WO2023013243A1 - Light-guide plate and light-emitting module - Google Patents

Light-guide plate and light-emitting module Download PDF

Info

Publication number
WO2023013243A1
WO2023013243A1 PCT/JP2022/023173 JP2022023173W WO2023013243A1 WO 2023013243 A1 WO2023013243 A1 WO 2023013243A1 JP 2022023173 W JP2022023173 W JP 2022023173W WO 2023013243 A1 WO2023013243 A1 WO 2023013243A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
transmitting
layer
layers
convex
Prior art date
Application number
PCT/JP2022/023173
Other languages
French (fr)
Japanese (ja)
Inventor
翔一 竹島
挙史 藤井
Original Assignee
セーレン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セーレン株式会社 filed Critical セーレン株式会社
Publication of WO2023013243A1 publication Critical patent/WO2023013243A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S2/00Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V19/00Fastening of light sources or lamp holders
    • F21V19/02Fastening of light sources or lamp holders with provision for adjustment, e.g. for focusing

Definitions

  • An embodiment of the present invention relates to a light guide plate and a light emitting module using the light guide plate.
  • Patent Literature 1 discloses that, in a decorative sheet having a design with a decorative layer, the design is improved by partially causing the surface of the decorative sheet to emit light.
  • the decorative sheet described in Patent Document 1 includes a high refractive index resin layer, a light diffusion layer provided on the back surface of the high refractive index resin layer, and a low refractive index resin layer on the surface of the high refractive index resin layer. and a decorative layer provided via.
  • the purpose of the present embodiment is to provide a light guide plate and a light emitting module using the light guide plate, which can express brilliance by locally increasing the brightness of light emission that varies depending on the viewing angle.
  • the light guide plate according to the present embodiment is composed of: a light-transmitting base material having light-transmitting properties; and a resin having light-transmitting properties. a plurality of light-transmitting convex layers each having a light exit surface formed by a curved surface; made of a resin containing light scattering particles, the plurality of light-transmitting convex layers being overlapped with the light-transmitting substrate interposed therebetween; a plurality of light-scattering layers provided on the other surface of the translucent substrate facing the one surface; In the light guide plate, a plurality of kinds of light-transmitting convex layers having different sizes and/or heights are mixed.
  • FIG. 2 is a schematic plan view of the same light-emitting module, and (A) is an enlarged view of a part thereof; III-III line sectional view of FIG. IV-IV line sectional view of FIG. VV line sectional view of FIG. Schematic cross-sectional view showing the incident and outgoing states of light in the same light-emitting module Schematic cross-sectional view showing an example in which the light-transmitting convex layer is shifted with respect to the light-scattering layer Schematic plan view corresponding to FIG.
  • Partial enlarged cross-sectional schematic diagram of the light guide plate according to the second embodiment Partially enlarged cross-sectional schematic diagram of the light guide plate according to the third embodiment
  • Schematic cross-sectional view of a light-emitting module according to a fourth embodiment Schematic diagram showing a part of an arrangement example of a light-transmitting convex layer in an example
  • the surface of the light guide plate means the surface (main design surface) that is mainly visible to the human eye during use (that is, when used as a light emitting module), out of the front and back surfaces of the light guide plate.
  • the back surface of the light guide plate means the surface opposite to the front surface.
  • the surface of the light-transmitting substrate refers to the surface of the front and back surfaces of the light-transmitting substrate that faces in the same direction as the surface of the light guide plate.
  • the back surface of the translucent base means the surface opposite to the front surface of the translucent base.
  • the light emitting module 10 As shown in FIGS. 1 and 2, the light emitting module 10 according to the first embodiment includes a light guide plate 12 and a light source 14. As shown in FIG.
  • the light guide plate 12 includes a light-transmitting base material 16 , a plurality of light-transmitting convex layers 18 and a plurality of light scattering layers 20 .
  • the light guide plate is not limited to a plate-like plate in the usual sense, but also includes a plate having a small thickness such as a sheet or a film.
  • the translucent base material 16 is a substrate forming the main body of the light guide plate 12 and has translucency.
  • the term “light-transmitting” refers to light-transmitting properties, that is, the ability to transmit light, and is not limited to being colorless and transparent. There may be.
  • the translucent substrate 16 is preferably colorless and transparent.
  • the translucent base material 16 has a surface 16A, a back surface 16B facing the surface 16A, and side surfaces 16C.
  • the side surface 16C is a surface along the thickness direction at the edge of the translucent base material 16 .
  • Side 16C may be perpendicular to front surface 16A and back surface 16B, but may also be slanted.
  • the material of the translucent base material 16 is not particularly limited, and may be resin or glass.
  • the translucent base material 16 includes, for example, polycarbonate resin (PC); polyester resin such as polyethylene terephthalate (PET); acrylic resin such as polymethyl methacrylate (PMMA); polystyrene resin, acrylonitrile-styrene Styrenic resins such as polymer resins (AS resins) and acrylonitrile-butadiene-styrene copolymers (ABS); polyolefin resins such as polyethylene and polypropylene; and resin sheets made of blends of two or more of these.
  • a glass plate made of, for example, lead glass or soda-lime glass may be used.
  • a resin sheet made of a thermoplastic resin is preferably used as the translucent base material 16 .
  • the translucent base material 16 serves as the main body of the light guide plate 12 to spread the light incident from the side surface 16C over the entire area. That is, the light incident from the side surface 16C of the light-transmitting base material 16 is totally reflected at the interface between the front and back surfaces of the light-transmitting base material 16, is confined in the light-transmitting base material 16, and propagates sideways. Therefore, it is preferable that the translucent base material 16 has a high refractive index.
  • the refractive index (absolute refractive index) of the translucent base material 16 is not particularly limited, but may be, for example, 1.40 to 1.70 or 1.50 to 1.60.
  • the refractive index is the refractive index of light (D line) with a wavelength of 589 nm. Measured in °C.
  • the thickness of the translucent base material 16 is not particularly limited, and may be, for example, 0.1 to 3.0 mm, 0.5 to 2.5 mm, or 1.0 to 2.0 mm.
  • the translucent convex layer 18 is a resin layer made of translucent resin, and may be colorless and transparent or colored and transparent.
  • the resin that forms the light-transmitting convex layer 18 include acrylic resins such as polymethyl methacrylate (PMMA) and urethane acrylate resin; polystyrene resin, acrylonitrile-styrene copolymer resin (AS resin), acrylonitrile-styrene-butadiene.
  • Styrenic resins such as copolymer resins (ABS resins); polyolefin resins such as polyethylene and polypropylene; or blends of two or more of these.
  • the light-transmitting convex layer 18 preferably does not contain light scattering particles.
  • the refractive index (absolute refractive index) of the light-transmitting convex layer 18 is not particularly limited, and may be higher than that of the light-transmitting substrate 16, lower than that of the light-transmitting substrate 16, or the same value.
  • the refractive index of the translucent convex layer 18 may be, for example, 1.35 to 1.65 or 1.40 to 1.55.
  • the light-transmitting convex layer 18 is provided in a convex shape on either the front surface 16A or the back surface 16B of the light-transmitting substrate 16 (hereinafter referred to as the first surface). That is, the translucent convex layer 18 is provided as a convex layer that partially covers the first surface.
  • the “convex shape” of the light-transmitting convex layer 18 means that the first surface (that is, the reference surface on which the light-transmitting convex layer 18 is provided) is raised with a bulge due to a curved surface.
  • the height is not particularly limited as long as it is relatively high with respect to .
  • "convex” refers to a shape with a raised center.
  • the light-transmitting convex layers 18 are scattered on the first surface. Dotting means that a plurality of dotted (dot-shaped) light-transmitting convex layers 18 are present.
  • the light-transmitting convex layer 18 is provided in contact with the surface 16A of the light-transmitting substrate 16, that is, directly laminated on the surface 16A.
  • the light-transmitting convex layer 18 may be distributed over the entire first surface of the light-transmitting substrate 16, or may be locally disposed. By arranging a plurality of dotted light-transmitting convex layers 18 at predetermined positions on the first surface, a design consisting of a pattern, a figure, a character, a symbol, or a combination of two or more of these can be created in a crystal tone. It can be expressed by luminescence.
  • the light-transmitting convex layer 18 has a light emitting surface 18B for emitting light incident from its bottom surface 18A.
  • the light emitting surface 18B is the surface of the light-transmitting convex layer 18 that protrudes convexly from the first surface (surface 16A) of the light-transmitting substrate 16 and is exposed to the outside. is the surface forming the interface of
  • the bottom surface 18A of the light-transmitting convex layer 18 is the surface facing the vertex of the light-transmitting convex layer 18, and in this example, the surface in contact with the light-transmitting base material 16 (the interface between the light-transmitting convex layer 18 and the light-transmitting base material 16).
  • Each light exit surface 18B of the plurality of light-transmitting convex layers 18 is formed by a curved surface.
  • “formed by a curved surface” includes not only a mode in which the light exit surface 18B is formed only by a curved surface, but also a mode in which a plane is partially included. It is preferable that the light exit surface 18B is mainly formed by a curved surface. As a result, the light emitted from the light emitting surface 18B is diffused, and the effect that the appearance of the emitted light differs depending on the viewing angle can be enhanced.
  • the area ratio of the curved surface in the light exit surface 18B is 80% or more. That is, in one embodiment, each light exit surface 18B preferably has a curved surface area ratio of 80% or more and a flat surface area ratio of 20% or less. More preferably, the area ratio of the curved surface is 100% as shown in FIGS.
  • Each light exit surface 18B of the plurality of light-transmitting convex layers 18 is formed by one or more curved surfaces.
  • the light emitting surface 18B of the translucent convex layer 18 enlarged in FIG. 3 is formed by a single curved surface.
  • the light-transmitting convex layer 18 in FIG. 3 has a plano-convex lens shape in which the bottom surface 18A, which is one surface thereof, is flat, and the light emitting surface 18B, which is the other surface, is a curved convex surface.
  • the light-transmitting convex layers 18 having the light emitting surface 18B made of a single curved surface may be provided independently, but as shown in FIG. may When the distance between the light-scattering layers 20 is narrow and the light-transmitting convex layers 18 are formed larger than the light-scattering layers 20, the plurality of light-transmitting convex layers 18 may be connected in this way.
  • a light emitting surface 18B of the light-transmitting convex layer 18 shown enlarged in FIG. 5 is formed of a plurality of curved surfaces.
  • the light-transmitting convex layer 18 in FIG. 5 has a shape in which a smaller plano-convex lens-like convex portion is provided on a plano-convex lens-like convex portion.
  • the translucent convex layer 18 may have a shape in which a plurality of convex dots are superimposed.
  • the light-transmitting convex layer 18 preferably has a curved surface shape and a convex shape that is formed high from the peripheral edge toward the center, and has a circular bottom surface 18A when viewed from above.
  • the shape is not limited to this, and may be rectangular or triangular in plan view, and various shapes can be adopted.
  • the shape in plan view may have a complicated shape in which dots formed by inkjet printing are superimposed.
  • the size of the translucent convex layer 18 is not particularly limited, and for example, the equivalent circle diameter of the bottom surface 18A may be 20 to 150 ⁇ m, or 30 to 100 ⁇ m.
  • the equivalent circle diameter is the diameter of a perfect circle corresponding to the area of the bottom surface. Therefore, the area of the bottom surface 18A of the translucent convex layer 18 may be, for example, 300-18000 ⁇ m 2 or 700-8000 ⁇ m 2 .
  • the height H (see FIG. 3) of the translucent convex layer 18 is not particularly limited, and may be, for example, 1 to 30 ⁇ m or 3 to 15 ⁇ m.
  • the height H of the translucent convex layer 18 is the distance from the bottom surface 18A of the translucent convex layer 18 to the top.
  • the ratio of the height to the equivalent circle diameter of the translucent convex layer 18 is not particularly limited, and may be 1/20 to 1/3 or 1/10 to 1/4.
  • the arrangement density of the light-transmitting convex layers 18 is not particularly limited. It may be 1,000, 1,000 to 12,000, or 4,000 to 10,000.
  • the method for forming the light-transmitting convex layer 18 is not particularly limited, it is preferable to form the light-transmitting convex layer 18 by printing such as inkjet printing. More preferably, the plurality of light-transmitting convex layers 18 are formed by printing (preferably inkjet printing) using a photocurable resin such as an ultraviolet curable resin.
  • the light-transmitting convex layer 18 When the light-transmitting convex layer 18 is formed by inkjet printing, by adjusting the viscosity of the ink, the light-transmitting convex layer 18 having the light emitting surface 18B having the curved surface as described above can be formed.
  • the viscosity of the ink in that case is not particularly limited, and may be, for example, 13 to 20 mPa ⁇ s or 15 to 18 mPa ⁇ s.
  • the viscosity is a measured value at 25° C. measured by a cone-plate type viscometer RE105H (manufactured by Toki Sangyo Co., Ltd.).
  • the light scattering layer 20 is a resin layer made of resin containing light scattering particles.
  • a plurality of light scattering layers 20 are provided on the other surface (hereinafter referred to as the second surface) facing the one surface (first surface) of the translucent base material 16 . That is, a plurality of light scattering layers 20 are provided as layers that partially cover the second surface.
  • the light scattering layers 20 are scattered on the second surface in the same manner as the light-transmitting convex layer 18 on the first surface side.
  • the light scattering layer 20 is provided in partial contact with the second surface.
  • the light confined within the translucent base material 16 by total reflection and propagating is scattered by the light scattering particles. That is, the light is diffusely reflected and emitted at various angles, and the light travels at an angle (less than the critical angle) that is nearly perpendicular to the first surface facing the second surface. Since such light is not totally reflected, it is emitted from the first surface and thus can be extracted from the light guide plate 12 .
  • the light scattering layer 20 is provided in contact with the back surface 16B of the translucent substrate 16, that is, directly laminated on the back surface 16B. Therefore, the light traveling through the translucent base material 16 is scattered by the light scattering particles of the light scattering layer 20 on the back surface 16B side. As a result, light traveling at an angle less than the critical angle with respect to the surface 16A is generated, and at least part of it enters the translucent convex layer 18 provided on the surface 16A side.
  • each light scattering layer 20 is not particularly limited. It may have a complex shape that is superimposed.
  • the surface of the light scattering layer 20 may be formed with a curved surface, similar to the light-transmitting convex layer 18 . However, it does not have to be formed by a curved surface, and may have a flat cross-sectional shape with a constant thickness (height), for example.
  • the bottom surface of the light scattering layer 20 is the surface in contact with the translucent base material 16 (the interface between the light scattering layer 20 and the translucent base material 16).
  • the size of the light scattering layer 20 is not particularly limited.
  • the equivalent circle diameter of the bottom surface may be 20 to 150 ⁇ m, or 30 to 100 ⁇ m.
  • the thickness (height) of the light scattering layer 20 is not particularly limited, and may be, for example, 0.5 to 15 ⁇ m or 1 to 10 ⁇ m.
  • the equivalent circle diameter is the diameter of a perfect circle corresponding to the area of the bottom surface.
  • the arrangement density of the light scattering layers 20 is not particularly limited.
  • the number of light scattering layers 20 per 1 cm 2 is 800 to 15,000. , 1,000 to 12,000, or 4,000 to 10,000.
  • the light scattering particles contained in the light scattering layer 20 various fine particles having the effect of scattering light can be used.
  • the light-scattering particles include titanium oxide, calcium carbonate, glass beads, and aluminum powder, and any one of these may be used alone or in combination of two or more.
  • titanium oxide has a high refractive index and is therefore excellent in the effect of improving luminance.
  • it is scaly titanium oxide, it diffusely reflects light on the reflecting surface, so that it is possible to locally enhance the luminescence effect of high brightness and glitter.
  • the refractive index of the light scattering particles is not particularly limited, it is preferably higher than the light refractive index of the matrix resin forming the light scattering layer 20. For example, it may be 1.5 to 2.8, or 2.0 to 2.0. 7 is fine.
  • the particle size of the light scattering particles is not particularly limited, and for example, the 50% volume particle size (D50) may be 100 to 4000 nm or 200 to 800 nm.
  • the resin (matrix resin) forming the light scattering layer 20 is not particularly limited, and examples include acrylic resins such as polymethyl methacrylate (PMMA) and urethane acrylate resins; resins), acrylonitrile-styrene-butadiene copolymer resins (ABS resins); polyolefin resins such as polyethylene and polypropylene; or blends of two or more of these.
  • acrylic resins such as polymethyl methacrylate (PMMA) and urethane acrylate resins
  • resins acrylonitrile-styrene-butadiene copolymer resins
  • polyolefin resins such as polyethylene and polypropylene
  • the method of forming the light scattering layer 20 is not particularly limited, and the light scattering layer 20 may be formed by printing such as inkjet printing, for example.
  • the plurality of light scattering layers 20 are formed by printing (preferably inkjet printing) using a photocurable resin such as an ultraviolet curable resin.
  • the viscosity of the ink is not particularly limited, and may be, for example, 7 to 13 mPa ⁇ s or 10 to 13 mPa ⁇ s.
  • the viscosity is a measured value at 25° C. measured by a cone-plate type viscometer RE105H (manufactured by Toki Sangyo Co., Ltd.).
  • the plurality of light scattering layers 20 are provided so as to overlap with the plurality of light-transmitting convex layers 18 with the light-transmitting substrate 16 interposed therebetween.
  • the light scattering layer 20 overlaps the light-transmitting convex layers 18 corresponding to each of the plurality of light-transmitting convex layers 18 provided on the surface 16A of the light-transmitting substrate 16 (that is, in one-to-one correspondence). is provided on the rear surface 16B of the translucent base material 16 .
  • the light scattered by the light scattering layer 20 is transmitted through the light-transmitting substrate 16 in the thickness direction and enters the light-transmitting convex layer 18 from the bottom surface 18A of the light-transmitting convex layer 18.
  • the light-transmitting convex layer 18 may be provided so as to entirely overlap the corresponding light-scattering layer 20 with the light-transmitting substrate 16 interposed therebetween. That is, the amount of overlap between the light-transmitting convex layer 18 and the light scattering layer 20 corresponding to the light-transmitting convex layer 18 is 100% of the area of the light scattering layer 20 when viewed from the direction perpendicular to the surface 16A of the light-transmitting substrate 16. It's okay. However, it is not necessary to overlap the whole like this, and the light-transmitting convex layer 18 may at least partially overlap the corresponding light-scattering layer 20 .
  • FIG. 7 is a schematic cross-sectional view of an embodiment in which the light-transmitting convex layers 18 overlap the corresponding light-scattering layers 20 so that their positions are shifted from each other.
  • FIG. 8 is a schematic plan view thereof. By displacing them in this manner, the amount of overlap varies greatly depending on the viewing angle from the front side, and the sparkling effect can be enhanced.
  • a mixture of a light-transmitting convex layer 18 provided so as to overlap the light scattering layer 20 in its entirety and a light-transmitting convex layer 18 provided so as to partially overlap the light scattering layer 20 It is possible to further enhance the sparkling effect.
  • the amount of overlap between each light-transmitting convex layer 18 of the plurality of light-transmitting convex layers 18 and the light scattering layer 20 corresponding to the light-transmitting convex layer 18 is set as follows. That is, the overlapping amount is preferably 30% or more, more preferably 50% or more, and still more preferably 70% of the area of the light scattering layer 20 when viewed from the direction perpendicular to the surface 16A of the translucent substrate 16. % or more. As a result, the light scattered by the light scattering layer 20 can effectively enter the translucent convex layer 18 .
  • the amount of overlap between the light-transmitting convex layer 18 and the light scattering layer 20 is the overlapping portion between the solid-line circle indicated by reference numeral 18 and the dotted-line circle indicated by reference numeral 20 in the example shown in FIG. Therefore, it is preferable that this overlapped portion is 30% or more, 50% or more, or 70% or more, assuming that the area of the dotted circle indicated by reference numeral 20 is 100%.
  • the size ratio of the light-transmitting convex layer 18 to the light-scattering layer 20 is not particularly limited, but the bottom area of the light-transmitting convex layer 18 is preferably 40 to 200% of the bottom area of the light scattering layer 20. , more preferably 70 to 150%.
  • the light-transmitting convex layer 18 may be larger than the light scattering layer 20, so that the light-transmitting convex layer 18 protrudes from the light scattering layer 20 in plan view. In this case, the light scattered by the light scattering layer 20 can enter the translucent convex layer 18 in a wider range.
  • the light-scattering layer 20 may be larger than the light-transmitting convex layer 18, so that the light-scattering layer 20 protrudes from the light-transmitting convex layer 18 in plan view.
  • the light emitted through the light-transmitting convex layer 18 and the light emitted directly from the light-transmitting substrate 16 without passing through the light-transmitting convex layer 18 are mixed. can make a change.
  • the plurality of light-transmitting convex layers 18 are formed so that a plurality of types with different sizes (that is, equivalent circle diameters) and/or heights are mixed. That is, as an example is shown in FIG. 2, a plurality of types of light-transmitting projections having different sizes and heights are provided on the first surface (the surface 16A in this example) of the light-transmitting base material 16. Layers 18 are provided and intermingled. For this reason, light-transmitting convex layers having the same size and height are arranged in a plurality of rows over the entire surface of the light-transmitting substrate, and light-transmitting convex layers whose size gradually increases with increasing distance from the light source are used in the light-transmitting substrate.
  • a mode of arranging them in a plurality of rows over the entire surface cannot be said to be "mixed” and is not included in the present embodiment.
  • a mixture of multiple types means that multiple types of light-transmitting convex layers 18 having different sizes and/or heights are intermingled and arranged regardless of the distance from the light source.
  • the light-transmitting convex layers 18 do not necessarily have to be arranged randomly. subsumed.
  • light-transmitting convex layers 18 of multiple gradations are set according to the size and / or height, and these multi-gradation light-transmitting convex layers 18 are set.
  • a mode in which they are provided in a mixed manner is exemplified.
  • a plurality of gradations may be set according to the number of droplets (ink particles) ejected from the nozzles (the number of drops).
  • a plurality of droplets ejected from the nozzles become one droplet in the air and land on the translucent substrate 16 , or combine to form one droplet on the translucent substrate 16 . Therefore, a light-transmitting convex layer 18 having a size and/or height corresponding to the number of ejected droplets is formed. At that time, the degree of spread of the droplets may vary depending on the viscosity of the ink and the surface condition of the light-transmitting substrate 16. and/or a multi-gradation translucent convex layer 18 having a height is formed. Therefore, the light-transmitting convex layers 18 having a plurality of gradations may be mixed and formed.
  • the number of gradations is not particularly limited, and may be, for example, 3-20 or 5-15.
  • the light scattering layer 20 is provided so as to correspond to the light-transmitting convex layer 18 and overlap each other as described above. Therefore, as with the light-transmitting convex layer 18, a plurality of types of light-scattering layers 20 having different sizes and/or heights may be provided in a mixed manner.
  • the light scattering layer 20 having a plurality of gradations is set according to the size, and the light scattering layers 20 having a plurality of gradations are provided in a mixed manner.
  • multiple gradations may be set according to the number of droplets (ink particles) ejected from the nozzles (the number of drops).
  • the number of gradations is not particularly limited, and may be, for example, 3-20 or 5-15.
  • the light-transmitting convex layers 18 and the light-scattering layers 20 are set to the same number of gradations, and the light-scattering It is preferable to arrange the light-transmitting convex layer 18 and the light-scattering layer 20 so that the layer 20 has the same gradation.
  • the light emitting module 10 includes a light guide plate 12 and a light source .
  • the light source 14 can enter light into a side surface (light incident end surface) 16 ⁇ /b>C of the translucent base material 16 .
  • a light emitting diode (LED) can be used as the light source 14.
  • the light source 14 is provided on at least a part of the periphery of the light guide plate 12 .
  • the light source 14 is arranged so as to irradiate the side surface 16C of the translucent base material 16 with light at the edge.
  • one light source 14 may be provided on one side of the translucent base material 16 having a polygonal shape, or a plurality of light sources 14 may be provided side by side along the side.
  • the light source 14 is attached to a portion of the edge of the light guide plate 12 with a holder (not shown).
  • the light emitting module 10 includes a moving device 22 that moves the light source 14 along the side surface 16C of the translucent substrate 16.
  • the moving device 22 is not particularly limited as long as it can move the light source 14, and can be configured using a gear, a belt drive, or the like.
  • the moving device 22 may be configured to move the light source 14 in the thickness direction of the translucent base material 16, as indicated by the arrow X in FIG.
  • the moving device 22 may also be configured to move the light source 14 laterally along the one side of the translucent substrate 16, as indicated by arrow Y in FIG.
  • the moving device 22 moves the light source 14 obliquely with respect to the side surface 16C of the translucent base material 16, that is, moves it in the lateral direction Y while moving it in the thickness direction X. It may be configured as
  • the light emitting module 10 may be configured to include electrical components such as wiring to the light source 14, a power supply, and a control device, as well as other components such as a frame.
  • the light-transmitting base material 16 when light is incident from the side surface 16C of the light-transmitting base material 16 forming the main body of the light guide plate 12, the light is confined in the light-transmitting base material 16 by total reflection and It spreads out within the material 16 . At that time, as shown in FIG. 6, the light is scattered by the light scattering particles in the light scattering layer 20, and light is incident on the surface 16A of the translucent base material 16 at an angle close to perpendicular (less than the critical angle). . The light enters the light-transmitting convex layer 18 from the bottom surface 18A of the light-transmitting convex layer 18 provided facing the light scattering layer 20 .
  • the light incident on the translucent convex layer 18 is emitted to the outside through the light emitting surface 18B.
  • the light exit surface 18B is formed by a curved surface, the light is diffused by the lens effect. Therefore, angle dependence is obtained in which the appearance of light emission differs depending on the viewing angle.
  • the light-transmitting convex layer 18 for emitting light a plurality of types with different sizes and/or heights are mixed, so that it is possible to express locally high brightness and sparkle. Therefore, it is possible to achieve crystal-like sparkle similar to that of real crystals and movement of light due to angle dependence, thereby imparting a sense of quality.
  • the direction of light emission can be changed by moving the light source 14 with the moving device 22 . Therefore, it is possible to make the light move without changing the viewing angle, and in combination with changing the viewing angle, the movement of the light can be emphasized. Also, by moving the light source 14, it is possible to realize an illumination effect as if light were flowing.
  • the light guide plate 12 is scattered by the light scattering layer 20 and light is reflected by the light-transmitting convex layer 18, so that part of the light is emitted from the back side of the light guide plate 12 as well.
  • the front side of the light guide plate 12 provided with the light-transmitting convex layer 18 is used as the main light output surface
  • the back side of the light guide plate 12 provided with the light scattering layer 20 is set to have a higher light quantity than the main light output surface. Fewer secondary light exit surfaces can be provided. Therefore, the light guide plate 12 can also be used as a partition (partition) from which light can be emitted from both the front and back surfaces.
  • FIG. 9 is an enlarged cross-sectional view of a main part showing the light guide plate 30 of the light emitting module according to the second embodiment.
  • the light guide plate 30 of the second embodiment differs from the light guide plate 12 of the first embodiment in that a light-transmitting resin layer 32 is provided as a protective layer on the first surface (surface 16A in this example) of the light-transmitting base material 16. different.
  • the translucent resin layer 32 is a translucent resin layer provided to protect the translucent base material 16, which is a high refractive index layer.
  • the translucent resin layer 32 is made of resin having a lower refractive index than the translucent base material 16 .
  • the refractive index (absolute refractive index) of the translucent resin layer 32 is not particularly limited as long as it is lower than that of the translucent base material 16, and may be, for example, 1.35 to 1.65 or 1.40 to 1.55.
  • the translucent resin layer 32 may be colorless and transparent, or may be colored and transparent.
  • the resin that forms the translucent resin layer 32 include acrylic resins such as polymethyl methacrylate (PMMA) and urethane acrylate resin; polystyrene resin, acrylonitrile-styrene copolymer resin (AS resin), acrylonitrile-styrene-butadiene.
  • Styrenic resins such as copolymer resins (ABS resins); polyolefin resins such as polyethylene and polypropylene; or blends of two or more of these.
  • the thickness of the translucent resin layer 32 is not particularly limited, and may be, for example, 10 to 100 ⁇ m or 20 to 50 ⁇ m.
  • the translucent resin layer 32 is provided over the entire surface 16A of the translucent base material 16 so as to be in contact with the surface 16A.
  • a plurality of light-transmitting convex layers 18 are provided on the light-transmitting resin layer 32 so as to be in contact with the surface of the light-transmitting resin layer 32 . That is, in the second embodiment, the plurality of light-transmitting convex layers 18 are provided on the first surface (surface 16A) of the light-transmitting base material 16 via the light-transmitting resin layer 32 . Therefore, in this case, the surface of the light-transmitting resin layer 32 is the reference surface on which the light-transmitting convex layer 18 is provided.
  • the method of forming the translucent resin layer 32 is not particularly limited, and examples thereof include known coating methods such as spraying, dipping, spin coating and bar coating, and printing methods such as inkjet printing and screen printing.
  • the light-transmitting convex layer 18 is provided not directly on the light-transmitting base material 16 but via the light-transmitting resin layer 32 .
  • the light-transmitting resin layer 32 has a smaller refractive index than the light-transmitting base material 16, but the light emitted to the outside through the light-transmitting convex layer 18 is less than the critical angle scattered by the light scattering layer 20 on the back side. is directed toward surface 16A at an angle of . Therefore, the decrease in luminance due to the provision of the translucent resin layer 32 is small. Moreover, if the surface 16A of the light-transmitting base material 16 is scratched without the light-transmitting resin layer 32, light may leak from that portion. However, by providing the translucent resin layer 32 with a small refractive index, even if there is a scratch, it is difficult for light to leak from that portion.
  • FIG. 10 is an enlarged cross-sectional view of a main part showing the light guide plate 40 of the light emitting module according to the third embodiment.
  • a light guide plate 40 of the third embodiment differs from that of the second embodiment in the configuration of a light-transmitting resin layer 42 as a protective layer provided on the surface 16A of the light-transmitting base material 16 .
  • the light-transmitting convex layer 18 is directly provided on the surface 16A of the light-transmitting base material 16, and then the part other than the light-transmitting convex layer 18 on the surface 16A is covered with a light-transmitting resin.
  • a layer 42 is provided.
  • FIG. 11 is a schematic cross-sectional view of a light emitting module 50 according to the fourth embodiment.
  • the light emitting module 50 according to the fourth embodiment differs from the light emitting module 10 according to the first embodiment in that the light guide plate 52 includes a coating resin layer 54 that covers the light scattering layer 20 .
  • a light guide plate 52 of the fourth embodiment has a light-transmitting base material 16, a plurality of light-transmitting convex layers 18, and a plurality of light scattering layers 20 similar to the light guide plate 12 of the first embodiment. Further, a plurality of coating resin layers 54 are provided to cover the plurality of light scattering layers 20 respectively.
  • the coating resin layer 54 is made of a translucent resin, and may be colorless and transparent, or may be colored and transparent.
  • the coating resin layer 54 is a resin layer containing no light scattering particles.
  • Examples of the resin forming the coating resin layer 54 include resins similar to those of the light-transmitting convex layer 18, that is, the acrylic resins, styrene resins, polyolefin resins, or a blend of two or more of these.
  • the refractive index (absolute refractive index) of the coating resin layer 54 is not particularly limited, and may be higher than that of the translucent base material 16, lower than that of the translucent base material 16, or the same value.
  • the refractive index of the coating resin layer 54 may be, for example, 1.35 to 1.65 or 1.40 to 1.55.
  • a plurality of coating resin layers 54 are provided so as to cover only the respective light scattering layers 20 of the plurality of light scattering layers 20 provided on the second surface (back surface 16B) of the translucent base material 16 .
  • the coating resin layer 54 is formed so as to cover the entire surface of each light scattering layer 20 so as to surround each light scattering layer 20 and have a portion in contact with the translucent base material 16 . Since the coating resin layer 54 is formed to be larger than the light scattering layer 20 in this way, when the distance between the light scattering layers 20 is narrow as shown in FIG. may
  • a surface 54A of the coating resin layer 54 is formed by a curved surface as shown in FIG.
  • a surface 54A of the coating resin layer 54 is a surface forming an interface between the coating resin layer 54 and air.
  • the surface 54A may be formed only of curved surfaces, but may partially include flat surfaces.
  • the surface 54A is mainly formed of a curved surface, and more preferably, the curved surface accounts for 80% or more of the surface 54A.
  • the surface 54A of the coating resin layer 54 is formed of one or more curved surfaces, similar to the translucent convex layer 18, and may be formed into a convex lens shape composed of a single curved convex surface as shown in FIG.
  • the coating resin layers 54 each having a surface 54A composed of such a single curved convex surface may be provided independently, or may be formed by connecting a plurality of coating resin layers 54 as described above.
  • the surface 54A having a plurality of curved surfaces may be formed by arranging plano-convex lens-shaped convex portions in two stages in the same manner as the translucent convex layer 18 shown in FIG.
  • the coating resin layer 54 is formed in a convex shape that has a curved surface shape and is formed high from the peripheral edge toward the center.
  • the coating resin layer 54 is circular in plan view, it is not limited to this, and may be rectangular or triangular in plan view, and various shapes can be adopted.
  • the coating resin layer 54 can be formed, for example, by inkjet printing. By adjusting the viscosity of the ink, it is possible to form the coating resin layer 54 having the curved surface 54A as described above.
  • the coating resin layer 54 is provided so as to cover each light scattering layer 20, a plurality of types of coating resin layers 54 having different sizes and/or heights are provided in a mixed manner in the same manner as the light scattering layer 20.
  • the coating resin layers 54 of multiple gradations are set according to the size, and the coating resin layers 54 of these multiple gradations are provided in a mixed manner.
  • multiple gradations may be set according to the number of droplets (ink particles) ejected from the nozzles (the number of drops).
  • the coating resin layer 54 that covers the light scattering layer 20 is provided, and its surface 54A is formed with a curved surface.
  • the light scattered by the light scattering layer 20 can be diffused by the lens effect of the coating resin layer 54 . Therefore, it is possible to further increase the difference in brightness on the front surface side of the light guide plate 52, thereby expanding the range of design expression.
  • Additional layers may be formed in the light guide plates 12, 30, 40, 52 in the above embodiments.
  • a resin layer having an extremely low refractive index may be provided on the rear surface side of the light guide plates 12, 30, 40, 52.
  • a specular layer may be provided on the rear surface side by applying a paint that provides a metallic specular surface.
  • the light-transmitting convex layer 18 having the light exit surface 18B formed by a curved surface is provided on the front surface 16A side. ing.
  • the light-transmitting convex layer 18 may be provided so as to correspond to at least a part of the light-scattering layer 20 .
  • a translucent resin layer having a flat cross-sectional light exit surface that is not formed by a curved surface may be provided on the surface 16A side.
  • the corresponding translucent resin layer may not be provided on the surface 16A side.
  • each configuration in the above embodiments can be appropriately combined. good too.
  • the light emitting surface 18B of the light-transmitting convex layer 18 on the surface side is not covered with another resin layer.
  • Example 1 As the substrate, "Technoloy (registered trademark) C003" manufactured by Sumika Acrylic Co., Ltd. was used (rectangular sheet with a short side length of 180 mm and a long side length of 400 mm).
  • the substrate consists of a surface 16A of a polycarbonate layer (thickness: 1.97 mm, refractive index: 1.587) corresponding to the translucent substrate 16, and a PMMA layer (thickness: 0.03 mm, refractive index 1.49).
  • a light scattering layer ink was applied to the back surface of the substrate (back surface 16B of the translucent substrate 16) using a serial inkjet printer. After that, an ultraviolet lamp was used to immediately irradiate the ink with ultraviolet rays, and the ink was cured to form a plurality of light scattering layers 20 circular in plan view.
  • the viscosity of the ink (25° C.) was 12.2 mPa ⁇ s.
  • the printing conditions were head heating temperature: 35° C., nozzle diameter: 20 ⁇ m, applied voltage: 21 V, pulse width: 15 ⁇ s, resolution: 300 dpi.
  • the ultraviolet irradiation conditions were as follows: lamp type: metal halide lamp, lamp output: 100 W, irradiation time: 0.5 s, irradiation times: 4 times, irradiation distance: 5 mm, and integrated light quantity: 200 mJ/cm 2 .
  • the light-transmitting convex layer ink was applied to the surface of the substrate (the surface of the light-transmitting resin layer 32) using a serial inkjet printer. After that, the ink was immediately irradiated with ultraviolet rays using an ultraviolet lamp to cure the ink, thereby forming a plurality of light-transmitting convex layers 18 in the shape of plano-convex lenses circular in plan view.
  • the light-transmitting convex layer 18 was provided at the same position as the light-scattering layer 20 so as to overlap with the light-scattering layer 20 provided on the back side with the base material interposed therebetween.
  • the viscosity of the ink (25° C.) was 15.0 mPa ⁇ s.
  • the printing conditions were head heating temperature: 35° C., nozzle diameter: 20 ⁇ m, applied voltage: 22 V, pulse width: 15 ⁇ s, resolution: 300 dpi.
  • the ultraviolet irradiation conditions were as follows: lamp type: metal halide lamp, lamp output: 160 W, irradiation time: 0.5 s, number of times of irradiation: 8 times, irradiation distance: 40 mm, integrated light quantity: 640 mJ/cm 2 .
  • the refractive index of the translucent convex layer 18 was 1.458.
  • ⁇ 1 gradation 1 drop, diameter 20-25 ⁇ m, height 1-2 ⁇ m ⁇ 2 gradations: 2 drops, diameter 25-30 ⁇ m, height 3-4 ⁇ m ⁇ 3 gradations: 3 drops, diameter 30-35 ⁇ m, height 5-6 ⁇ m ⁇ 4 gradations: 4 drops, diameter 40-45 ⁇ m, height 7-8 ⁇ m ⁇ 5 gradations: 5 drops, diameter 45-50 ⁇ m, height 9-10 ⁇ m ⁇ 6 gradations: 6 drops, diameter 55-65 ⁇ m, height 11-13 ⁇ m ⁇ 7 gradations: 7 drops, diameter 70-90 ⁇ m, height 14-17 ⁇ m
  • the light-transmitting convex layer 18 and the light-scattering layer 20 are set to have the same number of gradations. Further, each light-transmitting convex layer 18 of the plurality of light-transmitting convex layers 18 and the light scattering layer 20 corresponding to the light-transmitting convex layer 18 are arranged so as to have the same gradation. That is, for example, the light-scattering layer 20 of "3 gradations" was provided at the position where the light-transmitting convex layer 18 of "3 gradations" overlaps with the light-transmitting substrate 16 interposed therebetween.
  • FIG. 12A shows a part of an arrangement example of the plurality of types of light-transmitting convex layers 18 described above.
  • one side of the grid is about 85 ⁇ m
  • the arrangement pattern of the light-transmitting convex layer 18 in a square area with one side of about 0.85 mm is shown as a plan view of the light-transmitting convex layer 18 .
  • the gradation is indicated by numbers.
  • the arrangement examples of the plurality of types of light scattering layers 20 are the same as the arrangement examples of the light-transmitting convex layers 18, and are in one-to-one correspondence.
  • the blank square means the part of 0 gradation where the light-transmitting convex layer 18 is not provided.
  • the light guide plate obtained as described above corresponds to the light guide plate 30 of the second embodiment shown in FIG.
  • An LED was attached to a side surface on the short side of the light guide plate, and the LED was turned on to allow light to enter from the side surface. Then, light was emitted from the light-transmitting convex layer 18 on the surface side, and there were locally high-brightness spots and sparkles. In addition, there was an angle dependence in which the appearance of light emission differs depending on the viewing angle. Therefore, it was possible to realize crystal-like sparkle and movement of light due to angle dependence, and a high-class design was obtained.
  • Example 2 In the light guide plate obtained in Example 1, a plurality of coating resin layers 54 were provided to cover the plurality of light scattering layers 20 respectively. Specifically, the ink for the light-transmitting convex layer of Example 1 was applied to the surface of the light-scattering layer 20 using a serial inkjet printer. After that, the coating resin layer 54 was formed by immediately irradiating ultraviolet rays using an ultraviolet lamp to cure the ink. The printing conditions, ultraviolet irradiation conditions, and gradation settings for the coating resin layer 54 were the same as those for the light-transmitting convex layer 18 of the first embodiment. The coating resin layer 54 had a circular convex lens-like surface in plan view, which was the same as the translucent convex layer 18 on the surface side.
  • the resulting light guide plate has a configuration in which the fourth embodiment and the second embodiment are combined.
  • An LED was attached to a side surface on the short side of the light guide plate, and the LED was turned on to allow light to enter from the side surface. Then, light was emitted from the light-transmitting convex layer 18 on the surface side, and there were locally high-brightness spots and sparkles. In addition, there was an angle dependence in which the appearance of light emission differs depending on the viewing angle. Compared with the light guide plate of Example 1, the difference in luminance depending on the part was further emphasized, and the design effect on the surface side was excellent. In addition, emission of light with a sparkling effect was observed on the back side as well. Therefore, a design expression of light with a sparkling effect was obtained not only on the front side of the light guide plate but also on the back side.
  • a light-transmitting substrate having a light-transmitting property having a first surface that is one of the front surface and the back surface of the light-transmitting substrate and a second surface that is the other surface; a plurality of light-transmitting convex layers made of a translucent resin, provided in a convex shape on the first surface and provided with a light exit surface formed by a curved surface; and made of a resin containing light scattering particles, the a plurality of light scattering layers provided on the second surface so as to overlap with the plurality of light-transmitting convex layers with the light-transmitting substrate interposed therebetween; A light guide plate in which a plurality of types of the light-transmitting convex layers with different values are mixed.
  • the equivalent circle diameter of the bottom surfaces of the plurality of light-transmitting convex layers is 20 to 150 ⁇ m, more preferably 30 to 100 ⁇ m, and the equivalent circle diameter of the bottom surfaces of the plurality of light scattering layers is 20 to 150 ⁇ m, more preferably.
  • the light guide plate according to any one of [1] to [5], which is 30 to 100 ⁇ m.
  • the amount of overlap between each light-transmitting convex layer of the plurality of light-transmitting convex layers and the light scattering layer corresponding to the light-transmitting convex layer is the above when viewed from the direction perpendicular to the surface of the light-transmitting base material.
  • each light-transmitting convex layer of the plurality of light-transmitting convex layers is 40 to 200%, more preferably 70 to 150% of the bottom surface area of each light-scattering layer of the plurality of light-scattering layers.
  • the light guide plate according to any one of [1] to [9]. [11] Any one of [1] to [10], wherein the plurality of light-transmitting convex layers include light-transmitting convex layers that are larger than the corresponding light-scattering layers and protrude from the light-scattering layers in plan view. light guide plate.
  • the light scattering layer according to any one of [3] to [13], wherein the plurality of types of light scattering layers are light scattering layers with multiple gradations set according to size and/or height.
  • Light guide plate [15] Further comprising a light-transmitting resin layer having light-transmitting properties provided on the first surface of the light-transmitting substrate, wherein the plurality of light-transmitting convex layers extend to the light-transmitting substrate via the light-transmitting resin layer.
  • the light guide plate according to any one of [1] to [14], provided on the first surface of the material.
  • the plurality of light-transmitting convex layers are directly provided on the first surface of the light-transmitting substrate, and a light-transmitting resin layer having a light-transmitting property is provided on the first surface other than the light-transmitting convex layers.
  • the light guide plate according to any one of [1] to [14].
  • a light-emitting module comprising the light guide plate according to any one of [1] to [17] and a light source capable of injecting light into the side surface of the translucent base.
  • each layer including the light-transmitting base material 16 and the dimensional relationships such as the size and height of the light-transmitting convex layer 18 and the light scattering layer 20 are only conceptually shown. Yes, not based on actual dimensions.
  • the applications of the light guide plate and the light emitting module according to this embodiment are not particularly limited.
  • it can be used for various vehicle interior parts including automotive interior materials such as automotive instrument panels and door inner materials, and housings for various electrical products such as home appliances and communication equipment.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Planar Illumination Modules (AREA)
  • Fastening Of Light Sources Or Lamp Holders (AREA)

Abstract

These light-guide plates (12, 30, 40, 52) according to an embodiment each include: a light-transmitting substrate (16) having light-transmitting properties; a plurality of light-transmitting projection layers (18) provided, in a convex shape, on the surface of the light-transmitting substrate (16), and having a light-emitting surface (18B) formed by a curved surface; and a plurality of light-scattering layers (20) composed of a resin containing light-scattering particles, and provided on the back surface of the light-transmitting substrate (16) so as to overlap the plurality of light-transmitting projection layers (18) with the light-transmitting substrate (16) interposed therebetween. A plurality of types of light-transmitting projection layers (18) with different sizes and/or heights are mixed.

Description

導光板および発光モジュールLight guide plate and light emitting module
 本発明の実施形態は、導光板、および該導光板を用いた発光モジュールに関するものである。 An embodiment of the present invention relates to a light guide plate and a light emitting module using the light guide plate.
 自動車等の車両内装の質感向上のため、加飾と間接照明を組み合わせた製品の採用が増えている。例えば、特許文献1には、加飾層による意匠を持った加飾シートにおいて、加飾シートの表面を部分的に発光させることにより、意匠性を向上することが開示されている。特許文献1に記載の加飾シートは、高屈折率樹脂層と、該高屈折率樹脂層の裏面に設けられた光放散層と、該高屈折率樹脂層の表面に低屈折率樹脂層を介して設けられた加飾層とを備える。 In order to improve the texture of vehicle interiors such as automobiles, the use of products that combine decoration and indirect lighting is increasing. For example, Patent Literature 1 discloses that, in a decorative sheet having a design with a decorative layer, the design is improved by partially causing the surface of the decorative sheet to emit light. The decorative sheet described in Patent Document 1 includes a high refractive index resin layer, a light diffusion layer provided on the back surface of the high refractive index resin layer, and a low refractive index resin layer on the surface of the high refractive index resin layer. and a decorative layer provided via.
特開2017-170801号公報Japanese Unexamined Patent Application Publication No. 2017-170801
 車両内装の更なる質感向上の観点から、クリスタル調やガラス調の発光が可能な内装部品が開発されている。しかしながら、クリスタルやガラスの実物で見られる煌めき、すなわち局所的な強い光や、見る角度によって輝度が変化するという効果が不十分であり、更なる質感向上が求められている。  From the perspective of further improving the texture of vehicle interiors, interior parts capable of emitting crystal-like or glass-like light are being developed. However, the glint seen in real crystals and glass, that is, the effect of localized strong light and the change in luminance depending on the viewing angle is insufficient, and further improvement in texture is required.
 本実施形態は、見る角度によって発光の見え方が異なり、局所的に輝度を高めて煌めきを表現することができる導光板、およびそれを用いた発光モジュールを提供することを目的とする。 The purpose of the present embodiment is to provide a light guide plate and a light emitting module using the light guide plate, which can express brilliance by locally increasing the brightness of light emission that varies depending on the viewing angle.
 本実施形態に係る導光板は; 透光性を有する透光基材と; 透光性を有する樹脂からなり、前記透光基材の表面または裏面のいずれか一方面に凸状に設けられ、湾曲面により形成された光出射面を備える複数の透光凸層と; 光散乱粒子を含む樹脂からなり、前記複数の透光凸層に対して前記透光基材を挟んで重なり合うように前記透光基材の前記一方面に対向する他方面に設けられた複数の光散乱層と; を含む。該導光板では、大きさおよび/または高さの異なる複数種の前記透光凸層が混在している。 The light guide plate according to the present embodiment is composed of: a light-transmitting base material having light-transmitting properties; and a resin having light-transmitting properties. a plurality of light-transmitting convex layers each having a light exit surface formed by a curved surface; made of a resin containing light scattering particles, the plurality of light-transmitting convex layers being overlapped with the light-transmitting substrate interposed therebetween; a plurality of light-scattering layers provided on the other surface of the translucent substrate facing the one surface; In the light guide plate, a plurality of kinds of light-transmitting convex layers having different sizes and/or heights are mixed.
第1実施形態に係る発光モジュールの断面模式図Schematic cross-sectional view of a light-emitting module according to the first embodiment 同発光モジュールの平面模式図であり、(A)はその一部の拡大図FIG. 2 is a schematic plan view of the same light-emitting module, and (A) is an enlarged view of a part thereof; 図2のIII-III線断面図III-III line sectional view of FIG. 図2のIV-IV線断面図IV-IV line sectional view of FIG. 図2のV-V線断面図VV line sectional view of FIG. 同発光モジュールにおける光の入出射状態を示す断面模式図Schematic cross-sectional view showing the incident and outgoing states of light in the same light-emitting module 透光凸層を光散乱層に対してずらして配置した例を示す断面模式図Schematic cross-sectional view showing an example in which the light-transmitting convex layer is shifted with respect to the light-scattering layer 図7に対応する平面模式図Schematic plan view corresponding to FIG. 第2実施形態に係る導光板の一部拡大断面模式図Partial enlarged cross-sectional schematic diagram of the light guide plate according to the second embodiment 第3実施形態に係る導光板の一部拡大断面模式図Partially enlarged cross-sectional schematic diagram of the light guide plate according to the third embodiment 第4実施形態に係る発光モジュールの断面模式図Schematic cross-sectional view of a light-emitting module according to a fourth embodiment 実施例における透光凸層の配置例の一部分を示す模式図Schematic diagram showing a part of an arrangement example of a light-transmitting convex layer in an example 図12Aの配置例について透光凸層の階調を数字で示す図A diagram showing the gradation of the light-transmitting convex layer in the arrangement example of FIG. 12A by numbers
 以下、図面を参照しながら本発明の実施形態について詳細に説明する。なお、本明細書において、導光板の表面とは、導光板の表裏両面のうち、使用時(即ち、発光モジュールとして使用する際)に主として人の目に触れる面(主たる意匠面)をいう。導光板の裏面とは、該表面とは反対側の面をいう。また、透光基材の表面とは、透光基材の表裏両面のうち、導光板の表面と同じ方向に向いた面をいう。透光基材の裏面とは、透光基材の表面とは反対側の面をいう。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In this specification, the surface of the light guide plate means the surface (main design surface) that is mainly visible to the human eye during use (that is, when used as a light emitting module), out of the front and back surfaces of the light guide plate. The back surface of the light guide plate means the surface opposite to the front surface. Further, the surface of the light-transmitting substrate refers to the surface of the front and back surfaces of the light-transmitting substrate that faces in the same direction as the surface of the light guide plate. The back surface of the translucent base means the surface opposite to the front surface of the translucent base.
 (第1実施形態)
 図1および図2に示すように、第1実施形態に係る発光モジュール10は、導光板12と、光源14とを備える。
(First embodiment)
As shown in FIGS. 1 and 2, the light emitting module 10 according to the first embodiment includes a light guide plate 12 and a light source 14. As shown in FIG.
 導光板12は、透光基材16と、複数の透光凸層18と、複数の光散乱層20とを備える。なお、本明細書において、導光板とは、通常の意味での板状のものには限られず、シートやフィルムなどのように厚さが小さいものも包含するものとして用いられる。 The light guide plate 12 includes a light-transmitting base material 16 , a plurality of light-transmitting convex layers 18 and a plurality of light scattering layers 20 . In this specification, the light guide plate is not limited to a plate-like plate in the usual sense, but also includes a plate having a small thickness such as a sheet or a film.
 透光基材16は、導光板12の本体をなす基板であり、透光性を有する。本明細書において、透光性とは、光透過性、すなわち光を透すことができることをいい、無色透明には限られず、光を透すことができれば着色されていてもよく、半透明であってもよい。一実施形態において、透光基材16は無色透明であることが好ましい。 The translucent base material 16 is a substrate forming the main body of the light guide plate 12 and has translucency. In this specification, the term “light-transmitting” refers to light-transmitting properties, that is, the ability to transmit light, and is not limited to being colorless and transparent. There may be. In one embodiment, the translucent substrate 16 is preferably colorless and transparent.
 透光基材16は、表面16Aと、該表面16Aに対向する裏面16Bと、側面16Cを持つ。側面16Cは、透光基材16の縁において厚さ方向に沿う面である。側面16Cは、表面16Aおよび裏面16Bに対して垂直でもよいが、傾斜してもよい。 The translucent base material 16 has a surface 16A, a back surface 16B facing the surface 16A, and side surfaces 16C. The side surface 16C is a surface along the thickness direction at the edge of the translucent base material 16 . Side 16C may be perpendicular to front surface 16A and back surface 16B, but may also be slanted.
 透光基材16の材質は、特に限定されず、樹脂でもよく、ガラスでもよい。一実施形態において、透光基材16としては、例えば、ポリカーボネート樹脂(PC); ポリエチレンテレフタレート(PET)などのポリエステル樹脂; ポリメチルメタクリレート(PMMA)などのアクリル系樹脂; ポリスチレン樹脂、アクリロニトリル-スチレン共重合体樹脂(AS樹脂)、アクリロニトリル-ブタジエン-スチレン共重合体(ABS)などのスチレン系樹脂; ポリエチレン、ポリプロピレンなどのポリオレフィン樹脂; またはこれらの2種以上のブレンドからなる樹脂シートが挙げられる。透光基材16としては、また、例えば、鉛ガラスやソーダ石灰ガラスからなるガラス板を用いてもよい。透光基材16として、好ましくは熱可塑性樹脂からなる樹脂シートが用いられる。 The material of the translucent base material 16 is not particularly limited, and may be resin or glass. In one embodiment, the translucent base material 16 includes, for example, polycarbonate resin (PC); polyester resin such as polyethylene terephthalate (PET); acrylic resin such as polymethyl methacrylate (PMMA); polystyrene resin, acrylonitrile-styrene Styrenic resins such as polymer resins (AS resins) and acrylonitrile-butadiene-styrene copolymers (ABS); polyolefin resins such as polyethylene and polypropylene; and resin sheets made of blends of two or more of these. As the translucent base material 16, a glass plate made of, for example, lead glass or soda-lime glass may be used. A resin sheet made of a thermoplastic resin is preferably used as the translucent base material 16 .
 透光基材16は、導光板12の本体として、その側面16Cから入射された光を全域にわたって広げる役割を持つ。すなわち、透光基材16の側面16Cから入射された光は、透光基材16の表裏の界面で全反射して透光基材16内に閉じ込められ、側方に伝わっていく。そのため、透光基材16は屈折率が高いことが好ましい。透光基材16の屈折率(絶対屈折率)は、特に限定されないが、例えば1.40~1.70でもよく、1.50~1.60でもよい。 The translucent base material 16 serves as the main body of the light guide plate 12 to spread the light incident from the side surface 16C over the entire area. That is, the light incident from the side surface 16C of the light-transmitting base material 16 is totally reflected at the interface between the front and back surfaces of the light-transmitting base material 16, is confined in the light-transmitting base material 16, and propagates sideways. Therefore, it is preferable that the translucent base material 16 has a high refractive index. The refractive index (absolute refractive index) of the translucent base material 16 is not particularly limited, but may be, for example, 1.40 to 1.70 or 1.50 to 1.60.
 本明細書において、屈折率(絶対屈折率)は、波長589nmの光(D線)の屈折率であり、例えば、アッベ屈折計(株式会社アタゴ製「DR-M4」)を用いて環境温度25℃で測定される。 In this specification, the refractive index (absolute refractive index) is the refractive index of light (D line) with a wavelength of 589 nm. Measured in °C.
 透光基材16の厚さは、特に限定されず、例えば、0.1~3.0mmでもよく、0.5~2.5mmでもよく、1.0~2.0mmでもよい。 The thickness of the translucent base material 16 is not particularly limited, and may be, for example, 0.1 to 3.0 mm, 0.5 to 2.5 mm, or 1.0 to 2.0 mm.
 透光凸層18は、透光性を有する樹脂からなる樹脂層であり、無色透明でもよく、有色透明でもよい。透光凸層18を形成する樹脂としては、例えば、ポリメチルメタクリレート(PMMA)、ウレタンアクリレート樹脂などのアクリル系樹脂; ポリスチレン樹脂、アクリロニトリル-スチレン共重合体樹脂(AS樹脂)、アクリロニトリル-スチレン-ブタジエン共重合体樹脂(ABS樹脂)などのスチレン系樹脂; ポリエチレン、ポリプロピレンなどのポリオレフィン樹脂; またはこれらの2種以上のブレンドが挙げられる。透光凸層18は、光散乱粒子を含有しないことが好ましい。 The translucent convex layer 18 is a resin layer made of translucent resin, and may be colorless and transparent or colored and transparent. Examples of the resin that forms the light-transmitting convex layer 18 include acrylic resins such as polymethyl methacrylate (PMMA) and urethane acrylate resin; polystyrene resin, acrylonitrile-styrene copolymer resin (AS resin), acrylonitrile-styrene-butadiene. Styrenic resins such as copolymer resins (ABS resins); polyolefin resins such as polyethylene and polypropylene; or blends of two or more of these. The light-transmitting convex layer 18 preferably does not contain light scattering particles.
 透光凸層18の屈折率(絶対屈折率)は、特に限定されず、透光基材16よりも高くてもよく、透光基材16よりも低くてもよく、同じ値でもよい。透光凸層18が透光基材16に接し設けられている場合において、透光凸層18の屈折率が透光基材16の屈折率よりも高いと、透光凸層18における光の取り出し効果を高めることができる。透光凸層18の屈折率は、例えば1.35~1.65でもよく、1.40~1.55でもよい。 The refractive index (absolute refractive index) of the light-transmitting convex layer 18 is not particularly limited, and may be higher than that of the light-transmitting substrate 16, lower than that of the light-transmitting substrate 16, or the same value. When the light-transmitting convex layer 18 is provided in contact with the light-transmitting base material 16 and the refractive index of the light-transmitting convex layer 18 is higher than the refractive index of the light-transmitting base material 16, the light in the light-transmitting convex layer 18 The extraction effect can be enhanced. The refractive index of the translucent convex layer 18 may be, for example, 1.35 to 1.65 or 1.40 to 1.55.
 透光凸層18は、透光基材16の表面16Aまたは裏面16Bのいずれか一方面(以下、第1面という。)に凸状に設けられている。すなわち、透光凸層18は、第1面を部分的に覆う凸状の層として設けられている。透光凸層18について「凸状」とは、第1面(即ち、透光凸層18を設ける基準面)に対して湾曲面による膨らみを持って隆起していることをいい、第1面に対して相対的に高まっていればその高さは特に限定されない。好ましくは、「凸状」は、中央が盛り上がった形状をいう。透光凸層18は、第1面に点在して設けられている。点在とは、点状(ドット状)の透光凸層18が複数存在することをいう。この例では、透光凸層18は、透光基材16の表面16Aに接し設けられており、すなわち表面16Aに直接積層されている。 The light-transmitting convex layer 18 is provided in a convex shape on either the front surface 16A or the back surface 16B of the light-transmitting substrate 16 (hereinafter referred to as the first surface). That is, the translucent convex layer 18 is provided as a convex layer that partially covers the first surface. The “convex shape” of the light-transmitting convex layer 18 means that the first surface (that is, the reference surface on which the light-transmitting convex layer 18 is provided) is raised with a bulge due to a curved surface. The height is not particularly limited as long as it is relatively high with respect to . Preferably, "convex" refers to a shape with a raised center. The light-transmitting convex layers 18 are scattered on the first surface. Dotting means that a plurality of dotted (dot-shaped) light-transmitting convex layers 18 are present. In this example, the light-transmitting convex layer 18 is provided in contact with the surface 16A of the light-transmitting substrate 16, that is, directly laminated on the surface 16A.
 透光凸層18は、透光基材16の第1面における全域にわたって分布して配置されてもよく、あるいは局所的に配置されてもよい。複数の点状の透光凸層18を第1面における所定位置に点在して配置させることにより、模様、図形、文字、記号、またはこれらの2種以上の組み合わせからなる意匠をクリスタル調の発光により表現することができる。 The light-transmitting convex layer 18 may be distributed over the entire first surface of the light-transmitting substrate 16, or may be locally disposed. By arranging a plurality of dotted light-transmitting convex layers 18 at predetermined positions on the first surface, a design consisting of a pattern, a figure, a character, a symbol, or a combination of two or more of these can be created in a crystal tone. It can be expressed by luminescence.
 透光凸層18は、その底面18Aから入射された光を出射する光出射面18Bを備える。ここで、光出射面18Bは、透光基材16の第1面(表面16A)から凸状に突出して外側に露出する透光凸層18の表面であり、透光凸層18と空気との界面をなす面である。透光凸層18の底面18Aは、透光凸層18の頂点に対する面であり、この例では透光基材16に接している面(透光凸層18と透光基材16との界面)である。 The light-transmitting convex layer 18 has a light emitting surface 18B for emitting light incident from its bottom surface 18A. Here, the light emitting surface 18B is the surface of the light-transmitting convex layer 18 that protrudes convexly from the first surface (surface 16A) of the light-transmitting substrate 16 and is exposed to the outside. is the surface forming the interface of The bottom surface 18A of the light-transmitting convex layer 18 is the surface facing the vertex of the light-transmitting convex layer 18, and in this example, the surface in contact with the light-transmitting base material 16 (the interface between the light-transmitting convex layer 18 and the light-transmitting base material 16). ).
 複数の透光凸層18の各光出射面18Bは、湾曲面により形成されている。ここで、「湾曲面により形成される」とは、光出射面18Bが湾曲面のみにより形成される態様だけでなく、部分的に平面が含まれる態様も包含する。光出射面18Bは、主として湾曲面により形成されることが好ましい。これにより、光出射面18Bから出射する光が拡散し、見る角度によって発光の見え方が異なる効果を高めることができる。光出射面18Bのうち湾曲面が占める面積割合は80%以上であることが好ましい。すなわち、一実施形態において、各光出射面18Bは、湾曲面の面積割合が80%以上、平面の面積割合が20%以下であることが好ましい。より好ましくは、図1および図2に示すように湾曲面の面積割合が100%である。 Each light exit surface 18B of the plurality of light-transmitting convex layers 18 is formed by a curved surface. Here, "formed by a curved surface" includes not only a mode in which the light exit surface 18B is formed only by a curved surface, but also a mode in which a plane is partially included. It is preferable that the light exit surface 18B is mainly formed by a curved surface. As a result, the light emitted from the light emitting surface 18B is diffused, and the effect that the appearance of the emitted light differs depending on the viewing angle can be enhanced. It is preferable that the area ratio of the curved surface in the light exit surface 18B is 80% or more. That is, in one embodiment, each light exit surface 18B preferably has a curved surface area ratio of 80% or more and a flat surface area ratio of 20% or less. More preferably, the area ratio of the curved surface is 100% as shown in FIGS.
 複数の透光凸層18の各光出射面18Bは、一または複数の湾曲面により形成される。 Each light exit surface 18B of the plurality of light-transmitting convex layers 18 is formed by one or more curved surfaces.
 例えば、図3に拡大して示す透光凸層18の光出射面18Bは単一の湾曲面により形成されている。図3の透光凸層18は、その一方面である底面18Aが平面であり、かつ他方面である光出射面18Bが湾曲凸面である平凸レンズ状をなしている。 For example, the light emitting surface 18B of the translucent convex layer 18 enlarged in FIG. 3 is formed by a single curved surface. The light-transmitting convex layer 18 in FIG. 3 has a plano-convex lens shape in which the bottom surface 18A, which is one surface thereof, is flat, and the light emitting surface 18B, which is the other surface, is a curved convex surface.
 単一の湾曲面よりなる光出射面18Bを持つ透光凸層18は、それぞれ独立して設けられてもよいが、図4に示すように、複数の透光凸層18が繋がって形成されてもよい。光散乱層20同士の間隔が狭く、かつ透光凸層18を光散乱層20よりも大きく形成する場合、複数の透光凸層18はこのように繋がって形成されてもよい。 The light-transmitting convex layers 18 having the light emitting surface 18B made of a single curved surface may be provided independently, but as shown in FIG. may When the distance between the light-scattering layers 20 is narrow and the light-transmitting convex layers 18 are formed larger than the light-scattering layers 20, the plurality of light-transmitting convex layers 18 may be connected in this way.
 図5に拡大して示す透光凸層18の光出射面18Bは複数の湾曲面により形成されている。図5の透光凸層18は、平凸レンズ状の凸部上に、より小さな平凸レンズ状の凸部を設けた形状をなしている。このように透光凸層18は、複数の凸状ドットを重ねて設けた形状を有してもよい。 A light emitting surface 18B of the light-transmitting convex layer 18 shown enlarged in FIG. 5 is formed of a plurality of curved surfaces. The light-transmitting convex layer 18 in FIG. 5 has a shape in which a smaller plano-convex lens-like convex portion is provided on a plano-convex lens-like convex portion. Thus, the translucent convex layer 18 may have a shape in which a plurality of convex dots are superimposed.
 一実施形態において、透光凸層18は、湾曲面状をなして周縁から中央に向かって高く形成された凸状をなしており、平面視が円形、即ち円形の底面18Aを持つことが好ましい。しかしながら、これに限定されるものではなく、平面視が矩形または三角形状でもよく、種々の形状を採用することができる。例えば、平面視の形状は、インクジェット印刷により形成されるドットを重ねた複雑な形状を有してもよい。 In one embodiment, the light-transmitting convex layer 18 preferably has a curved surface shape and a convex shape that is formed high from the peripheral edge toward the center, and has a circular bottom surface 18A when viewed from above. . However, the shape is not limited to this, and may be rectangular or triangular in plan view, and various shapes can be adopted. For example, the shape in plan view may have a complicated shape in which dots formed by inkjet printing are superimposed.
 透光凸層18の大きさは、特に限定されず、例えば底面18Aの円相当径が20~150μmでもよく、30~100μmでもよい。円相当径とは、底面の面積に相当する真円の直径のことである。そのため、透光凸層18の底面18Aの面積は、例えば300~18000μmでもよく、700~8000μmでもよい。 The size of the translucent convex layer 18 is not particularly limited, and for example, the equivalent circle diameter of the bottom surface 18A may be 20 to 150 μm, or 30 to 100 μm. The equivalent circle diameter is the diameter of a perfect circle corresponding to the area of the bottom surface. Therefore, the area of the bottom surface 18A of the translucent convex layer 18 may be, for example, 300-18000 μm 2 or 700-8000 μm 2 .
 透光凸層18の高さH(図3参照)は、特に限定されず、例えば1~30μmでもよく、3~15μmでもよい。ここで、透光凸層18の高さHとは、透光凸層18の底面18Aから頂点までの距離である。 The height H (see FIG. 3) of the translucent convex layer 18 is not particularly limited, and may be, for example, 1 to 30 μm or 3 to 15 μm. Here, the height H of the translucent convex layer 18 is the distance from the bottom surface 18A of the translucent convex layer 18 to the top.
 透光凸層18の円相当径に対する高さの比(高さ/円相当径)は、特に限定されず、1/20~1/3でもよく、1/10~1/4でもよい。 The ratio of the height to the equivalent circle diameter of the translucent convex layer 18 (height/equivalent circle diameter) is not particularly limited, and may be 1/20 to 1/3 or 1/10 to 1/4.
 透光凸層18の配設密度は、特に限定されず、例えばクリスタル調やガラス調の発光からなる意匠を表現する意匠領域において、1cm当たりの透光凸層18の数が800~15,000個でもよく、1,000~12,000個でもよく、4,000~10,000個でもよい。 The arrangement density of the light-transmitting convex layers 18 is not particularly limited. It may be 1,000, 1,000 to 12,000, or 4,000 to 10,000.
 透光凸層18の形成方法は特に限定されないが、例えばインクジェット印刷などの印刷により透光凸層18を形成することが好ましい。より好ましくは、複数の透光凸層18は、紫外線硬化樹脂などの光硬化樹脂を用いて印刷(好ましくはインクジェット印刷)により形成されることである。 Although the method for forming the light-transmitting convex layer 18 is not particularly limited, it is preferable to form the light-transmitting convex layer 18 by printing such as inkjet printing. More preferably, the plurality of light-transmitting convex layers 18 are formed by printing (preferably inkjet printing) using a photocurable resin such as an ultraviolet curable resin.
 透光凸層18をインクジェット印刷により形成する場合、そのインクの粘度を調整することにより、上記のような湾曲面よりなる光出射面18Bを持つ透光凸層18を形成することができる。例えば、インクの粘度が高いほど、基材表面に吐出された液滴の接触角を大きい状態に維持して凸レンズ状の透光凸層18を形成しやすい。その場合のインクの粘度は、特に限定されず、例えば13~20mPa・sでもよく、15~18mPa・sでもよい。ここで、粘度は、コーン・プレート型粘度計RE105H(東機産業株式会社製)により測定される25℃での測定値である。 When the light-transmitting convex layer 18 is formed by inkjet printing, by adjusting the viscosity of the ink, the light-transmitting convex layer 18 having the light emitting surface 18B having the curved surface as described above can be formed. For example, the higher the viscosity of the ink, the easier it is to maintain a large contact angle of the droplets ejected onto the substrate surface and form the light-transmitting convex layer 18 in the shape of a convex lens. The viscosity of the ink in that case is not particularly limited, and may be, for example, 13 to 20 mPa·s or 15 to 18 mPa·s. Here, the viscosity is a measured value at 25° C. measured by a cone-plate type viscometer RE105H (manufactured by Toki Sangyo Co., Ltd.).
 光散乱層20は、光散乱粒子を含む樹脂からなる樹脂層である。光散乱層20は、透光基材16の上記一方面(第1面)に対向する他方面(以下、第2面という。)に複数設けられている。すなわち、光散乱層20は、第2面を部分的に覆う層として複数設けられている。光散乱層20は、第1面側の透光凸層18と同様、第2面に点在して設けられている。 The light scattering layer 20 is a resin layer made of resin containing light scattering particles. A plurality of light scattering layers 20 are provided on the other surface (hereinafter referred to as the second surface) facing the one surface (first surface) of the translucent base material 16 . That is, a plurality of light scattering layers 20 are provided as layers that partially cover the second surface. The light scattering layers 20 are scattered on the second surface in the same manner as the light-transmitting convex layer 18 on the first surface side.
 光散乱層20は第2面に部分的に接し設けられている。これにより、全反射により透光基材16内に閉じ込められて伝わっていく光が、光散乱粒子により散乱される。すなわち、光が乱反射して様々な角度に放出され、第2面に対向する第1面に対して垂直に近い角度(臨界角未満)で進む光が生じる。そのような光は全反射しないため、第1面から放射され、よって導光板12から光を取り出すことができる。 The light scattering layer 20 is provided in partial contact with the second surface. As a result, the light confined within the translucent base material 16 by total reflection and propagating is scattered by the light scattering particles. That is, the light is diffusely reflected and emitted at various angles, and the light travels at an angle (less than the critical angle) that is nearly perpendicular to the first surface facing the second surface. Since such light is not totally reflected, it is emitted from the first surface and thus can be extracted from the light guide plate 12 .
 光散乱層20は、この例では透光基材16の裏面16Bに接し設けられており、すなわち裏面16Bに直接積層されている。そのため、透光基材16内を進む光は、裏面16B側において光散乱層20の光散乱粒子により散乱する。これにより、表面16Aに対して臨界角未満で進む光が生じ、その少なくとも一部は表面16A側に設けられた透光凸層18に進入する。 In this example, the light scattering layer 20 is provided in contact with the back surface 16B of the translucent substrate 16, that is, directly laminated on the back surface 16B. Therefore, the light traveling through the translucent base material 16 is scattered by the light scattering particles of the light scattering layer 20 on the back surface 16B side. As a result, light traveling at an angle less than the critical angle with respect to the surface 16A is generated, and at least part of it enters the translucent convex layer 18 provided on the surface 16A side.
 各光散乱層20の形状は、特に限定されず、例えば平面視が円形、即ち円形の底面を持つものでもよく、平面視が矩形または三角形状でもよく、更にはインクジェット印刷により形成されるドットを重ねた複雑な形状を有してもよい。光散乱層20は、透光凸層18と同様、その表面が湾曲面により形成されてもよい。但し、湾曲面により形成される必要はなく、例えば一定厚さ(高さ)のフラットな断面形状を有してもよい。ここで、光散乱層20の底面とは、透光基材16に接している面(光散乱層20と透光基材16との界面)である。 The shape of each light scattering layer 20 is not particularly limited. It may have a complex shape that is superimposed. The surface of the light scattering layer 20 may be formed with a curved surface, similar to the light-transmitting convex layer 18 . However, it does not have to be formed by a curved surface, and may have a flat cross-sectional shape with a constant thickness (height), for example. Here, the bottom surface of the light scattering layer 20 is the surface in contact with the translucent base material 16 (the interface between the light scattering layer 20 and the translucent base material 16).
 光散乱層20の大きさは、特に限定されず、例えば底面の円相当径が20~150μmでもよく、30~100μmでもよい。光散乱層20の厚さ(高さ)は、特に限定されず、例えば0.5~15μmでもよく、1~10μmでもよい。円相当径とは、底面の面積に相当する真円の直径のことである。 The size of the light scattering layer 20 is not particularly limited. For example, the equivalent circle diameter of the bottom surface may be 20 to 150 μm, or 30 to 100 μm. The thickness (height) of the light scattering layer 20 is not particularly limited, and may be, for example, 0.5 to 15 μm or 1 to 10 μm. The equivalent circle diameter is the diameter of a perfect circle corresponding to the area of the bottom surface.
 光散乱層20の配設密度は、特に限定されず、例えばクリスタル調やガラス調の発光からなる意匠を表現する意匠領域において、1cm当たりの光散乱層20の数が800~15,000個でもよく、1,000~12,000個でもよく、4,000~10,000個でもよい。 The arrangement density of the light scattering layers 20 is not particularly limited. For example, in a design area expressing a design composed of crystal tone or glass tone light emission, the number of light scattering layers 20 per 1 cm 2 is 800 to 15,000. , 1,000 to 12,000, or 4,000 to 10,000.
 光散乱層20に含まれる光散乱粒子としては、光を散乱させる効果を持つ種々の微粒子を用いることができる。光散乱粒子の具体例としては、酸化チタン、炭酸カルシウム、ガラスビーズ、アルミ粉などが挙げられ、これらをいずれか1種または2種以上組み合わせて用いてもよい。これらの中でも、酸化チタンは高い屈折率を持つことから輝度の向上効果に優れる。また鱗片状の酸化チタンであると、光との反射面で乱反射するため、局所的に輝度の高い発光や煌めきの発光効果を高めることができる。 As the light scattering particles contained in the light scattering layer 20, various fine particles having the effect of scattering light can be used. Specific examples of the light-scattering particles include titanium oxide, calcium carbonate, glass beads, and aluminum powder, and any one of these may be used alone or in combination of two or more. Among these, titanium oxide has a high refractive index and is therefore excellent in the effect of improving luminance. In addition, if it is scaly titanium oxide, it diffusely reflects light on the reflecting surface, so that it is possible to locally enhance the luminescence effect of high brightness and glitter.
 光散乱粒子の屈折率は、特に限定されないが、光散乱層20を形成するマトリックス樹脂の光屈折率よりも高いことが好ましく、例えば1.5~2.8でもよく、2.0~2.7でもよい。 Although the refractive index of the light scattering particles is not particularly limited, it is preferably higher than the light refractive index of the matrix resin forming the light scattering layer 20. For example, it may be 1.5 to 2.8, or 2.0 to 2.0. 7 is fine.
 光散乱粒子の粒径は、特に限定されず、例えば、50%体積粒径(D50)が100~4000nmでもよく、200~800nmでもよい。 The particle size of the light scattering particles is not particularly limited, and for example, the 50% volume particle size (D50) may be 100 to 4000 nm or 200 to 800 nm.
 光散乱層20を形成する樹脂(マトリックス樹脂)としては、特に限定されず、例えば、ポリメチルメタクリレート(PMMA)、ウレタンアクリレート樹脂などのアクリル系樹脂; ポリスチレン樹脂、アクリロニトリル-スチレン共重合体樹脂(AS樹脂)、アクリロニトリル-スチレン-ブタジエン共重合体樹脂(ABS樹脂)などのスチレン系樹脂; ポリエチレン、ポリプロピレンなどのポリオレフィン樹脂; またはこれらの2種以上のブレンドが挙げられる。該マトリックス樹脂としては、透光性を有する樹脂を用いることが好ましく、無色透明でもよく、有色透明でもよい。 The resin (matrix resin) forming the light scattering layer 20 is not particularly limited, and examples include acrylic resins such as polymethyl methacrylate (PMMA) and urethane acrylate resins; resins), acrylonitrile-styrene-butadiene copolymer resins (ABS resins); polyolefin resins such as polyethylene and polypropylene; or blends of two or more of these. As the matrix resin, it is preferable to use a translucent resin, which may be colorless and transparent, or may be colored and transparent.
 光散乱層20の形成方法は特に限定されず、例えばインクジェット印刷などの印刷により光散乱層20を形成してもよい。好ましくは、複数の光散乱層20は、紫外線硬化樹脂などの光硬化樹脂を用いて印刷(好ましくはインクジェット印刷)により形成されることである。光散乱層20をインクジェット印刷により形成する場合、そのインクの粘度は特に限定されず、例えば7~13mPa・sでもよく、10~13mPa・sでもよい。ここで、粘度は、コーン・プレート型粘度計RE105H(東機産業株式会社製)により測定される25℃での測定値である。 The method of forming the light scattering layer 20 is not particularly limited, and the light scattering layer 20 may be formed by printing such as inkjet printing, for example. Preferably, the plurality of light scattering layers 20 are formed by printing (preferably inkjet printing) using a photocurable resin such as an ultraviolet curable resin. When the light scattering layer 20 is formed by inkjet printing, the viscosity of the ink is not particularly limited, and may be, for example, 7 to 13 mPa·s or 10 to 13 mPa·s. Here, the viscosity is a measured value at 25° C. measured by a cone-plate type viscometer RE105H (manufactured by Toki Sangyo Co., Ltd.).
 複数の光散乱層20は、複数の透光凸層18に対して透光基材16を挟んで重なり合うように設けられている。この例では、透光基材16の表面16Aに設けられた複数の透光凸層18のそれぞれに対応させて(即ち、一対一対応で)、当該透光凸層18と重なり合う光散乱層20が、透光基材16の裏面16Bに設けられている。これにより、光散乱層20で散乱された光が透光基材16をその厚さ方向に透過して透光凸層18の底面18Aから透光凸層18内に入射されるようになっている。 The plurality of light scattering layers 20 are provided so as to overlap with the plurality of light-transmitting convex layers 18 with the light-transmitting substrate 16 interposed therebetween. In this example, the light scattering layer 20 overlaps the light-transmitting convex layers 18 corresponding to each of the plurality of light-transmitting convex layers 18 provided on the surface 16A of the light-transmitting substrate 16 (that is, in one-to-one correspondence). is provided on the rear surface 16B of the translucent base material 16 . As a result, the light scattered by the light scattering layer 20 is transmitted through the light-transmitting substrate 16 in the thickness direction and enters the light-transmitting convex layer 18 from the bottom surface 18A of the light-transmitting convex layer 18. there is
 図3に拡大して示すように、透光凸層18は、透光基材16を介して、対応する光散乱層20の全体に重なるように設けられてもよい。すなわち、透光凸層18と当該透光凸層18に対応する光散乱層20との重なり量が、透光基材16の表面16Aに垂直な方向からみて光散乱層20の面積の100%でもよい。但し、このように全体で重なる必要はなく、透光凸層18は、対応する光散乱層20に対してその少なくとも一部で重なり合えばよい。 As shown in an enlarged view in FIG. 3, the light-transmitting convex layer 18 may be provided so as to entirely overlap the corresponding light-scattering layer 20 with the light-transmitting substrate 16 interposed therebetween. That is, the amount of overlap between the light-transmitting convex layer 18 and the light scattering layer 20 corresponding to the light-transmitting convex layer 18 is 100% of the area of the light scattering layer 20 when viewed from the direction perpendicular to the surface 16A of the light-transmitting substrate 16. It's okay. However, it is not necessary to overlap the whole like this, and the light-transmitting convex layer 18 may at least partially overlap the corresponding light-scattering layer 20 .
 図7は、透光凸層18が、対応する光散乱層20に対してその一部で重なり合うように、両者の位置をずらして設けた実施形態での断面模式図である。図8はその平面模式図である。このようにずらして配置することにより、表面側から見る角度によって重なり量の変化が大きくなり、煌めき効果を高めることができる。透光凸層18を光散乱層20に対してその全体で重なり合うように設けたものと、透光凸層18を光散乱層20に対してその一部で重なり合うように設けたものとを混在させてもよく、これにより煌めき効果をより高めることができる。 FIG. 7 is a schematic cross-sectional view of an embodiment in which the light-transmitting convex layers 18 overlap the corresponding light-scattering layers 20 so that their positions are shifted from each other. FIG. 8 is a schematic plan view thereof. By displacing them in this manner, the amount of overlap varies greatly depending on the viewing angle from the front side, and the sparkling effect can be enhanced. A mixture of a light-transmitting convex layer 18 provided so as to overlap the light scattering layer 20 in its entirety and a light-transmitting convex layer 18 provided so as to partially overlap the light scattering layer 20 It is possible to further enhance the sparkling effect.
 複数の透光凸層18の各透光凸層18と当該透光凸層18に対応する光散乱層20との重なり量は、次のように設定される。すなわち、該重なり量は、透光基材16の表面16Aに垂直な方向からみて光散乱層20の面積の30%以上であることが好ましく、より好ましくは50%以上であり、更に好ましくは70%以上である。これにより、光散乱層20により散乱された光を効果的に透光凸層18内に入射させることができる。ここで、透光凸層18と光散乱層20との重なり量とは、図8に示す例では符号18で示す実線の円と符号20で示す点線の円との重複部分である。そのため、この重複部分が、符号20で示す点線の円の面積を100%として、その30%以上、50%以上、又は70%以上であることが好ましい。 The amount of overlap between each light-transmitting convex layer 18 of the plurality of light-transmitting convex layers 18 and the light scattering layer 20 corresponding to the light-transmitting convex layer 18 is set as follows. That is, the overlapping amount is preferably 30% or more, more preferably 50% or more, and still more preferably 70% of the area of the light scattering layer 20 when viewed from the direction perpendicular to the surface 16A of the translucent substrate 16. % or more. As a result, the light scattered by the light scattering layer 20 can effectively enter the translucent convex layer 18 . Here, the amount of overlap between the light-transmitting convex layer 18 and the light scattering layer 20 is the overlapping portion between the solid-line circle indicated by reference numeral 18 and the dotted-line circle indicated by reference numeral 20 in the example shown in FIG. Therefore, it is preferable that this overlapped portion is 30% or more, 50% or more, or 70% or more, assuming that the area of the dotted circle indicated by reference numeral 20 is 100%.
 光散乱層20に対する透光凸層18の大きさの比は、特に限定されないが、透光凸層18の底面面積が光散乱層20の底面面積に対して40~200%であることが好ましく、より好ましくは70~150%である。透光凸層18が光散乱層20よりも大きく、そのため平面視で光散乱層20から透光凸層18がはみ出していてもよい。この場合、光散乱層20により散乱された光をより広い範囲で透光凸層18に入射させることができる。逆に、光散乱層20が透光凸層18よりも大きく、そのため平面視で透光凸層18から光散乱層20がはみ出してもよい。この場合、透光凸層18を介して出射される光と、透光凸層18を介さずに透光基材16から直接出射される光が混在することになり、見る角度によって煌めきの状態に変化を出すことができる。 The size ratio of the light-transmitting convex layer 18 to the light-scattering layer 20 is not particularly limited, but the bottom area of the light-transmitting convex layer 18 is preferably 40 to 200% of the bottom area of the light scattering layer 20. , more preferably 70 to 150%. The light-transmitting convex layer 18 may be larger than the light scattering layer 20, so that the light-transmitting convex layer 18 protrudes from the light scattering layer 20 in plan view. In this case, the light scattered by the light scattering layer 20 can enter the translucent convex layer 18 in a wider range. Conversely, the light-scattering layer 20 may be larger than the light-transmitting convex layer 18, so that the light-scattering layer 20 protrudes from the light-transmitting convex layer 18 in plan view. In this case, the light emitted through the light-transmitting convex layer 18 and the light emitted directly from the light-transmitting substrate 16 without passing through the light-transmitting convex layer 18 are mixed. can make a change.
 本実施形態において、複数の透光凸層18は、大きさ(即ち、円相当径)および/または高さの異なる複数種が混在するように形成されている。すなわち、図2にその一例を示すように、透光基材16の上記第1面(この例では表面16A)には、大きさおよび高さのうちの少なくとも一方が異なる複数種の透光凸層18が設けられ、かつそれらがいりまじって存在している。そのため、大きさおよび高さが同じ透光凸層を透光基材の一面全体に複数列に整列させる態様や、光源から遠ざかるに従って大きさが徐々に増加する透光凸層を透光基材の一面全体に複数列に整列させる態様は、「混在」とはいえず、本実施形態には含まれない。すなわち、複数種が混在とは、大きさおよび/または高さの異なる複数種の透光凸層18が光源からの距離とは無関係にいりまじって配置されていることをいう。但し、透光凸層18は、必ずしもランダムに配置される必要はなく、例えば大小いりまじった透光凸層18からなる配列パターンを複数繰り返して配置した場合も「複数種が混在」の概念に包含される。 In this embodiment, the plurality of light-transmitting convex layers 18 are formed so that a plurality of types with different sizes (that is, equivalent circle diameters) and/or heights are mixed. That is, as an example is shown in FIG. 2, a plurality of types of light-transmitting projections having different sizes and heights are provided on the first surface (the surface 16A in this example) of the light-transmitting base material 16. Layers 18 are provided and intermingled. For this reason, light-transmitting convex layers having the same size and height are arranged in a plurality of rows over the entire surface of the light-transmitting substrate, and light-transmitting convex layers whose size gradually increases with increasing distance from the light source are used in the light-transmitting substrate. A mode of arranging them in a plurality of rows over the entire surface cannot be said to be "mixed" and is not included in the present embodiment. In other words, a mixture of multiple types means that multiple types of light-transmitting convex layers 18 having different sizes and/or heights are intermingled and arranged regardless of the distance from the light source. However, the light-transmitting convex layers 18 do not necessarily have to be arranged randomly. subsumed.
 複数種の透光凸層18を設ける態様としては、例えば、大きさおよび/または高さに応じて複数階調の透光凸層18を設定し、これら複数階調の透光凸層18を混在させて設ける態様が挙げられる。一例としてインクジェット印刷により透光凸層18を形成する場合、ノズルから噴射される液滴(インク粒)の数(ドロップ数)により複数階調を設定してもよい。ノズルから噴射された複数の液滴は、空中で1つの液滴となって透光基材16に着弾するか、または透光基材16上で一体となって1つの液滴となる。そのため、噴射された液滴の数に応じた大きさおよび/または高さの透光凸層18が形成される。その際、インクの粘度や透光基材16の表面状態によって液滴の広がり具合に幅が生じる場合もあるが、そのような幅を持つ場合も含めて、液滴の数に応じた大きさおよび/または高さを持つ複数階調の透光凸層18が形成される。そのため、かかる複数階調の透光凸層18をいりまじって形成すればよい。なお、階調数としては、特に限定されず、例えば3~20でもよく、5~15でもよい。 As a mode of providing a plurality of types of light-transmitting convex layers 18, for example, light-transmitting convex layers 18 of multiple gradations are set according to the size and / or height, and these multi-gradation light-transmitting convex layers 18 are set. A mode in which they are provided in a mixed manner is exemplified. As an example, when the light-transmitting convex layer 18 is formed by inkjet printing, a plurality of gradations may be set according to the number of droplets (ink particles) ejected from the nozzles (the number of drops). A plurality of droplets ejected from the nozzles become one droplet in the air and land on the translucent substrate 16 , or combine to form one droplet on the translucent substrate 16 . Therefore, a light-transmitting convex layer 18 having a size and/or height corresponding to the number of ejected droplets is formed. At that time, the degree of spread of the droplets may vary depending on the viscosity of the ink and the surface condition of the light-transmitting substrate 16. and/or a multi-gradation translucent convex layer 18 having a height is formed. Therefore, the light-transmitting convex layers 18 having a plurality of gradations may be mixed and formed. The number of gradations is not particularly limited, and may be, for example, 3-20 or 5-15.
 光散乱層20については上記のように透光凸層18に対応させて互いに重なり合うように設けられる。そのため、透光凸層18と同様に、大きさおよび/または高さの異なる複数種の光散乱層20を混在させて設けてもよい。そのためには、例えば、大きさに応じて複数階調の光散乱層20を設定し、これら複数階調の光散乱層20を混在させて設ける態様が挙げられる。一例としてインクジェット印刷により光散乱層20を形成する場合、ノズルから噴射される液滴(インク粒)の数(ドロップ数)により複数階調を設定してもよい。階調数としては、特に限定されず、例えば3~20でもよく、5~15でもよい。 The light scattering layer 20 is provided so as to correspond to the light-transmitting convex layer 18 and overlap each other as described above. Therefore, as with the light-transmitting convex layer 18, a plurality of types of light-scattering layers 20 having different sizes and/or heights may be provided in a mixed manner. For this purpose, for example, the light scattering layer 20 having a plurality of gradations is set according to the size, and the light scattering layers 20 having a plurality of gradations are provided in a mixed manner. As an example, when the light scattering layer 20 is formed by inkjet printing, multiple gradations may be set according to the number of droplets (ink particles) ejected from the nozzles (the number of drops). The number of gradations is not particularly limited, and may be, for example, 3-20 or 5-15.
 一実施形態において、透光凸層18と光散乱層20が同じ階調数に設定され、複数の透光凸層18の各透光凸層18と当該透光凸層18に対応する光散乱層20とが同じ階調を持つように、透光凸層18と光散乱層20を配置することが好ましい。 In one embodiment, the light-transmitting convex layers 18 and the light-scattering layers 20 are set to the same number of gradations, and the light-scattering It is preferable to arrange the light-transmitting convex layer 18 and the light-scattering layer 20 so that the layer 20 has the same gradation.
 図1および図2に示すように、第1実施形態に係る発光モジュール10は、導光板12と、光源14とを備える。光源14は、透光基材16の側面(入光端面)16Cに光を入射可能である。光源14としては、例えば発光ダイオード(LED)を用いることができる。 As shown in FIGS. 1 and 2, the light emitting module 10 according to the first embodiment includes a light guide plate 12 and a light source . The light source 14 can enter light into a side surface (light incident end surface) 16</b>C of the translucent base material 16 . As the light source 14, for example, a light emitting diode (LED) can be used.
 光源14は、導光板12の全周縁のうちの少なくとも一部の縁部に設けられている。光源14は、当該縁部において透光基材16の側面16Cに対して光を照射可能に配されている。例えば、多角形状をなす透光基材16の一辺に1つの光源14を設けてもよく、当該一辺に沿って複数の光源14を並べて設けてもよい。光源14は、不図示のホルダにより導光板12の一部の縁部に取り付けられる。 The light source 14 is provided on at least a part of the periphery of the light guide plate 12 . The light source 14 is arranged so as to irradiate the side surface 16C of the translucent base material 16 with light at the edge. For example, one light source 14 may be provided on one side of the translucent base material 16 having a polygonal shape, or a plurality of light sources 14 may be provided side by side along the side. The light source 14 is attached to a portion of the edge of the light guide plate 12 with a holder (not shown).
 一実施形態において、発光モジュール10は、光源14を透光基材16の側面16Cに沿って移動させる移動装置22を備える。移動装置22は、光源14を移動させることができれば特に限定されず、ギアやベルト駆動などを用いて構成することができる。 In one embodiment, the light emitting module 10 includes a moving device 22 that moves the light source 14 along the side surface 16C of the translucent substrate 16. The moving device 22 is not particularly limited as long as it can move the light source 14, and can be configured using a gear, a belt drive, or the like.
 移動装置22は、図1において矢印Xで示すように、光源14を透光基材16の厚さ方向に移動させることができるように構成されてもよい。移動装置22は、また、図2において矢印Yで示すように、光源14を透光基材16の上記一辺に沿う横方向に移動させることができるように構成されてもよい。あるいはまた、移動装置22は、光源14を透光基材16の側面16Cに対して斜め方向に移動させることができるように、即ち上記横方向Yに移動させつつ上記厚さ方向Xに移動させるように構成されてもよい。 The moving device 22 may be configured to move the light source 14 in the thickness direction of the translucent base material 16, as indicated by the arrow X in FIG. The moving device 22 may also be configured to move the light source 14 laterally along the one side of the translucent substrate 16, as indicated by arrow Y in FIG. Alternatively, the moving device 22 moves the light source 14 obliquely with respect to the side surface 16C of the translucent base material 16, that is, moves it in the lateral direction Y while moving it in the thickness direction X. It may be configured as
 なお、発光モジュール10は、図示しないが、光源14への配線、電源及び制御装置などの電機部品の他、フレームなどの他の部品を含んで構成されてもよい。 Although not shown, the light emitting module 10 may be configured to include electrical components such as wiring to the light source 14, a power supply, and a control device, as well as other components such as a frame.
 以上よりなる第1実施形態であると、導光板12の本体をなす透光基材16の側面16Cから光が入射すると、光は全反射により透光基材16内に閉じ込められて透光基材16内に広がっていく。その際、図6に示すように、光は光散乱層20において光散乱粒子により散乱し、透光基材16の表面16Aに対して垂直に近い角度(臨界角未満)で入射する光が生じる。その光は、光散乱層20に対向して設けられた透光凸層18の底面18Aから透光凸層18内に入射する。透光凸層18に入射した光は、光出射面18Bを通って外部に出射される。その際、光出射面18Bが湾曲面により形成されているので、そのレンズ効果により光が拡散する。そのため、見る角度によって発光の見え方が異なる角度依存性が得られる。また、光を出射させる透光凸層18として、大きさおよび/または高さの異なる複数種が混在していることにより、局所的に輝度の高い箇所や煌めきを表現することができる。そのため、本物のクリスタルに類似したクリスタル調の光の煌めきや角度依存性による光の動きを実現することができ、高級感を付与することができる。 In the first embodiment as described above, when light is incident from the side surface 16C of the light-transmitting base material 16 forming the main body of the light guide plate 12, the light is confined in the light-transmitting base material 16 by total reflection and It spreads out within the material 16 . At that time, as shown in FIG. 6, the light is scattered by the light scattering particles in the light scattering layer 20, and light is incident on the surface 16A of the translucent base material 16 at an angle close to perpendicular (less than the critical angle). . The light enters the light-transmitting convex layer 18 from the bottom surface 18A of the light-transmitting convex layer 18 provided facing the light scattering layer 20 . The light incident on the translucent convex layer 18 is emitted to the outside through the light emitting surface 18B. At that time, since the light exit surface 18B is formed by a curved surface, the light is diffused by the lens effect. Therefore, angle dependence is obtained in which the appearance of light emission differs depending on the viewing angle. In addition, as the light-transmitting convex layer 18 for emitting light, a plurality of types with different sizes and/or heights are mixed, so that it is possible to express locally high brightness and sparkle. Therefore, it is possible to achieve crystal-like sparkle similar to that of real crystals and movement of light due to angle dependence, thereby imparting a sense of quality.
 第1実施形態であると、また、移動装置22により光源14を移動させることにより、発光方向を変化させることができる。そのため、見る角度を変えなくても光に動きを出すことができ、また見る角度を変えることと相俟って光の動きを強調することができる。また、光源14を移動させることにより、光が流れているような照明効果を実現することもできる。 In the first embodiment, the direction of light emission can be changed by moving the light source 14 with the moving device 22 . Therefore, it is possible to make the light move without changing the viewing angle, and in combination with changing the viewing angle, the movement of the light can be emphasized. Also, by moving the light source 14, it is possible to realize an illumination effect as if light were flowing.
 なお、第1実施形態において、光散乱層20で光が散乱すること、および、透光凸層18において光が反射することにより、導光板12の裏面側からも一部の光が出射されることがある。すなわち、透光凸層18が設けられた導光板12の表面側を主たる光出射面としつつ、光散乱層20が設けられた導光板12の裏面側を、当該主たる光出射面よりも光量の少ない従たる光出射面とすることができる。そのため、導光板12を、表裏両面が光出射可能なパーティション(仕切り)として用いることもできる。 In the first embodiment, light is scattered by the light scattering layer 20 and light is reflected by the light-transmitting convex layer 18, so that part of the light is emitted from the back side of the light guide plate 12 as well. Sometimes. That is, while the front side of the light guide plate 12 provided with the light-transmitting convex layer 18 is used as the main light output surface, the back side of the light guide plate 12 provided with the light scattering layer 20 is set to have a higher light quantity than the main light output surface. Fewer secondary light exit surfaces can be provided. Therefore, the light guide plate 12 can also be used as a partition (partition) from which light can be emitted from both the front and back surfaces.
 (第2実施形態)
 図9は、第2実施形態に係る発光モジュールの導光板30を示した要部拡大断面図である。第2実施形態の導光板30は、透光基材16の上記第1面(この例では表面16A)に保護層として透光樹脂層32を設けた点で第1実施形態の導光板12と異なる。
(Second embodiment)
FIG. 9 is an enlarged cross-sectional view of a main part showing the light guide plate 30 of the light emitting module according to the second embodiment. The light guide plate 30 of the second embodiment differs from the light guide plate 12 of the first embodiment in that a light-transmitting resin layer 32 is provided as a protective layer on the first surface (surface 16A in this example) of the light-transmitting base material 16. different.
 透光樹脂層32は、高屈折率層である透光基材16を保護するために設けられた透光性を有する樹脂層である。この例では、透光樹脂層32は、透光基材16よりも屈折率の低い樹脂からなる。透光樹脂層32の屈折率(絶対屈折率)は、透光基材16よりも低ければ特に限定されず、例えば1.35~1.65でもよく、1.40~1.55でもよい。 The translucent resin layer 32 is a translucent resin layer provided to protect the translucent base material 16, which is a high refractive index layer. In this example, the translucent resin layer 32 is made of resin having a lower refractive index than the translucent base material 16 . The refractive index (absolute refractive index) of the translucent resin layer 32 is not particularly limited as long as it is lower than that of the translucent base material 16, and may be, for example, 1.35 to 1.65 or 1.40 to 1.55.
 透光樹脂層32は、無色透明でもよく、有色透明でもよい。透光樹脂層32を形成する樹脂としては、例えば、ポリメチルメタクリレート(PMMA)、ウレタンアクリレート樹脂などのアクリル系樹脂; ポリスチレン樹脂、アクリロニトリル-スチレン共重合体樹脂(AS樹脂)、アクリロニトリル-スチレン-ブタジエン共重合体樹脂(ABS樹脂)などのスチレン系樹脂; ポリエチレン、ポリプロピレンなどのポリオレフィン樹脂; またはこれらの2種以上のブレンドが挙げられる。 The translucent resin layer 32 may be colorless and transparent, or may be colored and transparent. Examples of the resin that forms the translucent resin layer 32 include acrylic resins such as polymethyl methacrylate (PMMA) and urethane acrylate resin; polystyrene resin, acrylonitrile-styrene copolymer resin (AS resin), acrylonitrile-styrene-butadiene. Styrenic resins such as copolymer resins (ABS resins); polyolefin resins such as polyethylene and polypropylene; or blends of two or more of these.
 透光樹脂層32の厚さは、特に限定されず、例えば10~100μmでもよく、20~50μmでもよい。 The thickness of the translucent resin layer 32 is not particularly limited, and may be, for example, 10 to 100 μm or 20 to 50 μm.
 第2実施形態において、透光樹脂層32は、透光基材16の表面16Aの全体にわたって当該表面16Aに接し設けられている。そして、該透光樹脂層32上に複数の透光凸層18が当該透光樹脂層32の表面に接し設けられている。すなわち、第2実施形態において、複数の透光凸層18は、透光基材16の上記第1面(表面16A)に対して透光樹脂層32を介して設けられている。従って、この場合、透光樹脂層32の表面が透光凸層18を設ける基準面である。 In the second embodiment, the translucent resin layer 32 is provided over the entire surface 16A of the translucent base material 16 so as to be in contact with the surface 16A. A plurality of light-transmitting convex layers 18 are provided on the light-transmitting resin layer 32 so as to be in contact with the surface of the light-transmitting resin layer 32 . That is, in the second embodiment, the plurality of light-transmitting convex layers 18 are provided on the first surface (surface 16A) of the light-transmitting base material 16 via the light-transmitting resin layer 32 . Therefore, in this case, the surface of the light-transmitting resin layer 32 is the reference surface on which the light-transmitting convex layer 18 is provided.
 透光樹脂層32の形成方法は、特に限定されず、例えば、スプレー、ディッピング、スピンコート、バーコートなどの公知の塗装方法や、インクジェット印刷、スクリーン印刷などの印刷方法が挙げられる。 The method of forming the translucent resin layer 32 is not particularly limited, and examples thereof include known coating methods such as spraying, dipping, spin coating and bar coating, and printing methods such as inkjet printing and screen printing.
 第2実施形態では、透光凸層18を透光基材16上に直接設けるのではなく、透光樹脂層32を介して設けている。透光樹脂層32は、透光基材16よりも屈折率が小さいが、透光凸層18を介して外部に出射される光は、裏面側の光散乱層20で散乱された臨界角未満の角度で表面16Aに向かう光である。そのため、透光樹脂層32を設けたことによる輝度の低下は小さい。また、透光樹脂層32がない場合、仮に透光基材16の表面16Aに傷がつくと、その部分から光漏れが生じるおそれがある。しかしながら、屈折率の小さい透光樹脂層32を設けたことにより、傷がついてもその部分からの光漏れは発生しにくい。 In the second embodiment, the light-transmitting convex layer 18 is provided not directly on the light-transmitting base material 16 but via the light-transmitting resin layer 32 . The light-transmitting resin layer 32 has a smaller refractive index than the light-transmitting base material 16, but the light emitted to the outside through the light-transmitting convex layer 18 is less than the critical angle scattered by the light scattering layer 20 on the back side. is directed toward surface 16A at an angle of . Therefore, the decrease in luminance due to the provision of the translucent resin layer 32 is small. Moreover, if the surface 16A of the light-transmitting base material 16 is scratched without the light-transmitting resin layer 32, light may leak from that portion. However, by providing the translucent resin layer 32 with a small refractive index, even if there is a scratch, it is difficult for light to leak from that portion.
 第2実施形態について、その他の構成及び作用効果は第1実施形態と同様であり、説明は省略する。 The rest of the configuration and operational effects of the second embodiment are the same as those of the first embodiment, and descriptions thereof will be omitted.
 (第3実施形態)
 図10は、第3実施形態に係る発光モジュールの導光板40を示した要部拡大断面図である。第3実施形態の導光板40は、透光基材16の表面16Aに設ける保護層としての透光樹脂層42の構成が第2実施形態とは異なる。
(Third embodiment)
FIG. 10 is an enlarged cross-sectional view of a main part showing the light guide plate 40 of the light emitting module according to the third embodiment. A light guide plate 40 of the third embodiment differs from that of the second embodiment in the configuration of a light-transmitting resin layer 42 as a protective layer provided on the surface 16A of the light-transmitting base material 16 .
 第3実施形態では、第1実施形態と同様、透光凸層18を透光基材16の表面16Aに直接設けた上で、当該表面16Aにおける透光凸層18以外の部分に透光樹脂層42を設けている。このように透光凸層18を透光基材16の表面16Aに直接設けることにより、第2実施形態のように透光樹脂層32を介在させることによる輝度低下の可能性を無くすことができる。但し、製造のしやすさという点では第2実施形態の方が好ましい。 In the third embodiment, as in the first embodiment, the light-transmitting convex layer 18 is directly provided on the surface 16A of the light-transmitting base material 16, and then the part other than the light-transmitting convex layer 18 on the surface 16A is covered with a light-transmitting resin. A layer 42 is provided. By directly providing the light-transmitting convex layer 18 on the surface 16A of the light-transmitting base material 16 in this way, it is possible to eliminate the possibility of lowering the brightness due to interposition of the light-transmitting resin layer 32 as in the second embodiment. . However, the second embodiment is preferable in terms of ease of manufacture.
 第3実施形態について、その他の構成及び作用効果は第2実施形態と同様であり、説明は省略する。 The rest of the configuration and operational effects of the third embodiment are the same as those of the second embodiment, and description thereof will be omitted.
 (第4実施形態)
 図11は、第4実施形態に係る発光モジュール50の断面模式図である。第4実施形態に係る発光モジュール50では、その導光板52が、光散乱層20を被覆する被覆樹脂層54を備える点で、第1実施形態に係る発光モジュール10と異なる。
(Fourth embodiment)
FIG. 11 is a schematic cross-sectional view of a light emitting module 50 according to the fourth embodiment. The light emitting module 50 according to the fourth embodiment differs from the light emitting module 10 according to the first embodiment in that the light guide plate 52 includes a coating resin layer 54 that covers the light scattering layer 20 .
 第4実施形態の導光板52は、第1実施形態の導光板12と同様の透光基材16、複数の透光凸層18および複数の光散乱層20を有するものである。その上で、該複数の光散乱層20に対してそれらをそれぞれ被覆する複数の被覆樹脂層54が設けられている。 A light guide plate 52 of the fourth embodiment has a light-transmitting base material 16, a plurality of light-transmitting convex layers 18, and a plurality of light scattering layers 20 similar to the light guide plate 12 of the first embodiment. Further, a plurality of coating resin layers 54 are provided to cover the plurality of light scattering layers 20 respectively.
 被覆樹脂層54は、透光性を有する樹脂からなり、無色透明でもよく、有色透明でもよい。被覆樹脂層54は光散乱粒子を含有しない樹脂層である。被覆樹脂層54を形成する樹脂としては、透光凸層18と同様の樹脂、すなわち、上記のアクリル系樹脂、スチレン系樹脂、ポリオレフィン樹脂、またはこれらの2種以上のブレンドが例示される。 The coating resin layer 54 is made of a translucent resin, and may be colorless and transparent, or may be colored and transparent. The coating resin layer 54 is a resin layer containing no light scattering particles. Examples of the resin forming the coating resin layer 54 include resins similar to those of the light-transmitting convex layer 18, that is, the acrylic resins, styrene resins, polyolefin resins, or a blend of two or more of these.
 被覆樹脂層54の屈折率(絶対屈折率)は、特に限定されず、透光基材16よりも高くてもよく、透光基材16よりも低くてもよく、同じ値でもよい。被覆樹脂層54の屈折率は、例えば1.35~1.65でもよく、1.40~1.55でもよい。 The refractive index (absolute refractive index) of the coating resin layer 54 is not particularly limited, and may be higher than that of the translucent base material 16, lower than that of the translucent base material 16, or the same value. The refractive index of the coating resin layer 54 may be, for example, 1.35 to 1.65 or 1.40 to 1.55.
 被覆樹脂層54は、透光基材16の上記第2面(裏面16B)に設けられた複数の光散乱層20に対し、各光散乱層20のみをそれぞれ覆うように複数設けられている。但し、被覆樹脂層54は、各光散乱層20の表面全体を被覆するように、各光散乱層20の周囲を取り囲んで透光基材16と接する部分を有して形成されている。このように被覆樹脂層54は光散乱層20よりも大きく形成されているため、図11に示すように、光散乱層20同士の間隔が狭い場合、複数の被覆樹脂層54が繋がって形成されてもよい。 A plurality of coating resin layers 54 are provided so as to cover only the respective light scattering layers 20 of the plurality of light scattering layers 20 provided on the second surface (back surface 16B) of the translucent base material 16 . However, the coating resin layer 54 is formed so as to cover the entire surface of each light scattering layer 20 so as to surround each light scattering layer 20 and have a portion in contact with the translucent base material 16 . Since the coating resin layer 54 is formed to be larger than the light scattering layer 20 in this way, when the distance between the light scattering layers 20 is narrow as shown in FIG. may
 被覆樹脂層54の表面54Aは、図11に示すように湾曲面により形成されている。被覆樹脂層54の表面54Aは、被覆樹脂層54と空気との界面をなす面である。該表面54Aは、湾曲面のみで形成されてもよいが、部分的に平面を含んでもよい。該表面54Aは、主として湾曲面により形成されることが好ましく、表面54Aのうち湾曲面が占める面積割合が80%以上であることがより好ましい。 A surface 54A of the coating resin layer 54 is formed by a curved surface as shown in FIG. A surface 54A of the coating resin layer 54 is a surface forming an interface between the coating resin layer 54 and air. The surface 54A may be formed only of curved surfaces, but may partially include flat surfaces. Preferably, the surface 54A is mainly formed of a curved surface, and more preferably, the curved surface accounts for 80% or more of the surface 54A.
 被覆樹脂層54の表面54Aは、透光凸層18と同様、一または複数の湾曲面により形成され、図11に示すように単一の湾曲凸面からなる凸レンズ状に形成されてもよい。かかる単一の湾曲凸面からなる表面54Aを有する被覆樹脂層54は、それぞれ独立して設けてもよく、また、上記のように複数の被覆樹脂層54が繋がって形成されてもよい。また、図5に示す透光凸層18と同様に平凸レンズ状の凸部を2段に重ねて設けることにより、複数の湾曲面を持つ表面54Aとしてもよい。 The surface 54A of the coating resin layer 54 is formed of one or more curved surfaces, similar to the translucent convex layer 18, and may be formed into a convex lens shape composed of a single curved convex surface as shown in FIG. The coating resin layers 54 each having a surface 54A composed of such a single curved convex surface may be provided independently, or may be formed by connecting a plurality of coating resin layers 54 as described above. In addition, the surface 54A having a plurality of curved surfaces may be formed by arranging plano-convex lens-shaped convex portions in two stages in the same manner as the translucent convex layer 18 shown in FIG.
 被覆樹脂層54は、湾曲面状をなして周縁から中央に向かって高く形成された凸状をなして形成されることが好ましい。被覆樹脂層54の平面視は円形であることが好ましいが、これに限定されるものではなく、平面視が矩形または三角形状でもよく、種々の形状を採用することができる。 It is preferable that the coating resin layer 54 is formed in a convex shape that has a curved surface shape and is formed high from the peripheral edge toward the center. Although it is preferable that the coating resin layer 54 is circular in plan view, it is not limited to this, and may be rectangular or triangular in plan view, and various shapes can be adopted.
 被覆樹脂層54は、例えばインクジェット印刷により形成することができる。そのインクの粘度を調整することにより、上記のような湾曲面よりなる表面54Aを持つ被覆樹脂層54を形成することができる。 The coating resin layer 54 can be formed, for example, by inkjet printing. By adjusting the viscosity of the ink, it is possible to form the coating resin layer 54 having the curved surface 54A as described above.
 被覆樹脂層54は、各光散乱層20を覆うように設けられているため、光散乱層20と同様に、大きさおよび/または高さの異なる複数種の被覆樹脂層54を混在させて設けてもよい。そのためには、例えば、大きさに応じて複数階調の被覆樹脂層54を設定し、これら複数階調の被覆樹脂層54を混在させて設ける態様が挙げられる。一例としてインクジェット印刷により被覆樹脂層54を形成する場合、ノズルから噴射される液滴(インク粒)の数(ドロップ数)により複数階調を設定してもよい。 Since the coating resin layer 54 is provided so as to cover each light scattering layer 20, a plurality of types of coating resin layers 54 having different sizes and/or heights are provided in a mixed manner in the same manner as the light scattering layer 20. may For this purpose, for example, the coating resin layers 54 of multiple gradations are set according to the size, and the coating resin layers 54 of these multiple gradations are provided in a mixed manner. As an example, when the coating resin layer 54 is formed by inkjet printing, multiple gradations may be set according to the number of droplets (ink particles) ejected from the nozzles (the number of drops).
 第4実施形態によれば、光散乱層20を被覆する被覆樹脂層54を設け、その表面54Aを湾曲面により形成している。これにより、光散乱層20で散乱した光を被覆樹脂層54でのレンズ効果により拡散させることができる。そのため、導光板52の表面側においてより一層輝度の差を生じさせて、意匠表現の幅を広げることができる。また、導光板52の裏面側においても煌めきのある光の出射が可能となる。そのため、例えば導光板52をパーティション(仕切り)として用いたときに、その表面および裏面ともに煌めき効果のある光の意匠表現を得ることができる。 According to the fourth embodiment, the coating resin layer 54 that covers the light scattering layer 20 is provided, and its surface 54A is formed with a curved surface. Thereby, the light scattered by the light scattering layer 20 can be diffused by the lens effect of the coating resin layer 54 . Therefore, it is possible to further increase the difference in brightness on the front surface side of the light guide plate 52, thereby expanding the range of design expression. In addition, it is possible to emit glittering light from the back side of the light guide plate 52 as well. Therefore, for example, when the light guide plate 52 is used as a partition, it is possible to obtain a light design expression with a sparkling effect on both the front and back surfaces.
 第4実施形態について、その他の構成及び作用効果は第1実施形態と同様であり、説明は省略する。 The rest of the configuration and operational effects of the fourth embodiment are the same as those of the first embodiment, and description thereof will be omitted.
 (その他の実施形態)
 上記実施形態における導光板12,30,40,52には、追加の層を形成してもよい。例えば、導光板12,30,40,52の裏面側に、極端に屈折率の低い樹脂層を設けてもよい。また、該裏面側に、金属鏡面となるような塗料を塗布して鏡面層を設けてもよい。
(Other embodiments)
Additional layers may be formed in the light guide plates 12, 30, 40, 52 in the above embodiments. For example, a resin layer having an extremely low refractive index may be provided on the rear surface side of the light guide plates 12, 30, 40, 52. FIG. Also, a specular layer may be provided on the rear surface side by applying a paint that provides a metallic specular surface.
 上記実施形態においては、透光基材16の裏面16B側に設けた各光散乱層20に対して、湾曲面により形成された光出射面18Bを持つ透光凸層18を表面16A側に設けている。しかしながら、全ての光散乱層20に対応させて湾曲状の透光凸層18を形成する必要はない。すなわち、透光凸層18は、少なくとも一部の光散乱層20に対応させて設けられていればよい。例えば、一部の光散乱層20については、それに対応させて、湾曲面により形成されていないフラットな断面形状の光出射面を持つ透光性の樹脂層を表面16A側に設けてもよい。あるいはまた、一部の光散乱層20については、対応する透光性の樹脂層を表面16A側に設けなくてもよい。 In the above embodiment, for each light scattering layer 20 provided on the back surface 16B side of the translucent substrate 16, the light-transmitting convex layer 18 having the light exit surface 18B formed by a curved surface is provided on the front surface 16A side. ing. However, it is not necessary to form the curved light-transmitting convex layers 18 corresponding to all the light scattering layers 20 . That is, the light-transmitting convex layer 18 may be provided so as to correspond to at least a part of the light-scattering layer 20 . For example, for some of the light scattering layers 20, a translucent resin layer having a flat cross-sectional light exit surface that is not formed by a curved surface may be provided on the surface 16A side. Alternatively, for some of the light scattering layers 20, the corresponding translucent resin layer may not be provided on the surface 16A side.
 上記実施形態における各構成は適宜に組み合わせることができ、例えば、第4実施形態の導光板52において、第2実施形態の透光樹脂層32や第3実施形態の透光樹脂層42を設けてもよい。なお、表面側の透光凸層18について、その光出射面18Bは他の樹脂層で覆われないことが好ましい。 Each configuration in the above embodiments can be appropriately combined. good too. In addition, it is preferable that the light emitting surface 18B of the light-transmitting convex layer 18 on the surface side is not covered with another resin layer.
 [実施例1]
 基材として、住化アクリル販売株式会社製「テクノロイ(登録商標)C003」を用いた(短辺の長さ180mm、長辺の長さ400mmの長方形シート)。該基材は、透光基材16に相当するポリカーボネート層(厚さ1.97mm、屈折率1.587)の表面16Aに、透光樹脂層32(保護層)に相当するPMMA層(厚さ0.03mm、屈折率1.49)を積層した2層構造の樹脂シートである。
[Example 1]
As the substrate, "Technoloy (registered trademark) C003" manufactured by Sumika Acrylic Co., Ltd. was used (rectangular sheet with a short side length of 180 mm and a long side length of 400 mm). The substrate consists of a surface 16A of a polycarbonate layer (thickness: 1.97 mm, refractive index: 1.587) corresponding to the translucent substrate 16, and a PMMA layer (thickness: 0.03 mm, refractive index 1.49).
 光散乱層用インクおよび透光凸層用インクの配合は下記表1および表2に示す通りである。 The formulations of the light-scattering layer ink and the light-transmitting convex layer ink are shown in Tables 1 and 2 below.
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000002
 
 上記基材の裏面(透光基材16の裏面16B)に、シリアル型インクジェットプリンターを用いて、光散乱層用インクを付与した。その後、直ちに紫外線ランプを用いて紫外線を照射し、インクを硬化させて平面視円形の光散乱層20を複数形成した。インクの粘度(25℃)は12.2mPa・sであった。印刷条件は、ヘッド加熱温度:35℃、ノズル径:20μm、印加電圧:21V、パルス幅:15μs、解像度:300dpiとした。紫外線照射条件は、ランプ種類:メタルハライドランプ、ランプ出力:100W、照射時間:0.5s、照射回数:4回、照射距離:5mm、積算光量:200mJ/cmとした。 A light scattering layer ink was applied to the back surface of the substrate (back surface 16B of the translucent substrate 16) using a serial inkjet printer. After that, an ultraviolet lamp was used to immediately irradiate the ink with ultraviolet rays, and the ink was cured to form a plurality of light scattering layers 20 circular in plan view. The viscosity of the ink (25° C.) was 12.2 mPa·s. The printing conditions were head heating temperature: 35° C., nozzle diameter: 20 μm, applied voltage: 21 V, pulse width: 15 μs, resolution: 300 dpi. The ultraviolet irradiation conditions were as follows: lamp type: metal halide lamp, lamp output: 100 W, irradiation time: 0.5 s, irradiation times: 4 times, irradiation distance: 5 mm, and integrated light quantity: 200 mJ/cm 2 .
 その際、複数種の光散乱層20として、ノズルから噴射される液滴のドロップ数に応じて下記1~7階調を設定した。
・1階調:1ドロップ、直径20~25μm
・2階調:2ドロップ、直径25~30μm
・3階調:3ドロップ、直径30~35μm
・4階調:4ドロップ、直径40~50μm
・5階調:5ドロップ、直径55~65μm
・6階調:6ドロップ、直径70~80μm
・7階調:7ドロップ、直径80~100μm
At that time, the following 1 to 7 gradations were set for the multiple types of light scattering layers 20 according to the number of droplets ejected from the nozzle.
・1 gradation: 1 drop, diameter 20 to 25 μm
・2 gradations: 2 drops, diameter 25-30 μm
・3 gradations: 3 drops, diameter 30-35 μm
・4 gradations: 4 drops, diameter 40-50 μm
・5 gradations: 5 drops, diameter 55-65 μm
・6 gradations: 6 drops, diameter 70-80 μm
・7 gradations: 7 drops, diameter 80-100 μm
 次いで、上記基材の表面(透光樹脂層32の表面)に、シリアル型インクジェットプリンターを用いて、透光凸層用インクを付与した。その後、直ちに紫外線ランプを用いて紫外線を照射し、インクを硬化させて平面視円形の平凸レンズ状の透光凸層18を複数形成した。透光凸層18は、裏面側に設けた光散乱層20と基材を挟んで重なり合うように、光散乱層20と同じ位置に設けた。インクの粘度(25℃)は15.0mPa・sであった。印刷条件は、ヘッド加熱温度:35℃、ノズル径:20μm、印加電圧:22V、パルス幅:15μs、解像度:300dpiとした。紫外線照射条件は、ランプ種類:メタルハライドランプ、ランプ出力:160W、照射時間:0.5s、照射回数:8回、照射距離:40mm、積算光量:640mJ/cmとした。透光凸層18の屈折率は1.458であった。 Next, the light-transmitting convex layer ink was applied to the surface of the substrate (the surface of the light-transmitting resin layer 32) using a serial inkjet printer. After that, the ink was immediately irradiated with ultraviolet rays using an ultraviolet lamp to cure the ink, thereby forming a plurality of light-transmitting convex layers 18 in the shape of plano-convex lenses circular in plan view. The light-transmitting convex layer 18 was provided at the same position as the light-scattering layer 20 so as to overlap with the light-scattering layer 20 provided on the back side with the base material interposed therebetween. The viscosity of the ink (25° C.) was 15.0 mPa·s. The printing conditions were head heating temperature: 35° C., nozzle diameter: 20 μm, applied voltage: 22 V, pulse width: 15 μs, resolution: 300 dpi. The ultraviolet irradiation conditions were as follows: lamp type: metal halide lamp, lamp output: 160 W, irradiation time: 0.5 s, number of times of irradiation: 8 times, irradiation distance: 40 mm, integrated light quantity: 640 mJ/cm 2 . The refractive index of the translucent convex layer 18 was 1.458.
 その際、複数種の透光凸層18として、ノズルから噴射される液滴のドロップ数に応じて下記1~7階調を設定した。
・1階調:1ドロップ、直径20~25μm、高さ1~2μm
・2階調:2ドロップ、直径25~30μm、高さ3~4μm
・3階調:3ドロップ、直径30~35μm、高さ5~6μm
・4階調:4ドロップ、直径40~45μm、高さ7~8μm
・5階調:5ドロップ、直径45~50μm、高さ9~10μm
・6階調:6ドロップ、直径55~65μm、高さ11~13μm
・7階調:7ドロップ、直径70~90μm、高さ14~17μm
At that time, the following 1 to 7 gradations were set for the plurality of types of translucent convex layers 18 according to the number of droplets ejected from the nozzles.
・1 gradation: 1 drop, diameter 20-25 μm, height 1-2 μm
・2 gradations: 2 drops, diameter 25-30 μm, height 3-4 μm
・3 gradations: 3 drops, diameter 30-35 μm, height 5-6 μm
・4 gradations: 4 drops, diameter 40-45 μm, height 7-8 μm
・5 gradations: 5 drops, diameter 45-50 μm, height 9-10 μm
・6 gradations: 6 drops, diameter 55-65 μm, height 11-13 μm
・7 gradations: 7 drops, diameter 70-90 μm, height 14-17 μm
 このように透光凸層18と光散乱層20を同じ階調数に設定した。その上で、複数の透光凸層18の各透光凸層18と当該透光凸層18に対応する光散乱層20とが同じ階調を持つように配置した。すなわち、例えば「3階調」の透光凸層18に対しては透光基材16を挟んで重なり合う位置に「3階調」の光散乱層20を設けた。 In this way, the light-transmitting convex layer 18 and the light-scattering layer 20 are set to have the same number of gradations. Further, each light-transmitting convex layer 18 of the plurality of light-transmitting convex layers 18 and the light scattering layer 20 corresponding to the light-transmitting convex layer 18 are arranged so as to have the same gradation. That is, for example, the light-scattering layer 20 of "3 gradations" was provided at the position where the light-transmitting convex layer 18 of "3 gradations" overlaps with the light-transmitting substrate 16 interposed therebetween.
 上記複数種の透光凸層18の配置例の一部分を図12Aに示す。図12Aにおいて、マス目の一辺は約85μmであり、一辺約0.85mmの正方形の領域における透光凸層18の配設パターンを、透光凸層18の平面図として示している。図12Bではその階調を数字で示している。上記複数種の光散乱層20の配置例は、透光凸層18の配置例と同じであり、一対一対応とした。なお、空白のマス目は、透光凸層18を設けない、0階調の部位を意味する。 FIG. 12A shows a part of an arrangement example of the plurality of types of light-transmitting convex layers 18 described above. In FIG. 12A, one side of the grid is about 85 μm, and the arrangement pattern of the light-transmitting convex layer 18 in a square area with one side of about 0.85 mm is shown as a plan view of the light-transmitting convex layer 18 . In FIG. 12B, the gradation is indicated by numbers. The arrangement examples of the plurality of types of light scattering layers 20 are the same as the arrangement examples of the light-transmitting convex layers 18, and are in one-to-one correspondence. In addition, the blank square means the part of 0 gradation where the light-transmitting convex layer 18 is not provided.
 以上により得られた導光板は、図9に示す第2実施形態の導光板30に相当する。該導光板の短辺側の側面にLEDを取り付け、LEDを点灯させて当該側面から光を入射した。すると、表面側の透光凸層18から光が出射され、局所的に輝度の高い箇所や煌めきを有していた。また、見る角度によって発光の見え方が異なる角度依存性を持っていた。そのため、クリスタル調の光の煌めきや角度依存性による光の動きを実現することができ、高級感のある意匠が得られた。 The light guide plate obtained as described above corresponds to the light guide plate 30 of the second embodiment shown in FIG. An LED was attached to a side surface on the short side of the light guide plate, and the LED was turned on to allow light to enter from the side surface. Then, light was emitted from the light-transmitting convex layer 18 on the surface side, and there were locally high-brightness spots and sparkles. In addition, there was an angle dependence in which the appearance of light emission differs depending on the viewing angle. Therefore, it was possible to realize crystal-like sparkle and movement of light due to angle dependence, and a high-class design was obtained.
 [実施例2]
 実施例1で得られた導光板において、複数の光散乱層20に対してそれらをそれぞれ被覆する複数の被覆樹脂層54を設けた。詳細には、シリアル型インクジェットプリンターを用いて、上記実施例1の透光凸層用インクを光散乱層20の表面に付与した。その後、直ちに紫外線ランプを用いて紫外線を照射し、インクを硬化させることにより被覆樹脂層54が形成された。被覆樹脂層54の印刷条件、紫外線照射条件、および階調の設定は、実施例1の透光凸層18と同様とした。被覆樹脂層54は、表面側の透光凸層18と同等の平面視円形の凸レンズ状の表面を有していた。
[Example 2]
In the light guide plate obtained in Example 1, a plurality of coating resin layers 54 were provided to cover the plurality of light scattering layers 20 respectively. Specifically, the ink for the light-transmitting convex layer of Example 1 was applied to the surface of the light-scattering layer 20 using a serial inkjet printer. After that, the coating resin layer 54 was formed by immediately irradiating ultraviolet rays using an ultraviolet lamp to cure the ink. The printing conditions, ultraviolet irradiation conditions, and gradation settings for the coating resin layer 54 were the same as those for the light-transmitting convex layer 18 of the first embodiment. The coating resin layer 54 had a circular convex lens-like surface in plan view, which was the same as the translucent convex layer 18 on the surface side.
 これにより得られた導光板は、上記第4実施形態と第2実施形態を組み合わせた構成を持つものである。該導光板の短辺側の側面にLEDを取り付け、LEDを点灯させて当該側面から光を入射した。すると、表面側の透光凸層18から光が出射され、局所的に輝度の高い箇所や煌めきを有していた。また、見る角度によって発光の見え方が異なる角度依存性を持っていた。実施例1の導光板と比べて、部位による輝度の差がより一層強調されて表面側の意匠効果に優れていた。また、裏面側についても煌めき効果のある光の出射がみられた。よって、導光板の表面側だけでなく裏面側についても煌めき効果のある光の意匠表現が得られた。 The resulting light guide plate has a configuration in which the fourth embodiment and the second embodiment are combined. An LED was attached to a side surface on the short side of the light guide plate, and the LED was turned on to allow light to enter from the side surface. Then, light was emitted from the light-transmitting convex layer 18 on the surface side, and there were locally high-brightness spots and sparkles. In addition, there was an angle dependence in which the appearance of light emission differs depending on the viewing angle. Compared with the light guide plate of Example 1, the difference in luminance depending on the part was further emphasized, and the design effect on the surface side was excellent. In addition, emission of light with a sparkling effect was observed on the back side as well. Therefore, a design expression of light with a sparkling effect was obtained not only on the front side of the light guide plate but also on the back side.
 以下に幾つかの実施形態を列挙するが、これに限定されるものではない。
[1] 透光性を有する透光基材であって、前記透光基材の表面または裏面のいずれか一方である第1面と他方である第2面とを持つ前記透光基材と; 透光性を有する樹脂からなり、前記第1面に凸状に設けられ、湾曲面により形成された光出射面を備える複数の透光凸層と; 光散乱粒子を含む樹脂からなり、前記複数の透光凸層に対して前記透光基材を挟んで重なり合うように前記第2面に設けられた複数の光散乱層と; を含む導光板であって、大きさおよび/または高さの異なる複数種の前記透光凸層が混在している、導光板。
[2] 前記複数の透光凸層の各光出射面は、前記湾曲面が占める面積割合が80%以上である、[1]に記載の導光板。
[3] 大きさおよび/または高さの異なる複数種の前記光散乱層が混在している、[1]または[2]に記載の導光板。
[4] 前記複数の透光凸層が前記第1面に点在して設けられ、前記複数の光散乱層が前記第2面に点在して設けられた、[1]~[3]のいずれか1項に記載の導光板。
[5] 前記複数の透光凸層の各光出射面が一または複数の湾曲面により形成された、[1]~[4]のいずれか1項に記載の導光板。
[6] 前記複数の透光凸層の底面の円相当径が20~150μm、より好ましくは30~100μmであり、前記複数の光散乱層の底面の円相当径が20~150μm、より好ましくは30~100μmである、[1]~[5]のいずれか1項に記載の導光板。
[7] 前記複数の透光凸層の各透光凸層と当該透光凸層に対応する前記光散乱層との重なり量が、前記透光基材の前記表面に垂直な方向からみて前記光散乱層の面積の30%以上、より好ましくは50%以上、さらに好ましくは70%以上である、[1]~[6]のいずれか1項に記載の導光板。
[8] 前記複数の透光凸層は、対応する光散乱層の全体に重なるように設けられた透光凸層を含む、[1]~[7]のいずれか1項に記載の導光板。
[9] 前記複数の透光凸層は、対応する光散乱層に対してその一部で重なり合うように位置をずらして設けられた透光凸層を含む、[1]~[8]のいずれか1項に記載の導光板。
[10] 前記複数の透光凸層の各透光凸層の底面面積が、前記複数の光散乱層の各光散乱層の底面面積に対して40~200%、より好ましくは70~150%である、[1]~[9]のいずれか1項に記載の導光板。
[11] 前記複数の透光凸層は、対応する光散乱層よりも大きく平面視で当該光散乱層からはみ出す透光凸層を含む、[1]~[10]のいずれか1項に記載の導光板。
[12] 前記複数の光散乱層は、対応する透光凸層よりも大きく平面視で当該透光凸層からはみ出す光散乱層を含む、[1]~[11]のいずれか1項に記載の導光板。
[13] 前記複数種の透光凸層が、大きさおよび/または高さに応じて設定された複数階調の透光凸層である、[1]~[12]のいずれか1項に記載の導光板。
[14] 前記複数種の光散乱層が、大きさおよび/または高さに応じて設定された複数階調の光散乱層である、[3]~[13]のいずれか1項に記載の導光板。
[15] 前記透光基材の前記第1面に設けられた透光性を有する透光樹脂層をさらに備え、前記複数の透光凸層が前記透光樹脂層を介して前記透光基材の前記第1面に設けられた、[1]~[14]のいずれか1項に記載の導光板。
[16] 前記複数の透光凸層が前記透光基材の前記第1面に直接設けられ、前記第1面における前記透光凸層以外の部分に透光性を有する透光樹脂層が設けられた、[1]~[14]のいずれか1項に記載の導光板。
[17] 前記複数の光散乱層をそれぞれ被覆する透光性を有する複数の被覆樹脂層をさらに備え、各被覆樹脂層の表面が湾曲面により形成された、[1]~[16]のいずれか1項に記載の導光板。
[18] [1]~[17]のいずれか1項に記載の導光板と、前記透光基材の側面に光を入射可能な光源と、を備える発光モジュール。
[19] 前記光源を前記透光基材の前記側面に沿って移動させるよう構成された移動装置をさらに備える、[18]に記載の発光モジュール。
[20] 前記移動装置は、前記光源を前記透光基材の厚さ方向、前記透光基材の縁に沿う横方向、または斜め方向に移動させることができる、[19]に記載の発光モジュール。
Some embodiments are listed below, but are not limited thereto.
[1] A light-transmitting substrate having a light-transmitting property, the light-transmitting substrate having a first surface that is one of the front surface and the back surface of the light-transmitting substrate and a second surface that is the other surface; a plurality of light-transmitting convex layers made of a translucent resin, provided in a convex shape on the first surface and provided with a light exit surface formed by a curved surface; and made of a resin containing light scattering particles, the a plurality of light scattering layers provided on the second surface so as to overlap with the plurality of light-transmitting convex layers with the light-transmitting substrate interposed therebetween; A light guide plate in which a plurality of types of the light-transmitting convex layers with different values are mixed.
[2] The light guide plate according to [1], wherein the curved surface accounts for 80% or more of the light exit surface of each of the plurality of light-transmitting convex layers.
[3] The light guide plate according to [1] or [2], wherein the light scattering layers of different sizes and/or heights are mixed.
[4] [1] to [3], wherein the plurality of light-transmitting convex layers are scattered on the first surface, and the plurality of light-scattering layers are scattered on the second surface; The light guide plate according to any one of .
[5] The light guide plate according to any one of [1] to [4], wherein each light exit surface of the plurality of light-transmitting convex layers is formed by one or more curved surfaces.
[6] The equivalent circle diameter of the bottom surfaces of the plurality of light-transmitting convex layers is 20 to 150 μm, more preferably 30 to 100 μm, and the equivalent circle diameter of the bottom surfaces of the plurality of light scattering layers is 20 to 150 μm, more preferably. The light guide plate according to any one of [1] to [5], which is 30 to 100 μm.
[7] The amount of overlap between each light-transmitting convex layer of the plurality of light-transmitting convex layers and the light scattering layer corresponding to the light-transmitting convex layer is the above when viewed from the direction perpendicular to the surface of the light-transmitting base material. The light guide plate according to any one of [1] to [6], wherein the area of the light scattering layer is 30% or more, more preferably 50% or more, and still more preferably 70% or more.
[8] The light guide plate according to any one of [1] to [7], wherein the plurality of light-transmitting convex layers include a light-transmitting convex layer provided so as to entirely overlap the corresponding light scattering layer. .
[9] Any one of [1] to [8], wherein the plurality of light-transmitting convex layers include light-transmitting convex layers that are displaced so as to partially overlap the corresponding light scattering layers. 1. The light guide plate according to 1.
[10] The bottom surface area of each light-transmitting convex layer of the plurality of light-transmitting convex layers is 40 to 200%, more preferably 70 to 150% of the bottom surface area of each light-scattering layer of the plurality of light-scattering layers. The light guide plate according to any one of [1] to [9].
[11] Any one of [1] to [10], wherein the plurality of light-transmitting convex layers include light-transmitting convex layers that are larger than the corresponding light-scattering layers and protrude from the light-scattering layers in plan view. light guide plate.
[12] The plurality of light-scattering layers according to any one of [1] to [11], wherein the plurality of light-scattering layers include light-scattering layers that are larger than the corresponding light-transmitting convex layers and protrude from the light-transmitting convex layers in plan view. light guide plate.
[13] Any one of [1] to [12], wherein the plurality of types of light-transmitting convex layers are light-transmitting convex layers with multiple gradations set according to size and/or height. Light guide plate as described.
[14] The light scattering layer according to any one of [3] to [13], wherein the plurality of types of light scattering layers are light scattering layers with multiple gradations set according to size and/or height. Light guide plate.
[15] Further comprising a light-transmitting resin layer having light-transmitting properties provided on the first surface of the light-transmitting substrate, wherein the plurality of light-transmitting convex layers extend to the light-transmitting substrate via the light-transmitting resin layer. The light guide plate according to any one of [1] to [14], provided on the first surface of the material.
[16] The plurality of light-transmitting convex layers are directly provided on the first surface of the light-transmitting substrate, and a light-transmitting resin layer having a light-transmitting property is provided on the first surface other than the light-transmitting convex layers. provided, the light guide plate according to any one of [1] to [14].
[17] Any one of [1] to [16], further comprising a plurality of translucent coating resin layers respectively coating the plurality of light scattering layers, wherein the surface of each coating resin layer is formed by a curved surface. 1. The light guide plate according to 1.
[18] A light-emitting module comprising the light guide plate according to any one of [1] to [17] and a light source capable of injecting light into the side surface of the translucent base.
[19] The light-emitting module according to [18], further comprising a moving device configured to move the light source along the side surface of the translucent base.
[20] The light emission according to [19], wherein the moving device can move the light source in the thickness direction of the light-transmitting substrate, in a lateral direction along the edge of the light-transmitting substrate, or in an oblique direction. module.
 なお、図面において、透光基材16をはじめとする各層の厚さ、並びに透光凸層18および光散乱層20の大きさおよび高さなどの寸法関係は、あくまで概念的に示したものであり、実際の寸法に基づくものではない。 In the drawings, the thickness of each layer including the light-transmitting base material 16, and the dimensional relationships such as the size and height of the light-transmitting convex layer 18 and the light scattering layer 20 are only conceptually shown. Yes, not based on actual dimensions.
 明細書に記載の種々の数値範囲は、それぞれそれらの上限値と下限値を任意に組み合わせることができ、それら全ての組み合わせが好ましい数値範囲として本明細書に記載されているものとする。また、「X~Y」との数値範囲の記載は、X以上Y以下を意味する。 For the various numerical ranges described in the specification, the upper and lower limits thereof can be arbitrarily combined, and all combinations thereof are described herein as preferred numerical ranges. Further, the description of the numerical range "X to Y" means X or more and Y or less.
 以上、いくつかの実施形態を説明したが、これら実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。 Although several embodiments have been described above, these embodiments are presented as examples and are not intended to limit the scope of the invention. These embodiments can be implemented in various other forms, and various omissions, replacements, and modifications can be made without departing from the scope of the invention. These embodiments and their modifications are included in the scope and spirit of the invention, as well as the scope of the invention described in the claims and equivalents thereof.
 本実施形態に係る導光板および発光モジュールの用途は、特に限定されない。例えば、自動車のインストルメントパネルやドア内側材などの自動車内装材を始めとした各種の車両内装部品、家電製品や通信機器などの各種電気製品の筺体などに用いることができる。 The applications of the light guide plate and the light emitting module according to this embodiment are not particularly limited. For example, it can be used for various vehicle interior parts including automotive interior materials such as automotive instrument panels and door inner materials, and housings for various electrical products such as home appliances and communication equipment.
10,50…発光モジュール、12,30,40,52…導光板、14…光源、16…透光基材、18…透光凸層、20…光散乱層、32,42…透光樹脂層、54…被覆樹脂層 DESCRIPTION OF SYMBOLS 10, 50... Light emitting module 12, 30, 40, 52... Light guide plate 14... Light source 16... Translucent base material 18... Translucent convex layer 20... Light scattering layer 32, 42... Translucent resin layer , 54 ... Coating resin layer

Claims (10)

  1.  透光性を有する透光基材であって、前記透光基材の表面または裏面のいずれか一方である第1面と他方である第2面とを持つ前記透光基材と、
     透光性を有する樹脂からなり、前記第1面に凸状に設けられ、湾曲面により形成された光出射面を備える複数の透光凸層と、
     光散乱粒子を含む樹脂からなり、前記複数の透光凸層に対して前記透光基材を挟んで重なり合うように前記第2面に設けられた複数の光散乱層と、
     を含む導光板であって、
     大きさおよび/または高さの異なる複数種の前記透光凸層が混在している、導光板。
    a light-transmitting substrate having a light-transmitting property, the light-transmitting substrate having a first surface that is either one of the front surface or the back surface of the light-transmitting substrate and a second surface that is the other;
    a plurality of light-transmitting convex layers made of a resin having a light-transmitting property, provided in a convex shape on the first surface, and having a light exit surface formed by a curved surface;
    a plurality of light scattering layers made of a resin containing light scattering particles and provided on the second surface so as to overlap the plurality of light-transmitting convex layers with the light-transmitting substrate interposed therebetween;
    A light guide plate comprising
    A light guide plate comprising a mixture of a plurality of types of light-transmitting convex layers having different sizes and/or heights.
  2.  前記複数の透光凸層の各光出射面は、前記湾曲面が占める面積割合が80%以上である、請求項1に記載の導光板。 The light guide plate according to claim 1, wherein the curved surface accounts for 80% or more of the light exit surface of each of the plurality of light-transmitting convex layers.
  3.  大きさおよび/または高さの異なる複数種の前記光散乱層が混在している、請求項1または2に記載の導光板。 The light guide plate according to claim 1 or 2, wherein a plurality of types of said light scattering layers having different sizes and/or heights are mixed.
  4.  前記複数の透光凸層の各透光凸層と当該透光凸層に対応する前記光散乱層との重なり量が、前記透光基材の前記表面に垂直な方向からみて前記光散乱層の面積の30%以上である、請求項1~3のいずれか1項に記載の導光板。 The amount of overlap between each light-transmitting convex layer of the plurality of light-transmitting convex layers and the light scattering layer corresponding to the light-transmitting convex layer is the light scattering layer when viewed from a direction perpendicular to the surface of the light-transmitting base material. 4. The light guide plate according to any one of claims 1 to 3, which is 30% or more of the area of .
  5.  前記複数の透光凸層は、対応する光散乱層に対してその一部で重なり合うように位置をずらして設けられた透光凸層を含む、請求項1~4のいずれか1項に記載の導光板。 5. The light-transmitting convex layers according to any one of claims 1 to 4, wherein the plurality of light-transmitting convex layers include light-transmitting convex layers provided so as to partially overlap the corresponding light scattering layers. light guide plate.
  6.  前記透光基材の前記第1面に設けられた透光性を有する透光樹脂層をさらに備え、前記複数の透光凸層が前記透光樹脂層を介して前記透光基材の前記第1面に設けられた、請求項1~5のいずれか1項に記載の導光板。 A light-transmitting resin layer having a light-transmitting property provided on the first surface of the light-transmitting substrate is further provided, and the plurality of light-transmitting convex layers are arranged on the light-transmitting substrate via the light-transmitting resin layer. The light guide plate according to any one of claims 1 to 5, provided on the first surface.
  7.  前記複数の透光凸層が前記透光基材の前記第1面に直接設けられ、前記第1面における前記透光凸層以外の部分に透光性を有する透光樹脂層が設けられた、請求項1~5のいずれか1項に記載の導光板。 The plurality of light-transmitting convex layers are directly provided on the first surface of the light-transmitting substrate, and a light-transmitting resin layer having a light-transmitting property is provided on a portion of the first surface other than the light-transmitting convex layers. The light guide plate according to any one of claims 1 to 5.
  8.  前記複数の光散乱層をそれぞれ被覆する透光性を有する複数の被覆樹脂層をさらに備え、各被覆樹脂層の表面が湾曲面により形成された、請求項1~7のいずれか1項に記載の導光板。 8. The method according to any one of claims 1 to 7, further comprising a plurality of translucent coating resin layers respectively coating the plurality of light scattering layers, wherein the surface of each coating resin layer is formed by a curved surface. light guide plate.
  9.  請求項1~8のいずれか1項に記載の導光板と、前記透光基材の側面に光を入射可能な光源と、を備える発光モジュール。 A light-emitting module comprising the light guide plate according to any one of claims 1 to 8 and a light source capable of injecting light into the side surface of the translucent base material.
  10.  前記光源を前記透光基材の前記側面に沿って移動させるよう構成された移動装置をさらに備える、請求項9に記載の発光モジュール。

     
    10. The light emitting module of Claim 9, further comprising a moving device configured to move the light source along the side of the translucent substrate.

PCT/JP2022/023173 2021-08-05 2022-06-08 Light-guide plate and light-emitting module WO2023013243A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021129317A JP2023023633A (en) 2021-08-05 2021-08-05 Light guide plate and light emitting module
JP2021-129317 2021-08-05

Publications (1)

Publication Number Publication Date
WO2023013243A1 true WO2023013243A1 (en) 2023-02-09

Family

ID=85155743

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/023173 WO2023013243A1 (en) 2021-08-05 2022-06-08 Light-guide plate and light-emitting module

Country Status (2)

Country Link
JP (1) JP2023023633A (en)
WO (1) WO2023013243A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007258038A (en) * 2006-03-24 2007-10-04 Sanyo Electric Co Ltd Illumination device
JP2017091678A (en) * 2015-11-05 2017-05-25 株式会社ミクロ技術研究所 Surface light emitting device
JP2017170801A (en) * 2016-03-24 2017-09-28 セーレン株式会社 Decorative sheet, decorative molded article and decorative module
US20200319391A1 (en) * 2019-04-04 2020-10-08 Sergiy Vasylyev Wide-area solid-state illumination devices and systems

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007258038A (en) * 2006-03-24 2007-10-04 Sanyo Electric Co Ltd Illumination device
JP2017091678A (en) * 2015-11-05 2017-05-25 株式会社ミクロ技術研究所 Surface light emitting device
JP2017170801A (en) * 2016-03-24 2017-09-28 セーレン株式会社 Decorative sheet, decorative molded article and decorative module
US20200319391A1 (en) * 2019-04-04 2020-10-08 Sergiy Vasylyev Wide-area solid-state illumination devices and systems

Also Published As

Publication number Publication date
JP2023023633A (en) 2023-02-16

Similar Documents

Publication Publication Date Title
US11543578B2 (en) Sheet-form solid-state illumination device
US11333314B2 (en) Lighting apparatus having an optical module with a half-mirror member
CN103574355B (en) Lighting device
CN104246360B (en) Lighting device
CN102777843B (en) Photoconduction is used to produce the advertiser with brake with positioning function of 3D effect
TW201043871A (en) Light emitter
JP2014038845A (en) Lighting device
KR20170044790A (en) Back light unit
WO2017164060A1 (en) Decorative sheet, decorative molded article and decorative module
KR20170064665A (en) Light unit and Lamp unit for automobile of using the same
KR102160582B1 (en) Light unit and Lamp unit for automobile of using the same
JP5323469B2 (en) LIGHTING DEVICE AND LIGHT MANUFACTURING METHOD FOR LIGHTING DEVICE
JP2004317976A (en) Light guide
KR102125827B1 (en) Lamp unit and automobile lamp using the same
WO2023013243A1 (en) Light-guide plate and light-emitting module
JP7476739B2 (en) Illumination body and illumination body with light source
CN114270094A (en) Lighting device
JP5752893B2 (en) Display device
KR102098160B1 (en) Optical film and lighting apparatus using the same
JP3176073U (en) High-saturation light modulation plate and lighting device manufactured thereby
JP2004341294A (en) Optical sheet, backlight unit using the same, and method for manufacturing the same
CN203404642U (en) Plane light source device
KR101363938B1 (en) Tail Light Of Car
KR20180118232A (en) Method for manufacturing LED module
JP6835611B2 (en) Light guide plate, decorative plate, decorative molded product, and decorative module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22852670

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22852670

Country of ref document: EP

Kind code of ref document: A1