WO2023011330A1 - 一种热锻模具钢及其制备方法、活塞锻造成型模具及其制备方法 - Google Patents

一种热锻模具钢及其制备方法、活塞锻造成型模具及其制备方法 Download PDF

Info

Publication number
WO2023011330A1
WO2023011330A1 PCT/CN2022/108788 CN2022108788W WO2023011330A1 WO 2023011330 A1 WO2023011330 A1 WO 2023011330A1 CN 2022108788 W CN2022108788 W CN 2022108788W WO 2023011330 A1 WO2023011330 A1 WO 2023011330A1
Authority
WO
WIPO (PCT)
Prior art keywords
preparation
die steel
hot forging
steel
die
Prior art date
Application number
PCT/CN2022/108788
Other languages
English (en)
French (fr)
Inventor
黄昌文
赵中里
宋加兵
薛勇杰
Original Assignee
安徽安簧机械股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 安徽安簧机械股份有限公司 filed Critical 安徽安簧机械股份有限公司
Priority to ZA2022/12794A priority Critical patent/ZA202212794B/en
Publication of WO2023011330A1 publication Critical patent/WO2023011330A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • C21D1/32Soft annealing, e.g. spheroidising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium

Definitions

  • the present application relates to the technical field of forging dies, in particular to a hot forging die steel and a preparation method thereof, a piston forging forming die and a preparation method thereof.
  • H13 die steel is widely used to prepare hot forging dies due to its advantages of high hardenability, high toughness and excellent thermal cracking resistance.
  • complex structures such as steel pistons, which have the characteristics of deep cavity, small draft angle, and thin wall thickness
  • the service life of piston forging dies made of H13 die steel is low, and often after forging 1000 to 2000 pieces
  • the mold will have serious defects such as cracking, wear, collapse, and deformation of the ejector pin, which will cause the mold to be scrapped and cannot meet the needs of automatic forging production.
  • the purpose of this application is to provide a hot forging die steel and its preparation method, piston forging molding die and its preparation method.
  • the piston forging molding die prepared by the hot forging die steel provided by the application has a very long service life.
  • the application provides a hot forging die steel, the chemical composition includes: C 0.35-0.41%, Si 0.40-0.60%, Mn 0.40-0.50%, P ⁇ 0.025%, S ⁇ 0.015%, Cr 4.90 ⁇ 5.10%, Mo 1.5-1.6%, V 0.35-0.40%, and the balance Fe.
  • the chemical composition includes by mass percentage: C 0.36-0.40%, Si 0.45-0.55%, Mn 0.42-0.48%, P ⁇ 0.025%, S ⁇ 0.015%, Cr 4.95-5.05%, Mo 1.55-1.6% , V 0.36 ⁇ 0.39% and the balance of Fe.
  • the chemical composition includes by mass percentage: C 0.37-0.39%, Si 0.48-0.52%, Mn 0.45-0.47%, P ⁇ 0.025%, S ⁇ 0.015%, Cr 4.98-5.02%, Mo 1.58-1.6% , V 0.36 ⁇ 0.39% and the balance of Fe.
  • the present application also provides a method for preparing hot forging die steel described in the above technical solution, comprising the following steps:
  • the spheroidizing annealing in the step (3) includes heating the wrought alloy and performing the first heat preservation, then performing the second heat preservation after the first cooling, and finally performing the second cooling.
  • the temperature of the first heat preservation is 850-870° C.
  • the time of the first heat preservation is 15-25 hours.
  • the temperature of the second heat preservation is 740-760° C.
  • the time of the second heat preservation is 15-20 hours.
  • the application also provides a method for preparing a piston forging mold, comprising the steps of:
  • the mold base obtained in the step 1) is subjected to surface strengthening treatment to obtain a piston forging molding die.
  • the surface strengthening treatment in step 2) includes sequential nitriding treatment and physical vapor deposition treatment.
  • the present application also provides a piston forging mold prepared by the preparation method described in the above technical solution.
  • the application provides a hot forging die steel, the chemical composition includes: C 0.35-0.41%, Si 0.40-0.60%, Mn 0.40-0.50%, P ⁇ 0.025%, S ⁇ 0.015%, Cr 4.90 ⁇ 5.10%, Mo 1.5-1.6%, V 0.35-0.40%, and the balance Fe. This application optimizes and improves the composition on the basis of H13 die steel.
  • the proportion of carbides formed by Mo in the die steel is increased, thereby improving the hardness of the die steel; by increasing the content of Mn element, it is further improved Improve the hardness of die steel; by reducing the content of Si element, the toughness of die steel can be improved; by reducing the content of V element, the formation of eutectic carbide containing V can be reduced, and the adverse effect on toughness can be reduced, thereby improving the strength of die steel and toughness extend its service life.
  • the experimental results show that the service life of the piston die prepared by using the hot forging die steel provided by the application reaches 7000-10000 pieces.
  • Fig. 1 is the sectional view structural representation of the piston mold that application example 1 ⁇ 3 prepares
  • 1 is the upper mold sleeve
  • 2 is the backing plate
  • 3 is the upper punch
  • 4 is the punch
  • 5 is the stress ring
  • 6 is the lower die
  • 7 is the lower core
  • 8 is the ejector pin
  • Fig. 2 is the top view structural representation of the piston mold prepared by application examples 1-3;
  • 5 is a stress ring
  • 6 is a lower die
  • 7 is a lower mold core
  • 8 is a ejector pin.
  • the application provides a hot forging die steel, the chemical composition includes: C 0.35-0.41%, Si 0.40-0.60%, Mn 0.40-0.50%, P ⁇ 0.025%, S ⁇ 0.015%, Cr 4.90 ⁇ 5.10%, Mo 1.5-1.6%, V 0.35-0.40%, and the balance Fe.
  • the hot forging die steel provided by the present application includes C 0.35-0.41%, preferably 0.36-0.40%, more preferably 0.37-0.39%.
  • the present application can further improve the hardenability and hardenability of the die steel by controlling the C content in the hot forging die steel.
  • the hot forging die steel provided by the present application also includes Si 0.40-0.60%, preferably 0.45-0.55%, more preferably 0.48-0.52%, and more preferably 0.50%.
  • the toughness of the die steel can be further improved by controlling the Si content in the hot forging die steel.
  • the hot forging die steel provided by the present application also includes Mn 0.40-0.50%, preferably 0.42-0.48%, more preferably 0.45-0.47%.
  • the hardness of the die steel can be further improved by controlling the Mn content in the hot forging die steel.
  • the hot forging die steel provided by the present application also includes Cr 4.90-5.10%, preferably Cr 4.95-5.05%, more preferably 4.98-5.02%, and more preferably 5.0%.
  • the present application can improve the hardenability of the steel by controlling the Cr content in the hot forging die steel, so that the steel has better comprehensive mechanical properties after quenching and tempering.
  • the hot forging die steel provided by the present application also includes Mo 1.5-1.6%, preferably 1.55-1.6%, more preferably 1.58-1.6%.
  • Mo 1.5-1.6% preferably 1.55-1.6%, more preferably 1.58-1.6%.
  • the proportion of carbides formed by Mo in the die steel can be increased, thereby increasing the hardness of the die steel.
  • the hot forging die steel provided by the present application also includes V 0.35-0.40%, preferably 0.36-0.39%, more preferably 0.37-0.38%.
  • V 0.35-0.40% preferably 0.36-0.39%, more preferably 0.37-0.38%.
  • the hot forging die steel provided by the present application also includes P ⁇ 0.025%, preferably ⁇ 0.02%, more preferably ⁇ 0.015%.
  • P ⁇ 0.025% preferably ⁇ 0.02%, more preferably ⁇ 0.015%.
  • the hot forging die steel provided by the present application also includes S ⁇ 0.015%, preferably ⁇ 0.010%.
  • S ⁇ 0.015% preferably ⁇ 0.010%.
  • the hot forging die steel provided by the present application also includes a balance of Fe.
  • the application optimizes and improves the composition on the basis of H13 die steel, and improves the proportion of carbides formed by Mo in the die steel by increasing the content of Mo element, thereby improving the hardness of the die steel; by increasing the content of Mn element, further Improve the hardness of die steel; by reducing the content of Si element, the toughness of die steel can be improved; by reducing the content of V element, the formation of eutectic carbide containing V can be reduced, and the adverse effect on toughness can be reduced, so that by increasing the content of die steel Strength and toughness extend its lifespan.
  • the present application also provides a method for preparing hot forging die steel described in the above technical solution, comprising the following steps:
  • alloy raw materials are mixed and smelted to obtain steel ingots.
  • the smelting preferably includes electric furnace smelting, out-of-furnace refining, vacuum degassing and electroslag remelting which are carried out in sequence.
  • electric furnace smelting, out-of-furnace refining, vacuum degassing and electroslag remelting, and smelting operations well known to those skilled in the art can be used.
  • the applicant hot-forges the steel ingot to obtain a forged alloy.
  • the temperature of the hot forging is preferably 880-1000°C, more preferably 900-950°C; the forging ratio of the hot forging is preferably ⁇ 4.
  • the present application has no special restrictions on other hot forging operations, as long as the forged alloy does not have defects such as shrinkage cavities, bubbles, cracks, inclusions, skin turning, white spots, and intergranular cracks that are visible to the naked eye.
  • the present application performs spheroidizing annealing on the forged alloy to obtain hot forging die steel.
  • the spheroidizing annealing is preferably performed by heating the wrought alloy and then performing the first heat preservation, then performing the second heat preservation after the first cooling, and finally performing the second cooling.
  • the application adopts spheroidizing annealing, which can eliminate primary carbides, improve segregation, make secondary carbides evenly distribute spherically on the ferrite matrix, and significantly improve the transverse impact toughness of steel.
  • the temperature of the first heat preservation is preferably 850-870°C, more preferably 855-860°C; the time of the first heat preservation is preferably 15-25h; when the diameter of the wrought alloy is ⁇ 400mm but not When it is less than 300mm, the time for the first heat preservation is preferably 18-22h, more preferably 20h; when the diameter of the wrought alloy is greater than 400mm but not higher than 550mm, the time for the first heat preservation is preferably 23-25h , more preferably 24h.
  • the present application can further improve the transverse impact toughness of the steel by controlling the temperature and time of the first heat preservation.
  • the heating rate is preferably ⁇ 80°C/h, more preferably 50-75°C/h, more preferably 55-65°C/h.
  • the rate of the first cooling is preferably ⁇ 30°C/h, more preferably 10-25°C/h, more preferably 15-20°C/h.
  • the temperature of the second heat preservation is preferably 740-760°C, more preferably 745-755°C, more preferably 750°C; the time of the second heat preservation is preferably 15-20h; when the wrought alloy When the diameter of the alloy is ⁇ 400mm but not less than 300mm, the time for the second heat preservation is preferably 16 to 17 hours; when the diameter of the wrought alloy is greater than 400mm but not higher than 550mm, the time for the second heat preservation is preferably 18 to 17 hours. 19h.
  • the present application can further improve the transverse impact toughness of the steel by controlling the temperature and time of the second heat preservation.
  • the spheroidizing annealing is preferably carried out in the spheroidizing annealing furnace; the heat dissipation holes are preferably not opened during the first heat preservation and the second heat preservation; the spheroidizing annealing furnace is preferably opened during the first cooling The top of the furnace and the cooling holes on both sides; the furnace door of the spheroidizing annealing furnace is preferably not opened during the first cooling.
  • the second cooling is preferably furnace cooling; the speed of furnace cooling is preferably ⁇ 30°C/h; the furnace door of the spheroidizing annealing furnace is preferably opened during furnace cooling; the furnace door The height of the rise is preferably no more than 150mm; the end temperature of the furnace cooling is preferably 390-410°C, more preferably 400°C.
  • the preparation method provided by the present application can further purify the matrix, and make the secondary carbides distributed finely and without large primary carbides, thereby improving the hardness and toughness of the die steel.
  • the application also provides a method for preparing a piston forging mold, comprising the steps of:
  • the mold base obtained in the step 1) is subjected to surface strengthening treatment to obtain a piston forging molding die.
  • the hot forging die steel is subjected to rough processing, preheating treatment, quenching, tempering and finishing in sequence to obtain a die blank.
  • the present application has no special limitation on the operation of the rough machining, and conventional operations well known to those skilled in the art can be used.
  • the rough machining of the hot forging die steel can quickly remove a large amount of redundant material, which is beneficial to obtain the die blank.
  • the preheating treatment is preferably to heat the product obtained by the rough processing to the first preheating temperature for heat preservation, and then heat up to the second preheating temperature for heat preservation;
  • the temperature of the first preheating Preferably it is 350-450°C, more preferably 400°C;
  • the holding time of the first preheating is preferably 0.5-1.5h, more preferably 1h;
  • the temperature of the second preheating is preferably 800-900°C, more preferably The temperature is preferably 850° C.;
  • the holding time for the second preheating is preferably 2.5 to 3.5 hours, more preferably 3 hours.
  • the preheating treatment can further refine the structure.
  • the quenching is preferably oil quenching; the quenching temperature is preferably 1000-1050°C, more preferably 1020°C; the heating coefficient of the quenching is preferably 0.30-0.40min/mm, more preferably 0.35 min/mm.
  • the present application has no special limitation on the quenching time, and conventional operations by those skilled in the art can be used.
  • the application of oil quenching can avoid the problem of cracking during water quenching.
  • the temperature of the high-temperature tempering is preferably 620-650° C.; the holding time of the high-temperature tempering is preferably 2.5-3.5 hours, more preferably 3 hours.
  • the residual stress can be eliminated by controlling the process parameters of high temperature tempering, thereby further improving the strength and toughness of the mold.
  • the finishing process is preferably a precision machine tool, a high-strength alloy tool or CNC cutting; the precision machine tool is preferably a five-axis machining center machine tool or a high-speed milling machine tool.
  • This application has no special restrictions on the operation of the precision machine tool, high-strength alloy tool or CNC cutting and forming, and adopts operations well-known to those skilled in the art, and ensures that the mold profile is controlled within the range of ⁇ 0.05mm, and the geometric dimension tolerance Control it within the range of ⁇ 0.05mm and control the surface roughness below Ra3.2 ⁇ m.
  • the hardness of the mold blank is preferably 45.5-48.5 HRC.
  • the application adopts preheating treatment, quenching and high-temperature tempering treatment to further improve the strength and toughness of the die, so as to meet the comprehensive performance requirements of high strength and high toughness of the hot forging die for complex forgings.
  • the present application preferably performs surface strengthening treatment on the die blank to obtain a piston forging molding die.
  • the pre-treatment preferably includes high-speed sandblasting, fluid polishing and ultrasonic cleaning in sequence.
  • the application of the pre-treatment can further improve the effect of surface strengthening treatment of the mold body.
  • the pressure of the high-speed sandblasting is preferably 0.6-0.7 MPa.
  • the application uses high-speed sand blasting to change the surface shape of the mold by the impact of high-speed sand flow, and the surface mechanical properties are improved, thereby improving the fatigue resistance.
  • the pressure of the fluid polishing is preferably 0.6-0.7MPa; the medium of the fluid polishing is preferably high-carbon cast steel grit; the hardness of the high-carbon cast steel grit is preferably 570-710HV; the high The sieving grade of carbon cast steel grit is preferably G050.
  • This application adopts fluid polishing treatment to deeply clean the surface of the mold, and can deburr, deburr, and round corners to reduce the waviness and roughness of the surface of the mold cavity and improve the finish; at the same time, it can remove residual oil on the surface, etc. Impurities, improve the adhesion of subsequent coatings.
  • the present application has no special limitation on the ultrasonic cleaning operation, and the ultrasonic cleaning operation well known to those skilled in the art can be used.
  • This application uses ultrasonic cleaning to further remove impurities on the mold surface.
  • the surface strengthening treatment preferably includes nitriding treatment and physical vapor deposition treatment performed in sequence.
  • the nitriding treatment is preferably carried out in a nitriding furnace; the pressure of the nitriding treatment is preferably 250-350Pa, more preferably 300-320Pa; the nitriding treatment voltage is preferably 650-800V , more preferably 700-750V; the temperature of the nitriding treatment is preferably 470-520°C, more preferably 500°C; the time of the nitriding treatment is preferably 8-9h, more preferably 8.5h; the nitriding
  • the thickness of the nitrided layer obtained by nitrogen treatment is preferably 0.15-0.2 mm; the hardness of the nitrided layer is preferably 1000-1200 HV.
  • the nitriding treatment can improve the forging wear resistance, high temperature diffusion wear resistance, fatigue resistance and high pressure resistance of the die, thereby further improving the service life of the die.
  • the process parameters of the physical vapor deposition process include: the background vacuum degree is preferably 6 ⁇ 10-3 ⁇ 8 ⁇ 10-4Pa, more preferably 8 ⁇ 10-3 ⁇ 1 ⁇ 10-4Pa;
  • the vacuum degree is preferably 0.5-1.5Pa, more preferably 1.0-1.2Pa;
  • the voltage is preferably 100-140V, more preferably 120-130V;
  • the current is preferably 20-25A, more preferably 22-23A.
  • the material of the coating obtained by the physical vapor deposition treatment preferably includes two or more of TiN, AlN, CrN, ZrN, Al2O3 and ZrO2; the thickness of the coating is preferably 3-8 ⁇ m, more preferably 5 ⁇ m. ⁇ 7 ⁇ m; the binding force between the coating and the substrate is preferably ⁇ 150N; the hardness of the coating is preferably 2000-4000HV.
  • the present application can form a high-temperature-resistant and wear-resistant nano-coating on the surface of the mold through physical vapor deposition treatment, thereby improving the high-temperature diffusion wear resistance, anti-adhesion and corrosion resistance of the mold, and then improving the service life of the mold.
  • This application adopts the "nitriding + PVD" composite strengthening treatment process to improve the forging wear resistance and high temperature diffusion wear resistance of the die, thereby further improving the service life of the die.
  • the service life of the piston forging mold prepared by the preparation method provided by the application can be increased by more than 2 times compared with the existing piston mold assembled from other parts, the mold cost per unit product can be reduced by more than 30%, and the shift output can be increased by 20%. % above, the economic benefit is remarkable.
  • the preparation method provided by the application is simple to operate and suitable for industrial production.
  • the present application also provides a piston forging mold prepared by the preparation method described in the above technical solution.
  • the piston forging mold is the body structure of the piston.
  • the composition of the hot forging die steel is: C 0.38%, Si 0.48%, Mn 0.45%, P 0.020%, S 0.010%, Cr 5.0%, Mo 1.58%, V 0.36% and the balance Fe;
  • the preparation method of described hot forging die steel is as follows:
  • step (3) heating the wrought alloy obtained in the step (2) to carry out the first heat preservation, then carry out the second heat preservation after the first cooling, and finally carry out the second cooling to obtain hot forging die steel;
  • the temperature of the first heat preservation is 850°C, and the time is 20h; the heating rate to the first heat preservation temperature is 50°C/h; the first cooling rate is 20°C/h; the temperature of the second heat preservation is 750°C, The time is 20 hours; the second cooling is furnace cooling, the rate of the second cooling is 20°C/h, and the end point temperature is 390°C.
  • the heating coefficient of oil quenching is 0.30min/mm; the temperature of high temperature tempering is 650°C, and the holding time is 2.5h; the finishing process is formed by precision machine tools;
  • the nitriding treatment is carried out in a nitriding furnace; the pressure of the nitriding treatment is 300Pa, the voltage is 680V, the temperature is 500°C, and the time is 8h; the thickness of the nitriding layer is 0.2mm, and the hardness is 1200HV;
  • the background vacuum is 7 ⁇ 10-3Pa
  • the coating vacuum is 1Pa
  • the coating voltage is 100V
  • the coating current is 20A
  • the material of the coating is TiN and ZrN
  • the thickness of the coating is 5 ⁇ m.
  • the heating coefficient of oil quenching is 0.30min/mm; the temperature of high temperature tempering is 650°C, and the holding time is 2.5h; the finishing process is formed by precision machine tools;
  • the nitriding treatment is carried out in a nitriding furnace; the pressure of the nitriding treatment is 300Pa, the voltage is 680V, the temperature is 500°C, and the time is 8h; the thickness of the nitriding layer is 0.2mm, and the hardness is 1200HV;
  • background vacuum degree is 7 ⁇ 10-3 ⁇ 8 ⁇ 10-4Pa
  • coating vacuum degree is 1Pa
  • coating voltage is 100V
  • coating current is 20A
  • coating material is TiN, AlN, CrN, ZrN and ZrO2
  • the thickness of the coating is 5 ⁇ m.
  • the heating coefficient of oil quenching is 0.30min/mm; the temperature of high temperature tempering is 650°C, and the holding time is 2.5h; the finishing process is formed by precision machine tools;
  • the nitriding treatment is carried out in a nitriding furnace; the pressure of the nitriding treatment is 300Pa, the voltage is 750V, the temperature is 500°C, and the time is 8h; the thickness of the nitriding layer is 0.2mm, and the hardness is 1200HV;
  • background vacuum degree is 7 ⁇ 10-3 ⁇ 8 ⁇ 10-4Pa
  • coating vacuum degree is 1Pa
  • coating voltage is 120V
  • coating current is 20A
  • coating material is TiN, AlN, CrN, ZrN, Al2O3 and ZrO2
  • the thickness of the coating is 5 ⁇ m.
  • the piston forging mold prepared by application examples 1-3 is assembled with other parts required by the piston mold using conventional technology to obtain the piston mold; wherein, the piston forging mold is split at the maximum stress during preparation (the inner piston
  • the inner piston The bottom of the cavity, that is, the upper part includes the upper mold cover, the backing plate, the upper punch, and the punch, and the lower part includes the stress ring, the lower groove, and the lower mold core) are two parts; and the lower film core and the lower groove fit There is a gap;
  • the ejector rod is designed with a profiling structure;
  • the material of the ejector rod body is mold steel H13, and then the side profile is processed by wire cutting;
  • the material of the ejector rod end is conventional 45 steel;
  • the ejector rod body and the end of the ejector rod are made of S7/ h6 interference fit, the end of the ejector rod is preheated to 300°C and assembled with the ejector rod body, and the ejector rod
  • the piston molds assembled from the piston forging molds prepared in application examples 1 to 3 were verified by the automatic hot die forging production line, and the lifespans were 5000-5500 pieces, 6000-6500 pieces and 7000-8000 pieces respectively.
  • the dies prepared from the hot forging die steel provided by the present application have a long service life.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Forging (AREA)

Abstract

本申请提供了一种热锻模具钢及其制备方法、活塞锻造成型模具及其制备方法。本申请提供的热锻模具钢化学成分按质量百分比计包括:C 0.35~0.41%、Si 0.40~0.60%、Mn 0.40~0.50%、P≤0.025%、S≤0.015%、Cr 4.90~5.10%、Mo 1.5~1.6%、V 0.35~0.40%和余量的Fe。本申请还提供了一种活塞锻造成型模具的制备方法,包括如下步骤:将所述热锻模具钢依次进行粗加工、预热处理、淬火、高温回火和精加工,得到模坯;将所述模坯进行表面强化处理,得到活塞锻造成型模具。实验结果表明,采用本申请提供的热锻模具钢制备的模具使用寿命达7000~10000件。

Description

一种热锻模具钢及其制备方法、活塞锻造成型模具及其制备方法
本申请要求于2021年08月05日提交中国专利局、申请号为202110894658.1、申请名称为一种热锻模具钢及其制备方法、活塞锻造成型模具及其制备方法的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及锻造模具技术领域,尤其涉及一种热锻模具钢及其制备方法、活塞锻造成型模具及其制备方法。
背景技术
随着科技的发展,以机器人为代表的自动化技术逐渐成为锻造行业的发展趋势。其中,自动化锻造中应用比较广泛的锻造模具为热锻模具。
目前,H13模具钢由于具有高淬透性、高韧性以及优良的抗热裂能力等优势被广泛用于制备热锻模具。但针对结构复杂锻件如钢质活塞,其具有型腔深、拔模角小、壁厚较薄特点时,采用H13模具钢制备的活塞锻造模具使用寿命低,经常在锻打1000~2000件后模具就会出现开裂、磨损、塌陷以及顶杆变形等严重缺陷,致使模具报废,不能适应自动化锻造生产的需求。
因此,提供一种长使用寿命的热锻模具钢成为亟待解决的问题。
申请内容
本申请的目的在于提供一种热锻模具钢及其制备方法、活塞锻造成型模具及其制备方法。本申请提供的热锻模具钢制备的活塞锻造成型模具具有很长的使用寿命。
为了实现上述申请目的,本申请提供以下技术方案:
本申请提供了一种热锻模具钢,化学成分按质量百分比计包括:C 0.35~0.41%、Si 0.40~0.60%、Mn 0.40~0.50%、P≤0.025%、S≤0.015%、Cr 4.90~5.10%、Mo 1.5~1.6%、V 0.35~0.40%和余量的Fe。
优选地,化学成分按质量百分比计包括:C 0.36~0.40%、Si 0.45~0.55%、Mn 0.42~0.48%、P≤0.025%、S≤0.015%、Cr 4.95~5.05%、Mo 1.55~1.6%、V 0.36~0.39%和余量的Fe。
优选地,化学成分按质量百分比计包括:C 0.37~0.39%、Si 0.48~0.52%、Mn 0.45~0.47%、P≤0.025%、S≤0.015%、Cr 4.98~5.02%、Mo 1.58~1.6%、V 0.36~0.39%和余量的Fe。
本申请还提供了上述技术方案所述热锻模具钢的制备方法,包括以下步骤:
(1)将合金原料混合后冶炼,得到钢锭;
(2)将所述步骤(1)得到的钢锭进行热锻,得到锻态合金;
(3)将所述步骤(2)得到的锻态合金进行球化退火,得到热锻模具钢。
优选地,所述步骤(3)中球化退火包括将锻态合金加热后进行第一保温,再经第一冷却后进行第二保温,最后进行第二冷却。
优选地,所述第一保温的温度为850~870℃,所述第一保温的时间为15~25h。
优选地,所述第二保温的温度为740~760℃,所述第二保温的时间为15~20h。
本申请还提供了一种活塞锻造成型模具的制备方法,包括如下步骤:
1)将上述技术方案所述热锻模具钢或上述技术方案所述制备方法制备的热锻模具钢依次进行粗加工、预热处理、淬火、高温回火和精加工,得到模坯;
2)将所述步骤1)得到的模坯进行表面强化处理,得到活塞锻造成型模具。
优选地,所述步骤2)中表面强化处理包括依次进行的渗氮处理和物理气相沉积处理。
本申请还提供了上述技术方案所述制备方法制备的活塞锻造成型模具。
本申请提供了一种热锻模具钢,化学成分按质量百分比计包括:C 0.35~0.41%、Si 0.40~0.60%、Mn 0.40~0.50%、P≤0.025%、S≤0.015%、Cr 4.90~5.10%、Mo 1.5~1.6%、V 0.35~0.40%和余量的Fe。本申请在H13模具钢的基础上对成分进行优化改进,通过增加Mo元素的含量提高了模具钢中Mo形成的碳化物的比例,从而提高模具钢的硬度;通过增加Mn元素的含量,进一步提高了模具钢的硬度;通过降低Si元素的含量,以提高模具钢的韧性;通过降低V元素含量 能够减少含V共晶碳化物的生成,降低对韧性的不利影响,从而通过提高模具钢的强度和韧性延长了其使用寿命。实验结果表明,采用本申请提供的热锻模具钢制备的活塞模具使用寿命达7000~10000件。
附图说明
图1为应用例1~3制备的活塞模具的剖面图结构示意图,
图中,1为上模套,2为垫板,3为上凸模,4为冲头,5为应力圈,6为下凹模,7为下模芯,8为顶杆;
图2为应用例1~3制备的活塞模具的俯视结构示意图;
图中,5为应力圈,6为下凹模,7为下模芯,8为顶杆。
具体实施方式
本申请提供了一种热锻模具钢,化学成分按质量百分比计包括:C 0.35~0.41%、Si 0.40~0.60%、Mn 0.40~0.50%、P≤0.025%、S≤0.015%、Cr 4.90~5.10%、Mo 1.5~1.6%、V 0.35~0.40%和余量的Fe。
按质量百分比计,本申请提供的热锻模具钢包括C 0.35~0.41%,优选为0.36~0.40%,更优选为0.37~0.39%。本申请通过控制热锻模具钢中的C含量能够进一步提高模具钢的淬透性和淬硬性。
按质量百分比计,本申请提供的热锻模具钢还包括Si 0.40~0.60%,优选为0.45~0.55%,进一步优选为0.48~0.52%,更优选为0.50。本申请通过控制热锻模具钢中的Si含量能够进一步提高模具钢的韧性。
按质量百分比计,本申请提供的热锻模具钢还包括Mn 0.40~0.50%,优选为0.42~0.48%,更优选为0.45~0.47%。本申请通过控制热锻模具钢中的Mn含量能够进一步提高模具钢的硬度。
按质量百分比计,本申请提供的热锻模具钢还包括Cr 4.90~5.10%,优选为Cr 4.95~5.05%,进一步优选为4.98~5.02%,更优选为5.0%。本申请通过控制热锻模具钢中的Cr含量能够提高钢的淬透性,使钢经过淬火回火处理后具有较好的综合力学性能。
按质量百分比计,本申请提供的热锻模具钢还包括Mo 1.5~1.6%,优选为1.55~1.6%,更优选为1.58~1.6%。本申请通过控制热锻模具钢中的Mo含量能够提高模具钢中Mo形成的碳化物的比例,从而提高模具钢的硬度。
按质量百分比计,本申请提供的热锻模具钢还包括V 0.35~0.40%,优选为0.36~0.39%,更优选为0.37~0.38%。本申请通过控制热锻模具钢中的V含量能够减少含V共晶碳化物的生成,降低对韧性的不利影响。
按质量百分比计,本申请提供的热锻模具钢还包括P≤0.025%,优选≤0.02%,更优选≤0.015%。本申请通过控制热锻模具钢中杂质P含量,避免过多杂质对钢性能的影响。
按质量百分比计,本申请提供的热锻模具钢还包括S≤0.015%,优选为≤0.010%。本申请通过控制热锻模具钢中杂质S含量,避免过多杂质对钢性能的影响。
按质量百分比计,本申请提供的热锻模具钢还包括余量的Fe。
本申请在H13模具钢的基础上过对成分进行优化改进,通过增加Mo元素的含量提高了模具钢中Mo形成的碳化物的比例,从而提高模具钢的硬度;通过增加Mn元素的含量,进一步提高了模具钢的硬度;通过降低Si元素的含量,以提高模具钢的韧性;通过降低V元素含量能够减少含V共晶碳化物的生成,降低对韧性的不利影响,从而通过提高模具钢的强度和韧性延长了其使用寿命。
本申请还提供了上述技术方案所述热锻模具钢的制备方法,包括以下步骤:
(1)将合金原料混合后冶炼,得到钢锭;
(2)将所述步骤(1)得到的钢锭进行热锻,得到锻态合金;
(3)将所述步骤(2)得到的锻态合金进行球化退火,得到热锻模具钢。
本申请将合金原料混合后冶炼,得到钢锭。
本申请对所述合金原料的种类和来源没有特殊的限定,采用本领域技术人员熟知的能够提供上述合金元素的原料即可。本申请对所述合金原料混合的操作没有特殊的限定,采用本领域技术人员熟知的制备混合物料的技术方案即可。
在本申请中,所述冶炼优选包括依次进行的电炉熔炼、炉外精炼、真空脱气和电渣重熔。本申请对所述电炉熔炼、炉外精炼、真空脱气和电渣重熔的操作没有特殊的限定,采用本领域技术人员熟知的冶炼操作即可。
得到钢锭后,本申请将所述钢锭进行热锻,得到锻态合金。
在本申请中,所述热锻的温度优选为880~1000℃,更优选为900~950℃;所述热锻的锻造比优选≥4。本申请对所述热锻的其他操作没有特殊的限定,只要保证锻态合金不出现肉眼可见的缩孔、气泡、裂纹、夹杂、翻皮、白点以及晶间裂纹等缺陷即可。
得到锻态合金后,本申请将所述锻态合金进行球化退火,得到热锻模具钢。
在本申请中,所述球化退火优选为将锻态合金加热后进行第一保温,再经第一冷却后进行第二保温,最后进行第二冷却。本申请采用球化退火能够消除一次碳化物,改善偏析,使二次碳化物呈球状均匀分布在铁素体基体上,显著提高钢的横向冲击韧性。
在本申请中,所述第一保温的温度优选为850~870℃,更优选为855~860℃;所述第一保温的时间优选为15~25h;当锻态合金的直径≤400mm但不低于300mm时,所述第一保温的时间优选为18~22h,更优选为20h;当锻态合金的直径大于400mm但不高于550mm时,所述第一保温的时间优选为23~25h,更优选为24h。本申请通过控制第一保温的温度和时间能够进一步提高钢的横向冲击韧性。
在本申请中,所述加热的速率优选≤80℃/h,进一步优选为50~75℃/h,更优选为55~65℃/h。
在本申请中,第一冷却的速率优选≤30℃/h,进一步优选为10~25℃/h,更优选为15~20℃/h。
在本申请中,所述第二保温的温度优选为740~760℃,进一步优选为745~755℃,更优选为750℃;所述第二保温的时间优选为 15~20h;当锻态合金的直径≤400mm但不低于300mm时,所述第二保温的时间优选为16~17h;当锻态合金的直径大于400mm但不高于550mm时,所述第二保温的时间优选为18~19h。本申请通过控制第二保温的温度和时间能够进一步提高钢的横向冲击韧性。
在本申请中,所述球化退火优选在球化退火炉内进行;在所述第一保温和第二保温的时间内优选不打开散热孔;所述第一冷却时优选打开球化退火炉的炉顶以及两侧的散热孔;所述第一冷却时优选不打开球化退火炉的炉门。本申请对所述球化退火炉的型号没有特殊的限定,采用本领域技术人员熟知的球化退火炉即可。
在本申请中,所述第二冷却优选为随炉冷却;所述随炉冷却的速率优选≤30℃/h;所述随炉冷却时优选打开球化退火炉的炉门;所述炉门的升高高度优选不超过150mm;所述随炉冷却的终点温度优选为390~410℃,更优选为400℃。
本申请提供的制备方法能够进一步净化基体,且使二次碳化物呈细小弥散分布,无大块一次碳化物,进而提高模具钢的硬度和韧性。
本申请还提供了一种活塞锻造成型模具的制备方法,包括如下步骤:
1)将上述技术方案所述热锻模具钢或上述技术方案所述制备方法制备的热锻模具钢依次进行粗加工、预热处理、淬火、高温回火和精加工,得到模坯;
2)将所述步骤1)得到的模坯进行表面强化处理,得到活塞锻造成型模具。
本申请将热锻模具钢依次进行粗加工、预热处理、淬火、回火和精加工,得到模坯。
本申请对所述粗加工的操作没有特殊的限定,采用本领域技术人员熟知的常规操作即可。本申请将热锻模具钢进行粗加工能够快速除去大量的多余材料,有利于得到模坯。
在本申请中,所述预热处理优选为将所述粗加工得到的产物先升温至第一预热温度进行保温,再升温至第二预热温度进行保温;所述第一预热的温度优选为350~450℃,更优选为400℃;所述第一预热的保温时间优选为0.5~1.5h,更优选为1h;所述第二预热的温度优选为800~900℃,更优选为850℃;所述第二预热的保温时间优选为2.5~3.5h,更优选为3h。本申请对升温至第一预热温度以及第二预热温度的升温速率没有特殊的限定,采用本领域技术人员熟知的升温速率即可。本申请中预热处理能够进一步细化组织。
在本申请中,所述淬火优选为油淬;所述淬火的温度优选为1000~1050℃,更优选为1020℃;所述淬火的加热系数优选为0.30~0.40min/mm,更优选为0.35min/mm。本申请对所述淬火的时间没有特殊的限定,采用本领域技术人员常规的操作即可。本申请采用油淬能够避免在水淬时开裂的问题。
在本申请中,所述高温回火的温度优选为620~650℃;所述高温回火的保温时间优选为2.5~3.5h,更优选为3h。本申请通过控制高温回火的工艺参数能够消除残余应力,从而进一步提高模具的强度和韧性。
在本申请中,所述精加工优选为采用精密机床、高强度合金刀具或CNC切削加工成形;所述精密机床优选为五轴加工中心机床或高速铣机床。本申请对所述精密机床、高强度合金刀具或CNC切削加工成形的操作没有特殊的限定,采用本领域技术人员熟知的操作,并保证模具轮廓度控制在§±0.05mm范围内、几何尺寸公差控制在△±0.05mm范围内以及表面粗糙度控制在Ra3.2μm以下即可。
在本申请中,所述模坯的硬度优选为45.5~48.5HRC。本申请采用预热处理、淬火以及高温回火处理能够进一步提高模具的强度和韧性,以满足复杂锻件对热锻模具的高强度和高韧性的综合性能要求。
得到模坯后,本申请优选将所述模坯进行表面强化处理,得到活塞锻造成型模具。
本申请优选在表面强化处理前对所述模坯进行前处理;所述前处理优选包括依次进行的高速喷砂、流体抛光和超声波清洗。本申请采用前处理能够进一步提高模坯表面强化处理的效果。
在本申请中,所述高速喷砂的压力优选为0.6~0.7MPa。本申请对所述高速喷砂的其他工艺参数没有特殊的限定,采用本领域技术人员熟知的操作即可。本申请采用高速喷砂利用高速砂流的冲击作用使模具表面形状发生变化,表面机械性能得到改善,从而提高了抗疲劳性能。
在本申请中,所述流体抛光的压力优选为0.6~0.7MPa;所述流体抛光的介质优选为高碳铸钢砂粒;所述高碳铸钢砂粒的硬度优选为570~710HV;所述高碳铸钢砂粒的筛分等级优选为G050。本申请采用 流体抛光处理对模具表面进行深度清洁,且能够去毛刺、除飞边、磨圆角,以减少模具型腔表面的波纹度和粗糙度,提高光洁度;同时可以去除表面残留的油污等杂质,提高后续涂层的结合力。
本申请对所述超声波清洗的操作没有特殊的限定,采用本领域技术人员熟知的超声波清洗操作即可。本申请采用超声波清洗能够进一步去除模具表面的杂质。
在本申请中,所述表面强化处理优选包括依次进行的渗氮处理和物理气相沉积处理。
在本申请中,所述渗氮处理优选在氮化炉中进行;所述渗氮处理的压力优选为250~350Pa,更优选为300~320Pa;所述渗氮处理的电压优选为650~800V,更优选为700~750V;所述渗氮处理的温度优选为470~520℃,更优选为500℃;所述渗氮处理的时间优选为8~9h,更优选为8.5h;所述渗氮处理得到的渗氮层的厚度优选为0.15~0.2mm;所述渗氮层的硬度优选为1000~1200HV。本申请通过进行渗氮处理能够提高模具抗锻造磨损能力、抗高温扩散磨损性能、抗疲劳和抗高压的能力,从而进一步提高模具的使用寿命。
在本申请中,所述物理气相沉积处理的工艺参数包括:本底真空度优选为6×10-3~8×10-4Pa,更优选为8×10-3~1×10-4Pa;镀膜真空度优选为0.5~1.5Pa,更优选为1.0~1.2Pa;电压优选为100~140V,更优选为120~130V;电流优选为20~25A,更优选为22~23A。
在本申请中,所述物理气相沉积处理得到的镀层的材质优选包括TiN、AlN、CrN、ZrN、Al2O3和ZrO2中的两种以上;所述镀层的厚 度优选为3~8μm,更优选为5~7μm;所述镀层与基底的结合力优选≥150N;所述镀层的硬度优选为2000~4000HV。本申请通过物理气相沉积处理能够在模具的表面形成耐高温、耐磨损的纳米涂层,从而提高模具的抗高温扩散磨损能力、抗粘附以及耐腐蚀的能力,进而提高模具的使用寿命。
本申请采用“氮化+PVD”复合强化处理工艺提高了模具抗锻造磨损能力及抗高温扩散磨损性能,从而进一步提高了模具的使用寿命。
采用本申请提供的制备方法制备得到的活塞锻造成型模具与现有其他零部件组装成的活塞模具的使用寿命相比,能够提高2倍以上,单位产品模具成本下降30%以上,班产量提高20%以上,经济效益显著。
本申请提供的制备方法操作简单,适宜工业化生产。
本申请还提供了上述技术方案所述制备方法制备的活塞锻造成型模具。在本申请中,所述活塞锻造成型模具为活塞的本体结构。本申请对所述活塞锻造成型模具组装成活塞模具的操作没有特殊的限定,采用本领域技术人员熟知的组装活塞模具的技术方案即可。
下面将结合本申请中的实施例,对本申请中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
实施例1
按质量百分比计,所述热锻模具钢的组分为:C 0.38%、Si 0.48%、Mn 0.45%、P 0.020%、S 0.010%、Cr 5.0%、Mo 1.58%、V 0.36%和余量的Fe;
所述热锻模具钢的制备方法为如下步骤:
(1)按照上述重量百分比进行配料混合后依次电炉熔炼、炉外精炼、真空脱气和电渣重熔,得到钢锭;
(2)将所述步骤(1)得到的钢锭在900℃下进行热锻,得到锻态合金;其中,锻造比为5;
(3)将所述步骤(2)得到的锻态合金加热后进行第一保温,再经第一冷却后进行第二保温,最后进行第二冷却,得到热锻模具钢;
其中,第一保温的温度为850℃,时间为20h;加热至第一保温温度的升温速率为50℃/h;第一冷却的速率为20℃/h;第二保温的温度为750℃,时间为20h;第二冷却为随炉冷却,第二冷却的速率为20℃/h,终点温度为390℃。
应用例1
(1)将实施例1的热锻模具钢进行粗加工后先升温至350℃保温1h,再升温至800℃保温3h,然后在1020℃下进行油淬,随后依次进行高温回火和精加工,得到模坯;
其中,油淬的加热系数为0.30min/mm;高温回火的温度为650℃,保温时间为2.5h;精加工为采用精密机床加工成形;
(2)将所述步骤(1)得到的模坯依次进行渗氮处理和物理气相沉积处理,得到活塞锻造成型模具;
其中,渗氮处理在氮化炉中进行;渗氮处理的压力为300Pa,电压为680V,温度为500℃,时间为8h;渗氮层的厚度为0.2mm,硬度为1200HV;
物理气相沉积处理的工艺参数:本底真空度为7×10-3Pa,镀膜真空度为1Pa,镀膜电压为100V,镀膜的电流为20A;镀层的材质为TiN和ZrN;镀层的厚度为5μm。
应用例2
(1)将实施例1的热锻模具钢进行粗加工后先升温至350℃保温1h,再升温至800℃保温2.5h,然后在1020℃下进行油淬,随后依次进行高温回火和精加工,得到模坯;
其中,油淬的加热系数为0.30min/mm;高温回火的温度为650℃,保温时间为2.5h;精加工为采用精密机床加工成形;
(2)将所述步骤(1)得到的模坯依次进行渗氮处理和物理气相沉积处理,得到活塞锻造成型模具;
其中,渗氮处理在氮化炉中进行;渗氮处理的压力为300Pa,电压为680V,温度为500℃,时间为8h;渗氮层的厚度为0.2mm,硬度为1200HV;
物理气相沉积处理的工艺参数:本底真空度为7×10-3~8×10-4Pa,镀膜真空度为1Pa,镀膜电压为100V,镀膜的电流为20A;镀层的材质为TiN、AlN、CrN、ZrN和ZrO2;镀层的厚度为5μm。
应用例3
(1)将实施例1的热锻模具钢进行粗加工后先升温至350℃保 温1h,再升温至800℃保温2.5h,然后在1020℃下进行油淬,随后依次进行高温回火和精加工,得到模坯;
其中,油淬的加热系数为0.30min/mm;高温回火的温度为650℃,保温时间为2.5h;精加工为采用精密机床加工成形;
(2)将所述步骤(1)得到的模坯依次进行渗氮处理和物理气相沉积处理,得到活塞锻造成型模具;
其中,渗氮处理在氮化炉中进行;渗氮处理的压力为300Pa,电压为750V,温度为500℃,时间为8h;渗氮层的厚度为0.2mm,硬度为1200HV;
物理气相沉积处理的工艺参数:本底真空度为7×10-3~8×10-4Pa,镀膜真空度为1Pa,镀膜电压为120V,镀膜的电流为20A;镀层的材质为TiN、AlN、CrN、ZrN、Al2O3和ZrO2;镀层的厚度为5μm。
将应用例1~3制备得到的活塞锻造成型模具与活塞模具所需的其他零部件采用常规工艺进行组装,得到活塞模具;其中,活塞锻造成型模具在制备时在应力最大处拆分(活塞内腔底部,即上部分包括上模套、垫板、上凸模、冲头,下部分包括应力圈、下凹槽、下模芯)为两个部件;且下膜芯与下凹槽配合处设置有间隙;顶杆采用仿形结构设计;顶杆本体材料选用模具钢H13,然后采用线切割加工侧面轮廓;顶杆端头材质采用常规45钢;顶杆本体和顶杆端头采用S7/h6过盈配合,顶杆端头预热到300℃与顶杆本体装配,自然冷却得到顶杆;所述活塞模具的剖面图结构示意图如图1所示,其中,1为上模 套,2为垫板,3为上凸模,4为冲头,5为应力圈,6为下凹模,7为下模芯,8为顶杆;所述活塞模具的俯视俯视结构示意图如图2所示;其中,5为应力圈,6为下凹模,7为下模芯,8为顶杆。
将多组应用例1~3制备得到的活塞锻造成型模具组装得到的活塞模具进行自动化热模锻造生产线验证,寿命分别为5000~5500件、6000~6500件以及7000~8000件。
从以上实施例和应用例可以看出,本申请提供的热锻模具钢制备的模具具有很长的使用寿命。
以上所述仅是本申请的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本申请的保护范围。

Claims (10)

  1. 一种热锻模具钢,化学成分按质量百分比计包括:C 0.35~0.41%、Si 0.40~0.60%、Mn 0.40~0.50%、P≤0.025%、S≤0.015%、Cr 4.90~5.10%、Mo 1.5~1.6%、V 0.35~0.40%和余量的Fe。
  2. 根据权利要求1所述的热锻模具钢,其特征在于,化学成分按质量百分比计包括:C 0.36~0.40%、Si 0.45~0.55%、Mn 0.42~0.48%、P≤0.025%、S≤0.015%、Cr 4.95~5.05%、Mo 1.55~1.6%、V 0.36~0.39%和余量的Fe。
  3. 根据权利要求2所述的热锻模具钢,其特征在于,化学成分按质量百分比计包括:C 0.37~0.39%、Si 0.48~0.52%、Mn 0.45~0.47%、P≤0.025%、S≤0.015%、Cr 4.98~5.02%、Mo 1.58~1.6%、V 0.36~0.39%和余量的Fe。
  4. 权利要求1~3任意一项所述热锻模具钢的制备方法,包括以下步骤:
    (1)将合金原料混合后冶炼,得到钢锭;
    (2)将所述步骤(1)得到的钢锭进行热锻,得到锻态合金;
    (3)将所述步骤(2)得到的锻态合金进行球化退火,得到热锻模具钢。
  5. 根据权利要求4所述的制备方法,其特征在于,所述步骤(3)中球化退火为将锻态合金加热后进行第一保温,再经第一冷却后进行 第二保温,最后进行第二冷却。
  6. 根据权利要求5所述的制备方法,其特征在于,所述第一保温的温度为850~870℃,所述第一保温的时间为15~25h。
  7. 根据权利要求5所述的制备方法,其特征在于,所述第二保温的温度为740~760℃,所述第二保温的时间为15~20h。
  8. 一种活塞锻造成型模具的制备方法,其特征在于,包括如下步骤:
    1)将权利要求1~3任意一项所述热锻模具钢或权利要求4~7任意一项所述制备方法制备的热锻模具钢依次进行粗加工、预热处理、淬火、高温回火和精加工,得到模坯;
    2)将所述步骤1)得到的模坯进行表面强化处理,得到活塞锻造成型模具。
  9. 根据权利要求8所述的制备方法,其特征在于,所述步骤2)中表面强化处理包括依次进行的渗氮处理和物理气相沉积处理。
  10. 权利要求8或9所述制备方法制备的活塞锻造成型模具。
PCT/CN2022/108788 2021-08-05 2022-07-29 一种热锻模具钢及其制备方法、活塞锻造成型模具及其制备方法 WO2023011330A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
ZA2022/12794A ZA202212794B (en) 2021-08-05 2022-11-24 Hot-forging die steel and manufacturing method thereof as well as piston forging molding die and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110894658.1 2021-08-05
CN202110894658.1A CN113584394A (zh) 2021-08-05 2021-08-05 一种热锻模具钢及其制备方法、活塞锻造成型模具及其制备方法

Publications (1)

Publication Number Publication Date
WO2023011330A1 true WO2023011330A1 (zh) 2023-02-09

Family

ID=78255246

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/108788 WO2023011330A1 (zh) 2021-08-05 2022-07-29 一种热锻模具钢及其制备方法、活塞锻造成型模具及其制备方法

Country Status (3)

Country Link
CN (1) CN113584394A (zh)
WO (1) WO2023011330A1 (zh)
ZA (1) ZA202212794B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113584394A (zh) * 2021-08-05 2021-11-02 安徽安簧机械股份有限公司 一种热锻模具钢及其制备方法、活塞锻造成型模具及其制备方法
CN114535944B (zh) * 2021-12-15 2022-11-29 河北工业职业技术学院 一种短流程贝氏体热作模具及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060032334A1 (en) * 2004-08-13 2006-02-16 Vip Tooling, Inc., (An Indiana Corporation) Method for manufacturing extrusion die tools
JP2010065280A (ja) * 2008-09-11 2010-03-25 Sumitomo Metal Ind Ltd 熱間加工用金型
CN110699597A (zh) * 2018-07-10 2020-01-17 中国科学院金属研究所 一种热作模具钢及其制备方法
CN113122684A (zh) * 2021-04-25 2021-07-16 中航上大高温合金材料股份有限公司 一种提高模具钢sdh13性能的处理方法
CN113584394A (zh) * 2021-08-05 2021-11-02 安徽安簧机械股份有限公司 一种热锻模具钢及其制备方法、活塞锻造成型模具及其制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT410447B (de) * 2001-10-03 2003-04-25 Boehler Edelstahl Warmarbeitsstahlgegenstand
WO2011048971A1 (ja) * 2009-10-22 2011-04-28 日産自動車株式会社 高強度ボルト用鋼及び高強度ボルトの製造方法
CN104294159B (zh) * 2014-08-25 2016-05-11 张家港市品杰模具材料有限公司 一种塑料模具钢及其制备与热处理工艺
JP6925781B2 (ja) * 2016-03-03 2021-08-25 山陽特殊製鋼株式会社 優れた高温強度および靱性を有する熱間工具鋼
CN109280849A (zh) * 2018-10-26 2019-01-29 如皋市宏茂重型锻压有限公司 一种高性能热作模具钢及其制造工艺

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060032334A1 (en) * 2004-08-13 2006-02-16 Vip Tooling, Inc., (An Indiana Corporation) Method for manufacturing extrusion die tools
JP2010065280A (ja) * 2008-09-11 2010-03-25 Sumitomo Metal Ind Ltd 熱間加工用金型
CN110699597A (zh) * 2018-07-10 2020-01-17 中国科学院金属研究所 一种热作模具钢及其制备方法
CN113122684A (zh) * 2021-04-25 2021-07-16 中航上大高温合金材料股份有限公司 一种提高模具钢sdh13性能的处理方法
CN113584394A (zh) * 2021-08-05 2021-11-02 安徽安簧机械股份有限公司 一种热锻模具钢及其制备方法、活塞锻造成型模具及其制备方法

Also Published As

Publication number Publication date
CN113584394A (zh) 2021-11-02
ZA202212794B (en) 2023-05-31

Similar Documents

Publication Publication Date Title
WO2023011330A1 (zh) 一种热锻模具钢及其制备方法、活塞锻造成型模具及其制备方法
CN1094409C (zh) 变速器齿轮制作方法
CN111575595B (zh) 一种经济型热压铸模具钢及其制备方法
CN109881109B (zh) 一种激光熔覆材料及激光熔覆涂层的制备方法
CN112030073B (zh) 一种含铋易切削预硬型塑料模具钢及其制备方法
CN112828256A (zh) 一种型钢轨梁万能轧机抗热裂铸钢辊环的制备方法
CN111545726A (zh) 一种定向化Ti3SiC2增强镁基复合材料气缸体及其制备方法
CN108070794B (zh) 一种高耐磨热作模具钢及其制备方法
CN111088466A (zh) 一种耐磨钢球抗冲击形变性能增强的加工工艺
CN114535944B (zh) 一种短流程贝氏体热作模具及其制备方法
CN114921620A (zh) 一种挤出模具的加工工艺
CN101623737B (zh) 用表面处理获得的拉伸、成型模具
CN111394660B (zh) 一种穿孔机顶头表面强化方法
CN112795914A (zh) 一种在模具钢表面制备原位自生TiC/NiCrBSi复合涂层的方法
JPH0515935A (ja) 超高温熱間鍛造方法
CN111230430A (zh) 一种轮毂锻件前模的制造工艺
CN111101073A (zh) 一种基于三板模的法兰制备方法
WO1995033080A1 (en) Iron-chromium-boron alloy for glass manufacturing tools
CN111041347B (zh) 连轧辊及其制备方法
CN105586508A (zh) 一种用锌基合金为材料的气缸缸套的制造方法
CN118086822B (zh) 一种具有弧面转角的合金工件的制造方法及其制得的产品
CN114574852B (zh) 一种高温梯度耐磨涂层及其制备和应用
CN109262203A (zh) 一种耐冲击合金工具钢钢球的制备方法
CN113174540B (zh) 一种低成本模具锻钢基体材料、夹心层锻模及其制备方法
CN2607223Y (zh) 球铁齿轮连续铸锻机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22852043

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE