WO2023013462A1 - Position information deriving system - Google Patents

Position information deriving system Download PDF

Info

Publication number
WO2023013462A1
WO2023013462A1 PCT/JP2022/028691 JP2022028691W WO2023013462A1 WO 2023013462 A1 WO2023013462 A1 WO 2023013462A1 JP 2022028691 W JP2022028691 W JP 2022028691W WO 2023013462 A1 WO2023013462 A1 WO 2023013462A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
angle
elevation
azimuth
elevation angle
Prior art date
Application number
PCT/JP2022/028691
Other languages
French (fr)
Japanese (ja)
Inventor
一正 櫻井
真吾 中田
尚生 谷本
輝 岩川
啓太 藤井
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2023013462A1 publication Critical patent/WO2023013462A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/42Simultaneous measurement of distance and other co-ordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/66Radar-tracking systems; Analogous systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/933Radar or analogous systems specially adapted for specific applications for anti-collision purposes of aircraft or spacecraft
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/03Details of HF subsystems specially adapted therefor, e.g. common to transmitter and receiver
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/06Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using refracting or diffracting devices, e.g. lens
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/02Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical movement of antenna or antenna system as a whole
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/12Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical relative movement between primary active elements and secondary devices of antennas or antenna systems
    • H01Q3/16Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical relative movement between primary active elements and secondary devices of antennas or antenna systems for varying relative position of primary active element and a reflecting device
    • H01Q3/18Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical relative movement between primary active elements and secondary devices of antennas or antenna systems for varying relative position of primary active element and a reflecting device wherein the primary active element is movable and the reflecting device is fixed

Definitions

  • This disclosure relates to a location information derivation system.
  • various radar systems are known for detecting flying objects within a predetermined surveillance area and obtaining position information.
  • a transponder mounted on an aircraft returns position and altitude information in response to a signal transmitted from a radar station, thereby sensing the position of the aircraft.
  • the system is capable of measuring two-dimensional radar system coordinates of range and bearing of an aircraft in flight.
  • the above system cannot detect birds and drones that do not have transponders that respond to the signals received from radar stations. There is a demand for a technology that can obtain accurate position information even for objects that do not have such transponders, among those that exist in the airspace.
  • a location information derivation system has an azimuth angle antenna and an elevation angle antenna, an antenna device for irradiating a detection target with radio waves and receiving a reflected wave from the detection target, and detection by the azimuth antenna.
  • an azimuth angle information acquisition unit for acquiring a distance from the antenna device to the detection object and an azimuth angle of the detection object based on the reflected wave detected by the antenna; an elevation angle information obtaining unit for obtaining a distance from the antenna device to the detection object and an elevation angle of the detection object; a distance obtained by the azimuth information obtaining unit; a determination unit for determining that the detection target having the same value is the same detection object by performing a distance comparison with the obtained distance, and determining the same detection object from the azimuth angle, elevation angle, and distance of the same detection object.
  • a derivation unit for deriving location-related information associated with the location.
  • the position information derivation system of this form compares the distances obtained based on the reflected waves detected by the azimuth antenna and the elevation antenna, and detects objects having the same distance as the same object. I judge. Then, position-related information of the same detected object is derived from the azimuth angle, elevation angle, and distance of the same detected object. As a result, accurate position information can be obtained even for objects that do not have transponders, among objects that exist in the airspace.
  • FIG. 1 is a schematic block diagram showing the functional configuration of a position information derivation system according to the first embodiment of the present disclosure
  • FIG. 2 is a perspective view schematically showing the appearance of the antenna device according to the first embodiment
  • FIG. 3 is a plan view schematically showing the antenna device according to the first embodiment
  • FIG. 4 is a front view schematically showing the antenna device according to the first embodiment
  • FIG. 5 is a side view schematically showing the antenna device according to the first embodiment
  • FIG. 6 is a flowchart showing a processing procedure of position-related information detection processing executed by the information processing unit;
  • FIG. 1 is a schematic block diagram showing the functional configuration of a position information derivation system according to the first embodiment of the present disclosure
  • FIG. 2 is a perspective view schematically showing the appearance of the antenna device according to the first embodiment
  • FIG. 3 is a plan view schematically showing the antenna device according to the first embodiment
  • FIG. 4 is a front view schematically showing the antenna device according to the first embodiment
  • FIG. 5 is
  • FIG. 7 is a perspective view schematically showing the appearance of the antenna device according to the second embodiment
  • FIG. 8 is a plan view schematically showing the antenna device according to the second embodiment
  • FIG. 9 is a front view schematically showing the antenna device according to the second embodiment
  • FIG. 10 is a side view schematically showing the antenna device according to the second embodiment
  • FIG. 11 is a perspective view schematically showing the appearance of the antenna device according to the third embodiment
  • FIG. 12 is a perspective view schematically showing the appearance of the antenna device according to the fourth embodiment
  • FIG. 13 is a plan view schematically showing the antenna device according to the fourth embodiment
  • FIG. 14 is a side view schematically showing the antenna device according to the fourth embodiment
  • FIG. 15 is a front view schematically showing the antenna device according to the fourth embodiment, showing a mode in which the posture of the dual-purpose antenna is different from that in FIG.
  • FIG. 16 is a perspective view schematically showing the appearance of the antenna device according to the fifth embodiment
  • FIG. 17 is a plan view schematically showing the radiator movable control plate
  • FIG. 18 is a graph showing changes in vertical directivity with radiator position
  • FIG. 19 is a perspective view schematically showing the appearance of the antenna device according to the sixth embodiment
  • FIG. 20 is a perspective view schematically showing the appearance of the antenna device according to the seventh embodiment
  • FIG. 21 is a perspective view schematically showing the appearance of the antenna device according to the eighth embodiment
  • FIG. 22 is a perspective view schematically showing the appearance of the antenna device according to the ninth embodiment, FIG.
  • FIG. 23 is a perspective view schematically showing the appearance of the antenna device according to the tenth embodiment
  • FIG. 24 is a flowchart showing a processing procedure for detection processing of position-related information executed by the information processing unit in the position information derivation system of the eleventh embodiment
  • FIG. 25 is a perspective view schematically showing the appearance of an antenna device according to another embodiment
  • FIG. 26 is a perspective view schematically showing the appearance of an antenna device according to another embodiment.
  • A. First embodiment A1. Configuration of location information derivation system: The configuration of the first embodiment will be described with reference to FIGS. 1 to 6.
  • FIG. The position information derivation system 100 of the first embodiment is, for example, a radar system for detecting flying objects in the sky.
  • This position information deriving system 100 is a system for accurately obtaining position-related position-related information particularly for detection objects (hereinafter simply referred to as "targets") such as birds and drones that do not have transponders. is.
  • the "latitude”, “longitude” and “altitude” of the target are derived as the "position-related information".
  • the position information derivation system 100 includes an antenna device 1 and an information processing section 20.
  • the components necessary for describing the features of the present embodiment are represented by functional blocks, and the description of general components is partially omitted.
  • each component illustrated in FIG. 1 is functionally conceptual and does not necessarily need to be physically configured as illustrated.
  • the specific forms of distribution and integration of each functional block are not limited to those illustrated, and all or part of them can be functionally or physically distributed and integrated in arbitrary units. .
  • the antenna device 1 is a device that radiates radio waves to a target and receives reflected waves from the target.
  • the antenna device 1 includes an azimuth angle antenna 11 , an elevation angle antenna 12 , an azimuth angle rotation mechanism section 13 , an elevation angle rotation mechanism section 14 , and a signal generation section 15 . Detailed configurations of the antennas 11 and 12 and the rotation mechanisms 13 and 14 will be described later.
  • the signal generator 15 converts the received waves obtained by the antennas 11 and 12 into received signals to generate signals and outputs the signals to the information processor 20 .
  • the information processing section 20 includes an azimuth angle information acquisition section 16 , an elevation angle information acquisition section 17 , a determination section 18 , and a derivation section 19 .
  • the information processing unit 20 is, for example, a microcomputer including a CPU, ROM, RAM, other input/output ports, etc., and controls the entire system 100 .
  • the CPU of such a microcomputer functions as an azimuth angle information acquisition section 16, an elevation angle information acquisition section 17, a determination section 18, and a derivation section 19 by reading and executing programs stored in the ROM.
  • the azimuth angle information acquisition unit 16 acquires the distance from the antenna device 1 to the target and the azimuth angle of the target based on the reflected wave detected by the azimuth angle antenna 11 .
  • the elevation angle information acquisition unit 17 acquires the distance from the antenna device 1 to the target and the elevation angle of the target based on the reflected wave detected by the elevation angle antenna 12 .
  • the determination unit 18 compares the distance obtained by the azimuth angle information acquisition unit 16 and the distance obtained by the elevation angle information acquisition unit 17, and determines detection objects having the same value as the same detection object. do.
  • the deriving unit 19 derives position-related information related to the position of the same detected object from the azimuth angle, elevation angle, and distance of the same detected object. In this embodiment, the "longitude, latitude, and altitude" of the target are derived as the position-related information.
  • FIG. 2 the "elevation angle” (arrow A shown in FIG. 2) refers to the vertical direction with respect to the installation surface of the antenna device 1
  • the "azimuth angle” (arrow B shown in FIG. 2) refers to the antenna It refers to the horizontal orientation with respect to the installation surface of the device 1 .
  • the azimuth angle antenna 11 includes a radiator 31 (see FIGS. 4 and 5) and a reflector 32.
  • the elevation angle antenna 12 is configured with a radiator 33 (see FIGS. 3, 4 and 5) and a reflector .
  • the reflectors 32, 34 have concave parabolic surfaces to impart directivity in the radial direction. When receiving radio waves, reflectors 32 and 34 collect radio waves and reflect them toward radiators, and radiators 31 and 33 send the collected radio waves to a converter (not shown). It should be noted that illustration of the radiator is omitted in FIG. 2 and in FIGS. 7 and 11 below.
  • the azimuth angle antenna 11 and the elevation angle antenna 12 are attached to the same rotation shaft 35, which is the center of rotation in the azimuth direction, via support arms, adjusters, fixtures, and the like (not shown).
  • the azimuth angle antenna 11 is fixed to the rotating shaft with the parabolic curved surface of the reflector 32 directed approximately horizontally.
  • the elevation antenna 12 is provided vertically above the azimuth antenna 11 on the rotation axis 35 .
  • the elevation angle antenna 12 is connected to an elevation angle rotation mechanism 14 provided at the upper end of the rotary shaft 35 .
  • the elevation angle rotation mechanism 14 is a unit that controls the elevation angle of the elevation angle antenna 12 by driving a motor. By driving the elevation angle rotation mechanism 14, the elevation angle antenna 12 can change its posture between a horizontal state in which the reflecting surface faces approximately horizontally and a vertical state in which the reflecting surface faces approximately vertically upward. It has become. In other words, the elevation angle antenna 12 is capable of swinging within an elevation angle range of 0 to 90 degrees.
  • the azimuth rotation mechanism 13 is a unit that controls the rotation of the rotation shaft 35 in the azimuth direction (the azimuth angles of the antennas 11 and 12) by motor drive.
  • the azimuth rotation mechanism unit 13 has a turntable (not shown) that can rotate 360 degrees, for example.
  • the motor drive rotates the turntable and rotating shaft 35 in the azimuth direction.
  • the rotation mechanism units 13 and 14 are connected to the information processing unit 20 (see FIG. 1) via control cables (not shown) made up of coaxial cables or the like.
  • the information processing section 20 also supplies current to the antennas 11 and 12 and transmits control signals to the rotating mechanism sections 13 and 14 .
  • the azimuth angle antenna 11 and elevation angle antenna 12 are capable of adjusting the transmission/reception angles of the reflectors 32 and 34 in the azimuth direction by driving the azimuth angle rotation mechanism 13 . By rotating 360 degrees in the azimuth direction, it is possible to mechanically scan electromagnetic waves and detect the entire circumference in the azimuth direction.
  • the elevation angle antenna 12 is rotatable in the elevation direction within the range of 0° to 90° by the elevation angle rotation mechanism 14 as described above, and is rotated 360° in the azimuth direction by the azimuth angle rotation mechanism 13 as described above. ° Rotatable. As a result, the elevation angle antenna 12 can detect the whole sky by mechanically scanning electromagnetic waves.
  • the azimuth angle antenna 11 and the elevation angle antenna 12 are composed of parabolic antennas that are directional antennas.
  • the azimuth angle antenna 11 can detect an azimuth angle Amp of 30° to 60° at one time, and an elevation angle Ele of 90°, for example.
  • the azimuth angle antenna 11 and the elevation angle antenna 12 are high-gain antennas with an absolute gain of 20 dBi or more, and emit pulse waves.
  • the pulse wave has, for example, a pulse width of 1 ⁇ S and a repetition frequency of 360 Hz.
  • Each of the antennas 11 and 12 rotates once in the azimuth direction in about one second, and emits pulse waves 360 times every 1°.
  • the azimuth angle antenna 11 and elevation angle antenna 12 convert a transmission signal from an oscillator (not shown) into a transmission wave, irradiate a target with radio waves, and receive a reflected wave from the target as a reception wave.
  • the azimuth angle antenna 11 detects received waves for obtaining the distance and azimuth angle from the system 100 to the target.
  • the elevation angle antenna 12 detects the received waves to obtain the distance and elevation angle from the system 100 to the target. That is, in the system 100, the azimuth angle and the elevation angle are individually detected by separate antennas 11 and 12. FIG.
  • step 1 the azimuth angle information acquisition unit 16 obtains the azimuth angle of the target from the received wave received by the azimuth angle antenna 11 . and the distance is obtained.
  • the elevation angle and distance of the target are obtained from the received waves received by the elevation angle antenna 12 by the elevation angle information acquisition unit 17 .
  • the azimuth angle acquisition step S1 and the elevation angle acquisition step S2 are described separately.
  • the rotation in the azimuth direction about the same rotation axis 35 and the swinging operation of the elevation angle antenna 12 by the elevation angle rotation mechanism 14 are performed synchronously. Both azimuth angle detection and elevation angle detection are performed substantially simultaneously during one full rotation.
  • the angle in the azimuth direction that can be detected by the elevation angle antenna 12 at one time is defined as the detection angle R°, and the value obtained by dividing the total azimuth angle of 360° by the detection angle R° is defined as the number of times T.
  • the detection angle R° is 90°
  • the number of times T is four.
  • the elevation angle antenna 12 scans electromagnetic waves in the elevation angle direction a number of times equal to or greater than the number of times T while the azimuth angle antenna 11 detects 360 degrees in the azimuth angle direction.
  • the elevation angle of the elevation angle antenna 12 is first detected by swinging upward from 0° (horizontal state) to 90° (vertical state), and then from 90° to 0°. Detection of the elevation angle by swinging downward back to ° is the second electromagnetic wave scanning. Elevation angle is detected by swinging motion at least four times.
  • the swinging motion in the elevation angle direction is performed three reciprocations with a margin during one rotation of the rotating shaft 35 .
  • the elevation angle information acquisition unit 17 detects the whole sky while the rotary shaft 35 rotates once, that is, while the azimuth angle information acquisition unit 16 detects 360° in the azimuth direction.
  • the determination unit 18 compares the distance obtained based on the data of the azimuth angle information acquisition unit 16 and the distance obtained based on the data of the elevation information acquisition unit 17, and determines that they are the same. A target having a value of is determined to be the same target. That is, in this S3, targets at the same distance are searched from two or more pieces of target information.
  • the derivation unit 19 derives the longitude, latitude, and altitude of the same target from the azimuth, elevation, and distance of the same target. After that, the processing ends.
  • the azimuth angle antenna 11 and the elevation angle antenna 12 are provided on the same rotation axis 35 that is the rotation center axis in the azimuth angle direction. Therefore, the antenna device 1 can be configured compactly and simply. As a result, the configuration of the entire system 100 can be made compact and simple.
  • the elevation angle antenna 12 detects the 360 degrees in the azimuth direction by the number of times equal to or greater than the number of times T obtained by dividing 360 degrees by the detection angle R°. Electromagnetic waves are scanned in the elevation direction. Therefore, while the rotating shaft 35 rotates once, that is, while the azimuth angle information acquisition unit 16 detects 360° in the azimuth angle direction, the elevation angle information acquisition unit 17 can also detect the whole sky. Therefore, azimuth angle detection and elevation angle detection can be performed simultaneously during one rotation of the rotating shaft 35, and the detection time can be shortened. Moreover, since a pulse wave is used as the radiated electromagnetic wave, the detection can be performed in a short time.
  • parabolic antennas are used as the azimuth angle antenna 11 and the elevation angle antenna 12 .
  • a parabolic antenna has a high gain among directional antennas and can detect targets more accurately.
  • it is a simple configuration in which the parabolic antenna is mechanically moved to scan the electromagnetic wave, so that the device configuration can be simplified and the detection time can be shortened as compared with the case of electronic scanning.
  • FIG. 7 to 10 Next, a location information derivation system according to a second embodiment of the present disclosure will be described with reference to FIGS. 7 to 10.
  • FIG. 7 to 10 the same reference numerals are given to substantially the same configurations as in the first embodiment, and the description thereof is omitted.
  • the second to tenth embodiments below are modified examples of the antenna device 1, and the configuration of the antenna device is different from that of the first embodiment.
  • the antenna device 2 of the second embodiment has a plurality of (four in this embodiment) elevation angle antennas.
  • the antenna device 2 has four elevation angle antennas, ie, a first antenna 41 , a second antenna 42 , a third antenna 43 and a fourth antenna 44 .
  • the first antenna 41, the second antenna 42, the third antenna 43, and the fourth antenna 44 are arranged in this order in the circumferential direction with the parabolic surface facing outward, and at substantially the same height position of the rotation shaft 35.
  • the first to fourth antennas 41, 42, 43, 44 have the same configuration as the azimuth angle antenna 11 of the first embodiment, and have radiators 33 and reflectors 34, respectively.
  • the elevation angle antennas may be swung so that the elevation angles of the antennas 41, 42, 43, and 44 are the same, or the elevation angle of one of the adjacent antennas may be the same. may be alternately operated so that the elevation angle of the other antenna is between 90° and 0° when the other antenna operates so that the angle of elevation of the other antenna is between 0° and 90°.
  • it can be implemented in various forms such as synchronizing two antennas facing each other (for example, the first antenna 41 and the third antenna 43, the second antenna 42 and the fourth antenna 44).
  • the same effects as those of the first embodiment can be obtained. Furthermore, by providing a plurality of elevation angle antennas, a large azimuth direction angle that can be detected at one time can be ensured. can be less.
  • the antenna device 3 of the third embodiment has a plurality (four in this embodiment) of elevation angle antennas.
  • the antenna device 3 has four elevation angle antennas, ie, a first antenna 51, a second antenna 52, a third antenna 53, and a fourth antenna .
  • the first antenna 51, the second antenna 52, the third antenna 53, and the fourth antenna 54 are connected in this order in the elevation direction with the parabolic curved surface of the reflector 34 facing outward. It is configured by combining them into one rectangular frame.
  • the antenna body 50, in which the four antennas 51, 52, 53, and 54 are integrated, can be rotated by 360° in the elevation direction around the second rotating shaft 37 provided extending in the horizontal direction.
  • the second rotating shaft 37 is connected to the first rotating shaft 36 in a state orthogonal to the first rotating shaft 36 extending in the vertical direction, and is rotatable in the elevation direction independently of the first rotating shaft 36. is.
  • the elevation angle of the whole sky is detected by the rotation of the second rotation shaft 37 in the elevation direction along with the rotation of the first rotation shaft 36 in the azimuth direction.
  • the azimuth angle and the elevation angle can be detected by rotating the first rotating shaft 36 once in the azimuth direction. According to the third embodiment, the same effects as those of the first embodiment can be obtained.
  • the antenna device 4 of the position information deriving system of the fourth embodiment includes a single dual-purpose antenna 55 that functions both as an azimuth angle antenna and as an elevation angle antenna.
  • the azimuth angle antenna 11 of the antenna device 1 in the first embodiment is not provided, and the elevation angle antenna 12 substantially similar to that in the first embodiment also functions as an azimuth angle antenna for detecting the azimuth angle. It is something to do.
  • Other configurations are the same as those of the first embodiment.
  • the antenna device 4 includes one dual-purpose antenna 55, an azimuth angle rotation mechanism section 13, and an elevation angle rotation mechanism section 14.
  • this antenna device 4 first, as shown in FIGS. 13 and 14, the rotating shaft 35 is rotated once while the reflecting surface of the dual-purpose antenna 55 is oriented substantially horizontally. The azimuth angle is thereby detected.
  • FIG. 15 from a state in which the reflecting surface of the dual-purpose antenna 55 is oriented substantially vertically, the rotating shaft 35 is rotated once while being swung in the elevation direction. This allows the elevation angle to be detected.
  • the attitude in the elevation direction is changed and electromagnetic waves are scanned to detect the elevation angle and the distance.
  • FIG. 5 of the position information deriving system of the fifth embodiment differs from each of the above embodiments in that the elevation angle antenna is not a parabolic antenna and has a radiator movable control plate 59 .
  • the configuration of the azimuth angle antenna 11 is the same.
  • the elevation angle antenna 56 included in the antenna device 5 of the fifth embodiment includes a movable radiator 57 and a non-rotatably fixed reflector 58.
  • the reflector 58 has a substantially inverted conical shape when viewed from the side, and the diameter of the reflector 58 gradually decreases from the peripheral edge of the circular upper surface toward the lower tip. More specifically, when viewed from the side, the reflector 58 does not have a linear side portion but a curved shape that is concave inward. A side portion of the curved reflector 58 functions as a reflecting surface.
  • the center axis of the reflector 58 coincides with the vertical up-down direction and the axial direction of the rotating shaft 35 .
  • the radiator movable control plate 59 is a disk-shaped member and is horizontally fixed with its center point C aligned with the lower end of the reflector 58 . As shown in FIG. 17, the radiator movable control plate 59 is formed with a groove 61 that serves as a movable route for the radiator 57 .
  • the groove 61 is formed annularly around the center point C in plan view and substantially point-symmetrical.
  • the groove 61 has four vertices in a plan view shape, and once enters radially inward from any one vertex to the adjacent vertex, and then goes radially outward again. In other words, the area between the vertices is recessed toward the center point C side.
  • the radiator 57 is movable in the groove 61 by a drive mechanism (not shown) in synchronization with rotation in the azimuth direction caused by the rotation of the rotary shaft 35 . That is, radiator 57 is movable relative to reflector 58 .
  • the azimuth antenna 11 rotates once, the radiator 57 makes one turn around the groove 61 .
  • the solid line indicates the directivity gain when the radiator 57 is at an arbitrary position P1 in the groove 61 (the position of the radiator 57 indicated by the solid line in FIG. 16), and the radiator 57 is different from the position P1.
  • the dashed line indicates the directional gain at the position P2 (the position of the radiator 57 indicated by the dashed line in FIG. 16).
  • the position at which the directional gain is high differs between when the radiator 57 is at position P1 and at position P2. That is, in place of the configuration in which the elevation angle antenna 12 itself used in each of the above-described embodiments is swung in the elevation direction, the position of the radiator 57 is changed with respect to the reflector 58, thereby varying the radiation angle of radio waves. It can scan radio waves.
  • the same effects as those of the first embodiment can be obtained. Furthermore, since the elevation angle antenna 56 does not need to be swiveled, the radio wave scanning time can be shortened, for example, to about half compared to a configuration in which radio waves are scanned in the elevation direction by the swiveling motion. Save time. Further, if the radiator 57 is driven in the same manner as the azimuth angle rotation mechanism 13 (see FIG. 4 of the first embodiment), the elevation angle rotation mechanism 14 is not required, and one drive unit can be eliminated. , the durability of the system as a whole can be improved.
  • the antenna device 6 of the position information deriving system of the sixth embodiment has a plurality of azimuth angle antennas 11 (two in the present embodiment), unlike the antenna device 5 of the fifth embodiment. ) and has a plurality (two in this embodiment) of movable radiators 57 constituting the elevation angle antenna 62 .
  • the radio wave scanning time can be shortened more favorably.
  • the antenna device 7 of the position information deriving system of the seventh embodiment has a parabolic antenna applied as the reflector 34 of the elevation angle antenna 63 to the antenna device 5 of the fifth embodiment. points are different.
  • the reflector 34 of the elevation antenna 63 rotates in the azimuth direction in synchronization with the azimuth antenna 11 .
  • the movement of the radiator 57 is synchronized with the azimuth rotation of the reflector 34 of the elevation antenna 63 .
  • the same effects as in the fifth embodiment can be obtained.
  • the antenna device 8 of the position information deriving system of the eighth embodiment has a plurality of azimuth angle antennas 11 and elevation angle antennas 63 (this embodiment is different from the antenna device 7 of the seventh embodiment). It is different in that it has two (2) forms.
  • the reflector 34 of the elevation antenna 63 rotates in the azimuth direction in synchronization with the azimuth antenna 11 .
  • the reflectors 34 do not need to be rotated.
  • the same effects as those of the seventh embodiment can be obtained. Furthermore, even when the reflector 34 is configured by a parabolic antenna, by providing a plurality of azimuth angle antennas 11 and elevation angle antennas 63, the radio wave scanning time can be further shortened.
  • the antenna device 9 of the position information deriving system of the ninth embodiment has two elevation angle antennas 63 and 64, which are parabolic antennas, in contrast to the antenna device 8 of the eighth embodiment. The difference is that they are arranged asymmetrically with respect to the rotation axis 35 .
  • the radiator 57 that constitutes one of the elevation angle antennas 63 is controlled in movement by a radiator movement control plate 59, and the radiator 65 that constitutes the other elevation angle antenna 64 is appropriately movable by a drive means (not shown). Control.
  • the same effects as those of the eighth embodiment can be obtained. Furthermore, by changing the movable routes of the plurality of movable radiators 57 and 65, the directivity of radio waves can be set as desired. In other words, the angle that can be detected with high resolution can be changed, and the resolution of the system can be improved.
  • J. Tenth embodiment Next, a location information derivation system according to the tenth embodiment of the present disclosure will be described with reference to FIG. As shown in FIG. 23, the antenna device 10 of the position information deriving system of the tenth embodiment differs from the antenna device 6 of the sixth embodiment in the configuration of the elevation angle antenna.
  • the elevation angle antenna 70 of the tenth embodiment includes a hemispherical dome-shaped dielectric lens 71 and a radiator 72 .
  • the radiator 72 is accommodated at a substantially central position within the dome of the dielectric lens 71 and is provided so that its tip faces the lens 71 at an angle of about 60° with respect to the rotation axis 35 .
  • the elevation angle antenna 70 rotates the radiator 72 in accordance with the rotation of the rotating shaft 35 in the azimuth angle direction, and further swings in the elevation angle direction to detect the elevation angle.
  • the radio waves emitted toward the dielectric lens 71 pass through the lens 71 and are converged. According to the tenth embodiment, the effects (1) to (3) of the first embodiment can be obtained.
  • the eleventh embodiment is a modification of detection processing of target position-related information executed in the systems described in the first to tenth embodiments.
  • the azimuth angle information acquisition unit 16 of the eleventh embodiment calculates the velocity of the target based on the reflected wave detected by the azimuth angle antenna 11 .
  • the elevation angle information acquisition unit 17 also calculates the speed of the target based on the reflected wave detected by the elevation angle antenna 12 . Note that when the relative velocity between the target and the position information deriving system 100 is not zero, a Doppler component is generated in the received signal of the reflected wave from the target, and a phase change appears according to the Doppler frequency. Velocity can be calculated from this Doppler frequency variation.
  • the azimuth angle, distance, and speed of the target are acquired from the received wave received by the azimuth angle antenna 11 by the azimuth angle information acquisition unit 16 .
  • the elevation angle, distance, and velocity of the target are obtained from the reception wave received by the elevation angle antenna 12 by the elevation angle information acquisition unit 17 .
  • the determination unit 18 compares the distance and speed obtained based on the data of the azimuth information acquisition unit 16 and the distance and speed obtained based on the data of the elevation information acquisition unit 17. Targets that are executed and take the same value are determined to be the same target.
  • the processing of S4 is the same as in the first embodiment.
  • the speed of the target calculated based on the reflected wave detected by the azimuth antenna 11 and the reflected wave detected by the elevation antenna 12 are compared with the velocity of the target calculated by , and the targets having the same value are determined to be the same target. That is, in the present embodiment, when determining the same target, not only the “distance” but also the "speed” are taken into account as parameters, and the target that takes the same value both in the distance comparison and the speed comparison. are determined to be the same target. As a result, for example, when a plurality of targets at the same distance are detected, the same target can be accurately determined by adding the condition of "same speed" in addition to the condition of "same distance".
  • FIG. 25 shows an example applied to the antenna device 1 in the first embodiment, but if detection is possible, it can be applied to the elevation antennas 12, 63, 64 and the azimuth antenna 11 in other embodiments. good too.
  • the elevation angle antenna may be composed of two antennas, the first antenna 51 and the third antenna 53 .
  • the elevation angle antenna 12 is assumed to reciprocate within a range of 90 degrees.
  • the angle range can be appropriately changed to a suitable range according to the installation position and orientation of the turntable of the system 100, the size of the space to be monitored, the number of antenna devices that can be arranged, and the like.
  • the elevation angle antenna 12 and the azimuth angle antenna 11 have the same rotation axes 35 and 36 in the azimuth direction. may A separate axis of rotation may be provided for each antenna 11 , 12 .
  • the information processing unit 20 and the techniques described in this disclosure can be performed by a dedicated computer provided by configuring a processor and memory programmed to perform one or more functions embodied by a computer program. , may be implemented. Alternatively, the information processor 20 and the techniques described in this disclosure may be implemented by a dedicated computer provided by configuring a processor with one or more dedicated hardware logic circuits.
  • the information processing unit 20 and techniques described in the present disclosure may be a combination of a processor and memory programmed to perform one or more functions and a processor configured by one or more hardware logic circuits. It may also be implemented by one or more dedicated computers configured in combination.
  • the computer program may also be stored as computer-executable instructions on a computer-readable non-transitional tangible recording medium.

Abstract

A position information deriving system (100) is provided with: an antenna device (1) which includes an azimuth angle antenna (11) and an elevation angle antenna (12), and which emits radio waves onto a detection target and receives reflected waves from the detection target; an azimuth angle information acquiring unit (16) for acquiring a distance to the detection target and an azimuth angle of the detection target on the basis of the reflected waves detected by the azimuth angle antenna; an elevation angle information acquiring unit (17) for acquiring a distance to the detection target and an angle of elevation of the detection target on the basis of the reflected waves detected by the elevation angle antenna; a determining unit (18) which performs a distance comparison between the distance obtained by the azimuth angle information acquiring unit and the distance obtained by the elevation angle information acquiring unit, and which determines that detection targets having identical values are an identical detected object; and a deriving unit (19) which derives position related information related to the position of the identical detected object from the azimuth angle, the angle of elevation, and the distance of the identical detected object.

Description

位置情報導出システムLocation information derivation system 関連出願の相互参照Cross-reference to related applications
 本出願は、2021年8月5日に出願された日本出願番号2021-128838号に基づくもので、ここにその記載内容を援用する。 This application is based on Japanese Application No. 2021-128838 filed on August 5, 2021, and the contents thereof are incorporated herein.
 本開示は、位置情報導出システムに関する。 This disclosure relates to a location information derivation system.
 従来から、所定の監視領域内の飛行物体を検知し、位置情報を得るための種々のレーダシステムが知られている。例えば、特許文献1に記載される航空管制用レーダシステムは、レーダ局から送信される信号に対して、航空機に搭載されたトランスポンダが位置や高度の情報を返すことで、航空機の位置をセンシングする。このシステムでは、飛行中の航空機の距離と方位との2次元のレーダ系座標を測定することができる。 Conventionally, various radar systems are known for detecting flying objects within a predetermined surveillance area and obtaining position information. For example, in the air traffic control radar system described in Patent Document 1, a transponder mounted on an aircraft returns position and altitude information in response to a signal transmitted from a radar station, thereby sensing the position of the aircraft. . The system is capable of measuring two-dimensional radar system coordinates of range and bearing of an aircraft in flight.
特開平9-5432号公報JP-A-9-5432
 しかし、上記のシステムでは、レーダ局からの受信信号に対して応答を返すトランスポンダを持たない鳥やドローンについては検知することができない。空域に存在する物体のうち、こうしたトランスポンダを持たない物体についても、正確な位置情報を得られる技術が望まれる。 However, the above system cannot detect birds and drones that do not have transponders that respond to the signals received from radar stations. There is a demand for a technology that can obtain accurate position information even for objects that do not have such transponders, among those that exist in the airspace.
 本開示は、以下の形態として実現することが可能である。 The present disclosure can be realized as the following forms.
 本開示の一形態によれば、位置情報導出システムが提供される。この位置情報導出システムは、方位角用アンテナおよび仰角用アンテナを有し、検知対象物へ電波を照射し、前記検知対象物からの反射波を受信するアンテナ装置と、前記方位角用アンテナにより検知された反射波に基づいて、前記アンテナ装置から前記検知対象物までの距離と前記検知対象物の方位角とを取得する方位角情報取得部と、前記仰角用アンテナにより検知された反射波に基づいて、前記アンテナ装置から前記検知対象物までの距離と前記検知対象物の仰角とを取得する仰角情報取得部と、前記方位角情報取得部により得られた距離と、前記仰角情報取得部により得られた距離との距離比較を実行し、同一の値をとる前記検知対象物を同一検知物と判定する判定部と、前記同一検知物の方位角、仰角、および距離から、前記同一検知物の位置に関連する位置関連情報を導出する導出部と、を備える。 According to one aspect of the present disclosure, a location information derivation system is provided. This position information deriving system has an azimuth angle antenna and an elevation angle antenna, an antenna device for irradiating a detection target with radio waves and receiving a reflected wave from the detection target, and detection by the azimuth antenna. an azimuth angle information acquisition unit for acquiring a distance from the antenna device to the detection object and an azimuth angle of the detection object based on the reflected wave detected by the antenna; an elevation angle information obtaining unit for obtaining a distance from the antenna device to the detection object and an elevation angle of the detection object; a distance obtained by the azimuth information obtaining unit; a determination unit for determining that the detection target having the same value is the same detection object by performing a distance comparison with the obtained distance, and determining the same detection object from the azimuth angle, elevation angle, and distance of the same detection object. a derivation unit for deriving location-related information associated with the location.
 この形態の位置情報導出システムは、方位角用アンテナおよび仰角用アンテナにより検知された反射波に基づいて取得された距離を比較することで、距離が同一である検知対象物を同一検知物であると判定する。そして、同一検知物の方位角、仰角、および距離から、同一検知物の位置関連情報を導出する。これにより、空域に存在する物体のうち、トランスポンダを持たない物体についても、正確な位置情報を得ることができる。 The position information derivation system of this form compares the distances obtained based on the reflected waves detected by the azimuth antenna and the elevation antenna, and detects objects having the same distance as the same object. I judge. Then, position-related information of the same detected object is derived from the azimuth angle, elevation angle, and distance of the same detected object. As a result, accurate position information can be obtained even for objects that do not have transponders, among objects that exist in the airspace.
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、本開示の第1実施形態における位置情報導出システムの機能的構成を示す概略ブロック図であり、 図2は、第1実施形態によるアンテナ装置の外観を模式的に示す斜視図であり、 図3は、第1実施形態によるアンテナ装置を模式的に示す平面図であり、 図4は、第1実施形態によるアンテナ装置を模式的に示す正面図であり、 図5は、第1実施形態によるアンテナ装置を模式的に示す側面図であり、 図6は、情報処理部が実行する、位置関連情報の検出処理の処理手順を示すフローチャートであり、 図7は、第2実施形態によるアンテナ装置の外観を模式的に示す斜視図であり、 図8は、第2実施形態によるアンテナ装置を模式的に示す平面図であり、 図9は、第2実施形態によるアンテナ装置を模式的に示す正面図であり、 図10は、第2実施形態によるアンテナ装置を模式的に示す側面図であり、 図11は、第3実施形態によるアンテナ装置の外観を模式的に示す斜視図であり、 図12は、第4実施形態によるアンテナ装置の外観を模式的に示す斜視図であり、 図13は、第4実施形態によるアンテナ装置を模式的に示す平面図であり、 図14は、第4実施形態によるアンテナ装置を模式的に示す側面図であり、 図15は、第4実施形態によるアンテナ装置を模式的に示す正面図であって図10とは兼用アンテナの姿勢が異なる態様を示す図であり、 図16は、第5実施形態によるアンテナ装置の外観を模式的に示す斜視図であり、 図17は、放射器可動制御板を模式的に示す平面図であり、 図18は、放射器の位置における垂直指向性の変化をグラフに示す図であり、 図19は、第6実施形態によるアンテナ装置の外観を模式的に示す斜視図であり、 図20は、第7実施形態によるアンテナ装置の外観を模式的に示す斜視図であり、 図21は、第8実施形態によるアンテナ装置の外観を模式的に示す斜視図であり、 図22は、第9実施形態によるアンテナ装置の外観を模式的に示す斜視図であり、 図23は、第10実施形態によるアンテナ装置の外観を模式的に示す斜視図であり、 図24は、第11実施形態の位置情報導出システムにおいて、情報処理部が実行する、位置関連情報の検出処理の処理手順を示すフローチャートであり、 図25は、他の実施形態によるアンテナ装置の外観を模式的に示す斜視図であり、 図26は、他の実施形態によるアンテナ装置の外観を模式的に示す斜視図である。
The above and other objects, features and advantages of the present disclosure will become more apparent from the following detailed description with reference to the accompanying drawings. The drawing is
FIG. 1 is a schematic block diagram showing the functional configuration of a position information derivation system according to the first embodiment of the present disclosure; FIG. 2 is a perspective view schematically showing the appearance of the antenna device according to the first embodiment, FIG. 3 is a plan view schematically showing the antenna device according to the first embodiment, FIG. 4 is a front view schematically showing the antenna device according to the first embodiment, FIG. 5 is a side view schematically showing the antenna device according to the first embodiment; FIG. 6 is a flowchart showing a processing procedure of position-related information detection processing executed by the information processing unit; FIG. 7 is a perspective view schematically showing the appearance of the antenna device according to the second embodiment; FIG. 8 is a plan view schematically showing the antenna device according to the second embodiment, FIG. 9 is a front view schematically showing the antenna device according to the second embodiment, FIG. 10 is a side view schematically showing the antenna device according to the second embodiment; FIG. 11 is a perspective view schematically showing the appearance of the antenna device according to the third embodiment, FIG. 12 is a perspective view schematically showing the appearance of the antenna device according to the fourth embodiment, FIG. 13 is a plan view schematically showing the antenna device according to the fourth embodiment, FIG. 14 is a side view schematically showing the antenna device according to the fourth embodiment, FIG. 15 is a front view schematically showing the antenna device according to the fourth embodiment, showing a mode in which the posture of the dual-purpose antenna is different from that in FIG. FIG. 16 is a perspective view schematically showing the appearance of the antenna device according to the fifth embodiment; FIG. 17 is a plan view schematically showing the radiator movable control plate, FIG. 18 is a graph showing changes in vertical directivity with radiator position; FIG. 19 is a perspective view schematically showing the appearance of the antenna device according to the sixth embodiment, FIG. 20 is a perspective view schematically showing the appearance of the antenna device according to the seventh embodiment; FIG. 21 is a perspective view schematically showing the appearance of the antenna device according to the eighth embodiment; FIG. 22 is a perspective view schematically showing the appearance of the antenna device according to the ninth embodiment, FIG. 23 is a perspective view schematically showing the appearance of the antenna device according to the tenth embodiment; FIG. 24 is a flowchart showing a processing procedure for detection processing of position-related information executed by the information processing unit in the position information derivation system of the eleventh embodiment; FIG. 25 is a perspective view schematically showing the appearance of an antenna device according to another embodiment; FIG. 26 is a perspective view schematically showing the appearance of an antenna device according to another embodiment.
 以下、本開示の複数の実施形態について図面に基づいて説明する。
A.第1実施形態:
A1.位置情報導出システムの構成:
 第1実施形態の構成について、図1~図6を参照しつつ説明する。第1実施形態の位置情報導出システム100は、例えば、上空の飛行物体を検知するためのレーダシステムである。この位置情報導出システム100は、特に、トランスポンダを持たない鳥やドローンなどの検知対象物(以下、単に「物標」ともいう)についての、位置に関連する位置関連情報を正確に得るためのシステムである。本実施形態では、「位置関連情報」として、物標の「緯度」「経度」「高度」を導出する。
A plurality of embodiments of the present disclosure will be described below with reference to the drawings.
A. First embodiment:
A1. Configuration of location information derivation system:
The configuration of the first embodiment will be described with reference to FIGS. 1 to 6. FIG. The position information derivation system 100 of the first embodiment is, for example, a radar system for detecting flying objects in the sky. This position information deriving system 100 is a system for accurately obtaining position-related position-related information particularly for detection objects (hereinafter simply referred to as "targets") such as birds and drones that do not have transponders. is. In this embodiment, the "latitude", "longitude" and "altitude" of the target are derived as the "position-related information".
 図1に示すように、位置情報導出システム100は、アンテナ装置1と、情報処理部20と、を備えている。なお、図1では、本実施形態の特徴を説明するために必要な構成要素のみを機能ブロックで表しており、一般的な構成要素についての記載を一部省略している。換言すれば、図1に図示される各構成要素は、機能概念的なものであり、必ずしも物理的に図示のように構成されていることを要しない。例えば、各機能ブロックの分散や統合の具体的形態は図示のものに限られず、その全部または一部を、任意の単位で機能的または物理的に分散、統合して構成することが可能である。 As shown in FIG. 1, the position information derivation system 100 includes an antenna device 1 and an information processing section 20. In addition, in FIG. 1, only the components necessary for describing the features of the present embodiment are represented by functional blocks, and the description of general components is partially omitted. In other words, each component illustrated in FIG. 1 is functionally conceptual and does not necessarily need to be physically configured as illustrated. For example, the specific forms of distribution and integration of each functional block are not limited to those illustrated, and all or part of them can be functionally or physically distributed and integrated in arbitrary units. .
 アンテナ装置1は、物標へ電波を照射するとともに、物標からの反射波を受信する装置である。アンテナ装置1は、方位角用アンテナ11と、仰角用アンテナ12と、方位角用回転機構部13と、仰角用回転機構部14と、信号生成部15と、を有している。各アンテナ11,12および各回転機構部13,14の詳細構成については、後述する。信号生成部15は、各アンテナ11,12により得られた受信波を受信信号へ変換して信号を生成し、情報処理部20へ出力する。 The antenna device 1 is a device that radiates radio waves to a target and receives reflected waves from the target. The antenna device 1 includes an azimuth angle antenna 11 , an elevation angle antenna 12 , an azimuth angle rotation mechanism section 13 , an elevation angle rotation mechanism section 14 , and a signal generation section 15 . Detailed configurations of the antennas 11 and 12 and the rotation mechanisms 13 and 14 will be described later. The signal generator 15 converts the received waves obtained by the antennas 11 and 12 into received signals to generate signals and outputs the signals to the information processor 20 .
 情報処理部20は、方位角情報取得部16と、仰角情報取得部17と、判定部18と、導出部19と、を備えている。情報処理部20は、例えば、CPU、ROM,RAM、その他の入出力ポート等を含むマイクロコンピュータであり、システム100全体を制御する。かかるマイクロコンピュータのCPUが、ROMに記憶されたプログラムを読み出して実行することによって、方位角情報取得部16、仰角情報取得部17、判定部18、および導出部19として機能する。 The information processing section 20 includes an azimuth angle information acquisition section 16 , an elevation angle information acquisition section 17 , a determination section 18 , and a derivation section 19 . The information processing unit 20 is, for example, a microcomputer including a CPU, ROM, RAM, other input/output ports, etc., and controls the entire system 100 . The CPU of such a microcomputer functions as an azimuth angle information acquisition section 16, an elevation angle information acquisition section 17, a determination section 18, and a derivation section 19 by reading and executing programs stored in the ROM.
 方位角情報取得部16は、方位角用アンテナ11により検知された反射波に基づいて、アンテナ装置1から物標までの距離と物標の方位角とを取得する。仰角情報取得部17は、仰角用アンテナ12により検知された反射波に基づいて、アンテナ装置1から物標までの距離と物標の仰角とを取得する。判定部18は、方位角情報取得部16により得られた距離と、仰角情報取得部17により得られた距離との距離比較を実行し、同一の値をとる検知対象物を同一検知物と判定する。導出部19は、同一検知物の方位角、仰角、および距離から、同一検知物の位置に関連する位置関連情報を導出する。本実施形態では、位置関連情報として、物標の「経度、緯度、高度」を導出する。 The azimuth angle information acquisition unit 16 acquires the distance from the antenna device 1 to the target and the azimuth angle of the target based on the reflected wave detected by the azimuth angle antenna 11 . The elevation angle information acquisition unit 17 acquires the distance from the antenna device 1 to the target and the elevation angle of the target based on the reflected wave detected by the elevation angle antenna 12 . The determination unit 18 compares the distance obtained by the azimuth angle information acquisition unit 16 and the distance obtained by the elevation angle information acquisition unit 17, and determines detection objects having the same value as the same detection object. do. The deriving unit 19 derives position-related information related to the position of the same detected object from the azimuth angle, elevation angle, and distance of the same detected object. In this embodiment, the "longitude, latitude, and altitude" of the target are derived as the position-related information.
 次に、アンテナ装置1の具体的な機械的構成について、図2~図5を参照しつつ説明する。なお、本実施形態における「仰角」(図2に示す矢印A)とは、アンテナ装置1の設置面に対する垂直方向の向きをいい、「方位角」(図2に示す矢印B)とは、アンテナ装置1の設置面に対する水平方向の向きをいう。 Next, a specific mechanical configuration of the antenna device 1 will be described with reference to FIGS. 2 to 5. FIG. In this embodiment, the "elevation angle" (arrow A shown in FIG. 2) refers to the vertical direction with respect to the installation surface of the antenna device 1, and the "azimuth angle" (arrow B shown in FIG. 2) refers to the antenna It refers to the horizontal orientation with respect to the installation surface of the device 1 .
 図2~図5の各図に示すように、方位角用アンテナ11は、放射器31(図4,5参照)と、反射器32と、を有して構成されている。同様に、仰角用アンテナ12は、放射器33(図3,4,5参照)と、反射器34と、を有して構成されている。反射器32,34は、凹状の放物曲面を有し、放射方向に指向性を付与する。電波受信時には、反射器32,34は、電波を集めて放射器に向けて反射し、放射器31,33は、集められた電波を図示しないコンバータに送る。なお、図2、および以下の図7,図11においては、放射器の図示を省略している。  As shown in FIGS. 2 to 5, the azimuth angle antenna 11 includes a radiator 31 (see FIGS. 4 and 5) and a reflector 32. As shown in FIGS. Similarly, the elevation angle antenna 12 is configured with a radiator 33 (see FIGS. 3, 4 and 5) and a reflector . The reflectors 32, 34 have concave parabolic surfaces to impart directivity in the radial direction. When receiving radio waves, reflectors 32 and 34 collect radio waves and reflect them toward radiators, and radiators 31 and 33 send the collected radio waves to a converter (not shown). It should be noted that illustration of the radiator is omitted in FIG. 2 and in FIGS. 7 and 11 below.
 方位角用アンテナ11および仰角用アンテナ12は、方位角方向の回転中心となる同一の回転軸35に、図示しない支持アームやアジャスター、および固定具等を介して取り付けられている。方位角用アンテナ11は、反射器32の放物曲面をおおよそ水平方向に向けた状態で、回転軸に固定されている。仰角用アンテナ12は、回転軸35において、方位角用アンテナ11よりも垂直方向の上方に設けられている。仰角用アンテナ12は、回転軸35の上端部に設けられた仰角用回転機構部14に接続されている。 The azimuth angle antenna 11 and the elevation angle antenna 12 are attached to the same rotation shaft 35, which is the center of rotation in the azimuth direction, via support arms, adjusters, fixtures, and the like (not shown). The azimuth angle antenna 11 is fixed to the rotating shaft with the parabolic curved surface of the reflector 32 directed approximately horizontally. The elevation antenna 12 is provided vertically above the azimuth antenna 11 on the rotation axis 35 . The elevation angle antenna 12 is connected to an elevation angle rotation mechanism 14 provided at the upper end of the rotary shaft 35 .
 仰角用回転機構部14は、仰角用アンテナ12の仰角を、モータ駆動により制御するユニットである。仰角用回転機構部14の駆動により、仰角用アンテナ12は、反射面がおおよそ水平方向に向いた水平状態と、反射面がおおよそ鉛直方向上向きとなった鉛直状態と、の間で姿勢変化が可能となっている。換言すると、仰角用アンテナ12は、仰角が0度から90度の範囲で首振り動作が可能である。 The elevation angle rotation mechanism 14 is a unit that controls the elevation angle of the elevation angle antenna 12 by driving a motor. By driving the elevation angle rotation mechanism 14, the elevation angle antenna 12 can change its posture between a horizontal state in which the reflecting surface faces approximately horizontally and a vertical state in which the reflecting surface faces approximately vertically upward. It has become. In other words, the elevation angle antenna 12 is capable of swinging within an elevation angle range of 0 to 90 degrees.
 方位角用回転機構部13は、回転軸35の方位角方向への回転(各アンテナ11,12の方位角)を、モータ駆動により制御するユニットである。方位角用回転機構部13は、例えば360度回転可能な図示しない回転台を有する。モータ駆動により、回転台および回転軸35が方位角方向に回転する。 The azimuth rotation mechanism 13 is a unit that controls the rotation of the rotation shaft 35 in the azimuth direction (the azimuth angles of the antennas 11 and 12) by motor drive. The azimuth rotation mechanism unit 13 has a turntable (not shown) that can rotate 360 degrees, for example. The motor drive rotates the turntable and rotating shaft 35 in the azimuth direction.
 各回転機構部13,14は、同軸ケーブル等からなる図示しない制御ケーブルを介して情報処理部20(図1参照)に接続されている。情報処理部20は、各アンテナ11,12への電流の供給や、各回転機構部13,14への制御信号の送信なども行う。 The rotation mechanism units 13 and 14 are connected to the information processing unit 20 (see FIG. 1) via control cables (not shown) made up of coaxial cables or the like. The information processing section 20 also supplies current to the antennas 11 and 12 and transmits control signals to the rotating mechanism sections 13 and 14 .
 方位角用アンテナ11および仰角用アンテナ12は、方位角用回転機構部13の駆動により、反射器32,34の方位角方向の送受信角度を調整することが可能とされている。方位角方向に360°回転することで、機械的に電磁波を走査して方位角方向の全周囲を検知可能である。 The azimuth angle antenna 11 and elevation angle antenna 12 are capable of adjusting the transmission/reception angles of the reflectors 32 and 34 in the azimuth direction by driving the azimuth angle rotation mechanism 13 . By rotating 360 degrees in the azimuth direction, it is possible to mechanically scan electromagnetic waves and detect the entire circumference in the azimuth direction.
 また、仰角用アンテナ12は、上記したように仰角用回転機構部14により仰角方向に0°~90°の範囲で回転可能であり、かつ、方位角用回転機構部13により方位角方向に360°回転可能である。これにより、仰角用アンテナ12は、機械的に電磁波を走査して全天を検知可能である。 Further, the elevation angle antenna 12 is rotatable in the elevation direction within the range of 0° to 90° by the elevation angle rotation mechanism 14 as described above, and is rotated 360° in the azimuth direction by the azimuth angle rotation mechanism 13 as described above. ° Rotatable. As a result, the elevation angle antenna 12 can detect the whole sky by mechanically scanning electromagnetic waves.
 方位角用アンテナ11および仰角用アンテナ12は、指向性アンテナであるパラボラアンテナで構成されている。例として、方位角用アンテナ11は、一度に検知可能な方位角Ampは例えば30°~60°であり、一度に検知可能な仰角Eleは例えば90°である。方位角用アンテナ11および仰角用アンテナ12は、絶対利得が20dBi以上の高利得アンテナであり、パルス波を照射する。パルス波としては、例えば、パルス幅1μS、繰り返し周波数360Hz等である。約1秒間で各アンテナ11,12が方位角方向に1周し、1°ごとに360回パルス波を照射する。方位角用アンテナ11および仰角用アンテナ12は、図示しない発振器からの送信信号を送信波へ変換し、物標へ電波を照射し、物標からの反射波を受信波として受信する。 The azimuth angle antenna 11 and the elevation angle antenna 12 are composed of parabolic antennas that are directional antennas. For example, the azimuth angle antenna 11 can detect an azimuth angle Amp of 30° to 60° at one time, and an elevation angle Ele of 90°, for example. The azimuth angle antenna 11 and the elevation angle antenna 12 are high-gain antennas with an absolute gain of 20 dBi or more, and emit pulse waves. The pulse wave has, for example, a pulse width of 1 μS and a repetition frequency of 360 Hz. Each of the antennas 11 and 12 rotates once in the azimuth direction in about one second, and emits pulse waves 360 times every 1°. The azimuth angle antenna 11 and elevation angle antenna 12 convert a transmission signal from an oscillator (not shown) into a transmission wave, irradiate a target with radio waves, and receive a reflected wave from the target as a reception wave.
 なお、方位角用アンテナ11は、システム100から物標までの距離と方位角とを得るための受信波を検知する。仰角用アンテナ12は、システム100から物標までの距離と仰角とを得るための受信波を検知する。すなわち、本システム100では、方位角と、仰角とを、別個のアンテナ11,12により個別に検知する。 It should be noted that the azimuth angle antenna 11 detects received waves for obtaining the distance and azimuth angle from the system 100 to the target. The elevation angle antenna 12 detects the received waves to obtain the distance and elevation angle from the system 100 to the target. That is, in the system 100, the azimuth angle and the elevation angle are individually detected by separate antennas 11 and 12. FIG.
A2.物標の位置関連情報の検出について:
 次に、上記位置情報導出システム100の情報処理部20が実行する、物標の位置関連情報の検出処理の処理手順について、図6を参照して説明する。図6に示すように、まず、ステップ1(以下、ステップを「S」と省略する)において、方位角情報取得部16により、方位角用アンテナ11が受信した受信波から、物標の方位角と距離が取得される。
A2. Regarding the detection of target position-related information:
Next, a processing procedure for detection processing of target position-related information executed by the information processing unit 20 of the position information deriving system 100 will be described with reference to FIG. As shown in FIG. 6 , first, in step 1 (hereinafter, step is abbreviated as “S”), the azimuth angle information acquisition unit 16 obtains the azimuth angle of the target from the received wave received by the azimuth angle antenna 11 . and the distance is obtained.
 次いで、S2において、仰角情報取得部17により、仰角用アンテナ12が受信した受信波から、物標の仰角と距離とが取得される。なお、図6のフローチャートでは、便宜状、方位角取得ステップS1と仰角取得ステップS2とを分けて記載した。しかし、実際には、同一の回転軸35まわりの方位角方向の回転と、仰角用回転機構部14による仰角用アンテナ12の首振り動作が同期して行われるため、回転軸35が方位角方向に1回転する間に、方位角検知と仰角検知との両方が略同時に行われる。 Next, in S<b>2 , the elevation angle and distance of the target are obtained from the received waves received by the elevation angle antenna 12 by the elevation angle information acquisition unit 17 . In addition, in the flowchart of FIG. 6, for the sake of convenience, the azimuth angle acquisition step S1 and the elevation angle acquisition step S2 are described separately. However, in practice, the rotation in the azimuth direction about the same rotation axis 35 and the swinging operation of the elevation angle antenna 12 by the elevation angle rotation mechanism 14 are performed synchronously. Both azimuth angle detection and elevation angle detection are performed substantially simultaneously during one full rotation.
 仰角用アンテナ12が一度に検知できる方位角方向の角度を検知角度R°とし、全方位角360°を検知角度R°で除算した値を回数値Tとする。一例として本実施形態では、検知角度R°は90°であり、回数値Tは4である。仰角用アンテナ12は、方位角用アンテナ11が方位角方向に360°検知する間に、回数値T以上の回数で仰角方向に電磁波を走査する。一例として、仰角用アンテナ12の仰角が、0°(水平状態)から90°(鉛直状態)へ向かう上方への首振り動作による仰角検知が1回目の電磁波走査であり、次に90°から0°へ戻る下方への首振り動作による仰角検知が2回目の電磁波走査である。少なくとも4回以上、首振り動作による仰角検知を行う。 The angle in the azimuth direction that can be detected by the elevation angle antenna 12 at one time is defined as the detection angle R°, and the value obtained by dividing the total azimuth angle of 360° by the detection angle R° is defined as the number of times T. As an example, in this embodiment, the detection angle R° is 90°, and the number of times T is four. The elevation angle antenna 12 scans electromagnetic waves in the elevation angle direction a number of times equal to or greater than the number of times T while the azimuth angle antenna 11 detects 360 degrees in the azimuth angle direction. As an example, the elevation angle of the elevation angle antenna 12 is first detected by swinging upward from 0° (horizontal state) to 90° (vertical state), and then from 90° to 0°. Detection of the elevation angle by swinging downward back to ° is the second electromagnetic wave scanning. Elevation angle is detected by swinging motion at least four times.
 なお、一例として、本実施形態では、回転軸35が1回転する間に、この仰角方向の首振り動作が余裕をもって3往復行われる。これにより、回転軸35が1回転する間に、すなわち、方位角情報取得部16が方位角方向に360°を検知する間に、仰角情報取得部17により全天が検知される。 It should be noted that, as an example, in the present embodiment, the swinging motion in the elevation angle direction is performed three reciprocations with a margin during one rotation of the rotating shaft 35 . As a result, the elevation angle information acquisition unit 17 detects the whole sky while the rotary shaft 35 rotates once, that is, while the azimuth angle information acquisition unit 16 detects 360° in the azimuth direction.
 S2の後は、S3において、判定部18により、方位角情報取得部16のデータを基に得られた距離と、仰角情報取得部17のデータを基に得られた距離とが比較され、同一の値をとる物標が同一物標と判定される。つまり、このS3において、2つ以上の複数の物標情報から、同一距離の物標が探し出される。次いで、S4において、導出部19により、同一物標の方位角、仰角、および距離から、同一物標の経度、緯度、高度が導出される。以上で、処理を終了する。 After S2, in S3, the determination unit 18 compares the distance obtained based on the data of the azimuth angle information acquisition unit 16 and the distance obtained based on the data of the elevation information acquisition unit 17, and determines that they are the same. A target having a value of is determined to be the same target. That is, in this S3, targets at the same distance are searched from two or more pieces of target information. Next, in S4, the derivation unit 19 derives the longitude, latitude, and altitude of the same target from the azimuth, elevation, and distance of the same target. After that, the processing ends.
[効果]
 (1)以上説明した第1実施形態の位置情報導出システム100によれば、レーダ局からの受信信号に対して応答を返すトランスポンダを持たない鳥やドローンについての位置関連情報を導出ことができる。すなわち、所定の空域に存在する物体のうち、上記のようにトランスポンダを持たない物標についても、正確な緯度、経度、高度を把握することができる。
[effect]
(1) According to the position information derivation system 100 of the first embodiment described above, it is possible to derive position-related information about birds and drones that do not have transponders that respond to received signals from radar stations. That is, it is possible to obtain accurate latitude, longitude, and altitude even for a target that does not have a transponder as described above among objects existing in a predetermined airspace.
 (2)また、方位角用アンテナ11と仰角用アンテナ12とが、方位角方向の回転中心軸である同一の回転軸35に設けられている。このため、アンテナ装置1をコンパクトかつ簡易に構成することができる。ひいては、システム100全体の構成をコンパクトかつ簡易にできる。 (2) In addition, the azimuth angle antenna 11 and the elevation angle antenna 12 are provided on the same rotation axis 35 that is the rotation center axis in the azimuth angle direction. Therefore, the antenna device 1 can be configured compactly and simply. As a result, the configuration of the entire system 100 can be made compact and simple.
 (3)上記第1実施形態では、仰角用アンテナ12は、方位角用アンテナ11が方位角方向に360度検知する間に、360°を検知角度R°で除算した回数値T以上の回数で仰角方向に電磁波を走査する。このため、回転軸35が1回転する間に、すなわち、方位角情報取得部16が方位角方向に360°を検知する間に、仰角情報取得部17においても全天を検知することができる。したがって、方位角検知と仰角検知とを、回転軸35が1回転する間に同時に行うことができ、検知時間を短縮できる。また、放射する電磁波としてパルス波を用いているため、さらに、短時間で検知が可能である。 (3) In the above-described first embodiment, the elevation angle antenna 12 detects the 360 degrees in the azimuth direction by the number of times equal to or greater than the number of times T obtained by dividing 360 degrees by the detection angle R°. Electromagnetic waves are scanned in the elevation direction. Therefore, while the rotating shaft 35 rotates once, that is, while the azimuth angle information acquisition unit 16 detects 360° in the azimuth angle direction, the elevation angle information acquisition unit 17 can also detect the whole sky. Therefore, azimuth angle detection and elevation angle detection can be performed simultaneously during one rotation of the rotating shaft 35, and the detection time can be shortened. Moreover, since a pulse wave is used as the radiated electromagnetic wave, the detection can be performed in a short time.
 (4)上記第1実施形態では、方位角用アンテナ11および仰角用アンテナ12としてパラボラアンテナを採用している。パラボラアンテナは指向性アンテナの中でも利得が高く、より正確に物標を検知することができる。また、パラボラアンテナを機械的に動かして電磁波を走査する簡易な構成であり、電子的に走査する場合と比べて装置構成を簡単にでき、また、検知時間を短縮できる。 (4) In the first embodiment, parabolic antennas are used as the azimuth angle antenna 11 and the elevation angle antenna 12 . A parabolic antenna has a high gain among directional antennas and can detect targets more accurately. In addition, it is a simple configuration in which the parabolic antenna is mechanically moved to scan the electromagnetic wave, so that the device configuration can be simplified and the detection time can be shortened as compared with the case of electronic scanning.
B.第2実施形態:
 次に、本開示の第2実施形態の位置情報導出システムについて、図7~図10を参照して説明する。なお、第2実施形態を含む以下説明する各実施形態において、第1実施形態と実質的に同様の構成については同じ符号を付し、説明を省略する。また、以下、第2実施形態から第10実施形態までは、アンテナ装置1の変形例であり、アンテナ装置の構成が第1実施形態とは異なる。
B. Second embodiment:
Next, a location information derivation system according to a second embodiment of the present disclosure will be described with reference to FIGS. 7 to 10. FIG. In addition, in each embodiment described below including the second embodiment, the same reference numerals are given to substantially the same configurations as in the first embodiment, and the description thereof is omitted. Further, the second to tenth embodiments below are modified examples of the antenna device 1, and the configuration of the antenna device is different from that of the first embodiment.
 図7に示すように、第2実施形態のアンテナ装置2は、複数(本実施形態では4つ)の仰角用アンテナを有している。アンテナ装置2は、仰角用アンテナとして、第1アンテナ41、第2アンテナ42、第3アンテナ43、および第4アンテナ44の4つを有している。第1アンテナ41、第2アンテナ42、第3アンテナ43、および第4アンテナ44は、この順で放物曲面を外側に向けた状態で周方向に、かつ、回転軸35の略同一高さ位置に設けられている。第1~第4アンテナ41,42,43,44は、第1実施形態の方位角用アンテナ11と同様の構成であり、放射器33および反射器34をそれぞれ有している。 As shown in FIG. 7, the antenna device 2 of the second embodiment has a plurality of (four in this embodiment) elevation angle antennas. The antenna device 2 has four elevation angle antennas, ie, a first antenna 41 , a second antenna 42 , a third antenna 43 and a fourth antenna 44 . The first antenna 41, the second antenna 42, the third antenna 43, and the fourth antenna 44 are arranged in this order in the circumferential direction with the parabolic surface facing outward, and at substantially the same height position of the rotation shaft 35. is provided in The first to fourth antennas 41, 42, 43, 44 have the same configuration as the azimuth angle antenna 11 of the first embodiment, and have radiators 33 and reflectors 34, respectively.
 なお、物標の方位角や距離の取得、および、位置関連情報の導出については、上記第1実施形態と同様である。仰角と距離を検知する際における仰角用アンテナの首振り動作は、各アンテナ41,42,43,44の仰角が同じになるように動作させてもよいし、隣り合うアンテナの一方のアンテナの仰角が0°~90°となるように動作するときに、他方のアンテナの仰角が90°~0°となるように交互に動作させてもよい。また、対面する二つのアンテナ(例えば第1アンテナ41と第3アンテナ43、第2アンテナ42と第4アンテナ44)を同期させるなど、種々の形態で実施できる。 Acquisition of the azimuth angle and distance of the target and derivation of position-related information are the same as in the first embodiment. When the elevation angle and the distance are detected, the elevation angle antennas may be swung so that the elevation angles of the antennas 41, 42, 43, and 44 are the same, or the elevation angle of one of the adjacent antennas may be the same. may be alternately operated so that the elevation angle of the other antenna is between 90° and 0° when the other antenna operates so that the angle of elevation of the other antenna is between 0° and 90°. In addition, it can be implemented in various forms such as synchronizing two antennas facing each other (for example, the first antenna 41 and the third antenna 43, the second antenna 42 and the fourth antenna 44).
 第2実施形態によれば、上記第1実施形態と同様の効果を奏することができる。さらに、仰角用アンテナを複数設けることで、一度に検知できる方位角方向の角度を大きく確保できるため、回転軸35が1回転する間における各アンテナ41,42,43,44の首振り動作回数を少なくできる。 According to the second embodiment, the same effects as those of the first embodiment can be obtained. Furthermore, by providing a plurality of elevation angle antennas, a large azimuth direction angle that can be detected at one time can be ensured. can be less.
C.第3実施形態:
 次に、本開示の第3実施形態の位置情報導出システムについて、図11を参照して説明する。図11に示すように、第3実施形態のアンテナ装置3は、複数(本実施形態では4つ)の仰角用アンテナを有している。アンテナ装置3は、仰角用アンテナとして、第1アンテナ51、第2アンテナ52、第3アンテナ53、および第4アンテナ54の4つを有している。
C. Third embodiment:
Next, a location information deriving system according to the third embodiment of the present disclosure will be described with reference to FIG. As shown in FIG. 11, the antenna device 3 of the third embodiment has a plurality (four in this embodiment) of elevation angle antennas. The antenna device 3 has four elevation angle antennas, ie, a first antenna 51, a second antenna 52, a third antenna 53, and a fourth antenna .
 第1アンテナ51、第2アンテナ52、第3アンテナ53、および第4アンテナ54は、この順で反射器34の放物曲面を外側に向けた状態で、仰角方向に接続されて、全体として略矩形状をなす一つの枠状に組み合わせて構成されている。4つのアンテナ51,52,53,54が一体化されたアンテナ体50は、水平方向に延びて設けられる第2回転軸37を中心に、仰角方向に360°回転可能である。第2回転軸37は、鉛直方向に延びて形成される第1回転軸36と直交した状態で第1回転軸36に連結されており、第1回転軸36とは別個に仰角方向へ回転可能である。 The first antenna 51, the second antenna 52, the third antenna 53, and the fourth antenna 54 are connected in this order in the elevation direction with the parabolic curved surface of the reflector 34 facing outward. It is configured by combining them into one rectangular frame. The antenna body 50, in which the four antennas 51, 52, 53, and 54 are integrated, can be rotated by 360° in the elevation direction around the second rotating shaft 37 provided extending in the horizontal direction. The second rotating shaft 37 is connected to the first rotating shaft 36 in a state orthogonal to the first rotating shaft 36 extending in the vertical direction, and is rotatable in the elevation direction independently of the first rotating shaft 36. is.
 このアンテナ装置3では、仰角と距離を検知する際に、第1回転軸36の方位角方向への回転に伴い、第2回転軸37の仰角方向への回転によって、全天の仰角が検知される。本実施形態においても二つの回転軸36,37を同期させることで、第1回転軸36が方位角方向に1回転することで、方位角および仰角を検知できる。第3実施形態によれば、上記第1実施形態と同様の効果を奏することができる。 In this antenna device 3, when detecting the elevation angle and the distance, the elevation angle of the whole sky is detected by the rotation of the second rotation shaft 37 in the elevation direction along with the rotation of the first rotation shaft 36 in the azimuth direction. be. In this embodiment as well, by synchronizing the two rotating shafts 36 and 37, the azimuth angle and the elevation angle can be detected by rotating the first rotating shaft 36 once in the azimuth direction. According to the third embodiment, the same effects as those of the first embodiment can be obtained.
D.第4実施形態:
 次に、本開示の第4実施形態の位置情報導出システムについて、図12~図15を参照して説明する。図12~図15の各図に示すように、第4実施形態の位置情報導出システムが有するアンテナ装置4は、方位角用アンテナと仰角用アンテナとの機能を兼用する単一の兼用アンテナ55を有している。第4実施形態では、第1実施形態におけるアンテナ装置1の方位角用アンテナ11を有さず、第1実施形態と略同様の仰角用アンテナ12が方位角を検知する方位角用アンテナとしても機能するものである。その他の構成については、第1実施形態と同様である。
D. Fourth embodiment:
Next, a location information deriving system according to a fourth embodiment of the present disclosure will be described with reference to FIGS. 12 to 15. FIG. As shown in FIGS. 12 to 15, the antenna device 4 of the position information deriving system of the fourth embodiment includes a single dual-purpose antenna 55 that functions both as an azimuth angle antenna and as an elevation angle antenna. have. In the fourth embodiment, the azimuth angle antenna 11 of the antenna device 1 in the first embodiment is not provided, and the elevation angle antenna 12 substantially similar to that in the first embodiment also functions as an azimuth angle antenna for detecting the azimuth angle. It is something to do. Other configurations are the same as those of the first embodiment.
 アンテナ装置4は、一つの兼用アンテナ55と、方位角用回転機構部13と、仰角用回転機構部14と、を備えている。このアンテナ装置4では、まず図13、図14に示すように、兼用アンテナ55の反射面を略水平方向に向けた状態で、回転軸35を1回転させる。これにより方位角が検知される。次に、図15に示すように、兼用アンテナ55の反射面を略鉛直方向上に向けた状態から、仰角方向に首振り動作をさせながら回転軸35を1回転させる。これにより、仰角が検知される。 The antenna device 4 includes one dual-purpose antenna 55, an azimuth angle rotation mechanism section 13, and an elevation angle rotation mechanism section 14. In this antenna device 4, first, as shown in FIGS. 13 and 14, the rotating shaft 35 is rotated once while the reflecting surface of the dual-purpose antenna 55 is oriented substantially horizontally. The azimuth angle is thereby detected. Next, as shown in FIG. 15, from a state in which the reflecting surface of the dual-purpose antenna 55 is oriented substantially vertically, the rotating shaft 35 is rotated once while being swung in the elevation direction. This allows the elevation angle to be detected.
 すなわち、本実施形態では、指向性が異なるように仰角方向に姿勢変化が可能な一つの兼用アンテナ55を有している。そして、この兼用アンテナ55を、回転軸35まわりに方位角方向に回転する際に仰角方向の姿勢を変化させて電磁波を走査することにより仰角および距離を検知する。 That is, in this embodiment, there is one dual-purpose antenna 55 whose posture can be changed in the elevation direction so as to have different directivities. When rotating the dual-purpose antenna 55 in the azimuth direction around the rotation shaft 35, the attitude in the elevation direction is changed and electromagnetic waves are scanned to detect the elevation angle and the distance.
 第4実施形態によれば、上記第1実施形態と同様の効果を奏することができる。さらに、方位角用アンテナと仰角用アンテナとを別個に設ける必要がなく、兼用アンテナ55が一つで済むため、装置構成を簡単にできる。 According to the fourth embodiment, effects similar to those of the first embodiment can be obtained. Furthermore, since there is no need to separately provide an azimuth angle antenna and an elevation angle antenna, and only one dual-purpose antenna 55 is required, the configuration of the device can be simplified.
E.第5実施形態:
 次に、本開示の第5実施形態の位置情報導出システムについて、図16~図18を参照して説明する。第5実施形態の位置情報導出システムが有するアンテナ装置5は、仰角用アンテナがパラボラアンテナではなく、また、放射器可動制御板59を有している点が上記各実施形態とは異なっている。方位角用アンテナ11の構成については同様である。
E. Fifth embodiment:
Next, a location information derivation system according to a fifth embodiment of the present disclosure will be described with reference to FIGS. 16 to 18. FIG. The antenna device 5 of the position information deriving system of the fifth embodiment differs from each of the above embodiments in that the elevation angle antenna is not a parabolic antenna and has a radiator movable control plate 59 . The configuration of the azimuth angle antenna 11 is the same.
 図16に示すように、第5実施形態のアンテナ装置5が備える仰角用アンテナ56は、可動式の放射器57と、回転不能に固定された反射器58と、を有して構成されている。反射器58は、側面視において、略逆円錐形状をなしており、円形状をなす上面の周縁から、下方先端に向けて徐々に径が小さくなっている。さらに、具体的には、反射器58は、側面視において、側面部位が直線ではなく内側に凹となる曲線形状をなしている。この曲面形状をなす反射器58の側面部位が反射面として機能する。反射器58の中心軸は鉛直上下方向および回転軸35の軸方向と一致している。 As shown in FIG. 16, the elevation angle antenna 56 included in the antenna device 5 of the fifth embodiment includes a movable radiator 57 and a non-rotatably fixed reflector 58. . The reflector 58 has a substantially inverted conical shape when viewed from the side, and the diameter of the reflector 58 gradually decreases from the peripheral edge of the circular upper surface toward the lower tip. More specifically, when viewed from the side, the reflector 58 does not have a linear side portion but a curved shape that is concave inward. A side portion of the curved reflector 58 functions as a reflecting surface. The center axis of the reflector 58 coincides with the vertical up-down direction and the axial direction of the rotating shaft 35 .
 放射器可動制御板59は、円盤状部材であり、その中心点Cを反射器58の下端と一致させた状態で水平に固定されている。図17に示すように、放射器可動制御板59には、放射器57の可動ルートとなる溝61が形成されている。本実施形態では、溝61は、平面視において中心点Cの周りに環状にかつ、概ね点対象に形成されている。溝61は、平面視における形状において、4つの頂点を有し、任意の一つの頂点から隣の頂点に至るまでに、径方向内側へ一旦入り込んだのち、再び径方向外側へ向かっている。すなわち、頂点と頂点との間は、中心点C側へ凹んだ形状をなしている。 The radiator movable control plate 59 is a disk-shaped member and is horizontally fixed with its center point C aligned with the lower end of the reflector 58 . As shown in FIG. 17, the radiator movable control plate 59 is formed with a groove 61 that serves as a movable route for the radiator 57 . In the present embodiment, the groove 61 is formed annularly around the center point C in plan view and substantially point-symmetrical. The groove 61 has four vertices in a plan view shape, and once enters radially inward from any one vertex to the adjacent vertex, and then goes radially outward again. In other words, the area between the vertices is recessed toward the center point C side.
 放射器57は、図示しない駆動機構により、回転軸35の回転による方位角方向の回転と同期して、溝61内を移動可能となっている。すなわち、放射器57は、反射器58に対して相対的に移動可能である。方位角用アンテナ11が1回転するとき、放射器57は溝61を1周する。図18において、放射器57が溝61内の任意の位置P1(図16において実線で示す放射器57の位置)にあるときの指向性利得を実線で示し、放射器57が位置P1とは異なる位置P2(図16において破線で示す放射器57の位置)にあるときの指向性利得を破線で示している。 The radiator 57 is movable in the groove 61 by a drive mechanism (not shown) in synchronization with rotation in the azimuth direction caused by the rotation of the rotary shaft 35 . That is, radiator 57 is movable relative to reflector 58 . When the azimuth antenna 11 rotates once, the radiator 57 makes one turn around the groove 61 . In FIG. 18, the solid line indicates the directivity gain when the radiator 57 is at an arbitrary position P1 in the groove 61 (the position of the radiator 57 indicated by the solid line in FIG. 16), and the radiator 57 is different from the position P1. The dashed line indicates the directional gain at the position P2 (the position of the radiator 57 indicated by the dashed line in FIG. 16).
 図18に示すように、例えば、放射器57が位置P1にあるときと、位置P2にあるときとでは、指向性利得が高い位置が異なっている。すなわち、上記各実施形態に用いた仰角用アンテナ12自体を仰角方向に首振り動作させる構成に代えて、放射器57の位置を反射器58に対して変えることで、電波の放射角度を可変し電波を走査できる。 As shown in FIG. 18, for example, the position at which the directional gain is high differs between when the radiator 57 is at position P1 and at position P2. That is, in place of the configuration in which the elevation angle antenna 12 itself used in each of the above-described embodiments is swung in the elevation direction, the position of the radiator 57 is changed with respect to the reflector 58, thereby varying the radiation angle of radio waves. It can scan radio waves.
 第5実施形態によれば、上記第1実施形態と同様の効果を奏することができる。さらに、仰角用アンテナ56の首振り動作が不要であるため、首振り動作によって仰角方向に電波を走査する構成と比べて、電波の走査時間を例えば半分程度まで短縮でき、同一物標検知までの時間を短縮できる。また、放射器57の駆動を方位角用回転機構部13(第1実施形態の図4参照)と同一にすれば、仰角用回転機構部14が不要であるため、駆動部を一つ削減でき、システム全体としての耐久性を向上させることができる。 According to the fifth embodiment, the same effects as those of the first embodiment can be obtained. Furthermore, since the elevation angle antenna 56 does not need to be swiveled, the radio wave scanning time can be shortened, for example, to about half compared to a configuration in which radio waves are scanned in the elevation direction by the swiveling motion. Save time. Further, if the radiator 57 is driven in the same manner as the azimuth angle rotation mechanism 13 (see FIG. 4 of the first embodiment), the elevation angle rotation mechanism 14 is not required, and one drive unit can be eliminated. , the durability of the system as a whole can be improved.
F.第6実施形態:
 次に、本開示の第6実施形態の位置情報導出システムについて、図19を参照して説明する。図19に示すように、第6実施形態の位置情報導出システムが有するアンテナ装置6は、上記第5実施形態のアンテナ装置5に対して、方位角用アンテナ11を複数(本実施形態では2つ)有するとともに、仰角用アンテナ62を構成する可動の放射器57を複数(本実施形態では2つ)有する点が異なる。
F. Sixth embodiment:
Next, a location information derivation system according to the sixth embodiment of the present disclosure will be described with reference to FIG. As shown in FIG. 19, the antenna device 6 of the position information deriving system of the sixth embodiment has a plurality of azimuth angle antennas 11 (two in the present embodiment), unlike the antenna device 5 of the fifth embodiment. ) and has a plurality (two in this embodiment) of movable radiators 57 constituting the elevation angle antenna 62 .
 第6実施形態によれば、上記第5実施形態と同様の効果を奏することができる。さらに、より好適に電波の走査時間を短縮できる。 According to the sixth embodiment, effects similar to those of the fifth embodiment can be obtained. Furthermore, the radio wave scanning time can be shortened more favorably.
G.第7実施形態:
 次に、本開示の第7実施形態の位置情報導出システムについて、図20を参照して説明する。図20に示すように、第7実施形態の位置情報導出システムが有するアンテナ装置7は、上記第5実施形態のアンテナ装置5に対して、仰角用アンテナ63の反射器34としてパラボラアンテナを適用した点が異なっている。仰角用アンテナ63の反射器34は、方位角用アンテナ11と同期して方位角方向に回転する。放射器57の可動は、仰角用アンテナ63の反射器34の方位角方向の回転と同期する。
G. Seventh embodiment:
Next, a location information deriving system according to the seventh embodiment of the present disclosure will be described with reference to FIG. As shown in FIG. 20, the antenna device 7 of the position information deriving system of the seventh embodiment has a parabolic antenna applied as the reflector 34 of the elevation angle antenna 63 to the antenna device 5 of the fifth embodiment. points are different. The reflector 34 of the elevation antenna 63 rotates in the azimuth direction in synchronization with the azimuth antenna 11 . The movement of the radiator 57 is synchronized with the azimuth rotation of the reflector 34 of the elevation antenna 63 .
 第7実施形態によれば、反射器34をパラボラアンテナにより構成した場合でも、第5実施形態と同様の効果を奏することができる。 According to the seventh embodiment, even when the reflector 34 is configured with a parabolic antenna, the same effects as in the fifth embodiment can be obtained.
H.第8実施形態:
 次に、本開示の第8実施形態の位置情報導出システムについて、図21を参照して説明する。図21に示すように、第8実施形態の位置情報導出システムが有するアンテナ装置8は、第7実施形態のアンテナ装置7に対して、方位角用アンテナ11および仰角用アンテナ63を複数(本実施形態では2つ)有している点が異なっている。仰角用アンテナ63の反射器34は、方位角用アンテナ11と同期して方位角方向に回転する。なお、仰角用アンテナ63の反射器34を、方位角方向の360°をカバーできるように複数配置した場合には、反射器34は回転させなくてもよい。
H. Eighth embodiment:
Next, a location information deriving system according to the eighth embodiment of the present disclosure will be described with reference to FIG. As shown in FIG. 21, the antenna device 8 of the position information deriving system of the eighth embodiment has a plurality of azimuth angle antennas 11 and elevation angle antennas 63 (this embodiment is different from the antenna device 7 of the seventh embodiment). It is different in that it has two (2) forms. The reflector 34 of the elevation antenna 63 rotates in the azimuth direction in synchronization with the azimuth antenna 11 . When a plurality of reflectors 34 of the elevation angle antenna 63 are arranged so as to cover 360° in the azimuth direction, the reflectors 34 do not need to be rotated.
 第8実施形態によれば、上記第7実施形態と同様の効果を奏することができる。さらに、反射器34をパラボラアンテナにより構成した場合でも、方位角用アンテナ11および仰角用アンテナ63を複数設けることで、さらに電波の走査時間を短縮することができる。 According to the eighth embodiment, the same effects as those of the seventh embodiment can be obtained. Furthermore, even when the reflector 34 is configured by a parabolic antenna, by providing a plurality of azimuth angle antennas 11 and elevation angle antennas 63, the radio wave scanning time can be further shortened.
I.第9実施形態:
 次に、本開示の第9実施形態の位置情報導出システムについて、図22を参照して説明する。図22に示すように、第9実施形態の位置情報導出システムが有するアンテナ装置9は、第8実施形態のアンテナ装置8に対して、パラボラアンテナで構成される2つの仰角用アンテナ63,64が回転軸35に対して非対称に配置されている点が異なっている。例えば、一方の仰角用アンテナ63を構成する放射器57は、放射器可動制御板59により可動を制御し、他方の仰角用アンテナ64を構成する放射器65は図示しない駆動手段により適宜可動ルートを制御する。
I. Ninth embodiment:
Next, a location information derivation system according to the ninth embodiment of the present disclosure will be described with reference to FIG. As shown in FIG. 22, the antenna device 9 of the position information deriving system of the ninth embodiment has two elevation angle antennas 63 and 64, which are parabolic antennas, in contrast to the antenna device 8 of the eighth embodiment. The difference is that they are arranged asymmetrically with respect to the rotation axis 35 . For example, the radiator 57 that constitutes one of the elevation angle antennas 63 is controlled in movement by a radiator movement control plate 59, and the radiator 65 that constitutes the other elevation angle antenna 64 is appropriately movable by a drive means (not shown). Control.
 第9実施形態によれば、上記第8実施形態と同様の効果を奏することができる。さらに、複数の可動する放射器57,65の可動ルートを変えることで、電波の指向性を所望に設定することができる。つまり、高分解能に検知できる角度を変えることができ、システムとしての分解能を向上させることができる。 According to the ninth embodiment, the same effects as those of the eighth embodiment can be obtained. Furthermore, by changing the movable routes of the plurality of movable radiators 57 and 65, the directivity of radio waves can be set as desired. In other words, the angle that can be detected with high resolution can be changed, and the resolution of the system can be improved.
J.第10実施形態:
 次に、本開示の第10実施形態の位置情報導出システムについて、図23を参照して説明する。図23に示すように、第10実施形態の位置情報導出システムが有するアンテナ装置10は、第6実施形態のアンテナ装置6に対して、仰角用アンテナの構成が異なっている。
J. Tenth embodiment:
Next, a location information derivation system according to the tenth embodiment of the present disclosure will be described with reference to FIG. As shown in FIG. 23, the antenna device 10 of the position information deriving system of the tenth embodiment differs from the antenna device 6 of the sixth embodiment in the configuration of the elevation angle antenna.
 図23に示すように、第10実施形態の仰角用アンテナ70は、半球状のドーム形状をなす誘導体レンズ71と、放射器72と、を有して構成されている。放射器72は、誘導体レンズ71のドーム内の略中央位置に収容され、回転軸35に対して約60°の角度を持って先端がレンズ71に向くように設けられている。仰角用アンテナ70は、回転軸35の方位角方向への回転に伴い、放射器72を回転させながら、さらに、仰角方向に首振り動作させることで仰角を検知する。誘導体レンズ71に向けて照射された電波は、レンズ71を通すことで収束される。第10実施形態によれば、上記第1実施形態の効果(1)~(3)を奏することができる。 As shown in FIG. 23, the elevation angle antenna 70 of the tenth embodiment includes a hemispherical dome-shaped dielectric lens 71 and a radiator 72 . The radiator 72 is accommodated at a substantially central position within the dome of the dielectric lens 71 and is provided so that its tip faces the lens 71 at an angle of about 60° with respect to the rotation axis 35 . The elevation angle antenna 70 rotates the radiator 72 in accordance with the rotation of the rotating shaft 35 in the azimuth angle direction, and further swings in the elevation angle direction to detect the elevation angle. The radio waves emitted toward the dielectric lens 71 pass through the lens 71 and are converged. According to the tenth embodiment, the effects (1) to (3) of the first embodiment can be obtained.
k.第11実施形態:
 次に、本開示の第11実施形態の位置情報導出システムについて、図24を参照して説明する。第11実施形態は、上記第1実施形態~第10実施形態で説明したシステムにおいて実行される物標の位置関連情報の検出処理に関する変形例である。
k. Eleventh embodiment:
Next, a location information derivation system according to the eleventh embodiment of the present disclosure will be described with reference to FIG. The eleventh embodiment is a modification of detection processing of target position-related information executed in the systems described in the first to tenth embodiments.
 第11実施形態の方位角情報取得部16は、方位角用アンテナ11により検知された反射波に基づいて、物標の速度を算出する。また、仰角情報取得部17は、仰角用アンテナ12により検知された反射波に基づいて、物標の速度を算出する。なお、物標と位置情報導出システム100との間の相対速度がゼロでない場合、物標からの反射波の受信信号においてドップラ成分が生じ、ドップラ周波数に応じた位相の変化が現れる。速度は、このドップラ周波数の変動から算出することができる。 The azimuth angle information acquisition unit 16 of the eleventh embodiment calculates the velocity of the target based on the reflected wave detected by the azimuth angle antenna 11 . The elevation angle information acquisition unit 17 also calculates the speed of the target based on the reflected wave detected by the elevation angle antenna 12 . Note that when the relative velocity between the target and the position information deriving system 100 is not zero, a Doppler component is generated in the received signal of the reflected wave from the target, and a phase change appears according to the Doppler frequency. Velocity can be calculated from this Doppler frequency variation.
 図24に示すように、S11おいて、方位角情報取得部16により、方位角用アンテナ11が受信した受信波から、物標の方位角と距離と速度が取得される。次いで、S22において、仰角情報取得部17により、仰角用アンテナ12が受信した受信波から、物標の仰角と距離と速度が取得される。 As shown in FIG. 24, in S11, the azimuth angle, distance, and speed of the target are acquired from the received wave received by the azimuth angle antenna 11 by the azimuth angle information acquisition unit 16 . Next, in S22, the elevation angle, distance, and velocity of the target are obtained from the reception wave received by the elevation angle antenna 12 by the elevation angle information acquisition unit 17 .
 次いで、S33において、判定部18により、方位角情報取得部16のデータを基に得られた距離および速度と、仰角情報取得部17のデータを基に得られた距離および速度との速度比較が実行され、同一の値をとる物標が同一物標と判定される。S4の処理については第1実施形態と同様である。 Next, in S33, the determination unit 18 compares the distance and speed obtained based on the data of the azimuth information acquisition unit 16 and the distance and speed obtained based on the data of the elevation information acquisition unit 17. Targets that are executed and take the same value are determined to be the same target. The processing of S4 is the same as in the first embodiment.
 本実施形態では、上記のように距離のパラメータに加え、方位角用アンテナ11により検知された反射波に基づいて算出される物標の速度と、仰角用アンテナ12により検知された反射波に基づいて算出される物標の速度とが比較され、同一の値をとる物標が同一物標であると判定される。すなわち、本実施形態では、同一物標を判定する際に、「距離」だけでなく「速度」をパラメータとして加味して、距離比較と速度比較とのいずれにおいても互いに同一の値をとる物標を同一物標と判定している。これにより、例えば同一距離の物標が複数検知されたときなど、「同一距離」に加えて「同一速度」という条件が追加されていることで、正確に同一物標を判定することができる。 In this embodiment, in addition to the distance parameter as described above, the speed of the target calculated based on the reflected wave detected by the azimuth antenna 11 and the reflected wave detected by the elevation antenna 12 are compared with the velocity of the target calculated by , and the targets having the same value are determined to be the same target. That is, in the present embodiment, when determining the same target, not only the "distance" but also the "speed" are taken into account as parameters, and the target that takes the same value both in the distance comparison and the speed comparison. are determined to be the same target. As a result, for example, when a plurality of targets at the same distance are detected, the same target can be accurately determined by adding the condition of "same speed" in addition to the condition of "same distance".
L.他の実施形態:
 (L1)上記各実施形態において、アンテナとして適宜パラボラアンテナを用いたが、電子的に電磁波を走査するアレイアンテナ等、その他の指向性アンテナを用いてもよい。
L. Other embodiments:
(L1) In each of the above embodiments, a parabolic antenna was used as an antenna as appropriate, but other directional antennas such as an array antenna that electronically scans electromagnetic waves may be used.
 (L2)また、パラボラアンテナとして、図25に示すように、外形形状が略円形状ではなく、角を落とした四角形状をなすパラボラアンテナ81としてもよい。図25は、第1実施形態におけるアンテナ装置1に適用した例を示したが、検知可能であれば、その他の実施形態における仰角用アンテナ12,63,64および方位角用アンテナ11に適用してもよい。 (L2) Further, as the parabolic antenna, as shown in FIG. 25, a parabolic antenna 81 having a square shape with rounded corners instead of a substantially circular shape may be used. FIG. 25 shows an example applied to the antenna device 1 in the first embodiment, but if detection is possible, it can be applied to the elevation antennas 12, 63, 64 and the azimuth antenna 11 in other embodiments. good too.
 (L3)上記第3実施形態における変形例として、図26に示すように、仰角用アンテナを、第1アンテナ51と第3アンテナ53との2つで構成してもよい。 (L3) As a modification of the third embodiment, as shown in FIG. 26, the elevation angle antenna may be composed of two antennas, the first antenna 51 and the third antenna 53 .
 (L4)上記各実施形態において、仰角用アンテナ12は90度の範囲内で往復動作を行うものとした。しかし、その角度範囲は、システム100の回転台の設置位置や向き、監視すべき空間の広さ、配置可能なアンテナ装置の台数などに応じて適宜好適な範囲に変更することができる。 (L4) In each of the above embodiments, the elevation angle antenna 12 is assumed to reciprocate within a range of 90 degrees. However, the angle range can be appropriately changed to a suitable range according to the installation position and orientation of the turntable of the system 100, the size of the space to be monitored, the number of antenna devices that can be arranged, and the like.
 (L5)上記第1~第3実施形態において、仰角用アンテナ12および方位角用アンテナ11は、方位角方向への回転軸35,36は同一としたが、同一の回転軸35,36になくてもよい。それぞれのアンテナ11,12用に別個の回転軸を有していてもよい。
 本開示に記載の情報処理部20及びそれら手法は、コンピュータプログラムにより具体化された一つ乃至は複数の機能を実行するようにプログラムされたプロセッサ及びメモリを構成することによって提供された専用コンピュータにより、実現されてもよい。あるいは、本開示に記載の情報処理部20及びそれら手法は、一つ以上の専用ハードウエア論理回路によってプロセッサを構成することによって提供された専用コンピュータにより、実現されてもよい。もしくは、本開示に記載の情報処理部20及びそれら手法は、一つ乃至は複数の機能を実行するようにプログラムされたプロセッサ及びメモリと一つ以上のハードウエア論理回路によって構成されたプロセッサとの組み合わせにより構成された一つ以上の専用コンピュータにより、実現されてもよい。また、コンピュータプログラムは、コンピュータにより実行されるインストラクションとして、コンピュータ読み取り可能な非遷移有形記録媒体に記憶されていてもよい。
(L5) In the first to third embodiments, the elevation angle antenna 12 and the azimuth angle antenna 11 have the same rotation axes 35 and 36 in the azimuth direction. may A separate axis of rotation may be provided for each antenna 11 , 12 .
The information processing unit 20 and the techniques described in this disclosure can be performed by a dedicated computer provided by configuring a processor and memory programmed to perform one or more functions embodied by a computer program. , may be implemented. Alternatively, the information processor 20 and the techniques described in this disclosure may be implemented by a dedicated computer provided by configuring a processor with one or more dedicated hardware logic circuits. Alternatively, the information processing unit 20 and techniques described in the present disclosure may be a combination of a processor and memory programmed to perform one or more functions and a processor configured by one or more hardware logic circuits. It may also be implemented by one or more dedicated computers configured in combination. The computer program may also be stored as computer-executable instructions on a computer-readable non-transitional tangible recording medium.
 本開示は、上述の実施形態に限られるものではなく、その趣旨を逸脱しない範囲において種々の構成で実現することができる。例えば、発明の概要の欄に記載した形態中の技術的特徴に対応する各実施形態中の技術的特徴は、上述の課題の一部又は全部を解決するために、あるいは、上述の効果の一部又は全部を達成するために、適宜、差し替えや、組み合わせを行うことが可能である。また、その技術的特徴が本明細書中に必須なものとして説明されていなければ、適宜、削除することが可能である。 The present disclosure is not limited to the above-described embodiments, and can be implemented in various configurations without departing from the scope of the present disclosure. For example, the technical features in each embodiment corresponding to the technical features in the form described in the outline of the invention are used to solve some or all of the above problems, or Substitutions and combinations may be made as appropriate to achieve part or all. Also, if the technical features are not described as essential in this specification, they can be deleted as appropriate.

Claims (12)

  1.  方位角用アンテナ(11)および仰角用アンテナ(12,56,62,63,64,70)を有し、検知対象物へ電波を照射し、前記検知対象物からの反射波を受信するアンテナ装置(1,2,3,4,5,6,7,8,9,10)と、
     前記方位角用アンテナにより検知された反射波に基づいて、前記アンテナ装置から前記検知対象物までの距離と前記検知対象物の方位角とを取得する方位角情報取得部(16)と、
     前記仰角用アンテナにより検知された反射波に基づいて、前記アンテナ装置から前記検知対象物までの距離と前記検知対象物の仰角とを取得する仰角情報取得部(17)と、
     前記方位角情報取得部により得られた距離と、前記仰角情報取得部により得られた距離との距離比較を実行し、同一の値をとる前記検知対象物を同一検知物と判定する判定部(18)と、
     前記同一検知物の方位角、仰角、および距離から、前記同一検知物の位置に関連する位置関連情報を導出する導出部(19)と、
     を備える位置情報導出システム。
    An antenna device having an azimuth angle antenna (11) and an elevation angle antenna (12, 56, 62, 63, 64, 70), radiating radio waves to a detection target and receiving a reflected wave from the detection target. (1,2,3,4,5,6,7,8,9,10) and
    an azimuth angle information acquisition unit (16) for acquiring the distance from the antenna device to the detection target and the azimuth angle of the detection target based on the reflected wave detected by the azimuth angle antenna;
    an elevation angle information acquisition unit (17) for acquiring the distance from the antenna device to the detection target and the elevation angle of the detection target based on the reflected wave detected by the elevation angle antenna;
    A determination unit ( 18) and
    a deriving unit (19) for deriving position-related information related to the position of the same detected object from the azimuth angle, elevation angle, and distance of the same detected object;
    A location information derivation system comprising:
  2.  前記導出部は、前記位置関連情報として、前記同一検知物の緯度、経度、および高度を導出する請求項1に記載の位置情報導出システム。 The location information derivation system according to claim 1, wherein the derivation unit derives the latitude, longitude, and altitude of the same detected object as the location-related information.
  3.  前記方位角情報取得部は、前記方位角用アンテナにより検知された反射波に基づいて算出される前記検知対象物の速度を取得し、
     前記仰角情報取得部は、前記仰角用アンテナにより検知された反射波に基づいて算出される前記検知対象物の速度を取得し、
     前記判定部は、前記距離比較に加えてさらに、前記方位角情報取得部により得られた速度と前記仰角情報取得部により得られた速度との速度比較を実行し、前記距離比較と前記速度比較とのいずれにおいても互いに同一の値をとる前記検知対象物を前記同一検知物と判定する請求項1または請求項2に記載の位置情報導出システム。
    The azimuth angle information acquisition unit acquires the velocity of the detection target calculated based on the reflected wave detected by the azimuth angle antenna,
    The elevation angle information acquisition unit acquires the velocity of the detection target calculated based on the reflected wave detected by the elevation angle antenna,
    In addition to the distance comparison, the determination unit compares the speed obtained by the azimuth angle information acquisition unit and the speed obtained by the elevation angle information acquisition unit. 3. The positional information deriving system according to claim 1, wherein the detection objects that take the same value in both of and are determined to be the same detection object.
  4.  前記アンテナ装置が照射する電波はパルス波である請求項1~請求項3のうちいずれか一項に記載の位置情報導出システム。 The position information derivation system according to any one of claims 1 to 3, wherein the radio waves emitted by the antenna device are pulse waves.
  5.  前記アンテナ装置は、
     前記仰角用アンテナを、仰角方向に回転可能とする仰角用回転機構部(14)と、
     前記方位角用アンテナおよび前記仰角用アンテナを、同一の回転軸(35)まわりに方位角方向に回転可能とする方位角用回転機構部(13)を有する請求項1~請求項4のうちいずれか一項に記載の位置情報導出システム。
    The antenna device is
    an elevation rotation mechanism (14) for rotating the elevation angle antenna in the elevation direction;
    An azimuth rotation mechanism (13) for rotating the azimuth angle antenna and the elevation angle antenna in the azimuth direction about the same rotation axis (35). 1. The location information derivation system according to 1.
  6.  前記仰角用アンテナが一度に検知できる方位角方向の角度を検知角度R°とし、360°を前記検知角度R°で除算した値を回数値Tとすると、
     前記仰角用アンテナは、前記方位角用アンテナが方位角方向に360°検知する間に、前記回数値T以上の回数で仰角方向に電磁波を走査する請求項5に記載の位置情報導出システム。
    Assuming that the angle in the azimuth direction that can be detected by the elevation antenna at one time is a detection angle R°, and the value obtained by dividing 360° by the detection angle R° is the number of times T,
    6. The position information deriving system according to claim 5, wherein the elevation angle antenna scans electromagnetic waves in the elevation angle direction a number of times equal to or greater than the number of times T while the azimuth angle antenna detects 360 degrees in the azimuth angle direction.
  7.  前記仰角用アンテナおよび前記方位角用アンテナは、指向性が異なるように仰角方向に姿勢変化が可能な単一の兼用アンテナにより構成されている請求項5に記載の位置情報導出システム。  The position information deriving system according to claim 5, wherein the elevation angle antenna and the azimuth angle antenna are composed of a single dual-purpose antenna capable of changing its posture in the elevation direction so as to have different directivities.
  8.  前記アンテナ装置は、前記方位角用アンテナおよび前記仰角用アンテナを、同一の回転軸(35)まわりに方位角方向に回転可能とする方位角用回転機構部(13)を有し、
     前記仰角用アンテナは、回転不能に固定された反射器(58)と、前記反射器に対して相対的に移動可能な可動式の放射器(57,65)とを有し、
     前記仰角用アンテナは、前記回転軸まわりに方位角方向に回転する際に、前記反射器に対して距離を変えながら移動する前記放射器により放射角度を変えて電波を放射することで前記検知対象物の仰角を検知するものである請求項1~請求項4のうちいずれか一項に記載の位置情報導出システム。
    The antenna device has an azimuth angle rotation mechanism (13) that allows the azimuth angle antenna and the elevation angle antenna to rotate in the azimuth direction around the same rotation axis (35),
    the elevation antenna has a non-rotatably fixed reflector (58) and movable radiators (57, 65) movable relative to the reflector;
    When the elevation angle antenna rotates in the azimuth direction around the rotation axis, the radiator moves while changing the distance with respect to the reflector. 5. The position information deriving system according to any one of claims 1 to 4, which detects an elevation angle of an object.
  9.  前記仰角用アンテナの前記反射器は、凹状をなす放物曲面を有する請求項8に記載の位置情報導出システム。 The position information derivation system according to claim 8, wherein the reflector of the elevation angle antenna has a concave parabolic surface.
  10.  前記仰角用アンテナの前記反射器は、固定された半球状をなすレンズ(71)であり、
     前記放射器は前記レンズの内側に設けられ、
     前記放射器から放射される電波は前記レンズを通ることで収束される請求項8に記載の位置情報導出システム。
    the reflector of the elevation antenna is a fixed hemispherical lens (71),
    the radiator is provided inside the lens,
    9. The position information deriving system according to claim 8, wherein radio waves emitted from said radiator are converged by passing through said lens.
  11.  前記方位角用アンテナおよび前記仰角用アンテナのうち少なくともいずれかは、放射器(31,32,57,65)と、凹状の放物曲面を有する反射器(32,34)と、を有するパラボラアンテナである請求項1~請求項10のうちいずれか一項に記載の位置情報導出システム。 At least one of the azimuth antenna and the elevation antenna is a parabolic antenna having a radiator (31, 32, 57, 65) and a reflector (32, 34) having a concave parabolic curved surface. The location information deriving system according to any one of claims 1 to 10, wherein:
  12.  前記仰角用アンテナおよび前記方位角用アンテナの少なくともいずれかは、複数設けられている請求項1~請求項11のうちいずれか一項に記載の位置情報導出システム。 The position information deriving system according to any one of claims 1 to 11, wherein at least one of the elevation angle antenna and the azimuth angle antenna is provided in plurality.
PCT/JP2022/028691 2021-08-05 2022-07-26 Position information deriving system WO2023013462A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021128838A JP7445628B2 (en) 2021-08-05 2021-08-05 Location information derivation system
JP2021-128838 2021-08-05

Publications (1)

Publication Number Publication Date
WO2023013462A1 true WO2023013462A1 (en) 2023-02-09

Family

ID=85154461

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/028691 WO2023013462A1 (en) 2021-08-05 2022-07-26 Position information deriving system

Country Status (2)

Country Link
JP (1) JP7445628B2 (en)
WO (1) WO2023013462A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3007151A (en) * 1956-02-06 1961-10-31 Addison D Cole Radar aircraft guidance system
JP2000180540A (en) * 1998-12-10 2000-06-30 Toyota Motor Corp Vehicle-mounted radar device
US7719458B1 (en) * 2005-12-15 2010-05-18 Baron Services, Inc. Dual mode weather and air surveillance radar system
US20150204973A1 (en) * 2011-09-09 2015-07-23 Accipiter Radar Technologies, Inc. Device and method for 3d sampling with avian radar
US20180106896A1 (en) * 2016-04-15 2018-04-19 Mohsen Rohani Systems and methods for environment sensing using radar

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3007151A (en) * 1956-02-06 1961-10-31 Addison D Cole Radar aircraft guidance system
JP2000180540A (en) * 1998-12-10 2000-06-30 Toyota Motor Corp Vehicle-mounted radar device
US7719458B1 (en) * 2005-12-15 2010-05-18 Baron Services, Inc. Dual mode weather and air surveillance radar system
US20150204973A1 (en) * 2011-09-09 2015-07-23 Accipiter Radar Technologies, Inc. Device and method for 3d sampling with avian radar
US20180106896A1 (en) * 2016-04-15 2018-04-19 Mohsen Rohani Systems and methods for environment sensing using radar

Also Published As

Publication number Publication date
JP2023023372A (en) 2023-02-16
JP7445628B2 (en) 2024-03-07

Similar Documents

Publication Publication Date Title
US11137433B2 (en) Radio wave measurement system
US5557282A (en) Height finding antenna apparatus and method of operation
CN110515101B (en) Satellite rapid acquisition method and phased array antenna system
JP4741365B2 (en) Object detection sensor
US20190339385A1 (en) Weather radar apparatus
JP3790477B2 (en) Beam scanning method for phased array antenna and radar apparatus using this beam scanning method
US20210223381A1 (en) Multistatic Radar Utilizing 5G
JP2003524777A (en) Traveling system for determining the characteristics of an outdoor radiated electromagnetic field in a wide range and with high accuracy, and a method for implementing the same
CN111801592A (en) Three-and four-dimensional mapping of space using microwave and millimeter wave parallax
KR101890359B1 (en) Beam Width Adjusting Apparatus for Periodically Rotating Radar and Long Range Radar System
WO2023013462A1 (en) Position information deriving system
US11785476B2 (en) Sensor fusion scanning system and method for wireless network planning
CN111430912B (en) Control system and method for phased array antenna
JP2017003539A (en) Meteorological radar device
KR101737107B1 (en) Antenna arrangement for a radar system
JP3559236B2 (en) Radar signal processing method and radar apparatus using this method
CN112105951A (en) Radar system, movable platform and control method of radar system
JP6674534B2 (en) Antenna device, radar system, and antenna rotation method
JP2003149335A (en) Signal processing method by rosar system
JP2016166837A (en) Weather radar system, weather radar and control method of weather radar system
US11835642B2 (en) Flying apparatus for calibrating a radar system
RU2528136C1 (en) Multibeam scanning mirror antenna
WO2023106134A1 (en) Radar system
JP2596164B2 (en) Precision approaching radar
WO2019003194A1 (en) 3d scanning radar and method for determining altitude of a present object

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22852886

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE