WO2023012290A1 - Method and assembly for forming an intraocular lens - Google Patents

Method and assembly for forming an intraocular lens Download PDF

Info

Publication number
WO2023012290A1
WO2023012290A1 PCT/EP2022/071988 EP2022071988W WO2023012290A1 WO 2023012290 A1 WO2023012290 A1 WO 2023012290A1 EP 2022071988 W EP2022071988 W EP 2022071988W WO 2023012290 A1 WO2023012290 A1 WO 2023012290A1
Authority
WO
WIPO (PCT)
Prior art keywords
cutting
iol
mold insert
mold
transitional region
Prior art date
Application number
PCT/EP2022/071988
Other languages
French (fr)
Inventor
Mitchell Gerardus MAAS
Martin Dinant Bijker
Original Assignee
Amo Groningen B.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Amo Groningen B.V. filed Critical Amo Groningen B.V.
Publication of WO2023012290A1 publication Critical patent/WO2023012290A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00009Production of simple or compound lenses
    • B29D11/0048Moulds for lenses
    • B29D11/005Moulds for lenses having means for aligning the front and back moulds
    • B29D11/00509Moulds for lenses having means for aligning the front and back moulds to make toric lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/02Artificial eyes from organic plastic material
    • B29D11/023Implants for natural eyes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/12Moulds or cores; Details thereof or accessories therefor with incorporated means for positioning inserts, e.g. labels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/38Moulds or cores; Details thereof or accessories therefor characterised by the material or the manufacturing process
    • B29C33/3842Manufacturing moulds, e.g. shaping the mould surface by machining
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00009Production of simple or compound lenses
    • B29D11/0048Moulds for lenses
    • B29D11/00519Reusable moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00932Combined cutting and grinding thereof
    • B29D11/00942Combined cutting and grinding thereof where the lens material is mounted in a support for mounting onto a cutting device, e.g. a lathe, and where the support is of machinable material, e.g. plastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00009Production of simple or compound lenses
    • B29D11/00019Production of simple or compound lenses with non-spherical faces, e.g. toric faces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2011/00Optical elements, e.g. lenses, prisms
    • B29L2011/0016Lenses
    • B29L2011/0025Toric lenses

Definitions

  • the present disclosure relates to an intraocular lens (IOL), and more specifically relates to formation methods and processes for producing the IOL.
  • IOL intraocular lens
  • Intraocular lenses are well known. There are many varieties of lOLs, such as toric lOLs, monofocal lOLs, and multifocal lOLs. lOLs can be formed from a variety of formation processes, which may include milling, molding, and lathing, among many other processes.
  • lOLs typically include an optical portion and a supporting portion.
  • a supporting portion is known as a haptic portion. It has been recognized that frosting of supporting portions can be desirable in order to address issues with rotation of the IOL and also to address undesirable glare issues. Forming lOLs to have a specific roughness or surface characteristics specifically on the supporting portions is time consuming, labor intensive, and expensive.
  • an improved formation process of an IOL and the associated components used to form the IOL in order to provide support portions on the IOL with specific surface characteristics.
  • There is also a desire to provide an improved formation method for an IOL that avoids scarring or other imperfections that can manifest on the optical portion of the IOL.
  • a method of forming a mold insert used to produce an IOL mold includes cutting stock material, which involves a variety of cutting steps.
  • the cutting steps are performed in specific start locations and end locations on the mold insert.
  • the cutting steps are performed using electrical discharge machining (EDM) wire cutting.
  • EDM electrical discharge machining
  • a method of forming an IOL is also disclosed herein.
  • the method includes providing a molding assembly including the mold insert.
  • the method includes forming an IOL mold from the molding assembly.
  • the method then includes forming the IOL from the IOL mold.
  • Figure 1A is an exploded view from a bottom perspective of a molding assembly according to one aspect of this disclosure.
  • Figure IB is a side cross-sectional view of the molding assembly of Figure 1A.
  • Figure 1C is a top perspective view of the molding assembly of Figures 1A and IB.
  • Figures 2A-2C illustrate various cutting steps for forming a mold insert for the molding assembly.
  • Figure 2D illustrates stock material with multiple mold inserts removed.
  • Figure 2E is a schematic illustration of an EDM wire cutting configuration.
  • Figure 3 is an enlarged view of a portion of the mold insert.
  • Figure 4A illustrates the mold insert assembled with the molding assembly.
  • Figure 4B illustrates the molding assembly arranged within a molding system.
  • Figure 4C illustrates aspects of cast molding an IOL from the IOL mold.
  • Figure 4D illustrates an IOL formed by the cast molding steps of Figure 4C.
  • Figure 5A illustrates a SEM cross-sectional rendering of an IOL formed using the mold insert disclosed herein.
  • Figure 5B illustrates a SEM top rendering of an IOL formed using the mold insert disclosed herein.
  • Figures 6A-6C illustrate an alternative cutting method for forming a mold insert.
  • Figure 7 illustrates a flow chart detailing method steps associated with preparing or forming the mold insert.
  • Figure 8 illustrates a flow chart detailing method steps associated with forming the IOL.
  • the term lens is used generically.
  • the lens is an intraocular lens (IOL). More specifically, the lens is a toric IOL in one embodiment.
  • IOL intraocular lens
  • the embodiments and aspects disclosed herein can be adapted or used with respect to any lens or implant related to the eye.
  • FIG. 1A is an exploded view of the molding assembly 10 from a bottom perspective.
  • the molding assembly 10 includes a mold insert 20, a body portion 30, an optical insert 40, a fastening element 50, and a securing element 60. These components are assembled with each other to form the molding assembly 10, which is used in an injection molding process to form an IOL mold, as described in more detail herein.
  • the IOL mold is then used to form the IOL itself, which is also described in more detail herein.
  • the mold insert 20 and the optical insert 40 combine with each other to define a profile for an IOL mold, which is ultimately used to form an IOL.
  • the optical insert 40 can be configured to be arranged substantially inside of the mold insert 20, as shown in Figure IB.
  • an optically accurate portion 41 of the optical insert 40 defines an uppermost surface of the molding assembly 10.
  • the optically accurate portion 41 refers to a portion of the optical insert 40 that ultimately defines the optical portion of the IOL.
  • the mold insert 20 is directed to forming the supporting portions of the IOL mold and IOL, and a profile for a periphery of the IOL mold and
  • the optical insert 40 is directed to forming the optical portion of the IOL mold and IOL.
  • the optical insert 40 can have a different profile than the profile shown in the drawings.
  • the optical insert 40 may not have a circular profile, and instead could include a circular profile that also includes support portions or haptic portions.
  • the mold insert 20 and the optical insert 40 can be formed as a single component.
  • the body portion 30 generally defines a passage 34 on a longitudinal or axial end that is configured or dimensioned to receive the mold insert 20.
  • a surface roughness defined by the internal wall of the passage 34 is approximately the same as the roughness defined around a perimeter of the mold insert 20.
  • the internal wall of passage 34 is formed such that insertion of the mold insert 20 within the passage 34 will not contact or otherwise damage the mold insert 20.
  • a lateral surface of the passage 34 has an identical roughness value as a roughness value of a lateral surface of the mold insert 20.
  • the lateral surface of the passage 34 has a roughness value that is less than a roughness value of the lateral surface of the mold insert 20.
  • a lateral surface of the passage 34 has a roughness value that is within 1% - 5% of a roughness value of a lateral surface of the mold insert 20. In one aspect, a lateral surface of the passage 34 has a roughness value that is within 20% - 30% of a roughness value of a lateral surface of the mold insert 20
  • the mold insert 20 includes an opening 22 on a radial or peripheral surface configured to receive the securing element 60.
  • the body portion 30 also includes an opening 32 on a radial or peripheral surface configured to receive the securing element 60.
  • the openings 22, 32 are aligned with each other once the mold insert 20 is arranged inside the body portion 30, and the securing element 60 is inserted to secure the mold insert 20 with the body portion 30.
  • the securing element 60 is a pin or dowel.
  • the securing element 60 and the opening 32 are specifically formed to avoid any burr or imperfections, which could potentially scratch mold insert 20 during assembly. Any scratches or unintended imperfections imparted onto the mold insert 20 can result in imperfections later translated or molded onto the lens. The present disclosure avoids these issues using the techniques described herein.
  • the mold insert 20 also includes a first opening 23a on an axial end face and a second opening 23b on axial end face opposite from the first opening 23a.
  • the first opening 23a is configured to receive the fastening element 50.
  • the second opening 23b is configured to receive the optical insert 40.
  • the two openings 23a, 23b are connected by a through passage 23c that is dimensioned to also receive a portion of the fastening element 50.
  • an optical portion 24 of the mold insert 20 surrounds a periphery of the optical insert 40. The optical portion 24 is disclosed in more detail herein.
  • the optical insert 40 and the fastening element 50 are arranged on axially opposite ends of the assembly 10 and secured with each other to provide a secure and reliable connection between the components of the assembly 10.
  • the optically accurate portion 41 of the optical insert 40 is facing outwards, as shown in Figure IB.
  • the fastening element 50 comprises a screw or male threaded element
  • the optical insert 40 comprises a nut or female threaded element configured to engage with the fastening element 50.
  • the openings 23a, 23b and through passage 23c allow for the connection between the optical insert 40 and the fastening element 50, in one aspect.
  • fastening element 50 comprises a screw or male threaded element
  • the optical insert 40 comprises a nut or female threaded element configured to engage with the fastening element 50.
  • the openings 23a, 23b and through passage 23c allow for the connection between the optical insert 40 and the fastening element 50, in one aspect.
  • fastening configurations could be used, such as a connection using magnetic elements or
  • the mold insert 20 comprises the optical portion 24 defined in a central region of the mold insert 20 and at least one supporting portion 26 that extends away from the optical portion 24.
  • the supporting portion can be a haptic arm 26 or haptic portion, and these terms are used interchangeably herein.
  • supporting portion or structure can have a variety of shapes, structure, profiles, etc.
  • the term supporting portion as used herein refers to portions of the mold insert other than the optical portion which ultimately assist with positioning or orienting the IOL.
  • the supporting portions are formed as haptic arms 26a, 26b with an arcuate profile that bends or curves in opposite directions from each other.
  • the shape, profile, quantity, and arrangement of the supporting portions or haptic arms 26a, 26b can vary. Details regarding the formation of these components of the mold insert 20 are further defined herein.
  • Step 110 includes providing stock material.
  • stock material refers to a base material, which can be provided in the form of a block, a sheet, or any other form.
  • the stock material is comprised of metal, a metallic alloy, steel, or other suitable material.
  • the stock material is stainless steel having a Rockwell hardness (HRC) of 52 - 54 after processing and hardening. The hardness of the stock material is increased during processing/hardening from an initial value of 20 HRC to the final value of 52 - 54 HRC.
  • the stock material is provided in sheet, block or raw form.
  • the first opening 23a can be formed.
  • the second opening 23b can be formed.
  • These openings 23a, 23b can formed by tapping, drilling, or any other formation processes or steps.
  • additional elements such as alignment features or holes, can be formed on the stock material.
  • the stock material can be hardened, preferably to a HRC of 52-54. After these steps, the stock material can then be cut using a wire cutting pattern, which is described in more detail herein, i.e. step 120 below.
  • Step 120 includes cutting the stock material using a variety of cutting steps, patterns, and techniques, as generally illustrated in Figures 2A-2C and 2E.
  • Figures 2A-2C specifically illustrates cutting profiles relative to the mold insert 20 and do not illustrate the surrounding stock material for clarity purposes only.
  • One skilled in the art would understand that the cutting steps shown in these Figures would be performed relative to the workpiece or stock material.
  • step 130 includes performing a first cut or cutting step around a first predetermined periphery of the mold insert 20.
  • This cutting step is shown in Figure 2A.
  • Each of the cutting steps described herein can be performed using electrical discharge machining (EDM). More specifically, the cutting steps can be performed using wire-cutting EDM.
  • EDM electrical discharge machining
  • a pre-cut can be performed in which a rough cutting around a general shape of the mold insert 20 is performed.
  • Step 140 includes performing a second cut or cutting step around a second predetermined periphery of the mold insert 20. This cutting step is shown in Figure 2B.
  • the second predetermined periphery has a more detailed profile than a profile of the first predetermined periphery.
  • the second predetermined periphery includes cutting around the mold insert 20 such that indentations, recesses, or grooves 26c are defined in regions between the optical portion 24 and the supporting portions 26. These recesses are also referred to as pits 26c of the supporting portions 26 or armpits 26c.
  • Additional steps of method 100 can be provided. For example, after the cutting steps, other features of the mold insert 20 can be further processed or formed. In one aspect, milling steps can be carried out, which may include high speed milling (HSM) (i.e., 30,000 rpm) with diamond cutting tools. In a further step, the opening 22 for the securing element 60, i.e. a dowel pin, is formed.
  • HSM high speed milling
  • the first cut and the second cut are each performed using: (i) a first cutting path (Pl, Pl’) with a starting point or position (Al) on a first arm or supporting portion 26a of the mold insert 20 and a stopping point or position (B 1) on a second arm or supporting portion 26b of the mold insert 20, and (ii) a second cutting path (P2, P2’) with a starting point or position (A2) on the second arm or supporting portion 26b of the mold insert 20 and a stopping point or position (B2) on the first arm or supporting portion 26a of the mold insert 20.
  • first and second cutting paths each begin in regions away from the optical portion 24, and the first and second cuts are each performed using two different cutting paths with two different entry and exit points for the cutting wire.
  • the first cutting path and the second cutting path are diametrically situated relative to each other along the mold insert 20, in one aspect.
  • the first and second cutting paths are each performed for 160° - 180° around a periphery of the mold insert 20.
  • each of the first and second cutting paths are performed around 45% - 49% of a periphery of the mold insert 20.
  • An extent or length and duration of the first and second cutting paths are equal to each other, in one embodiment.
  • the first cut and the second cut are each performed using cutting paths or profiles that begin and end at transitional or transition regions 29 of the supporting portion 26.
  • transitional region 29 refers to an area positioned away from the optical portion 24 that is relatively adjacent to the optical portion 24 and away from a terminal end of the supporting portion 26.
  • the transitional regions 29 are defined on the supporting portions 26, in one aspect, in an area intersecting with the optical portion 24.
  • the transitional region 29 can be defined on a proximal end of the supporting portion 26 relative to the optical portion 24.
  • Figure 3 illustrates one example of a transitional region 29.
  • the transitional region 29 can be defined on a region of the supporting portion 26 that is adjacent to the optical portion 24 and has a convex profile, in one aspect.
  • the term transitional region 29 refers to the first 10%-20% of an extent of the supporting portion 26 that connects to the optical portion 24.
  • the transitional region 29 extends between a connection point or interface between the optical portion
  • the first cut (shown in Figure 2A) is performed using at least one first wire
  • the second cut (shown in Figure 2B) is performed using at least one second wire.
  • a diameter of the second wire is smaller than a diameter of the first wire, in one embodiment.
  • the diameters are the same.
  • the diameters are different.
  • the first wire has a diameter of 0.25 mm
  • the second wire has a diameter of 0.15 mm.
  • the first wire has a diameter of 0.20 mm - 0.30 mm
  • the second wire has a diameter of 0.10 mm - 0.20 mm.
  • the wire diameters can vary and can be selected to achieve a desired roughness of the mold insert 20.
  • step 150 of the method 100 includes performing an additional, detachment, or third cut (P3, P3’) to remove the mold insert 20 from a remainder of the stock material.
  • this third cut is not required, and the mold insert 20 can be removed during the second cut.
  • This cutting step is shown in Figure 2C.
  • removal of the mold insert 20 from the stock material is performed using two different cutting paths that each begin and end on transitional regions 29 of the supporting portion 26.
  • the third cut which is essentially cutting the mold insert 20 loose from the stock material, may use a different cutting procedure, apparatus, or configuration than the first cut and the second cut.
  • a cutting wire with a 0.15 mm diameter is used to cut the mold insert 20 loose via EDM.
  • the cutting wire has a diameter of 0.10 mm - 0.20 mm.
  • the connections between the mold insert 20 and the stock material are also known as bridges, which essentially serve as the final remaining connection between the mold insert 20 and the stock material.
  • the stock material 15 is shown in Figure 2D with multiple mold inserts (illustrated by 20’) already removed or cut out.
  • Figure 2D also illustrates the starting and ending points (Al, Bl, A2, B2) for the cuts.
  • FIG. 2E illustrates a schematic exemplary EDM wire cutting arrangement for performing the cutting steps.
  • a cutting tool 16 is arranged above the stock material 15, which is supported on a work surface 17.
  • At least one cutting wire 16a of the cutting tool 16 is configured to perform the cutting steps on the stock material 15 to form mold inserts 20.
  • An electronic or control assembly 18 can be provided that includes a power source, actuators or drivers, controllers or a control system, an electronics system, and other components or elements configured to drive the cutting tool 16 or position the work surface 17 relative to each other to carry out the cutting processes.
  • parameters of the EDM cutting process can vary during or along the cutting paths.
  • any one or more of the following parameters can vary: active pulse or voltage time, pulse shape (i.e., triangular, rectangular, etc.), pulse voltage or current, spark voltage, wire drum speed, wire tension, power, and frequency.
  • Parameters regarding application and volume of coolant, as well as the type of wire can vary. Any one or more of these modifications can alter a roughness of the mold insert 20. In one aspect, increasing the current that is applied during the EDM cutting process increases the roughness of the workpiece being cut, i.e. the mold insert 20.
  • the current can be increased while cutting the profiles for the haptic arms or supporting portions 26 relative to the current used while cutting the profile for the optical portion 24.
  • Roughness of the workpiece also generally increases as the active time or pulse time increases. Accordingly, specifically segmenting each cutting step into a first and second cutting path allows for the roughness of the mold insert 20 to be more precisely controlled because the cutting paths or steps are shortened.
  • the mold insert 20 formed according to the cutting techniques and processes disclosed herein includes a predetermined roughness or surface characteristics along its periphery.
  • the optical portion 24 has a peripheral surface 25 having a first roughness value
  • the supporting portions 26 have peripheral surfaces 27 having a second roughness value that is different than the first roughness value.
  • peripheral surface generally refers to a lateral surface or side surface of an element.
  • the first roughness value i.e. roughness value of peripheral surface 25
  • the second roughness value i.e.
  • the roughness value of peripheral surface 27 is SPI DI, with an Ra of 0.8 pm - 0.9 pm, and Rz of 3.5 pm - 5 pm.
  • the first roughness value i.e. roughness value of peripheral surface 25
  • the second roughness value i.e. roughness value of peripheral surface 27
  • these values may vary, particularly depending on the type of lens being manufactured. For example, a toric lens typically requires different roughness values and characteristics than a standard lens.
  • heat generated by the EDM cutting wire is applied to the mold insert 20 in a relatively symmetric manner. This provides a roundness value of approximately 0.005 mm for the cut peripheral surfaces.
  • the disclosed methods provide a reduction of roundness of by a factor of two, i.e. from 0.01 mm down to 0.005 mm.
  • a symmetric process of EDM cutting is provided that leads to more symmetric heat distribution between the part being cut (i.e. element 20), and a remainder of the material (i.e. stock material).
  • the part being cut is allowed to cool down after half a cutting stroke or profile as compared to a cutting path that extends around the entire part.
  • the cutting processes disclosed herein ensure that a minimal amount of cutting is required during the third cutting step to remove the mold insert 20 from the stock material 15. By minimizing the path of the third cutting step, less heat is applied to the mold insert 20 and the pulse duration is shortened, which is desirable. [0050] After the cutting steps described herein, the mold insert 20 is ready for use or implementation with the molding assembly 10. As shown in Figure 4B, the molding assembly 10, including the mold insert 20 with the features disclosed herein and the optical insert 40, is arranged within a molding system 70, and more specifically within a first molding portion 72.
  • the first molding portion 72 is engaged with a second molding portion 74, and material is injected into a cavity or space 76 defined between the molding portions 72, 74 and the mold insert 20 and the optical insert 40 to form a first cup 78 including an IOL or lens mold 80 (shown in step 400c of Figure 4C).
  • the first cup 78 is also known as a bottom cup.
  • the first cup 78 is formed from polypropylene. Any known formation or curing method can be used to form the first cup 78 in the cavity or space 76.
  • the surface characteristics produced on the mold insert 20 i.e. the first and second roughness values
  • the IOL mold 80 is then used to form the IOL 90 as illustrated in Figure 4C.
  • the IOL 90 is formed via cast molding from the IOL mold 80.
  • Figure 4C illustrates the steps associated with cast molding the IOL 90.
  • the first cup or bottom cup 78 including the IOL mold 80 is provided.
  • the first cup 78 includes the IOL mold 80, which was formed using the assembly shown in Figure 4B.
  • a second cup or top cup, also known as a cap, 79 is mated with the first cup 78.
  • the top cup 79 is formed using an injection molded cavity, similar to the process for forming the bottom cup 78.
  • the top cup 79 is formed to include predetermined specific characteristics for the lens.
  • a similar cross section as the one shown in Figure 4B can also be provided for formation of the top cup 79.
  • step 400a material is injected into a cavity or space defined between the first cup 78 and the second cup 79 to form the IOL 90.
  • step 400b of Figure 4B includes removal of the second cup 79 or de-capping.
  • step 400c includes removal of the now formed IOL 90 or demolding from the IOL mold 80.
  • the surface characteristics on the IOL mold 80 are imprinted or formed on the IOL 90 itself.
  • FIG 4D One skilled in the art would understand based on the present disclosure that other formation means could be used to form the IOL 90, which is shown in Figure 4D.
  • the surface characteristics produced on the mold insert 20 are subsequently transferred or formed on the IOL mold 80.
  • the IOL mold 80 is used to form the IOL 90, as shown by Figure 4C.
  • One skilled in the art would understand based on the present disclosure that other formation means could be used to form the IOL 90 besides cast molding.
  • the roughness or surface features along the peripheral surface of the mold insert 20 are essentially transferred to the IOL 90, via the IOL mold 80.
  • the resulting IOL 90 By altering the surface characteristics of the mold insert 20 via the EDM wire cutting steps, the resulting IOL 90 likewise has specific surface features.
  • the supporting portions or haptic arms 96 of the IOL 90 have one set of surface characteristics and the optical portion 94 of the IOL 90 has another, different set of surface characteristics.
  • the peripheral surfaces 97 of the supporting portions or haptic arms 96 of the IOL 90 have a frosted appearance due to a predetermined surface roughness, while peripheral surfaces 95 of the optical portion 94 are clearer due to their relatively smoother surface.
  • the roughened peripheral surfaces 97 of the supporting portions or haptic arms 96 of the IOL 90 increase the ability of the IOL 90 to remain in place, reduces any potential for rotation of the IOL 90 once implanted in a patient, and reduces glare.
  • Figures 5A and 5B provide further detail regarding surface characteristics of the IOL 90.
  • Figure 5A shows the impact of the wire cutting instrumentation along a side of the IOL 90 based on the wire cutting pattern disclosed herein.
  • Figure 5B shows how the cutting pattern shown in Figure 2C affects the side of the IOL 90.
  • the starting point (A2) of one wire cutting step and ending point (Bl) of another wire cutting step are shown in Figures 5A and 5B to specifically illustrate the minimal effects caused by the wire cutting starting and ending points.
  • FIG. 5A and 5B illustrate relatively limited scarring or impact in regions of the IOL 90 that is formed by the mold insert 20 according to the processes and methods disclosed herein.
  • the processes described herein with respect to forming the mold insert 20 are not adhered to, then the resulting IOL can include significant scarring or other imperfections. These scarring issues and imperfections are specifically avoided or minimized using the cutting processes and formation processes disclosed herein.
  • an IOL 90 includes an optical portion 94 and a supporting portion or haptic arm 96 produced via an IOL mold 80 formed from the molding assembly 70 including the mold insert 20.
  • the mold insert 20 has an optical portion 24 and at least one supporting portion 26 extending from the optical portion 24.
  • a peripheral surface 25 of the optical portion 24 has a first roughness value and a peripheral surface 27 of the supporting portion 26 has a second roughness value that is different than the first roughness value.
  • the roughness value along the peripheral surface 25 is approximately SPI DI, with a Ra between 0.8 pm and 1.0 pm.
  • a roughness value of a lens surface (i.e. the optically accurate portion 41) of the optical insert 40 is SPI Al.
  • portions of the optical insert 40 can be formed by additional finishing steps.
  • the optically accurate portion 41 of the optical insert 40 may be formed using lathing.
  • high speed diamond lathing may be used to form the optically accurate portion 41 to a specific finish.
  • the axial end faces of the mold insert 20, such as the axial end faces of the supporting portions 26 and the optical portion 24, are formed via an additional finishing process.
  • the finishing process for these surfaces may include polishing.
  • a polishing paste is applied to these surfaces during a polishing step.
  • the roughness value of the supporting portion 26 is equal to or greater than SPI Bl and less than SPI D3, in one aspect.
  • the roughness value of the peripheral surface 27 is equal to or greater than SPI DI and less than SPI D3, in one aspect. In one aspect, the roughness value of the peripheral surface 27 and the supporting portion 26 is less than 3.2 pm.
  • the roughness of the supporting portion 26 and the peripheral surface 27 is selected to prevent reflection of visible light having a wavelength of 400 nm or greater.
  • a frosted edge of the peripheral surface 27 is provided to prevent reflections on the side of the lens. Since visible light starts around 400 nm, the roughness on the side of this portion of the lens is specifically selected to correspond to the shortest wavelength in the visible light spectrum.
  • the roughness values of the supporting portion 26 and the peripheral surface 27 may be on the same order of magnitude as the roughness of peripheral surface 25.
  • the roughness can be selected to be on the order of 0.4 pm (400 nm), which is associated with SPI B2. For a toric IOL, this value can be rougher, as one of ordinary skill in the art would appreciate from this disclosure.
  • the roughness value of the peripheral surface 27 can be greater than the roughness value of the peripheral surface 25.
  • the roughness value of the peripheral surface 27 can be selectively made greater than the roughness value of the peripheral surface 25 by modifying the EDM wire cutting characteristics during the various cutting steps.
  • Step 210 includes providing a molding assembly 10 including a mold insert 20, including the features disclosed herein with respect to the peripheral surface 25 of the optical portion 24 and the peripheral surface 27 of the supporting portion 26.
  • the peripheral surface 25 of the optical portion 24 has a first roughness value
  • the peripheral surface 27 of the supporting portion 26 has a second roughness value that is different than the first roughness value.
  • Step 220 includes forming an IOL mold 80 from the molding assembly 10.
  • the IOL mold 80 includes an optical mold portion 84 and at least one supporting mold portion 86 extending away from the optical mold portion 84.
  • a peripheral surface 85 of the optical mold portion 84 has a third roughness value that is associated with the first roughness value
  • a peripheral surface 87 of the at least one supporting mold portion 86 has a fourth roughness value that is associated with the second roughness value.
  • the third roughness value i.e. surface 85
  • the fourth roughness value i.e. surface 87
  • the third roughness value is SPI D2 to C3
  • the fourth roughness value is SPI D3 to DI.
  • Step 230 includes forming the IOL 90 from the IOL mold 80, which can be performed or achieved using casting molding or any other known molding technique or processes.
  • the resulting IOL 90 has an optical portion 94 with a peripheral surface 95 having a roughness associated with the third roughness value, and at least one supporting portion 96 having a peripheral surface 97 having a roughness associated with the fourth roughness value.
  • the peripheral surface 95 of the optical portion 94 has a roughness of approximately SPI DI or D2
  • the peripheral surface 97 of the supporting portions 96 has a roughness of approximately SPI DI or D2.
  • peripheral surface 95 of the optical portion 94 has a roughness of approximately SPI Bl to D3
  • peripheral surface 97 of the supporting portions 96 has a roughness of approximately SPI D3 to DI.
  • Figures 6A-6C illustrates an alternative method for forming the mold insert 20.
  • a cutting path (P4) is used that has a single starting point or position (A) on the optical portion 24 and a single stopping point or position (B) on another region of the optical portion 24.
  • the cutting steps associated with Figures 6A-6C are similar to Figures 2A-2C, and can include analogous cutting steps associated with Figures 2A-2C.
  • Figure 6A shows a first cutting step in which a general shape of the insert 20 is cut by an EDM wire cutting pattern P4. This cutting step corresponds to a rough contour having generally perpendicular entry and exit points.
  • Figure 6A the start point (A) and the end point (B) for the cutting pattern are both on the optical portion 24.
  • Figure 6B illustrates a second cutting step in which an additional cutting path (P5) is implemented to machine around the armpits of the insert 20. This cutting step corresponds to a fine contour cutting step and a bridge removal step.
  • Figure 6C illustrates a final cutting pattern (P6, P6’) in which the mold insert 20 is cut to remove the mold insert 20 from a base material. This cutting step removes the scars and any last remaining portions of material.
  • Figures 6A-6C are associated with a cutting procedure in which a single cutting path is used for each of the cutting steps, and the starting and end points are on the optical portion 24 and not on the haptic arms or supporting portions 26.
  • This technique is used because it is generally less expensive and less labor intensive to align a single start and end point as compared to aligning multiple different start and end points as described in the present disclosure.
  • the present disclosure specifically uses different start and end points for the wire cutting processes in order to provide improved control of the wire cutting parameters, which results in improvements relative to the surface characteristics of the mold insert.
  • the subject matter disclosed herein provides an improved configuration for providing a desired roughness on an IOL by forming the mold insert in a specific way and using a specific set of steps.
  • the IOL is therefore formed in a specific way which does not require additional formation or assembly steps that are time consuming, labor intensive, expensive, or ineffective, such as chemical etching, sand blasting, lathing, or milling.
  • the IOL does not require any postformation processing or handling prior to patient use.
  • the IOL once formed as shown by the steps illustrated in Figure 4C, is ready for patient use and implantation without additional handling.
  • the present disclosure illustrates a one-piece IOL
  • the techniques disclosed herein can be used for other types of lenses that are not formed by multiple pieces.
  • the aspects and embodiments disclosed herein provide an improved process, method, and system for indirect or cast molding of a lens or IOL. Due to the principles of cast molding, any defects, such as scars, formed on the molding components (such as component 20) are replicated on the lens. Accordingly, the present disclosure provides an improved process, method, and system that addresses issues related to scarring that is replicated on a lens formed by cast molding.
  • EDM wire cutting is used, with specific starting and end points or regions, in order to minimize, reduce, or eliminate scarring on the lens.
  • scarring is both reduced and positioned or restricted to an area that minimizes its impact on a patient’s vision after implantation.
  • the present disclosure specifically avoids multiple manufacturing steps typically associated with formation of a lens, and specifically required for formation of a toric lens.
  • formation of a toric lens can require lathing, as well as tumbling.
  • tumbling the supporting portions or haptic arms must be protected. This process is labor intensive, and requires personnel to manually attach protection covers to the supporting portions or haptic arms prior to tumbling, and then manually remove the covers after tumbling. Therefore, the present disclosure provides improvements in manufacturing efficiencies and cost advantages due to limiting the number of manufacturing steps.

Abstract

A method of forming a mold insert used to produce an intraocular lens (IOL) mold is disclosed herein. The method includes providing stock material and cutting the stock material, which includes multiple cutting steps. The cutting steps are performed on transitional regions of supporting portions of the mold insert. Peripheral surfaces of the mold insert have varying roughness values, and supporting portions of the mold insert have a greater roughness than the optical portion of the mold insert. An IOL is also disclosed herein that is formed using an IOL mold that is injection molded using the mold insert. A method of forming the IOL is also disclosed herein.

Description

METHOD AND ASSEMBLY FOR FORMING AN INTRAOCULAR LENS
CROSS-REFERENCE TO RELATED APPLICATIONS
[0001] This application claims the benefit U.S. Patent Application No. 17/444526, filed August 5, 2021, which is incorporated herein by reference in its entirety.
FIELD OF INVENTION
[0002] The present disclosure relates to an intraocular lens (IOL), and more specifically relates to formation methods and processes for producing the IOL.
BACKGROUND
[0003] Intraocular lenses (lOLs) are well known. There are many varieties of lOLs, such as toric lOLs, monofocal lOLs, and multifocal lOLs. lOLs can be formed from a variety of formation processes, which may include milling, molding, and lathing, among many other processes.
[0004] lOLs typically include an optical portion and a supporting portion. One type of a supporting portion is known as a haptic portion. It has been recognized that frosting of supporting portions can be desirable in order to address issues with rotation of the IOL and also to address undesirable glare issues. Forming lOLs to have a specific roughness or surface characteristics specifically on the supporting portions is time consuming, labor intensive, and expensive. [0005] Accordingly, there is a desire for an improved formation process of an IOL and the associated components used to form the IOL in order to provide support portions on the IOL with specific surface characteristics. There is also a desire to provide an improved formation method for an IOL that avoids scarring or other imperfections that can manifest on the optical portion of the IOL.
SUMMARY
[0006] In one aspect, a method of forming a mold insert used to produce an IOL mold is disclosed. The method includes cutting stock material, which involves a variety of cutting steps. The cutting steps are performed in specific start locations and end locations on the mold insert. In one aspect, the cutting steps are performed using electrical discharge machining (EDM) wire cutting.
[0007] A method of forming an IOL is also disclosed herein. The method includes providing a molding assembly including the mold insert. The method includes forming an IOL mold from the molding assembly. The method then includes forming the IOL from the IOL mold.
[0008] Additional embodiments are disclosed herein.
BRIEF DESCRIPTION OF THE DRAWINGS [0009] The foregoing Summary and the following Detailed Description will be better understood when read in conjunction with the appended drawings, which illustrate a preferred embodiment of the disclosure. In the drawings:
[0010] Figure 1A is an exploded view from a bottom perspective of a molding assembly according to one aspect of this disclosure.
[0011] Figure IB is a side cross-sectional view of the molding assembly of Figure 1A.
[0012] Figure 1C is a top perspective view of the molding assembly of Figures 1A and IB.
[0013] Figures 2A-2C illustrate various cutting steps for forming a mold insert for the molding assembly.
[0014] Figure 2D illustrates stock material with multiple mold inserts removed.
[0015] Figure 2E is a schematic illustration of an EDM wire cutting configuration.
[0016] Figure 3 is an enlarged view of a portion of the mold insert.
[0017] Figure 4A illustrates the mold insert assembled with the molding assembly.
[0018] Figure 4B illustrates the molding assembly arranged within a molding system.
[0019] Figure 4C illustrates aspects of cast molding an IOL from the IOL mold. [0020] Figure 4D illustrates an IOL formed by the cast molding steps of Figure 4C.
[0021] Figure 5A illustrates a SEM cross-sectional rendering of an IOL formed using the mold insert disclosed herein.
[0022] Figure 5B illustrates a SEM top rendering of an IOL formed using the mold insert disclosed herein.
[0023] Figures 6A-6C illustrate an alternative cutting method for forming a mold insert.
[0024] Figure 7 illustrates a flow chart detailing method steps associated with preparing or forming the mold insert.
[0025] Figure 8 illustrates a flow chart detailing method steps associated with forming the IOL.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
[0026] Certain terminology is used in the following description for convenience only and is not limiting. “Axially” refers to a direction along an axis (X) of an assembly. “Radially” refers to a direction inward and outward from the axis (X) of the assembly. The term “approximately” as used herein with respect to values or dimensions means within +/- 10% of the recited value or dimension.
[0027] A reference to a list of items that are cited as "at least one of a, b, or c"
(where a, b, and c represent the items being listed) means any single one of the items a, b, or c, or combinations thereof. The terminology includes the words specifically noted above, derivatives thereof and words of similar import.
[0028] Throughout this disclosure, the term lens is used generically. In one aspect, the lens is an intraocular lens (IOL). More specifically, the lens is a toric IOL in one embodiment. However, one skilled in the art would understand based on the present disclosure that the embodiments and aspects disclosed herein can be adapted or used with respect to any lens or implant related to the eye.
[0029] As generally shown in Figures 1A-1C, a molding assembly 10 is disclosed. Figure 1A is an exploded view of the molding assembly 10 from a bottom perspective. The molding assembly 10 includes a mold insert 20, a body portion 30, an optical insert 40, a fastening element 50, and a securing element 60. These components are assembled with each other to form the molding assembly 10, which is used in an injection molding process to form an IOL mold, as described in more detail herein. The IOL mold is then used to form the IOL itself, which is also described in more detail herein. In one aspect, the mold insert 20 and the optical insert 40 combine with each other to define a profile for an IOL mold, which is ultimately used to form an IOL. The optical insert 40 can be configured to be arranged substantially inside of the mold insert 20, as shown in Figure IB. In this configuration, an optically accurate portion 41 of the optical insert 40 defines an uppermost surface of the molding assembly 10. The optically accurate portion 41 refers to a portion of the optical insert 40 that ultimately defines the optical portion of the IOL. In one aspect, the mold insert 20 is directed to forming the supporting portions of the IOL mold and IOL, and a profile for a periphery of the IOL mold and
IOL. The optical insert 40 is directed to forming the optical portion of the IOL mold and IOL. One of ordinary skill in the art would understand that the optical insert 40 can have a different profile than the profile shown in the drawings. For example, the optical insert 40 may not have a circular profile, and instead could include a circular profile that also includes support portions or haptic portions. In one embodiment, the mold insert 20 and the optical insert 40 can be formed as a single component.
[0030] The body portion 30 generally defines a passage 34 on a longitudinal or axial end that is configured or dimensioned to receive the mold insert 20. In one aspect, a surface roughness defined by the internal wall of the passage 34 is approximately the same as the roughness defined around a perimeter of the mold insert 20. One skilled in the art would understand that the internal wall of passage 34 is formed such that insertion of the mold insert 20 within the passage 34 will not contact or otherwise damage the mold insert 20. In one aspect, a lateral surface of the passage 34 has an identical roughness value as a roughness value of a lateral surface of the mold insert 20. In one aspect, the lateral surface of the passage 34 has a roughness value that is less than a roughness value of the lateral surface of the mold insert 20. In another aspect, a lateral surface of the passage 34 has a roughness value that is within 1% - 5% of a roughness value of a lateral surface of the mold insert 20. In one aspect, a lateral surface of the passage 34 has a roughness value that is within 20% - 30% of a roughness value of a lateral surface of the mold insert 20
[0031] The mold insert 20 includes an opening 22 on a radial or peripheral surface configured to receive the securing element 60. The body portion 30 also includes an opening 32 on a radial or peripheral surface configured to receive the securing element 60. The openings 22, 32 are aligned with each other once the mold insert 20 is arranged inside the body portion 30, and the securing element 60 is inserted to secure the mold insert 20 with the body portion 30. In one aspect, the securing element 60 is a pin or dowel. One skilled in the art would recognize from this disclosure that various types of securing elements can be used. The securing element 60 and the opening 32 are specifically formed to avoid any burr or imperfections, which could potentially scratch mold insert 20 during assembly. Any scratches or unintended imperfections imparted onto the mold insert 20 can result in imperfections later translated or molded onto the lens. The present disclosure avoids these issues using the techniques described herein.
[0032] The mold insert 20 also includes a first opening 23a on an axial end face and a second opening 23b on axial end face opposite from the first opening 23a. The first opening 23a is configured to receive the fastening element 50. The second opening 23b is configured to receive the optical insert 40. As shown in Figure IB, the two openings 23a, 23b are connected by a through passage 23c that is dimensioned to also receive a portion of the fastening element 50. As shown in Figure IB, an optical portion 24 of the mold insert 20 surrounds a periphery of the optical insert 40. The optical portion 24 is disclosed in more detail herein.
[0033] Once the mold insert 20 is arranged inside of the body portion 30, then the optical insert 40 and the fastening element 50 are arranged on axially opposite ends of the assembly 10 and secured with each other to provide a secure and reliable connection between the components of the assembly 10. In this configuration, the optically accurate portion 41 of the optical insert 40 is facing outwards, as shown in Figure IB. In one aspect, the fastening element 50 comprises a screw or male threaded element, and the optical insert 40 comprises a nut or female threaded element configured to engage with the fastening element 50. The openings 23a, 23b and through passage 23c allow for the connection between the optical insert 40 and the fastening element 50, in one aspect. One skilled in the art would understand that various types of fastening configurations could be used, such as a connection using magnetic elements or a press fit arrangement.
[0034] The mold insert 20 comprises the optical portion 24 defined in a central region of the mold insert 20 and at least one supporting portion 26 that extends away from the optical portion 24. In one embodiment, the supporting portion can be a haptic arm 26 or haptic portion, and these terms are used interchangeably herein.
One skilled in the art would understand based on this disclosure that the supporting portion or structure can have a variety of shapes, structure, profiles, etc. The term supporting portion as used herein refers to portions of the mold insert other than the optical portion which ultimately assist with positioning or orienting the IOL.
[0035] In one aspect, there are two supporting portions 26a, 26b arranged on diametrically opposed areas of the optical portion 24. In one aspect, the supporting portions are formed as haptic arms 26a, 26b with an arcuate profile that bends or curves in opposite directions from each other. One skilled in the art would understand from the present disclosure that the shape, profile, quantity, and arrangement of the supporting portions or haptic arms 26a, 26b can vary. Details regarding the formation of these components of the mold insert 20 are further defined herein.
[0036] In one aspect, as shown in Figure 7, a method 100 of preparing or forming the mold insert 20 is disclosed herein. Step 110 includes providing stock material. As used herein, the term stock material refers to a base material, which can be provided in the form of a block, a sheet, or any other form. In one aspect, the stock material is comprised of metal, a metallic alloy, steel, or other suitable material. In one aspect, the stock material is stainless steel having a Rockwell hardness (HRC) of 52 - 54 after processing and hardening. The hardness of the stock material is increased during processing/hardening from an initial value of 20 HRC to the final value of 52 - 54 HRC.
[0037] In one aspect, the stock material is provided in sheet, block or raw form.
As an initial step, the first opening 23a can be formed. In another step, the second opening 23b can be formed. These openings 23a, 23b can formed by tapping, drilling, or any other formation processes or steps. In one aspect, additional elements, such as alignment features or holes, can be formed on the stock material. In one step, the stock material can be hardened, preferably to a HRC of 52-54. After these steps, the stock material can then be cut using a wire cutting pattern, which is described in more detail herein, i.e. step 120 below.
[0038] Step 120 includes cutting the stock material using a variety of cutting steps, patterns, and techniques, as generally illustrated in Figures 2A-2C and 2E. Figures 2A-2C specifically illustrates cutting profiles relative to the mold insert 20 and do not illustrate the surrounding stock material for clarity purposes only. One skilled in the art would understand that the cutting steps shown in these Figures would be performed relative to the workpiece or stock material.
[0039] In one aspect, step 130 includes performing a first cut or cutting step around a first predetermined periphery of the mold insert 20. This cutting step is shown in Figure 2A. Each of the cutting steps described herein can be performed using electrical discharge machining (EDM). More specifically, the cutting steps can be performed using wire-cutting EDM. One skilled in the art would understand that the cutting steps can be performed using other types of cutting procedures and equipment. In one aspect, a pre-cut can be performed in which a rough cutting around a general shape of the mold insert 20 is performed. [0040] Step 140 includes performing a second cut or cutting step around a second predetermined periphery of the mold insert 20. This cutting step is shown in Figure 2B. In one aspect, the second predetermined periphery has a more detailed profile than a profile of the first predetermined periphery. For example, the second predetermined periphery includes cutting around the mold insert 20 such that indentations, recesses, or grooves 26c are defined in regions between the optical portion 24 and the supporting portions 26. These recesses are also referred to as pits 26c of the supporting portions 26 or armpits 26c.
[0041] Additional steps of method 100 can be provided. For example, after the cutting steps, other features of the mold insert 20 can be further processed or formed. In one aspect, milling steps can be carried out, which may include high speed milling (HSM) (i.e., 30,000 rpm) with diamond cutting tools. In a further step, the opening 22 for the securing element 60, i.e. a dowel pin, is formed.
[0042] In one aspect, as shown in Figures 2A and 2B, the first cut and the second cut are each performed using: (i) a first cutting path (Pl, Pl’) with a starting point or position (Al) on a first arm or supporting portion 26a of the mold insert 20 and a stopping point or position (B 1) on a second arm or supporting portion 26b of the mold insert 20, and (ii) a second cutting path (P2, P2’) with a starting point or position (A2) on the second arm or supporting portion 26b of the mold insert 20 and a stopping point or position (B2) on the first arm or supporting portion 26a of the mold insert 20. In other words, the first and second cutting paths each begin in regions away from the optical portion 24, and the first and second cuts are each performed using two different cutting paths with two different entry and exit points for the cutting wire. The first cutting path and the second cutting path are diametrically situated relative to each other along the mold insert 20, in one aspect. The first and second cutting paths are each performed for 160° - 180° around a periphery of the mold insert 20. In one aspect, each of the first and second cutting paths are performed around 45% - 49% of a periphery of the mold insert 20. An extent or length and duration of the first and second cutting paths are equal to each other, in one embodiment.
[0043] In one aspect, the first cut and the second cut are each performed using cutting paths or profiles that begin and end at transitional or transition regions 29 of the supporting portion 26. As used herein, the term transitional region 29 refers to an area positioned away from the optical portion 24 that is relatively adjacent to the optical portion 24 and away from a terminal end of the supporting portion 26. The transitional regions 29 are defined on the supporting portions 26, in one aspect, in an area intersecting with the optical portion 24. The transitional region 29 can be defined on a proximal end of the supporting portion 26 relative to the optical portion 24. Figure 3 illustrates one example of a transitional region 29. The transitional region 29 can be defined on a region of the supporting portion 26 that is adjacent to the optical portion 24 and has a convex profile, in one aspect. In one aspect, the term transitional region 29 refers to the first 10%-20% of an extent of the supporting portion 26 that connects to the optical portion 24. In one aspect, the transitional region 29 extends between a connection point or interface between the optical portion
24 and the supporting portion 26 on a first end, and a portion of the supporting portion 26 with a smallest thickness on second end.
[0044] In one aspect, the first cut (shown in Figure 2A) is performed using at least one first wire, and the second cut (shown in Figure 2B) is performed using at least one second wire. A diameter of the second wire is smaller than a diameter of the first wire, in one embodiment. In another embodiment, the diameters are the same. In a still further embodiment, the diameters are different. In one aspect, the first wire has a diameter of 0.25 mm, and the second wire has a diameter of 0.15 mm. In one aspect, the first wire has a diameter of 0.20 mm - 0.30 mm, and the second wire has a diameter of 0.10 mm - 0.20 mm. One skilled in the art would understand based on this disclosure that the wire diameters can vary and can be selected to achieve a desired roughness of the mold insert 20.
[0045] Returning to Figure 7, step 150 of the method 100 includes performing an additional, detachment, or third cut (P3, P3’) to remove the mold insert 20 from a remainder of the stock material. In one aspect, this third cut is not required, and the mold insert 20 can be removed during the second cut. This cutting step is shown in Figure 2C. In one aspect, removal of the mold insert 20 from the stock material is performed using two different cutting paths that each begin and end on transitional regions 29 of the supporting portion 26. The third cut, which is essentially cutting the mold insert 20 loose from the stock material, may use a different cutting procedure, apparatus, or configuration than the first cut and the second cut. In one aspect, a cutting wire with a 0.15 mm diameter is used to cut the mold insert 20 loose via EDM. In one aspect, the cutting wire has a diameter of 0.10 mm - 0.20 mm. The connections between the mold insert 20 and the stock material are also known as bridges, which essentially serve as the final remaining connection between the mold insert 20 and the stock material. The stock material 15 is shown in Figure 2D with multiple mold inserts (illustrated by 20’) already removed or cut out. Figure 2D also illustrates the starting and ending points (Al, Bl, A2, B2) for the cuts.
[0046] Figure 2E illustrates a schematic exemplary EDM wire cutting arrangement for performing the cutting steps. As shown in Figure 2E, a cutting tool 16 is arranged above the stock material 15, which is supported on a work surface 17. At least one cutting wire 16a of the cutting tool 16 is configured to perform the cutting steps on the stock material 15 to form mold inserts 20. An electronic or control assembly 18 can be provided that includes a power source, actuators or drivers, controllers or a control system, an electronics system, and other components or elements configured to drive the cutting tool 16 or position the work surface 17 relative to each other to carry out the cutting processes.
[0047] In any one or more of the cutting steps described herein, parameters of the EDM cutting process can vary during or along the cutting paths. For example, any one or more of the following parameters can vary: active pulse or voltage time, pulse shape (i.e., triangular, rectangular, etc.), pulse voltage or current, spark voltage, wire drum speed, wire tension, power, and frequency. Parameters regarding application and volume of coolant, as well as the type of wire can vary. Any one or more of these modifications can alter a roughness of the mold insert 20. In one aspect, increasing the current that is applied during the EDM cutting process increases the roughness of the workpiece being cut, i.e. the mold insert 20. Accordingly, in order to provide a rougher surface along the haptic arms or supporting portions 26, the current can be increased while cutting the profiles for the haptic arms or supporting portions 26 relative to the current used while cutting the profile for the optical portion 24. Roughness of the workpiece also generally increases as the active time or pulse time increases. Accordingly, specifically segmenting each cutting step into a first and second cutting path allows for the roughness of the mold insert 20 to be more precisely controlled because the cutting paths or steps are shortened.
[0048] The mold insert 20 formed according to the cutting techniques and processes disclosed herein includes a predetermined roughness or surface characteristics along its periphery. As shown in Figure 4A, the optical portion 24 has a peripheral surface 25 having a first roughness value, while the supporting portions 26 have peripheral surfaces 27 having a second roughness value that is different than the first roughness value. As used herein, the term peripheral surface generally refers to a lateral surface or side surface of an element. In one aspect, the first roughness value (i.e. roughness value of peripheral surface 25) is SPI Bl to D3, with a Ra of 0.3 pm - 2.8 pm, and the second roughness value (i.e. roughness value of peripheral surface 27) is SPI DI, with an Ra of 0.8 pm - 0.9 pm, and Rz of 3.5 pm - 5 pm. In one aspect, the first roughness value (i.e. roughness value of peripheral surface 25) is SPI D2 to C3, and the second roughness value (i.e. roughness value of peripheral surface 27) is SPI D3 to DI. One of ordinary skill in the art would understand from the present disclosure that these values may vary, particularly depending on the type of lens being manufactured. For example, a toric lens typically requires different roughness values and characteristics than a standard lens.
[0049] By using the cutting methods disclosed herein, heat generated by the EDM cutting wire is applied to the mold insert 20 in a relatively symmetric manner. This provides a roundness value of approximately 0.005 mm for the cut peripheral surfaces. The disclosed methods provide a reduction of roundness of by a factor of two, i.e. from 0.01 mm down to 0.005 mm. Based on the disclosed subject matter, a symmetric process of EDM cutting is provided that leads to more symmetric heat distribution between the part being cut (i.e. element 20), and a remainder of the material (i.e. stock material). The part being cut is allowed to cool down after half a cutting stroke or profile as compared to a cutting path that extends around the entire part. Additionally, the cutting processes disclosed herein ensure that a minimal amount of cutting is required during the third cutting step to remove the mold insert 20 from the stock material 15. By minimizing the path of the third cutting step, less heat is applied to the mold insert 20 and the pulse duration is shortened, which is desirable. [0050] After the cutting steps described herein, the mold insert 20 is ready for use or implementation with the molding assembly 10. As shown in Figure 4B, the molding assembly 10, including the mold insert 20 with the features disclosed herein and the optical insert 40, is arranged within a molding system 70, and more specifically within a first molding portion 72. The first molding portion 72 is engaged with a second molding portion 74, and material is injected into a cavity or space 76 defined between the molding portions 72, 74 and the mold insert 20 and the optical insert 40 to form a first cup 78 including an IOL or lens mold 80 (shown in step 400c of Figure 4C). The first cup 78 is also known as a bottom cup. In one aspect, the first cup 78 is formed from polypropylene. Any known formation or curing method can be used to form the first cup 78 in the cavity or space 76. The surface characteristics produced on the mold insert 20 (i.e. the first and second roughness values) are subsequently transferred or formed on the IOL mold 80. The IOL mold 80 is then used to form the IOL 90 as illustrated in Figure 4C.
[0051] In one aspect, the IOL 90 is formed via cast molding from the IOL mold 80. Figure 4C illustrates the steps associated with cast molding the IOL 90. As shown in step 400a, the first cup or bottom cup 78 including the IOL mold 80 is provided. The first cup 78 includes the IOL mold 80, which was formed using the assembly shown in Figure 4B. A second cup or top cup, also known as a cap, 79 is mated with the first cup 78. In one aspect, the top cup 79 is formed using an injection molded cavity, similar to the process for forming the bottom cup 78. The top cup 79 is formed to include predetermined specific characteristics for the lens. One of ordinary skill in the art would understand that a similar cross section as the one shown in Figure 4B can also be provided for formation of the top cup 79.
[0052] During step 400a, material is injected into a cavity or space defined between the first cup 78 and the second cup 79 to form the IOL 90. Once the material hardens or is cured, step 400b of Figure 4B includes removal of the second cup 79 or de-capping. Next, step 400c includes removal of the now formed IOL 90 or demolding from the IOL mold 80. As a result of these steps, the surface characteristics on the IOL mold 80 are imprinted or formed on the IOL 90 itself. One skilled in the art would understand based on the present disclosure that other formation means could be used to form the IOL 90, which is shown in Figure 4D.
[0053] The surface characteristics produced on the mold insert 20 (i.e. the first and second roughness values) are subsequently transferred or formed on the IOL mold 80. As described above, the IOL mold 80 is used to form the IOL 90, as shown by Figure 4C. One skilled in the art would understand based on the present disclosure that other formation means could be used to form the IOL 90 besides cast molding. The roughness or surface features along the peripheral surface of the mold insert 20 are essentially transferred to the IOL 90, via the IOL mold 80.
[0054] By altering the surface characteristics of the mold insert 20 via the EDM wire cutting steps, the resulting IOL 90 likewise has specific surface features. In one aspect, the supporting portions or haptic arms 96 of the IOL 90 have one set of surface characteristics and the optical portion 94 of the IOL 90 has another, different set of surface characteristics. For example, the peripheral surfaces 97 of the supporting portions or haptic arms 96 of the IOL 90 have a frosted appearance due to a predetermined surface roughness, while peripheral surfaces 95 of the optical portion 94 are clearer due to their relatively smoother surface. In one aspect, the roughened peripheral surfaces 97 of the supporting portions or haptic arms 96 of the IOL 90 increase the ability of the IOL 90 to remain in place, reduces any potential for rotation of the IOL 90 once implanted in a patient, and reduces glare.
[0055] Figures 5A and 5B provide further detail regarding surface characteristics of the IOL 90. Figure 5A shows the impact of the wire cutting instrumentation along a side of the IOL 90 based on the wire cutting pattern disclosed herein. Figure 5B shows how the cutting pattern shown in Figure 2C affects the side of the IOL 90. The starting point (A2) of one wire cutting step and ending point (Bl) of another wire cutting step are shown in Figures 5A and 5B to specifically illustrate the minimal effects caused by the wire cutting starting and ending points. As a result of the wire cutting pattern beginning and ending in the regions described relative to Figures 2A-2C, corresponding regions (R) in Figures 5A and 5B illustrate relatively limited scarring or impact in regions of the IOL 90 that is formed by the mold insert 20 according to the processes and methods disclosed herein. In contrast, if the processes described herein with respect to forming the mold insert 20 are not adhered to, then the resulting IOL can include significant scarring or other imperfections. These scarring issues and imperfections are specifically avoided or minimized using the cutting processes and formation processes disclosed herein.
[0056] In one aspect, an IOL 90 is disclosed that includes an optical portion 94 and a supporting portion or haptic arm 96 produced via an IOL mold 80 formed from the molding assembly 70 including the mold insert 20. The mold insert 20 has an optical portion 24 and at least one supporting portion 26 extending from the optical portion 24. A peripheral surface 25 of the optical portion 24 has a first roughness value and a peripheral surface 27 of the supporting portion 26 has a second roughness value that is different than the first roughness value. In one aspect, the roughness value along the peripheral surface 25 is approximately SPI DI, with a Ra between 0.8 pm and 1.0 pm. In contrast, a roughness value of a lens surface (i.e. the optically accurate portion 41) of the optical insert 40 is SPI Al.
[0057] In one aspect, portions of the optical insert 40 can be formed by additional finishing steps. For example, the optically accurate portion 41 of the optical insert 40 may be formed using lathing. In one aspect, high speed diamond lathing may be used to form the optically accurate portion 41 to a specific finish.
[0058] In one aspect, the axial end faces of the mold insert 20, such as the axial end faces of the supporting portions 26 and the optical portion 24, are formed via an additional finishing process. In one aspect, the finishing process for these surfaces may include polishing. In one aspect, a polishing paste is applied to these surfaces during a polishing step. One of ordinary skill in the art would understand that additional processing steps may be associated with the mold insert 20, the optical insert 40, and any other components described herein.
[0059] The roughness value of the supporting portion 26 is equal to or greater than SPI Bl and less than SPI D3, in one aspect. The roughness value of the peripheral surface 27 is equal to or greater than SPI DI and less than SPI D3, in one aspect. In one aspect, the roughness value of the peripheral surface 27 and the supporting portion 26 is less than 3.2 pm. In one aspect, the roughness of the supporting portion 26 and the peripheral surface 27 is selected to prevent reflection of visible light having a wavelength of 400 nm or greater. In one aspect, a frosted edge of the peripheral surface 27 is provided to prevent reflections on the side of the lens. Since visible light starts around 400 nm, the roughness on the side of this portion of the lens is specifically selected to correspond to the shortest wavelength in the visible light spectrum. In one aspect, the roughness values of the supporting portion 26 and the peripheral surface 27 may be on the same order of magnitude as the roughness of peripheral surface 25. In other words, the roughness can be selected to be on the order of 0.4 pm (400 nm), which is associated with SPI B2. For a toric IOL, this value can be rougher, as one of ordinary skill in the art would appreciate from this disclosure. In one aspect, the roughness value of the peripheral surface 27 can be greater than the roughness value of the peripheral surface 25. The roughness value of the peripheral surface 27 can be selectively made greater than the roughness value of the peripheral surface 25 by modifying the EDM wire cutting characteristics during the various cutting steps.
[0060] In another aspect, as shown in Figure 8, a method 200 of forming an IOL 90 is disclosed. Step 210 includes providing a molding assembly 10 including a mold insert 20, including the features disclosed herein with respect to the peripheral surface 25 of the optical portion 24 and the peripheral surface 27 of the supporting portion 26. The peripheral surface 25 of the optical portion 24 has a first roughness value, and the peripheral surface 27 of the supporting portion 26 has a second roughness value that is different than the first roughness value.
[0061] Step 220 includes forming an IOL mold 80 from the molding assembly 10. The IOL mold 80 includes an optical mold portion 84 and at least one supporting mold portion 86 extending away from the optical mold portion 84. A peripheral surface 85 of the optical mold portion 84 has a third roughness value that is associated with the first roughness value, and a peripheral surface 87 of the at least one supporting mold portion 86 has a fourth roughness value that is associated with the second roughness value. In one aspect, the third roughness value (i.e. surface 85) is approximately an SPI of Bl to D3, and the fourth roughness value (i.e. surface 87) is approximately an SPI of DI or D2. In one aspect, the third roughness value is SPI D2 to C3, and the fourth roughness value is SPI D3 to DI. These roughness values of the IOL mold 80 correspond to the roughness values provided by the mold insert
20 due to the molding technique. [0062] Step 230 includes forming the IOL 90 from the IOL mold 80, which can be performed or achieved using casting molding or any other known molding technique or processes. The resulting IOL 90 has an optical portion 94 with a peripheral surface 95 having a roughness associated with the third roughness value, and at least one supporting portion 96 having a peripheral surface 97 having a roughness associated with the fourth roughness value. In one aspect, the peripheral surface 95 of the optical portion 94 has a roughness of approximately SPI DI or D2, and the peripheral surface 97 of the supporting portions 96 has a roughness of approximately SPI DI or D2. In another aspect, the peripheral surface 95 of the optical portion 94 has a roughness of approximately SPI Bl to D3, and the peripheral surface 97 of the supporting portions 96 has a roughness of approximately SPI D3 to DI. These roughness values are essentially identical to the corresponding roughness values of similar portions defined by the IOL mold 80 and the mold insert 20.
[0063] Figures 6A-6C illustrates an alternative method for forming the mold insert 20. As shown in Figure 6A, a cutting path (P4) is used that has a single starting point or position (A) on the optical portion 24 and a single stopping point or position (B) on another region of the optical portion 24. The cutting steps associated with Figures 6A-6C are similar to Figures 2A-2C, and can include analogous cutting steps associated with Figures 2A-2C. Figure 6A shows a first cutting step in which a general shape of the insert 20 is cut by an EDM wire cutting pattern P4. This cutting step corresponds to a rough contour having generally perpendicular entry and exit points. As shown in Figure 6A, the start point (A) and the end point (B) for the cutting pattern are both on the optical portion 24. Figure 6B illustrates a second cutting step in which an additional cutting path (P5) is implemented to machine around the armpits of the insert 20. This cutting step corresponds to a fine contour cutting step and a bridge removal step. Figure 6C illustrates a final cutting pattern (P6, P6’) in which the mold insert 20 is cut to remove the mold insert 20 from a base material. This cutting step removes the scars and any last remaining portions of material. Figures 6A-6C are associated with a cutting procedure in which a single cutting path is used for each of the cutting steps, and the starting and end points are on the optical portion 24 and not on the haptic arms or supporting portions 26.
[0064] When forming mold inserts, it is typical to begin the wire cutting process on a portion of the mold insert that is symmetrical and smooth, such as the optical portion of the mold insert or lens body. Beginning the wire cutting process at the optical portion is believed to provide easier access for the cutting wires relative to the mold insert. While it may be easier in some aspects during manufacturing to begin the cutting paths on the optical portions, this ultimately has undesirable effects on the finished mold insert. The present disclosure specifically does not start the wire cutting process on the optical portion, in one aspect, in order to avoid scarring or other undesirable deformations to the optical portion which can arise during the initiation of the wire cutting process. [0065] Another known technique for forming mold inserts typically involves a single start and end point for wire cutting steps. This technique is used because it is generally less expensive and less labor intensive to align a single start and end point as compared to aligning multiple different start and end points as described in the present disclosure. The present disclosure specifically uses different start and end points for the wire cutting processes in order to provide improved control of the wire cutting parameters, which results in improvements relative to the surface characteristics of the mold insert.
[0066] In one aspect, the subject matter disclosed herein provides an improved configuration for providing a desired roughness on an IOL by forming the mold insert in a specific way and using a specific set of steps. The IOL is therefore formed in a specific way which does not require additional formation or assembly steps that are time consuming, labor intensive, expensive, or ineffective, such as chemical etching, sand blasting, lathing, or milling. In other words, the IOL does not require any postformation processing or handling prior to patient use. The IOL, once formed as shown by the steps illustrated in Figure 4C, is ready for patient use and implantation without additional handling.
[0067] Although the present disclosure illustrates a one-piece IOL, one skilled in the art would recognize from the present disclosure that the techniques disclosed herein can be used for other types of lenses that are not formed by multiple pieces. [0068] The aspects and embodiments disclosed herein provide an improved process, method, and system for indirect or cast molding of a lens or IOL. Due to the principles of cast molding, any defects, such as scars, formed on the molding components (such as component 20) are replicated on the lens. Accordingly, the present disclosure provides an improved process, method, and system that addresses issues related to scarring that is replicated on a lens formed by cast molding. In one aspect, EDM wire cutting is used, with specific starting and end points or regions, in order to minimize, reduce, or eliminate scarring on the lens. In particular, scarring is both reduced and positioned or restricted to an area that minimizes its impact on a patient’s vision after implantation.
[0069] The present disclosure specifically avoids multiple manufacturing steps typically associated with formation of a lens, and specifically required for formation of a toric lens. For example, formation of a toric lens can require lathing, as well as tumbling. During tumbling, the supporting portions or haptic arms must be protected. This process is labor intensive, and requires personnel to manually attach protection covers to the supporting portions or haptic arms prior to tumbling, and then manually remove the covers after tumbling. Therefore, the present disclosure provides improvements in manufacturing efficiencies and cost advantages due to limiting the number of manufacturing steps.
[0070] Having thus described the present disclosure in detail, it is to be appreciated and will be apparent to those skilled in the art that many physical changes, only a few of which are exemphfied in the detailed description of the embodiments, could be made without altering the inventive concepts and principles embodied therein.
[0071] It is also to be appreciated that numerous embodiments incorporating only part of the preferred embodiment are possible which do not alter, with respect to those parts, the inventive concepts and principles embodied therein.
[0072] The present embodiment and optional configurations are therefore to be considered in all respects as exemplary and/or illustrative and not restrictive, the scope of the embodiments being indicated by the appended claims rather than by the foregoing description, and all alternate embodiments and changes to this embodiment which come within the meaning and range of equivalency of said claims are therefore to be embraced therein.

Claims

CLAIMS What is claimed is:
1. A method of forming a mold insert used to produce an intraocular lens (IOL) mold, the method comprising: a first cutting step around a first predetermined periphery of a mold insert in a stock material, wherein the first cutting step begins and ends on at least one transitional region of at least one supporting portion of the mold insert in locations positioned away from an optical portion of the mold insert; and a detachment cutting step to remove the mold insert from a remainder of the stock material.
2. The method according to claim 1, wherein the first cutting step includes a first cutting path and a second cutting path, and the first cutting path and the second cutting path each have a different start point and a different end point.
3. The method according to claim 1, further comprising: a second cutting step immediately after the first cutting step around a second predetermined periphery of the mold insert, the second predetermined periphery having a more detailed profile than a profile of the first predetermined periphery.
-28-
4. The method according to claim 3, wherein the second cutting step includes a first cutting path and a second cutting path, and the first cutting path and the second cutting path each have a different start point and a different end point.
5. The method according to claim 2, wherein the at least one supporting portion includes a first supporting portion and a second supporting portion, and the at least one transitional region includes a first transitional region and a second transitional region, the first cutting path of the first cutting step has a start point on the first supporting portion at the first transitional region and an end point on the second supporting portion at the second transitional region, and the second cutting path of the first cutting step has a start point on the second supporting portion at the second transitional region and an end point on the first supporting portion at the first transitional region.
6. The method according to claim 1, wherein the IOL mold is configured to form a toric IOL.
7. The method according to claim 3, wherein the first cutting step and the second cutting step are performed using electrical discharge machining (EDM) wire cutting, the first cutting step is performed using at least one first wire, the second cutting step is performed using at least one second wire, and a diameter of the at least one second wire is smaller than a diameter of the at least one first wire.
8. The method according to claim 3, wherein the first cutting step, the second cutting step, and the detachment cutting step are each performed using electrical discharge machining (EDM) wire cutting, and discharge parameters of at least one of the first cutting step or the second cutting step are modified along the periphery of the mold insert.
9. The method according to claim 1, wherein the detachment cutting step is performed only at the at least one transitional region of the mold insert.
10. The method according to claim 3, wherein first cutting paths and second cutting paths of the first cutting step and the second cutting step are diametrically opposed relative to each other on the mold insert.
11. The method according to claim 4, wherein the at least one supporting portion includes a first supporting portion and a second supporting portion, and the at least one transitional region includes a first transitional region and a second transitional region, the first cutting path of the second cutting step has a start point on the first supporting portion at the first transitional region and an end point on the second supporting portion at the second transitional region, and the second cutting path of the second cutting step has a start point on the second supporting portion at the second transitional region and an end point on the first supporting portion at the first transitional region.
12. The method according to claim 1, wherein the mold insert is configured to be used in an injection molding system and partially defines a cavity used to form the IOL mold, and the IOL mold is configured to form an IOL via cast molding.
13. The method according to claim 1, wherein the at least one supporting portion includes two supporting portions, and peripheral surfaces of the two supporting portions have a greater roughness than a roughness of a peripheral surface of the optical portion.
14. A method of forming an intraocular lens (IOL), the method comprising:
(i) forming a mold insert via electrical discharge machining (EDM) wire cutting, wherein the EDM wire cutting is started and stopped in regions of the mold insert defined on at least one transitional region of at least one support portion;
(ii) arranging the mold insert in a molding assembly to form an IOL mold; and (iii) forming the IOL from the IOL mold.
15. The method according to claim 14, wherein an optical portion of the mold insert has a peripheral surface with a roughness of SPI Bl to D3, and the at least one supporting portion of the mold insert has a peripheral surface with a roughness of SPI DI or D2, and immediately after step (iii), the IOL has an optical portion with a peripheral surface having a roughness of SPI Bl to D3, and at least one supporting portion having a peripheral surface with a roughness of SPI DI or D2.
16. The method according to claim 14, wherein the IOL does not require postformation processing after step (iii) prior to patient use.
17. The method according to claim 14, wherein the EDM wire cutting includes a plurality of cutting steps, and at least two cutting steps of the plurality of cutting steps are implemented using two different cutting paths, the at least one transitional region includes a first and second transitional region, and the two different cutting paths each begin and end on one of the first or second transitional regions.
18. The method according to claim 17, wherein the two cutting paths are diametrically opposed relative to each other on the mold insert.
-32-
19. The method according to claim 14, wherein an electrical current of the EDM wire cutting is increased during cutting of the at least one support portion compared to an electrical current of the EDM wire cutting during cutting of an optical portion of the mold insert.
20. The method according to claim 14, wherein step (ii) includes injection molding and step (iii) includes cast molding.
21. The method according to claim 14, wherein the IOL has a varying peripheral surface roughness between a peripheral surface of an optical portion of the IOL compared to a peripheral surface of at least one support portion of the IOL.
22. The method according to claim 21, wherein a peripheral surface roughness of the optical portion of the IOL is less rough than a peripheral surface roughness of the at least one support portion of the IOL.
23. The method according to claim 14, wherein the IOL is a toric lens.
-33-
PCT/EP2022/071988 2021-08-05 2022-08-04 Method and assembly for forming an intraocular lens WO2023012290A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US17/444,526 2021-08-05
US17/444,526 US11951699B2 (en) 2021-08-05 2021-08-05 Method and assembly for forming an intraocular lens

Publications (1)

Publication Number Publication Date
WO2023012290A1 true WO2023012290A1 (en) 2023-02-09

Family

ID=83188608

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2022/071988 WO2023012290A1 (en) 2021-08-05 2022-08-04 Method and assembly for forming an intraocular lens

Country Status (2)

Country Link
US (1) US11951699B2 (en)
WO (1) WO2023012290A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4350864A (en) * 1979-06-21 1982-09-21 Ateliers Des Charmilles, S.A. Traveling wire EDM apparatus with automatic wire rethreading mechanism
US20090127726A1 (en) * 2007-11-21 2009-05-21 Spalding John C System and Method for Molding Intraocular Lenses
US20120032361A1 (en) * 2004-09-30 2012-02-09 Graney Anita M Apparatus and Method for Injection Molding an Intraocular Lens Device

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4737322A (en) 1985-09-27 1988-04-12 Staar Surgical Company Intraocular lens structure with polyimide haptic portion and methods for fabrication
US4808181A (en) 1987-08-07 1989-02-28 Kelman Charles D Intraocular lens having roughened surface area
NZ509286A (en) 1997-12-02 2001-02-23 Hoya Healthcare Corp Haptic portion of soft intraocular lens absorbs compressive forces applied to optic portion of lens
US20060038308A1 (en) * 2003-06-26 2006-02-23 Reed Bryan M IOL square edge punch and haptic insertion fixture
US9089419B2 (en) 2008-10-15 2015-07-28 Novartis Ag System to reduce surface contact between optic and haptic areas
US8940045B2 (en) 2010-11-24 2015-01-27 Santen Pharmaceutical Co., Ltd. Intraocular lens
NL2009433C2 (en) 2012-09-07 2014-03-10 Innovalens B V SYSTEM AND METHOD FOR MANUFACTURING SIDE HALMIC DEVICES.
NL2011239C2 (en) 2013-07-30 2015-02-02 Innovalens B V INSERTS COMPOSITION FOR MANUFACTURE OF INTRA-OCULAR LENSES.
WO2017012311A1 (en) 2015-07-22 2017-01-26 田艺儿 Official letter paper with rfid radio-frequency reading and writing function
JP6937122B2 (en) 2017-01-20 2021-09-22 興和株式会社 Intraocular lens and its manufacturing method
JP6680714B2 (en) * 2017-03-30 2020-04-15 ファナック株式会社 Control device and machine learning device for wire electric discharge machine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4350864A (en) * 1979-06-21 1982-09-21 Ateliers Des Charmilles, S.A. Traveling wire EDM apparatus with automatic wire rethreading mechanism
US20120032361A1 (en) * 2004-09-30 2012-02-09 Graney Anita M Apparatus and Method for Injection Molding an Intraocular Lens Device
US20090127726A1 (en) * 2007-11-21 2009-05-21 Spalding John C System and Method for Molding Intraocular Lenses

Also Published As

Publication number Publication date
US20230038204A1 (en) 2023-02-09
US11951699B2 (en) 2024-04-09

Similar Documents

Publication Publication Date Title
KR100468982B1 (en) Ibr fixture and method of machining
KR20140061456A (en) Method and device for finishing workpieces
WO2015199751A1 (en) Integrated part fixturing for lathing processes
KR20140061455A (en) Method and device for finishing workpieces
US20100284842A1 (en) Method of producing a stator segment for a segmented stator of an eccentric screw pump
KR20020069203A (en) Method for Cast Molding Toric Contact Lenses
DE102013108766B4 (en) Polishing method for processing an optical surface of an optical lens and polishing tools suitable for this purpose
AU726673B2 (en) Method of manufacturing ejector pin sleeves
US11951699B2 (en) Method and assembly for forming an intraocular lens
US5909530A (en) Method for manufacturing ferrule for use with optical fiber connector
KR101988408B1 (en) Method for manufacturing rod-shaped component
US8003912B2 (en) Method for manufacturing a machine housing having a surface-hardened fluid chamber
KR101482545B1 (en) Manufacturing method for sleeve member
EP2067595A1 (en) Metal mold, optical device, metal mold for forming optical device, and process for manufacturing the same
CN114147377B (en) Mask for machining convex hemisphere of gyro motor and machining method thereof
JP2010184320A (en) Gear machining method
CN1088154A (en) On molding tool, make toric method
CN113664478A (en) Machining process of precise shaft sleeve with notch
US6560848B2 (en) Method for forming micro groove on mold used at PDP partition manufacture
JP4374161B2 (en) Cutting method of optical lens or its mold
WO2008014211B1 (en) Vented optic power insert bushings and related systems and methods for producing ophthalmic lens molds and molded ophthalmic lenses
GB2306129A (en) Method of processing screw rotor
EP3804654B1 (en) Method of machining a dental block for manufacturing a dental restoration
CN103328361B (en) Produce the method and apparatus of the metallic yarn cylinder being used for spinning machine and thus obtained yarn cylinder
EP1205948A1 (en) Method for manufacturing polymer insulator and its end part machining apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22764323

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022764323

Country of ref document: EP

Effective date: 20240305