least one processor capable of executing programs and a memory storing the programs. The processor may execute a program to operate the controller 140 . Control unit 140 may include a digital signal processor that performs digital processing of signals transmitted and received through the antenna and RF circuitry. The digital processing includes processing of the protocol stack of the RAN. Note that the memory stores programs executed by the processor, parameters related to the programs, and data related to the programs. The memory may include at least one of ROM (Read Only Memory), EPROM (Erasable Programmable Read Only Memory), EEPROM (Electrically Erasable Programmable Read Only Memory), RAM (Random Access Memory), and flash memory. All or part of the memory may be included within the processor.
 このように構成されたUE100において、通信部120は、第1周波数帯において上り送信を行った後、第1周波数帯と異なる第2周波数帯において上り送信を行う。制御部140は、上り送信に用いるサブキャリア間隔に基づいて、第1周波数帯から第2周波数帯へ周波数帯を変更するためのガード期間を構成するためのシンボル数を決定する。これにより、UE100は、サブキャリア間隔が固定されなくても、サブキャリア間隔に応じてガード期間の長さを適切に変更可能である。その結果、UE100は、第1周波数帯において上り送信を行った後、第1周波数帯と異なる第2周波数帯において上り送信を行う場合に、適切なガード期間を生成可能である。 In the UE 100 configured as described above, the communication unit 120 performs uplink transmission in the first frequency band and then performs uplink transmission in the second frequency band different from the first frequency band. Control section 140 determines the number of symbols for forming a guard period for changing the frequency band from the first frequency band to the second frequency band, based on the subcarrier interval used for uplink transmission. Thereby, UE 100 can appropriately change the length of the guard period according to the subcarrier interval even if the subcarrier interval is not fixed. As a result, the UE 100 can generate an appropriate guard period when performing uplink transmission in the second frequency band different from the first frequency band after performing uplink transmission in the first frequency band.
 また、通信部120は、基地局200のセルの全帯域幅の一部分である帯域幅部分のサブキャリア間隔を示す情報を基地局200から受信してよい。制御部140は、サブキャリア間隔を示す情報に基づいて、シンボル数を決定してよい。これにより、UE100は、基地局200により受信したサブキャリア間隔を示す情報により示されるサブキャリア間隔に基づいて、適切なガード期間を生成できる。 Also, the communication unit 120 may receive from the base station 200 information indicating the subcarrier spacing of the bandwidth portion that is part of the total bandwidth of the cell of the base station 200 . Control section 140 may determine the number of symbols based on information indicating subcarrier intervals. Thereby, UE 100 can generate an appropriate guard period based on the subcarrier interval indicated by the information indicating the subcarrier interval received by base station 200 .
 また、制御部140は、UE100の能力を示す能力情報に基づいて、シンボル数を決定してよい。UE100の能力に応じて、周波数の変更(リチューニング又は切り替え)に掛かる時間が変わることがある。UE100は、自身の能力に基づいてシンボル数を決定することで、適切なガード期間を生成できる。 Also, the control unit 140 may determine the number of symbols based on the capability information indicating the capability of the UE 100. Depending on the capabilities of the UE 100, the time it takes to change the frequency (retuning or switching) may change. UE 100 can generate an appropriate guard period by determining the number of symbols based on its own capability.
 また、通信部120は、能力情報を基地局200へ送信してよい。これにより、基地局200は、UE100がガード期間の長さとして決定するシンボル数を把握できる。その結果、基地局200は、UE100が上り送信を行わない期間を把握することができる。 Also, the communication unit 120 may transmit the capability information to the base station 200 . This allows the base station 200 to grasp the number of symbols determined by the UE 100 as the length of the guard period. As a result, the base station 200 can grasp the period during which the UE 100 does not perform uplink transmission.
 また、制御部140は、第1周波数帯における上り送信に用いるチャネルと第2周波数帯における上り送信に用いられるチャネルとの組み合わせに基づいて、シンボル数を決定してよい。第1周波数帯における上り送信に用いられるチャネルと第2周波数帯における上り送信に用いるチャネルとの組み合わせに応じて、周波数の変更(リチューニング又は切り替え)に掛かる時間が変わることがある。UE100は、チャネルの組み合わせに基づいてシンボル数を決定することで、適切なガード期間を生成できる。 Also, the control unit 140 may determine the number of symbols based on the combination of the channel used for uplink transmission in the first frequency band and the channel used for uplink transmission in the second frequency band. Depending on the combination of the channel used for uplink transmission in the first frequency band and the channel used for uplink transmission in the second frequency band, the time required for frequency change (retuning or switching) may vary. UE 100 can generate an appropriate guard period by determining the number of symbols based on the combination of channels.
 なお、UE100が備える機能部(具体的には、通信部120と、制御部140との少なくともいずれか)の動作を、UE100の動作として説明することがある。 Note that the operation of the functional unit (specifically, at least one of the communication unit 120 and the control unit 140) included in the UE 100 may be described as the operation of the UE 100.
 (基地局の構成)
 次に、図4を参照して、本実施形態に係る基地局200の構成について説明する。基地局200は、無線通信部220と、ネットワーク通信部230と、制御部240とを有する。
(Base station configuration)
Next, the configuration of the base station 200 according to this embodiment will be described with reference to FIG. The base station 200 has a radio communication section 220 , a network communication section 230 and a control section 240 .
 無線通信部220は、制御部240の制御下で、アンテナを介してUE100との通信を行う。無線通信部220は、受信部221と、送信部222とを有する。受信部221は、アンテナが受信する無線信号をベースバンド信号である受信信号に変換し、受信信号に対する信号処理を行ったうえで制御部240に出力する。送信部222は、制御部240が出力するベースバンド信号である送信信号に対する信号処理を行ったうえで無線信号に変換し、無線信号をアンテナから送信する。 Under the control of the control unit 240, the wireless communication unit 220 communicates with the UE 100 via the antenna. The radio communication unit 220 has a receiving unit 221 and a transmitting unit 222 . The receiving section 221 converts a radio signal received by the antenna into a received signal that is a baseband signal, performs signal processing on the received signal, and outputs the received signal to the control section 240 . The transmission unit 222 performs signal processing on a transmission signal, which is a baseband signal output from the control unit 240, converts the signal into a radio signal, and transmits the radio signal from an antenna.
 ネットワーク通信部230は、信号をネットワークと送受信する。ネットワーク通信部230は、例えば、基地局間インターフェイスであるXnインターフェイスを介して接続された隣接基地局から信号を受信し、隣接基地局へ信号を送信する。また、ネットワーク通信部230は、例えば、NGインターフェイスを介して接続されたコアネットワーク装置300から信号を受信し、コアネットワーク装置300へ信号を送信する。 The network communication unit 230 transmits and receives signals to and from the network. The network communication unit 230, for example, receives signals from adjacent base stations connected via an Xn interface, which is an interface between base stations, and transmits signals to the adjacent base stations. Also, the network communication unit 230 receives a signal from the core network device 300 connected via the NG interface, for example, and transmits the signal to the core network device 300 .
 制御部240は、基地局200における各種の制御を行う。制御部240は、例えば、無線通信部220を介したUE100との通信を制御する。また、制御部240は、例えば、ネットワーク通信部230を介したノード(例えば、隣接基地局、コアネットワーク装置300)との通信を制御する。後述の基地局200の動作は、制御部240の制御による動作であってよい。 The control unit 240 performs various controls in the base station 200. The control unit 240 controls communication with the UE 100 via the radio communication unit 220, for example. The control unit 240 also controls communication with nodes (for example, adjacent base stations, core network device 300) via the network communication unit 230, for example. Operations of the base station 200 described later may be operations under the control of the control unit 240 .
 制御部240は、プログラムを実行可能な少なくとも1つのプロセッサ及びプログラムを記憶するメモリを含んでよい。プロセッサは、プログラムを実行して、制御部240の動作を行ってもよい。制御部240は、アンテナ及びRF回路を介して送受信される信号のデジタル処理を行うデジタル信号プロセッサを含んでもよい。当該デジタル処理は、RANのプロトコルスタックの処理を含む。なお、メモリは、プロセッサにより実行されるプログラム、当該プログラムに関するパラメータ、及び、当該プログラムに関するデータを記憶する。メモリの全部又は一部は、プロセッサ内に含まれていてよい。 The control unit 240 may include at least one processor capable of executing a program and a memory that stores the program. The processor may execute a program to operate the controller 240 . Control unit 240 may include a digital signal processor that performs digital processing of signals transmitted and received through the antenna and RF circuitry. The digital processing includes processing of the protocol stack of the RAN. Note that the memory stores programs executed by the processor, parameters related to the programs, and data related to the programs. All or part of the memory may be included within the processor.
 なお、基地局200が備える機能部(具体的には、無線通信部220(受信部221及び/又は送信部222)と、ネットワーク通信部230と、制御部240との少なくともいずれか)の動作を、基地局200の動作として説明することがある。 Note that the operation of the functional units (specifically, at least one of the wireless communication unit 220 (receiving unit 221 and/or transmitting unit 222), the network communication unit 230, and the control unit 240) included in the base station 200 is , may be described as operations of the base station 200 .
 (システム動作)
 (1)第1動作例
 図5及び図6を参照して、移動通信システム1の第1動作例について説明する。第1動作例では、UE100が、共通設定情報に基づいて、PUCCH送信を行う。
(system operation)
(1) First Operation Example A first operation example of the mobile communication system 1 will be described with reference to FIGS. 5 and 6. FIG. In the first operation example, the UE 100 performs PUCCH transmission based on the common setting information.
 図5において、UE100は、UE100と基地局200との間でRRCアイドル状態又はRRCインアクティブ状態であってよい。例えば、図5において、UE100は、第1の場合における状態であってもよい。また、図5において、UE100は、初期アクセスを実行中でもよい。また、図5において、UE100は、RRCセットアップメッセージ、RRC再開メッセージ、及び/又は、RRC(再)確立メッセージを受信する前の状態でもよい。例えば、図5において、UE100は、ランダムアクセス手順におけるメッセージ4(すなわち、PDSCH)に対するHARQ-ACKを送信してもよい。 In FIG. 5, the UE 100 may be in the RRC idle state or RRC inactive state between the UE 100 and the base station 200. For example, in FIG. 5, the UE 100 may be in the state in the first case. Also, in FIG. 5, the UE 100 may be performing initial access. Also, in FIG. 5, the UE 100 may be in a state before receiving the RRC setup message, RRC resume message, and/or RRC (re)establishment message. For example, in FIG. 5, UE 100 may send a HARQ-ACK for message 4 (ie PDSCH) in the random access procedure.
 ステップS101:
 基地局200の無線通信部220(送信部222)は、上り送信用の共通パラメータを含む共通設定情報をUE100へ送信する。UE100の通信部120は、共通設定情報を基地局200から受信する。
Step S101:
The radio communication unit 220 (transmitting unit 222 ) of the base station 200 transmits common setting information including common parameters for uplink transmission to the UE 100 . The communication unit 120 of the UE 100 receives common setting information from the base station 200 .
 無線通信部220は、共通設定情報をブロードキャストにより送信する。無線通信部220は、例えば、共通設定情報を含むシステム情報ブロック(例えば、SIB1)を送信してよい。すなわち、共通設定情報は、セルスペシフィックパラメータであってもよい。 The wireless communication unit 220 broadcasts the common setting information. The wireless communication unit 220 may, for example, transmit a system information block (eg, SIB1) including common setting information. That is, the common configuration information may be cell-specific parameters.
 例えば、共通設定情報は、セルの共通上りパラメータを提供するための設定情報(具体的には、UplinkConfigCommonSIB)であってよい。共通設定情報は、上り送信用の帯域幅部分(上りBWP)を特定するための帯域幅部分情報を含んでよい。本動作例では、帯域幅部分情報は、上り送信用の初期の帯域幅部分(初期上りBWP)を特定するための情報であってよい。以下、説明を簡単にするために、初期上りBWPを、上りBWPとも記載する。すなわち、本実施形態において、上りBWPは、初期上りBWPに置き換えられてもよい。 For example, the common configuration information may be configuration information (specifically, UplinkConfigCommonSIB) for providing common uplink parameters for cells. Common configuration information may include bandwidth portion information for specifying a bandwidth portion for uplink transmission (uplink BWP). In this operation example, the bandwidth portion information may be information for specifying an initial bandwidth portion for uplink transmission (initial uplink BWP). Hereinafter, the initial upstream BWP will also be referred to as upstream BWP for the sake of simplicity. That is, in this embodiment, the upstream BWP may be replaced with the initial upstream BWP.
 ここで、帯域幅部分情報は、第1帯域幅部分を設定するために用いられる第1帯域幅部分情報(以下、第1の情報とも記載する)を含んでもよい。また、帯域幅部分情報は、第2帯域幅部分を設定するために用いられる第2帯域幅部分情報(以下、第2の情報)を含んでもよい。また、帯域幅部分情報は、第3帯域幅部分を設定するために用いられる第3帯域幅部分情報(以下、第3の情報)を含んでもよい。 Here, the bandwidth portion information may include first bandwidth portion information (hereinafter also referred to as first information) used to set the first bandwidth portion. Also, the bandwidth portion information may include second bandwidth portion information (hereinafter referred to as second information) used to set the second bandwidth portion. Also, the bandwidth portion information may include third bandwidth portion information (hereinafter referred to as third information) used to set the third bandwidth portion.
 例えば、第1帯域幅部分は第1の上りBWPに対応し、第2帯域幅部分は第2の上りBWPに対応してもよい。一例として、第1帯域幅部分及び/又は第2帯域幅部分は、特定UE100Bに用いられる上りBWPであってもよい。例えば、第1の情報を用いて設定される第1帯域幅部分は、特定UE100Bに用いられる初期上りBWPであってもよい。また、第2帯域幅部分は、特定UE100Bが上りリンク制御情報の送信に対するPUCCHリソース(すなわち、PUCCHリソースのPRBインデックス)を決定するために用いられる上りBWPであってもよい。すなわち、第1の情報は上りリンクBWP(例えば、初期上りBWP)を特定するために用いられ、第2の情報はPUCCHリソースを決定するために用いられてもよい。 For example, the first bandwidth portion may correspond to the first upstream BWP and the second bandwidth portion may correspond to the second upstream BWP. As an example, the first bandwidth portion and/or the second bandwidth portion may be uplink BWP used for a specific UE 100B. For example, the first bandwidth portion configured using the first information may be the initial uplink BWP used for the specific UE 100B. Also, the second bandwidth part may be an uplink BWP used by the specific UE 100B to determine PUCCH resources (that is, PRB indexes of PUCCH resources) for transmission of uplink control information. That is, the first information may be used to identify an uplink BWP (eg, initial uplink BWP) and the second information may be used to determine PUCCH resources.
 例えば、第1の情報は、周波数位置及び/又はサイズを示す情報(locationAndBandwidthとも称される)を含んでもよい。これにより、第1の情報は、周波数位置及びサイズの少なくとも一方を示すことができる。また、第1の情報は、サブキャリア間隔を示す情報(subcarrierSpacingとも称される)を含んでもよい。例えば、UE100は、第1の情報に含まれる情報に基づいて、第1帯域幅部分を特定してもよい。すなわち、第1の情報は、第1帯域幅部分を特定するための情報を含んでもよい。ここで、上述の通り、第1帯域幅部分は、初期上りBWPであってもよい。 For example, the first information may include information indicating frequency location and/or size (also referred to as locationAndBandwidth). This allows the first information to indicate at least one of frequency position and size. The first information may also include information indicating subcarrier spacing (also referred to as subcarrierSpacing). For example, the UE 100 may identify the first bandwidth portion based on information included in the first information. That is, the first information may include information for identifying the first bandwidth portion. Here, as described above, the first bandwidth portion may be the initial upstream BWP.
 また、第2の情報は、周波数位置及び/又はサイズを示す情報(locationAndBandwidthとも称される)を含んでもよい。これにより、第2の情報は、周波数位置及びサイズの少なくとも一方を示すことができる。また、第2の情報は、サブキャリア間隔を示す情報(subcarrierSpacingとも称される)を含んでもよい。例えば、UE100は、第2の情報に含まれる情報に基づいて、第2帯域幅部分を特定してもよい。すなわち、第2の情報は、第2帯域幅部分を特定するための情報を含んでもよい。 Also, the second information may include information indicating the frequency position and/or size (also referred to as locationAndBandwidth). Thereby, the second information can indicate at least one of frequency position and size. The second information may also include information indicating subcarrier spacing (also referred to as subcarrierSpacing). For example, the UE 100 may identify the second bandwidth portion based on information included in the second information. That is, the second information may include information for identifying the second bandwidth portion.
 また、第3帯域幅部分は、第3の上りBWPに対応してもよい。一例として、第3帯域幅部分は、少なくとも一般UE100Aに用いられる上りBWPであってもよい。例えば、第3の情報を用いて設定される第3帯域幅部分は、少なくとも一般UE100Aに用いられる初期上りBWPであってもよい。すなわち、第3の情報は、上りリンクBWP(例えば、初期上りBWP)を特定するために用いられてもよい。ここで、第3帯域幅部分は、特定UE100Bが上りリンク制御情報の送信に対するPUCCHリソース(すなわち、PUCCHリソースのPRBインデックス)を決定するために用いられる上りBWPであってもよい。すなわち、第3の情報はPUCCHリソースを決定するために用いられてもよい。 Also, the third bandwidth portion may correspond to the third upstream BWP. As an example, the third bandwidth portion may be uplink BWP used at least for general UE 100A. For example, the third bandwidth portion configured using the third information may be the initial uplink BWP used at least for the general UE 100A. That is, the third information may be used to identify the uplink BWP (eg, initial uplink BWP). Here, the third bandwidth part may be an uplink BWP used by the specific UE 100B to determine PUCCH resources (that is, PRB indexes of PUCCH resources) for transmission of uplink control information. That is, the third information may be used to determine PUCCH resources.
 例えば、第3の情報は、周波数位置及び/又はサイズを示す情報(locationAndBandwidthとも称される)を含んでもよい。また、第3の情報は、サブキャリア間隔を示す情報(subcarrierSpacingとも称される)を含んでもよい。例えば、UE100は、第3の情報に含まれる情報に基づいて、第3帯域幅部分を特定してもよい。すなわち、第3の情報は、第3帯域幅部分を特定するための情報を含んでもよい。 For example, the third information may include information indicating frequency location and/or size (also referred to as locationAndBandwidth). The third information may also include information indicating subcarrier spacing (also referred to as subcarrierSpacing). For example, the UE 100 may identify the third bandwidth portion based on information included in the third information. That is, the third information may include information for identifying the third bandwidth portion.
 すなわち、UE100は、第2の情報又は第3の情報に基づいて、PUCCHリソースを決定してもよい。例えば、UE100は、第2の情報が設定されている場合には、第2の情報に基づいてPUCCHリソースを決定してもよい。また、UE100は、第3の情報が設定され、且つ、第2の情報が設定されていない場合には、第3の情報に基づいてPUCCHリソースを決定してもよい。一例としては、特定UE100Bは、第2の情報が設定されていない場合には、一般UE100Aに対して設定される第3の情報に基づいてPUCCHリソースを決定してもよい。すなわち、特定UE100Bは、PUCCHリソースを決定するために用いられる第2帯域幅部分が設定されていない場合には、一般UE100Aに用いられる初期上りBWP(すなわち、第3帯域幅部分)に基づいてPUCCHリソースを決定してもよい。 That is, UE 100 may determine PUCCH resources based on the second information or the third information. For example, when the second information is configured, UE 100 may determine PUCCH resources based on the second information. Also, when the third information is configured and the second information is not configured, the UE 100 may determine PUCCH resources based on the third information. As an example, when the second information is not configured, the specific UE 100B may determine PUCCH resources based on the third information configured for the general UE 100A. That is, the specific UE 100B, if the second bandwidth portion used to determine the PUCCH resource is not configured, PUCCH based on the initial uplink BWP (that is, the third bandwidth portion) used for the general UE 100A resource may be determined.
 以下、説明を容易とするために、第1の情報(及び/又は、第1帯域幅部分)、第2の情報(及び/又は、第2帯域幅部分)を用いて記載するが、本実施形態において第2の情報(及び/又は、第2帯域幅部分)は、第3の情報(及び/又は、第3帯域幅部分)に置き換えられてもよい。 Hereinafter, in order to facilitate the description, the first information (and/or the first bandwidth portion) and the second information (and/or the second bandwidth portion) are used for description. In some aspects the second information (and/or the second bandwidth portion) may be replaced by the third information (and/or the third bandwidth portion).
 すなわち、UE100は、第2の情報に基づいて、PUCCH送信に対して適用される周波数ホッピングに用いられるPUCCHリソースを決定してもよい。例えば、UE100は、第2の情報に基づいて設定された周波数位置及び/又はサイズに基づいて、PUCCH送信に対して適用される周波数ホッピングに用いられるPUCCHリソースを決定してもよい。また、UE100は、第2の情報に基づいて設定されたサブキャリア間隔に基づいて、PUCCH送信に対して適用される周波数ホッピングに用いられるPUCCHリソースを決定してもよい。 That is, UE 100 may determine PUCCH resources used for frequency hopping applied to PUCCH transmission based on the second information. For example, UE 100 may determine PUCCH resources used for frequency hopping applied to PUCCH transmission, based on frequency positions and/or sizes configured based on the second information. Also, UE 100 may determine PUCCH resources used for frequency hopping applied to PUCCH transmission, based on subcarrier intervals configured based on the second information.
 例えば、UE100は、上述の「数1」~「数7」のいずれか1つまたは複数を用いることによって、PUCCHリソースを決定してもよい。例えば、UE100は、「数1」及び/又は「数2」におけるサブキャリア間隔の設定μとして、第2の情報に基づいて設定されたサブキャリア間隔を用いてもよい。また、UE100は、「数1」及び/又は「数2」における帯域幅部分iのサイズとして、第2の情報に基づいて設定された周波数位置及び/又はサイズを用いてもよい。また、UE100は、「数5」及び/又は「数6」における初期上りBWPのサイズとして、第2の情報に基づいて設定された周波数位置及び/又はサイズを用いてもよい。 For example, the UE 100 may determine PUCCH resources by using any one or more of the above "math 1" to "math 7". For example, the UE 100 may use the subcarrier spacing set based on the second information as the setting μ of the subcarrier spacing in "Formula 1" and/or "Formula 2". Also, the UE 100 may use the frequency position and/or size set based on the second information as the size of the bandwidth portion i in "Formula 1" and/or "Formula 2". Also, the UE 100 may use the frequency position and/or size set based on the second information as the size of the initial uplink BWP in "Formula 5" and/or "Formula 6".
 すなわち、第1の場合において、UE100は、第1の情報に基づいて第1帯域幅部分(例えば、初期上りBWP)を特定し、第2の情報に基づいてPUCCH送信に対して適用される周波数ホッピングに用いられるPUCCHリソースを決定してもよい。また、第1の場合において、UE100は、第2の情報に基づいて決定されたPUCCHリソースを用いて、周波数ホッピングを伴うPUCCH送信を実行してもよい。 That is, in the first case, the UE 100 identifies the first bandwidth portion (eg, initial uplink BWP) based on the first information, and the frequency applied to PUCCH transmission based on the second information. A PUCCH resource used for hopping may be determined. Also, in the first case, UE 100 may perform PUCCH transmission with frequency hopping using PUCCH resources determined based on the second information.
 また、共通設定情報は、PUCCHリソース(すなわち、PUCCHリソースのPRBインデックス)を決定するために用いられる(想定される)上りBWPの中心周波数の位置を示すための情報(以下、第4の情報とも記載する)を含んでよい。例えば、UE100は、第4の情報に基づいて上りBWP(例えば、上りBWPの周波数位置)を想定し(特定し)、想定した上りBWPからPUCCHリソースを決定してもよい。例えば、第4の情報は、想定される上りBWPに対する複数の中心周波数の位置(例えば、第1の中心周波数の位置、及び、第2の中心周波数の位置)を示すための情報が含まれてもよい。ここで、第1の中心周波数の位置は第1PUCCHリソースを決定するために用いられ、第2の中心周波数の位置は第2PUCCHリソースを決定するために用いられもよい。すなわち、UE100は、第4の情報に基づいて設定された中心周波数の位置に基づいて、PUCCH送信に対して適用される周波数ホッピングに用いられるPUCCHリソースを決定してもよい。また、UE100は、決定されたPUCCHリソースを用いて、周波数ホッピングを伴うPUCCH送信を実行してもよい。 In addition, the common configuration information is information for indicating the position of the center frequency of the (assumed) uplink BWP used to determine the PUCCH resource (that is, the PRB index of the PUCCH resource) (hereinafter, also referred to as fourth information described). For example, the UE 100 may assume (specify) an uplink BWP (for example, the frequency position of the uplink BWP) based on the fourth information, and determine PUCCH resources from the assumed uplink BWP. For example, the fourth information includes information for indicating the positions of a plurality of center frequencies (for example, the position of the first center frequency and the position of the second center frequency) with respect to the assumed uplink BWP. good too. Here, the location of the first center frequency may be used to determine the first PUCCH resource, and the location of the second center frequency may be used to determine the second PUCCH resource. That is, UE 100 may determine PUCCH resources used for frequency hopping applied to PUCCH transmission, based on the position of the center frequency configured based on the fourth information. Also, the UE 100 may perform PUCCH transmission with frequency hopping using the determined PUCCH resource.
 また、共通設定情報は、PUCCH送信に適用される周波数ホッピングの有効又は無効を設定するために用いられる情報(以下、第5の情報とも記載する)を含んでもよい。例えば、第5の情報は、第1の場合におけるUE100に対して設定されてもよい。例えば、UE100の制御部140は、第5の情報に基づいて、PUCCH送信に対して周波数ホッピングを適用するかどうかを決定してよい。すなわち、UE100は、第5の情報を用いてPUCCH送信に適用される周波数ホッピングを有効とすることが設定された場合、周波数ホッピングを伴うPUCCH送信を実行してもよい。また、UE100は、第5の情報を用いてPUCCH送信に適用される周波数ホッピングを有効としない(すなわち、無効とする)ことが設定された場合、周波数ホッピングを伴わずにPUCCH送信を実行してもよい。ここで、UE100は、第5の情報を受信しなかった場合、周波数ホッピングを伴わずにPUCCH送信を実行してもよい。すなわち、PUCCH送信に適応される周波数ホッピングに対するUE100のデフォルトの動作は、無効であってもよい。例えば、第1の情報に基づいて初期上りBWPが特定される場合(第1のケースの場合)において、PUCCH送信に適応される周波数ホッピングに対するUE100のデフォルトの動作は、無効であってもよい。ここで、例えば、第3の情報に基づいて初期上りBWPが特定される場合(後述する第2のケースの場合)において、PUCCH送信に適応される周波数ホッピングに対するUE100のデフォルトの動作は、有効であってもよい。 Also, the common setting information may include information used to enable or disable frequency hopping applied to PUCCH transmission (hereinafter also referred to as fifth information). For example, the fifth information may be set for the UE 100 in the first case. For example, the control unit 140 of the UE 100 may determine whether to apply frequency hopping to PUCCH transmission based on the fifth information. That is, UE 100 may perform PUCCH transmission with frequency hopping when it is set to enable frequency hopping applied to PUCCH transmission using the fifth information. In addition, UE 100 performs PUCCH transmission without frequency hopping when frequency hopping applied to PUCCH transmission using the fifth information is not enabled (that is, disabled) is set. good too. Here, if UE 100 does not receive the fifth information, it may perform PUCCH transmission without frequency hopping. That is, the default behavior of UE 100 for frequency hopping applied to PUCCH transmission may be disabled. For example, when the initial uplink BWP is identified based on the first information (case 1), the default behavior of UE 100 for frequency hopping adapted to PUCCH transmission may be disabled. Here, for example, when the initial uplink BWP is identified based on the third information (second case described later), the default operation of UE 100 for frequency hopping adapted to PUCCH transmission is valid. There may be.
 このように、UE100のデフォルトの動作を有効又は無効と規定することによって、PUCCH送信に適用される周波数ホッピングの有効又は無効を設定する必要がなくなり、基地局200とUE100との間でやり取りされる情報量を削減することが可能となる。 Thus, by defining the default operation of the UE 100 as enabled or disabled, there is no need to enable or disable frequency hopping applied to PUCCH transmission, and exchanged between the base station 200 and the UE 100 It is possible to reduce the amount of information.
 ここで、第5の情報は、ある1つのスロット内における周波数ホッピングの有効又は無効を示すために用いられる情報を含んでもよい。ここで、ある1つのスロット内における周波数ホッピングは、イントラスロット周波数ホッピングとも称される。また、第5の情報は、スロット間における周波数ホッピングの有効又は無効を示すために用いられる情報を含んでもよい。ここで、スロット間における周波数ホッピングは、インタースロット周波数ホッピングとも称される。例えば、UE100の制御部140は、イントラスロット周波数ホッピングの有効又は無効に基づいて、PUCCH送信に対してイントラスロット周波数ホッピングを適用するかどうかを決定してもよい。また、UE100の制御部140は、インタースロット周波数ホッピングの有効又は無効に基づいて、PUCCH送信に対してインタースロット周波数ホッピングを適用するかどうかを決定してもよい。すなわち、UE100は、第5の情報に基づいて、インタースロット周波数ホッピング又はインタースロット周波数ホッピングを伴うPUCCH送信を実行してもよい。 Here, the fifth information may include information used to indicate whether frequency hopping is enabled or disabled within one slot. Here, frequency hopping within one slot is also called intra-slot frequency hopping. Also, the fifth information may include information used to indicate validity or invalidity of frequency hopping between slots. Here, frequency hopping between slots is also called inter-slot frequency hopping. For example, the control unit 140 of the UE 100 may determine whether to apply intra-slot frequency hopping to PUCCH transmission based on whether intra-slot frequency hopping is enabled or disabled. Also, the control unit 140 of the UE 100 may determine whether to apply inter-slot frequency hopping to PUCCH transmission based on whether inter-slot frequency hopping is enabled or disabled. That is, UE 100 may perform PUCCH transmission with inter-slot frequency hopping or inter-slot frequency hopping based on the fifth information.
 ここで、第5の情報は、PUCCH送信に用いられるPUCCHフォーマットに対して設定されてもよい。すなわち、第5情報は、PUCCHフォーマット毎に周波数ホッピングの有効又は無効を示すために用いられる情報を含んでもよい。例えば、第5の情報は、PUCCHフォーマット0を用いたPUCCH送信に適用される周波数ホッピングの有効又は無効を示す情報、PUCCHフォーマット1を用いたPUCCH送信に適用される周波数ホッピングの有効又は無効を示す情報などを含んでよい。また、第5の情報は、周波数ホッピングが適用可能であるPUCCHフォーマットを示すために用いられてもよい。すなわち、UE100は、第5の情報に基づいて、周波数ホッピングが適用可能であるPUCCHフォーマットを特定してもよい。 Here, the fifth information may be set for the PUCCH format used for PUCCH transmission. That is, the fifth information may include information used to indicate validity or invalidity of frequency hopping for each PUCCH format. For example, the fifth information is information indicating the validity or invalidity of frequency hopping applied to PUCCH transmission using PUCCH format 0, and the validity or invalidity of frequency hopping applied to PUCCH transmission using PUCCH format 1. It may contain information and the like. Also, the fifth information may be used to indicate PUCCH formats for which frequency hopping is applicable. That is, UE 100 may identify PUCCH formats to which frequency hopping is applicable based on the fifth information.
 また、共通設定情報は、第1PUCCH設定情報を含んでもよい。上述の通り、第1PUCCH設定情報は、対応付けられたBWPのPUCCHに関するセル固有のパラメータ(セルスペシフィックパラメータ)を示してもよい。すなわち、共通設定情報は、第1PUCCH設定情報と、対応付けられたBWPに関する帯域幅部分情報とを含んでもよい。また、第1PUCCH設定情報は、PUCCH設定共通情報(pucch-ConfigCommon)を含んでもよい。ここで、PUCCH設定共通情報(pucch-ConfigCommon)は、PUCCHリソースセットを提供するPUCCHリソース共通情報(例えば、pucch-ResourceCommon)を含んでもよい。 Also, the common setting information may include the first PUCCH setting information. As described above, the first PUCCH configuration information may indicate cell-specific parameters (cell-specific parameters) regarding the associated BWP PUCCH. That is, the common configuration information may include first PUCCH configuration information and bandwidth portion information related to the associated BWP. Also, the first PUCCH configuration information may include PUCCH configuration common information (pucch-ConfigCommon). Here, the PUCCH configuration common information (pucch-ConfigCommon) may include PUCCH resource common information (eg, pucch-ResourceCommon) that provides a PUCCH resource set.
 例えば、UE100は、第1PUCCH設定情報を受信した場合、以下の動作を実行してもよい。すなわち、UE100は、第1PUCCH設定情報を受信し、且つ、第2PUCCH設定情報を受信していない場合、以下のステップS102、(A)、(B)、(B1)、(B2)、及び/又は、(C)に記載の動作を実行してもよい。ここで、以下のステップS102、(A-1)、(B-1)、(B1-1)、(B1-2)、及び/又は、(C-1)に記載の動作は、第1動作例の動作に含まれてもよい。 For example, when the UE 100 receives the first PUCCH setting information, the UE 100 may perform the following operations. That is, the UE 100 receives the first PUCCH setting information, and, when not receiving the second PUCCH setting information, the following steps S102, (A), (B), (B1), (B2), and/or , (C) may be performed. Here, the operations described in steps S102, (A-1), (B-1), (B1-1), (B1-2), and/or (C-1) below are the first operations It may be included in example operations.
 ステップS102:
 例えば、UE100は、基地局200への上り送信を行う。すなわち、UE100の通信部120は、上り信号を基地局200へ送信する。基地局200の無線通信部220(受信部221)は、上り信号をUE100から受信する。ここで、UE100の制御部140は、以下の動作を行うことができる。なお、基地局200の制御部240は、UE100からの上り信号を受信するために、UE100の制御部140と同様の動作を行うことができる。
Step S102:
For example, UE 100 performs uplink transmission to base station 200 . That is, communication section 120 of UE 100 transmits an uplink signal to base station 200 . The radio communication unit 220 (receiving unit 221) of the base station 200 receives the uplink signal from the UE100. Here, the control unit 140 of the UE 100 can perform the following operations. Note that the control unit 240 of the base station 200 can perform the same operation as the control unit 140 of the UE 100 in order to receive uplink signals from the UE 100 .
 (A-1)初期上りBWP1の特定
 UE100の制御部140は、共通設定情報に基づいて、上り送信用の初期上りBWPを特定してもよい。例えば、UE100の制御部140は、第1の情報に基づいて、初期上りBWP1を特定してもよい。例えば、UE100の制御部140は、第1の情報に含まれる周波数位置及び/又はサイズを示す情報に基づいて、初期上りBWP1の周波数領域における位置及び/又はサイズを決定してもよい。ここで、サイズは、帯域幅と置き換えられてもよい。また、UE100の制御部140は、第1の情報に含まれるサブキャリア間隔を示す情報に基づいて、初期上りBWP1で用いられるサブキャリア間隔を決定してもよい。
(A-1) Identification of initial uplink BWP1 The control unit 140 of the UE 100 may identify the initial uplink BWP for uplink transmission based on the common setting information. For example, the control unit 140 of the UE 100 may identify the initial uplink BWP1 based on the first information. For example, the control unit 140 of the UE 100 may determine the position and/or size in the frequency domain of the initial uplink BWP1 based on the information indicating the frequency position and/or size included in the first information. Here, size may be replaced with bandwidth. Also, the control unit 140 of the UE 100 may determine the subcarrier spacing used in the initial uplink BWP1 based on the information indicating the subcarrier spacing included in the first information.
 ここで、UE100の制御部140は、第3の情報に基づいて、初期上りBWP1を特定してもよい。例えば、UE100の制御部140は、第3の情報に含まれる周波数位置及び/又はサイズを示す情報に基づいて、初期上りBWP1の周波数領域における位置及び/又はサイズを決定してもよい。また、UE100の制御部140は、第3の情報に含まれるサブキャリア間隔を示す情報に基づいて、初期上りBWP1で用いられるサブキャリア間隔を決定してもよい。 Here, the control unit 140 of the UE 100 may identify the initial uplink BWP1 based on the third information. For example, the control unit 140 of the UE 100 may determine the position and/or size in the frequency domain of the initial uplink BWP1 based on information indicating the frequency position and/or size included in the third information. Also, the control unit 140 of the UE 100 may determine the subcarrier spacing used in the initial uplink BWP1 based on the information indicating the subcarrier spacing included in the third information.
 すなわち、UE100は、第1の情報又は第3の情報に基づいて、初期上りBWP1を特定してもよい。例えば、UE100は、第1の情報が設定されている場合には、第1の情報に基づいて初期上りBWP1を特定してもよい。また、UE100は、第3の情報が設定され、且つ、第1の情報が設定されていない場合には、第3の情報に基づいて初期上りBWP1を特定してもよい。一例としては、特定UE100Bは、第1の情報が設定されていない場合には、一般UE100Aに対して設定される第3の情報に基づいて初期上りBWP1を特定してもよい。すなわち、特定UE100Bは、初期上りBWP1を特定するために用いられる第1帯域幅部分が設定されていない場合には、一般UE100Aに用いられる初期上りBWP(すなわち、第3帯域幅部分)に基づいて初期上りBWP1を特定してもよい。 That is, the UE 100 may identify the initial uplink BWP1 based on the first information or the third information. For example, when the first information is configured, the UE 100 may identify the initial uplink BWP1 based on the first information. Also, when the third information is set and the first information is not set, the UE 100 may specify the initial uplink BWP1 based on the third information. As an example, when the first information is not set, the specific UE 100B may identify the initial uplink BWP1 based on the third information set for the general UE 100A. That is, the specific UE 100B, when the first bandwidth portion used to identify the initial uplink BWP1 is not set, based on the initial uplink BWP (that is, the third bandwidth portion) used for the general UE 100A An initial upstream BWP1 may be identified.
 (B-1)PUCCHリソースの決定
 また、UE100の制御部140は、共通設定情報に基づいて、PUCCHの送信に用いられるPUCCHリソースを決定してもよい。ここで、上述の通り、PUCCHリソースは、第1PUCCHリソースと第2PUCCHリソースを含んでもよい。以下、第1PUCCHリソースを、第1PUCCHリソースR1とも記載する。また、第2PUCCHリソースを、第2PUCCHリソースR2とも記載する。例えば、第1PUCCHリソースR1は、特定された初期上りBWP1の内側にマップされるPUCCHリソースでもよい。また、第2PUCCHリソースR2は、第1PUCCHリソースR1から周波数領域においてホッピングした(すなわち、PUCCH送信に適用される周波数ホッピングに用いられた)リソースであってもよい。例えば、第2PUCCHリソースR2は、特定された初期上りBWP1の外側にマップされるPUCCHリソースでもよい。
(B-1) Determination of PUCCH resources Also, control section 140 of UE 100 may determine PUCCH resources used for PUCCH transmission based on common configuration information. Here, as described above, the PUCCH resources may include the first PUCCH resource and the second PUCCH resource. Hereinafter, the first PUCCH resource is also referred to as the first PUCCH resource R1. Also, the second PUCCH resource is also described as a second PUCCH resource R2. For example, the first PUCCH resource R1 may be a PUCCH resource mapped inside the identified initial uplink BWP1. Also, the second PUCCH resource R2 may be a resource hopped in the frequency domain from the first PUCCH resource R1 (that is, a resource used for frequency hopping applied to PUCCH transmission). For example, the second PUCCH resource R2 may be a PUCCH resource mapped outside the identified initial uplink BWP1.
 また、PUCCHリソースは、第2PUCCHリソースR2から周波数領域においてホッピングした第3PUCCHリソースR3を含んでよいし、第3PUCCHリソースR3から周波数領域においてホッピングした第4PUCCHリソースR4を含んでよい。ここで、第1PUCCHリソースR1と第3PUCCHリソースR3は、同一のPUCCHリソースであってもよい。すなわち、第3PUCCHリソースR3は、第1PUCCHリソースR1と同様の方法によって決定されてもよい。また、第2PUCCHリソースR2と第4PUCCHリソースR4は、同一のPUCCHリソースであってもよい。すなわち、第4PUCCHリソースR4は、第2PUCCHリソースR2と同様の方法によって決定されてもよい。 Also, PUCCH resources may include a third PUCCH resource R3 hopped in the frequency domain from the second PUCCH resource R2, and may include a fourth PUCCH resource R4 hopped in the frequency domain from the third PUCCH resource R3. Here, the first PUCCH resource R1 and the third PUCCH resource R3 may be the same PUCCH resource. That is, the third PUCCH resource R3 may be determined by the same method as the first PUCCH resource R1. Also, the second PUCCH resource R2 and the fourth PUCCH resource R4 may be the same PUCCH resource. That is, the fourth PUCCH resource R4 may be determined by the same method as the second PUCCH resource R2.
 ここで、一例として、図6に示すように、一般UE100A用のPUCCH領域は、周波数方向において一般UE100Aに対して設定されたBWPの両端にマップされてもよい。ここで、特定UE100B用のPUCCH領域は、一般UE100A用のPUCCH領域と重なるようにマップされてもよい。具体的には、第1PUCCHリソースR1(及び、第3PUCCHリソースR3)は、周波数方向において一方のPUCCH領域(以下、第1PUCCH領域)内にマップされ、第2PUCCHリソースR2(及び第4PUCCHリソースR4)は、周波数方向において他方のPUCCH領域(以下、第2PUCCH領域)内にマップされてもよい。 Here, as an example, as shown in FIG. 6, the PUCCH region for general UE 100A may be mapped to both ends of the BWP set for general UE 100A in the frequency direction. Here, the PUCCH region for the specific UE 100B may be mapped so as to overlap with the PUCCH region for the general UE 100A. Specifically, the first PUCCH resource R1 (and third PUCCH resource R3) is mapped in one PUCCH region (hereinafter referred to as the first PUCCH region) in the frequency direction, and the second PUCCH resource R2 (and fourth PUCCH resource R4) is , may be mapped within the other PUCCH region (hereinafter referred to as the second PUCCH region) in the frequency direction.
 なお、特定UE100BのBWPの帯域幅は、一般UE100A用のBWPの帯域幅よりも狭く設定される可能性があるため、例えば、特定UE100BのBWPは、第1PUCCH領域に重なる場合、第2PUCCH領域には重ならなくてもよい。 In addition, since the bandwidth of the BWP of the specific UE 100B may be set narrower than the bandwidth of the BWP for the general UE 100A, for example, the BWP of the specific UE 100B overlaps the first PUCCH region, in the second PUCCH region may not overlap.
 (B1-1)第1の情報に基づいて初期上りBWP1を特定するケース(以下、第1のケースとも称する)
 第1のケースにおいて、UE100の制御部140は、第2の情報に基づいて、初期上りBWP1と異なる上りBWPを特定(想定)してもよい。以下、説明を明確にするために、第2の情報に基づいて特定(想定)される上りBWPを初期上りBWP2とも記載する。すなわち、初期上りBWP2は、上りBWPに置き換えられてもよい。すなわち、UE100の制御部140は、第2の情報に基づいて、PUCCHリソースを決定するために用いられる初期上りBWP2を特定(想定)してもよい。例えば、初期上りBWP1は、第1周波数帯F1に位置し、初期上りBWP2は、第2周波数帯F2に位置と想定されてもよい。ここで、初期上りBWP2は、PUCCH送信の実行のみに用いられる上りBWPとして規定されてもよい。また、初期上りBWP2は、PUCCH送信に加えて、PUSCH送信の実行に用いられる上りBWPとして規定されてもよい。例えば、初期上りBWP2がPUSCH送信の実行に用いられる上りBWPとして規定される場合、UE100は、初期上りBWPを、初期上りBWP1から初期上りBWP2へ切り替えて、PUCCH送信及び/又はPUSCH送信を実行してもよい。
(B1-1) Case of specifying initial uplink BWP1 based on first information (hereinafter also referred to as first case)
In the first case, the control unit 140 of the UE 100 may identify (assume) an uplink BWP different from the initial uplink BWP1 based on the second information. Hereinafter, in order to clarify the description, the uplink BWP specified (assumed) based on the second information is also referred to as initial uplink BWP2. That is, the initial upstream BWP2 may be replaced with an upstream BWP. That is, control section 140 of UE 100 may identify (assume) initial uplink BWP2 used to determine PUCCH resources based on the second information. For example, initial uplink BWP1 may be assumed to be located in a first frequency band F1 and initial uplink BWP2 may be assumed to be located in a second frequency band F2. Here, the initial uplink BWP2 may be defined as an uplink BWP used only for performing PUCCH transmission. Also, the initial uplink BWP2 may be defined as an uplink BWP used for performing PUSCH transmission in addition to PUCCH transmission. For example, when the initial uplink BWP2 is defined as the uplink BWP used to perform PUSCH transmission, the UE 100 switches the initial uplink BWP from the initial uplink BWP1 to the initial uplink BWP2, and performs PUCCH transmission and/or PUSCH transmission. may
 すなわち、第1のケースにおいて、UE100の制御部140は、第1の情報に基づいて初期上りBWP1を特定し、且つ、第2の情報に基づいて少なくとも、第2PUCCHリソースR2を決定してもよい。また、第1のケースにおいて、UE100の制御部140は、第1の情報に基づいて第1PUCCHリソースR1を決定し、第2の情報に基づいて第2PUCCHリソースR2を決定してもよい。例えば、UE100の制御部140は、上述の「PUCCHリソースの決定(すなわち、「数1」~「数7」のいずれか1つまたは複数を用いることによってPUCCHリソースを決定する方法)」に基づいて、第1PUCCHリソースR1(第1ホップでのPUCCHリソース、すなわち、第1PUCCHリソースR1のPRBインデックス)を決定してもよい。また、UE100の制御部140は、上述の「PUCCHリソースの決定」に基づいて、第2PUCCHリソースR2(第2ホップでのPUCCHリソース、すなわち、第2PUCCHリソースR2のPRBインデックス)を決定してもよい。すなわち、例えば、UE100の制御部140は、第2の情報に基づいて、初期上りBWP2に対する周波数位置、サイズ、及び/又は、サブキャリア間隔を特定してもよい。すなわち、UE100の制御部140は、特定した周波数位置、サイズ、及び/又は、サブキャリア間隔に基づいて、「数1」~「数7」のいずれか1つまたは複数に従って、第1PUCCHリソースR1及び/又は第2PUCCHリソースR2を決定してもよい。 That is, in the first case, the control unit 140 of the UE 100 may identify the initial uplink BWP1 based on the first information, and at least determine the second PUCCH resource R2 based on the second information. . Also, in the first case, the control unit 140 of the UE 100 may determine the first PUCCH resource R1 based on the first information and determine the second PUCCH resource R2 based on the second information. For example, the control unit 140 of the UE 100 is based on the above-described "determination of PUCCH resources (that is, a method of determining PUCCH resources by using any one or more of 'math 1' to 'math 7')" , the first PUCCH resource R1 (the PUCCH resource at the first hop, ie, the PRB index of the first PUCCH resource R1). In addition, the control unit 140 of the UE 100 may determine the second PUCCH resource R2 (the PUCCH resource at the second hop, i.e., the PRB index of the second PUCCH resource R2) based on the above-described "PUCCH resource determination". . That is, for example, the control unit 140 of the UE 100 may identify the frequency position, size and/or subcarrier spacing for the initial uplink BWP2 based on the second information. That is, the control unit 140 of the UE 100, based on the specified frequency position, size, and / or subcarrier spacing, according to any one or more of "Equation 1" to "Equation 7", the first PUCCH resource R1 and / Or the second PUCCH resource R2 may be determined.
 また、UE100の制御部140は、第4の情報に基づいて、第1PUCCHリソースR1及び/又は第2PUCCHリソースR2を決定してもよい。例えば、UE100の制御部140は、初期上りBWP1に対する中心周波数の位置を示す情報に基づいて、第1PUCCHリソースR1を決定してもよい。また、UE100の制御部140は、初期上りBWP2に対する中心周波数の位置を示す情報に基づいて、第2PUCCHリソースR2を決定してもよい。 Also, the control unit 140 of the UE 100 may determine the first PUCCH resource R1 and/or the second PUCCH resource R2 based on the fourth information. For example, the control unit 140 of the UE 100 may determine the first PUCCH resource R1 based on information indicating the position of the center frequency for the initial uplink BWP1. Also, the control unit 140 of the UE 100 may determine the second PUCCH resource R2 based on information indicating the position of the center frequency for the initial uplink BWP2.
 上述のとおり、UE100の制御部140は、第2の情報に含まれるサブキャリア間隔を示す情報に基づいて、第2PUCCHリソースR2を決定してもよい。ここで、UE100の制御部140は、第1の情報に含まれるサブキャリア間隔を示す情報に基づいて、第1PUCCHリソースR1及び/又は第2PUCCHリソースR2を決定してもよい。例えば、UE100の制御部140は、第2の情報にサブキャリア間隔を示す情報が含まれていない場合、第1の情報に含まれるサブキャリア間隔を示す情報に基づいて、第1PUCCHリソースR1及び/又は第2PUCCHリソースR2を決定してもよい。 As described above, the control section 140 of the UE 100 may determine the second PUCCH resource R2 based on the information indicating the subcarrier spacing included in the second information. Here, the control section 140 of the UE 100 may determine the first PUCCH resource R1 and/or the second PUCCH resource R2 based on information indicating subcarrier intervals included in the first information. For example, if the information indicating the subcarrier spacing is not included in the second information, the control unit 140 of the UE 100, based on the information indicating the subcarrier spacing included in the first information, the first PUCCH resource R1 and / Alternatively, the second PUCCH resource R2 may be determined.
 (B2-1)第3の情報に基づいて初期上りBWP1を特定するケース(以下、第2のケースとも称する)
 第2のケースにおいて、UE100の制御部140は、第3の情報に基づいて、初期上りBWP2を特定(想定)してもよい。例えば、UE100の制御部140は、第3の情報に基づいて、初期上りBWP1の特定方法と同様の方法を用いて、上りBWP(すなわち、初期上りBWP2)を特定(想定)してもよい。
(B2-1) Case of specifying initial uplink BWP1 based on third information (hereinafter also referred to as second case)
In the second case, the control unit 140 of the UE 100 may identify (assume) the initial uplink BWP2 based on the third information. For example, the control unit 140 of the UE 100 may identify (assume) the uplink BWP (that is, the initial uplink BWP2) using a method similar to the method of identifying the initial uplink BWP1 based on the third information.
 すなわち、第2のケースにおいて、UE100の制御部140は、第3の情報に基づいて初期上りBWP1及び/又は初期上りBWP2を想定(特定)し、第1PUCCHリソースR1を決定してもよい。また、UE100の制御部140は、第3の情報に基づいて初期上りBWP1及び/又は初期上りBWP2を想定(特定)し、第2PUCCHリソースR2を決定してもよい。例えば、第1のケースと場合と同様に、第2のケースにおいても、UE100の制御部140は、上述の「PUCCHリソースの決定方法(すなわち、「数1」~「数7」のいずれか1つまたは複数を用いることによってPUCCHリソースを決定する方法)」に基づいて、第1PUCCHリソースR1及び/又は第2PUCCHリソースR2を決定してもよい。また、第1のケースと場合と同様に、第2のケースにおいても、UE100の制御部140は、第4の情報に基づいて、第1PUCCHリソースR1及び/又は第2PUCCHリソースR2を決定してもよい。 That is, in the second case, the control unit 140 of the UE 100 may assume (specify) the initial uplink BWP1 and/or the initial uplink BWP2 based on the third information, and determine the first PUCCH resource R1. Also, the control unit 140 of the UE 100 may assume (specify) the initial uplink BWP1 and/or the initial uplink BWP2 based on the third information, and determine the second PUCCH resource R2. For example, in the second case as well as in the first case, the control unit 140 of the UE 100 uses the above-described “PUCCH resource determination method (that is, any one of “Equation 1” to “Equation 7” The first PUCCH resource R1 and/or the second PUCCH resource R2 may be determined based on "method for determining PUCCH resource by using one or more methods". Also, in the second case as well as in the first case, the control unit 140 of the UE 100 determines the first PUCCH resource R1 and/or the second PUCCH resource R2 based on the fourth information. good.
 ここで、第2のケースにおいて、UE100の制御部140は、PUCCH送信に対して周波数ホッピングが常に適用されると想定してもよい。すなわち、第2のケースにおいて、PUCCH送信に適用される周波数ホッピングは常に有効であってもよい。すなわち、第2のケースにおける、PUCCH送信に適用される周波数ホッピングに対するUE100のデフォルトの動作は有効であってもよい。ここで、上述の通り、第1のケースにおける、PUCCH送信に適用される周波数ホッピングに対するUE100のデフォルトの動作は、有効であってもよい。 Here, in the second case, control section 140 of UE 100 may assume that frequency hopping is always applied to PUCCH transmission. That is, in the second case, frequency hopping applied to PUCCH transmission may always be effective. That is, the default behavior of UE 100 for frequency hopping applied to PUCCH transmission in the second case may be valid. Here, as described above, the default behavior of UE 100 for frequency hopping applied to PUCCH transmission in the first case may be enabled.
 すなわち、UE100は、第1の情報を受信した場合(すなわち、第1の情報に基づいて上りBWP(例えば、初期上りBWP)を特定した場合)には、PUCCH送信に適用される周波数ホッピングに対するデフォルトの動作を無効としてもよい(無効に設定してもよい)。また、UE100は、第3の情報を受信し、且つ、第1の情報を受信していない場合(すなわち、第3の情報に基づいて上りBWP(例えば、初期上りBWP)を特定した場合)には、PUCCH送信に適用される周波数ホッピングに対するデフォルトの動作を有効としてもよい(有効に設定してもよい)。 That is, when the UE 100 receives the first information (that is, when identifying the uplink BWP (eg, the initial uplink BWP) based on the first information), the default for frequency hopping applied to PUCCH transmission may be disabled (can be disabled). Further, when the UE 100 receives the third information and does not receive the first information (that is, when identifying the uplink BWP (eg, the initial uplink BWP) based on the third information), may enable (or set to enable) the default behavior for frequency hopping applied to PUCCH transmissions.
 (C-1)ガード期間
 UE100の制御部140は、周波数ホッピングを適用して上り送信を行う場合に、ガード期間GPを構成してもよい。ここで、構成は、生成とも置き換えられてもよい。すなわち、例えば、UE100の制御部140は、周波数ホッピングを適用して上り送信を行う場合に、ガード期間GPに用いられるシンボル数を決定してもよい。例えば、UE100の制御部140は、第1周波数帯F1において上り送信を行った後、第1周波数帯F1と異なる第2周波数帯F2において上り送信を行う場合において、ガード期間GPを構成するためのシンボル数を決定してもよい。すなわち、UE100の制御部140は、第1周波数帯F1から第2周波数帯F2へ周波数帯を変更する(切り替える)場合において、ガード期間GPを構成するためのシンボル数を決定してもよい。ここで、UE100の制御部140は、第2周波数帯F2から第1周波数帯F1へ周波数帯を変更する(切り替える)場合においても、ガード期間GPを構成するためのシンボル数を決定してもよい。以下、ガード期間GPを構成するためのシンボル数を決定することを、単に、ガード期間GPを生成(構成)するとも記載する。
(C-1) Guard Period Control section 140 of UE 100 may configure guard period GP when uplink transmission is performed by applying frequency hopping. Here, configuration may also be interchanged with generation. That is, for example, the control unit 140 of the UE 100 may determine the number of symbols used in the guard period GP when performing uplink transmission by applying frequency hopping. For example, when the control unit 140 of the UE 100 performs uplink transmission in the first frequency band F1 and then performs uplink transmission in the second frequency band F2 different from the first frequency band F1, the control unit 140 configures the guard period GP. A number of symbols may be determined. That is, the control unit 140 of the UE 100 may determine the number of symbols for configuring the guard period GP when changing (switching) the frequency band from the first frequency band F1 to the second frequency band F2. Here, the control unit 140 of the UE 100 may determine the number of symbols for configuring the guard period GP even when changing (switching) the frequency band from the second frequency band F2 to the first frequency band F1. . Hereinafter, determining the number of symbols for configuring the guard period GP is also simply referred to as generating (configuring) the guard period GP.
 ここで、本実施形態において、第1周波数帯F1及び/又は第2周波数帯F2は、帯域幅部分(BWP)を含んでもよい。すなわち、第1周波数帯F1及び/又は第2周波数帯F2は、下り帯域幅部分(下りBWP、初期下りBWP)を含んでもよい。また、第1周波数帯F1及び/又は第2周波数帯F2は、上り帯域幅部分(上りBWP、初期上りBWP)を含んでもよい。すなわち、周波数帯域を変更する(切り替える)ことは、帯域幅部分(BWP)を変更する(切り替える)ことを含んでもよい。また、周波数帯域を変更する(切り替える)ことは、帯域幅部分(BWP)の周波数をリチューン(retune)することを含んでもよい。また、第1周波数帯F1は、第1の周波数帯域とも記載される。また、第2周波数帯F2は、第2の周波数帯域とも記載される。 Here, in this embodiment, the first frequency band F1 and/or the second frequency band F2 may include a bandwidth portion (BWP). That is, the first frequency band F1 and/or the second frequency band F2 may include a downlink bandwidth portion (downlink BWP, initial downlink BWP). Also, the first frequency band F1 and/or the second frequency band F2 may include upstream bandwidth portions (upstream BWP, initial upstream BWP). That is, changing (switching) the frequency band may include changing (switching) the bandwidth portion (BWP). Altering (switching) the frequency band may also include retuning the frequency of the bandwidth portion (BWP). The first frequency band F1 is also described as the first frequency band. The second frequency band F2 is also described as a second frequency band.
 例えば、UE100の制御部140は、第1周波数帯F1と第2周波数帯F2とが、UE100が上り送信に用いる1つのBWP内に位置しない場合に、ガード期間GPを生成してもよい。また、UE100の制御部140は、第1周波数帯F1における上り送信と第2周波数帯F2における上り送信とによる2つの連続的な送信である場合に、ガード期間GPを生成してもよい。すなわち、UE100の制御部140は、異なる周波数帯での送信による周波数の変更(切り替え)又はリチューニングを行う場合に、ガード期間GPを生成してもよい。 For example, the control unit 140 of the UE 100 may generate the guard period GP when the first frequency band F1 and the second frequency band F2 are not located within one BWP that the UE 100 uses for uplink transmission. Also, the control unit 140 of the UE 100 may generate the guard period GP when there are two consecutive transmissions, uplink transmission in the first frequency band F1 and uplink transmission in the second frequency band F2. That is, the control unit 140 of the UE 100 may generate the guard period GP when changing (switching) or retuning frequencies by transmission in different frequency bands.
 例えば、UE100の制御部140は、上りBWPのサブキャリア間隔に基づいて、ガード期間GPを生成してもよい。すなわち、UE100の制御部140は、第1の情報に含まれるサブキャリア間隔を示す情報に基づいて、ガード期間GPを生成してもよい。また、UE100の制御部140は、第2の情報に含まれるサブキャリア間隔を示す情報に基づいて、ガード期間GPを生成してもよい。また、UE100の制御部140は、第3の情報に含まれるサブキャリア間隔を示す情報に基づいて、ガード期間GPを生成してもよい。 For example, the control unit 140 of the UE 100 may generate the guard period GP based on the subcarrier interval of the uplink BWP. That is, the control unit 140 of the UE 100 may generate the guard period GP based on information indicating subcarrier intervals included in the first information. Also, the control unit 140 of the UE 100 may generate the guard period GP based on the information indicating the subcarrier interval included in the second information. Also, the control unit 140 of the UE 100 may generate the guard period GP based on the information indicating the subcarrier interval included in the third information.
 すなわち、UE100は、第1の情報に含まれるサブキャリア間隔を示す情報、第2の情報に含まれるサブキャリア間隔を示す情報、又は、第3の情報に含まれるサブキャリア間隔を示す情報に基づいて、ガード期間GPを生成してもよい。例えば、UE100は、第2の情報に含まれるサブキャリア間隔を示す情報が設定されている場合には、第2の情報に含まれるサブキャリア間隔を示す情報に基づいて、ガード期間GPを生成してもよい。また、UE100は、第1の情報に含まれるサブキャリア間隔を示す情報が設定され、且つ、第2の情報に含まれるサブキャリア間隔を示す情報が設定されていない場合には、第1の情報に含まれるサブキャリア間隔を示す情報に基づいて、ガード期間GPを生成してもよい。また、UE100は、第3の情報に含まれるサブキャリア間隔を示す情報が設定され、且つ、第1の情報に含まれるサブキャリア間隔を示す情報が設定されていない場合には、第3の情報に含まれるサブキャリア間隔を示す情報に基づいて、ガード期間GPを生成してもよい。また、UE100は、第3の情報に含まれるサブキャリア間隔を示す情報が設定され、且つ、第2の情報に含まれるサブキャリア間隔を示す情報が設定されていない場合には、第3の情報に含まれるサブキャリア間隔を示す情報に基づいて、ガード期間GPを生成してもよい。 That is, the UE 100 is based on the information indicating the subcarrier spacing included in the first information, the information indicating the subcarrier spacing included in the second information, or the information indicating the subcarrier spacing included in the third information. may be used to generate the guard period GP. For example, UE 100, when the information indicating the subcarrier spacing included in the second information is set, based on the information indicating the subcarrier spacing included in the second information, generates a guard period GP. may Further, the UE 100 is configured with information indicating the subcarrier spacing included in the first information, and when the information indicating the subcarrier spacing included in the second information is not configured, the first information The guard period GP may be generated based on the information indicating the subcarrier spacing included in . Further, UE 100 is configured with information indicating the subcarrier spacing included in the third information, and when the information indicating the subcarrier spacing included in the first information is not configured, the third information The guard period GP may be generated based on the information indicating the subcarrier spacing included in . Further, the UE 100 is configured with information indicating the subcarrier spacing included in the third information, and when the information indicating the subcarrier spacing included in the second information is not configured, the third information The guard period GP may be generated based on the information indicating the subcarrier spacing included in .
 上述の通り、1つのサブフレームを構成するスロットの数は、基地局200によって設定されたサブキャリア間隔に基づいて変化してもよい。すなわち、1つのサブフレームを構成するシンボルの数は、基地局200によって設定されたサブキャリア間隔に基づいて変化してもよい。例えば、基地局200によって設定されたサブキャリア間隔に基づいて、1msのサブフレームを構成するシンボルの数が決定され、各シンボルの長さ(時間方向の長さ)が変化する。すなわち、基地局200によって設定されたサブキャリア間隔に基づいて、ガード期間GPに含まれるシンボルの長さ(時間方向の長さ)が変化してもよい。すなわち、ガード期間GPの長さに対応するシンボルの長さ(時間方向の長さ)は、基地局200によって設定されたサブキャリア間隔に基づいて与えられてもよい。ここで、基地局200によって設定されたサブキャリア間隔は、第1の情報に含まれるサブキャリア間隔を示す情報に基づいて設定されるサブキャリア間隔、第1の情報に含まれるサブキャリア間隔を示す情報に基づいて設定されるサブキャリア間隔、及び/又は、第3の情報に含まれるサブキャリア間隔を示す情報に基づいて設定されるサブキャリア間隔を含む。 As described above, the number of slots forming one subframe may vary based on the subcarrier spacing set by the base station 200. That is, the number of symbols forming one subframe may change based on the subcarrier spacing set by base station 200 . For example, based on the subcarrier interval set by the base station 200, the number of symbols forming a 1 ms subframe is determined, and the length of each symbol (length in the time direction) changes. That is, based on the subcarrier spacing set by base station 200, the length of symbols included in guard period GP (length in the time direction) may change. That is, the symbol length (length in the time direction) corresponding to the length of the guard period GP may be given based on the subcarrier spacing set by base station 200 . Here, the subcarrier interval set by the base station 200 indicates the subcarrier interval set based on the information indicating the subcarrier interval included in the first information, and the subcarrier interval included in the first information. It includes the subcarrier spacing set based on the information and/or the subcarrier spacing set based on the information indicating the subcarrier spacing included in the third information.
 ここで、UE100の制御部140は、2つの周波数帯でサブキャリア間隔が異なる場合、2つの周波数帯のそれぞれでのシンボル数を決定してもよい。すなわち、例えば、UE100の制御部140は、サブキャリア間隔が広い周波数帯のシンボル数を、サブキャリア間隔が狭い周波数帯のシンボル数よりも多くしてもよい。また、UE100の制御部140は、2つの周波数帯のそれぞれで決定したシンボル数の長さの合計期間をガード期間GPの長さとしてよい。また、UE100の制御部140は、2つの周波数帯のそれぞれで決定したシンボル数のうちの、シンボル数が多い方(すなわち、ガード期間GPが長い方)を、ガード期間GPの長さとしてよい。また、UE100の制御部140は、2つの周波数帯のそれぞれで決定したシンボル数のうちの、シンボル数が少ない方(すなわち、ガード期間GPが短い方)を、ガード期間GPの長さとしてよい。 Here, if the subcarrier intervals are different between the two frequency bands, the control unit 140 of the UE 100 may determine the number of symbols in each of the two frequency bands. That is, for example, the control unit 140 of the UE 100 may make the number of symbols in the frequency band with wide subcarrier intervals larger than the number of symbols in the frequency band with narrow subcarrier intervals. Also, the control unit 140 of the UE 100 may set the length of the guard period GP to the total length of the number of symbols determined for each of the two frequency bands. Also, the control unit 140 of the UE 100 may set the length of the guard period GP to the number of symbols determined for each of the two frequency bands, whichever has the larger number of symbols (that is, the longer guard period GP). Also, the control unit 140 of the UE 100 may set the length of the guard period GP to the smaller number of symbols (that is, the shorter guard period GP) of the number of symbols determined for each of the two frequency bands.
 ここで、ガード期間GPに対応するシンボル数は、UE100の能力に応じて決定されてもよい。すなわち、UE100の制御部140は、UE100の能力を示す能力情報(例えば、UE capability情報)を保持してよい。UE100の制御部140は、UE100の能力情報に基づいて、シンボル数を決定してもよい。例えば、UE100の制御部140は、能力情報がケイパビリティ1(Capability 1)を示す場合、ガード期間の長さを1シンボルに決定してもよい。また、UE100の制御部140は、能力情報がケイパビリティ2(Capability 2)を示す場合、ガード期間の長さを2シンボルに決定してよい。 Here, the number of symbols corresponding to the guard period GP may be determined according to the capabilities of the UE 100. That is, the control unit 140 of the UE 100 may hold capability information indicating the capabilities of the UE 100 (for example, UE capability information). The control unit 140 of the UE 100 may determine the number of symbols based on the capability information of the UE 100. For example, when the capability information indicates capability 1, the control unit 140 of the UE 100 may determine the length of the guard period to be 1 symbol. Also, when the capability information indicates capability 2, the control unit 140 of the UE 100 may determine the length of the guard period to be 2 symbols.
 また、例えば、UE100の通信部120は、ガード期間GPに対応するシンボル数を特定するために用いられる情報を、能力情報として、基地局200へ送信してもよい。すなわち、UE100の通信部120は、シンボル数に対応する能力情報を基地局200へ送信してもよい。ここで、能力情報は、ガード期間GPに対応するシンボル数に用いられる情報であれば、どのような情報であってもよい。 Also, for example, the communication unit 120 of the UE 100 may transmit information used to specify the number of symbols corresponding to the guard period GP to the base station 200 as capability information. That is, communication section 120 of UE 100 may transmit capability information corresponding to the number of symbols to base station 200 . Here, the capability information may be any information as long as it is information used for the number of symbols corresponding to the guard period GP.
 また、例えば、基地局200の制御部240は、UE100の能力情報に基づいて、UE100によって生成されるガード期間GPの長さ(すなわち、シンボル数)を特定してもよい。また、基地局200の制御部240は、ガード期間GPの長さ(すなわち、シンボル数)に基づいて、UE100によって上り送信が行われない期間を特定してもよい。 Also, for example, the control unit 240 of the base station 200 may specify the length (that is, the number of symbols) of the guard period GP generated by the UE 100 based on the capability information of the UE 100. Also, the control unit 240 of the base station 200 may specify a period during which the UE 100 does not perform uplink transmission based on the length of the guard period GP (that is, the number of symbols).
 また、UE100の制御部140は、決定したシンボル数に対応するガード期間GPを生成する。例えば、UE100の制御部140は、ガード期間GP内において、上り送信を行わないように制御してもよい。ここで、上り送信は、少なくとも、PUSCH送信及び/又はPUCCH送信を含む。 Also, the control unit 140 of the UE 100 generates a guard period GP corresponding to the determined number of symbols. For example, the control unit 140 of the UE 100 may control not to perform uplink transmission within the guard period GP. Here, uplink transmission includes at least PUSCH transmission and/or PUCCH transmission.
 図5及び図6に示すように、UE100の通信部120は、決定したPUCCHリソースを用いて、PUCCHの送信を行う。すなわち、UE100の通信部120は、決定したPUCCHリソースを用いて、周波数ホッピングを伴うPUCCH送信を実行する。具体的には、UE100の通信部120は、第1PUCCHリソースR1及び/又は第1PUCCHリソースR1を用いて、周波数ホッピングを伴うPUCCH送信を実行する。例えば、UE100の通信部120は、PUCCHを用いて、Msg.4(すなわち、PDSCH)に対するHARQ-ACKを送信してもよい。 As shown in FIGS. 5 and 6, communication section 120 of UE 100 transmits PUCCH using the determined PUCCH resource. That is, communication section 120 of UE 100 performs PUCCH transmission with frequency hopping using the determined PUCCH resource. Specifically, communication section 120 of UE 100 performs PUCCH transmission with frequency hopping using first PUCCH resource R1 and/or first PUCCH resource R1. For example, communication section 120 of UE 100 uses PUCCH to transmit Msg. 4 (ie, PDSCH).
 ここで、UE100の制御部140は、第1PUCCHリソースR1を用いてPUCCH送信を実行した後、第1周波数帯F1から第2周波数帯F2への周波数帯の変更を行う。この変更は、周波数帯のリチューニングであってもよいし、周波数帯の切り替え(スイッチング)であってもよい。例えば、UE100の制御部140は、生成したガード期間GP内で、第1周波数帯F1から第2周波数帯F2へのリチューニング又は切り替えを行ってもよい。ここで、第1PUCCHリソースR1は第1周波数帯F1にマップされているとする。また、第2PUCCHリソースR2は第2周波数帯F2にマップされているとする。 Here, after executing PUCCH transmission using the first PUCCH resource R1, the control unit 140 of the UE 100 changes the frequency band from the first frequency band F1 to the second frequency band F2. This change may be retuning of the frequency band or switching of the frequency band. For example, the control unit 140 of the UE 100 may perform retuning or switching from the first frequency band F1 to the second frequency band F2 within the generated guard period GP. Here, it is assumed that the first PUCCH resource R1 is mapped to the first frequency band F1. Also assume that the second PUCCH resource R2 is mapped to the second frequency band F2.
 また、UE100の通信部120は、周波数帯を第2周波数帯へ変更後、第2PUCCHリソースR2を用いて、PUCCH送信を実行する。例えば、UE100の制御部140は、生成したガード期間GP内で、第2周波数帯F2から第1周波数帯F1へのリチューニング又は切り替えを行ってもよい。 Also, after changing the frequency band to the second frequency band, the communication unit 120 of the UE 100 performs PUCCH transmission using the second PUCCH resource R2. For example, the control unit 140 of the UE 100 may perform retuning or switching from the second frequency band F2 to the first frequency band F1 within the generated guard period GP.
 同様に、UE100の通信部120は、周波数帯を第1周波数帯へ変更後、第3PUCCHリソースR3を用いて、PUCCH送信を実行する。例えば、UE100の制御部140は、生成したガード期間GP内で、第1周波数帯F1から第2周波数帯F2へのリチューニング又は切り替えを行ってもよい。また、UE100の通信部120は、周波数帯を第2周波数帯へ変更後、第4PUCCHリソースR4を用いて、PUCCH送信を実行する。例えば、UE100の制御部140は、生成したガード期間GP内で、第2周波数帯F2から第1周波数帯F1へのリチューニング又は切り替えを行ってもよい。 Similarly, communication section 120 of UE 100 performs PUCCH transmission using third PUCCH resource R3 after changing the frequency band to the first frequency band. For example, the control unit 140 of the UE 100 may perform retuning or switching from the first frequency band F1 to the second frequency band F2 within the generated guard period GP. Also, after changing the frequency band to the second frequency band, communication section 120 of UE 100 performs PUCCH transmission using fourth PUCCH resource R4. For example, the control unit 140 of the UE 100 may perform retuning or switching from the second frequency band F2 to the first frequency band F1 within the generated guard period GP.
 (2)第2動作例
 図7から図8を参照して、第2動作例について、上述の動作例との相違点を主として説明する。第2動作例では、UE100が、専用設定情報に基づいて、PUCCH送信を行う。図7において、UE100は、UE100と基地局200との間でRRCコネクティッド状態であってもよい。例えば、図7において、UE100は、第2の場合における状態であってもよい。また、図7において、UE100は、初期アクセスを実行後でもよい。また、図7において、UE100は、RRCセットアップメッセージ、RRC再開メッセージ、及び/又は、RRC(再)確立メッセージを受信した後の状態でもよい。例えば、図7において、UE100は、下りユーザーデータ(すなわち、PDSCH)に対するHARQ-ACKを送信してもよい。
(2) Second Operation Example A second operation example will be described with reference to FIGS. 7 and 8, mainly focusing on differences from the above-described operation example. In the second operation example, the UE 100 performs PUCCH transmission based on dedicated setting information. In FIG. 7 , UE 100 may be in an RRC connected state between UE 100 and base station 200 . For example, in FIG. 7, the UE 100 may be in the state in the second case. Also, in FIG. 7, the UE 100 may be after executing the initial access. Also, in FIG. 7, the UE 100 may be in a state after receiving an RRC setup message, an RRC resume message, and/or an RRC (re)establishment message. For example, in FIG. 7, UE 100 may transmit HARQ-ACK for downlink user data (ie PDSCH).
 ステップS201:
 基地局200の無線通信部220は、上り送信用の専用パラメータを含む専用設定情報をUE100へ送信する。UE100の通信部120は、専用設定情報を基地局200から受信する。
Step S201:
The radio communication unit 220 of the base station 200 transmits dedicated setting information including dedicated parameters for uplink transmission to the UE 100 . The communication unit 120 of the UE 100 receives dedicated setting information from the base station 200 .
 無線通信部220は、専用設定情報をユニキャストにより送信する。無線通信部220は、例えば、専用設定情報を含むRRC再設定メッセージを送信してよい。すなわち、専用設定情報は、UEスペシフィックパラメータであってもよい。 The wireless communication unit 220 transmits dedicated setting information by unicast. The wireless communication unit 220 may, for example, transmit an RRC reconfiguration message including dedicated configuration information. That is, the dedicated configuration information may be UE specific parameters.
 例えば、専用設定情報は、基地局200が管理するサービングセルでUE100を構成(追加又は変更)するために用いられるサービングセル設定情報(具体的には、ServingCellConfig)に含まれる設定情報(具体的には、UplinkConfig)であってよい。例えば、専用設定情報は、第1動作例における共通設定情報に含まれる情報と、同様の情報を含んでよい。例えば、専用設定情報は、帯域幅部分情報(第1の情報、第2の情報、及び/又は、第3の情報)、上りBWPに対する中心周波数の位置を示す情報(第4の情報)、及び、PUCCH送信に適用される周波数ホッピングの有効又は無効を示す情報(第5の情報)の少なくともいずれかの情報を含んでよい。ここで、専用設定情報に含まれる情報は、アクティブ上りBWPに対して設定されてもよい。例えば、UE100は、第1の情報、第2の情報、及び/又は第3の情報に基づいて、アクティブ上りBWPを特定(又は、想定)してもよい。また、UE100は、第4の情報に基づいて、アクティブ上りBWPに対する中心周波数の位置を決定してもよい。また、UE100は、第4の情報に基づいて、アクティブ上りBWPにおけるPUCCH送信に適用される周波数ホッピングの有効又は無効を決定してもよい。 For example, the dedicated setting information is the setting information included in the serving cell setting information (specifically, ServingCellConfig) used to configure (add or change) the UE 100 in the serving cell managed by the base station 200 (specifically, UplinkConfig). For example, the dedicated setting information may include information similar to the information included in the common setting information in the first operation example. For example, the dedicated setting information includes bandwidth portion information (first information, second information, and/or third information), information indicating the position of the center frequency for uplink BWP (fourth information), and , information (fifth information) indicating validity or invalidity of frequency hopping applied to PUCCH transmission. Here, the information included in the dedicated configuration information may be configured for active uplink BWP. For example, the UE 100 may identify (or assume) an active uplink BWP based on the first information, the second information, and/or the third information. Also, the UE 100 may determine the position of the center frequency for the active uplink BWP based on the fourth information. Also, the UE 100 may determine whether frequency hopping applied to PUCCH transmission in active uplink BWP is enabled or disabled based on the fourth information.
 例えば、専用設定情報は、第2PUCCH設定情報を含んでもよい。上述の通り、第2PUCCH設定情報は、サービングセルの通常の上りリンクの1つのBWP用のPUCCH設定であってよい。すなわち、第2PUCCH設定情報は、UE固有のパラメータ(UEスペースパラメータ)を示してもよい。すなわち、専用設定情報は、第2PUCCH設定情報と、第2PUCCH設定情報に対応付けられたBWPの識別子と、当該BWPの識別子に対応付けられた帯域幅部分情報とを含んでよい。 For example, the dedicated setting information may include the second PUCCH setting information. As described above, the second PUCCH configuration information may be the PUCCH configuration for one BWP of the normal uplink of the serving cell. That is, the second PUCCH configuration information may indicate UE-specific parameters (UE space parameters). That is, the dedicated configuration information may include second PUCCH configuration information, a BWP identifier associated with the second PUCCH configuration information, and bandwidth portion information associated with the BWP identifier.
 例えば、UE100は、第2PUCCH設定情報を受信した場合、以下のステップS202、(A-2)、(B-2)、(B2-1)、(B2-2)、及び/又は、(C-2)に記載の動作を実行してよい。ここで、上述の通り、UE100は、第1PUCCH設定情報を受信し、且つ、第2PUCCH設定情報を受信していない場合、第1動作例の動作を実行してよい。 For example, UE 100, when receiving the second PUCCH configuration information, the following step S202, (A-2), (B-2), (B2-1), (B2-2), and / or (C- 2) may be performed. Here, as described above, when the UE 100 receives the first PUCCH setting information and does not receive the second PUCCH setting information, the UE 100 may perform the operation of the first operation example.
 ステップS202:
 例えば、UE100は、基地局200への上り送信を行う。すなわち、UE100の通信部120は、上り信号を基地局200へ送信する。基地局200の無線通信部220は、上り信号をUE100から受信する。ここで、UE100の制御部140は、以下の動作を行うことができる。なお、基地局200の制御部240は、UE100からの上り信号を受信するために、UE100の制御部140と同様の動作を行うことができる。
Step S202:
For example, UE 100 performs uplink transmission to base station 200 . That is, communication section 120 of UE 100 transmits an uplink signal to base station 200 . The radio communication unit 220 of the base station 200 receives uplink signals from the UE 100 . Here, the control unit 140 of the UE 100 can perform the following operations. Note that the control unit 240 of the base station 200 can perform the same operation as the control unit 140 of the UE 100 in order to receive uplink signals from the UE 100 .
 (A-2)上りBWP1の特定
 UE100の制御部140は、専用設定情報に基づいて、上り送信用の上りBWP(アクティブ上りBWP)を特定してもよい。例えば、UE100の制御部140は、以下のいずれかの方法により、アクティブ上りBWPを特定してもよい。
(A-2) Identification of Uplink BWP1 Control section 140 of UE 100 may identify an uplink BWP for uplink transmission (active uplink BWP) based on dedicated setting information. For example, the control unit 140 of the UE 100 may identify active uplink BWPs by any of the following methods.
 例えば、UE100の制御部140は、第1の情報に基づいて、アクティブ上りBWP1を特定してもよい。例えば、UE100の制御部140は、第1の情報に含まれる周波数位置及び/又はサイズを示す情報に基づいて、アクティブ上りBWP1の周波数領域における位置及び/またはサイズを決定してもよい。ここで、サイズは、帯域幅と置き換えられてもよい。また、UE100の制御部140は、第1の情報に含まれるサブキャリア間隔を示す情報に基づいて、アクティブ上りBWP1で用いられるサブキャリア間隔を決定してもよい。 For example, the control unit 140 of the UE 100 may identify the active uplink BWP1 based on the first information. For example, the control unit 140 of the UE 100 may determine the position and/or size in the frequency domain of the active uplink BWP1 based on the information indicating the frequency position and/or size included in the first information. Here, size may be replaced with bandwidth. Also, the control unit 140 of the UE 100 may determine the subcarrier spacing used in the active uplink BWP1 based on the information indicating the subcarrier spacing included in the first information.
 ここで、UE100の制御部140は、第3の情報に基づいて、アクティブ上りBWP1を特定してもよい。例えば、UE100の制御部140は、第3の情報に含まれる周波数位置及び/又はサイズを示す情報に基づいて、アクティブ上りBWP1の周波数領域における位置及び/又はサイズを決定してもよい。また、UE100の制御部140は、第3の情報に含まれるサブキャリア間隔を示す情報に基づいて、アクティブ上りBWP1で用いられるサブキャリア間隔を決定してもよい。 Here, the control unit 140 of the UE 100 may identify the active uplink BWP1 based on the third information. For example, the control unit 140 of the UE 100 may determine the position and/or size in the frequency domain of the active uplink BWP1 based on information indicating the frequency position and/or size included in the third information. Also, the control unit 140 of the UE 100 may determine the subcarrier spacing used in the active uplink BWP1 based on the information indicating the subcarrier spacing included in the third information.
 すなわち、UE100は、第1の情報又は第3の情報に基づいて、アクティブ上りBWP1を特定してもよい。例えば、UE100は、第1の情報が設定されている場合には、第1の情報に基づいてアクティブ上りBWP1を特定してもよい。また、UE100は、第3の情報が設定され、且つ、第1の情報が設定されていない場合には、第3の情報に基づいてアクティブ上りBWP1を特定してもよい。一例としては、特定UE100Bは、第1の情報が設定されていない場合には、一般UE100Aに対して設定される第3の情報に基づいてアクティブ上りBWP1を特定してもよい。すなわち、特定UE100Bは、アクティブ上りBWP1を特定するために用いられる第1帯域幅部分が設定されていない場合には、一般UE100Aに用いられる初期上りBWP(すなわち、第3帯域幅部分)に基づいてアクティブ上りBWP1を特定してもよい。 That is, the UE 100 may identify the active uplink BWP1 based on the first information or the third information. For example, when the first information is configured, the UE 100 may identify the active uplink BWP1 based on the first information. Also, when the third information is configured and the first information is not configured, the UE 100 may identify the active uplink BWP1 based on the third information. As an example, when the first information is not set, the specific UE 100B may identify the active uplink BWP1 based on the third information set for the general UE 100A. That is, the specific UE 100B, when the first bandwidth portion used to identify the active uplink BWP1 is not set, based on the initial uplink BWP (that is, the third bandwidth portion) used for the general UE 100A An active upstream BWP1 may be identified.
 なお、UE100の制御部140は、複数の上りBWPが設定されている場合、基地局200との通信で最初に用いるBWPを示す識別子に基づいて、複数の上りBWPの中からアクティブBWPを特定してよい。 Note that, when multiple uplink BWPs are configured, control section 140 of UE 100 identifies an active BWP from multiple uplink BWPs based on an identifier indicating the first BWP used in communication with base station 200. you can
 なお、第2動作例では、初期上りBWP1及び初期上りBWP2の代わりに、アクティブ上りBWP1及びアクティブ上りBWP2が対象となる。従って、第1動作例と同様の部分は、初期上りBWP1をアクティブ上りBWP1に置き換え可能であり、初期上りBWP2をアクティブ上りBWP2に置き換え可能である。 Note that in the second operation example, active upstream BWP1 and active upstream BWP2 are targeted instead of initial upstream BWP1 and initial upstream BWP2. Therefore, in the same parts as in the first operation example, the initial upstream BWP1 can be replaced with the active upstream BWP1, and the initial upstream BWP2 can be replaced with the active upstream BWP2.
 (B-2)PUCCHリソースの決定
 また、UE100の制御部140は、専用設定情報に基づいて、PUCCHの送信に用いられるPUCCHリソースと決定してもよい。ここで、第1動作例と同様に、PUCCHリソースは、第1PUCCHリソースR1と第2PUCCHリソースR2とを含む。また、第1PUCCHリソースR1は、特定されたアクティブ上りBWP1内にマップされるPUCCHリソースでもよい。また、第2PUCCHリソースR2は、第1PUCCHリソースR1から周波数領域においてホッピングした(すなわち、PUCCH送信に適用される周波数ホッピングに用いられた)リソースであってもよい。例えば、第2PUCCHリソースR2は、特定されたアクティブ上りBWP1の外側にマップされるPUCCHリソースでもよい。
(B-2) Determination of PUCCH resource Also, control section 140 of UE 100 may determine the PUCCH resource to be used for PUCCH transmission based on the dedicated setting information. Here, as in the first operation example, PUCCH resources include a first PUCCH resource R1 and a second PUCCH resource R2. Alternatively, the first PUCCH resource R1 may be a PUCCH resource mapped within the identified active uplink BWP1. Also, the second PUCCH resource R2 may be a resource hopped in the frequency domain from the first PUCCH resource R1 (that is, a resource used for frequency hopping applied to PUCCH transmission). For example, the second PUCCH resource R2 may be a PUCCH resource mapped outside the identified active uplink BWP1.
 (B2-1)第1の情報に基づいてアクティブ上りBWP1を特定するケース(以下、第3のケースとも称する)
 第3のケースにおいて、UE100の制御部140は、第2の情報に基づいて、アクティブ上りBWP1と異なるアクティブ上りBWP2を特定(想定)してもよい。以下、説明を明確にするために、第2の情報に基づいて特定(想定)される上りBWPをアクティブ上りBWP2とも記載する。すなわち、アクティブ上りBWP2は、上りBWPに置き換えられてもよい。すなわち、UE100の制御部140は、第2の情報に基づいて、PUCCHリソースを決定するために用いられるアクティブ上りBWP2を特定(想定)してもよい。例えば、アクティブ上りBWP1は、第1周波数帯F1に位置し、アクティブ上りBWP2は、第2周波数帯F2に位置すると想定されてもよい。ここで、アクティブ上りBWP2は、PUCCH送信の実行のみに用いられるアクティブ上りBWPとして規定されてもよい。また、アクティブ上りBWP2は、PUCCH送信に加えて、PUSCH送信の実行に用いられる上りBWPとして規定されてもよい。例えば、アクティブ上りBWP2がPUSCH送信の実行に用いられる上りBWPとして規定される場合、UE100は、アクティブ上りBWPを、アクティブ上りBWP1からアクティブ上りBWP2へ切り替えて、PUCCH送信及び/又はPUSCH送信を実行してもよい。
(B2-1) Case of identifying active uplink BWP1 based on first information (hereinafter also referred to as third case)
In the third case, control section 140 of UE 100 may identify (assume) active uplink BWP2 different from active uplink BWP1 based on the second information. Hereinafter, for clarity of explanation, the uplink BWP identified (assumed) based on the second information is also referred to as active uplink BWP2. That is, active upstream BWP2 may be replaced with upstream BWP. That is, control section 140 of UE 100 may identify (assume) active uplink BWP2 to be used for determining PUCCH resources based on the second information. For example, it may be assumed that active upstream BWP1 is located in a first frequency band F1 and active upstream BWP2 is located in a second frequency band F2. Here, the active uplink BWP2 may be defined as an active uplink BWP used only for performing PUCCH transmission. Also, the active uplink BWP2 may be defined as an uplink BWP that is used to perform PUSCH transmission in addition to PUCCH transmission. For example, when the active uplink BWP2 is defined as the uplink BWP used to perform PUSCH transmission, the UE 100 switches the active uplink BWP from the active uplink BWP1 to the active uplink BWP2 to perform PUCCH transmission and/or PUSCH transmission. may
 すなわち、第3のケースにおいて、UE100の制御部140は、第1の情報に基づいてアクティブ上りBWP1を特定し、第2の情報に基づいて、少なくとも、第2PUCCHリソースR2を決定してもよい。 That is, in the third case, the control unit 140 of the UE 100 may identify the active uplink BWP1 based on the first information and determine at least the second PUCCH resource R2 based on the second information.
 また、第3のケースにおいて、UE100の制御部140は、第1の情報に基づいて第1PUCCHリソースR1を決定し、第2の情報に基づいて第2PUCCHリソースR2を決定してもよい。また、UE100の制御部140は、第4の情報に基づいて、第1PUCCHリソースR1及び/又は第2PUCCHリソースR2を決定してもよい。例えば、UE100の制御部140は、アクティブ上りBWP1に対する中心周波数の位置を示す情報に基づいて、第1PUCCHリソースR1を決定してもよい。また、UE100の制御部140は、アクティブ上りBWP1に対する中心周波数の位置を示す情報に基づいて、第2PUCCHリソースR2を決定してもよい。また、UE100の制御部140は、第2の情報に含まれるサブキャリア間隔を示す情報に基づいて、第2PUCCHリソースR2を決定してもよい。ここで、UE100の制御部140は、第1の情報に含まれるサブキャリア間隔を示す情報に基づいて、第1PUCCHリソースR1及び/又は第2PUCCHリソースR2を決定してもよい。例えば、UE100の制御部140は、第2の情報にサブキャリア間隔を示す情報が含まれていない場合、第1の情報に含まれるサブキャリア間隔を示す情報に基づいて、第1PUCCHリソースR1及び/又は第2PUCCHリソースR2を決定してもよい。 Also, in the third case, the control unit 140 of the UE 100 may determine the first PUCCH resource R1 based on the first information and the second PUCCH resource R2 based on the second information. Also, the control unit 140 of the UE 100 may determine the first PUCCH resource R1 and/or the second PUCCH resource R2 based on the fourth information. For example, the control unit 140 of the UE 100 may determine the first PUCCH resource R1 based on information indicating the position of the center frequency for the active uplink BWP1. Also, the control unit 140 of the UE 100 may determine the second PUCCH resource R2 based on information indicating the position of the center frequency for the active uplink BWP1. Also, the control section 140 of the UE 100 may determine the second PUCCH resource R2 based on the information indicating the subcarrier spacing included in the second information. Here, the control unit 140 of the UE 100 may determine the first PUCCH resource R1 and/or the second PUCCH resource R2 based on information indicating subcarrier intervals included in the first information. For example, if the information indicating the subcarrier spacing is not included in the second information, the control unit 140 of the UE 100, based on the information indicating the subcarrier spacing included in the first information, the first PUCCH resource R1 and / Alternatively, the second PUCCH resource R2 may be determined.
 ここで、上述の通り、第2の場合において、UE100は、開始PRB情報、及び/又は、第2ホップPRB情報に基づいて、PUCCH送信に適用される周波数ホッピングに用いられるPUCCHリソース(すなわち、PUCCHリソースのPRBインデックス)を決定してもよい。すなわち、第2の場合において、基地局200は、開始PRB情報、及び/又は、第2ホップPRB情報を用いて、PUCCH送信に適用される周波数ホッピングに用いられるPUCCHリソース(すなわち、PUCCHリソースのPRBインデックス)を指定してもよい。ここで、上述の通り、サブキャリア間隔の設定μの物理リソースブロック(PRB)は、帯域幅部分内で定義され、0から以下の数まで番号(PRBの番号、PRBインデックス)が付けられる。すなわち、開始PRB情報、及び/又は、第2ホップPRB情報によって指定されるPUCCHリソース(すなわち、PUCCHリソースのPRBインデックス)は、「数1」に従って番号付けされたPRBインデックスに対応する。すなわち、開始PRB情報、及び/又は、第2ホップPRB情報によって指定されるPUCCHリソース(すなわち、PUCCHリソースのPRBインデックス)を特定するために、上りBWP(アクティブ上りBWP)の周波数位置及び/又はサイズが用いられる。また、開始PRB情報、及び/又は、第2ホップPRB情報によって指定されるPUCCHリソース(すなわち、PUCCHリソースのPRBインデックス)を特定するために、上りBWP(アクティブ上りBWP)のサブキャリア間隔が用いられる。 Here, as described above, in the second case, the UE 100 uses the PUCCH resource used for frequency hopping applied to PUCCH transmission based on the start PRB information and/or the second hop PRB information (that is, PUCCH resource PRB index) may be determined. That is, in the second case, the base station 200 uses the start PRB information and/or the second hop PRB information to determine the PUCCH resource used for frequency hopping applied to PUCCH transmission (that is, the PRB of the PUCCH resource). index) may be specified. Here, as described above, the physical resource blocks (PRBs) of the subcarrier spacing setting μ are defined within the bandwidth portion and numbered from 0 to the following numbers (PRB number, PRB index). That is, the PUCCH resources specified by the starting PRB information and/or the second-hop PRB information (that is, the PRB indices of the PUCCH resources) correspond to the PRB indices numbered according to "Formula 1". That is, in order to identify the PUCCH resource (that is, the PRB index of the PUCCH resource) specified by the start PRB information and/or the second hop PRB information, the frequency position and/or size of the uplink BWP (active uplink BWP) is used. Also, the subcarrier spacing of the uplink BWP (active uplink BWP) is used to identify the PUCCH resource (that is, the PRB index of the PUCCH resource) specified by the start PRB information and/or the second hop PRB information. .
 例えば、第3のケースにおいて、UE100の制御部140は、第2の情報に含まれる周波数位置及び/又はサイズを示す情報に基づいて、上りBWP(アクティブ上りBWP)の周波数位置及び/又はサイズを決定してもよい。また、第3のケースにおいて、UE100の制御部140は、第2の情報に含まれるサブキャリア間隔を示す情報に基づいて、上りBWP(アクティブ上りBWP)のサブキャリア間隔を決定してもよい。 For example, in the third case, the control unit 140 of the UE 100 determines the frequency position and/or size of the uplink BWP (active uplink BWP) based on the information indicating the frequency position and/or size included in the second information. may decide. In the third case, control section 140 of UE 100 may determine subcarrier intervals for uplink BWP (active uplink BWP) based on information indicating subcarrier intervals included in the second information.
 すなわち、UE100の制御部140は、開始PRB情報を用いて指定された第1PUCCHリソースR1のPRBインデックスを決定するために、第2の情報に含まれる周波数位置及び/又はサイズを示す情報に基づいて設定された周波数位置及び/又はサイズを用いてもよい。また、UE100の制御部140は、開始PRB情報を用いて指定された第1PUCCHリソースR1のPRBインデックスを決定するために、第2の情報に含まれるサブキャリア間隔を示す情報に基づいて設定されたサブキャリア間隔を用いてもよい。また、UE100の制御部140は、第2ホップPRB情報を用いて指定された第2PUCCHリソースR2のPRBインデックスを決定するために、第2の情報に含まれる周波数位置及び/又はサイズを示す情報に基づいて設定された周波数位置及び/又はサイズを用いてもよい。また、UE100の制御部140は、第2ホップPRB情報を用いて指定された第2PUCCHリソースR2のPRBインデックスを決定するために、第2の情報に含まれるサブキャリア間隔を示す情報に基づいて設定されたサブキャリア間隔を用いてもよい。 That is, the control unit 140 of the UE 100, in order to determine the PRB index of the first PUCCH resource R1 specified using the start PRB information, based on the information indicating the frequency position and / or size included in the second information A set frequency position and/or size may be used. In addition, control section 140 of UE 100 determines the PRB index of the first PUCCH resource R1 specified using the starting PRB information, based on the information indicating the subcarrier interval included in the second information. Subcarrier spacing may also be used. In addition, control section 140 of UE 100 uses the information indicating the frequency position and/or size included in the second information to determine the PRB index of the second PUCCH resource R2 specified using the second hop PRB information. A frequency position and/or size set based on this may be used. In addition, control section 140 of UE 100 configures based on information indicating subcarrier intervals included in the second information in order to determine the PRB index of second PUCCH resource R2 designated using the second hop PRB information. subcarrier spacing may be used.
 また、第3のケースにおいて、UE100の制御部140は、第1の情報に含まれる周波数位置及び/又はサイズを示す情報に基づいて、上りBWP(アクティブ上りBWP)の周波数位置及び/又はサイズを決定してもよい。例えば、UE100の制御部140は、第1の情報に含まれる周波数位置及び/又はサイズを示す情報が設定され、且つ、第2の情報に含まれる周波数位置及び/又はサイズを示す情報が設定されていない場合には、第1の情報に含まれる周波数位置及び/又はサイズを示す情報に基づいて、上りBWP(アクティブ上りBWP)の周波数位置及び/又はサイズを決定してもよい。 Further, in the third case, the control unit 140 of the UE 100 determines the frequency position and/or size of the uplink BWP (active uplink BWP) based on the information indicating the frequency position and/or size included in the first information. may decide. For example, the control unit 140 of the UE 100 is set with information indicating the frequency position and / or size included in the first information, and is set with information indicating the frequency position and / or size included in the second information If not, the frequency position and/or size of the upstream BWP (active upstream BWP) may be determined based on the information indicating the frequency position and/or size included in the first information.
 また、第3のケースにおいて、UE100の制御部140は、第1の情報に含まれるサブキャリア間隔を示す情報に基づいて、上りBWP(アクティブ上りBWP)のサブキャリア間隔を決定してもよい。例えば、UE100の制御部140は、第1の情報に含まれるサブキャリア間隔を示す情報が設定され、且つ、第2の情報に含まれるサブキャリア間隔を示す情報が設定されていない場合には、第1の情報に含まれるサブキャリア間隔を示す情報に基づいて、上りBWP(アクティブ上りBWP)のサブキャリア間隔を決定してもよい。 Also, in the third case, control section 140 of UE 100 may determine subcarrier intervals for uplink BWP (active uplink BWP) based on information indicating subcarrier intervals included in the first information. For example, the control unit 140 of the UE 100, when the information indicating the subcarrier interval included in the first information is set and the information indicating the subcarrier interval included in the second information is not set, The subcarrier spacing of the uplink BWP (active uplink BWP) may be determined based on the information indicating the subcarrier spacing included in the first information.
 すなわち、UE100の制御部140は、開始PRB情報を用いて指定された第1PUCCHリソースR1のPRBインデックスを決定するために、第1の情報に含まれる周波数位置及び/又はサイズを示す情報に基づいて設定された周波数位置及び/又はサイズを用いてもよい。また、UE100の制御部140は、開始PRB情報を用いて指定された第1PUCCHリソースR1のPRBインデックスを決定するために、第1の情報に含まれるサブキャリア間隔を示す情報に基づいて設定されたサブキャリア間隔を用いてもよい。また、UE100の制御部140は、第2ホップPRB情報を用いて指定された第2PUCCHリソースR2のPRBインデックスを決定するために、第1の情報に含まれる周波数位置及び/又はサイズを示す情報に基づいて設定された周波数位置及び/又はサイズを用いてもよい。また、UE100の制御部140は、第2ホップPRB情報を用いて指定された第2PUCCHリソースR2のPRBインデックスを決定するために、第1の情報に含まれるサブキャリア間隔を示す情報に基づいて設定されたサブキャリア間隔を用いてもよい。 That is, the control unit 140 of the UE 100, in order to determine the PRB index of the first PUCCH resource R1 specified using the start PRB information, based on the information indicating the frequency position and / or size included in the first information A set frequency position and/or size may be used. In addition, the control unit 140 of the UE 100 is configured based on the information indicating the subcarrier interval included in the first information in order to determine the PRB index of the first PUCCH resource R1 specified using the start PRB information. Subcarrier spacing may also be used. In addition, control section 140 of UE 100 uses the information indicating the frequency position and/or size included in the first information to determine the PRB index of the second PUCCH resource R2 specified using the second hop PRB information. A frequency position and/or size set based on this may be used. In addition, control section 140 of UE 100 configures based on information indicating subcarrier intervals included in the first information in order to determine the PRB index of second PUCCH resource R2 designated using the second hop PRB information. subcarrier spacing may be used.
 (B2-2)第3の情報に基づいてアクティブ上りBWP1を特定するケース(以下、第4のケースとも称する)
 第4のケースにおいて、UE100の制御部140は、第3の情報に基づいて、アクティブ上りBWP2を特定(想定)してもよい。例えば、UE100の制御部140は、第3の情報に基づいて、アクティブ上りBWP1の特定方法と同様の方法を用いて、上りBWP(すなわち、アクティブ上りBWP2)を特定(想定)してもよい。
(B2-2) Case of identifying active uplink BWP1 based on third information (hereinafter also referred to as fourth case)
In the fourth case, the control unit 140 of the UE 100 may identify (assume) the active uplink BWP2 based on the third information. For example, the control unit 140 of the UE 100 may identify (assume) the uplink BWP (that is, the active uplink BWP2) using the same method as the method of identifying the active uplink BWP1 based on the third information.
 ここで、UE100の制御部140は、第3の情報に基づいてアクティブ上りBWP1を特定する場合に、第3の情報に基づいて、第1PUCCHリソースR1及び/又は第2PUCCHリソースR2を決定してもよい。 Here, when identifying the active uplink BWP1 based on the third information, the control unit 140 of the UE 100 may determine the first PUCCH resource R1 and/or the second PUCCH resource R2 based on the third information. good.
 例えば、第4のケースにおいて、UE100の制御部140は、第3の情報に含まれる周波数位置及び/又はサイズを示す情報に基づいて、上りBWP(アクティブ上りBWP)の周波数位置及び/又はサイズを決定してもよい。また、第4のケースにおいて、UE100の制御部140は、第3の情報に含まれるサブキャリア間隔を示す情報に基づいて、上りBWP(アクティブ上りBWP)のサブキャリア間隔を決定してもよい。すなわち、UE100の制御部140は、開始PRB情報を用いて指定された第1PUCCHリソースR1のPRBインデックスを決定するために、第3の情報に含まれる周波数位置及び/又はサイズを示す情報に基づいて設定された周波数位置及び/又はサイズを用いてもよい。また、UE100の制御部140は、開始PRB情報を用いて指定された第1PUCCHリソースR1のPRBインデックスを決定するために、第3の情報に含まれるサブキャリア間隔を示す情報に基づいて設定されたサブキャリア間隔を用いてもよい。また、UE100の制御部140は、第2ホップPRB情報を用いて指定された第2PUCCHリソースR2のPRBインデックスを決定するために、第3の情報に含まれる周波数位置及び/又はサイズを示す情報に基づいて設定された周波数位置及び/又はサイズを用いてもよい。また、UE100の制御部140は、第2ホップPRB情報を用いて指定された第2PUCCHリソースR2のPRBインデックスを決定するために、第3の情報に含まれるサブキャリア間隔を示す情報に基づいて設定されたサブキャリア間隔を用いてもよい。 For example, in the fourth case, the control unit 140 of the UE 100 determines the frequency position and/or size of the uplink BWP (active uplink BWP) based on the information indicating the frequency position and/or size included in the third information. may decide. Also, in the fourth case, control section 140 of UE 100 may determine subcarrier intervals for uplink BWP (active uplink BWP) based on information indicating subcarrier intervals included in the third information. That is, the control unit 140 of the UE 100, in order to determine the PRB index of the first PUCCH resource R1 specified using the start PRB information, based on the information indicating the frequency position and / or size included in the third information A set frequency position and/or size may be used. In addition, the control unit 140 of the UE 100 is configured based on the information indicating the subcarrier interval included in the third information in order to determine the PRB index of the first PUCCH resource R1 specified using the start PRB information. Subcarrier spacing may also be used. In addition, the control unit 140 of the UE 100, in order to determine the PRB index of the second PUCCH resource R2 specified using the second hop PRB information, to the information indicating the frequency position and / or size included in the third information A frequency position and/or size set based on this may be used. In addition, control section 140 of UE 100 configures based on information indicating subcarrier intervals included in the third information in order to determine the PRB index of second PUCCH resource R2 designated using the second hop PRB information. subcarrier spacing may be used.
 例えば、UE100の制御部140は、第3の情報に含まれる周波数位置及び/又はサイズを示す情報が設定され、且つ、第1の情報に含まれる周波数位置及び/又はサイズを示す情報が設定されていない場合には、第3の情報に含まれる周波数位置及び/又はサイズを示す情報に基づいて、上りBWP(アクティブ上りBWP)の周波数位置及び/又はサイズを決定してもよい。また、UE100の制御部140は、第3の情報に含まれるサブキャリア間隔を示す情報が設定され、且つ、第1の情報に含まれるサブキャリア間隔を示す情報が設定されていない場合には、第3の情報に含まれるサブキャリア間隔を示す情報に基づいて、上りBWP(アクティブ上りBWP)のサブキャリア間隔を決定してもよい。 For example, the control unit 140 of the UE 100 is set with information indicating the frequency position and / or size included in the third information, and information indicating the frequency position and / or size included in the first information is set If not, the frequency position and/or size of the uplink BWP (active uplink BWP) may be determined based on the information indicating the frequency position and/or size included in the third information. Further, the control unit 140 of the UE 100, when the information indicating the subcarrier interval included in the third information is set and the information indicating the subcarrier interval included in the first information is not set, The subcarrier spacing of the uplink BWP (active uplink BWP) may be determined based on the information indicating the subcarrier spacing included in the third information.
 また、UE100の制御部140は、第3の情報に含まれる周波数位置及び/又はサイズを示す情報が設定され、且つ、第2の情報に含まれる周波数位置及び/又はサイズを示す情報が設定されていない場合には、第3の情報に含まれる周波数位置及び/又はサイズを示す情報に基づいて、上りBWP(アクティブ上りBWP)の周波数位置及び/又はサイズを決定してもよい。また、UE100の制御部140は、第3の情報に含まれるサブキャリア間隔を示す情報が設定され、且つ、第2の情報に含まれるサブキャリア間隔を示す情報が設定されていない場合には、第3の情報に含まれるサブキャリア間隔を示す情報に基づいて、上りBWP(アクティブ上りBWP)のサブキャリア間隔を決定してもよい。 In addition, the control unit 140 of the UE 100 is set with information indicating the frequency position and / or size included in the third information, and is set with information indicating the frequency position and / or size included in the second information If not, the frequency position and/or size of the uplink BWP (active uplink BWP) may be determined based on the information indicating the frequency position and/or size included in the third information. Further, the control unit 140 of the UE 100, when the information indicating the subcarrier interval included in the third information is set and the information indicating the subcarrier interval included in the second information is not set, The subcarrier spacing of the uplink BWP (active uplink BWP) may be determined based on the information indicating the subcarrier spacing included in the third information.
 (C-2)ガード期間
 UE100の制御部140は、第1動作例と同様に、第1周波数帯F1において上り送信を行った後、第1周波数帯F1と異なる第2周波数帯F2において上り送信を行う場合、第1周波数帯F1から第2周波数帯F2へ周波数帯を変更する(切り替える)場合において、ガード期間GPを構成するためのシンボル数を決定してもよい。例えば、UE100の制御部140は、専用設定情報に基づいてPUCCH送信を行う場合、専用設定情報に基づいてガード期間GPを生成してもよい。
(C-2) Guard period As in the first operation example, the control unit 140 of the UE 100 performs uplink transmission in the first frequency band F1, and then uplink transmission in the second frequency band F2 different from the first frequency band F1. , the number of symbols for configuring the guard period GP may be determined when changing (switching) the frequency band from the first frequency band F1 to the second frequency band F2. For example, when performing PUCCH transmission based on dedicated setting information, the control unit 140 of the UE 100 may generate the guard period GP based on the dedicated setting information.
 例えば、UE100の制御部140は、アクティブ上りBWPのサブキャリア間隔に基づいて、ガード期間GPを構成するシンボル数を決定してもよい。また、制御部140は、UE100の能力に応じて、シンボル数を決定してもよい。すなわち、UE100の通信部120は、ガード期間GPに対応するシンボル数を特定するために用いられる情報を、能力情報として、基地局200へ送信してもよい。ここで、上り送信は、少なくとも、PUSCH送信及び/又はPUCCH送信を含む。 For example, the control unit 140 of the UE 100 may determine the number of symbols forming the guard period GP based on the subcarrier interval of active uplink BWP. Also, the control unit 140 may determine the number of symbols according to the capability of the UE 100 . That is, communication section 120 of UE 100 may transmit information used to specify the number of symbols corresponding to guard period GP to base station 200 as capability information. Here, uplink transmission includes at least PUSCH transmission and/or PUCCH transmission.
 また、UE100の制御部140は、決定したシンボル数に対応するガード期間GPを生成する。例えば、UE100の制御部140は、ガード期間GP内において、上り送信を行わないように制御してもよい。 Also, the control unit 140 of the UE 100 generates a guard period GP corresponding to the determined number of symbols. For example, the control unit 140 of the UE 100 may control not to perform uplink transmission within the guard period GP.
 図7及び図8に示すように、UE100の通信部120は、決定したPUCCHリソースを用いて、PUCCHの送信を行う。すなわち、UE100の通信部120は、決定したPUCCHリソースを用いて、周波数ホッピングを伴うPUCCH送信を実行する。具体的には、UE100の通信部120は、第1PUCCHリソースR1及び/又は第2PUCCHリソースR2を用いて、周波数ホッピングを伴うPUCCH送信を実行する。例えば、UE100の通信部120は、PUCCHを用いて、下りユーザーデータ(すなわち、PDSCH)に対するHARQ-ACKを送信してもよい。 As shown in FIGS. 7 and 8, communication section 120 of UE 100 transmits PUCCH using the determined PUCCH resource. That is, communication section 120 of UE 100 performs PUCCH transmission with frequency hopping using the determined PUCCH resource. Specifically, communication section 120 of UE 100 performs PUCCH transmission with frequency hopping using first PUCCH resource R1 and/or second PUCCH resource R2. For example, communication section 120 of UE 100 may use PUCCH to transmit HARQ-ACK for downlink user data (that is, PDSCH).
 ここで、UE100の制御部140は、第1PUCCHリソースR1を用いてPUCCH送信を実行した後、第1周波数帯F1から第2周波数帯F2への周波数帯の変更を行う。例えば、UE100の制御部140は、生成したガード期間GP内で、第1周波数帯F1から第2周波数帯F2へのリチューニング又は切り替えを行ってもよい。また、UE100の通信部120は、周波数帯を第2周波数帯へ変更後、第2PUCCHリソースR2を用いて、PUCCH送信を実行する。例えば、UE100の制御部140は、生成したガード期間GP内で、第2周波数帯F2から第1周波数帯F1へのリチューニング又は切り替えを行ってもよい。同様に、UE100の通信部120は、第1周波数帯F1と第2周波数帯F2との間で周波数帯を変更しながら、第3PUCCHリソースR3及び/又は第4PUCCHリソースR4を用いて、PUCCH送信を実行する。 Here, after executing PUCCH transmission using the first PUCCH resource R1, the control unit 140 of the UE 100 changes the frequency band from the first frequency band F1 to the second frequency band F2. For example, the control unit 140 of the UE 100 may perform retuning or switching from the first frequency band F1 to the second frequency band F2 within the generated guard period GP. Further, after changing the frequency band to the second frequency band, communication section 120 of UE 100 performs PUCCH transmission using second PUCCH resource R2. For example, the control unit 140 of the UE 100 may perform retuning or switching from the second frequency band F2 to the first frequency band F1 within the generated guard period GP. Similarly, the communication unit 120 of the UE 100 uses the third PUCCH resource R3 and/or the fourth PUCCH resource R4 while changing the frequency band between the first frequency band F1 and the second frequency band F2, and performs PUCCH transmission. Execute.
 (その他の実施形態)
 上述の動作例では、UE100がPUCCH送信を実行する場合に対するガード期間の生成を例に挙げて説明したが、これに限られない。例えば、上述の動作例は、UE100がPUSCH送信を実行する場合に対して適用されてもよい。
(Other embodiments)
In the above operation example, generation of a guard period for the case where UE 100 performs PUCCH transmission has been described as an example, but the present invention is not limited to this. For example, the operation example described above may be applied to the case where the UE 100 performs PUSCH transmission.
 例えば、UE100の制御部140は、(a)PUSCHを伝送する第1の周波数帯域からPUSCHを伝送する第2の周波数帯域へリチューニングする又は切り替える場合において、上述の動作例に従って、ガード期間に対応するシンボル数を決定してもよい。すなわち、UE100の制御部140は、PUSCH送信が実行される第1の周波数帯域からPUSCH送信が実行される第2の周波数帯域へ周波数帯域が変更される場合において、ガード期間を生成し、ガード期間に対応するシンボル数は、基地局200によって設定されたサブキャリア間隔によって与えられてもよい。また、上述の通り、UE100の制御部140は、(b)PUCCHを伝送する第1の周波数帯域からPUCCHを伝送する第2の周波数帯域へリチューニングする又は切り替える場合において、上述の動作例に従って、ガード期間に対応するシンボル数を決定してもよい。すなわち、UE100の制御部140は、PUCCH送信が実行される第1の周波数帯域からPUCCH送信が実行される第2の周波数帯域へ周波数帯域が変更される場合において、ガード期間を生成し、ガード期間に対応するシンボル数は、基地局200によって設定されたサブキャリア間隔によって与えられてもよい。また、UE100の制御部140は、(c)PUCCHを伝送する第1の周波数帯域からPUSCHを伝送する第2の周波数帯域へリチューニングする又は切り替える場合において、上述の動作例に従って、ガード期間に対応するシンボル数を決定してもよい。すなわち、UE100の制御部140は、PUCCH送信が実行される第1の周波数帯域からPUSCH送信が実行される第2の周波数帯域へ周波数帯域が変更される場合において、ガード期間を生成し、ガード期間に対応するシンボル数は、基地局200によって設定されたサブキャリア間隔によって与えられてもよい。また、UE100の制御部140は、(d)PUSCHを伝送する第1の周波数帯域からPUCCHを伝送する第2の周波数帯域へリチューニングする又は切り替える場合において、上述の動作例に従って、ガード期間に対応するシンボル数を決定してもよい。すなわち、UE100の制御部140は、PUSCH送信が実行される第1の周波数帯域からPUCCH送信が実行される第2の周波数帯域へ周波数帯域が変更される場合において、ガード期間を生成し、ガード期間に対応するシンボル数は、基地局200によって設定されたサブキャリア間隔によって与えられてもよい。 For example, when the control unit 140 of the UE 100 (a) retunes or switches from the first frequency band that transmits PUSCH to the second frequency band that transmits PUSCH, according to the above operation example, correspond to the guard period. may determine the number of symbols to be used. That is, control section 140 of UE 100 generates a guard period when the frequency band is changed from the first frequency band in which PUSCH transmission is performed to the second frequency band in which PUSCH transmission is performed, and the guard period The number of symbols corresponding to may be given by the subcarrier spacing set by base station 200 . Also, as described above, the control unit 140 of the UE 100 (b) retunes or switches from the first frequency band that transmits PUCCH to the second frequency band that transmits PUCCH. In accordance with the operation example described above, The number of symbols corresponding to the guard period may be determined. That is, control section 140 of UE 100 generates a guard period when the frequency band is changed from the first frequency band in which PUCCH transmission is performed to the second frequency band in which PUCCH transmission is performed, and the guard period The number of symbols corresponding to may be given by the subcarrier spacing set by base station 200 . In addition, when the control unit 140 of the UE 100 (c) retunes or switches from the first frequency band that transmits PUCCH to the second frequency band that transmits PUSCH, according to the operation example described above, corresponds to the guard period. may determine the number of symbols to be used. That is, control section 140 of UE 100 generates a guard period when the frequency band is changed from the first frequency band in which PUCCH transmission is performed to the second frequency band in which PUSCH transmission is performed, and the guard period The number of symbols corresponding to may be given by the subcarrier spacing set by base station 200 . In addition, when the control unit 140 of the UE 100 (d) retunes or switches from the first frequency band that transmits PUSCH to the second frequency band that transmits PUCCH, according to the operation example described above, corresponds to the guard period. may determine the number of symbols to be used. That is, control section 140 of UE 100 generates a guard period when the frequency band is changed from the first frequency band in which PUSCH transmission is performed to the second frequency band in which PUCCH transmission is performed, and the guard period The number of symbols corresponding to may be given by the subcarrier spacing set by base station 200 .
 ここで、UE100の能力情報は、上記(a)から上記(b)の1つ又は複数のそれぞれに対して規定されてもよい。すなわち、上記(a)から上記(b)の1つ又は複数のそれぞれに対応するUE100の能力情報が規定されてもよい。例えば、UE100は、上記(a)から上記(b)の1つ又は複数のそれぞれに対応するUE100の能力情報を基地局200へ送信してもよい。 Here, the capability information of the UE 100 may be defined for each of one or more of (a) to (b) above. That is, the capability information of the UE 100 corresponding to each of one or more of (a) to (b) above may be defined. For example, the UE 100 may transmit capability information of the UE 100 corresponding to one or more of (a) to (b) above to the base station 200 .
 また、UE100の制御部140は、第1周波数帯における上り送信に用いられるチャネルと第2周波数帯における上り送信に用いられるチャネルとの組み合わせに基づいて、ガード期間に対応するシンボル数を決定してもよい。例えば、UE100の制御部140は、第1周波数帯と第2周波数帯とで上り送信に用いるチャネルが異なる場合(上記(a)又は(b)のケース)には、第1周波数帯と第2周波数帯とで上り送信に用いるチャネルが同一である場合(上記(c)又は(d)のケース)に比べて、ガード期間を構成するシンボル数を多くしてもよい。 In addition, control section 140 of UE 100 determines the number of symbols corresponding to the guard period based on the combination of the channel used for uplink transmission in the first frequency band and the channel used for uplink transmission in the second frequency band. good too. For example, when the channels used for uplink transmission are different between the first frequency band and the second frequency band (case (a) or (b) above), the control unit 140 of the UE 100 uses the first frequency band and the second frequency band. The number of symbols forming the guard period may be increased compared to the case where the frequency band and the channel used for uplink transmission are the same (case (c) or (d) above).
 また、UE100の制御部140は、上記(a)及び上記(b)のケースでは、第1周波数帯における送信機会(例えば、PUCCH送信用の第1ホップ)においてカード期間にすべき最後のシンボルからの数(以下、第1シンボル数)を、第1周波数帯におけるBWPのサブキャリア間隔に基づいて決定し、第2周波数帯における送信機会(例えば、PUCCH送信用の第2ホップ)においてカード期間にすべき最初のシンボルからの数(以下、第2シンボル数)を、第2周波数帯におけるBWPのサブキャリア間隔に基づいて決定してよい。UE100の制御部140は、第1シンボル数と第2シンボル数との合計をガード期間の長さとしてよい。 In addition, in the cases of (a) and (b) above, the control unit 140 of the UE 100 is a transmission opportunity in the first frequency band (for example, the first hop for PUCCH transmission) from the last symbol to be the card period (hereinafter, the number of first symbols) is determined based on the subcarrier spacing of the BWP in the first frequency band, and the transmission opportunity in the second frequency band (e.g., the second hop for PUCCH transmission) in the card period The number from the first symbol to do (hereinafter referred to as the second number of symbols) may be determined based on the subcarrier spacing of the BWP in the second frequency band. Control section 140 of UE 100 may set the total of the number of first symbols and the number of second symbols as the length of the guard period.
 また、UE100の制御部140は、上記(c)のケースでは、第2周波数帯における送信機会(例えば、PUSCH送信用の第2ホップ)においてカード期間にすべき最初のシンボルからの数(第2シンボル数)を決定してよい。UE100の制御部140は、第2シンボル数をガード期間の長さとしてよい。 In addition, in the case of (c) above, the control unit 140 of the UE 100 determines the number from the first symbol to be the card period (second number of symbols) may be determined. Control section 140 of UE 100 may use the second number of symbols as the length of the guard period.
 また、UE100の制御部140は、上記(d)のケースでは、第1周波数帯における送信機会(例えば、PUSCH送信用の機会)においてカード期間にすべき最後のシンボルからの数(第1シンボル数)を決定してよい。UE100の制御部140は、第1シンボル数をガード期間の長さとしてよい。 In addition, in the case of (d) above, the control unit 140 of the UE 100 is the number from the last symbol to be the card period in the transmission opportunity (for example, the opportunity for PUSCH transmission) in the first frequency band (the first number of symbols ) may be determined. The control unit 140 of the UE 100 may use the number of first symbols as the length of the guard period.
 上述の実施形態において、基地局200は、複数のユニットを含んでもよい。複数のユニットは、プロトコルスタックに含まれる上位レイヤ(higher layer)をホストする第1のユニットと、プロトコルスタックに含まれる下位レイヤ(lower layer)をホストする第2のユニットとを含んでよい。上位レイヤは、RRCレイヤ、SDAPレイヤ及びPDCPレイヤを含んでよく、下位レイヤは、RLCレイヤ、MACレイヤ及びPHYレイヤを含んでよい。第1のユニットは、CU(central unit)であってよく、第2のユニットは、DU(Distributed Unit)であってよい。複数のユニットは、PHYレイヤの下位の処理を行う第3のユニットを含んでよい。第2のユニットは、PHYレイヤの上位の処理を行ってよい。第3のユニットは、RU(Radio Unit)であってよい。基地局200は、複数のユニットのうちの1つであってよく、複数のユニットのうちの他のユニットと接続されていてよい。また、基地局200は、IAB(Integrated Access and Backhaul)ドナー又はIABノードであってよい。 In the above-described embodiment, the base station 200 may include multiple units. The plurality of units may include a first unit hosting a higher layer included in the protocol stack and a second unit hosting a lower layer included in the protocol stack. The upper layers may include the RRC layer, the SDAP layer and the PDCP layer, and the lower layers may include the RLC layer, the MAC layer and the PHY layer. The first unit may be a CU (central unit), and the second unit may be a DU (Distributed Unit). The plurality of units may include a third unit that performs processing below the PHY layer. The second unit may perform processing above the PHY layer. The third unit may be an RU (Radio Unit). Base station 200 may be one of a plurality of units, and may be connected to other units of the plurality of units. Also, the base station 200 may be an IAB (Integrated Access and Backhaul) donor or an IAB node.
 上述の実施形態において、移動通信システム1としてNRに基づく移動通信システムを例に挙げて説明した。しかしながら、移動通信システム1は、この例に限定されない。移動通信システム1は、LTE又は3GPP規格の他の世代システム(例えば、第6世代)のいずれかのTSに準拠したシステムであってよい。基地局200は、LTEにおいてUE100へ向けたE-UTRAユーザプレーン及び制御プレーンプロトコル終端を提供するeNBであってよい。移動通信システム1は、3GPP規格以外の規格のTSに準拠したシステムであってよい。 In the above-described embodiment, the mobile communication system 1 based on NR has been described as an example. However, the mobile communication system 1 is not limited to this example. The mobile communication system 1 may be a TS-compliant system of either LTE or another generation system (eg, 6th generation) of the 3GPP standard. Base station 200 may be an eNB that provides E-UTRA user plane and control plane protocol termination towards UE 100 in LTE. The mobile communication system 1 may be a system conforming to a TS of a standard other than the 3GPP standard.
 上述の実施形態の動作におけるステップは、必ずしもフロー図又はシーケンス図に記載された順序に沿って時系列に実行されなくてよい。例えば、動作におけるステップは、フロー図又はシーケンス図として記載した順序と異なる順序で実行されても、並列的に実行されてもよい。また、動作におけるステップの一部が削除されてもよく、さらなるステップが処理に追加されてもよい。さらに、上述の各動作フローは、別個独立に実施する場合に限らず、2以上の動作フローを組み合わせて実施可能である。例えば、1つの動作フローの一部のステップを他の動作フローに追加してもよいし、1つの動作フローの一部のステップを他の動作フローの一部のステップと置換してもよい。 The steps in the operations of the above-described embodiments do not necessarily have to be executed in chronological order according to the order described in the flow diagram or sequence diagram. For example, the steps in the operations may be performed out of order or in parallel with the order illustrated in the flow diagrams or sequence diagrams. Also, some steps in the operation may be omitted and additional steps may be added to the process. Furthermore, each operation flow described above is not limited to being implemented independently, but can be implemented by combining two or more operation flows. For example, some steps of one operation flow may be added to another operation flow, or some steps of one operation flow may be replaced with some steps of another operation flow.
 UE100又は基地局200が行う各処理をコンピュータに実行させるプログラムが提供されてもよい。プログラムは、コンピュータ読取り可能媒体に記録されていてもよい。コンピュータ読取り可能媒体を用いれば、コンピュータにプログラムをインストールすることが可能である。ここで、プログラムが記録されたコンピュータ読取り可能媒体は、非一過性の記録媒体であってもよい。非一過性の記録媒体は、特に限定されるものではないが、例えば、CD-ROM(Compact Disk Read Only Memory)やDVD-ROM(Digital Versatile Disc Read Only Memory)等の記録媒体であってもよい。また、UE100又は基地局200が行う各処理を実行する回路を集積化し、UE100又は基地局200の少なくとも一部を半導体集積回路(チップセット、SoC(System On Chip))として構成してもよい。 A program that causes a computer to execute each process performed by the UE 100 or the base station 200 may be provided. The program may be recorded on a computer readable medium. A computer readable medium allows the installation of the program on the computer. Here, the computer-readable medium on which the program is recorded may be a non-transitory recording medium. The non-transitory recording medium is not particularly limited, but may be, for example, a recording medium such as CD-ROM (Compact Disk Read Only Memory) or DVD-ROM (Digital Versatile Disc Read Only Memory). good. Also, circuits that execute each process performed by the UE 100 or the base station 200 may be integrated, and at least a part of the UE 100 or the base station 200 may be configured as a semiconductor integrated circuit (chipset, SoC (System On Chip)).
 上述の実施形態において、「送信する(transmit)」は、送信に使用されるプロトコルスタック内の少なくとも1つのレイヤの処理を行うことを意味してもよく、又は、無線又は有線で信号を物理的に送信することを意味してもよい。或いは、「送信する」は、上記少なくとも1つのレイヤの処理を行うことと、無線又は有線で信号を物理的に送信することとの組合せを意味してもよい。同様に、「受信する(receive)」は、受信に使用されるプロトコルスタック内の少なくとも1つのレイヤの処理を行うことを意味してもよく、又は、無線又は有線で信号を物理的に受信することを意味してもよい。或いは、「受信する」は、上記少なくとも1つのレイヤの処理を行うことと、無線又は有線で信号を物理的に受信することとの組合せを意味してもよい。同様に、「取得する(obtain/acquire)」は、記憶されている情報の中から情報を取得することを意味してもよく、他のノードから受信した情報の中から情報を取得することを意味してもよく、又は、情報を生成することにより当該情報を取得することを意味してもよい。同様に、「に基づいて(based on)」、「に応じて(depending on/in response to)」という記載は、別段に明記されていない限り、「のみに基づいて」、「のみに応じて」を意味しない。「に基づいて」という記載は、「のみに基づいて」及び「に少なくとも部分的に基づいて」の両方を意味する。同様に、「に応じて」という記載は、「のみに応じて」及び「に少なくとも部分的に応じて」の両方を意味する。同様に、「~を含む(include)」及び「~を備える(comprise)」は、列挙する項目のみを含むことを意味せず、列挙する項目のみを含んでもよいし、列挙する項目に加えてさらなる項目を含んでもよいことを意味する。同様に、本開示において、「又は(or)」は、排他的論理和を意味せず、論理和を意味する。さらに、本開示で使用した「第1」、「第2」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定するものではない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示で使用され得る。したがって、第1及び第2の要素への参照は、2つの要素のみがそこで採用され得ること、又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。本開示において、例えば、英語でのa,an,及びtheのように、翻訳により冠詞が追加された場合、これらの冠詞は、文脈から明らかにそうではないことが示されていなければ、複数のものを含むものとする。 In the above embodiments, "transmit" may mean performing at least one layer of processing in the protocol stack used for transmission, or physically transmitting the signal wirelessly or by wire. It may mean sending to Alternatively, "transmitting" may mean a combination of performing the at least one layer of processing and physically transmitting the signal wirelessly or by wire. Similarly, "receive" may mean performing processing of at least one layer in the protocol stack used for reception, or physically receiving a signal wirelessly or by wire. may mean that Alternatively, "receiving" may mean a combination of performing the at least one layer of processing and physically receiving the signal wirelessly or by wire. Similarly, "obtain/acquire" may mean obtaining information among stored information, and may mean obtaining information among information received from other nodes. Alternatively, it may mean obtaining the information by generating the information. Similarly, references to "based on" and "depending on/in response to" are used unless otherwise specified. does not mean The phrase "based on" means both "based only on" and "based at least in part on." Similarly, the phrase "depending on" means both "only depending on" and "at least partially depending on." Similarly, "include" and "comprise" are not meant to include only the recited items, and may include only the recited items or in addition to the recited items. Means that it may contain further items. Similarly, in the present disclosure, "or" does not mean exclusive OR, but means logical OR. Furthermore, any references to elements using the "first," "second," etc. designations used in this disclosure do not generally limit the quantity or order of those elements. These designations may be used in this disclosure as a convenient method of distinguishing between two or more elements. Thus, references to first and second elements do not imply that only two elements may be employed therein, or that the first element must precede the second element in any way. In this disclosure, when articles are added by translation, such as a, an, and the in English, these articles are used in plural unless the context clearly indicates otherwise. shall include things.
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。 Although the present disclosure has been described with reference to examples, it is understood that the present disclosure is not limited to those examples or structures. The present disclosure also includes various modifications and modifications within the equivalent range. In addition, various combinations and configurations, as well as other combinations and configurations, including single elements, more, or less, are within the scope and spirit of this disclosure.
 (付記)
 上述の実施形態に関する特徴について付記する。
(Appendix)
Features related to the above-described embodiments are added.
 (付記1)
 通信装置(100)であって、
 第1周波数帯において上り送信を行った後、前記第1周波数帯と異なる第2周波数帯において上り送信を行う通信部(120)と、
 前記上り送信に用いるサブキャリア間隔に基づいて、前記第1周波数帯から前記第2周波数帯へ周波数帯を変更するためのガード期間を構成するためのシンボル数を決定する制御部(140)と、を備える
 通信装置(100)。
(Appendix 1)
A communication device (100),
A communication unit (120) that performs uplink transmission in a second frequency band different from the first frequency band after performing uplink transmission in the first frequency band;
a control unit (140) that determines the number of symbols for forming a guard period for changing the frequency band from the first frequency band to the second frequency band, based on the subcarrier interval used for uplink transmission; A communication device (100).
 (付記2)
 前記通信部(120)は、基地局(200)のセルの全帯域幅の一部分である帯域幅部分のサブキャリア間隔を示す情報を前記基地局(200)から受信し、
 前記制御部(140)は、前記サブキャリア間隔を示す情報に基づいて、前記シンボル数を決定する
 付記1に記載の通信装置(100)。
(Appendix 2)
The communication unit (120) receives from the base station (200) information indicating subcarrier intervals of a bandwidth portion that is part of the total bandwidth of a cell of the base station (200),
The communication device (100) according to appendix 1, wherein the control unit (140) determines the number of symbols based on the information indicating the subcarrier spacing.
 (付記3)
 前記制御部(140)は、前記通信装置(100)の能力を示す能力情報に基づいて、前記シンボル数を決定する
 付記1又は2に記載の通信装置(100)。
(Appendix 3)
The communication device (100) according to appendix 1 or 2, wherein the control unit (140) determines the number of symbols based on capability information indicating the capability of the communication device (100).
 (付記4)
 前記通信部(120)は、前記能力情報を基地局(200)へ送信する
 付記3に記載の通信装置(100)。
(Appendix 4)
The communication device (100) according to appendix 3, wherein the communication unit (120) transmits the capability information to the base station (200).
 (付記5)
 前記制御部(140)は、前記第1周波数帯における上り送信に用いるチャネルと前記第2周波数帯における上り送信に用いられるチャネルとの組み合わせに基づいて、前記シンボル数を決定する
 付記1から4のいずれか1項に記載の通信装置(100)。
(Appendix 5)
The control unit (140) determines the number of symbols based on a combination of a channel used for uplink transmission in the first frequency band and a channel used for uplink transmission in the second frequency band. A communication device (100) according to any one of the preceding claims.
 (付記6)
 通信装置(100)が実行する通信制御方法であって、
 第1周波数帯において上り送信を行った後、前記第1周波数帯と異なる第2周波数帯において上り送信を行うステップと、
 前記上り送信に用いるサブキャリア間隔に基づいて、前記第1周波数帯から前記第2周波数帯へ周波数帯を変更するためのガード期間を構成するためのシンボル数を決定するステップと、を備える
 通信制御方法。
(Appendix 6)
A communication control method executed by a communication device (100),
After performing uplink transmission in a first frequency band, performing uplink transmission in a second frequency band different from the first frequency band;
and determining the number of symbols for forming a guard period for changing the frequency band from the first frequency band to the second frequency band based on the subcarrier interval used for the uplink transmission. Communication control Method.

Claims (6)

  1.  通信装置(100)であって、
     第1周波数帯において上り送信を行った後、前記第1周波数帯と異なる第2周波数帯において上り送信を行う通信部(120)と、
     前記上り送信に用いるサブキャリア間隔に基づいて、前記第1周波数帯から前記第2周波数帯へ周波数帯を変更するためのガード期間を構成するためのシンボル数を決定する制御部(140)と、を備える
     通信装置(100)。
    A communication device (100),
    A communication unit (120) that performs uplink transmission in a second frequency band different from the first frequency band after performing uplink transmission in the first frequency band;
    a control unit (140) that determines the number of symbols for forming a guard period for changing the frequency band from the first frequency band to the second frequency band, based on the subcarrier interval used for uplink transmission; A communication device (100).
  2.  前記通信部(120)は、基地局(200)のセルの全帯域幅の一部分である帯域幅部分のサブキャリア間隔を示す情報を前記基地局(200)から受信し、
     前記制御部(140)は、前記サブキャリア間隔を示す情報に基づいて、前記シンボル数を決定する
     請求項1に記載の通信装置(100)。
    The communication unit (120) receives from the base station (200) information indicating subcarrier intervals of a bandwidth portion that is part of the total bandwidth of a cell of the base station (200),
    The communication apparatus (100) according to claim 1, wherein the control section (140) determines the number of symbols based on information indicating the subcarrier spacing.
  3.  前記制御部(140)は、前記通信装置(100)の能力を示す能力情報に基づいて、前記シンボル数を決定する
     請求項1又は2に記載の通信装置(100)。
    The communication device (100) according to claim 1 or 2, wherein the control unit (140) determines the number of symbols based on capability information indicating the capability of the communication device (100).
  4.  前記通信部(120)は、前記能力情報を基地局(200)へ送信する
     請求項3に記載の通信装置(100)。
    The communication device (100) according to claim 3, wherein the communication unit (120) transmits the capability information to the base station (200).
  5.  前記制御部(140)は、前記第1周波数帯における上り送信に用いるチャネルと前記第2周波数帯における上り送信に用いられるチャネルとの組み合わせに基づいて、前記シンボル数を決定する
     請求項1又は2に記載の通信装置(100)。
    3. The control unit (140) determines the number of symbols based on a combination of a channel used for uplink transmission in the first frequency band and a channel used for uplink transmission in the second frequency band. A communication device (100) according to claim 1.
  6.  通信装置(100)が実行する通信制御方法であって、
     第1周波数帯において上り送信を行った後、前記第1周波数帯と異なる第2周波数帯において上り送信を行うステップと、
     前記上り送信に用いるサブキャリア間隔に基づいて、前記第1周波数帯から前記第2周波数帯へ周波数帯を変更するためのガード期間を構成するためのシンボル数を決定するステップと、を備える
     通信制御方法。
    A communication control method executed by a communication device (100),
    After performing uplink transmission in a first frequency band, performing uplink transmission in a second frequency band different from the first frequency band;
    and determining the number of symbols for forming a guard period for changing the frequency band from the first frequency band to the second frequency band based on the subcarrier interval used for the uplink transmission. Communication control Method.
PCT/JP2022/029309 2021-08-05 2022-07-29 Communication apparatus and communication control method WO2023013548A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021128929A JP2023023409A (en) 2021-08-05 2021-08-05 User equipment and communication control method
JP2021-128929 2021-08-05

Publications (1)

Publication Number Publication Date
WO2023013548A1 true WO2023013548A1 (en) 2023-02-09

Family

ID=85154751

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/029309 WO2023013548A1 (en) 2021-08-05 2022-07-29 Communication apparatus and communication control method

Country Status (2)

Country Link
JP (1) JP2023023409A (en)
WO (1) WO2023013548A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200068608A1 (en) * 2017-03-24 2020-02-27 Intel IP Corporation Sub-prb resource allocation for pusch in even further enhanced mtc
JP2020537399A (en) * 2017-11-09 2020-12-17 オフィノ, エルエルシー Communication based on the function of the wireless device
WO2020261521A1 (en) * 2019-06-27 2020-12-30 株式会社Nttドコモ Terminal and wireless communication method
WO2021019650A1 (en) * 2019-07-29 2021-02-04 株式会社Nttドコモ Terminal and wireless communication method
JP2021514581A (en) * 2018-02-14 2021-06-10 エルジー エレクトロニクス インコーポレイティド A method and a device for performing uplink transmission via frequency hopping in a wireless communication system.

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200068608A1 (en) * 2017-03-24 2020-02-27 Intel IP Corporation Sub-prb resource allocation for pusch in even further enhanced mtc
JP2020537399A (en) * 2017-11-09 2020-12-17 オフィノ, エルエルシー Communication based on the function of the wireless device
JP2021514581A (en) * 2018-02-14 2021-06-10 エルジー エレクトロニクス インコーポレイティド A method and a device for performing uplink transmission via frequency hopping in a wireless communication system.
WO2020261521A1 (en) * 2019-06-27 2020-12-30 株式会社Nttドコモ Terminal and wireless communication method
WO2021019650A1 (en) * 2019-07-29 2021-02-04 株式会社Nttドコモ Terminal and wireless communication method

Also Published As

Publication number Publication date
JP2023023409A (en) 2023-02-16

Similar Documents

Publication Publication Date Title
TWI825223B (en) Semi-persistent scheduling with multiple transmit-receive points
EP3281479B1 (en) Method for performing a pdcch monitoring in a carrier aggregation with at least one scell operating in an unlicensed spectrum and a device therefor
CN108781465B (en) Channel access priority class selection
KR102009618B1 (en) Telecommunications apparatus and methods
CN109076517B (en) User equipment, base station device, and communication method
US10887793B2 (en) Radio station, radio terminal apparatus, and method for these
US20230254191A1 (en) Communication apparatuses, methods, system, programs and recording media
US9220095B2 (en) Communication system, mobile station device, base station device, random access processing method, and integrated circuit
CN110463315B (en) Power allocation method for terminal configured with multiple carriers and terminal using the same
WO2016148517A1 (en) Method for performing device-to-device communication in wireless communication system, and apparatus for same
JP7423823B2 (en) Transmission block transmission method and device
EP4037413A1 (en) Multi-bit scheduling request
EP3595376B1 (en) Uplink transmission method and apparatus
EP3772231A1 (en) User equipment and base station performing transmission and reception operations
CN113711678A (en) Network node, User Equipment (UE) and related method for scheduling UE by network node
CN107852715B (en) Terminal device and communication method
CN112398632A (en) Uplink transmission method and user equipment
JPWO2018062371A1 (en) Mobile communication method
CN114073152A (en) Method and apparatus for supporting transmission adaptation
WO2023013548A1 (en) Communication apparatus and communication control method
CN106664698B (en) Terminal device, integrated circuit, and communication method
WO2023013547A1 (en) Communication device, base station, and communication method
WO2023013610A1 (en) Communication device, base station device, and communication method
WO2023080160A1 (en) Communication device, base station, and communication method
WO2023238686A1 (en) Communication device, base station, and communication method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22852967

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE