WO2023010990A1 - 一种用于bnct仿真水模内部的热中子通量三维分布测量系统 - Google Patents

一种用于bnct仿真水模内部的热中子通量三维分布测量系统 Download PDF

Info

Publication number
WO2023010990A1
WO2023010990A1 PCT/CN2022/097076 CN2022097076W WO2023010990A1 WO 2023010990 A1 WO2023010990 A1 WO 2023010990A1 CN 2022097076 W CN2022097076 W CN 2022097076W WO 2023010990 A1 WO2023010990 A1 WO 2023010990A1
Authority
WO
WIPO (PCT)
Prior art keywords
water model
bnct
measurement system
neutron flux
thermal neutron
Prior art date
Application number
PCT/CN2022/097076
Other languages
English (en)
French (fr)
Inventor
周斌
梁天骄
陈俊阳
唐彬
陈少佳
王修库
童剑飞
胡志良
傅世年
Original Assignee
散裂中子源科学中心
中国科学院高能物理研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 散裂中子源科学中心, 中国科学院高能物理研究所 filed Critical 散裂中子源科学中心
Publication of WO2023010990A1 publication Critical patent/WO2023010990A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T3/00Measuring neutron radiation
    • G01T3/06Measuring neutron radiation with scintillation detectors

Definitions

  • the invention mainly relates to the technical field of boron neutron capture therapy, in particular to a thermal neutron flux three-dimensional distribution measurement system used inside a BNCT simulation water model.
  • the energy of neutron beams in boron neutron capture therapy (BNCT) devices mainly covers 0.5eV-10keV.
  • the neutrons are captured by the highly enriched boron-10 atoms within the tumor cells, releasing the charged particles and killing the tumor cells.
  • the thermal neutron flux represents the quotient obtained by dividing the number of thermal neutrons injected into a small sphere centered on this point in any direction at a certain point in space in a unit time, divided by the maximum cross-sectional area of the sphere, Its unit is n/cm2/s.
  • the BNCT treatment planning system When carrying out BNCT tumor treatment, the BNCT treatment planning system will combine information such as the distribution of thermal neutron flux in the human body phantom or simulated water phantom, the location of the target area, and the concentration of boron to accurately calculate the treatment time and maximize the treatment time. While protecting normal tissue cells, sufficient radiation dose is given to the target area, so as to achieve the best therapeutic effect.
  • a scanning measurement system is needed to measure and study the three-dimensional spatial distribution of thermal neutron flux in the simulated water model on the BNCT device, and the current BNCT experimental measurement technology mainly focuses on two aspects: One focuses on the concentration value and distribution of boron atoms in the living body.
  • the second aspect is to directly measure the thermal neutron flux distribution in the human body simulation water model, so as to meet the measurement requirements related to QA/QC. Due to the extremely high content of water in living organisms [the proportion of water in brain tissue exceeds 80%], when studying the interaction between BNCT output beams and living organisms, water models with a size similar to the shape of a human head are usually used internationally. substitute.
  • characterizing the beam quality of the BNCT device can be transformed into measuring the distribution of the neutron beam incident on the simulated water model. Since water is a good neutron moderator medium, the epithermal neutrons produced by the BNCT device will be moderated into thermal neutrons when they are incident on the water model. Through the relatively mature thermal neutron measurement technology, the measured neutrons in the simulated water model Therefore, the neutron beam quality of BNCT can be accurately evaluated to a large extent.
  • Most of the existing literature reports use off-line measurement methods (such as gold wire activation method to measure depth distribution, copper foil activation method to measure two-dimensional distribution), these methods cannot display the flux distribution in the simulated water model online in real time.
  • the present invention aims to provide a measurement system for the three-dimensional distribution of thermal neutron flux inside the BNCT simulated water model, which is used for online real-time measurement of boron
  • the technical solution adopted in the present invention is: a thermal neutron flux three-dimensional distribution measurement system used in the BNCT simulation water model, the measurement system mainly includes a three-axis scanning table, a simulation water model, a neutron detector and The remote controller and the neutron detector are connected to the three-axis scanning table, and the detecting end adopts a lithium glass scintillator, and the three-axis scanning table can drive the neutron detector to move.
  • the neutron detector can extend its lithium glass scintillator into the interior of the simulated water model and realize mobile scanning to measure the thermal neutron flux in the simulated water model in real time.
  • the neutron detector is composed of lithium glass scintillator, optical fiber, silicon photomultiplier tube, electronic system and data acquisition and analysis software.
  • the lithium glass scintillator is coated with an optical coupling agent and connected to the optical fiber.
  • the rear end of the lithium glass scintillator is coupled to an optical fiber, and the scintillation light is transmitted to the outside of the simulated water model through the optical fiber for optical signal processing.
  • a layer of optical reflective material is coated on the periphery, and then coated with black organic glue.
  • the silicon photomultiplier tube is used as a photoelectric converter.
  • the electronic system integrates modules such as a charge-sensitive preamplifier, a pulse linear amplifier, an amplitude comparison discriminator, and an analog-to-electrical converter.
  • modules such as a charge-sensitive preamplifier, a pulse linear amplifier, an amplitude comparison discriminator, and an analog-to-electrical converter.
  • the analog-to-electricity converter converts the analog signal into a digital signal for transmission to data acquisition and analysis software for data processing.
  • the data acquisition and analysis software performs acquisition management, distribution configuration and analysis processing on the working parameters converted into digital signals by the electronic system.
  • the abundance of 6 Li in the lithium glass scintillator is 5-10%.
  • the lithium glass scintillator is cut into particles with a volume less than or equal to 4 cubic millimeters.
  • the three-axis scanning table is provided with a workbench, and a simulated water model is arranged on the workbench, and the neutron detector is connected with the three-axis scan table through a scanning connecting rod and installed above the simulated water model.
  • the remote controller is connected with the three-axis scanning platform through the control system.
  • the remote controller is a computer or a mobile phone.
  • the three-axis moving mechanism of the three-axis scanning table is driven by a stepping motor, and the stepping motor drives the three-axis moving mechanism to move in the three directions of X, Y, and Z axes, and the three-axis moving mechanism controls the movement of the scanning connecting rod so that Drive the adjustment movement of the neutron detector.
  • thermal neutron flux three-dimensional distribution measurement system used in BNCT simulation water model performs simulation measurement analysis, it mainly includes the following steps:
  • the three-axis scanning table moves the neutron detector above the simulated water model, and places the lithium glass scintillator at the detection end in the simulated water model;
  • the neutrons generated by BNCT are incident into the simulated water model, and after slowing down, they capture and react with 6 Li in the lithium glass scintillator to generate scintillation light;
  • the optical fiber transmits the flashing light to the silicon photomultiplier tube outside the simulated water model for photoelectric signal conversion
  • the electrical signal of the silicon photomultiplier tube is output to the electronic system for filtering, shaping, processing and amplification;
  • the data acquisition and analysis software acquires and manages the working parameters converted into digital signals by the electronic system, distributes configuration and analyzes and processes them;
  • a thermal neutron flux three-dimensional distribution measurement system for the interior of the BNCT simulated water model provided by the present invention is a thermal neutron flux dedicated to the BNCT beam flowing into the simulated water model.
  • the three-dimensional distribution measurement system has the advantages of real-time display, high precision, high spatial resolution, low cost, convenience and quickness, and saves time and effort. It can be applied to the daily QA/QC practice of BNCT devices. On the one hand, it is used to verify BNCT devices In addition, the present invention is also applicable to BNCT quality control and quality assurance (QA/QC), which can provide favorable guarantee for carrying out precise treatment.
  • QA/QC quality control and quality assurance
  • Fig. 1 is a schematic diagram of the layout structure of the present invention.
  • Fig. 2 is a structural schematic diagram of the neutron detector of the present invention.
  • Fig. 3 is a schematic diagram of the working logic of the neutron detector in the simulated water model of the present invention.
  • a thermal neutron flux three-dimensional distribution measurement system used inside a BNCT simulation water model 2 the measurement system mainly includes a three-axis scanning table 1, a simulation water model 2, a neutron detector 3 and a remote controller.
  • the sub-detector 3 is connected to the three-axis scanning platform 1 and arranged above the simulated water model 2.
  • the detection end of the neutron detector 3 adopts a lithium glass scintillator 31, and the lithium glass scintillator 31 adopts 6 Li;
  • the scintillator 31 is cut into granules with a size less than or equal to 2mm*2mm*1mm;
  • the three-axis scanning table 1 can drive the lithium glass scintillator 31 into the interior of the simulated water model 2 and realize mobile scanning, and measure the water in the simulated water model 2 in real time thermal neutron flux.
  • Described neutron detector 3 is made up of lithium glass scintillator 31, optical fiber 35, silicon photomultiplier tube 36 (SiPM), electronics system 4 and data acquisition analysis software 5; After lithium glass scintillator 31 is coated with optical coupler 33 It is connected with the optical fiber 35, more specifically, the rear end of the lithium glass scintillator 31 is coupled to the optical fiber 35, and the scintillation light is transmitted to the outside of the simulated water model 2 through the optical fiber 35 for optical signal processing; After coating a layer of optical reflective material 32 on the periphery, it is coated with black organic glue 34 .
  • Described silicon photomultiplier tube 36 is used as photoelectric converter; Described electronic system 4 internally integrates modules such as charge-sensitive preamplifier, pulse linear amplifier, amplitude comparison discriminator and analog-to-electricity converter; The converter converts the analog signal into a digital signal for transmission to the data acquisition and analysis software 5 for data processing; the data acquisition and analysis software 5 performs acquisition management, distribution and distribution of the working parameters converted into digital signals by the electronic system 4. Analytical processing.
  • the lithium glass neutron detector used in the present invention 3 On the one hand, it is necessary to reduce the overall size of the lithium glass scintillator 31 in the measurement system as much as possible, so the lithium glass scintillator 31 is cut into particles with a size smaller than or equal to 2mm*2mm*1mm, which reduces its internal thermal neutrons. Convert the total atomic number of the material [ 6 Li atoms], thereby reducing the thermal neutron detection efficiency of the scintillator.
  • the small size design can also bring ideal results for the better spatial resolution of the measurement device, and can further Reduce the sensitivity to gamma rays; on the other hand, it is also necessary to select a scintillator with a natural abundance of 6 Li [7.5%] glass, thereby further reducing the detection efficiency and ensuring that the neutron detector 3 is in a normal pulse working mode;
  • the lithium glass scintillator 31 is purchased from the lithium glass produced by Scintacor Company, the model is GS1, the mass percentage of lithium is 2.4%, and the wavelength of the scintillation light is 395nm.
  • the lithium glass scintillator 31 is cut into Small particles with a size less than or equal to 2mm*2mm*1mm are connected to the optical fiber 35 after applying a small amount of optical coupling agent 33 .
  • the remote controller is connected with the three-axis scanning table 1 through the control system; the remote controller is a computer or a mobile phone; the three-axis scanning table 1 is provided with a workbench, and the workbench is provided with a simulated water model 2.
  • the neutron detector 3 is connected to the three-axis scanning table 1 through the scanning connecting rod 12 and installed on the top of the simulated water model 2; the three-axis moving mechanism of the three-axis scanning table 1 is driven by a stepping motor 11, stepping The motor 11 drives the three-axis moving mechanism to move in the three directions of X, Y, and Z axes.
  • the three-axis moving mechanism controls the movement of the scanning connecting rod 12 to drive the adjustment and movement of the neutron detector 3;
  • the three-axis scanning table 1 is placed in the irradiation room as a whole, connected to the remote controller outside the irradiation room through a network cable, and the moving mechanism on the three-axis scanning table 1 is controlled by the remote controller, and the neutron detector 3 is moved to the simulation room. above the water model 2, and place the lithium glass scintillator 31 at the detection end in the simulated water model 2;
  • the neutrons generated by BNCT are incident into the simulated water model 2, and after moderation, capture reaction occurs with 6 Li in the lithium glass scintillator 31; the neutrons generated by the BNCT are incident into the simulated water model 2, and then react with the lithium glass after being gradually moderated.
  • the 6 Li in the scintillator 31 undergoes a capture reaction, and the reaction releases charged particles to excite the substances in the scintillator to make it emit scintillation light.
  • an optical fiber 35 is coupled at the back end of the scintillator.
  • the optical fiber 35 transmits the flickering light to the silicon photomultiplier tube 36 outside the simulated water model 2 for optical signal processing; the optical fiber 35 is connected with a photoelectric conversion device to convert the flickering light signal into a weak electric signal.
  • the photoelectric conversion device is Silicon photomultiplier tube 36 .
  • the silicon photomultiplier tube 36 outputs the processed optical signal to the electronic system 4 for filtering, shaping, processing and amplification; conventional photomultiplier tubes often have a large end window area, and need to be equipped with a high-voltage power supply of about 1kV.
  • the cross-sectional area of the optical fiber 35 coupled with the small scintillator is small, so the conventional photomultiplier tube solution is abandoned.
  • silicon photomultiplier 36 [SiPM] has the advantages of compact structure, small size, large gain, low operating voltage, and fast time response. It is selected as the photoelectric converter device in the present invention, and it successfully reduces The overall size of the measurement system is reduced, thereby improving portability.
  • the electronic system 4 converts the analog signal into a digital signal, it is processed by the data acquisition and analysis software 5; the electronic system 4 integrates a charge-sensitive preamplifier, a pulse linear amplifier, an amplitude comparison discriminator, and an analog-to-electrical converter (ADC) and other modules, in which the function of the preamplifier is to pre-amplify the electrical signal and realize impedance matching and conversion.
  • the charge-sensitive preamplifier has better voltage amplitude stability, and the pulse linear amplifier further amplifies the electrical signal.
  • the amplitude comparison discriminator eliminates noise signals and gamma signals through the discrimination and comparison of electrical signal amplitudes; the analog-to-electrical converter converts analog signals into digital signals for subsequent Data acquisition and analysis software 5 for processing.
  • the data acquisition and analysis software 5 performs acquisition management, distribution configuration and analysis processing on the working parameters converted into digital signals by the electronic system 4;
  • the main purpose of the data acquisition and analysis software 5 is to provide supporting software for the aforementioned electronic system 4 , the realized functions include: managing and distributing configurations to the working parameters (such as threshold value, working mode, operation control, etc.) , unpacking, analysis and reconstruction, saving, online real-time display of neutron flux, etc.
  • the moving mechanism in the three-axis scanning platform 1 in the present invention is driven by a stepping motor 11, and is connected to a remote controller through a network cable to realize remote control.
  • the remote controller can be a computer or a mobile terminal such as a mobile phone.
  • the operator Placed outside the irradiation room, the operator can remotely control the moving mechanism in the three-axis scanning table 1 in the irradiation room through a remote controller outside the irradiation room when the equipment is in normal operation, and drive the three-axis scanning table 1
  • the movement of the scanning connecting rod 12 is used to drive the movement of the neutron detector 3.
  • the movement stroke of the three-axis scanning table 1 is greater than 200mm*200mm*200mm, and the movement control accuracy is better than 0.1mm.
  • the neutron detector 3 detector of the small-sized lithium glass scintillator 31 is placed inside the simulated water model 2, and its rear end is connected to the optical fiber 35 to The scintillation light signal of the lithium glass scintillator 31 is transmitted, and the weak point signal after photoelectric conversion by the SiPM is processed by the electronic system 4, and then the effective signal is transmitted to the computer outside the irradiation room for display through the network cable.
  • the neutron detector 3 is connected to the scanning connecting rod 12 of the three-axis scanning table 1, and the movement of the three-axis scanning table 1 is controlled by a remote computer, so that the scanning connecting rod 12 also moves at the same time to drive the neutron detector. 3 in order to realize real-time three-dimensional measurement and display of the thermal neutron flux inside the simulated water model 2 in this way.
  • the lithium glass scintillator 31 selected in the embodiment is small in size, and after being coupled with the optical fiber 35, a layer of optical reflective material 32 is applied on the periphery, and then coated with a black organic glue 34, so as to avoid Visible light enters the optical fiber 35 and is transmitted to the SiPM to cause noise counting, and at the same time, it can also play a role of water isolation.
  • the coupling body of the scintillator and the optical fiber 35 is immersed in the water mold and is driven by the scanning connecting rod 12 to move.
  • the scintillator of the neutron detector 3 is purchased from lithium glass of model GS1 produced by Scintacor, the mass percentage of lithium is 2.4%, and the wavelength of the scintillation light is 395nm.
  • the lithium glass scintillator 31 is cut into small particles with a size of 2mm*2mm*1mm, and connected to the optical fiber 35 after applying a small amount of optical coupling agent 33 .
  • the optical fiber 35 is purchased from Mitsubishi Corporation, the model is MH4002-500, the core diameter of the optical fiber 35 is 980 microns, the cladding diameter is 1000 microns, the NA value is 0.3 (650 nm), and the bandwidth is -3 dB.
  • the length of the optical fiber 35 is selected as 200cm, so that the electronic equipment at the back end is far away from the radiation source, and the damage to the electronic equipment caused by the BNCT high-flux neutron beam is avoided.
  • the optoelectronic device SiPM is purchased from Sensl Company, the model is MicroFC30035, its photon detection efficiency is 28%, and the gain is 2.8E+5A/W.
  • the three-dimensional scanning table drives the coupling body of lithium glass scintillator 31 and optical fiber 35 to scan inside the water film, the three-axis motion stroke is greater than 200mm*200mm*200mm, the motion control accuracy is better than 0.1mm, and the driving stepper motor 11 is 57 series stepper Into the motor 11, the operating speed can be selected, and the optional speed range is 10-70mm/s.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Measurement Of Radiation (AREA)

Abstract

一种用于BNCT仿真水模内部的热中子通量三维分布测量系统,所述的测量系统主要包括三轴扫描台、仿真水模、中子探测器和远程控制器,中子探测器连接在三轴扫描台上其探测端采用锂玻璃闪烁体。三轴扫描台可带动锂玻璃闪烁体伸入仿真水模内部并实现移动扫描,实时测量仿真水模中的热中子通量;本发明一方面用于验证BNCT装置的整体设计可靠性,另外,本发明还适用于BNCT质量控制与质量保证(QA/QC),可为开展精准治疗提供有利保障。

Description

一种用于BNCT仿真水模内部的热中子通量三维分布测量系统
本申请要求于2021年8月3日提交中国专利局、申请号为202110887639.6、发明名称为“一种用于BNCT仿真水模内部的热中子通量三维分布测量系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明主要涉及硼中子俘获治疗技术领域,尤指一种用于BNCT仿真水模内部的热中子通量三维分布测量系统。
背景技术
目前,硼中子俘获治疗(BNCT)装置治疗中子束的能量主要覆盖0.5eV-10keV,入射人体后,这些超热中子与浅表组织内C、H、O等原子核相互作用转换成热中子,继而被肿瘤细胞内富集程度高的硼-10原子俘获,释放出带电粒子并杀死肿瘤细胞。热中子通量表示了在空间一个确定点位置上,在单位时间内不论以任何方向射入以该点为中心的小球体的热中子数目除以该球体的最大截面积所得的商,其单位是n/cm2/s。在开展BNCT肿瘤治疗时,BNCT治疗计划系统会结合热中子通量在人体体模或者仿真水模内分布情况、靶区所在位置以及含硼浓度等信息,精准计算治疗时间,在最大程度上保护正常组织细胞的同时又给予靶区足够的辐射剂量,从而 达到最佳治疗效果。
基于此,在实际应用中,需要一种用在BNCT装置上测量研究热中子通量在仿真水模内的三维空间分布的扫描测量系统,而目前BNCT实验测量技术主要集中于两个方面:其一重点关注硼原子在生物体内浓度值及其分布,诸多专利和文献集中于这一问题进行技术开发,其中主要采用PET、CT等医学仪器设备来进行测量研究;还有少量报道记录了采用闪烁体阵列耦合光纤探测待治疗生物体内硼原子与中子相互作用所释放出的具有特征能量的伽玛射线,并以此推导生命体内硼浓度及其分布的相关技术;采用固体径迹探测器对中子与硼原子反应释放出的α和7Li粒子进行小范围区域成像从而得到硼浓度及其分布的相关技术。第二个方面,主要针对BNCT质量控制与质量保证(QA/QC)所进行的技术开发。在日常开展BNCT治疗前,通常需要对BNCT装置输出的中子束流品质进行严格的、高准确性的测量,如此以确保BNCT装置实际产生中子与治疗计划系统所使用的中子源项保持高度一致。然而,用于BNCT的QA/QC相关技术当前未见有专利报道,仅有诸多科技论文对它进行大量讨论。调研表明,这些论文主要研究两个方面,其一是在BNCT束流引出孔位置直接开展中子学参数测量,主要测量对象为出口位置的中子能谱及通量等。然而,如上文所述,BNCT所产生中子大部分是能量覆盖0.5eV-10keV的超热中子束,现有中子探测技术对这个能量区间的中子能谱的直接测量尚存在较大困难,测量所引入的误差通常较大。不少文献记载了针对BNCT产生中子的间接测量方案,在实施时,先采用诸如聚乙烯、水等含氢比例较大的材料将装置输出的超热中子慢化成能量相对更低的热中子,其后采用现有的、较为成熟的热中子探测技术测量热中 子通量,再通过反演算法得到超热中子能谱。然而,这种间接测量过程往往要借助先验的仿真模拟信息,其测量精度十分有限,因此,在引出孔直接开展QA/QC的技术手段目前难以妥善满足高精度测量的刚性需求。第二个方面,是通过直接测量人体仿真水模中的热中子通量分布,从而达到QA/QC相关测量需求。由于水在生物体的含量极高[大脑组织中水的比重超过了80%],在研究BNCT产出束流与生命体相互作用时,国际上通常使用尺寸与人体头型近似的水模进行替代。如此,表征BNCT装置束流品质可转换为测量中子束入射到仿真水模后的分布来展现。由于水是很好的中子慢化介质,BNCT装置产出的超热中子入射到水模中会被慢化成热中子,通过较为成熟的热中子测量技术,测量仿真水模中通量分布,从而可以在很大程度上准确评估BNCT中子束流品质。现有文献报道的大多数采用了离线测量方法(如金丝活化法测量深度分布,铜箔活化法测量二维分布),这些方法不能实时在线展示仿真水模内的通量分布。
综上,目前尚无任何技术、专利或论文报道可实时测量仿真水模内热中子通量三维分布的技术手段。
发明内容
为了填补可实时测量仿真水模内热中子通量三维分布的技术空白,本发明旨在提供一种用于BNCT仿真水模内部的热中子通量三维分布测量系统,用于在线实时测量硼中子俘获治疗装置输出治疗束流入射人体仿真水模所引起的热中子通量三维分布。
本发明所采用的技术方案是:一种用于BNCT仿真水模内部的热中子通 量三维分布测量系统,所述的测量系统主要包括三轴扫描台、仿真水模、中子探测器和远程控制器,中子探测器连接在三轴扫描台上其探测端采用锂玻璃闪烁体,三轴扫描台可带动中子探测器移动。
所述的中子探测器在三轴扫描台的带动下,其锂玻璃闪烁体可伸入仿真水模内部并实现移动扫描,实时测量仿真水模中的热中子通量。
所述的中子探测器由锂玻璃闪烁体、光纤、硅光电倍增管、电子学系统以及数据获取分析软件组成。
所述的锂玻璃闪烁体涂抹光学耦合剂后与光纤连接。
所述的锂玻璃闪烁体后端耦合光纤,通过光纤将闪烁光传输至仿真水模外部进行光信号处理。
所述的锂玻璃闪烁体与光纤耦合后在外围涂抹一层光学反射材料后,采用黑色有机胶进行包覆。
所述的硅光电倍增管作为光电转换器。
所述的电子学系统内部集成了电荷灵敏前置放大器、脉冲线性放大器、幅度比较甄别器和模电转换器等模块。
所述的模电转换器将模拟信号转换为数字信号用于传输至数据获取分析软件进行数据处理。
所述的数据获取分析软件对电子学系统转化成数字信号的工作参数进行获取管理、下发配置和分析处理。
所述的锂玻璃闪烁体中的 6Li丰度为5-10%。
所述的锂玻璃闪烁体切割成体积小于或等于4立方毫米的颗粒状。
所述的三轴扫描台上设置有工作台,工作台上设置有仿真水模,中子探测器通过扫描连接杆与三轴扫描台连接安装在仿真水模的上方。
所述的远程控制器通过控制系统与三轴扫描台连接。
所述的远程控制器为电脑或手机。
所述的三轴扫描台的三轴移动机构采用步进电机驱动,步进电机驱动三轴移动机构在X、Y、Z轴三个方向上的移动,三轴移动机构控制扫描连接杆移动从而带动中子探测器的调节移动。
一种用于BNCT仿真水模内部的热中子通量三维分布测量系统进行模拟测量分析时,主要包括以下步骤:
S1、三轴扫描台将中子探测器移至仿真水模上方,并将探测端的锂玻璃闪烁体放置于仿真水模内;
S2、BNCT产生中子入射到仿真水模内,慢化后与锂玻璃闪烁体中的 6Li发生俘获反应,产生闪烁光;
S3、光纤将闪烁光传输至仿真水模外部的硅光电倍增管进行光电信号转换;
S4、硅光电倍增管电信号输出至电子学系统进行滤波、成形、处理和放大;
S5、电子学系统将模拟信号转换为数字信号后,由数据获取分析软件进行处理;
S6;数据获取分析软件对电子学系统转化成数字信号的工作参数进行获取管理、下发配置和分析处理;
S7、通过远程控制器控制三轴扫描台在XYZ轴向的移动,带动中子探测器的移动,使得中子探测器体能在仿真水模中移动扫描测量热中子通量,且实现实时可视化显示。
本发明的有益效果是:本发明提供的一种用于BNCT仿真水模内部的热 中子通量三维分布测量系统,是一种专用于BNCT束流入射到仿真水模内部的热中子通量三维分布测量系统,具有可实时显示、高精度、高空间分辨率、成本低廉、方便快捷、省时省力的优点,可应用于BNCT装置日常QA/QC实践中,一方面用于验证BNCT装置的整体设计可靠性,另外,本发明还适用于BNCT质量控制与质量保证(QA/QC),可为开展精准治疗提供有利保障。
附图说明
图1是本发明的布局结构示意图。
图2是本发明中中子探测器的结构示意图。
图3是本发明中中子探测器在仿真水模内的工作逻辑示意图。
附图标注说明:1-三轴扫描台,11-伺服电机,12-扫描连接杆,2-仿真水模,3-中子探测器,31-锂玻璃闪烁体,32-反射材料,33-光学耦合剂,34-有机胶,35-光纤,36-硅光电倍增管,4-电子学系统,5-数据获取分析软件。
具体实施方式
一种用于BNCT仿真水模2内部的热中子通量三维分布测量系统,所述的测量系统主要包括三轴扫描台1、仿真水模2、中子探测器3和远程控制器,中子探测器3连接在三轴扫描台1上并设置在仿真水模2上方,中子探测器3的探测端采用锂玻璃闪烁体31,所述的锂玻璃闪烁体31采用 6Li;锂玻璃闪烁体31切割成尺寸小于或等于2mm*2mm*1mm的颗粒状;三轴扫描台1可带动锂玻璃闪烁体31伸入仿真水模2内部并实现移动扫描,实时测 量仿真水模2中的热中子通量。
所述的中子探测器3由锂玻璃闪烁体31、光纤35、硅光电倍增管36(SiPM)、电子学系统4以及数据获取分析软件5组成;锂玻璃闪烁体31涂抹光学耦合剂33后与光纤35连接,更具体的是锂玻璃闪烁体31后端耦合光纤35,通过光纤35将闪烁光传输至仿真水模2外部进行光信号处理;同时锂玻璃闪烁体31与光纤35耦合后在外围涂抹一层光学反射材料32后,采用黑色有机胶34进行包覆。
所述的硅光电倍增管36作为光电转换器;所述的电子学系统4内部集成了电荷灵敏前置放大器、脉冲线性放大器、幅度比较甄别器和模电转换器等模块;所述的模电转换器将模拟信号转换为数字信号用于传输至数据获取分析软件5进行数据处理;所述的数据获取分析软件5对电子学系统4转化成数字信号的工作参数进行获取管理、下发配置和分析处理。
由于BNCT装置输出的中子通量往往较高,通常可以达到1E+09n/cm 2/s的水平,为了避免脉冲堆积所带来的较大误差,本发明中采用的锂玻璃中子探测器3一方面需要尽可能减小测量系统中锂玻璃闪烁体31的整体尺寸,所以将锂玻璃闪烁体31切割成尺寸小于或等于2mm*2mm*1mm的颗粒状,这样降低了其内部热中子转换材料[ 6Li原子]的总原子数量,从而降低闪烁体的热中子探测效率,另外,小尺寸设计同时也能为测量装置实现较优空间分辨率带来较为理想的效果,还能进一步降低对伽玛射线的灵敏度;另一方面,还需选择具有天然丰度 6Li[7.5%]玻璃的闪烁体,从而进一步降低探测效率,确保中子探测器3处于正常的脉冲工作模式下;本发明中,锂玻璃闪烁体31采购于由Scintacor公司生产、型号为GS1的锂玻璃,锂质量百分比为2.4%,闪烁光的波长为395nm,为了满足使用要求,锂玻璃 闪烁体31被切割成尺寸为小于或等于2mm*2mm*1mm的小颗粒,通过涂抹少量光学耦合剂33后与光纤35连接。
所述的远程控制器通过控制系统与三轴扫描台1连接;所述的远程控制器为电脑或手机;所述的三轴扫描台1上设置有工作台,工作台上设置有仿真水模2,中子探测器3通过扫描连接杆12与三轴扫描台1连接安装在仿真水模2的上方;所述的三轴扫描台1的三轴移动机构采用步进电机11驱动,步进电机11驱动三轴移动机构在X、Y、Z轴三个方向上的移动,三轴移动机构控制扫描连接杆12移动从而带动中子探测器3的调节移动;采用一种用于BNCT仿真水模2内部的热中子通量三维分布测量系统进行模拟测量分析时,主要包括以下步骤:
S1、三轴扫描台1整个放置在辐照室内,通过网线与辐照室外的远程控制器连接,通过远程控制器控制三轴扫描台1上的移动机构,将中子探测器3移至仿真水模2上方,并将探测端的锂玻璃闪烁体31放置于仿真水模2内;
S2、BNCT产生中子入射到仿真水模2内,慢化后与锂玻璃闪烁体31中的 6Li发生俘获反应;BNCT产生中子入射到仿真水模2内,逐步慢化后与锂玻璃闪烁体31中的 6Li发生俘获反应,该反应释放出带电粒子激发闪烁体中的物质使其发出闪烁光,由于闪烁体置于仿真水模2内部,为了避免光电器件与水接触发生短路,以及高强度中子束流激发光电器件辐照效应带来的性能降低,在闪烁体后端耦合了光纤35。
S3、光纤35将闪烁光传输至仿真水模2外部的硅光电倍增管36进行光信号处理;光纤35后接光电转换设备后将闪烁光信号转换为弱电信号,在本发明中光电转换设备为硅光电倍增管36。
S4、硅光电倍增管36将处理后的光信号输出至电子学系统4进行滤波、成形、处理和放大;常规光电倍增管往往具有较大端窗面积,需要配置约1kV的高压电源,在本发明中,小尺寸闪烁体耦合的光纤35的截面积较小,因此放弃了常规光电倍增管方案。相比之下,硅光电倍增管36[SiPM]具有结构紧凑、体积小、增益大、工作电压较低、时间响应快等优点,在本发明中将它选用为光电转换器设备,它成功降低了测量系统的整体尺寸,从而提高了便携能力。
S5、电子学系统4将模拟信号转换为数字信号后,由数据获取分析软件5进行处理;电子学系统4内部集成了电荷灵敏前置放大器、脉冲线性放大器、幅度比较甄别器和模电转换器(ADC)等模块,其中前置放大器的作用是对电信号进行预放大,并实现阻抗匹配及转换,电荷灵敏前置放大器具有较优的电压幅度稳定性,脉冲线性放大器对电信号进行进一步的放大并对前置放大器形成的少量堆积信号进行成形处理;幅度比较甄别器通过电信号幅度的判别和比较剔除噪声信号和伽玛信号;模电转换器将模拟信号转换为数字信号用于后续的数据获取分析软件5进行处理。
S6;数据获取分析软件5对电子学系统4转化成数字信号的工作参数进行获取管理、下发配置和分析处理;数据获取分析软件5的主要用途是为前述的电子学系统4提供配套的软件,实现的功能包括:对电子学系统4的工作参数(例如阈值、工作模式、运行控制等)进行管理和下发配置,同时也要把电子学系统4上传的中子事例数据进行接收、缓存、解包、分析与重建、保存、中子通量在线实时显示等。
S7、通过远程控制器控制三轴扫描台1在XYZ轴向的移动,带动中子探测器3的移动,使得中子探测器3体能在仿真水模2中移动扫描测量热 中子通量,且实现实时可视化显示;哥哥们具体的是通过远程控制器控制三轴扫描台1的移动机构在XYZ轴向的移动,以带动中子探测器3的移动,并通过调试三轴扫描台1的位置实现调试中子探测器3的位置,使得中子探测器3探测端的锂玻璃闪烁体31能伸入仿真水模2内,实现移动扫描,实际上是通过锂玻璃闪烁体31、光纤35、硅光电倍增管36、电子学系统4及数据获取分析软件5所构成的中子探测器3体系能实现实时测量仿真水模2中热中子通量,且实现实时可视化显示。
本发明中的三轴扫描台1中的移动机构,是采用步进电机11驱动,通过网线与远程控制器连接以实现远距离控制,远程控制器可以是电脑,也可以是手机等移动终端,放置于辐照室外,操作人员可在设备正常运行情况下在辐照室外面通过远程控制器对辐照室内的三轴扫描台1中的移动机构进行远程控制,驱动三轴扫描台1中的扫描连接杆12的移动,以带动中子探测器3的移动,三轴扫描台1的运动行程大于200mm*200mm*200mm,运动控制精度优于0.1mm。
在使用本发明进行热中子通量三维分布测量系统进行模拟测量分析时,小尺寸锂玻璃闪烁体31的中子探测器3探测器置于仿真水模2内部,其后端连接光纤35将锂玻璃闪烁体31的闪烁光信号进行传输,SiPM进行光电转换后的弱点信号被电子学系统4处理后通过网线将有效信号传输至辐照室外面的电脑进行显示。与此同时,中子探测器3与三轴扫描台1的扫描连接杆12连接,通过远端电脑控制三轴扫描台1的运动,使得扫描连接杆12也同时运动,以带动中子探测器3的运动,以此方式实现对仿真水模2内部热中子通量的实时三维测量和显示。
在具体实施本发明时,实施例中所选用的锂玻璃闪烁体31尺寸小,与 光纤35耦合后在外围涂抹一层光学反射材料32后,采用黑色有机胶34进行包覆,如此一方面避免可见光进入光纤35传输到SiPM造成噪声计数,同时还能起到隔水作用。闪烁体和光纤35耦合体浸泡于水模内部并由扫描连接杆12驱动其运动。中子探测器3的闪烁体采购于由Scintacor公司生产、型号为GS1的锂玻璃,锂质量百分比为2.4%,闪烁光的波长为395nm。为了满足使用要求,锂玻璃闪烁体31被切割成尺寸为2mm*2mm*1mm的小颗粒,通过涂抹少量光学耦合剂33后与光纤35连接。光纤35采购于由三菱公司生产、型号为MH4002-500,光纤35核心直径980微米,包裹层直径1000微米,NA值为0.3(650nm),带宽为-3dB。光纤35长度选为200cm,使后端的电子设备远离辐射源,避免了BNCT高通量中子束流对电子设备造成破坏。光电器件SiPM采购于Sensl公司生产、型号为MicroFC30035,其光子探测效率为28%,增益为2.8E+5A/W。三维扫描台驱动锂玻璃闪烁体31与光纤35耦合体在水膜内部扫描运动,三轴运动行程大于200mm*200mm*200mm,运动控制精度优于0.1mm,驱动的步进电机11为57系列步进电机11,运行速度可供选择,可选速度范围为10-70mm/s。
以上所述,仅是本发明的较佳实施例,并非对本发明的技术范围作任何限制,本行业的技术人员,在本技术方案的启迪下,可以做出一些变形与修改,凡是依据本发明的技术实质对以上的实施例所作的任何修改、等同变化与修饰,均仍属于本发明技术方案的范围内。

Claims (17)

  1. 一种用于BNCT仿真水模内部的热中子通量三维分布测量系统,其特征在于:所述的测量系统主要包括三轴扫描台、仿真水模、中子探测器和远程控制器,中子探测器连接在三轴扫描台上其探测端采用锂玻璃闪烁体,三轴扫描台可带动中子探测器移动。
  2. 根据权利要求1所述的一种用于BNCT仿真水模内部的热中子通量三维分布测量系统,其特征在于:所述的中子探测器在三轴扫描台的带动下,其锂玻璃闪烁体可伸入仿真水模内部并实现移动扫描,实时测量仿真水模中的热中子通量。
  3. 根据权利要求1所述的一种用于BNCT仿真水模内部的热中子通量三维分布测量系统,其特征在于:所述的中子探测器由锂玻璃闪烁体、光纤、硅光电倍增管、电子学系统以及数据获取分析软件组成。
  4. 根据权利要求3所述的一种用于BNCT仿真水模内部的热中子通量三维分布测量系统,其特征在于:所述的锂玻璃闪烁体涂抹光学耦合剂后与光纤连接。
  5. 根据权利要求1或2或3或4所述的一种用于BNCT仿真水模内部的热中子通量三维分布测量系统,其特征在于:所述的锂玻璃闪烁体后端耦合光纤,通过光纤将闪烁光传输至仿真水模外部进行光信号处理。
  6. 根据权利要4所述的一种用于BNCT仿真水模内部的热中子通量三维分布测量系统,其特征在于:所述的锂玻璃闪烁体与光纤耦合后在外围涂抹一层光学反射材料后,采用黑色有机胶进行包覆。
  7. 根据权利要求3所述的一种用于BNCT仿真水模内部的热中子通量三维分布测量系统,其特征在于:所述的硅光电倍增管作为光电转换器。
  8. 根据权利要求3所述的一种用于BNCT仿真水模内部的热中子通量三维分布测量系统,其特征在于:所述的电子学系统内部集成了电荷灵敏前置放大器、脉冲线性放大器、幅度比较甄别器和模电转换器等模块。
  9. 根据权利要求8所述的一种用于BNCT仿真水模内部的热中子通量三维分布测量系统,其特征在于:所述的模电转换器将模拟信号转换为数字信号用于传输至数据获取分析软件进行数据处理。
  10. 根据权利要求3所述的一种用于BNCT仿真水模内部的热中子通量三维分布测量系统,其特征在于:所述的数据获取分析软件对电子学系统转化成数字信号的工作参数进行获取管理、下发配置和分析处理。
  11. 根据权利要求1或2或3或4所述的一种用于BNCT仿真水模内部的热中子通量三维分布测量系统,其特征在于:所述的锂玻璃闪烁体中的 6Li丰度为5-10%。
  12. 根据权利要求1或2或3或4所述的一种用于BNCT仿真水模内部的热中子通量三维分布测量系统,其特征在于:所述的锂玻璃闪烁体切割成尺寸小于或等于4立方毫米的颗粒状。
  13. 根据权利要求1所述的一种用于BNCT仿真水模内部的热中子通量三维分布测量系统,其特征在于:所述的三轴扫描台上设置有工作台,工作台上设置有仿真水模,中子探测器通过扫描连接杆与三轴扫描台连接安装在仿真水模的上方。
  14. 根据权利要求1所述的一种用于BNCT仿真水模内部的热中子通量三维分布测量系统,其特征在于:所述的远程控制器通过控制系统与三轴扫描台连接。
  15. 根据权利要求14所述的一种用于BNCT仿真水模内部的热中子通 量三维分布测量系统,其特征在于:所述的远程控制器为电脑或手机。
  16. 根据权利要求1所述的一种用于BNCT仿真水模内部的热中子通量三维分布测量系统,其特征在于:所述的三轴扫描台的三轴移动机构采用步进电机驱动,步进电机驱动三轴移动机构在X、Y、Z轴三个方向上的移动,三轴移动机构控制扫描连接杆移动从而带动中子探测器的调节移动。
  17. 采用如权利要求1所述的一种用于BNCT仿真水模内部的热中子通量三维分布测量系统进行模拟测量分析时,其特征在于:主要包括以下步骤:
    S1、三轴扫描台将中子探测器移至仿真水模上方,并将探测端的锂玻璃闪烁体放置于仿真水模内;
    S2、BNCT产生中子入射到仿真水模内,慢化后与锂玻璃闪烁体中的 6Li发生俘获反应,产生闪烁光;
    S3、光纤将闪烁光传输至仿真水模外部的硅光电倍增管进行光电信号转换;
    S4、硅光电倍增管电信号输出至电子学系统进行滤波、成形、处理和放大;
    S5、电子学系统将模拟信号转换为数字信号后,由数据获取分析软件进行处理;
    S6;数据获取分析软件对电子学系统转化成数字信号的工作参数进行获取管理、下发配置和分析处理;
    S7、通过远程控制器控制三轴扫描台在XYZ轴向的移动,带动中子探测器的移动,使得中子探测器体能在仿真水模中移动扫描测量热中子通量,且实现实时可视化显示。
PCT/CN2022/097076 2021-08-03 2022-06-06 一种用于bnct仿真水模内部的热中子通量三维分布测量系统 WO2023010990A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110887639.6 2021-08-03
CN202110887639.6A CN113640856A (zh) 2021-08-03 2021-08-03 一种用于bnct仿真水模内部的热中子通量三维分布测量系统

Publications (1)

Publication Number Publication Date
WO2023010990A1 true WO2023010990A1 (zh) 2023-02-09

Family

ID=78419507

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/097076 WO2023010990A1 (zh) 2021-08-03 2022-06-06 一种用于bnct仿真水模内部的热中子通量三维分布测量系统

Country Status (2)

Country Link
CN (1) CN113640856A (zh)
WO (1) WO2023010990A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113640856A (zh) * 2021-08-03 2021-11-12 散裂中子源科学中心 一种用于bnct仿真水模内部的热中子通量三维分布测量系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101285887A (zh) * 2008-05-24 2008-10-15 中国科学院近代物理研究所 重离子束治癌当中剂量监测探测器标定和校准装置及方法
CN105056407A (zh) * 2015-09-02 2015-11-18 戴建荣 测量复杂/动态剂量场的四维自动扫描方法及水箱系统
JP2016166777A (ja) * 2015-03-09 2016-09-15 住友重機械工業株式会社 中性子線測定用ファントム装置
CN107957589A (zh) * 2017-11-27 2018-04-24 中核控制系统工程有限公司 一种锂玻璃探测器及应用该探测器的直读式中子剂量计
CN113640856A (zh) * 2021-08-03 2021-11-12 散裂中子源科学中心 一种用于bnct仿真水模内部的热中子通量三维分布测量系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105445777B (zh) * 2015-12-01 2018-06-05 南京航空航天大学 一种硼中子俘获治疗剂量测量方法
CN112415561A (zh) * 2016-06-01 2021-02-26 南京中硼联康医疗科技有限公司 辐射剂量测量方法
CN110824543A (zh) * 2019-11-20 2020-02-21 中国科学院高能物理研究所 便携式单球中子谱仪
JP7430057B2 (ja) * 2019-12-25 2024-02-09 住友重機械工業株式会社 校正装置、治療計画装置及び校正方法
CN112885498A (zh) * 2021-01-30 2021-06-01 散裂中子源科学中心 一种用于bnct的便于更换中子引出孔道形状和尺寸的准直器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101285887A (zh) * 2008-05-24 2008-10-15 中国科学院近代物理研究所 重离子束治癌当中剂量监测探测器标定和校准装置及方法
JP2016166777A (ja) * 2015-03-09 2016-09-15 住友重機械工業株式会社 中性子線測定用ファントム装置
CN105056407A (zh) * 2015-09-02 2015-11-18 戴建荣 测量复杂/动态剂量场的四维自动扫描方法及水箱系统
CN107957589A (zh) * 2017-11-27 2018-04-24 中核控制系统工程有限公司 一种锂玻璃探测器及应用该探测器的直读式中子剂量计
CN113640856A (zh) * 2021-08-03 2021-11-12 散裂中子源科学中心 一种用于bnct仿真水模内部的热中子通量三维分布测量系统

Also Published As

Publication number Publication date
CN113640856A (zh) 2021-11-12

Similar Documents

Publication Publication Date Title
US5006714A (en) Scintillator dosimetry probe
CN102764138B (zh) 一种多模态小动物分子影像成像装置及成像方法
US11684328B2 (en) Proton imaging system for optimization of proton therapy
WO2023010990A1 (zh) 一种用于bnct仿真水模内部的热中子通量三维分布测量系统
Andersen Fiber‐coupled luminescence dosimetry in therapeutic and diagnostic radiology
Rodrigues et al. Geant4 applications and developments for medical physics experiments
CN106855522A (zh) 白光中子成像方法及采用其的材料组成无损检测方法
CN217181254U (zh) 一种热中子通量三维分布测量系统的中子探测器
CN114534117A (zh) 中子捕获治疗设备
CN111968768A (zh) 基于主动中子空间强度分布的核燃料燃耗深度测量装置及测量方法
Chen et al. Evaluation of neutron beam characteristics for D-BNCT01 facility
Watanabe Applications of scintillators in optical-fiber-based detectors
CN214586023U (zh) 一种基于远程无线通信的伽马剂量监测装置
Bottura et al. Delivery, beam and range monitoring in particle therapy in a highly innovative integrated design
Acerbi et al. NP06/ENUBET Annual Report 2022 for the SPSC
CN2684211Y (zh) 一种核医学成像设备的射线探测器
CN2389619Y (zh) 一种新型的射线探测装置
CN113917518A (zh) 测量硼中子俘获治疗照射束不同辐射成分空间分布的装置
KR102388907B1 (ko) 즉발 감마선영상 및 양전자방출단층영상을 이용한 체내 양성자 선량분포 측정장치의 제어모듈
CN217133005U (zh) 一种多模式的康普顿成像检测装置
Nakamura et al. Characteristics of radiation-resistant real-time neutron monitor for accelerator-based BNCT
Koybasi et al. Development of a 2D scintillating fiber detector for proton radiography
Sperinde et al. Techniques for mapping the spatial distribution of stopping π− mesons in tissue
Kapusta et al. The LSO/APD array as a possible detector for in-beam PET in hadron therapy
Jin et al. Application of In-beam Activation Analysis in Elemental Distribution Analysis

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22851706

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE