WO2023013101A1 - Oscillation circuit and pll circuit - Google Patents

Oscillation circuit and pll circuit Download PDF

Info

Publication number
WO2023013101A1
WO2023013101A1 PCT/JP2022/003574 JP2022003574W WO2023013101A1 WO 2023013101 A1 WO2023013101 A1 WO 2023013101A1 JP 2022003574 W JP2022003574 W JP 2022003574W WO 2023013101 A1 WO2023013101 A1 WO 2023013101A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
oscillator
voltage
generation circuit
oscillation frequency
Prior art date
Application number
PCT/JP2022/003574
Other languages
French (fr)
Japanese (ja)
Inventor
義暁 森
徹哉 藤原
諒 井上
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Priority to JP2023539603A priority Critical patent/JPWO2023013101A1/ja
Publication of WO2023013101A1 publication Critical patent/WO2023013101A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/02Generators characterised by the type of circuit or by the means used for producing pulses
    • H03K3/353Generators characterised by the type of circuit or by the means used for producing pulses by the use, as active elements, of field-effect transistors with internal or external positive feedback
    • H03K3/354Astable circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/099Details of the phase-locked loop concerning mainly the controlled oscillator of the loop

Definitions

  • This technology relates to PLL (Phase Locked Loop) circuits. More specifically, the present invention relates to a technique for stabilizing the oscillation frequency of a PLL circuit and its oscillation circuit.
  • PLL Phase Locked Loop
  • a PLL circuit is used to generate an oscillation signal such as a system clock within a chip.
  • This PLL circuit requires a Voltage Controlled Oscillator (VCO) or a Digitally Controlled Oscillator (DCO) as the oscillator core for generating an oscillation signal according to the phase difference information with respect to the reference clock.
  • VCO Voltage Controlled Oscillator
  • DCO Digitally Controlled Oscillator
  • the output oscillation frequency is controlled by controlling the oscillator current flowing through these oscillator cores.
  • the PLL cannot respond to a fluctuation component at a frequency higher than the band of the PLL circuit, which causes phase shift and jitter in the PLL circuit.
  • the reference voltage and the power supply voltage are compared using a comparator, and correction is performed by digitally controlling the mirror ratio of the current mirror.
  • digital correction causes quantization noise, which makes it difficult to correct for fluctuations in high bands. .
  • This technology was created in view of such circumstances, and aims to suppress fluctuations in the output oscillation frequency of a PLL circuit.
  • a first aspect of the technology is to provide an oscillator that oscillates at a predetermined oscillation frequency, and an oscillator connected to at least one of a power supply terminal and a ground terminal of the oscillator.
  • a correction current generation circuit that supplies a correction current corresponding to the above-mentioned connection node, and a bias generation circuit that supplies a bias voltage for the correction current generation circuit to generate the correction current to the correction current generation circuit.
  • an oscillator circuit and a PLL circuit This produces an effect of suppressing fluctuations in the output oscillation frequency of the PLL circuit by generating a correction current corresponding to fluctuations in the power supply voltage based on the bias voltage.
  • the oscillation frequency control circuit is composed of one of a PMOS transistor and an NMOS transistor, and a voltage control circuit in which a voltage for controlling the oscillation frequency is supplied to the gate terminal as the input voltage.
  • the correction current generation circuit may be composed of the other of the PMOS transistor and the NMOS transistor, and the bias voltage may be supplied to the gate terminal of the PMOS transistor and the NMOS transistor.
  • the bias generation circuit may generate the bias voltage for the gate terminal of the correction current generation circuit by a current mirror circuit.
  • the bias generation circuit may include a low-pass filter connected to the gate terminal of the correction current generation circuit.
  • the oscillator may be a ring oscillator in which a plurality of stages of inverters are connected in a ring, and the bias generation circuit may include one stage of inverters as a replica circuit.
  • the bias generation circuit includes a drain conductance detection circuit that detects the drain conductance of the oscillation frequency control circuit, a transconductance detection circuit that detects the transconductance of the correction current generation circuit, and the A calibration circuit may be provided for performing calibration so that the drain conductance of the oscillation frequency control circuit and the transconductance of the correction current generation circuit are equal. This brings about the effect of supplying the bias voltage for generating the correction current with high accuracy.
  • the input voltage may be an analog value or a digital value.
  • the first aspect may further include a digital-to-analog converter that converts the input voltage from a digital signal to an analog signal and supplies the analog signal to the oscillation frequency control circuit.
  • the input voltage is a digital value
  • the oscillation frequency control circuit is composed of one of a PMOS transistor and an NMOS transistor, and the oscillation frequency is applied to the gate terminal as the input voltage.
  • a plurality of sets of circuits in which a voltage-controlled current source supplied with a voltage for control and a first switch are connected in series are connected in parallel, the first switches being controlled by corresponding bit values of the input voltage;
  • the correction current generating circuit is a circuit in which a second switch and a PMOS transistor and an NMOS transistor connected in parallel are connected in parallel, and the bias voltage is supplied to the gate terminal of the PMOS transistor and the NMOS transistor.
  • a plurality of sets may be connected in parallel, and the second switches may be controlled by corresponding bit values of the input voltage.
  • FIG. 3 is a diagram showing a circuit configuration example of the VCO 13 according to specific examples of the current source 120 and the correction current generation circuit 130 according to the first embodiment of the present technology;
  • FIG. 3 is a diagram showing a circuit configuration example of the VCO 13 according to a specific example of the bias generation circuit 140 according to the first embodiment of the present technology;
  • FIG. 7 is a diagram showing a circuit configuration example of a VCO 13 according to a specific example of a bias generation circuit 140 according to a second embodiment of the present technology
  • FIG. 11 is a diagram showing a circuit configuration example of a VCO 13 according to a specific example of a bias generation circuit 140 according to a third embodiment of the present technology
  • FIG. 7 is a diagram showing a circuit configuration example of a VCO 13 according to a specific example of a bias generation circuit 140 according to a second embodiment of the present technology
  • FIG. 11 is a diagram showing a circuit configuration example of a VCO 13 according to a specific example of a bias generation circuit 140 according to a third embodiment of the present technology
  • FIG. 7 is a diagram showing a circuit configuration example of a VCO 13 according to a specific example of
  • FIG. 11 is a diagram showing a circuit configuration example of a VCO 13 according to a specific example of a current source 120 and a correction current generation circuit 130 according to a fourth embodiment of the present technology; It is a figure showing an example of circuit composition of VCO13 in a 5th embodiment of this art. It is a figure which shows the structural example of the digital PLL circuit in 6th Embodiment of this technique. It is a figure which shows the structural example of the basic circuit of DCO23 in 6th Embodiment of this technique. It is a figure showing the 1st example of circuit composition of DCO23 in a 6th embodiment of this art.
  • FIG. 13 is a diagram illustrating a specific example of a first circuit configuration example of a DCO 23 according to a sixth embodiment of the present technology; It is a figure showing the 2nd example of circuit composition of DCO23 in a 6th embodiment of this art.
  • FIG. 16 is a diagram showing a specific example of a second circuit configuration example of the DCO 23 according to the sixth embodiment of the present technology;
  • FIG. 1 is a diagram illustrating a configuration example of an analog PLL circuit according to a first embodiment of the present technology.
  • This analog PLL circuit includes a phase comparator 11, an analog filter 12, a VCO 13, and a frequency divider .
  • the frequency divider 14 performs multiplication setting as a PLL circuit, and divides the frequency of the output signal.
  • the phase comparator 11 compares the phases of the input signal and the output signal divided by the frequency divider 14 and outputs a phase difference voltage corresponding to the phase difference.
  • the analog filter 12 is a low-pass filter that passes the low-frequency range of the phase difference voltage output from the phase comparator 11 and supplies it to the VCO 13 as an analog value input voltage.
  • the VCO 13 is a voltage controlled oscillator that generates a signal with a frequency according to the input voltage from the low-pass filter and outputs an output signal.
  • FIG. 2 is a diagram showing a configuration example of a basic circuit of the VCO 13 according to the embodiment of the present technology.
  • the VCO 13 has an oscillator 110 that oscillates at a predetermined oscillation frequency.
  • the VCO 13 also includes a current source 120 as indicated by a and b in FIG.
  • This current source 120 is a voltage controlled current source (VCCS: Voltage Controlled Current Source) that supplies a current corresponding to an input voltage. That is, the analog input voltage supplied from the analog filter 12 is converted by the current source 120 into a current flowing through the oscillator 110 .
  • the oscillation frequency of oscillator 110 is controlled by this converted current value.
  • This current source 120 may be connected to either the power supply side or ground side of the oscillator 110 .
  • a is an example in which the current source 120 is connected to the ground side of the oscillator 110 .
  • b in the figure is an example in which the current source 120 is connected to the power supply side of the oscillator 110 . That is, a and b in the figure are examples in which the polarities are different from each other.
  • the VCO 13 may include a regulator 150 as shown in c and d in the figure.
  • This regulator 150 is a voltage source that supplies a constant voltage to the oscillator 110 according to the input voltage.
  • the voltage width of the oscillator 110 is controlled to be between the output voltage of the regulator 150 and the power supply voltage.
  • the voltage width of the oscillator 110 is controlled to be between the output voltage of the regulator 150 and the ground potential. In this manner, oscillator 110 operates at an oscillation frequency such that the oscillation amplitude is the voltage width described above. It should be noted that c and d in FIG.
  • FIG. 3 is a diagram showing a circuit configuration example of the oscillator 110 according to the first embodiment of the present technology.
  • An example of the circuit configuration of this oscillator 110 is a ring oscillator in which three stages of inverters each including a PMOS transistor 111 and an NMOS transistor 112 are provided and connected in a ring.
  • the PMOS transistor 111 is connected to the power supply side
  • the NMOS transistor 112 is connected to the ground side.
  • the oscillation frequency can be controlled by using the change in the delay time per stage when the flowing current or amplitude (operating voltage width) is changed.
  • FIG. 4 is a diagram showing a circuit configuration example of the VCO 13 according to the first embodiment of the present technology.
  • the VCO 13 in this first embodiment comprises an oscillator 110 , a current source 120 , a correction current generation circuit 130 and a bias generation circuit 140 .
  • the basic circuit consisting of oscillator 110 and current source 120 is described above.
  • the correction current generation circuit 130 is connected to a connection node between the oscillator 110 and the current source 120, and supplies a correction current to the connection node according to fluctuations in the power supply voltage at the power supply terminal of the oscillator 110. . That is, the correction current generating circuit 130 monitors the power supply voltage fluctuation and generates a correction current using the analog characteristics of the charge injection device in order to correct the fluctuation of the current flowing through the oscillator 110 .
  • the bias generation circuit 140 supplies the correction current generation circuit 130 with a bias voltage for the correction current generation circuit 130 to generate the correction current.
  • FIG. 5 is a diagram showing a circuit configuration example of the VCO 13 according to specific examples of the current source 120 and the correction current generation circuit 130 according to the first embodiment of the present technology.
  • This example shows an example in which an NMOS transistor 121 is provided as the current source 120 and a PMOS transistor 131 is provided as the correction current generation circuit 130 .
  • the NMOS transistor 121 has a source connected to the ground terminal, a drain connected to the oscillator 110 , and a gate connected to the output of the analog filter 12 .
  • the PMOS transistor 131 has a source connected to the power supply terminal, a drain connected to the drain of the NMOS transistor 121 , and a gate connected to the bias generation circuit 140 .
  • the fluctuation of the drain current when the voltage between the gate and the source fluctuates is used as the correction current.
  • the gate potential of the PMOS transistor 131 is fixed, and when the power supply voltage fluctuates, the gate-source voltage of the PMOS transistor 131 is modulated, and a correction current is generated according to the characteristics of the PMOS transistor 131 .
  • the correction current generation circuit 130 is configured by an analog circuit and analog correction is performed using the analog characteristics of the PMOS transistor 131, so that quantization noise does not occur.
  • the correction current can be generated by following even the power supply voltage fluctuation having a high frequency component.
  • the current supplied by the NMOS transistor 121 fluctuates due to the conversion gain gds due to the change in the voltage between the drain and the source of the NMOS transistor 121 .
  • the correction current is generated by the conversion gain gm according to the fluctuation of the voltage between the gate and the source.
  • the transconductance gm is approximately several ten to one hundred times larger than the drain conductance gds. Therefore, the DC current required by the PMOS transistor 131 to generate the AC correction current is about several tenths to one hundredth of the DC current flowing through the NMOS transistor 121, so the problem does not arise. does not occur. Therefore, the noise generated in the correction current generating circuit 130 is sufficiently small, and the pull-in operation of the phase (frequency) of the PLL is not hindered.
  • the bias generation circuit 140 has a role of generating a bias for causing the correction current generated by the PMOS transistor 131 to follow the PVT variation of the current to be corrected; It has the role of fixing the gate potential of the PMOS transistor 131 .
  • FIG. 6 is a diagram showing a circuit configuration example of the VCO 13 according to a specific example of the bias generation circuit 140 according to the first embodiment of the present technology.
  • the bias generation circuit 140 includes a PMOS transistor 141, an NMOS transistor 142, a resistor 148, and a capacitor 149.
  • the drain of the PMOS transistor 141 is connected to the drain of the NMOS transistor 142, the source of the PMOS transistor 141 is connected to the power supply terminal, and the source of the NMOS transistor 142 is connected to the ground terminal.
  • the gate and drain of the PMOS transistor 141 are short-circuited, and the PMOS transistor 141 and the PMOS transistor 131 form a current mirror circuit.
  • the gate of the NMOS transistor 142 is connected to the gate of the NMOS transistor 121 .
  • the NMOS transistor 142 like the NMOS transistor 121, operates as a current source that generates a current corresponding to the gate voltage.
  • a current corresponding to the size ratio of the NMOS transistor 121 and the NMOS transistor 142 is reflected in the PMOS transistor 131 and the PMOS transistor 141 and flows from the PMOS transistor 131 to the NMOS transistor 121 . Therefore, the bias voltage to the gate of the PMOS transistor 131 can be generated so that the correction current generated by the PMOS transistor 131 follows the variation of the current flowing through the NMOS transistor 121 .
  • the PMOS transistor 131 can follow the characteristic variation of the NMOS transistor 121 . That is, the correction current can follow the PVT variation of the current to be corrected.
  • resistor 148 and capacitor 149 form a low-pass filter by an RC filter.
  • capacitor 149 is connected to ground. As a result, this low-pass filter can fix the gate potential of the PMOS transistor 131 above the filter band.
  • the capacitor 149 may have a relatively small capacity, and the band can be formed by the resistor 148.
  • the capacitor 149 can be approximately 1 PF and the resistor 148 can be approximately 1 M ⁇ .
  • the circuit configuration in the first embodiment is a very simple configuration, it is possible to reduce the area by suppressing the addition of elements.
  • FIG. 7 is a diagram illustrating an example of fluctuation characteristics of an output frequency according to an embodiment of the present technology
  • the horizontal axis indicates the fluctuation frequency (Hz) of the power supply voltage
  • the vertical axis indicates the normalized value (1/V) of the frequency fluctuation with respect to the power supply voltage fluctuation.
  • a smaller value on the vertical axis means better performance.
  • a solid line is an example of the characteristics of the circuit of the first embodiment.
  • a dotted line is an example of characteristics when the correction current generation circuit 130 and the bias generation circuit 140 are not provided.
  • the correction band is assumed to be about 100 kHz to 10 MHz, with a performance improvement of about one-tenth at 1 MHz and a performance improvement of about one-fifth at 10 MHz. That is, in the first embodiment, since the correction current is actively supplied, it is possible to realize higher power supply voltage fluctuation resistance (PSRR: Power Supply Rejection Ratio) compared to passive elements.
  • PSRR Power Supply Rejection Ratio
  • the PMOS transistor 131 as the correction current generation circuit 130 for correcting the current of the NMOS transistor 121 of the current source 120, fluctuations in the power supply voltage Correction can be actively performed depending on Further, by determining the bias voltage of the PMOS transistor 131 using the current mirror configuration in the bias generation circuit 140, the correction current can follow the PVT variation of the current of the NMOS transistor 121.
  • FIG. Furthermore, by providing a low-pass filter consisting of resistor 148 and capacitor 149, the gate potential of PMOS transistor 131 can be fixed above the filter band.
  • Second Embodiment> In the first embodiment described above, the current of the PMOS transistor 131 is reflected by the current mirror circuit, but in the second embodiment, the current of the PMOS transistor 131 is reflected using a replica circuit. Since the overall configuration of the analog PLL circuit is the same as that of the first embodiment, detailed description thereof will be omitted.
  • FIG. 8 is a diagram showing a circuit configuration example of the VCO 13 according to a specific example of the bias generation circuit 140 according to the second embodiment of the present technology.
  • a bias generation circuit 140 in the second embodiment includes a PMOS transistor 146 and an NMOS transistor 147 instead of the PMOS transistor 141 in the first embodiment.
  • PMOS transistor 146 and NMOS transistor 147 form an inverter. That is, assuming a ring oscillator as the oscillator 110 as described above, one stage of inverter in the ring oscillator is provided as a replica circuit of the oscillator 110 . Thereby, the bias voltage can be generated so as to reflect the current of the PMOS transistor 131 without using a current mirror circuit.
  • the correction current can follow the PVT variation of the current of the NMOS transistor 121. can be done.
  • the bias generating circuit 140 has a function of performing calibration so that the drain conductance of the NMOS transistor 121 and the transconductance of the PMOS transistor 131 are equal. Since the overall configuration of the analog PLL circuit is the same as that of the first embodiment, detailed description thereof will be omitted.
  • FIG. 9 is a diagram showing a circuit configuration example of the VCO 13 according to a specific example of the bias generation circuit 140 according to the third embodiment of the present technology.
  • the bias generation circuit 140 comprises a gdsn detection circuit 210 and a gmp detection/calibration circuit 230.
  • the gdsn detection circuit 210 is a circuit that detects the drain conductance gdsn of the NMOS transistor 121 .
  • the gmp detection/calibration circuit 230 is a circuit that detects the transconductance gmp of the PMOS transistor 131 and performs calibration so that the drain conductance gdsn and the transconductance gmp become equal.
  • the gdsn sensing circuit 210 comprises NMOS transistors 211, 213, 217, 218, 221 and 222; PMOS transistors 212, 215, 216 and 219;
  • the input voltage from the analog filter 12 is supplied to the gates of the NMOS transistors 211 and 213 .
  • NMOS transistors 217 and 218, 221 and 222, PMOS transistors 212 and 219, 215 and 215 respectively form a current mirror circuit.
  • the gmp detection/calibration circuit 230 comprises NMOS transistors 231 , 233 , 235 , 238 , 241 and 242 , PMOS transistors 232 and 236 , resistors 234 and 243 and operational amplifier 249 .
  • the input voltage from the analog filter 12 is supplied to the gates of the NMOS transistors 233 and 235 (terminal C).
  • Each of NMOS transistors 241 and 242 and PMOS transistors 232 and 131 form a current mirror circuit.
  • the output of operational amplifier 249 is connected to the gates of NMOS transistors 231 and 238 .
  • a terminal A of the operational amplifier 249 is connected to the drain of the NMOS transistor 222
  • a terminal B of the operational amplifier 249 is connected to the drain of the NMOS transistor 242 .
  • the gdsn detection circuit 210 converts the drain-source voltage-current conversion gain (drain conductance gdsn) of the NMOS transistor into the voltage of the terminal A in the following manner. That is, the gdsn current of the NMOS transistor is generated by creating a potential difference using resistor 214 . A current comparator is then used to extract the differential current gdsnIR. A voltage of the terminal A is generated by the resistor 223 from this differential current gdsnIR.
  • the gmp detection/calibration circuit 230 converts the gate-source voltage-current conversion gain (transconductance gmp) of the PMOS transistor into the voltage of the terminal B in a similar manner.
  • the operational amplifier 249 performs calibration so that the voltage of the terminal A and the voltage of the terminal B are equal, and adjusts the capability of the PMOS transistor 131 .
  • the ability of the PMOS transistor 131 is adjusted by detecting the drain conductance gdsn and the transconductance gmp and performing calibration so that both become equal. be able to.
  • FIG. 10 is a diagram showing a circuit configuration example of the VCO 13 according to the fourth embodiment of the present technology.
  • the correction current generation circuit 130 is connected to the connection node between the current source 120 connected to the power supply terminal of the oscillator 110, and the power supply voltage at the power supply terminal of the oscillator 110 fluctuates. A corresponding correction current is supplied to the connection node.
  • the bias generation circuit 140 supplies the correction current generation circuit 130 with a bias voltage for the correction current generation circuit 130 to generate a correction current.
  • FIG. 11 is a diagram showing a circuit configuration example of the VCO 13 according to specific examples of the current source 120 and the correction current generation circuit 130 according to the fourth embodiment of the present technology.
  • circuit configuration example of the fourth embodiment is only reversed in polarity from the circuit configuration example of the above-described first embodiment, and the basic operation is the same, so detailed description is omitted. do.
  • the present technology can be applied to a basic circuit in which the current source 120 is connected to the power supply terminal of the oscillator 110.
  • the current source 120 is connected only to either the ground terminal or the power supply terminal of the oscillator 110, but in the fifth embodiment, the ground terminal of the oscillator 110 or the power supply is connected. Assume that a current source 120 is connected to each side of the terminal. Such a circuit configuration can be employed when trying to generate a waveform close to a sine wave by supplying current from both the power supply side and the ground side of the oscillator 110 so as not to be clipped by the power supply potential or the ground potential. .
  • FIG. 12 is a diagram showing a circuit configuration example of the VCO 13 according to the fifth embodiment of the present technology.
  • the correction current generation circuit 130-1 is connected to the connection node between the current source 120-1 connected to the ground terminal of the oscillator 110, and responds to fluctuations in the power supply voltage.
  • a correction current is supplied to the current source 120-1.
  • the correction current generating circuit 130-2 is connected to the connection node between the current source 120-2 connected to the power supply terminal of the oscillator 110, and generates a correction current according to the fluctuation of the power supply voltage. supply for 2.
  • the present technology can also be applied to a circuit configuration that supplies current from both the power supply side and the ground side of the oscillator 110 .
  • FIG. 13 is a diagram illustrating a configuration example of a digital PLL circuit according to the sixth embodiment of the present technology
  • This digital PLL circuit includes a counter +TDC 21, a digital filter 22, a DCO 23, and a frequency divider 24.
  • the frequency divider 24 performs multiplication setting as a PLL circuit, and divides the frequency of the output signal.
  • the counter +TDC 21 compares the phases of the input signal and the output signal divided by the frequency divider 24 and outputs a phase difference digital signal corresponding to the phase difference. In this counter+TDC 21, the counter measures the integer part of how many times the output frequency becomes the reference input frequency, and the TDC (Time to Digital Converter) measures the decimal part.
  • the digital filter 22 is a low-pass filter that passes the low frequency band of the phase difference digital signal output by the counter +TDC 21 and supplies it to the DCO 23 as an input digital signal.
  • the DCO 23 is a digitally controlled oscillator that generates a signal with a frequency corresponding to the input digital signal from the low-pass filter and outputs an output signal.
  • FIG. 14 is a diagram showing a configuration example of a basic circuit of the DCO 23 according to the sixth embodiment of the present technology.
  • the DCO 23 includes an oscillator 110 that oscillates at a predetermined oscillation frequency.
  • the DCO 23 also includes a DAC 160 as indicated by a and b in FIG.
  • This DAC (Digital Analog Converter) 160 converts the digital value from the digital filter 22 into an analog value and supplies it to the oscillator 110 .
  • the oscillation frequency of oscillator 110 is controlled by this converted analog value.
  • This DAC 160 may be connected to either the power supply side or the ground side of the oscillator 110 .
  • a is an example in which the DAC 160 is connected to the ground side of the oscillator 110 .
  • b in the figure is an example in which the DAC 160 is connected to the power supply side of the oscillator 110 . That is, a and b in the figure are examples in which the polarities are different from each other.
  • FIG. 15 is a diagram showing a first circuit configuration example of the DCO 23 according to the sixth embodiment of the present technology.
  • the first circuit configuration example of the DCO 23 is based on the circuit configuration example (FIG. 6) of the current mirror circuit in the above-described first embodiment, and the DAC 160 is provided in the input section. That is, the digital value from the digital filter 22 is converted into an analog value by the DAC 160, and the internal configuration is configured by an analog circuit as in the first embodiment.
  • FIG. 16 is a diagram showing a specific example of the first circuit configuration example of the DCO 23 according to the sixth embodiment of the present technology.
  • the DAC 160 comprises a current source 161 and multiple NMOS transistors 162 .
  • a switch 163 is provided between the NMOS transistor 162 and the current source 161 respectively.
  • the control input terminals of the plurality of switches 163 are supplied with corresponding bits of the digital value from the digital filter 22 .
  • the reference current from the current source 161 flows through the NMOS transistors 162 whose number corresponds to the supplied digital value, and the corresponding voltage is applied to the gates of the NMOS transistors 142 and 121 .
  • FIG. 17 is a diagram showing a second circuit configuration example of the DCO 23 according to the sixth embodiment of the present technology.
  • a plurality of NMOS transistors 122 are connected as the current source 120 to the ground side of the oscillator 110 .
  • a switch 123 is provided between the NMOS transistor 122 and the oscillator 110 respectively.
  • a plurality of PMOS transistors 132 are connected to both ends of the oscillator 110 as a correction current generation circuit 130 .
  • a switch 133 is provided between each PMOS transistor 132 and the connection node.
  • the control input terminals of the plurality of switches 123 and 133 are supplied with corresponding bits of the digital value from the digital filter 22 . As a result, current flows through the number of PMOS transistors 132 and NMOS transistors 122 corresponding to the supplied digital value.
  • the reference bias voltage is supplied from the reference bias generation circuit 170 to the gates of the NMOS transistors 142 and 121 .
  • FIG. 18 is a diagram showing a specific example of a second circuit configuration example of the DCO 23 according to the sixth embodiment of the present technology.
  • the reference bias generation circuit 170 includes a current source 171 and an NMOS transistor 172.
  • a reference current supplied from the current source 171 flows through the NMOS transistor 172 .
  • the same voltage as the gate potential of NMOS transistor 172 is applied to the gates of NMOS transistors 142 and 122 .
  • the present technology can also have the following configuration. (1) an oscillator that oscillates at a predetermined oscillation frequency; an oscillation frequency control circuit connected to at least one of a power supply terminal and a ground terminal of the oscillator and controlling the oscillation frequency of the oscillator according to an input voltage; a correction current generation circuit connected to a connection node between the oscillator and the oscillation frequency control circuit to supply a correction current to the connection node according to fluctuations in the power supply voltage at the power supply terminal; and a bias generation circuit that supplies a bias voltage for the correction current generation circuit to generate the correction current to the correction current generation circuit.
  • the oscillation frequency control circuit is a voltage controlled current source comprising one of a PMOS transistor and an NMOS transistor and having a gate terminal supplied with a voltage for controlling the oscillation frequency as the input voltage;
  • the bias generation circuit generates the bias voltage for the gate terminal of the correction current generation circuit by a current mirror circuit.
  • the bias generation circuit includes a low-pass filter connected to the gate terminal of the correction current generation circuit.
  • the oscillator is a ring oscillator in which a plurality of stages of inverters are connected in a ring;
  • the bias generation circuit a drain conductance detection circuit for detecting the drain conductance of the oscillation frequency control circuit; a transconductance detection circuit that detects the transconductance of the correction current generation circuit;
  • the oscillator circuit according to any one of (2) to (5) above, further comprising a calibration circuit that performs calibration so that the drain conductance of the oscillation frequency control circuit and the transconductance of the correction current generation circuit are equal.
  • the input voltage is a digital value
  • the oscillation frequency control circuit comprises one of a PMOS transistor and an NMOS transistor, and includes a voltage controlled current source whose gate terminal is supplied with a voltage for controlling the oscillation frequency as the input voltage, and a first switch.
  • the correction current generation circuit is a circuit in which a second switch and a PMOS transistor and an NMOS transistor, which are connected in parallel to each other, are connected in series, and the bias voltage is supplied to the gate terminal of the transistor.
  • the oscillator circuit according to any one of (1) to (6), (8) or (9), wherein a plurality of sets are connected in parallel, and the second switches are controlled by corresponding bit values of the input voltage.
  • the oscillation circuit is an oscillator that oscillates at a predetermined oscillation frequency; an oscillation frequency control circuit connected to at least one of a power supply terminal and a ground terminal of the oscillator and controlling the oscillation frequency of the oscillator according to an input voltage; a correction current generation circuit connected to a connection node between the oscillator and the oscillation frequency control circuit to supply a correction current to the connection node according to fluctuations in the power supply voltage at the power supply terminal;
  • a PLL circuit comprising a bias generation circuit that supplies a bias voltage for the correction current generation circuit to generate the correction current to the correction current generation circuit.
  • phase comparator 11 phase comparator 12 analog filter 13 VCO (Voltage Controlled Oscillator) 14 Frequency divider 21 Counter + TDC (Time to Digital Converter) 22 Digital Filter 23 DCO (Digitally Controlled Oscillator) 24 frequency divider 110 oscillator 111 PMOS transistor 112 NMOS transistor 120 current source 121, 122 NMOS transistor 123 switch 130 correction current generation circuit 131, 132 PMOS transistor 133 switch 140 bias generation circuit 141, 146 PMOS transistors 142, 147 NMOS transistor 148 resistor 149 Capacitor 150 Regulator 160 DAC (Digital Analog Converter) 161 current source 162 NMOS transistor 163 switch 170 reference bias generation circuit 171 current source 172 NMOS transistor 210 gdsn detection circuit 211, 213, 217, 218, 221, 222 NMOS transistor 212, 215, 216, 219 PMOS transistor 214, 223 resistor 230 gmp detection/calibration circuit 231, 233, 235, 238, 241, 24

Landscapes

  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)

Abstract

The present invention addresses the problem of suppressing fluctuation of an output oscillation frequency in a PLL circuit. According to the present invention, an oscillator oscillates at a predetermined oscillation frequency. An oscillation frequency control circuit is connected to at least one of a power source terminal and a grounding terminal of the oscillator, and controls the oscillation frequency of the oscillator according to an input voltage. A compensation current generation circuit is connected to a connection node between the oscillator and the oscillation frequency control circuit, and provides the connection node with a compensation current according to a fluctuation of a power source voltage at the power source terminal. A bias generation circuit provides the compensation current generation circuit with a bias voltage for enabling the compensation current generation circuit to generate the compensation current.

Description

発振回路およびPLL回路Oscillator circuit and PLL circuit
 本技術は、PLL(Phase Locked Loop:位相同期ループ)回路に関する。詳しくは、PLL回路の発振周波数を安定化させる技術およびその発振回路に関する。 This technology relates to PLL (Phase Locked Loop) circuits. More specifically, the present invention relates to a technique for stabilizing the oscillation frequency of a PLL circuit and its oscillation circuit.
 PLL回路は、システムクロック等の発振信号をチップ内で生成するために用いられる。このPLL回路では、基準クロックとの位相差情報に応じた発振信号を生成するための発振器コアとして、電圧制御発振器(VCO:Voltage Controlled Oscillator)やデジタル制御発振器(DCO:Digitally Controlled Oscillator)が必要となる。これら発振器コアに流れる発振器電流が制御されることによって、出力発振周波数が制御される。これら発振器コアでは、例えば電源電圧変動の様な外乱によって、流れる電流が変動すると、それに応じて出力発振周波数が変動する。このような出力発振周波数変動の内、PLL回路の帯域より高い周波数で変動する成分に対してはPLLが応答することができず、PLL回路における位相ズレやジッタの発生原因となる。 A PLL circuit is used to generate an oscillation signal such as a system clock within a chip. This PLL circuit requires a Voltage Controlled Oscillator (VCO) or a Digitally Controlled Oscillator (DCO) as the oscillator core for generating an oscillation signal according to the phase difference information with respect to the reference clock. Become. The output oscillation frequency is controlled by controlling the oscillator current flowing through these oscillator cores. In these oscillator cores, when the flowing current fluctuates due to disturbance such as power supply voltage fluctuation, the output oscillation frequency accordingly fluctuates. Of such fluctuations in the output oscillation frequency, the PLL cannot respond to a fluctuation component at a frequency higher than the band of the PLL circuit, which causes phase shift and jitter in the PLL circuit.
 このような発振器電流の変動を抑制する手法の一例として、容量素子を付加することが考えられるが、その場合、大きな容量面積が必要となるとともに、受動素子の面積が支配的になるとプロセス進化によるシュリンクの恩恵が小さくなるという問題がある。これに対し、電源電圧の変動をモニターして、変動に応じて補正信号を加える技術が提案されている(例えば、特許文献1参照。)。 As an example of a technique for suppressing such fluctuations in the oscillator current, it is possible to add a capacitive element. There is a problem that the benefits of shrinking are reduced. In response to this, a technique has been proposed in which a change in power supply voltage is monitored and a correction signal is added in accordance with the change (see, for example, Patent Document 1).
特開2002-171165号公報Japanese Patent Application Laid-Open No. 2002-171165
 上述の従来技術では、基準電圧と電源電圧とを比較器を用いて比較し、カレントミラーのミラー比をデジタル的に制御することによって補正を行っている。しかしながら、この従来技術では、安定した基準電圧の生成を別途必要とすることに加えて、デジタル補正であるため量子化ノイズが生じてしまい、高帯域の変動に対する補正が困難であるという問題がある。 In the conventional technology described above, the reference voltage and the power supply voltage are compared using a comparator, and correction is performed by digitally controlling the mirror ratio of the current mirror. However, in this prior art, in addition to the need to generate a stable reference voltage separately, digital correction causes quantization noise, which makes it difficult to correct for fluctuations in high bands. .
 本技術はこのような状況に鑑みて生み出されたものであり、PLL回路における出力発振周波数の変動を抑止することを目的とする。 This technology was created in view of such circumstances, and aims to suppress fluctuations in the output oscillation frequency of a PLL circuit.
 本技術は、上述の問題点を解消するためになされたものであり、その第1の側面は、所定の発振周波数により発振動作を行う発振器と、上記発振器の電源端子および接地端子の少なくとも一方に接続し、入力電圧に応じて上記発振器の上記発振周波数を制御する発振周波数制御回路と、上記発振器と上記発振周波数制御回路との間の接続ノードに接続して、上記電源端子における電源電圧の変動に応じた補正電流を上記接続ノードに対して供給する補正電流生成回路と、上記補正電流生成回路が上記補正電流を生成するためのバイアス電圧を上記補正電流生成回路に対して供給するバイアス生成回路とを具備する発振回路およびPLL回路である。これにより、バイアス電圧に基づいて電源電圧の変動に応じた補正電流を生成して、PLL回路における出力発振周波数の変動を抑止するという作用をもたらす。 The present technology has been made to solve the above-described problems, and a first aspect of the technology is to provide an oscillator that oscillates at a predetermined oscillation frequency, and an oscillator connected to at least one of a power supply terminal and a ground terminal of the oscillator. a connection node between an oscillation frequency control circuit for controlling the oscillation frequency of the oscillator according to an input voltage; and a connection node between the oscillator and the oscillation frequency control circuit. a correction current generation circuit that supplies a correction current corresponding to the above-mentioned connection node, and a bias generation circuit that supplies a bias voltage for the correction current generation circuit to generate the correction current to the correction current generation circuit. and an oscillator circuit and a PLL circuit. This produces an effect of suppressing fluctuations in the output oscillation frequency of the PLL circuit by generating a correction current corresponding to fluctuations in the power supply voltage based on the bias voltage.
 また、この第1の側面において、上記発振周波数制御回路は、PMOSトランジスタおよびNMOSトランジスタの一方からなり、そのゲート端子には上記入力電圧として上記発振周波数を制御するための電圧が供給される電圧制御電流源であって、上記補正電流生成回路は、PMOSトランジスタおよびNMOSトランジスタの上記一方とは異なる他方からなり、そのゲート端子には上記バイアス電圧が供給されるようにしてもよい。これにより、互いに極性が異なるPMOSトランジスタおよびNMOSトランジスタを用いて、電源変動による影響を抑止するという作用をもたらす。 In the first aspect, the oscillation frequency control circuit is composed of one of a PMOS transistor and an NMOS transistor, and a voltage control circuit in which a voltage for controlling the oscillation frequency is supplied to the gate terminal as the input voltage. In the current source, the correction current generation circuit may be composed of the other of the PMOS transistor and the NMOS transistor, and the bias voltage may be supplied to the gate terminal of the PMOS transistor and the NMOS transistor. As a result, a PMOS transistor and an NMOS transistor having polarities different from each other are used to suppress the influence of power supply fluctuations.
 また、この第1の側面において、上記バイアス生成回路は、カレントミラー回路により上記補正電流生成回路の上記ゲート端子に対する上記バイアス電圧を生成するようにしてもよい。 Further, in this first aspect, the bias generation circuit may generate the bias voltage for the gate terminal of the correction current generation circuit by a current mirror circuit.
 また、この第1の側面において、上記バイアス生成回路は、上記補正電流生成回路の上記ゲート端子に接続するローパスフィルタを備えてもよい。 Further, in this first aspect, the bias generation circuit may include a low-pass filter connected to the gate terminal of the correction current generation circuit.
 また、この第1の側面において、上記発振器は、複数段のインバータを環状に接続したリングオシレータであり、上記バイアス生成回路は、1段分の上記インバータをレプリカ回路として備えてもよい。 Further, in the first aspect, the oscillator may be a ring oscillator in which a plurality of stages of inverters are connected in a ring, and the bias generation circuit may include one stage of inverters as a replica circuit.
 また、この第1の側面において、上記バイアス生成回路は、上記発振周波数制御回路のドレインコンダクタンスを検知するドレインコンダクタンス検知回路と、上記補正電流生成回路のトランスコンダクタンスを検知するトランスコンダクタンス検知回路と、上記発振周波数制御回路のドレインコンダクタンスと上記補正電流生成回路のトランスコンダクタンスとが等しくなるようにキャリブレーションを行うキャリブレーション回路とを備えてもよい。これにより、補正電流を生成するためのバイアス電圧を高い精度で供給するという作用をもたらす。 In the first aspect, the bias generation circuit includes a drain conductance detection circuit that detects the drain conductance of the oscillation frequency control circuit, a transconductance detection circuit that detects the transconductance of the correction current generation circuit, and the A calibration circuit may be provided for performing calibration so that the drain conductance of the oscillation frequency control circuit and the transconductance of the correction current generation circuit are equal. This brings about the effect of supplying the bias voltage for generating the correction current with high accuracy.
 また、この第1の側面において、上記入力電圧は、アナログ値またはデジタル値としてもよい。後者の場合において、この第1の側面において、上記入力電圧をデジタル信号からアナログ信号に変換して上記発振周波数制御回路に供給するデジタルアナログ変換器をさらに具備してもよい。 Also, in this first aspect, the input voltage may be an analog value or a digital value. In the latter case, the first aspect may further include a digital-to-analog converter that converts the input voltage from a digital signal to an analog signal and supplies the analog signal to the oscillation frequency control circuit.
 また、この第1の側面において、上記入力電圧は、デジタル値であって、上記発振周波数制御回路は、PMOSトランジスタおよびNMOSトランジスタの一方からなってそのゲート端子には上記入力電圧として上記発振周波数を制御するための電圧が供給される電圧制御電流源と第1のスイッチとを直列接続した回路を複数組並列接続し、上記第1のスイッチは上記入力電圧の対応するビット値によってそれぞれ制御され、上記補正電流生成回路は、PMOSトランジスタおよびNMOSトランジスタの上記一方とは異なる他方の並列接続からなってそのゲート端子には上記バイアス電圧が供給されるトランジスタと第2のスイッチとを直列接続した回路を複数組並列接続し、上記第2のスイッチは上記入力電圧の対応するビット値によってそれぞれ制御されるようにしてもよい。 In the first aspect, the input voltage is a digital value, and the oscillation frequency control circuit is composed of one of a PMOS transistor and an NMOS transistor, and the oscillation frequency is applied to the gate terminal as the input voltage. a plurality of sets of circuits in which a voltage-controlled current source supplied with a voltage for control and a first switch are connected in series are connected in parallel, the first switches being controlled by corresponding bit values of the input voltage; The correction current generating circuit is a circuit in which a second switch and a PMOS transistor and an NMOS transistor connected in parallel are connected in parallel, and the bias voltage is supplied to the gate terminal of the PMOS transistor and the NMOS transistor. A plurality of sets may be connected in parallel, and the second switches may be controlled by corresponding bit values of the input voltage.
本技術の第1の実施の形態におけるアナログPLL回路の構成例を示す図である。It is a figure showing an example of composition of an analog PLL circuit in a 1st embodiment of this art. 本技術の実施の形態におけるVCO13の基本回路の構成例を示す図である。It is a figure showing an example of composition of a basic circuit of VCO13 in an embodiment of this art. 本技術の第1の実施の形態における発振器110の回路構成例を示す図である。It is a figure showing an example of circuit composition of oscillator 110 in a 1st embodiment of this art. 本技術の第1の実施の形態におけるVCO13の回路構成例を示す図である。It is a figure showing an example of circuit composition of VCO13 in a 1st embodiment of this art. 本技術の第1の実施の形態における電流源120および補正電流生成回路130の具体例によるVCO13の回路構成例を示す図である。3 is a diagram showing a circuit configuration example of the VCO 13 according to specific examples of the current source 120 and the correction current generation circuit 130 according to the first embodiment of the present technology; FIG. 本技術の第1の実施の形態におけるバイアス生成回路140の具体例によるVCO13の回路構成例を示す図である。3 is a diagram showing a circuit configuration example of the VCO 13 according to a specific example of the bias generation circuit 140 according to the first embodiment of the present technology; FIG. 本技術の実施の形態における出力周波数の変動特性の一例を示す図である。It is a figure which shows an example of the fluctuation characteristic of the output frequency in embodiment of this technique. 本技術の第2の実施の形態におけるバイアス生成回路140の具体例によるVCO13の回路構成例を示す図である。FIG. 7 is a diagram showing a circuit configuration example of a VCO 13 according to a specific example of a bias generation circuit 140 according to a second embodiment of the present technology; 本技術の第3の実施の形態におけるバイアス生成回路140の具体例によるVCO13の回路構成例を示す図である。FIG. 11 is a diagram showing a circuit configuration example of a VCO 13 according to a specific example of a bias generation circuit 140 according to a third embodiment of the present technology; 本技術の第4の実施の形態におけるVCO13の回路構成例を示す図である。It is a figure showing an example of circuit composition of VCO13 in a 4th embodiment of this art. 本技術の第4の実施の形態における電流源120および補正電流生成回路130の具体例によるVCO13の回路構成例を示す図である。FIG. 11 is a diagram showing a circuit configuration example of a VCO 13 according to a specific example of a current source 120 and a correction current generation circuit 130 according to a fourth embodiment of the present technology; 本技術の第5の実施の形態におけるVCO13の回路構成例を示す図である。It is a figure showing an example of circuit composition of VCO13 in a 5th embodiment of this art. 本技術の第6の実施の形態におけるデジタルPLL回路の構成例を示す図である。It is a figure which shows the structural example of the digital PLL circuit in 6th Embodiment of this technique. 本技術の第6の実施の形態におけるDCO23の基本回路の構成例を示す図である。It is a figure which shows the structural example of the basic circuit of DCO23 in 6th Embodiment of this technique. 本技術の第6の実施の形態におけるDCO23の第1の回路構成例を示す図である。It is a figure showing the 1st example of circuit composition of DCO23 in a 6th embodiment of this art. 本技術の第6の実施の形態におけるDCO23の第1の回路構成例の具体例を示す図である。FIG. 13 is a diagram illustrating a specific example of a first circuit configuration example of a DCO 23 according to a sixth embodiment of the present technology; 本技術の第6の実施の形態におけるDCO23の第2の回路構成例を示す図である。It is a figure showing the 2nd example of circuit composition of DCO23 in a 6th embodiment of this art. 本技術の第6の実施の形態におけるDCO23の第2の回路構成例の具体例を示す図である。FIG. 16 is a diagram showing a specific example of a second circuit configuration example of the DCO 23 according to the sixth embodiment of the present technology;
 以下、本技術を実施するための形態(以下、実施の形態と称する)について説明する。説明は以下の順序により行う。
 1.第1の実施の形態(カレントミラー回路を利用した例)
 2.第2の実施の形態(レプリカ回路を利用した例)
 3.第3の実施の形態(キャリブレーション回路の導入例)
 4.第4の実施の形態(極性を反転した例)
 5.第5の実施の形態(電源側と接地側の両方に補正電流生成回路を接続した例)
 6.第6の実施の形態(デジタルPLL回路への適用例)
Hereinafter, a form for carrying out the present technology (hereinafter referred to as an embodiment) will be described. Explanation will be given in the following order.
1. First Embodiment (Example Using a Current Mirror Circuit)
2. Second Embodiment (Example Using a Replica Circuit)
3. Third Embodiment (Example of Introduction of Calibration Circuit)
4. Fourth embodiment (example in which polarity is reversed)
5. Fifth embodiment (example in which a correction current generation circuit is connected to both the power supply side and the ground side)
6. Sixth Embodiment (Example of Application to Digital PLL Circuit)
 <1.第1の実施の形態>
 [アナログPLL回路]
 図1は、本技術の第1の実施の形態におけるアナログPLL回路の構成例を示す図である。
<1. First Embodiment>
[Analog PLL circuit]
FIG. 1 is a diagram illustrating a configuration example of an analog PLL circuit according to a first embodiment of the present technology.
 このアナログPLL回路は、位相比較器11と、アナログフィルタ12と、VCO13と、分周器14とを備える。分周器14は、PLL回路としての逓倍設定を行うものであり、出力信号を分周する。位相比較器11は、入力信号と分周器14によって分周された出力信号との位相を比較して、位相差に応じた位相差電圧を出力するものである。アナログフィルタ12は、位相比較器11によって出力された位相差電圧の低周波域を通過させて、VCO13に対してアナログ値の入力電圧として供給するローパスフィルタである。VCO13は、ローパスフィルタからの入力電圧に応じた周波数の信号を生成して出力信号を出力する電圧制御発振器である。 This analog PLL circuit includes a phase comparator 11, an analog filter 12, a VCO 13, and a frequency divider . The frequency divider 14 performs multiplication setting as a PLL circuit, and divides the frequency of the output signal. The phase comparator 11 compares the phases of the input signal and the output signal divided by the frequency divider 14 and outputs a phase difference voltage corresponding to the phase difference. The analog filter 12 is a low-pass filter that passes the low-frequency range of the phase difference voltage output from the phase comparator 11 and supplies it to the VCO 13 as an analog value input voltage. The VCO 13 is a voltage controlled oscillator that generates a signal with a frequency according to the input voltage from the low-pass filter and outputs an output signal.
 [VCO]
 図2は、本技術の実施の形態におけるVCO13の基本回路の構成例を示す図である。
[VCO]
FIG. 2 is a diagram showing a configuration example of a basic circuit of the VCO 13 according to the embodiment of the present technology.
 VCO13は、所定の発振周波数により発振動作を行う発振器110を備える。また、VCO13は、同図におけるaおよびbに示すように電流源120を備える。この電流源120は、入力電圧に応じた電流を供給する電圧制御電流源(VCCS:Voltage Controlled Current Source)である。すなわち、アナログフィルタ12から供給されるアナログ値の入力電圧が電流源120によって発振器110に流れる電流に変換される。この変換された電流値によって発振器110の発振周波数が制御される。 The VCO 13 has an oscillator 110 that oscillates at a predetermined oscillation frequency. The VCO 13 also includes a current source 120 as indicated by a and b in FIG. This current source 120 is a voltage controlled current source (VCCS: Voltage Controlled Current Source) that supplies a current corresponding to an input voltage. That is, the analog input voltage supplied from the analog filter 12 is converted by the current source 120 into a current flowing through the oscillator 110 . The oscillation frequency of oscillator 110 is controlled by this converted current value.
 この電流源120は、発振器110の電源側および接地側の何れに接続してもよい。同図におけるaは、発振器110の接地側に電流源120を接続した例である。同図におけるbは、発振器110の電源側に電流源120を接続した例である。すなわち、同図におけるaおよびbは、互いに極性が異なる例である。 This current source 120 may be connected to either the power supply side or ground side of the oscillator 110 . In the figure, a is an example in which the current source 120 is connected to the ground side of the oscillator 110 . b in the figure is an example in which the current source 120 is connected to the power supply side of the oscillator 110 . That is, a and b in the figure are examples in which the polarities are different from each other.
 また、VCO13は、同図におけるcおよびdに示すようにレギュレータ150を備えてもよい。このレギュレータ150は、入力電圧に応じた一定の電圧を発振器110に供給する電圧源である。これにより、同図におけるcの例では、レギュレータ150の出力電圧から電源電圧の間になるよう発振器110の電圧幅が制御される。一方、同図におけるdの例では、レギュレータ150の出力電圧から接地電位の間になるよう発振器110の電圧幅が制御される。このようにして、発振器110は、発振振幅が上述の電圧幅となるような発振周波数で動作する。なお、同図におけるcおよびdは、互いに極性が異なる例である。 Also, the VCO 13 may include a regulator 150 as shown in c and d in the figure. This regulator 150 is a voltage source that supplies a constant voltage to the oscillator 110 according to the input voltage. As a result, in the example of c in the figure, the voltage width of the oscillator 110 is controlled to be between the output voltage of the regulator 150 and the power supply voltage. On the other hand, in the example of d in the figure, the voltage width of the oscillator 110 is controlled to be between the output voltage of the regulator 150 and the ground potential. In this manner, oscillator 110 operates at an oscillation frequency such that the oscillation amplitude is the voltage width described above. It should be noted that c and d in FIG.
 図3は、本技術の第1の実施の形態における発振器110の回路構成例を示す図である。 FIG. 3 is a diagram showing a circuit configuration example of the oscillator 110 according to the first embodiment of the present technology.
 この発振器110の回路構成例は、PMOSトランジスタ111およびNMOSトランジスタ112からなるインバータを3段分設けて、環状に接続したリングオシレータである。PMOSトランジスタ111は電源側に接続され、NMOSトランジスタ112は接地側に接続される。 An example of the circuit configuration of this oscillator 110 is a ring oscillator in which three stages of inverters each including a PMOS transistor 111 and an NMOS transistor 112 are provided and connected in a ring. The PMOS transistor 111 is connected to the power supply side, and the NMOS transistor 112 is connected to the ground side.
 このようなリングオシレータでは、流れる電流や振幅(動作電圧幅)を変化させた際の、一段当たりの遅延時間の変化を利用することによって、発振周波数を制御することができる。 With such a ring oscillator, the oscillation frequency can be controlled by using the change in the delay time per stage when the flowing current or amplitude (operating voltage width) is changed.
 図4は、本技術の第1の実施の形態におけるVCO13の回路構成例を示す図である。 FIG. 4 is a diagram showing a circuit configuration example of the VCO 13 according to the first embodiment of the present technology.
 この第1の実施の形態におけるVCO13は、発振器110と、電流源120と、補正電流生成回路130と、バイアス生成回路140とを備える。発振器110および電流源120からなる基本回路は、上述の通りである。 The VCO 13 in this first embodiment comprises an oscillator 110 , a current source 120 , a correction current generation circuit 130 and a bias generation circuit 140 . The basic circuit consisting of oscillator 110 and current source 120 is described above.
 補正電流生成回路130は、発振器110と電流源120との間の接続ノードに接続して、発振器110の電源端子における電源電圧の変動に応じた補正電流を接続ノードに対して供給するものである。すなわち、この補正電流生成回路130は、電源電圧変動をモニターして、発振器110に流れる電流の変動を補正するために、電荷注入素子のアナログ特性を用いて補正電流を生成する。 The correction current generation circuit 130 is connected to a connection node between the oscillator 110 and the current source 120, and supplies a correction current to the connection node according to fluctuations in the power supply voltage at the power supply terminal of the oscillator 110. . That is, the correction current generating circuit 130 monitors the power supply voltage fluctuation and generates a correction current using the analog characteristics of the charge injection device in order to correct the fluctuation of the current flowing through the oscillator 110 .
 バイアス生成回路140は、補正電流生成回路130が補正電流を生成するためのバイアス電圧を、補正電流生成回路130に対して供給するものである。 The bias generation circuit 140 supplies the correction current generation circuit 130 with a bias voltage for the correction current generation circuit 130 to generate the correction current.
 図5は、本技術の第1の実施の形態における電流源120および補正電流生成回路130の具体例によるVCO13の回路構成例を示す図である。 FIG. 5 is a diagram showing a circuit configuration example of the VCO 13 according to specific examples of the current source 120 and the correction current generation circuit 130 according to the first embodiment of the present technology.
 この例では、電流源120としてNMOSトランジスタ121を設け、補正電流生成回路130としてPMOSトランジスタ131を設けた例を示している。NMOSトランジスタ121は、ソースが接地端子に接続し、ドレインが発振器110に接続し、ゲートがアナログフィルタ12の出力に接続する。PMOSトランジスタ131は、ソースが電源端子に接続し、ドレインがNMOSトランジスタ121のドレインに接続し、ゲートがバイアス生成回路140に接続する。 This example shows an example in which an NMOS transistor 121 is provided as the current source 120 and a PMOS transistor 131 is provided as the correction current generation circuit 130 . The NMOS transistor 121 has a source connected to the ground terminal, a drain connected to the oscillator 110 , and a gate connected to the output of the analog filter 12 . The PMOS transistor 131 has a source connected to the power supply terminal, a drain connected to the drain of the NMOS transistor 121 , and a gate connected to the bias generation circuit 140 .
 この例では、トランジスタの電圧電流変換能力を利用して、ゲート・ソース間電圧が変動した際の、ドレイン電流の変動を補正電流として用いる。この構成ではPMOSトランジスタ131のゲート電位が固定されており、電源電圧が変動したときにPMOSトランジスタ131のゲート・ソース間電圧が変調され、PMOSトランジスタ131の特性に応じて補正電流が生成される。 In this example, using the voltage-to-current conversion capability of the transistor, the fluctuation of the drain current when the voltage between the gate and the source fluctuates is used as the correction current. In this configuration, the gate potential of the PMOS transistor 131 is fixed, and when the power supply voltage fluctuates, the gate-source voltage of the PMOS transistor 131 is modulated, and a correction current is generated according to the characteristics of the PMOS transistor 131 .
 このように、この実施の形態では、補正電流生成回路130をアナログ回路により構成し、PMOSトランジスタ131のアナログ特性を利用したアナログ補正を行うため、量子化ノイズが発生しない。また、電源電圧変動を補正電流に直接変換するため、高い周波数成分をもつ電源電圧変動まで追従して、補正電流を生成することができる。 As described above, in this embodiment, the correction current generation circuit 130 is configured by an analog circuit and analog correction is performed using the analog characteristics of the PMOS transistor 131, so that quantization noise does not occur. In addition, since the power supply voltage fluctuation is directly converted into the correction current, the correction current can be generated by following even the power supply voltage fluctuation having a high frequency component.
 電源電圧変動が存在した場合、NMOSトランジスタ121は、ドレイン・ソース間電圧が変化することにより、NMOSトランジスタ121が供給している電流(被補正電流)が、変換ゲインgdsにより変動する。一方、PMOSトランジスタ131では、ゲート・ソース間電圧の変動によって、変換ゲインgmにより補正電流を生成する。ここで、一般に飽和領域で動作するトランジスタにおいては、トランスコンダクタンスgmはドレインコンダクタンスgdsのおよそ数十倍から百倍程度大きい。そのため、交流の補正電流を生成するためにPMOSトランジスタ131が必要とする直流電流は、NMOSトランジスタ121に流れる直流電流の数十分の一から百分の一程度の直流電流であるため、問題は生じない。そのため、補正電流生成回路130で発生するノイズが十分小さいことに加えて、PLLの位相(周波数)の引き込み動作を阻害しない。 When the power supply voltage fluctuates, the current supplied by the NMOS transistor 121 (current to be corrected) fluctuates due to the conversion gain gds due to the change in the voltage between the drain and the source of the NMOS transistor 121 . On the other hand, in the PMOS transistor 131, the correction current is generated by the conversion gain gm according to the fluctuation of the voltage between the gate and the source. Here, in a transistor that generally operates in the saturation region, the transconductance gm is approximately several ten to one hundred times larger than the drain conductance gds. Therefore, the DC current required by the PMOS transistor 131 to generate the AC correction current is about several tenths to one hundredth of the DC current flowing through the NMOS transistor 121, so the problem does not arise. does not occur. Therefore, the noise generated in the correction current generating circuit 130 is sufficiently small, and the pull-in operation of the phase (frequency) of the PLL is not hindered.
 ここで、バイアス生成回路140は、本技術における補正効果を最適化するために、PMOSトランジスタ131が生成する補正電流を被補正電流のPVTばらつきに対して追従させるためのバイアスを生成する役割と、PMOSトランジスタ131のゲート電位を固定させる役割を備える。 Here, in order to optimize the correction effect in the present technology, the bias generation circuit 140 has a role of generating a bias for causing the correction current generated by the PMOS transistor 131 to follow the PVT variation of the current to be corrected; It has the role of fixing the gate potential of the PMOS transistor 131 .
 図6は、本技術の第1の実施の形態におけるバイアス生成回路140の具体例によるVCO13の回路構成例を示す図である。 FIG. 6 is a diagram showing a circuit configuration example of the VCO 13 according to a specific example of the bias generation circuit 140 according to the first embodiment of the present technology.
 この例では、バイアス生成回路140は、PMOSトランジスタ141と、NMOSトランジスタ142と、抵抗148と、キャパシタ149とを備える。 In this example, the bias generation circuit 140 includes a PMOS transistor 141, an NMOS transistor 142, a resistor 148, and a capacitor 149.
 PMOSトランジスタ141のドレインはNMOSトランジスタ142のドレインと接続され、PMOSトランジスタ141のソースは電源端子と接続され、NMOSトランジスタ142のソースは接地端子と接続される。また、PMOSトランジスタ141のゲート・ドレイン間は短絡されており、PMOSトランジスタ141およびPMOSトランジスタ131はカレントミラー回路を構成する。また、NMOSトランジスタ142のゲートはNMOSトランジスタ121のゲートに接続される。 The drain of the PMOS transistor 141 is connected to the drain of the NMOS transistor 142, the source of the PMOS transistor 141 is connected to the power supply terminal, and the source of the NMOS transistor 142 is connected to the ground terminal. The gate and drain of the PMOS transistor 141 are short-circuited, and the PMOS transistor 141 and the PMOS transistor 131 form a current mirror circuit. Also, the gate of the NMOS transistor 142 is connected to the gate of the NMOS transistor 121 .
 NMOSトランジスタ142はNMOSトランジスタ121と同様に、ゲート電圧に応じた電流を生じる電流源として動作する。NMOSトランジスタ121とNMOSトランジスタ142のサイズ比に応じた電流が、PMOSトランジスタ131とPMOSトランジスタ141に反映されて、PMOSトランジスタ131からNMOSトランジスタ121に流れ込む。したがって、NMOSトランジスタ121に流れる電流の変動に対して、PMOSトランジスタ131が生成する補正電流を追従させるように、PMOSトランジスタ131のゲートへのバイアス電圧を生成することができる。 The NMOS transistor 142, like the NMOS transistor 121, operates as a current source that generates a current corresponding to the gate voltage. A current corresponding to the size ratio of the NMOS transistor 121 and the NMOS transistor 142 is reflected in the PMOS transistor 131 and the PMOS transistor 141 and flows from the PMOS transistor 131 to the NMOS transistor 121 . Therefore, the bias voltage to the gate of the PMOS transistor 131 can be generated so that the correction current generated by the PMOS transistor 131 follows the variation of the current flowing through the NMOS transistor 121 .
 このように、被補正電流のカレントミラー構成を用いてPMOSトランジスタ131のバイアス電圧を決定することにより、NMOSトランジスタ121の特性変動にPMOSトランジスタ131を追従させることができる。すなわち、被補正電流のPVTばらつきに対して、補正電流を追従させることができる。 Thus, by determining the bias voltage of the PMOS transistor 131 using the current mirror configuration of the current to be corrected, the PMOS transistor 131 can follow the characteristic variation of the NMOS transistor 121 . That is, the correction current can follow the PVT variation of the current to be corrected.
 また、抵抗148およびキャパシタ149は、RCフィルタによるローパスフィルタを形成する。このローパスフィルタにおいて、キャパシタ149は接地端子に接続する。これにより、このローパスフィルタはフィルタ帯域以上でPMOSトランジスタ131のゲート電位を固定することができる。 Also, resistor 148 and capacitor 149 form a low-pass filter by an RC filter. In this low pass filter, capacitor 149 is connected to ground. As a result, this low-pass filter can fix the gate potential of the PMOS transistor 131 above the filter band.
 ここで、キャパシタ149は比較的小さい容量でよく、抵抗148によって帯域を形成することができる。例えば、100KHz前後において、キャパシタ149を1PF程度、抵抗148を1MΩ程度とすることができる。 Here, the capacitor 149 may have a relatively small capacity, and the band can be formed by the resistor 148. For example, at around 100 KHz, the capacitor 149 can be approximately 1 PF and the resistor 148 can be approximately 1 MΩ.
 このように、第1の実施の形態における回路構成は、非常に単純な構成であるため、素子の追加を抑えて、面積を小さくすることができる。 Thus, since the circuit configuration in the first embodiment is a very simple configuration, it is possible to reduce the area by suppressing the addition of elements.
 [特性]
 図7は、本技術の実施の形態における出力周波数の変動特性の一例を示す図である。
[Characteristic]
FIG. 7 is a diagram illustrating an example of fluctuation characteristics of an output frequency according to an embodiment of the present technology;
 ここでは、横軸に電源電圧の変動周波数(Hz)を示し、縦軸に電源電圧変動に対する周波数変動の規格化された値(1/V)を示している。縦軸の値が小さいほど性能が良好であることを意味する。実線は、この第1の実施の形態の回路による特性例である。点線は、補正電流生成回路130およびバイアス生成回路140を設けない場合の特性例である。 Here, the horizontal axis indicates the fluctuation frequency (Hz) of the power supply voltage, and the vertical axis indicates the normalized value (1/V) of the frequency fluctuation with respect to the power supply voltage fluctuation. A smaller value on the vertical axis means better performance. A solid line is an example of the characteristics of the circuit of the first embodiment. A dotted line is an example of characteristics when the correction current generation circuit 130 and the bias generation circuit 140 are not provided.
 補正帯域としては100KHzから10MHz程度を想定しており、1MHzで十分の一程度の性能改善が見られ、10MHzで五分の一程度の性能改善が見られる。すなわち、この第1の実施の形態では、補正電流を能動的に供給しているため、受動素子と比べて高い電源電圧変動耐性(PSRR:Power Supply Rejection Ratio)を実現することができる。 The correction band is assumed to be about 100 kHz to 10 MHz, with a performance improvement of about one-tenth at 1 MHz and a performance improvement of about one-fifth at 10 MHz. That is, in the first embodiment, since the correction current is actively supplied, it is possible to realize higher power supply voltage fluctuation resistance (PSRR: Power Supply Rejection Ratio) compared to passive elements.
 このように、本技術の第1の実施の形態によれば、電流源120のNMOSトランジスタ121の電流を補正するための補正電流生成回路130として、PMOSトランジスタ131を設けることにより、電源電圧の変動に応じて能動的に補正を行うことができる。また、バイアス生成回路140においてカレントミラー構成を用いてPMOSトランジスタ131のバイアス電圧を決定することにより、NMOSトランジスタ121の電流のPVTばらつきに対して、補正電流を追従させることができる。さらに、抵抗148およびキャパシタ149によるローパスフィルタを設けることにより、フィルタ帯域以上でPMOSトランジスタ131のゲート電位を固定することができる。 As described above, according to the first embodiment of the present technology, by providing the PMOS transistor 131 as the correction current generation circuit 130 for correcting the current of the NMOS transistor 121 of the current source 120, fluctuations in the power supply voltage Correction can be actively performed depending on Further, by determining the bias voltage of the PMOS transistor 131 using the current mirror configuration in the bias generation circuit 140, the correction current can follow the PVT variation of the current of the NMOS transistor 121. FIG. Furthermore, by providing a low-pass filter consisting of resistor 148 and capacitor 149, the gate potential of PMOS transistor 131 can be fixed above the filter band.
 <2.第2の実施の形態>
 上述の第1の実施の形態ではカレントミラー回路によってPMOSトランジスタ131の電流を反映させていたが、この第2の実施の形態ではレプリカ回路を利用してPMOSトランジスタ131の電流を反映させる。なお、アナログPLL回路としての全体構成は上述の第1の実施の形態と同様であるため、詳細な説明は省略する。
<2. Second Embodiment>
In the first embodiment described above, the current of the PMOS transistor 131 is reflected by the current mirror circuit, but in the second embodiment, the current of the PMOS transistor 131 is reflected using a replica circuit. Since the overall configuration of the analog PLL circuit is the same as that of the first embodiment, detailed description thereof will be omitted.
 [VCO]
 図8は、本技術の第2の実施の形態におけるバイアス生成回路140の具体例によるVCO13の回路構成例を示す図である。
[VCO]
FIG. 8 is a diagram showing a circuit configuration example of the VCO 13 according to a specific example of the bias generation circuit 140 according to the second embodiment of the present technology.
 この第2の実施の形態におけるバイアス生成回路140は、上述の第1の実施の形態におけるPMOSトランジスタ141に代えて、PMOSトランジスタ146およびNMOSトランジスタ147を備える。PMOSトランジスタ146およびNMOSトランジスタ147は、インバータを構成する。すなわち、上述のように発振器110としてリングオシレータを想定して、そのリングオシレータにおける1段分のインバータを発振器110のレプリカ回路として設ける。これにより、カレントミラー回路を用いることなく、PMOSトランジスタ131の電流を反映させるようにバイアス電圧を生成することができる。 A bias generation circuit 140 in the second embodiment includes a PMOS transistor 146 and an NMOS transistor 147 instead of the PMOS transistor 141 in the first embodiment. PMOS transistor 146 and NMOS transistor 147 form an inverter. That is, assuming a ring oscillator as the oscillator 110 as described above, one stage of inverter in the ring oscillator is provided as a replica circuit of the oscillator 110 . Thereby, the bias voltage can be generated so as to reflect the current of the PMOS transistor 131 without using a current mirror circuit.
 このように、本技術の第2の実施の形態によれば、発振器110のレプリカ回路をバイアス生成回路140に設けることにより、NMOSトランジスタ121の電流のPVTばらつきに対して、補正電流を追従させることができる。 Thus, according to the second embodiment of the present technology, by providing the replica circuit of the oscillator 110 in the bias generation circuit 140, the correction current can follow the PVT variation of the current of the NMOS transistor 121. can be done.
 <3.第3の実施の形態>
 この第3の実施の形態では、バイアス生成回路140において、NMOSトランジスタ121のドレインコンダクタンスとPMOSトランジスタ131のトランスコンダクタンスとが等しくなるようにキャリブレーションを行う機能を備える。なお、アナログPLL回路としての全体構成は上述の第1の実施の形態と同様であるため、詳細な説明は省略する。
<3. Third Embodiment>
In the third embodiment, the bias generating circuit 140 has a function of performing calibration so that the drain conductance of the NMOS transistor 121 and the transconductance of the PMOS transistor 131 are equal. Since the overall configuration of the analog PLL circuit is the same as that of the first embodiment, detailed description thereof will be omitted.
 [VCO]
 図9は、本技術の第3の実施の形態におけるバイアス生成回路140の具体例によるVCO13の回路構成例を示す図である。
[VCO]
FIG. 9 is a diagram showing a circuit configuration example of the VCO 13 according to a specific example of the bias generation circuit 140 according to the third embodiment of the present technology.
 この第3の実施の形態では、バイアス生成回路140は、gdsn検知回路210と、gmp検知/キャリブレーション回路230とを備える。gdsn検知回路210は、NMOSトランジスタ121のドレインコンダクタンスgdsnを検知する回路である。gmp検知/キャリブレーション回路230は、PMOSトランジスタ131のトランスコンダクタンスgmpを検知して、ドレインコンダクタンスgdsnとトランスコンダクタンスgmpとが等しくなるようにキャリブレーションを行う回路である。 In this third embodiment, the bias generation circuit 140 comprises a gdsn detection circuit 210 and a gmp detection/calibration circuit 230. The gdsn detection circuit 210 is a circuit that detects the drain conductance gdsn of the NMOS transistor 121 . The gmp detection/calibration circuit 230 is a circuit that detects the transconductance gmp of the PMOS transistor 131 and performs calibration so that the drain conductance gdsn and the transconductance gmp become equal.
 gdsn検知回路210は、NMOSトランジスタ211、213、217、218、221および222と、PMOSトランジスタ212、215、216、219と、抵抗214および223とを備える。NMOSトランジスタ211および213のゲートには、アナログフィルタ12からの入力電圧が供給される。NMOSトランジスタ217および218、221および222、PMOSトランジスタ212および219、215および215のそれぞれは、カレントミラー回路を形成する。 The gdsn sensing circuit 210 comprises NMOS transistors 211, 213, 217, 218, 221 and 222; PMOS transistors 212, 215, 216 and 219; The input voltage from the analog filter 12 is supplied to the gates of the NMOS transistors 211 and 213 . NMOS transistors 217 and 218, 221 and 222, PMOS transistors 212 and 219, 215 and 215 respectively form a current mirror circuit.
 gmp検知/キャリブレーション回路230は、NMOSトランジスタ231、233、235、238、241および242と、PMOSトランジスタ232および236と、抵抗234および243と、オペアンプ249とを備える。NMOSトランジスタ233および235のゲートには、アナログフィルタ12からの入力電圧が供給される(端子C)。NMOSトランジスタ241および242、PMOSトランジスタ232および131のそれぞれは、カレントミラー回路を形成する。NMOSトランジスタ231および238のゲートにはオペアンプ249の出力が接続される。オペアンプ249の端子AにはNMOSトランジスタ222のドレインが接続され、オペアンプ249の端子BにはNMOSトランジスタ242のドレインが接続される。 The gmp detection/calibration circuit 230 comprises NMOS transistors 231 , 233 , 235 , 238 , 241 and 242 , PMOS transistors 232 and 236 , resistors 234 and 243 and operational amplifier 249 . The input voltage from the analog filter 12 is supplied to the gates of the NMOS transistors 233 and 235 (terminal C). Each of NMOS transistors 241 and 242 and PMOS transistors 232 and 131 form a current mirror circuit. The output of operational amplifier 249 is connected to the gates of NMOS transistors 231 and 238 . A terminal A of the operational amplifier 249 is connected to the drain of the NMOS transistor 222 , and a terminal B of the operational amplifier 249 is connected to the drain of the NMOS transistor 242 .
 まず、gdsn検知回路210は、NMOSトランジスタのドレイン・ソース間電圧電流変換ゲイン(ドレインコンダクタンスgdsn)を以下の要領で端子Aの電圧に変換する。すなわち、抵抗214を用いて電位差を作ることによりNMOSトランジスタのgdsn電流を生成する。そして、カレントコンパレータを用いて、差分電流gdsnIRを抽出する。この差分電流gdsnIRから抵抗223によって端子Aの電圧を生成する。 First, the gdsn detection circuit 210 converts the drain-source voltage-current conversion gain (drain conductance gdsn) of the NMOS transistor into the voltage of the terminal A in the following manner. That is, the gdsn current of the NMOS transistor is generated by creating a potential difference using resistor 214 . A current comparator is then used to extract the differential current gdsnIR. A voltage of the terminal A is generated by the resistor 223 from this differential current gdsnIR.
 一方、gmp検知/キャリブレーション回路230は、同様の要領でPMOSトランジスタのゲート・ソース間電圧電流変換ゲイン(トランスコンダクタンスgmp)を端子Bの電圧に変換する。 On the other hand, the gmp detection/calibration circuit 230 converts the gate-source voltage-current conversion gain (transconductance gmp) of the PMOS transistor into the voltage of the terminal B in a similar manner.
 そして、オペアンプ249は、端子Aの電圧と端子Bの電圧とが等しくなるようにキャリブレーションを行って、PMOSトランジスタ131の能力を調整する。 Then, the operational amplifier 249 performs calibration so that the voltage of the terminal A and the voltage of the terminal B are equal, and adjusts the capability of the PMOS transistor 131 .
 このように、本技術の第3の実施の形態によれば、ドレインコンダクタンスgdsnおよびトランスコンダクタンスgmpを検知して、両者が等しくなるようにキャリブレーションを行うことにより、PMOSトランジスタ131の能力を調整することができる。 Thus, according to the third embodiment of the present technology, the ability of the PMOS transistor 131 is adjusted by detecting the drain conductance gdsn and the transconductance gmp and performing calibration so that both become equal. be able to.
 <4.第4の実施の形態>
 上述の第1乃至3の実施の形態では発振器110の接地端子に電流源120を接続していたが、この第4の実施の形態では発振器110の電源端子に電流源120を接続する。すなわち、この第4の実施の形態は、上述の第1乃至3の実施の形態と比べて極性が反転している。
<4. Fourth Embodiment>
While the current source 120 is connected to the ground terminal of the oscillator 110 in the first to third embodiments described above, the current source 120 is connected to the power supply terminal of the oscillator 110 in the fourth embodiment. That is, in this fourth embodiment, the polarities are reversed compared to the above-described first to third embodiments.
 [VCO]
 図10は、本技術の第4の実施の形態におけるVCO13の回路構成例を示す図である。
[VCO]
FIG. 10 is a diagram showing a circuit configuration example of the VCO 13 according to the fourth embodiment of the present technology.
 この第4の実施の形態では、補正電流生成回路130は、発振器110の電源端子に接続された電流源120との間の接続ノードに接続して、発振器110の電源端子における電源電圧の変動に応じた補正電流を接続ノードに対して供給する。バイアス生成回路140は、補正電流生成回路130が補正電流を生成するためのバイアス電圧を、補正電流生成回路130に対して供給する。 In this fourth embodiment, the correction current generation circuit 130 is connected to the connection node between the current source 120 connected to the power supply terminal of the oscillator 110, and the power supply voltage at the power supply terminal of the oscillator 110 fluctuates. A corresponding correction current is supplied to the connection node. The bias generation circuit 140 supplies the correction current generation circuit 130 with a bias voltage for the correction current generation circuit 130 to generate a correction current.
 図11は、本技術の第4の実施の形態における電流源120および補正電流生成回路130の具体例によるVCO13の回路構成例を示す図である。 FIG. 11 is a diagram showing a circuit configuration example of the VCO 13 according to specific examples of the current source 120 and the correction current generation circuit 130 according to the fourth embodiment of the present technology.
 この第4の実施の形態の回路構成例は、上述の第1の実施の形態の回路構成例と極性が反転しているだけであり、基本的な動作は変わらないため、詳細な説明は省略する。 The circuit configuration example of the fourth embodiment is only reversed in polarity from the circuit configuration example of the above-described first embodiment, and the basic operation is the same, so detailed description is omitted. do.
 このように、本技術の第4の実施の形態によれば、発振器110の電源端子に電流源120を接続した基本回路に対しても本技術を適用することができる。 Thus, according to the fourth embodiment of the present technology, the present technology can be applied to a basic circuit in which the current source 120 is connected to the power supply terminal of the oscillator 110.
 <5.第5の実施の形態>
 上述の第1乃至4の実施の形態では発振器110の接地端子または電源端子の何れか一方のみに電流源120を接続していたが、この第5の実施の形態では発振器110の接地端子または電源端子の両側に電流源120を接続することを想定する。このような回路構成は、発振器110の電源側および接地側の両側から電流を供給して、電源電位や接地電位によってクリップされないように、サイン波に近い波形を生成しようとする場合に採用され得る。
<5. Fifth Embodiment>
In the first to fourth embodiments described above, the current source 120 is connected only to either the ground terminal or the power supply terminal of the oscillator 110, but in the fifth embodiment, the ground terminal of the oscillator 110 or the power supply is connected. Assume that a current source 120 is connected to each side of the terminal. Such a circuit configuration can be employed when trying to generate a waveform close to a sine wave by supplying current from both the power supply side and the ground side of the oscillator 110 so as not to be clipped by the power supply potential or the ground potential. .
 [VCO]
 図12は、本技術の第5の実施の形態におけるVCO13の回路構成例を示す図である。
[VCO]
FIG. 12 is a diagram showing a circuit configuration example of the VCO 13 according to the fifth embodiment of the present technology.
 この第5の実施の形態では、補正電流生成回路130-1は、発振器110の接地端子に接続された電流源120-1との間の接続ノードに接続して、電源電圧の変動に応じた補正電流を電流源120-1に対して供給する。また、補正電流生成回路130-2は、発振器110の電源端子に接続された電流源120-2との間の接続ノードに接続して、電源電圧の変動に応じた補正電流を電流源120-2に対して供給する。 In this fifth embodiment, the correction current generation circuit 130-1 is connected to the connection node between the current source 120-1 connected to the ground terminal of the oscillator 110, and responds to fluctuations in the power supply voltage. A correction current is supplied to the current source 120-1. Further, the correction current generating circuit 130-2 is connected to the connection node between the current source 120-2 connected to the power supply terminal of the oscillator 110, and generates a correction current according to the fluctuation of the power supply voltage. supply for 2.
 このように、本技術の第5の実施の形態によれば、発振器110の電源側および接地側の両側から電流を供給する回路構成に対しても本技術を適用することができる。 Thus, according to the fifth embodiment of the present technology, the present technology can also be applied to a circuit configuration that supplies current from both the power supply side and the ground side of the oscillator 110 .
 <6.第6の実施の形態>
 上述の第1乃至5の実施の形態ではアナログPLL回路を想定したが、この第6の実施の形態ではデジタルPLL回路を想定する。
<6. Sixth Embodiment>
While analog PLL circuits are assumed in the above-described first to fifth embodiments, digital PLL circuits are assumed in this sixth embodiment.
 [デジタルPLL回路]
 図13は、本技術の第6の実施の形態におけるデジタルPLL回路の構成例を示す図である。
[Digital PLL circuit]
FIG. 13 is a diagram illustrating a configuration example of a digital PLL circuit according to the sixth embodiment of the present technology;
 このデジタルPLL回路は、カウンタ+TDC21と、デジタルフィルタ22と、DCO23と、分周器24とを備える。分周器24は、PLL回路としての逓倍設定を行うものであり、出力信号を分周する。カウンタ+TDC21は、入力信号と分周器24によって分周された出力信号との位相を比較して、位相差に応じた位相差デジタル信号を出力するものである。このカウンタ+TDC21において、カウンタは基準入力周波数の何倍の出力周波数になるかの整数部分を計測し、TDC(Time to Digital Converter)は小数部分を計測する。デジタルフィルタ22は、カウンタ+TDC21によって出力された位相差デジタル信号の低周波域を通過させて、DCO23に対して入力デジタル信号として供給するローパスフィルタである。DCO23は、ローパスフィルタからの入力デジタル信号に応じた周波数の信号を生成して出力信号を出力するデジタル制御発振器である。 This digital PLL circuit includes a counter +TDC 21, a digital filter 22, a DCO 23, and a frequency divider 24. The frequency divider 24 performs multiplication setting as a PLL circuit, and divides the frequency of the output signal. The counter +TDC 21 compares the phases of the input signal and the output signal divided by the frequency divider 24 and outputs a phase difference digital signal corresponding to the phase difference. In this counter+TDC 21, the counter measures the integer part of how many times the output frequency becomes the reference input frequency, and the TDC (Time to Digital Converter) measures the decimal part. The digital filter 22 is a low-pass filter that passes the low frequency band of the phase difference digital signal output by the counter +TDC 21 and supplies it to the DCO 23 as an input digital signal. The DCO 23 is a digitally controlled oscillator that generates a signal with a frequency corresponding to the input digital signal from the low-pass filter and outputs an output signal.
 [DCO]
 図14は、本技術の第6の実施の形態におけるDCO23の基本回路の構成例を示す図である。
[DCO]
FIG. 14 is a diagram showing a configuration example of a basic circuit of the DCO 23 according to the sixth embodiment of the present technology.
 DCO23は、所定の発振周波数により発振動作を行う発振器110を備える。また、DCO23は、同図におけるaおよびbに示すようにDAC160を備える。このDAC(Digital Analog Converter)160は、デジタルフィルタ22からのデジタル値をアナログ値に変換して、発振器110に供給するものである。この変換されたアナログ値によって発振器110の発振周波数が制御される。 The DCO 23 includes an oscillator 110 that oscillates at a predetermined oscillation frequency. The DCO 23 also includes a DAC 160 as indicated by a and b in FIG. This DAC (Digital Analog Converter) 160 converts the digital value from the digital filter 22 into an analog value and supplies it to the oscillator 110 . The oscillation frequency of oscillator 110 is controlled by this converted analog value.
 このDAC160は、発振器110の電源側および接地側の何れに接続してもよい。同図におけるaは、発振器110の接地側にDAC160を接続した例である。同図におけるbは、発振器110の電源側にDAC160を接続した例である。すなわち、同図におけるaおよびbは、互いに極性が異なる例である。 This DAC 160 may be connected to either the power supply side or the ground side of the oscillator 110 . In the figure, a is an example in which the DAC 160 is connected to the ground side of the oscillator 110 . b in the figure is an example in which the DAC 160 is connected to the power supply side of the oscillator 110 . That is, a and b in the figure are examples in which the polarities are different from each other.
 図15は、本技術の第6の実施の形態におけるDCO23の第1の回路構成例を示す図である。 FIG. 15 is a diagram showing a first circuit configuration example of the DCO 23 according to the sixth embodiment of the present technology.
 このDCO23の第1の回路構成例は、上述の第1の実施の形態におけるカレントミラー回路による回路構成例(図6)を基本として、入力部にDAC160を設けたものである。すなわち、デジタルフィルタ22からのデジタル値をDAC160によってアナログ値に変換しており、内部構成は上述の第1の実施の形態と同様にアナログ回路により構成される。 The first circuit configuration example of the DCO 23 is based on the circuit configuration example (FIG. 6) of the current mirror circuit in the above-described first embodiment, and the DAC 160 is provided in the input section. That is, the digital value from the digital filter 22 is converted into an analog value by the DAC 160, and the internal configuration is configured by an analog circuit as in the first embodiment.
 図16は、本技術の第6の実施の形態におけるDCO23の第1の回路構成例の具体例を示す図である。 FIG. 16 is a diagram showing a specific example of the first circuit configuration example of the DCO 23 according to the sixth embodiment of the present technology.
 この具体例では、DAC160は、電流源161と、複数のNMOSトランジスタ162を備える。NMOSトランジスタ162と電流源161との間にはそれぞれスイッチ163が設けられる。複数のスイッチ163の制御入力端子にはデジタルフィルタ22からのデジタル値の対応するビットが供給される。これにより、供給されるデジタル値に応じた数のNMOSトランジスタ162に、電流源161からの基準電流が流れ、これに応じた電圧がNMOSトランジスタ142および121のゲートに印可される。 In this specific example, the DAC 160 comprises a current source 161 and multiple NMOS transistors 162 . A switch 163 is provided between the NMOS transistor 162 and the current source 161 respectively. The control input terminals of the plurality of switches 163 are supplied with corresponding bits of the digital value from the digital filter 22 . As a result, the reference current from the current source 161 flows through the NMOS transistors 162 whose number corresponds to the supplied digital value, and the corresponding voltage is applied to the gates of the NMOS transistors 142 and 121 .
 図17は、本技術の第6の実施の形態におけるDCO23の第2の回路構成例を示す図である。 FIG. 17 is a diagram showing a second circuit configuration example of the DCO 23 according to the sixth embodiment of the present technology.
 このDCO23の第2の回路構成例は、発振器110の接地側に電流源120として複数のNMOSトランジスタ122が接続される。NMOSトランジスタ122と発振器110との間にはそれぞれスイッチ123が設けられる。 In this second circuit configuration example of the DCO 23 , a plurality of NMOS transistors 122 are connected as the current source 120 to the ground side of the oscillator 110 . A switch 123 is provided between the NMOS transistor 122 and the oscillator 110 respectively.
 また、発振器110の両端には補正電流生成回路130として複数のPMOSトランジスタ132が接続される。PMOSトランジスタ132と接続ノードとの間にはそれぞれスイッチ133が設けられる。 A plurality of PMOS transistors 132 are connected to both ends of the oscillator 110 as a correction current generation circuit 130 . A switch 133 is provided between each PMOS transistor 132 and the connection node.
 複数のスイッチ123および133の制御入力端子にはデジタルフィルタ22からのデジタル値の対応するビットが供給される。これにより、供給されるデジタル値に応じた数のPMOSトランジスタ132およびNMOSトランジスタ122に電流が流れる。 The control input terminals of the plurality of switches 123 and 133 are supplied with corresponding bits of the digital value from the digital filter 22 . As a result, current flows through the number of PMOS transistors 132 and NMOS transistors 122 corresponding to the supplied digital value.
 この例では、NMOSトランジスタ142および121のゲートには、基準バイアス生成回路170から基準バイアス電圧が供給される。 In this example, the reference bias voltage is supplied from the reference bias generation circuit 170 to the gates of the NMOS transistors 142 and 121 .
 図18は、本技術の第6の実施の形態におけるDCO23の第2の回路構成例の具体例を示す図である。 FIG. 18 is a diagram showing a specific example of a second circuit configuration example of the DCO 23 according to the sixth embodiment of the present technology.
 この具体例では、基準バイアス生成回路170は、電流源171およびNMOSトランジスタ172を備える。NMOSトランジスタ172には、電流源171から供給された基準電流が流れる。これにより、NMOSトランジスタ172のゲート電位と同じ電圧がNMOSトランジスタ142および122のゲートに印可される。 In this specific example, the reference bias generation circuit 170 includes a current source 171 and an NMOS transistor 172. A reference current supplied from the current source 171 flows through the NMOS transistor 172 . Thereby, the same voltage as the gate potential of NMOS transistor 172 is applied to the gates of NMOS transistors 142 and 122 .
 このように、本技術の第6の実施の形態によれば、デジタルPLL回路においても、電源電圧の変動に応じて能動的に補正を行うことができる。 In this way, according to the sixth embodiment of the present technology, even in the digital PLL circuit, it is possible to actively perform correction in accordance with fluctuations in the power supply voltage.
 なお、上述の実施の形態は本技術を具現化するための一例を示したものであり、実施の形態における事項と、特許請求の範囲における発明特定事項とはそれぞれ対応関係を有する。同様に、特許請求の範囲における発明特定事項と、これと同一名称を付した本技術の実施の形態における事項とはそれぞれ対応関係を有する。ただし、本技術は実施の形態に限定されるものではなく、その要旨を逸脱しない範囲において実施の形態に種々の変形を施すことにより具現化することができる。 It should be noted that the above-described embodiment shows an example for embodying the present technology, and the matters in the embodiment and the matters specifying the invention in the scope of claims have corresponding relationships. Similarly, the matters specifying the invention in the scope of claims and the matters in the embodiments of the present technology with the same names have corresponding relationships. However, the present technology is not limited to the embodiments, and can be embodied by various modifications to the embodiments without departing from the scope of the present technology.
 なお、本明細書に記載された効果はあくまで例示であって、限定されるものではなく、また、他の効果があってもよい。 It should be noted that the effects described in this specification are only examples and are not limited, and other effects may also occur.
 なお、本技術は以下のような構成もとることができる。
(1)所定の発振周波数により発振動作を行う発振器と、
 前記発振器の電源端子および接地端子の少なくとも一方に接続し、入力電圧に応じて前記発振器の前記発振周波数を制御する発振周波数制御回路と、
 前記発振器と前記発振周波数制御回路との間の接続ノードに接続して、前記電源端子における電源電圧の変動に応じた補正電流を前記接続ノードに対して供給する補正電流生成回路と、
 前記補正電流生成回路が前記補正電流を生成するためのバイアス電圧を前記補正電流生成回路に対して供給するバイアス生成回路と
を具備する発振回路。
(2)前記発振周波数制御回路は、PMOSトランジスタおよびNMOSトランジスタの一方からなり、そのゲート端子には前記入力電圧として前記発振周波数を制御するための電圧が供給される電圧制御電流源であり、
 前記補正電流生成回路は、PMOSトランジスタおよびNMOSトランジスタの前記一方とは異なる他方からなり、そのゲート端子には前記バイアス電圧が供給される
前記(1)に記載の発振回路。
(3)前記バイアス生成回路は、カレントミラー回路により前記補正電流生成回路の前記ゲート端子に対する前記バイアス電圧を生成する
前記(2)に記載の発振回路。
(4)前記バイアス生成回路は、前記補正電流生成回路の前記ゲート端子に接続するローパスフィルタを備える
前記(2)に記載の発振回路。
(5)前記発振器は、複数段のインバータを環状に接続したリングオシレータであり、
 前記バイアス生成回路は、1段分の前記インバータをレプリカ回路として備える
前記(2)または(4)に記載の発振回路。
(6)前記バイアス生成回路は、
 前記発振周波数制御回路のドレインコンダクタンスを検知するドレインコンダクタンス検知回路と、
 前記補正電流生成回路のトランスコンダクタンスを検知するトランスコンダクタンス検知回路と、
 前記発振周波数制御回路のドレインコンダクタンスと前記補正電流生成回路のトランスコンダクタンスとが等しくなるようにキャリブレーションを行うキャリブレーション回路とを備える
前記(2)から(5)のいずれかに記載の発振回路。
(7)前記入力電圧は、アナログ値である
前記(1)から(6)のいずれかに記載の発振回路。
(8)前記入力電圧は、デジタル値である
前記(1)から(6)のいずれかに記載の発振回路。
(9)前記入力電圧をデジタル信号からアナログ信号に変換して前記発振周波数制御回路に供給するデジタルアナログ変換器をさらに具備する
前記(8)に記載の発振回路。
(10)前記入力電圧は、デジタル値であって、
 前記発振周波数制御回路は、PMOSトランジスタおよびNMOSトランジスタの一方からなってそのゲート端子には前記入力電圧として前記発振周波数を制御するための電圧が供給される電圧制御電流源と第1のスイッチとを直列接続した回路を複数組並列接続し、前記第1のスイッチは前記入力電圧の対応するビット値によってそれぞれ制御され、
 前記補正電流生成回路は、PMOSトランジスタおよびNMOSトランジスタの前記一方とは異なる他方の並列接続からなってそのゲート端子には前記バイアス電圧が供給されるトランジスタと第2のスイッチとを直列接続した回路を複数組並列接続し、前記第2のスイッチは前記入力電圧の対応するビット値によってそれぞれ制御される
前記(1)から(6)、(8)または(9)のいずれかに記載の発振回路。
(11)入力信号と出力信号の位相差に応じた位相差電圧を出力する位相比較器と、
 前記位相差電圧の低周波域を通過させて入力電圧として供給するローパスフィルタと、
 前記入力電圧に応じた周波数の信号を生成して前記出力信号を出力する発振回路とを具備し、
 前記発振回路は、
 所定の発振周波数により発振動作を行う発振器と、
 前記発振器の電源端子および接地端子の少なくとも一方に接続し、入力電圧に応じて前記発振器の前記発振周波数を制御する発振周波数制御回路と、
 前記発振器と前記発振周波数制御回路との間の接続ノードに接続して、前記電源端子における電源電圧の変動に応じた補正電流を前記接続ノードに対して供給する補正電流生成回路と、
 前記補正電流生成回路が前記補正電流を生成するためのバイアス電圧を前記補正電流生成回路に対して供給するバイアス生成回路とを備える
PLL回路。
Note that the present technology can also have the following configuration.
(1) an oscillator that oscillates at a predetermined oscillation frequency;
an oscillation frequency control circuit connected to at least one of a power supply terminal and a ground terminal of the oscillator and controlling the oscillation frequency of the oscillator according to an input voltage;
a correction current generation circuit connected to a connection node between the oscillator and the oscillation frequency control circuit to supply a correction current to the connection node according to fluctuations in the power supply voltage at the power supply terminal;
and a bias generation circuit that supplies a bias voltage for the correction current generation circuit to generate the correction current to the correction current generation circuit.
(2) the oscillation frequency control circuit is a voltage controlled current source comprising one of a PMOS transistor and an NMOS transistor and having a gate terminal supplied with a voltage for controlling the oscillation frequency as the input voltage;
The oscillator circuit according to (1), wherein the correction current generating circuit is composed of the other of a PMOS transistor and an NMOS transistor, and the gate terminal thereof is supplied with the bias voltage.
(3) The oscillator circuit according to (2), wherein the bias generation circuit generates the bias voltage for the gate terminal of the correction current generation circuit by a current mirror circuit.
(4) The oscillator circuit according to (2), wherein the bias generation circuit includes a low-pass filter connected to the gate terminal of the correction current generation circuit.
(5) the oscillator is a ring oscillator in which a plurality of stages of inverters are connected in a ring;
The oscillator circuit according to (2) or (4), wherein the bias generation circuit includes one stage of the inverter as a replica circuit.
(6) the bias generation circuit,
a drain conductance detection circuit for detecting the drain conductance of the oscillation frequency control circuit;
a transconductance detection circuit that detects the transconductance of the correction current generation circuit;
The oscillator circuit according to any one of (2) to (5) above, further comprising a calibration circuit that performs calibration so that the drain conductance of the oscillation frequency control circuit and the transconductance of the correction current generation circuit are equal.
(7) The oscillator circuit according to any one of (1) to (6), wherein the input voltage is an analog value.
(8) The oscillator circuit according to any one of (1) to (6), wherein the input voltage is a digital value.
(9) The oscillator circuit according to (8), further comprising a digital-analog converter that converts the input voltage from a digital signal to an analog signal and supplies the analog signal to the oscillation frequency control circuit.
(10) The input voltage is a digital value,
The oscillation frequency control circuit comprises one of a PMOS transistor and an NMOS transistor, and includes a voltage controlled current source whose gate terminal is supplied with a voltage for controlling the oscillation frequency as the input voltage, and a first switch. a plurality of sets of series-connected circuits connected in parallel, the first switches each being controlled by a corresponding bit value of the input voltage;
The correction current generation circuit is a circuit in which a second switch and a PMOS transistor and an NMOS transistor, which are connected in parallel to each other, are connected in series, and the bias voltage is supplied to the gate terminal of the transistor. The oscillator circuit according to any one of (1) to (6), (8) or (9), wherein a plurality of sets are connected in parallel, and the second switches are controlled by corresponding bit values of the input voltage.
(11) a phase comparator that outputs a phase difference voltage corresponding to the phase difference between the input signal and the output signal;
a low-pass filter that passes a low-frequency region of the phase difference voltage and supplies it as an input voltage;
an oscillation circuit that generates a signal having a frequency corresponding to the input voltage and outputs the output signal;
The oscillation circuit is
an oscillator that oscillates at a predetermined oscillation frequency;
an oscillation frequency control circuit connected to at least one of a power supply terminal and a ground terminal of the oscillator and controlling the oscillation frequency of the oscillator according to an input voltage;
a correction current generation circuit connected to a connection node between the oscillator and the oscillation frequency control circuit to supply a correction current to the connection node according to fluctuations in the power supply voltage at the power supply terminal;
A PLL circuit comprising a bias generation circuit that supplies a bias voltage for the correction current generation circuit to generate the correction current to the correction current generation circuit.
 11 位相比較器
 12 アナログフィルタ
 13 VCO(Voltage Controlled Oscillator)
 14 分周器
 21 カウンタ+TDC(Time to Digital Converter)
 22 デジタルフィルタ
 23 DCO(Digitally Controlled Oscillator)
 24 分周器
 110 発振器
 111 PMOSトランジスタ
 112 NMOSトランジスタ
 120 電流源
 121、122 NMOSトランジスタ
 123 スイッチ
 130 補正電流生成回路
 131、132 PMOSトランジスタ
 133 スイッチ
 140 バイアス生成回路
 141、146 PMOSトランジスタ
 142、147 NMOSトランジスタ
 148 抵抗
 149 キャパシタ
 150 レギュレータ
 160 DAC(Digital Analog Converter)
 161 電流源
 162 NMOSトランジスタ
 163 スイッチ
 170 基準バイアス生成回路
 171 電流源
 172 NMOSトランジスタ
 210 gdsn検知回路
 211、213、217、218、221、222 NMOSトランジスタ
 212、215、216、219 PMOSトランジスタ
 214、223 抵抗
 230 gmp検知/キャリブレーション回路
 231、233、235、238、241、242 NMOSトランジスタ
 232、236 PMOSトランジスタ
 234、243 抵抗
 249 オペアンプ
11 phase comparator 12 analog filter 13 VCO (Voltage Controlled Oscillator)
14 Frequency divider 21 Counter + TDC (Time to Digital Converter)
22 Digital Filter 23 DCO (Digitally Controlled Oscillator)
24 frequency divider 110 oscillator 111 PMOS transistor 112 NMOS transistor 120 current source 121, 122 NMOS transistor 123 switch 130 correction current generation circuit 131, 132 PMOS transistor 133 switch 140 bias generation circuit 141, 146 PMOS transistors 142, 147 NMOS transistor 148 resistor 149 Capacitor 150 Regulator 160 DAC (Digital Analog Converter)
161 current source 162 NMOS transistor 163 switch 170 reference bias generation circuit 171 current source 172 NMOS transistor 210 gdsn detection circuit 211, 213, 217, 218, 221, 222 NMOS transistor 212, 215, 216, 219 PMOS transistor 214, 223 resistor 230 gmp detection/ calibration circuit 231, 233, 235, 238, 241, 242 NMOS transistors 232, 236 PMOS transistors 234, 243 resistor 249 operational amplifier

Claims (11)

  1.  所定の発振周波数により発振動作を行う発振器と、
     前記発振器の電源端子および接地端子の少なくとも一方に接続し、入力電圧に応じて前記発振器の前記発振周波数を制御する発振周波数制御回路と、
     前記発振器と前記発振周波数制御回路との間の接続ノードに接続して、前記電源端子における電源電圧の変動に応じた補正電流を前記接続ノードに対して供給する補正電流生成回路と、
     前記補正電流生成回路が前記補正電流を生成するためのバイアス電圧を前記補正電流生成回路に対して供給するバイアス生成回路と
    を具備する発振回路。
    an oscillator that oscillates at a predetermined oscillation frequency;
    an oscillation frequency control circuit connected to at least one of a power supply terminal and a ground terminal of the oscillator and controlling the oscillation frequency of the oscillator according to an input voltage;
    a correction current generation circuit connected to a connection node between the oscillator and the oscillation frequency control circuit to supply a correction current to the connection node according to fluctuations in the power supply voltage at the power supply terminal;
    and a bias generation circuit that supplies a bias voltage for the correction current generation circuit to generate the correction current to the correction current generation circuit.
  2.  前記発振周波数制御回路は、PMOSトランジスタおよびNMOSトランジスタの一方からなり、そのゲート端子には前記入力電圧として前記発振周波数を制御するための電圧が供給される電圧制御電流源であり、
     前記補正電流生成回路は、PMOSトランジスタおよびNMOSトランジスタの前記一方とは異なる他方からなり、そのゲート端子には前記バイアス電圧が供給される
    請求項1記載の発振回路。
    The oscillation frequency control circuit is a voltage controlled current source which is composed of one of a PMOS transistor and an NMOS transistor, and whose gate terminal is supplied with a voltage for controlling the oscillation frequency as the input voltage,
    2. The oscillator circuit according to claim 1, wherein said correction current generation circuit comprises the other of a PMOS transistor and an NMOS transistor, the gate terminal of which is supplied with said bias voltage.
  3.  前記バイアス生成回路は、カレントミラー回路により前記補正電流生成回路の前記ゲート端子に対する前記バイアス電圧を生成する
    請求項2記載の発振回路。
    3. The oscillator circuit according to claim 2, wherein said bias generation circuit generates said bias voltage for said gate terminal of said correction current generation circuit by means of a current mirror circuit.
  4.  前記バイアス生成回路は、前記補正電流生成回路の前記ゲート端子に接続するローパスフィルタを備える
    請求項2記載の発振回路。
    3. The oscillator circuit according to claim 2, wherein said bias generation circuit comprises a low-pass filter connected to said gate terminal of said correction current generation circuit.
  5.  前記発振器は、複数段のインバータを環状に接続したリングオシレータであり、
     前記バイアス生成回路は、1段分の前記インバータをレプリカ回路として備える
    請求項2記載の発振回路。
    The oscillator is a ring oscillator in which multiple stages of inverters are connected in a ring,
    3. The oscillation circuit according to claim 2, wherein said bias generation circuit comprises one stage of said inverter as a replica circuit.
  6.  前記バイアス生成回路は、
     前記発振周波数制御回路のドレインコンダクタンスを検知するドレインコンダクタンス検知回路と、
     前記補正電流生成回路のトランスコンダクタンスを検知するトランスコンダクタンス検知回路と、
     前記発振周波数制御回路のドレインコンダクタンスと前記補正電流生成回路のトランスコンダクタンスとが等しくなるようにキャリブレーションを行うキャリブレーション回路とを備える
    請求項2記載の発振回路。
    The bias generation circuit is
    a drain conductance detection circuit for detecting the drain conductance of the oscillation frequency control circuit;
    a transconductance detection circuit that detects the transconductance of the correction current generation circuit;
    3. The oscillation circuit according to claim 2, further comprising a calibration circuit for performing calibration so that the drain conductance of the oscillation frequency control circuit and the transconductance of the correction current generation circuit are equal.
  7.  前記入力電圧は、アナログ値である
    請求項1記載の発振回路。
    2. The oscillator circuit according to claim 1, wherein said input voltage is an analog value.
  8.  前記入力電圧は、デジタル値である
    請求項1記載の発振回路。
    2. The oscillator circuit according to claim 1, wherein said input voltage is a digital value.
  9.  前記入力電圧をデジタル信号からアナログ信号に変換して前記発振周波数制御回路に供給するデジタルアナログ変換器をさらに具備する
    請求項8記載の発振回路。
    9. The oscillator circuit according to claim 8, further comprising a digital-to-analog converter that converts the input voltage from a digital signal to an analog signal and supplies the converted signal to the oscillation frequency control circuit.
  10.  前記入力電圧は、デジタル値であって、
     前記発振周波数制御回路は、PMOSトランジスタおよびNMOSトランジスタの一方からなってそのゲート端子には前記入力電圧として前記発振周波数を制御するための電圧が供給される電圧制御電流源と第1のスイッチとを直列接続した回路を複数組並列接続し、前記第1のスイッチは前記入力電圧の対応するビット値によってそれぞれ制御され、
     前記補正電流生成回路は、PMOSトランジスタおよびNMOSトランジスタの前記一方とは異なる他方の並列接続からなってそのゲート端子には前記バイアス電圧が供給されるトランジスタと第2のスイッチとを直列接続した回路を複数組並列接続し、前記第2のスイッチは前記入力電圧の対応するビット値によってそれぞれ制御される
    請求項1記載の発振回路。
    The input voltage is a digital value,
    The oscillation frequency control circuit comprises one of a PMOS transistor and an NMOS transistor, and includes a voltage controlled current source whose gate terminal is supplied with a voltage for controlling the oscillation frequency as the input voltage, and a first switch. a plurality of sets of series-connected circuits connected in parallel, the first switches each being controlled by a corresponding bit value of the input voltage;
    The correction current generation circuit is a circuit in which a second switch and a PMOS transistor and an NMOS transistor, which are connected in parallel to each other, are connected in series, and the bias voltage is supplied to the gate terminal of the transistor. 2. The oscillator circuit according to claim 1, wherein a plurality of sets are connected in parallel, and said second switches are each controlled by a corresponding bit value of said input voltage.
  11.  入力信号と出力信号の位相差に応じた位相差電圧を出力する位相比較器と、
     前記位相差電圧の低周波域を通過させて入力電圧として供給するローパスフィルタと、
     前記入力電圧に応じた周波数の信号を生成して前記出力信号を出力する発振回路とを具備し、
     前記発振回路は、
     所定の発振周波数により発振動作を行う発振器と、
     前記発振器の電源端子および接地端子の少なくとも一方に接続し、入力電圧に応じて前記発振器の前記発振周波数を制御する発振周波数制御回路と、
     前記発振器と前記発振周波数制御回路との間の接続ノードに接続して、前記電源端子における電源電圧の変動に応じた補正電流を前記接続ノードに対して供給する補正電流生成回路と、
     前記補正電流生成回路が前記補正電流を生成するためのバイアス電圧を前記補正電流生成回路に対して供給するバイアス生成回路とを備える
    PLL回路。
    a phase comparator that outputs a phase difference voltage corresponding to the phase difference between the input signal and the output signal;
    a low-pass filter that passes a low-frequency region of the phase difference voltage and supplies it as an input voltage;
    an oscillation circuit that generates a signal having a frequency corresponding to the input voltage and outputs the output signal;
    The oscillation circuit is
    an oscillator that oscillates at a predetermined oscillation frequency;
    an oscillation frequency control circuit connected to at least one of a power supply terminal and a ground terminal of the oscillator and controlling the oscillation frequency of the oscillator according to an input voltage;
    a correction current generation circuit connected to a connection node between the oscillator and the oscillation frequency control circuit to supply a correction current to the connection node according to fluctuations in the power supply voltage at the power supply terminal;
    A PLL circuit comprising a bias generation circuit that supplies a bias voltage for the correction current generation circuit to generate the correction current to the correction current generation circuit.
PCT/JP2022/003574 2021-08-03 2022-01-31 Oscillation circuit and pll circuit WO2023013101A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023539603A JPWO2023013101A1 (en) 2021-08-03 2022-01-31

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021127669 2021-08-03
JP2021-127669 2021-08-03

Publications (1)

Publication Number Publication Date
WO2023013101A1 true WO2023013101A1 (en) 2023-02-09

Family

ID=85155473

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/003574 WO2023013101A1 (en) 2021-08-03 2022-01-31 Oscillation circuit and pll circuit

Country Status (2)

Country Link
JP (1) JPWO2023013101A1 (en)
WO (1) WO2023013101A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1098356A (en) * 1996-07-15 1998-04-14 Mitsubishi Electric Corp Voltage controlled oscillator
WO2017195614A1 (en) * 2016-05-11 2017-11-16 ソニー株式会社 Oscillation circuit, oscillation method, and pll circuit
WO2020105182A1 (en) * 2018-11-22 2020-05-28 株式会社ソシオネクスト Voltage-controlled oscillator and pll circuit in which same is used

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1098356A (en) * 1996-07-15 1998-04-14 Mitsubishi Electric Corp Voltage controlled oscillator
WO2017195614A1 (en) * 2016-05-11 2017-11-16 ソニー株式会社 Oscillation circuit, oscillation method, and pll circuit
WO2020105182A1 (en) * 2018-11-22 2020-05-28 株式会社ソシオネクスト Voltage-controlled oscillator and pll circuit in which same is used

Also Published As

Publication number Publication date
JPWO2023013101A1 (en) 2023-02-09

Similar Documents

Publication Publication Date Title
US5847616A (en) Embedded voltage controlled oscillator with minimum sensitivity to process and supply
US5117205A (en) Electrically controllable oscillator circuit, and electrically controllable filter arrangement comprising said circuits
KR960015678B1 (en) Voltage-controlled oscillating circuit and phase-locke loop
US7030688B2 (en) Low-pass filter for a PLL, phase-locked loop and semiconductor integrated circuit
US6320435B1 (en) PLL circuit which can reduce phase offset without increase in operation voltage
US6316987B1 (en) Low-power low-jitter variable delay timing circuit
US7148757B2 (en) Charge pump-based PLL having dynamic loop gain
US10164574B2 (en) Method for generating a plurality of oscillating signals with different phases and associated circuit and local oscillator
JPH02262714A (en) Duty control circuit device
US20140002197A1 (en) Oscillator arrangement
US7394325B2 (en) Voltage-controlled oscillator circuit and PLL circuit
US20040135567A1 (en) Switching regulator and slope correcting circuit
US7154352B2 (en) Clock generator and related biasing circuit
US20050195301A1 (en) Charge pump circuit and PLL circuit using the same
US8575979B2 (en) Fully differential adaptive bandwidth PLL with differential supply regulation
US6833766B2 (en) Adaptive loop gain control circuit for voltage controlled oscillator
US6529084B1 (en) Interleaved feedforward VCO and PLL
WO2020105182A1 (en) Voltage-controlled oscillator and pll circuit in which same is used
KR20170038710A (en) Oscillation circuit
US6642799B2 (en) Phase lock loop destress circuit
US20020067215A1 (en) Voltage controlled oscillator including fluctuation transmitter for transmitting potential fluctuation by noise
WO2023013101A1 (en) Oscillation circuit and pll circuit
JPH0435302A (en) Voltage controlled oscillator
US5936478A (en) Voltage-controlled oscillator including a stabilized ring oscillator
JP2006033197A (en) Pll circuit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22852530

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023539603

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE