WO2023013428A1 - Resin molding method - Google Patents

Resin molding method Download PDF

Info

Publication number
WO2023013428A1
WO2023013428A1 PCT/JP2022/028311 JP2022028311W WO2023013428A1 WO 2023013428 A1 WO2023013428 A1 WO 2023013428A1 JP 2022028311 W JP2022028311 W JP 2022028311W WO 2023013428 A1 WO2023013428 A1 WO 2023013428A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
preform
cavity
molding method
color
Prior art date
Application number
PCT/JP2022/028311
Other languages
French (fr)
Japanese (ja)
Inventor
浩規 立石
慎一 鷲頭
慎吾 香川
千春 赤坂
慎祐 岡墻
良 田中
Original Assignee
株式会社micro-AMS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社micro-AMS filed Critical 株式会社micro-AMS
Publication of WO2023013428A1 publication Critical patent/WO2023013428A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C39/00Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor
    • B29C39/22Component parts, details or accessories; Auxiliary operations
    • B29C39/24Feeding the material into the mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C39/00Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor
    • B29C39/22Component parts, details or accessories; Auxiliary operations
    • B29C39/38Heating or cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/20Making multilayered or multicoloured articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/34Feeding the material to the mould or the compression means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/36Moulds for making articles of definite length, i.e. discrete articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/52Heating or cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60JWINDOWS, WINDSCREENS, NON-FIXED ROOFS, DOORS, OR SIMILAR DEVICES FOR VEHICLES; REMOVABLE EXTERNAL PROTECTIVE COVERINGS SPECIALLY ADAPTED FOR VEHICLES
    • B60J1/00Windows; Windscreens; Accessories therefor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/80Apparatus for specific applications

Definitions

  • the present invention relates to a resin molding method.
  • Patent Document 1 discloses a resin molding method.
  • a solid first resin having a shape along the shape of the cavity is placed in a part of the cavity of the rubber mold.
  • a second resin in particulate form is placed in the remainder of the cavity. Electromagnetic waves are applied to the first resin and the second resin in the cavity through the rubber mold to heat them. These resins melt in the cavity. By cooling these melted resins, a molded article in which the first resin and the second resin are integrated is obtained.
  • Patent Documents 2 and 3 disclose resin molding methods.
  • a plurality of preforms preformed bodies
  • the preform is heated by electromagnetic waves or alternating electric fields that pass through the mold.
  • the molding die is filled with a resin obtained by melting the preform. It solidifies by cooling the molten resin.
  • JP 2011-140218 A Japanese Patent Application Laid-Open No. 2020-183109 Japanese Patent Application Laid-Open No. 2020-183110
  • the parts made of preforms and the parts made of other resins are color-coded.
  • ⁇ 3> Producing the preform by laminate-molding a resin colored in a color different from the color exhibited by the first resin, The resin molding method according to ⁇ 1> or ⁇ 2>.
  • a preform of the first resin is produced by lamination molding, depressurizing the cavities by drawing gas in the cavities through gaps created between the rougher surfaces of each preform and the smoother surfaces of the cavities;
  • the lamination pitch of lamination manufacturing of each preform is 0.2mm or more,
  • the arithmetic mean roughness Ra of the surface of each preform facing the surface of the cavity is greater than the arithmetic mean roughness Ra of the surface of the cavity.
  • ⁇ 5> Disposing the first resin consisting of a set of pellets and the second resin consisting of the preform in the cavity, decompressing the cavity by drawing gas in the cavity through a gap between the rougher surface of the preform and the smoother surface of the cavity;
  • the lamination pitch of lamination molding of the preform is 0.2 mm or more,
  • the arithmetic mean roughness Ra of the surface of the preform facing the surface of the cavity is greater than the arithmetic mean roughness Ra of the surface of the cavity,
  • the resin molding method according to ⁇ 3> Disposing the first resin consisting of a set of pellets and the second resin consisting of the preform in the cavity, decompressing the cavity by drawing gas in the cavity through a gap between the rougher surface of the preform and the smoother surface of the cavity;
  • the lamination pitch of lamination molding of the preform is 0.2 mm or more,
  • the arithmetic mean roughness Ra of the surface of the preform is 6 ⁇ m or more, The resin molding method according to ⁇ 4>.
  • the resin molding method for producing a windshield within the cavity such that the first resin forms the central transparent portion of the windshield, the second resin forms the edge of the windshield, and the third resin forms the top shade of the windshield. Place these resins in the
  • the third resin is colored in advance with a color different from the color exhibited by the first resin and also different from the color exhibited by the second resin, and has a higher visible light transmittance than the second resin, melting the third resin together with the first resin and the second resin by the electromagnetic wave; Depressurization of the cavity gives the third resin a shape that is the inverse of the shape of the cavity;
  • the resin molding method according to any one of ⁇ 1> to ⁇ 7>.
  • the part made of the preform and the part made of another resin are color-coded.
  • color coding which was conventionally done by painting after molding, is now done at the time of molding.
  • Sectional drawing of a preform and a mold Sectional drawing of a preform and a mold. Sectional drawing of a preform and a mold. Photo of the molding. Sectional drawing of a preform and a mold. A top view of preforms and pellets arranged side by side.
  • FIG. 1 shows a cross section of a preform 11 made of a first resin and a preform 12 made of a second resin.
  • the figure further shows a cross section of the lid Ld and the container Ct that constitute the mold Fm.
  • the container Ct has a cavity Cv.
  • the container Ct also has a hole connecting the cavity Cv and the vacuum pump Vc.
  • the preform 12 made of the second resin and the preform 11 made of another resin, here the first resin, are integrally molded. Specifically, molding is performed by heating these resins in the cavity Cv with a radiant heater Rd. Thus, a molded product with different colors is obtained.
  • the preform 11 and the preform 12 are pre-molded resins, and are further molded by the molding die Fm. These preforms have a shape that fits into the cavity Cv. Cavities Cv are filled with these preforms. There is play between these preforms and preforms. There is play between these preforms and the cavity Cv. Even if another preform is placed in cavity Cv, there is a similar play around it.
  • the second resin consists of a preform 12 as shown in FIG.
  • the first resin does not necessarily have to be a preform.
  • the preform 11 may be replaced with pellets having no particular shape and constituting the first resin.
  • pellet in this specification represents a collection of pellet particles. Pellet particles are not necessarily agglomerated or bound together. Pellet particles aggregated while maintaining their particle shape or combined with each other may be considered as a preform, or may be considered as a pellet.
  • thermoplastic represents a thermoplastic material whose main component is a thermoplastic resin.
  • thermoplastics are polycarbonate (PC), polymethylmethacrylate (PMMA), ABS (acrylonitrile-butadiene-styrene-copolymer) and polypropylene (PP).
  • PC polycarbonate
  • PMMA polymethylmethacrylate
  • PP polypropylene
  • thermoplastics are polylactic acid (PLA), thermoplastic polyurethane (TPU), polystyrene (PS), preferably high impact polystyrene (HIPS), glycol modified polyethylene terephthalate (PET/G), polyamide (PA), Polyvinyl alcohol (PVA).
  • TPE thermoplastic elastomer
  • TPE thermoplastic elastomer
  • first resin, second resin, third resin do not distinguish these resins from the viewpoint of whether or not the main components of the resins are common among them. do not have.
  • the term does not distinguish between these resins in terms of volume differences.
  • the term is used to distinguish whether or not there is a difference in coloration between parts made of these resins after they are integrally molded in a mold.
  • the first resin and the second resin are thermoplastic resins having the same main component. On the other hand, after these are integrally molded, there is a difference in the coloration of each part made of these resins.
  • the resin placed in the mold occupies a predetermined volume within the mold. Also, the resin is solid when it is completely placed in the mold. Further, as will be described later, the resin is in a solid state when the irradiation of electromagnetic waves to the resin is started.
  • the term "resin” may refer to the preform itself. If the resin is in the form of pellets, the term “resin” may refer to the aggregation of individual pellet particles. In this case, the pellet particles are not necessarily agglomerated or bound together.
  • the second resin is colored in advance with a color different from the color exhibited by the first resin.
  • the different colors include the same tint but different densities.
  • the first resin may or may not be colored.
  • the first resin is transparent.
  • the resin is colored by mixing a coloring component inside the resin. Coloring the resin may be done in a variety of other ways.
  • a preform 12 shown in FIG. 1 is produced in advance by lamination molding or other methods.
  • laminate molding is performed using a resin colored in a color different from the color exhibited by the first resin as a raw material.
  • the first resin is transparent. Therefore, if the second resin is colored, the second resin naturally presents a color different from that of the first resin.
  • the preform 11 is also produced by lamination molding using a transparent resin as a raw material.
  • extrusion method examples of the above layered manufacturing methods are the extrusion method, the inkjet method, and the selective laser sintering (SLS) method.
  • SLS selective laser sintering
  • An example of an extrusion method is FDM (Fused Deposition Modeling), also called material extrusion deposition method or fused deposition modeling method.
  • FDM Fused Deposition Modeling
  • inkjet methods are material jetting and binder jetting.
  • the first resin and the second resin are placed in the cavity of the mold Fm.
  • a third resin other than these resins is arranged in the cavity Cv.
  • a third resin is further arranged between the first resin and the second resin.
  • the third resin is colored in advance with a color different from that of the first resin and also different from that of the second resin.
  • another resin may be placed in the cavity Cv.
  • the radiant heater Rd irradiates the cavity Cv with electromagnetic waves according to a predetermined intensity, time schedule, and irradiation range.
  • the electromagnetic waves are infrared rays with a wavelength of 760 nm-1 ⁇ 10 6 nm, preferably near-infrared rays with a wavelength of 780 nm-2 ⁇ 10 3 nm.
  • the radiant heater Rd is a halogen lamp.
  • the resin By irradiating the resin with infrared rays, preferably near-infrared rays, the resin is made to absorb the infrared rays. This heats the resin.
  • the lid Ld and the container Ct that constitute the mold Fm are made of rubber that allows near-infrared rays to pass through more easily than the preforms 11 and 12 . Examples of such rubbers are transparent or translucent silicones.
  • the electromagnetic waves emitted by the radiant heater Rd are microwaves with a wavelength of 1 ⁇ 10 5 nm-1 ⁇ 10 9 nm, preferably with a wavelength of 1 ⁇ 10 7 nm-1 ⁇ 10 9 nm.
  • radiant heater Rd is a microwave oscillator. Dielectric loss occurs in resin by irradiating the resin with microwaves. This heats the resin.
  • the lid Ld and the container Ct, which constitute the molding die Fm, are made of rubber with less dielectric loss than the preforms 11 and 12 .
  • the dielectric power factor (dielectric loss tangent, tan ⁇ ) of the lid Ld and the container Ct constituting the mold Fm is made smaller than the dielectric power factors of the preforms 11 and 12 .
  • preforms 11 and 12 are melted by heating by electromagnetic waves. Each part in the cavity Cv is already occupied by the preform 11 and the preform 12 . Therefore, the melted resin does not flow far beyond these portions.
  • the cavity Cv is evacuated by the vacuum pump Vc.
  • the melted resin flows into the gap between the resins and the gap between the resin and the cavity Cv.
  • the lid Ld is pushed into the cavity Cv.
  • the mold Fm consisting of the lid Ld and the container Ct gives the melted preforms 11 and 12 a shape in which the shape of the cavity Cv is reversed.
  • the shape is fixed by cooling the resin in the cavity Cv.
  • the lid Ld is removed from the container Ct and the molded article is taken out from the container Ct.
  • the preforms 11 and 12 are arranged side by side in the cavity Cv.
  • the melted resin flows into the gap between the preforms 11 and 12 .
  • the center of cavity Cv in FIG. 1 the preforms join.
  • Such an interface forms a boundary between the color of the first resin and the color of the second resin.
  • the first resin can be pellets instead of the preform 11 . If, after molding, the color of the first resin and the color of the second resin are mixed and the boundary between them collapses, this problem can be further improved.
  • the preform 11 may be substituted for the first resin to reduce color mixing and provide a clear boundary. Even if pellets are used as the first resin, if the colors do not mix at the boundary after molding, the pellets are used as the first resin. This makes it possible to omit the step of preparing the preform 11 in advance.
  • the surfaces of the preforms 11 and 12 facing the surface of the cavity Cv are rougher than the surface of the cavity Cv.
  • the arithmetic mean roughness Ra of the surface of the preform is greater than the arithmetic mean roughness Ra of the surface of the cavity Cv.
  • Such rough surfaces are formed in the additive manufacturing described above.
  • the vacuum pump Vc sucks out the gas in the cavity Cv through the gap formed between the rough surfaces of the preforms 11 and 12 and the smooth surface of the cavity Cv. This effectively reduces the pressure.
  • the gaps between the pellets serve as passages for sucking out the gas.
  • a preform can be produced by laminating ABS.
  • the lamination pitch was 0.1 mm
  • the arithmetic mean roughness Ra of the surface of the preform was 4 ⁇ m.
  • the lamination pitch was 0.2 mm
  • the surface arithmetic mean roughness Ra of the preform was 6 ⁇ m.
  • the shape of the cavity Cv may not be reversed to the molded body. Further, when the pressure reduction of the cavity Cv is not successful, it may not be possible to obtain close contact between the first resin and the second resin. By setting the arithmetic mean roughness Ra of the surface of the preform to 6 ⁇ m or more, these problems may be improved in some cases.
  • FIG. 2 shows cross sections of the preform 11, the preform 12 and the mold Fm.
  • pellets may be used as the resin placed in the cavity Cv.
  • a part of each of the first resin and the second resin is replaced from the preform to pellets. Irradiation of electromagnetic waves to the cavity Cv, decompression of the cavity Cv, and cooling of the resin in the cavity Cv are performed as described above.
  • the pellets 14 and 15 are placed in the center of the cavity Cv.
  • Pellets 14 and 15 are aggregates of pellet particles, respectively.
  • Pellets 14 are placed between preform 11 and pellets 15 .
  • Pellets 15 are positioned between pellets 14 and preforms 12 .
  • Pellets 14 are the same color as preform 11 .
  • the pellet 14 is transparent.
  • Pellets 15 are the same color as preform 12 .
  • the pellets 14 and 15 may be melted and mixed with each other depending on the molding conditions. Therefore, the boundaries of the color coding of the molded product may become unclear.
  • Pellets 14 may not be used in embodiments different from the embodiment shown in FIG.
  • the space in which the pellets 14 were placed may be filled with the preforms 11 .
  • the pellet 15 may not be used.
  • the space in which the pellets 15 were placed may be filled with the preforms 12 .
  • Using the boundary between the preform and the pellet as the color-coding boundary of the molded product in this way may help clarify the color-coding boundary of the molded product.
  • the bond between the first resin and the second resin is fragile at the boundary after molding, this can be further improved.
  • the side of the first resin closer to the preform 12 is replaced with pellets 14 .
  • the side close to the preform 11 is replaced with the pellet 15 .
  • This increases the bonding strength between the first resin and the second resin. If the strength of the bond between the first resin and the second resin cannot be increased by using the pellets, the pellets may not be used for the first resin or the second resin. Or both without pellets as shown in FIG. This facilitates placing the first resin and the second resin at accurate positions in the cavity Cv.
  • FIG. 3 shows photographs of the molded product M01 produced by the method shown in FIG. 1 and the molded product M02 produced by the method shown in FIG.
  • the boundary between the transparent first resin and the colored second resin was clear.
  • the mechanical strength near the color-coded boundaries was the same for all molded products.
  • FIG. 4 shows a cross section of the preform 11 and the mold Fm. This embodiment shows that the molded product can be color-coded without mixing a coloring component inside the resin.
  • a transparent pellet 14 is used as the first resin.
  • a transparent preform 11 is used as the second resin.
  • the preform 11 is colored by applying a coating 17 to the surface of the preform 11 in advance.
  • coating 17 comprises pigment.
  • the pigment is a ceramic powder.
  • the ceramic powder is black.
  • the preform 11 is placed in the cavity Cv with the coated surface of the preform 11, that is, the coating 17 facing the surface of the cavity Cv. Irradiation of electromagnetic waves to the cavity Cv, decompression of the cavity Cv, and cooling of the resin in the cavity Cv are performed as described above.
  • a coloring component may be mixed in advance in the resin of at least one of the preform 11 and the pellets 14 .
  • the coloring component may be the same color as the coating 17, or may be a different color.
  • the coloration component mixed in the preform 11 may have the same color as the coloration component mixed in the pellet 14, or may have a different color.
  • the surface of the preform is not pre-coated. In this case, the paint will not adhere to the cavity.
  • FIG. 5 is a plan view of the preforms 12, 13, and pellets 14 arranged side by side. In this embodiment, these three types of resins are used to produce windshields for automobiles.
  • the first resin is pellets 14 that are spread out.
  • a first resin forms the central transparent portion of the windshield.
  • the second resin is preform 12 surrounding preform 13 and pellet 14 .
  • a second resin forms the interface with the frame of the windshield at the edge of the windshield. Such a joint shields the caulk from UV rays.
  • the third resin is preform 13 .
  • the visible light transmittance of the third resin is higher than that of the second resin.
  • the first resin is transparent.
  • a third resin forms the top shade of the windshield.
  • the preform 13 together with the preform 12 and pellets 14 are placed in a cavity (not shown) of a mold (not shown). Irradiation of electromagnetic waves to the cavity, decompression of the cavity, and cooling of the resin in the cavity are performed as described above.
  • the preform 12 and the preform 13 are joined at their interface.
  • the preform 13 and pellet 14 are joined at their interface.
  • vehicle exterior parts such as bumpers and interior parts such as instrument panels and door trims can be produced by the resin molding method.
  • resin color coding can be applied to these parts.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

The present invention addresses the problem of a method for heating a preform, which is made of a resin, and another resin by electromagnetic waves in a mold to thereby integrally mold the result, wherein the portion made of the preform and the portion made of the other resin are distinguished by color. The aforementioned problem is solved by a resin molding method for heating a first resin and a second resin in a mold Fm and integrally molding the result. The first resin, and a preform 12 constituting the second resin and pre-colored by a color different than the color exhibited by the first resin are disposed in a cavity Cv of a mold Fm. Electromagnetic waves are emitted toward the cavity Cv to thereby melt the first resin and the preform 12, and the cavity is Cv is depressurized to apply an inverted shape of the cavity to the melted first resin and the melted preform 12.

Description

樹脂成形方法Resin molding method
 本発明は樹脂成形方法に関する。 The present invention relates to a resin molding method.
 特許文献1は樹脂の成形方法を開示している。ゴム型のキャビティの一部に、その形状に沿った形状の固形状態の第1樹脂を配置する。キャビティの残部に粒子状態の第2樹脂を配置する。ゴム型を介してキャビティ内における第1樹脂及び第2樹脂に電磁波を照射することでこれらを加熱する。キャビティ内でこれらの樹脂が溶融する。これらの溶融した樹脂を冷却することで第1樹脂と第2樹脂とが一体化した成形品を得る。 Patent Document 1 discloses a resin molding method. A solid first resin having a shape along the shape of the cavity is placed in a part of the cavity of the rubber mold. A second resin in particulate form is placed in the remainder of the cavity. Electromagnetic waves are applied to the first resin and the second resin in the cavity through the rubber mold to heat them. These resins melt in the cavity. By cooling these melted resins, a molded article in which the first resin and the second resin are integrated is obtained.
 特許文献2及び特許文献3は樹脂成形方法を開示している。当該方法では積層造形により複数のプリフォーム(予備成形体)を作製する。成形型内にこれらのプリフォームを配置する。成形型を透過する電磁波又は交番電界によってプリフォームを加熱する。プリフォームが溶融してなる樹脂を成形型内に充填する。溶融した樹脂を冷却することで固化する。成形型内では、プリフォーム内の積層造形の界面が無くなっている。 Patent Documents 2 and 3 disclose resin molding methods. In the method, a plurality of preforms (preformed bodies) are produced by layered manufacturing. Place these preforms in a mold. The preform is heated by electromagnetic waves or alternating electric fields that pass through the mold. The molding die is filled with a resin obtained by melting the preform. It solidifies by cooling the molten resin. Within the mold, there is no additive manufacturing interface within the preform.
 さらに成形後の工程で成形品を塗装することで成形品の表面に色分けを施すこともできる。 Furthermore, it is possible to color-code the surface of the molded product by painting the molded product in the post-molding process.
特開2011-140218号公報JP 2011-140218 A 特開2020-183109号公報Japanese Patent Application Laid-Open No. 2020-183109 特開2020-183110号公報Japanese Patent Application Laid-Open No. 2020-183110
 樹脂からなるプリフォームと他の樹脂とを成形型の中で電磁波によって加熱することでこれらを一体に成形する方法において、プリフォームからなる部分と他の樹脂からなる部分とを色分けする。 In the method of integrally molding preforms made of resin and other resins by heating them with electromagnetic waves in a mold, the parts made of preforms and the parts made of other resins are color-coded.
<1> 樹脂からなるプリフォームと他の樹脂とを成形型の中で加熱することでこれらを一体に成形する樹脂成形方法であって、
 第1樹脂と、第2樹脂を構成するとともに前記第1樹脂の呈する色とは異なる色で予め着色されたプリフォームとを成形型のキャビティの中に配置し、
 前記キャビティに向けて電磁波で照射することで前記第1樹脂と前記プリフォームとを溶融し、
 前記キャビティを減圧することで、溶融した前記第1樹脂と溶融した前記プリフォームとに対して前記キャビティの形状が反転した形状を与える、
 樹脂成形方法。
<1> A resin molding method for integrally molding a preform made of resin and another resin by heating them in a mold,
disposing a first resin and a preform that constitutes a second resin and is pre-colored with a color different from the color exhibited by the first resin in a mold cavity;
melting the first resin and the preform by irradiating the cavity with an electromagnetic wave;
By depressurizing the cavity, the shape of the cavity is inverted with respect to the molten first resin and the molten preform.
Resin molding method.
<2> 前記キャビティの中で前記第1樹脂と前記プリフォームとを隣り合わせに配置し、
 前記キャビティを減圧することで、前記第1樹脂と前記プリフォームとをそれらの界面にて接合する、
 <1>に記載の樹脂成形方法。
<2> Arranging the first resin and the preform side by side in the cavity,
By decompressing the cavity, the first resin and the preform are joined at their interface;
The resin molding method according to <1>.
<3> 前記第1樹脂の呈する前記色とは異なる色で着色された樹脂を積層造形することで前記プリフォームを作製する、
 <1>又は<2>に記載の樹脂成形方法。
<3> Producing the preform by laminate-molding a resin colored in a color different from the color exhibited by the first resin,
The resin molding method according to <1> or <2>.
<4> さらに前記第1樹脂のプリフォームを積層造形で作製し、
 各プリフォームのより粗い表面と前記キャビティのより滑らかな表面との間にできる隙間を通じて前記キャビティの中の気体を吸い出すことで前記キャビティを減圧するところ、
 各プリフォームの積層造形の積層ピッチは0.2mm以上であり、
 前記キャビティの表面に対向する各プリフォームの表面の算術平均粗さRaは、前記キャビティの表面の算術平均粗さRaよりも大きい、
 <3>に記載の樹脂成形方法。
<4> Further, a preform of the first resin is produced by lamination molding,
depressurizing the cavities by drawing gas in the cavities through gaps created between the rougher surfaces of each preform and the smoother surfaces of the cavities;
The lamination pitch of lamination manufacturing of each preform is 0.2mm or more,
The arithmetic mean roughness Ra of the surface of each preform facing the surface of the cavity is greater than the arithmetic mean roughness Ra of the surface of the cavity.
The resin molding method according to <3>.
<5> ペレットの集合からなる前記第1樹脂と前記プリフォームからなる前記第2樹脂とを前記キャビティの中に配置し、
 前記プリフォームのより粗い表面と前記キャビティのより滑らかな表面との間にできる隙間を通じて前記キャビティの中の気体を吸い出すことで前記キャビティを減圧するところ、
 前記プリフォームの積層造形の積層ピッチは0.2mm以上であり、
 前記キャビティの表面に対向する前記プリフォームの表面の算術平均粗さRaは、前記キャビティの表面の算術平均粗さRaよりも大きい、
 <3>に記載の樹脂成形方法。
<5> Disposing the first resin consisting of a set of pellets and the second resin consisting of the preform in the cavity,
decompressing the cavity by drawing gas in the cavity through a gap between the rougher surface of the preform and the smoother surface of the cavity;
The lamination pitch of lamination molding of the preform is 0.2 mm or more,
The arithmetic mean roughness Ra of the surface of the preform facing the surface of the cavity is greater than the arithmetic mean roughness Ra of the surface of the cavity,
The resin molding method according to <3>.
<6> 前記プリフォームの前記表面の前記算術平均粗さRaは6μm以上である、
 <4>に記載の樹脂成形方法。
<6> The arithmetic mean roughness Ra of the surface of the preform is 6 μm or more,
The resin molding method according to <4>.
<7> 前記プリフォームの表面を塗装することで前記プリフォームを着色し、
 前記プリフォームの塗装された表面を前記キャビティの前記表面に向けた状態で前記キャビティの中に前記プリフォームを配置する、
 <1>又は<2>に記載の樹脂成形方法。
<7> coloring the preform by painting the surface of the preform;
placing the preform in the cavity with the painted surface of the preform facing the surface of the cavity;
The resin molding method according to <1> or <2>.
<8> ウィンドシールドを作製するために行う前記樹脂成形方法であって、
 前記第1樹脂でウィンドシールドの中央の透明部分を形成し、前記第2樹脂で前記ウィンドシールドの縁を形成し、第3樹脂で前記ウィンドシールドのトップシェードを形成するように、前記キャビティの中にこれらの樹脂を配置し、
 前記第3樹脂は、前記第1樹脂の呈する前記色とも異なり、さらに前記第2樹脂の呈する色とも異なる色で予め着色されているとともに、前記第2樹脂よりも可視光の透過率が高く、
 前記第1樹脂及び前記第2樹脂とともに、前記電磁波により前記第3樹脂を溶融し、
 前記キャビティの減圧により、前記キャビティの形状が反転した形状を前記第3樹脂に与える、
 <1>~<7>のいずれかに記載の樹脂成形方法。
<8> The resin molding method for producing a windshield,
within the cavity such that the first resin forms the central transparent portion of the windshield, the second resin forms the edge of the windshield, and the third resin forms the top shade of the windshield. Place these resins in the
The third resin is colored in advance with a color different from the color exhibited by the first resin and also different from the color exhibited by the second resin, and has a higher visible light transmittance than the second resin,
melting the third resin together with the first resin and the second resin by the electromagnetic wave;
Depressurization of the cavity gives the third resin a shape that is the inverse of the shape of the cavity;
The resin molding method according to any one of <1> to <7>.
<9> さらに他の樹脂を前記キャビティの中に配置する、
 <1>~<8>のいずれかに記載の樹脂成形方法。
<9> Placing another resin in the cavity,
The resin molding method according to any one of <1> to <8>.
 樹脂からなるプリフォームと他の樹脂とを成形型の中で電磁波によって加熱することでこれらを一体に成形する方法において、プリフォームからなる部分と他の樹脂からなる部分との間で色分けを行う。また従来は成形後の塗装により行っていた色分けを、成形時に行う。 In a method of integrally molding a preform made of resin and another resin by heating them with electromagnetic waves in a molding die, the part made of the preform and the part made of another resin are color-coded. . In addition, color coding, which was conventionally done by painting after molding, is now done at the time of molding.
プリフォーム及び成形型の断面図。Sectional drawing of a preform and a mold. プリフォーム及び成形型の断面図。Sectional drawing of a preform and a mold. 成形品の写真。Photo of the molding. プリフォーム及び成形型の断面図。Sectional drawing of a preform and a mold. 並べられたプリフォーム及びペレットの平面図。A top view of preforms and pellets arranged side by side.
<成形の要領> <Molding procedure>
 図1は第1樹脂からなるプリフォーム11及び第2樹脂からなるプリフォーム12との断面を示す。図はさらに成形型Fmを構成する蓋Ld及び容器Ctとの断面を示す。容器CtはキャビティCvを有する。容器CtはさらにキャビティCvと真空ポンプVcを接続する孔を有する。第2樹脂からなるプリフォーム12と、他の樹脂、ここでは第1樹脂からなるプリフォーム11とを一体に成形する。具体的にはキャビティCvの中でこれらの樹脂を輻射加熱器Rdによって加熱することで成形を行う。これにより色分けされた成形品を得る。 FIG. 1 shows a cross section of a preform 11 made of a first resin and a preform 12 made of a second resin. The figure further shows a cross section of the lid Ld and the container Ct that constitute the mold Fm. The container Ct has a cavity Cv. The container Ct also has a hole connecting the cavity Cv and the vacuum pump Vc. The preform 12 made of the second resin and the preform 11 made of another resin, here the first resin, are integrally molded. Specifically, molding is performed by heating these resins in the cavity Cv with a radiant heater Rd. Thus, a molded product with different colors is obtained.
<プリフォーム> <Preform>
 図1に示すように、プリフォーム11及びプリフォーム12は予め成形された樹脂であり、また成形型Fmにてさらに成形される樹脂である。これらのプリフォームはキャビティCvに嵌る形状を有する。キャビティCvはこれらのプリフォームで満たされる。これらのプリフォームとプリフォームとの間には遊びがある。これらのプリフォームとキャビティCvとの間には遊びがある。さらに他のプリフォームをキャビティCvに配置した場合でも、その周りには同様の遊びがある。 As shown in FIG. 1, the preform 11 and the preform 12 are pre-molded resins, and are further molded by the molding die Fm. These preforms have a shape that fits into the cavity Cv. Cavities Cv are filled with these preforms. There is play between these preforms and preforms. There is play between these preforms and the cavity Cv. Even if another preform is placed in cavity Cv, there is a similar play around it.
<プリフォームの代替> <Substitute for preform>
 図1に示すように第2樹脂はプリフォーム12からなる。一方で第1樹脂は必ずしもプリフォームでなくともよい。図に示す態様と異なる態様において、プリフォーム11は、特定の形状を有さないペレットであって第1樹脂を構成するものに置き換えてもよい。 The second resin consists of a preform 12 as shown in FIG. On the other hand, the first resin does not necessarily have to be a preform. In a mode different from the one shown in the figure, the preform 11 may be replaced with pellets having no particular shape and constituting the first resin.
 特に断らない限り、本明細書において「ペレット」の用語はペレット粒子の集合を表す。ペレット粒子は必ずしも凝集したり、互いに結合したりしていない。ペレット粒子がその粒子形状を保ったまま凝集したり、互いに結合したりしたものはプリフォームと考えてもよく、ペレットと考えてもよい。 Unless otherwise specified, the term "pellet" in this specification represents a collection of pellet particles. Pellet particles are not necessarily agglomerated or bound together. Pellet particles aggregated while maintaining their particle shape or combined with each other may be considered as a preform, or may be considered as a pellet.
<樹脂の用語> <Resin Terminology>
 本明細書において用語「樹脂」は熱可塑性樹脂を主成分とする、熱可塑性の材料を表す。熱可塑性樹脂の例はポリカーボネート(PC)、ポリメタクリル酸メチル(PMMA)、ABS(acrylonitrile-butadiene-styrene-copolymer)及びポリプロピレン(PP)である。熱可塑性樹脂の他の例はポリ乳酸(PLA)、熱可塑性ポリウレタン(TPU)、ポリスチレン(PS)好ましくは耐衝撃性ポリスチレン(HIPS)、グリコール変性ポリエチレンテレフタレート(PET/G)、ポリアミド(PA)、ポリビニルアルコール(PVA)である。熱可塑性樹脂の他の例は熱可塑性エラストマー(TPE)である。 In this specification, the term "resin" represents a thermoplastic material whose main component is a thermoplastic resin. Examples of thermoplastics are polycarbonate (PC), polymethylmethacrylate (PMMA), ABS (acrylonitrile-butadiene-styrene-copolymer) and polypropylene (PP). Other examples of thermoplastics are polylactic acid (PLA), thermoplastic polyurethane (TPU), polystyrene (PS), preferably high impact polystyrene (HIPS), glycol modified polyethylene terephthalate (PET/G), polyamide (PA), Polyvinyl alcohol (PVA). Another example of a thermoplastic is thermoplastic elastomer (TPE).
 本明細書において「第1樹脂、第2樹脂、第3樹脂・・・」の用語は、例えば樹脂の主成分がこれらの間で共通か否かという観点で、これらの樹脂を区別するものではない。当該用語は、体積の違いという観点これらの樹脂を区別するものではない。当該用語は、これらの樹脂が成形型内で一体に成形された後において、これらの樹脂からなる各部分の間でその呈色に違いのあること又は違いのないことの区別に用いられる。一態様において、第1樹脂と第2樹脂とは同一の主成分からなる熱可塑性樹脂である。一方でこれらが一体に成形された後において、これらの樹脂からなる各部分の呈色に違いがある。 In the present specification, the terms "first resin, second resin, third resin..." do not distinguish these resins from the viewpoint of whether or not the main components of the resins are common among them. do not have. The term does not distinguish between these resins in terms of volume differences. The term is used to distinguish whether or not there is a difference in coloration between parts made of these resins after they are integrally molded in a mold. In one aspect, the first resin and the second resin are thermoplastic resins having the same main component. On the other hand, after these are integrally molded, there is a difference in the coloration of each part made of these resins.
 本明細書において成形型内に配置された樹脂は、成形型内で所定の体積を占める。また成形型内に配置を完了した際に樹脂は固体である。また、後述するように樹脂に電磁波の照射を始める際に樹脂は固体である。樹脂がプリフォームの状態であれば、「樹脂」の用語はプリフォームそれ自体を表すことがある。樹脂がペレットの状態であれば、「樹脂」の用語は個々のペレット粒子が集合した状態を表すことがある。この場合、ペレット粒子は必ずしも凝集したり、互いに結合したりしていない。 In this specification, the resin placed in the mold occupies a predetermined volume within the mold. Also, the resin is solid when it is completely placed in the mold. Further, as will be described later, the resin is in a solid state when the irradiation of electromagnetic waves to the resin is started. If the resin is in the form of a preform, the term "resin" may refer to the preform itself. If the resin is in the form of pellets, the term "resin" may refer to the aggregation of individual pellet particles. In this case, the pellet particles are not necessarily agglomerated or bound together.
<樹脂の着色> <Coloring of resin>
 図1に示す一態様において、第2樹脂を、第1樹脂の呈する色とは異なる色で予め着色する。色が異なることには、色味が同じであるがその濃さが異なることを含む。一方で第1樹脂は着色してもよく、着色しなくともよい。図に示す一態様において第1樹脂は透明である。一態様において樹脂の内部に呈色成分を混合することで樹脂の着色を行う。樹脂に対する着色は他の様々な方法で行ってもよい。 In one aspect shown in FIG. 1, the second resin is colored in advance with a color different from the color exhibited by the first resin. The different colors include the same tint but different densities. On the other hand, the first resin may or may not be colored. In one aspect shown in the figure, the first resin is transparent. In one embodiment, the resin is colored by mixing a coloring component inside the resin. Coloring the resin may be done in a variety of other ways.
 図1に示すプリフォーム12を予め積層造形又はその他の手法で作製する。一態様において第1樹脂の呈する色とは異なる色で着色された樹脂を原料に用いて積層造形を行う。図に示す態様において第1樹脂は透明である。したがって、第2樹脂を着色すれば自ずと第2樹脂は第1樹脂の呈する色とは異なる色を呈する。プリフォーム11も透明の樹脂を原料に用いて積層造形で作製する。 A preform 12 shown in FIG. 1 is produced in advance by lamination molding or other methods. In one aspect, laminate molding is performed using a resin colored in a color different from the color exhibited by the first resin as a raw material. In the illustrated embodiment, the first resin is transparent. Therefore, if the second resin is colored, the second resin naturally presents a color different from that of the first resin. The preform 11 is also produced by lamination molding using a transparent resin as a raw material.
 上記積層造形の手法の例は押出成形法、インクジェット法及び粉末焼結積層造形法(SLS, Selective Laser Sintering)である。押出成形法の例は材料押出堆積法又は熱溶解積層法とも呼ばれるFDM(Fused Deposition Modeling)である。インクジェット法の例はマテリアルジェッティング及びバインダージェッティングである。 Examples of the above layered manufacturing methods are the extrusion method, the inkjet method, and the selective laser sintering (SLS) method. An example of an extrusion method is FDM (Fused Deposition Modeling), also called material extrusion deposition method or fused deposition modeling method. Examples of inkjet methods are material jetting and binder jetting.
<他の樹脂の追加> <Addition of other resins>
 図1に示すように第1樹脂と、第2樹脂とを成形型Fmのキャビティの中に配置する。図と異なる他の態様において、これらの樹脂以外の第3樹脂をキャビティCvの中に配置する。その一態様において第1樹脂と第2樹脂との間に、第3樹脂をさらに配置する。係る態様において第3樹脂は第1樹脂の呈する色とも異なり、さらに第2樹脂の呈する色とも異なる色で予め着色されている。またさらに他の樹脂をキャビティCvの中に配置してもよい。 As shown in FIG. 1, the first resin and the second resin are placed in the cavity of the mold Fm. In another aspect different from the figure, a third resin other than these resins is arranged in the cavity Cv. In one aspect thereof, a third resin is further arranged between the first resin and the second resin. In such an aspect, the third resin is colored in advance with a color different from that of the first resin and also different from that of the second resin. Further, another resin may be placed in the cavity Cv.
<減圧による成形> <Molding by reduced pressure>
 図1に示す一態様において、輻射加熱器Rdは予め定めた強度、時間スケジュール、照射範囲に従って電磁波をキャビティCvに向けて照射する。一態様において電磁波は、波長760nm-1x106nmの赤外線、好ましくは波長780nm-2x103nmの近赤外線である。一態様において輻射加熱器Rdはハロゲンランプである。樹脂に赤外線、好ましくは近赤外線を照射することで樹脂にこれを吸収させる。これにより樹脂を加熱する。一態様において成形型Fmを構成する蓋Ld及び容器Ctは、プリフォーム11やプリフォーム12よりも近赤外線を透過しやすいゴムからなる。このようなゴムの例は透明又は半透明のシリコーンである。 In one embodiment shown in FIG. 1, the radiant heater Rd irradiates the cavity Cv with electromagnetic waves according to a predetermined intensity, time schedule, and irradiation range. In one aspect, the electromagnetic waves are infrared rays with a wavelength of 760 nm-1×10 6 nm, preferably near-infrared rays with a wavelength of 780 nm-2×10 3 nm. In one embodiment the radiant heater Rd is a halogen lamp. By irradiating the resin with infrared rays, preferably near-infrared rays, the resin is made to absorb the infrared rays. This heats the resin. In one aspect, the lid Ld and the container Ct that constitute the mold Fm are made of rubber that allows near-infrared rays to pass through more easily than the preforms 11 and 12 . Examples of such rubbers are transparent or translucent silicones.
 図1に示す他の態様において、輻射加熱器Rdの照射する電磁波は、波長1x105nm-1x109nmの、好ましくは波長1x107nm-1x109nmのマイクロ波である。一態様において輻射加熱器Rdはマイクロ波発振器である。樹脂にマイクロ波を照射することで樹脂にて誘電体損失を起こす。これにより樹脂を加熱する。成形型Fmを構成する蓋Ld及び容器Ctは、プリフォーム11やプリフォーム12よりも誘電体損失が少ないゴムからなる。成形型Fmを構成する蓋Ld及び容器Ctの誘電力率(誘電正接,tanδ)を、プリフォーム11やプリフォーム12の誘電力率よりも小さくする。 In another embodiment shown in FIG. 1, the electromagnetic waves emitted by the radiant heater Rd are microwaves with a wavelength of 1×10 5 nm-1×10 9 nm, preferably with a wavelength of 1×10 7 nm-1×10 9 nm. In one aspect, radiant heater Rd is a microwave oscillator. Dielectric loss occurs in resin by irradiating the resin with microwaves. This heats the resin. The lid Ld and the container Ct, which constitute the molding die Fm, are made of rubber with less dielectric loss than the preforms 11 and 12 . The dielectric power factor (dielectric loss tangent, tan δ) of the lid Ld and the container Ct constituting the mold Fm is made smaller than the dielectric power factors of the preforms 11 and 12 .
 図1において、電磁波による加熱によってプリフォーム11と、プリフォーム12とが溶融する。すでにキャビティCv内の各部分をプリフォーム11と、プリフォーム12とで占有している。したがって溶融した樹脂がそれらの部分を大きく超えて流れ出すことはない。 In FIG. 1, preforms 11 and 12 are melted by heating by electromagnetic waves. Each part in the cavity Cv is already occupied by the preform 11 and the preform 12 . Therefore, the melted resin does not flow far beyond these portions.
<減圧による成形> <Molding by reduced pressure>
 図1においてキャビティCvを真空ポンプVcで減圧する。溶融した樹脂が、樹脂と樹脂の隙間や樹脂とキャビティCvとの隙間に流れ込む。また蓋LdがキャビティCvに押し込まれる。これによりキャビティCvの中には隙間が無くなる。また好ましい態様においてプリフォーム11とプリフォーム12の内部からも隙間が無くなる。 In FIG. 1, the cavity Cv is evacuated by the vacuum pump Vc. The melted resin flows into the gap between the resins and the gap between the resin and the cavity Cv. Also, the lid Ld is pushed into the cavity Cv. As a result, there is no gap in the cavity Cv. Further, in a preferred embodiment, there is no gap from inside the preforms 11 and 12 as well.
 図1において、蓋Ld及び容器Ctからなる成形型Fmは、溶融したプリフォーム11とプリフォーム12とに対して、キャビティCvの形状が反転した形状を与える。キャビティCv内の樹脂を冷却することで形状を固定する。蓋Ldを容器Ctから取り外すとともに容器Ctから成形品を取り出す。 In FIG. 1, the mold Fm consisting of the lid Ld and the container Ct gives the melted preforms 11 and 12 a shape in which the shape of the cavity Cv is reversed. The shape is fixed by cooling the resin in the cavity Cv. The lid Ld is removed from the container Ct and the molded article is taken out from the container Ct.
<減圧による界面の形成> <Formation of interface by depressurization>
 図1に示すようにキャビティCvの中でプリフォーム11とプリフォーム12とを隣り合わせに配置する。これらのプリフォームの溶融後にキャビティCvを減圧することで、プリフォーム11とプリフォーム12との間の隙間に溶融した樹脂が流れ込む。これらのプリフォーム間の界面、図1においてキャビティCvの中心、にてこれらのプリフォームが接合する。係る界面は第1樹脂の色と第2樹脂の色との境界を成す。 As shown in FIG. 1, the preforms 11 and 12 are arranged side by side in the cavity Cv. By decompressing the cavity Cv after melting these preforms, the melted resin flows into the gap between the preforms 11 and 12 . At the interface between these preforms, the center of cavity Cv in FIG. 1, the preforms join. Such an interface forms a boundary between the color of the first resin and the color of the second resin.
 図1に示す態様と異なる態様において、第1樹脂をプリフォーム11に代えてペレットとすることができる。もしも成形後において第1樹脂の色と第2樹脂の色とが混ざり合うことでその境界が崩れる場合は、これをさらに改善することができる。例えば第1樹脂をプリフォーム11に代えることで色の混ざり合いを減らすとともに明瞭な境界を得てもよい。もしも第1樹脂にペレットを用いても、成形後の境界で色が混ざり合わない場合は、第1樹脂をペレットのままとする。これによりプリフォーム11を予め作製する工程を省くことができる。 In a mode different from the mode shown in FIG. 1, the first resin can be pellets instead of the preform 11 . If, after molding, the color of the first resin and the color of the second resin are mixed and the boundary between them collapses, this problem can be further improved. For example, the preform 11 may be substituted for the first resin to reduce color mixing and provide a clear boundary. Even if pellets are used as the first resin, if the colors do not mix at the boundary after molding, the pellets are used as the first resin. This makes it possible to omit the step of preparing the preform 11 in advance.
<減圧におけるプリフォーム表面の影響> <Influence of preform surface in reduced pressure>
 図1に示すように、キャビティCvの表面に対向するプリフォーム11及びプリフォーム12の表面は、キャビティCvの表面よりも粗い。一態様においてプリフォームの表面の算術平均粗さRaは、キャビティCvの表面の算術平均粗さRaよりも大きい。このような粗い表面は上述の積層造形において形成される。 As shown in FIG. 1, the surfaces of the preforms 11 and 12 facing the surface of the cavity Cv are rougher than the surface of the cavity Cv. In one aspect, the arithmetic mean roughness Ra of the surface of the preform is greater than the arithmetic mean roughness Ra of the surface of the cavity Cv. Such rough surfaces are formed in the additive manufacturing described above.
 図1に示すように、プリフォーム11及びプリフォーム12の粗い表面とキャビティCvの滑らかな表面との間にできる隙間を通じて、真空ポンプVcがキャビティCvの中の気体を吸い出す。これにより効率的に減圧する。第1樹脂をプリフォーム11に代えてペレットとした場合は、ペレットの間の隙間が気体を吸い出すための通路となる。 As shown in FIG. 1, the vacuum pump Vc sucks out the gas in the cavity Cv through the gap formed between the rough surfaces of the preforms 11 and 12 and the smooth surface of the cavity Cv. This effectively reduces the pressure. When pellets are used instead of the preform 11 as the first resin, the gaps between the pellets serve as passages for sucking out the gas.
 一例においてABSを積層造形することでプリフォームを作製できる。その積層ピッチを0.1mmとした場合、プリフォームの表面の算術平均粗さRaは4μmであった。積層ピッチを0.2mmとした場合、プリフォームの表面の算術平均粗さRaは6μmであった。 In one example, a preform can be produced by laminating ABS. When the lamination pitch was 0.1 mm, the arithmetic mean roughness Ra of the surface of the preform was 4 μm. When the lamination pitch was 0.2 mm, the surface arithmetic mean roughness Ra of the preform was 6 μm.
 図1においてキャビティCvの減圧がうまくいかない場合、キャビティCvの形状が反転した形状を成形体に与えられないことがある。またキャビティCvの減圧がうまくいかない場合、第1樹脂と第2樹脂との間の密着が得られないことがある。プリフォームの表面の算術平均粗さRaは6μm以上とすることで、これらを改善できる場合がある。 In FIG. 1, if the cavity Cv is not decompressed well, the shape of the cavity Cv may not be reversed to the molded body. Further, when the pressure reduction of the cavity Cv is not successful, it may not be possible to obtain close contact between the first resin and the second resin. By setting the arithmetic mean roughness Ra of the surface of the preform to 6 μm or more, these problems may be improved in some cases.
<呈色の境界周辺のペレットへの置き換え> <Replacement with pellets around the boundary of coloration>
 図2はプリフォーム11、プリフォーム12及び成形型Fmの断面を示す。先に述べた通りキャビティCvに配置される樹脂としてペレットを用いてもよい。本態様では第1樹脂及び第2樹脂のそれぞれの一部をプリフォームからペレットに置き換える。キャビティCvへの電磁波の照射、キャビティCvの減圧、キャビティCv内の樹脂の冷却は上述の通り行う。 FIG. 2 shows cross sections of the preform 11, the preform 12 and the mold Fm. As described above, pellets may be used as the resin placed in the cavity Cv. In this aspect, a part of each of the first resin and the second resin is replaced from the preform to pellets. Irradiation of electromagnetic waves to the cavity Cv, decompression of the cavity Cv, and cooling of the resin in the cavity Cv are performed as described above.
 図2に示すようにプリフォーム11及びプリフォーム12に加えて、ペレット14及びペレット15を、キャビティCvの中央に配置する。ペレット14及びペレット15はそれぞれペレット粒子の集合である。ペレット14はプリフォーム11及びペレット15の間に配置される。ペレット15はペレット14及びプリフォーム12の間に配置される。ペレット14はプリフォーム11と同色である。図に示す態様においてペレット14は透明である。ペレット15はプリフォーム12と同色である。 As shown in FIG. 2, in addition to the preforms 11 and 12, the pellets 14 and 15 are placed in the center of the cavity Cv. Pellets 14 and 15 are aggregates of pellet particles, respectively. Pellets 14 are placed between preform 11 and pellets 15 . Pellets 15 are positioned between pellets 14 and preforms 12 . Pellets 14 are the same color as preform 11 . In the illustrated embodiment the pellet 14 is transparent. Pellets 15 are the same color as preform 12 .
 図2に示す態様において、その成形の条件によってはペレット14及びペレット15が互いに溶けて混ざり合うことがある。したがって成形品の色分けの境界が不明瞭になることがある。図2に示す態様と異なる態様においてペレット14は用いなくてもよい。ペレット14が配置されていた空間をプリフォーム11で埋めてもよい。またペレット15は用いなくてもよい。ペレット15が配置されていた空間をプリフォーム12で埋めてもよい。このようにプリフォームとペレットとの境界を成形品における色分けの境界とすることは成形品の色分けの境界を明瞭にする上で役立つことがある。 In the embodiment shown in FIG. 2, the pellets 14 and 15 may be melted and mixed with each other depending on the molding conditions. Therefore, the boundaries of the color coding of the molded product may become unclear. Pellets 14 may not be used in embodiments different from the embodiment shown in FIG. The space in which the pellets 14 were placed may be filled with the preforms 11 . Also, the pellet 15 may not be used. The space in which the pellets 15 were placed may be filled with the preforms 12 . Using the boundary between the preform and the pellet as the color-coding boundary of the molded product in this way may help clarify the color-coding boundary of the molded product.
 図1において、もしも成形後において第1樹脂と第2樹脂との間の接合がその境界で壊れやすい場合は、これをさらに改善することができる。例えば図2に示すように第1樹脂のプリフォーム12に近い側をペレット14に代える。またプリフォーム11に近い側をペレット15に代える。これにより第1樹脂と第2樹脂との間の接合の強度を高める。ペレットを利用しても第1樹脂と第2樹脂との間の接合の強度が高まらない場合は、第1樹脂又は第2樹脂にペレットを用いなくてもよい。又は図1に示すようにその両方でペレットを用いなくともよい。これによりキャビティCvの中で第1樹脂及び第2樹脂を正確な位置に配置することが容易になる。 In FIG. 1, if the bond between the first resin and the second resin is fragile at the boundary after molding, this can be further improved. For example, as shown in FIG. 2, the side of the first resin closer to the preform 12 is replaced with pellets 14 . Also, the side close to the preform 11 is replaced with the pellet 15 . This increases the bonding strength between the first resin and the second resin. If the strength of the bond between the first resin and the second resin cannot be increased by using the pellets, the pellets may not be used for the first resin or the second resin. Or both without pellets as shown in FIG. This facilitates placing the first resin and the second resin at accurate positions in the cavity Cv.
<作製例> <Production example>
 図3は図1に示す方法によって作製した成形品M01と、図2に示す方法によって作製した成形品M02の写真を示す。いずれの成形品においても透明な第1樹脂と着色された第2樹脂との色分けの境界は明瞭であった。またいずれの成形品においても色分けの境界付近の機械強度は同等であった。 FIG. 3 shows photographs of the molded product M01 produced by the method shown in FIG. 1 and the molded product M02 produced by the method shown in FIG. In any molded product, the boundary between the transparent first resin and the colored second resin was clear. In addition, the mechanical strength near the color-coded boundaries was the same for all molded products.
<プリフォームの塗装> <Preform painting>
 図4はプリフォーム11及び成形型Fmの断面を示す。本態様では、樹脂の内部に呈色成分を混合しなくても成形品を色分けできることを示す。第1樹脂として透明のペレット14を用いる。第2樹脂として透明のプリフォーム11を用いる。予めプリフォーム11の表面に塗装17を付与することでプリフォーム11を着色する。一態様において塗装17は顔料からなる。一態様において顔料はセラミックス粉末である。一態様においてセラミックス粉末は黒色である。 FIG. 4 shows a cross section of the preform 11 and the mold Fm. This embodiment shows that the molded product can be color-coded without mixing a coloring component inside the resin. A transparent pellet 14 is used as the first resin. A transparent preform 11 is used as the second resin. The preform 11 is colored by applying a coating 17 to the surface of the preform 11 in advance. In one embodiment, coating 17 comprises pigment. In one aspect the pigment is a ceramic powder. In one aspect, the ceramic powder is black.
 図4に示すようにプリフォーム11の塗装された表面、すなわち塗装17をキャビティCvの表面に向けた状態でキャビティCvの中にプリフォーム11を配置する。キャビティCvへの電磁波の照射、キャビティCvの減圧、キャビティCv内の樹脂の冷却は上述の通り行う。 As shown in FIG. 4, the preform 11 is placed in the cavity Cv with the coated surface of the preform 11, that is, the coating 17 facing the surface of the cavity Cv. Irradiation of electromagnetic waves to the cavity Cv, decompression of the cavity Cv, and cooling of the resin in the cavity Cv are performed as described above.
 図4に示す態様と異なる態様においてプリフォーム11及びペレット14の少なくともいずれかの樹脂の内部に予め呈色成分を混合されていてもよい。呈色成分は塗装17と同じ色でもよく、異なる色でもよい。プリフォーム11に混合された呈色成分は、ペレット14に混合された呈色成分と同じ色でもよく、異なる色でもよい。 In a mode different from that shown in FIG. 4, a coloring component may be mixed in advance in the resin of at least one of the preform 11 and the pellets 14 . The coloring component may be the same color as the coating 17, or may be a different color. The coloration component mixed in the preform 11 may have the same color as the coloration component mixed in the pellet 14, or may have a different color.
 図1及び図2に示す一態様において、プリフォームの表面には予め塗装をしない。この場合塗装がキャビティに付着することはない。 In one embodiment shown in FIGS. 1 and 2, the surface of the preform is not pre-coated. In this case, the paint will not adhere to the cavity.
<ウィンドシールド> <Wind Shield>
 図5は、並べられたプリフォーム12、プリフォーム13及びペレット14を平面視したものである。本態様ではこれら3種の樹脂を用いて自動車のウィンドシールドを作製する。 FIG. 5 is a plan view of the preforms 12, 13, and pellets 14 arranged side by side. In this embodiment, these three types of resins are used to produce windshields for automobiles.
 図5に示すように第1樹脂は敷き詰められたペレット14である。第1樹脂でウィンドシールドの中央の透明部分を形成する。第2樹脂はプリフォーム13とペレット14を取り囲むプリフォーム12である。第2樹脂でウィンドシールドの縁にある、ウィンドシールドの枠との接合部分を形成する。係る接合部分はコーキングを紫外線から遮蔽する。第3樹脂はプリフォーム13である。第3樹脂の可視光の透過率は、第2樹脂のそれよりも高い。第1樹脂は透明である。第3樹脂でウィンドシールドのトップシェードを形成する。 As shown in FIG. 5, the first resin is pellets 14 that are spread out. A first resin forms the central transparent portion of the windshield. The second resin is preform 12 surrounding preform 13 and pellet 14 . A second resin forms the interface with the frame of the windshield at the edge of the windshield. Such a joint shields the caulk from UV rays. The third resin is preform 13 . The visible light transmittance of the third resin is higher than that of the second resin. The first resin is transparent. A third resin forms the top shade of the windshield.
 図5において、プリフォーム12とペレット14とともにプリフォーム13を不図示の成形型の不図示のキャビティに配置する。キャビティへの電磁波の照射、キャビティの減圧、キャビティ内の樹脂の冷却は上述の通り行う。プリフォーム12とプリフォーム13とをそれらの界面にて接合する。プリフォーム13とペレット14とをそれらの界面にて接合する。 In FIG. 5, the preform 13 together with the preform 12 and pellets 14 are placed in a cavity (not shown) of a mold (not shown). Irradiation of electromagnetic waves to the cavity, decompression of the cavity, and cooling of the resin in the cavity are performed as described above. The preform 12 and the preform 13 are joined at their interface. The preform 13 and pellet 14 are joined at their interface.
 図5に示すウィンドシールド以外にも、上記樹脂成形方法によって車両の外装部品例えばバンパーや、内装部品例えばインスツルメントパネル及びドアトリムを作製できる。またこれらの部品に対して樹脂の色分けを適用できる。 In addition to the windshield shown in FIG. 5, vehicle exterior parts such as bumpers and interior parts such as instrument panels and door trims can be produced by the resin molding method. In addition, resin color coding can be applied to these parts.
11-13 プリフォーム, 14-15 ペレット, 17 塗装, Ct 容器, Cv キャビティ, Fm 成形型, Ld 蓋, M01-M02 成形品, Rd 輻射加熱器, Vc 真空ポンプ 11-13 preform, 14-15 pellet, 17 coating, Ct container, Cv cavity, Fm mold, Ld lid, M01-M02 molded product, Rd radiant heater, Vc vacuum pump

Claims (9)

  1.  樹脂からなるプリフォームと他の樹脂とを成形型の中で加熱することでこれらを一体に成形する樹脂成形方法であって、
     第1樹脂と、第2樹脂を構成するとともに前記第1樹脂の呈する色とは異なる色で予め着色されたプリフォームとを成形型のキャビティの中に配置し、
     前記キャビティに向けて電磁波で照射することで前記第1樹脂と前記プリフォームとを溶融し、
     前記キャビティを減圧することで、溶融した前記第1樹脂と溶融した前記プリフォームとに対して前記キャビティの形状が反転した形状を与える、
     樹脂成形方法。
    A resin molding method in which a preform made of resin and another resin are heated in a mold to integrally mold them,
    disposing a first resin and a preform that constitutes a second resin and is pre-colored with a color different from the color exhibited by the first resin in a mold cavity;
    melting the first resin and the preform by irradiating the cavity with an electromagnetic wave;
    By depressurizing the cavity, the shape of the cavity is inverted with respect to the molten first resin and the molten preform.
    Resin molding method.
  2.  前記キャビティの中で前記第1樹脂と前記プリフォームとを隣り合わせに配置し、
     前記キャビティを減圧することで、前記第1樹脂と前記プリフォームとをそれらの界面にて接合する、
     請求項1に記載の樹脂成形方法。
    disposing the first resin and the preform side by side in the cavity;
    By decompressing the cavity, the first resin and the preform are joined at their interface;
    The resin molding method according to claim 1.
  3.  前記第1樹脂の呈する前記色とは異なる色で着色された樹脂を積層造形することで前記プリフォームを作製する、
     請求項1又は2に記載の樹脂成形方法。
    Producing the preform by laminating a resin colored in a color different from the color exhibited by the first resin,
    The resin molding method according to claim 1 or 2.
  4.  さらに前記第1樹脂のプリフォームを積層造形で作製し、
     各プリフォームの粗い表面と前記キャビティの滑らかな表面との間にできる隙間を通じて前記キャビティの中の気体を吸い出すことで前記キャビティを減圧するところ、
     各プリフォームの積層造形の積層ピッチは0.2mm以上であり、
     前記キャビティの表面に対向する各プリフォームの表面の算術平均粗さRaは、前記キャビティの表面の算術平均粗さRaよりも大きい、
     請求項3に記載の樹脂成形方法。
    Furthermore, a preform of the first resin is produced by lamination molding,
    depressurizing the cavities by drawing gas in the cavities through the gap between the rough surface of each preform and the smooth surface of the cavities;
    The lamination pitch of lamination manufacturing of each preform is 0.2mm or more,
    The arithmetic mean roughness Ra of the surface of each preform facing the surface of the cavity is greater than the arithmetic mean roughness Ra of the surface of the cavity.
    The resin molding method according to claim 3.
  5.  ペレットの集合からなる前記第1樹脂と前記プリフォームからなる前記第2樹脂とを前記キャビティの中に配置し、
     前記プリフォームの粗い表面と前記キャビティの滑らかな表面との間にできる隙間を通じて前記キャビティの中の気体を吸い出すことで前記キャビティを減圧するところ、
     前記プリフォームの積層造形の積層ピッチは0.2mm以上であり、
     前記キャビティの表面に対向する前記プリフォームの表面の算術平均粗さRaは、前記キャビティの表面の算術平均粗さRaよりも大きい、
     請求項3に記載の樹脂成形方法。
    disposing the first resin consisting of a set of pellets and the second resin consisting of the preform in the cavity;
    depressurizing the cavity by drawing gas in the cavity through a gap between the rough surface of the preform and the smooth surface of the cavity;
    The lamination pitch of lamination molding of the preform is 0.2 mm or more,
    The arithmetic mean roughness Ra of the surface of the preform facing the surface of the cavity is greater than the arithmetic mean roughness Ra of the surface of the cavity,
    The resin molding method according to claim 3.
  6.  前記プリフォームの前記表面の前記算術平均粗さRaは6μm以上である、
     請求項4に記載の樹脂成形方法。
    The arithmetic mean roughness Ra of the surface of the preform is 6 μm or more,
    The resin molding method according to claim 4.
  7.  前記プリフォームの表面を塗装することで前記プリフォームを着色し、
     前記プリフォームの塗装された表面を前記キャビティの前記表面に向けた状態で前記キャビティの中に前記プリフォームを配置する、
     請求項1又は2に記載の樹脂成形方法。
    coloring the preform by painting the surface of the preform;
    placing the preform in the cavity with the painted surface of the preform facing the surface of the cavity;
    The resin molding method according to claim 1 or 2.
  8.  ウィンドシールドを作製するために行う前記樹脂成形方法であって、
     前記第1樹脂でウィンドシールドの中央の透明部分を形成し、前記第2樹脂で前記ウィンドシールドの縁を形成し、第3樹脂で前記ウィンドシールドのトップシェードを形成するように、前記キャビティの中にこれらの樹脂を配置し、
     前記第3樹脂は、前記第1樹脂の呈する前記色とも異なり、さらに前記第2樹脂の呈する色とも異なる色で予め着色されているとともに、前記第2樹脂よりも可視光の透過率が高く、
     前記第1樹脂及び前記第2樹脂とともに、前記電磁波により前記第3樹脂を溶融し、
     前記キャビティの減圧により、前記キャビティの形状が反転した形状を前記第3樹脂に与える、
     請求項1~7のいずれかに記載の樹脂成形方法。
    The resin molding method for producing a windshield,
    within the cavity such that the first resin forms the central transparent portion of the windshield, the second resin forms the edge of the windshield, and the third resin forms the top shade of the windshield. Place these resins in the
    The third resin is colored in advance with a color different from the color exhibited by the first resin and also different from the color exhibited by the second resin, and has a higher visible light transmittance than the second resin,
    melting the third resin together with the first resin and the second resin by the electromagnetic wave;
    Depressurization of the cavity gives the third resin a shape that is the inverse of the shape of the cavity;
    The resin molding method according to any one of claims 1 to 7.
  9.  さらに他の樹脂を前記キャビティの中に配置する、
     請求項1~8のいずれかに記載の樹脂成形方法。
    placing additional resin in the cavity;
    The resin molding method according to any one of claims 1 to 8.
PCT/JP2022/028311 2021-08-02 2022-07-21 Resin molding method WO2023013428A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-126510 2021-08-02
JP2021126510A JP2023021568A (en) 2021-08-02 2021-08-02 Resin molding method

Publications (1)

Publication Number Publication Date
WO2023013428A1 true WO2023013428A1 (en) 2023-02-09

Family

ID=85155575

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/028311 WO2023013428A1 (en) 2021-08-02 2022-07-21 Resin molding method

Country Status (2)

Country Link
JP (1) JP2023021568A (en)
WO (1) WO2023013428A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002274892A (en) * 2001-03-23 2002-09-25 Central Glass Co Ltd Automotive window glass having shade band
JP2011140218A (en) * 2009-12-10 2011-07-21 Techno Polymer Co Ltd Method for molding thermoplastic resin molded article
JP2020183110A (en) * 2019-04-26 2020-11-12 株式会社micro−AMS Resin molding method
JP2020183109A (en) * 2019-04-26 2020-11-12 株式会社micro−AMS Resin molding method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002274892A (en) * 2001-03-23 2002-09-25 Central Glass Co Ltd Automotive window glass having shade band
JP2011140218A (en) * 2009-12-10 2011-07-21 Techno Polymer Co Ltd Method for molding thermoplastic resin molded article
JP2020183110A (en) * 2019-04-26 2020-11-12 株式会社micro−AMS Resin molding method
JP2020183109A (en) * 2019-04-26 2020-11-12 株式会社micro−AMS Resin molding method

Also Published As

Publication number Publication date
JP2023021568A (en) 2023-02-14

Similar Documents

Publication Publication Date Title
EP3326786B1 (en) Method and device for manufacturing a shaped object
EP3389917B1 (en) Methods of making plastic-metal junctions via laser
RU2299808C2 (en) Method of production of the plastic window glass with the electroconductive structure and the plastic window glass with the built-in wires
EP3681720B1 (en) Additive manufacturing system
CA1325964C (en) Reinforced composite and method of manufacture
US20110220566A1 (en) Method for Manufacturing a Filter End Disc and a Fluid Filter, Filter End Disc
JP2001525741A (en) Method for preforming a plastic film used in a co-molding process and a member coated with an improved paint film produced using the method
WO2023013428A1 (en) Resin molding method
JP7137228B2 (en) Resin molding method
JP7137229B2 (en) Resin molding method
JP2018034336A (en) Manufacturing method of decorative resin product
EP3848181A1 (en) Coated filament for improved additive manufacturing parts
KR101408413B1 (en) Manufacturing method and apparatus for a hollow molded part
EP3802064B1 (en) Process for shaping a polymeric object
WO2020217822A1 (en) Resin molding method
KR101828486B1 (en) Film insert molding resin parts be employed hybrid printing and manufacturing method thereof
CN113573865B (en) Resin molding method
WO2017149395A1 (en) Glass filler-reinforced solid resin
TW202227251A (en) Method for manufacturing resin compact
JP7137227B2 (en) Preforming apparatus, preforming method, resin molding system, and resin molding method
JP5430229B2 (en) Method for manufacturing plastic spectacle front frame
EP3848184B1 (en) Coated sheets for improved additive manufacturing parts
US20220281180A1 (en) Method of Making a Thick Article
WO2024070183A1 (en) Resin molded body and method for producing resin molded body
JPS61242830A (en) Molding of skin material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22852852

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE