WO2023010939A1 - 一种电动汽车质量的动态计算方法及装置 - Google Patents

一种电动汽车质量的动态计算方法及装置 Download PDF

Info

Publication number
WO2023010939A1
WO2023010939A1 PCT/CN2022/092589 CN2022092589W WO2023010939A1 WO 2023010939 A1 WO2023010939 A1 WO 2023010939A1 CN 2022092589 W CN2022092589 W CN 2022092589W WO 2023010939 A1 WO2023010939 A1 WO 2023010939A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
resistance
car
work
total
Prior art date
Application number
PCT/CN2022/092589
Other languages
English (en)
French (fr)
Inventor
刘伟锋
Original Assignee
刘伟锋
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 刘伟锋 filed Critical 刘伟锋
Priority to US18/064,466 priority Critical patent/US20230392975A2/en
Publication of WO2023010939A1 publication Critical patent/WO2023010939A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01GWEIGHING
    • G01G19/00Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups
    • G01G19/08Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups for incorporation in vehicles
    • G01G19/086Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups for incorporation in vehicles wherein the vehicle mass is dynamically estimated
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the invention relates to the technical field of transportation, in particular to a method and device for dynamically calculating the mass of an electric vehicle.
  • BEV Electric vehicles
  • vehicle-mounted power supplies driven by motors to drive wheels, and meeting the requirements of road traffic and safety regulations. Because they have less impact on the environment than traditional vehicles, their prospects are widely optimistic.
  • the principle is roughly as follows: battery (for example: battery, fuel cell, etc.) - current - power regulator - electric motor - power transmission system - driving the car (Road).
  • the current method of testing the quality of electric vehicles is: weighing scale
  • the weight method or the vehicle chassis deformation measurement vehicle weight method, the vehicle load detection method installs a height sensor on the vehicle suspension to detect the deformation of the suspension after compression, and then calculates the suspension by combining the pressure deformation curve and tilt compensation.
  • the weighing place of the former is limited, and it can only be weighed at a place with floor scales, and the weight of the vehicle can only be weighed statically, which is inconvenient. The latter is expensive to install and the detection accuracy is not very high.
  • the present invention proposes a dynamic calculation method and device for electric vehicle quality, which can dynamically know the quality of electric vehicles in real time, and has high measurement accuracy and low cost.
  • a method for dynamically calculating the mass of an electric vehicle comprising the steps of:
  • state data within the time period of acceleration of the vehicle to be measured, the state data including time, speed, height, acceleration of gravity, effective driving power and resistance power;
  • the state data information calculate the total output work, the total resistance work, the total change of potential energy and the change of kinetic energy of the vehicle to be measured during the acceleration time period;
  • the mass of the vehicle to be measured is calculated.
  • the total change in potential energy ⁇ Eh of the vehicle to be measured is :
  • M car the mass of the vehicle
  • g the acceleration of gravity
  • ⁇ h car the height difference between the center of gravity of the vehicle at time t1 and time t2
  • v1 the speed of the vehicle at the beginning of t1
  • v2 the speed of the vehicle at the end of t2 (v2>v1)
  • W drive motor W resistance + (M car * g * ⁇ h car ) + 1/2 * M car * (v2*v2-v1*v1)
  • M car ((W drive motor -W resistance )*2)/(2*g* ⁇ h car +v2*v2-v1*v1)
  • the total resistance work includes the sum of the resistance work of the transmission system and the vehicle running resistance work.
  • both the transmission system resistance work and the vehicle running resistance work are obtained through real vehicle tests.
  • a dynamic calculation device for electric vehicle quality comprising:
  • An acquisition module configured to acquire state data during the acceleration time period of the vehicle to be measured, and send it to the processing device, the state data including time, speed, height, acceleration of gravity, effective driving power and resistance power;
  • the processing module is used to calculate the total output work, the total resistance work, the total change in potential energy and the change in kinetic energy of the vehicle to be measured during the acceleration time period based on the state data information;
  • the total output work is equal to the sum of the total resistance work, the potential energy change of the vehicle at height, and the kinetic energy change of the vehicle, and the mass of the vehicle to be measured is calculated.
  • the total change in potential energy ⁇ Eh of the vehicle to be measured is :
  • M car the mass of the vehicle
  • g the acceleration of gravity
  • ⁇ h car the height difference between the center of gravity of the vehicle at time t1 and time t2
  • v1 the speed of the vehicle at the beginning of t1
  • v2 the speed of the vehicle at the end of t2 (v2>v1)
  • W drive motor W resistance + (M car * g * ⁇ h car ) + 1/2*M car *(v2*v2-v1*v1)
  • M car ((W drive motor -W resistance )*2)/(2*g* ⁇ h car +v2*v2-v1*v1)
  • the total resistance work includes the sum of the resistance work of the transmission system and the vehicle running resistance work.
  • both the transmission system resistance work and the vehicle running resistance work are obtained through real vehicle tests.
  • beneficial effect of the present invention is:
  • the electric vehicle is first placed above a suitable open space, the vehicle mass calculation module assembly is installed above the electric vehicle, and then the drive motor is started for a period of time to accelerate the electric vehicle for a certain distance.
  • the vehicle mass calculation module assembly is installed above the electric vehicle, and then the drive motor is started for a period of time to accelerate the electric vehicle for a certain distance.
  • wheels, drive motor Through the electric vehicle, wheels, drive motor,
  • the cooperation between the vehicle mass calculation module assembly and the automobile bus interface can obtain various state values of the electric vehicle, and the vehicle mass can be calculated conveniently and quickly through the obtained state values.
  • the real-time quality of the vehicle can also be measured during daily driving, and the measurement is convenient and fast with high measurement accuracy.
  • the present invention requires less additional hardware and has low installation cost, which can be realized by upgrading relevant software, and the implementation cost is low.
  • Fig. 1 is a kind of flow chart of the dynamic calculation method of electric vehicle quality in an embodiment
  • Fig. 2 is a schematic structural diagram of a dynamic calculation device for the mass of an electric vehicle in an embodiment.
  • the present embodiment provides a dynamic calculation method for the quality of an electric vehicle, including the following steps:
  • Step S1 acquiring state data during the acceleration time period of the vehicle to be measured, the state data including time, speed, height, acceleration of gravity, effective driving power and resistance power.
  • a vehicle mass calculation module assembly is installed above the vehicle to be measured, that is, an electric vehicle.
  • Various calculation, sensing and sensing modules are installed inside the vehicle mass calculation module assembly, such as height sensors.
  • the upper front side of the vehicle mass calculation module component is provided with an automobile bus interface, and the automobile bus interface (including: Internet of Vehicles, can bus, lin bus, serial port, etc.) Displayed on the diagnostic instrument, displayed on an external computer, and displayed on an external server.
  • t1 the starting time of calculating the vehicle mass
  • v1 the speed of the vehicle at t1;
  • v2 the speed of the vehicle at t2; (Note: v2>v1)
  • P driving motor the effective driving power (or effective output power) of the driving motor of the vehicle
  • P resistance the resistance power of the vehicle, including but not limited to the power of air resistance, tire resistance, transmission resistance, etc.;
  • ⁇ h car The height difference between the center of gravity of the vehicle at t1 and t2.
  • Step S2 calculate the total output work, total resistance work, total potential energy change and kinetic energy change of the vehicle to be measured within a time period.
  • the on-board computer After the on-board computer obtains the above state data information, it calculates and obtains:
  • the total output power W of the drive motor drives the motor :
  • M car the mass of the vehicle
  • g the acceleration of gravity
  • ⁇ h car the height difference between the center of gravity of the vehicle at time t1 and time t2
  • v1 the speed of the vehicle at the beginning of t1
  • v2 the speed of the vehicle at the end of t2 (v2>v1).
  • Step S3 based on the law of energy conservation, that is, the total output work of the vehicle drive motor is equal to the sum of the total resistance work, the change in potential energy of the vehicle in height, and the change in kinetic energy of the vehicle to calculate the mass of the electric vehicle.
  • the total output work of the vehicle drive motor is equal to the work of the transmission system resistance, the work of the vehicle running resistance (including the work of air resistance, the work of tire resistance and other resistance work), the change of potential energy of the vehicle at height, The sum of the kinetic energy changes of the vehicle.
  • the above transmission system resistance and resistance work, as well as vehicle running resistance and resistance work information are obtained through real vehicle testing in advance and stored in the vehicle mass calculation module component, or on-board In the computer, the specific instructions are as follows:
  • Tire resistance work which is the characteristics of tires, different types of tires have different rolling resistance coefficients. In general, the rotational speed of the tire (affected by the speed of the vehicle) and the coefficient of rolling resistance are jointly obtained.
  • W drive motor W resistance + (M car * g * ⁇ h car ) + 1/2 * M car * (v2*v2-v1*v1)
  • M car ((W driving motor -W resistance )*2)/(2*g* ⁇ h car +v2*v2-v1*v1).
  • the vehicle mass calculation module component can be implemented in an external server, and the on-board computer can transmit the data required to calculate the vehicle mass to the external server through the network, and then the external server dynamically calculates the vehicle mass of the vehicle according to the state data uploaded by the vehicle;
  • the process is as follows: collect data, transmit the data to the network module through the vehicle bus (including: Internet of Vehicles, can bus, lin bus, serial port, etc.), the network module uploads the data to the external server, and the external server calculates this value based on the uploaded data.
  • vehicle bus including: Internet of Vehicles, can bus, lin bus, serial port, etc.
  • this embodiment provides a dynamic calculation device 200 for the quality of an electric vehicle, including:
  • the obtaining module 210 is used to obtain the state data within the time period of acceleration of the vehicle to be measured, and send it to the processing device, the state data includes time, speed, height, acceleration of gravity, effective driving power and resistance power;
  • the processing module 220 is used to calculate the total output work, the total resistance work, the total change in potential energy and the change in kinetic energy of the vehicle to be measured during the acceleration time period based on the state data information;
  • the total output work of the motor is equal to the sum of the total resistance work, the potential energy change of the vehicle in height, and the kinetic energy change of the vehicle, and the mass of the vehicle to be measured is calculated.
  • a vehicle mass calculation module assembly is installed above the vehicle to be measured, that is, an electric vehicle, and various calculation, sensing and sensing modules are installed inside the vehicle mass calculation module assembly, such as height sensors.
  • modules produced and sold, which can meet the measurement needs of the vehicle mass calculation module components in this embodiment, so no more details on the vehicle mass calculation module components.
  • the vehicle mass calculation There is an automobile bus interface on the upper front side of the module assembly, and the automobile bus interface (including: Internet of Vehicles, can bus, lin bus, serial port, etc.) display, display on an external computer, display on an external server.
  • t1 the starting time of calculating the vehicle mass
  • v1 the speed of the vehicle at t1;
  • v2 the speed of the vehicle at t2; (Note: v2>v1)
  • P driving motor the effective driving power (or effective output power) of the driving motor of the vehicle
  • P resistance the resistance power of the vehicle, including but not limited to the power of air resistance, tire resistance, transmission resistance, etc.;
  • ⁇ h car The height difference between the center of gravity of the vehicle at t1 and t2.
  • the mass of the vehicle can be directly calculated by the on-board computer.
  • the on-board computer can transmit the data required for calculating the vehicle mass to the external server through the network, and then the external server dynamically calculates the vehicle mass of the vehicle according to the status data uploaded by the vehicle. Calculated as follows:
  • the total output power W of the drive motor drives the motor :
  • M car the mass of the vehicle
  • g the acceleration of gravity
  • ⁇ h car the height difference between the center of gravity of the vehicle at time t1 and time t2
  • v1 the speed of the vehicle at the beginning of t1
  • v2 the speed of the vehicle at the end of t2 (v2>v1).
  • the total output work of the vehicle drive motor is equal to the work of the transmission system resistance, the work of the vehicle running resistance (including the work of air resistance, the work of tire resistance and other resistance work), and the potential energy of the vehicle at height change, the sum of the kinetic energy change of the vehicle.
  • the above transmission system resistance and resistance work, as well as vehicle running resistance and resistance work information are obtained through real vehicle testing in advance and stored in the vehicle mass calculation module component, or on-board In the computer, the specific instructions are as follows:
  • Tire resistance work which is the characteristics of tires, different types of tires have different rolling resistance coefficients. In general, the rotational speed of the tire (affected by the speed of the vehicle) and the coefficient of rolling resistance are jointly obtained.
  • W drive motor W resistance + (M car * g * ⁇ h car ) + 1/2 * M car * (v2*v2-v1*v1)
  • M car ((W driving motor -W resistance )*2)/(2*g* ⁇ h car +v2*v2-v1*v1).

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Data Mining & Analysis (AREA)
  • Theoretical Computer Science (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Algebra (AREA)
  • Pure & Applied Mathematics (AREA)
  • Databases & Information Systems (AREA)
  • Software Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Motorcycle And Bicycle Frame (AREA)

Abstract

本发明公开一种电动汽车质量的动态计算方法及装置,该方法包括如下步骤:获取待测量车辆加速行驶时间段内的状态数据,所述状态数据包括时间、速度、高度、重力加速度、有效驱动功率和阻力功率;根据所述状态数据信息,计算待测量车辆在加速行驶时间段内的输出总功、阻力总功、势能总变化量和动能变化量;基于能量守恒定律,即车辆驱动电动机的输出总功等于阻力总功、车辆在高度上的势能变化量、车辆的动能变化量的和,计算待测量车辆的质量。本发明能够实时动态得知电动汽车的质量,且测量精度高、成本低。

Description

一种电动汽车质量的动态计算方法及装置 技术领域
本发明涉及交通技术领域,尤其涉及一种电动汽车质量的动态计算方法及装置。
背景技术
电动汽车(BEV)是指以车载电源为动力,用电机驱动车轮行驶,符合道路交通、安全法规各项要求的车辆,由于对环境影响相对传统汽车较小,其前景被广泛看好,其主要工作原理大致为:电池(例如:蓄电池、燃料电池等)——电流——电力调节器——电动机——动力传动系统——驱动汽车行驶(Road)。
现阶段电动汽车正在高速发展,多种车型日新月异,在出厂前需要进行各组性能参数的测值,其中电动汽车质量数值为其中之一,现阶段对电动汽车质量测试的方法为:地秤称重法或是车辆底盘形变测量车重法,车辆载重检测法通过在车悬架安装高度传感器,检测悬架受压后的变形量,再结合压力变形曲线图及倾斜补偿等算法计算悬架的承载重量,前者称重地点受限,只能到具有地秤的地点称量,只能静态称量车重,较为不便,后者按装成本高,且检测精度不太高。
发明内容
为了解决上述技术问题,本发明提出一种电动汽车质量的动态计算方法及装置,能够实时动态得知电动汽车的质量,且测量精度高、成本低。
为了达到上述目的,本发明的技术方案如下:
一种电动汽车质量的动态计算方法,包括如下步骤:
获取待测量车辆加速行驶时间段内的状态数据,所述状态数据包括时间、速度、高度、重力加速度、有效驱动功率和阻力功率;
根据所述状态数据信息,计算待测量车辆在加速行驶时间段内的输出总功、阻力总功、势能总变化量和动能变化量;
基于能量守恒定律,即车辆驱动电动机的输出总功等于阻力总功、车辆在高度上的势能变化量、车辆的动能变化量的和,计算待测量车辆的质量。
优选地,所述待测量车辆的势能总变化量ΔE 车h
ΔE 车h=M *g*Δh
其中,M :车辆的质量;g:重力加速度;Δh :车辆重心在t1时刻和t2时刻之间的高度差,
所述待测量车辆的动能变化ΔE 车v
ΔE 车v=1/2*M *(v2*v2-v1*v1)
其中,v1:车辆在t1起始时刻的速度;v2:车辆在t2结束时刻的速度(v2>v1),
基于能量守恒定律,W 驱动电动机=W 阻力+(M *g*Δh )+1/2*M *(v2*v2-v1*v1)
则待测量车辆的质量M
M =((W 驱动电动机-W 阻力)*2)/(2*g*Δh +v2*v2-v1*v1)
其中,W 驱动电动机:输出总功;W 阻力:阻力总功。
优选地,所述阻力总功包括传动系统阻力做功和车辆行驶阻力做功之和。
优选地,所述传动系统阻力做功和车辆行驶阻力做功均通过实车测试获得。
一种电动汽车质量的动态计算装置,包括:
获取模块,用于获取待测量车辆加速行驶时间段内的状态数据,并发送至处理装置,所述状态数据包括时间、速度、高度、重力加速度、有效驱动功率和阻力功率;
处理模块,用于基于所述状态数据信息计算待测量车辆在加速行驶时间段内的输出总功、阻力总功、势能总变化量和动能变化量;用于基于能量守恒定律,即车辆驱动电动机的输出总功等于阻力总功、车辆在高度上的势能变化量、车辆的动能变化量的和,计算待测量车辆的质量。
优选地,所述待测量车辆的势能总变化量ΔE 车h
ΔE 车h=M *g*Δh
其中,M :车辆的质量;g:重力加速度;Δh :车辆重心在t1时刻和t2时刻之间的高度差,
所述待测量车辆的动能变化ΔE 车v
ΔE 车v=1/2*M *(v2*v2-v1*v1)
其中,v1:车辆在t1起始时刻的速度;v2:车辆在t2结束时刻的速度(v2>v1),基于能量守恒定律,W 驱动电动机=W 阻力+(M *g*Δh )+1/2*M *(v2*v2-v1*v1)
则待测量车辆的质量M
M =((W 驱动电动机-W 阻力)*2)/(2*g*Δh +v2*v2-v1*v1)
其中,W 驱动电动机:输出总功;W 阻力:阻力总功。
优选地,所述阻力总功包括传动系统阻力做功和车辆行驶阻力做功之和。
优选地,所述传动系统阻力做功和车辆行驶阻力做功均通过实车测试获得。
基于上述技术方案,本发明的有益效果是:
1.本发明先将电动汽车至于合适空旷场地上方,将车辆质量计算模块组件安装在电动汽车上方,再将驱动电动机启动一段时间使电动汽车加速行驶一段距离,通过电动汽车、车轮、驱动电动机、车辆质量计算模块组件和汽车总线接口之间的配合,获得电动汽车的各种状态数值,通过得到的状态数值能够方便快捷的计算得到车辆质量,本发明的测量方法受场地限制极小,在车辆的日常行驶过程中也能测得车辆实时质量,测量方便快捷且测量精度高。
2.本发明对额外硬件要求少,安装成本低,通过升级相关软件即可实现,实施成本低廉。
附图说明
图1是一个实施例中一种电动汽车质量的动态计算方法流程图;
图2是一个实施例中一种电动汽车质量的动态计算装置的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。
如图1所示,本实施例提供一种电动汽车质量的动态计算方法,包括如下步骤:
步骤S1,获取待测量车辆加速行驶时间段内的状态数据,所述状态数据包括时间、速度、高度、重力加速度、有效驱动功率和阻力功率。
具体地,在待测量车辆即电动汽车的上方安装有车辆质量计算模块组件,车辆质量计算模块组件内部安装多种计算、感应和传感等模块,例如高度传感器等,现阶段市面上所生产销售的模块件种类繁多,可满足本实施例中车辆质量计算模块组件的测值所需,故不再对车辆质量计算模块组件做过多的赘述,本领域人员完全可以实现。车辆质量计算模块组件的上方前侧设有汽车总线接口,汽车总线接口(包括:车联网、can总线、lin总线、串口等)传输到车载计算机,显示方式有:在车载计算机屏幕上显示、汽车诊断仪上显示、 外部计算机上显示、外部服务器上显示。
电动汽车至于合适空旷场地上方,将驱动电动机启动一段时间使电动汽车加速行驶一段距离,通过汽车总线接口将车辆质量计算模块组件与车辆总线、车辆电子控制单元(ECU)、车载计算机相对接,通过电动汽车、车轮、驱动电动机、车辆质量计算模块组件和汽车总线接口之间的配合,获得状态数据:
t1:计算车辆质量的起始时间;
t2:计算车辆质量的结束时间;
v1:车辆在t1的速度;
v2:车辆在t2的速度;(注:v2>v1)
P 驱动电动机:车辆的驱动电动机的有效驱动功率(或者称为有效输出功率);
P 阻力:车辆的阻力的功率,包括但不限于空气阻力、轮胎阻力、传动阻力等的功率;
g:重力加速度;
Δh :车辆重心在t1和t2之间的高度差。
步骤S2,根据获取的状态数据信息,计算待测量车辆在时间段内的输出总功、阻力总功、势能总变化量和动能变化量。
具体地,车载计算机获取上述状态数据信息后,计算获得:
驱动电动机的输出总功W 驱动电动机
Figure PCTCN2022092589-appb-000001
阻力总功W 阻力
Figure PCTCN2022092589-appb-000002
所述待测量车辆的势能总变化量ΔE 车h
ΔE 车h=M *g*Δh
其中,M :车辆的质量;g:重力加速度;Δh :车辆重心在t1时刻和t2时刻之间的高度差,
所述待测量车辆的动能变化ΔE 车v
ΔE 车v=1/2*M *(v2*v2-v1*v1)
其中,v1:车辆在t1起始时刻的速度;v2:车辆在t2结束时刻的速度(v2>v1)。
步骤S3,基于能量守恒定律,即车辆驱动电动机的输出总功等于阻力总功、车辆在高度上的势能变化量、车辆的动能变化量的和,计算电动汽车的质量。
具体地,根据“能量守恒定律”,车辆驱动电动机的输出总功等于传动系统阻力做功、车辆行驶阻力做功(包括空气阻力做功、轮胎阻力做功等其他阻力做功)、车辆在高度上的势能变化、车辆的动能变化的和。对于电动汽车中的一类车型或者一辆车,上述传动系统阻力和阻力做功,以及车辆行驶阻力和阻力做功信息,是提前通过实车测试获得的,并存储到车辆质量计算模块组件,或车载计算机中的,具体说明如下:
传动系统消耗的功:与传动系统相关,不同的传动系统有着不同的传动阻力。由于电动汽车的传动系统结构简单,同型号的电动车的传动系统阻力比较一致。所以传动系统阻力和阻力做功是通过传动系统的转速和摩擦系数取得。
车辆行驶阻力做功:
1)空气阻力做功,与车速和风速相关,车辆外形研发过程中将通过大量的风洞测试得出车辆的风阻系数。通过风阻系数和车速风速共同得到空气阻力和空气阻力做功。
2)轮胎阻力做功,这是轮胎的特性,不同类型的轮胎有着不同的滚动阻力系数。一般情况是轮胎的转速(受车速影响)和滚动阻力系数共同得到。
根据以上得出计算等式:W 驱动电动机=W 阻力+ΔE 车h+ΔE 车v
W 驱动电动机=W 阻力+(M *g*Δh )+1/2*M *(v2*v2-v1*v1)
则待测量车辆的质量M
M =((W 驱动电动机-W 阻力)*2)/(2*g*Δh +v2*v2-v1*v1)。
便于理解根据上述公式在计算机中实现此程序和算法,就可以通过车载计算机直接计算获得车辆的质量。
车辆质量计算模块组件可以在外部服务器中进行实现,车载计算机可以把计算车辆质量所需的数据,通过网络传输到外部服务器中,然后外部服务器根据车辆上传的状态数据动态计算车辆的车辆质量;
过程如下:采集数据,通过汽车总线(包括:车联网、can总线、lin总线、串口等)传输数据到网络模块,网络模块把数据上传到外部服务器中,外部服务器根据上传的数据计算得出此车的实时车辆质量。
如图2所示,本实施例提供一种电动汽车质量的动态计算装置200,包括:
获取模块210,用于获取待测量车辆加速行驶时间段内的状态数据,并发送至处理装置,所述状态数据包括时间、速度、高度、重力加速度、有效驱动功率和阻力功率;
处理模块220,用于基于所述状态数据信息计算待测量车辆在加速行驶时间段内的输出总功、阻力总功、势能总变化量和动能变化量;用于基于能量守恒定律,即车辆驱动电动机的输出总功等于阻力总功、车辆在高度上的势能变化量、车辆的动能变化量的和,计算待测量车辆的质量。
需要说明的是,在待测量车辆即电动汽车的上方安装有车辆质量计算模块组件,车辆质量计算模块组件内部安装多种计算、感应和传感等模块,例如高度传感器等,现阶段市面上所生产销售的模块件种类繁多,可满足本实施例中车辆质量计算模块组件的测值所需,故不再对车辆质量计算模块组件做过多的赘述,本领域人员完全可以实现,车辆质量计算模块组件的上方前侧设有汽车总线接口,汽车总线接口(包括:车联网、can总线、lin总线、串口等)传输到处理模块,显示方式有:在车载计算机屏幕上显示、汽车诊断仪上显示、外部计算机上显示、外部服务器上显示。
电动汽车至于合适空旷场地上方,将驱动电动机启动一段时间使电动汽车加速行驶一段距离,通过汽车总线接口将车辆质量计算模块组件与车辆总线、车辆电子控制单元(ECU)、车载计算机相对接,通过电动汽车、车轮、驱动电动机、车辆质量计算模块组件和汽车总线接口之间的配合,获得状态数据:
t1:计算车辆质量的起始时间;
t2:计算车辆质量的结束时间;
v1:车辆在t1的速度;
v2:车辆在t2的速度;(注:v2>v1)
P 驱动电动机:车辆的驱动电动机的有效驱动功率(或者称为有效输出功率);
P 阻力:车辆的阻力的功率,包括但不限于空气阻力、轮胎阻力、传动阻力等的功率;
g:重力加速度;
Δh :车辆重心在t1和t2之间的高度差。
获取上述电动汽车的状态数据信息后,可以通过车载计算机直接计算获得车辆的质量。
或车载计算机可以把计算车辆质量所需的数据,通过网络传输到外部服务器中,然后外部服务器根据车辆上传的状态数据动态计算车辆的车辆质量。计算如下:
驱动电动机的输出总功W 驱动电动机
Figure PCTCN2022092589-appb-000003
阻力总功W 阻力
Figure PCTCN2022092589-appb-000004
所述待测量车辆的势能总变化量ΔE 车h
ΔE 车h=M *g*Δh
其中,M :车辆的质量;g:重力加速度;Δh :车辆重心在t1时刻和t2时刻之间的高度差,
所述待测量车辆的动能变化ΔE 车v
ΔE 车v=1/2*M *(v2*v2-v1*v1)
其中,v1:车辆在t1起始时刻的速度;v2:车辆在t2结束时刻的速度(v2>v1)。
需要说明的是,根据“能量守恒定律”,车辆驱动电动机的输出总功等于传动系统阻力做功、车辆行驶阻力做功(包括空气阻力做功、轮胎阻力做功等其他阻力做功)、车辆在高度上的势能变化、车辆的动能变化的和。对于电动汽车中的一类车型或者一辆车,上述传动系统阻力和阻力做功,以及车辆行驶阻力和阻力做功信息,是提前通过实车测试获得的,并存储到车辆质量计算模块组件,或车载计算机中的,具体说明如下:
传动系统消耗的功:与传动系统相关,不同的传动系统有着不同的传动阻力。由于电动汽车的传动系统结构简单,同型号的电动车的传动系统阻力比较一致。所以传动系统阻力和阻力做功是通过传动系统的转速和摩擦系数取得。
车辆行驶阻力做功:
1)空气阻力做功,与车速和风速相关,车辆外形研发过程中将通过大量的风洞测试得出车辆的风阻系数。通过风阻系数和车速风速共同得到空气阻力和空气阻力做功。
2)轮胎阻力做功,这是轮胎的特性,不同类型的轮胎有着不同的滚动阻力系数。一般情况是轮胎的转速(受车速影响)和滚动阻力系数共同得到。
根据以上得出计算等式:W 驱动电动机=W 阻力+ΔE 车h+ΔE 车v
W 驱动电动机=W 阻力+(M *g*Δh )+1/2*M *(v2*v2-v1*v1)
则待测量车辆的质量M
M =((W 驱动电动机-W 阻力)*2)/(2*g*Δh +v2*v2-v1*v1)。
以上所述仅为本发明所公开的一种电动汽车质量的动态计算方法及装置的优选实施方式,并非用于限定本说明书实施例的保护范围。凡在本说明书实施例的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本说明书实施例的保护范围之内。

Claims (8)

  1. 一种电动汽车质量的动态计算方法,其特征在于,包括如下步骤:
    获取待测量车辆加速行驶时间段内的状态数据,所述状态数据包括时间、速度、高度、重力加速度、有效驱动功率和阻力功率;
    根据所述状态数据信息,计算待测量车辆在加速行驶时间段内的输出总功、阻力总功、势能总变化量和动能变化量;
    基于能量守恒定律,即车辆驱动电动机的输出总功等于阻力总功、车辆在高度上的势能变化量、车辆的动能变化量的和,计算待测量车辆的质量。
  2. 根据权利要求1所述的一种电动汽车质量的动态计算方法,其特征在于,所述待测量车辆的势能总变化量ΔE 车h
    ΔE 车h=M *g*Δh
    其中,M :车辆的质量;g:重力加速度;Δh :车辆重心在t1时刻和t2时刻之间的高度差,
    所述待测量车辆的动能变化ΔE 车v
    ΔE 车v=1/2*M *(v2*v2-v1*v1)
    其中,v1:车辆在t1起始时刻的速度;v2:车辆在t2结束时刻的速度(v2>v1),
    基于能量守恒定律,W 驱动电动机=W 阻力+(M *g*Δh )+1/2*M *(v2*v2-v1*v1)
    则待测量车辆的质量M
    M =((W 驱动电动机-W 阻力)*2)/(2*g*Δh +v2*v2-v1*v1)
    其中,W 驱动电动机:输出总功;W 阻力:阻力总功。
  3. 根据权利要求1所述的一种电动汽车质量的动态计算方法,其特征在于,所述阻力总功包括传动系统阻力做功和车辆行驶阻力做功之和。
  4. 根据权利要求3所述的一种电动汽车质量的动态计算方法,其特征在于,所述传动系统阻力做功和车辆行驶阻力做功均通过实车测试获得。
  5. 一种电动汽车质量的动态计算装置,其特征在于,包括:
    获取模块,用于获取待测量车辆加速行驶时间段内的状态数据,并发送至处理装置,所述状态数据包括时间、速度、高度、重力加速度、有效驱动功率和阻力功率;
    处理模块,用于基于所述状态数据信息计算待测量车辆在加速行驶时间段内的输出总功、阻力总功、势能总变化量和动能变化量;用于基于能量守恒定律,即车辆驱动电动机的输出总功等于阻力总功、车辆在高度上的势能变化量、车辆的动能变化量的和,计算待 测量车辆的质量。
  6. 根据权利要求5所述的一种电动汽车质量的动态计算装置,其特征在于,所述待测量车辆的势能总变化量ΔE 车h
    ΔE 车h=M *g*Δh
    其中,M :车辆的质量;g:重力加速度;Δh :车辆重心在t1时刻和t2时刻之间的高度差,
    所述待测量车辆的动能变化ΔE 车v
    ΔE 车v=1/2*M *(v2*v2-v1*v1)
    其中,v1:车辆在t1起始时刻的速度;v2:车辆在t2结束时刻的速度(v2>v1),
    基于能量守恒定律,W 驱动电动机=W 阻力+(M *g*Δh )+1/2*M *(v2*v2-v1*v1)
    则待测量车辆的质量M
    M =((W 驱动电动机-W 阻力)*2)/(2*g*Δh +v2*v2-v1*v1)
    其中,W 驱动电动机:输出总功;W 阻力:阻力总功。
  7. 根据权利要求5所述的一种电动汽车质量的动态计算装置,其特征在于,所述阻力总功包括传动系统阻力做功和车辆行驶阻力做功之和。
  8. 根据权利要求7所述的一种电动汽车质量的动态计算装置,其特征在于,所述传动系统阻力做功和车辆行驶阻力做功均通过实车测试获得。
PCT/CN2022/092589 2021-08-02 2022-05-13 一种电动汽车质量的动态计算方法及装置 WO2023010939A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/064,466 US20230392975A2 (en) 2021-08-02 2022-12-12 Dynamic calculation method and device of electric vehicle mass

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202110879948.9A CN113449246A (zh) 2021-08-02 2021-08-02 一种电动汽车质量的动态计算方法
CN202110879948.9 2021-08-02
CN202210454408.0 2022-04-27
CN202210454408.0A CN114936343A (zh) 2021-08-02 2022-04-27 一种电动汽车质量的动态计算方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/064,466 Continuation US20230392975A2 (en) 2021-08-02 2022-12-12 Dynamic calculation method and device of electric vehicle mass

Publications (1)

Publication Number Publication Date
WO2023010939A1 true WO2023010939A1 (zh) 2023-02-09

Family

ID=77817973

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/092589 WO2023010939A1 (zh) 2021-08-02 2022-05-13 一种电动汽车质量的动态计算方法及装置

Country Status (4)

Country Link
US (1) US20230392975A2 (zh)
CN (2) CN113449246A (zh)
TW (1) TWI806670B (zh)
WO (1) WO2023010939A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113449246A (zh) * 2021-08-02 2021-09-28 刘伟锋 一种电动汽车质量的动态计算方法
CN116923289B (zh) * 2023-07-04 2024-03-19 镁佳(北京)科技有限公司 一种货运车载重自检系统及自检方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006136648A1 (en) * 2005-06-21 2006-12-28 Valtion Teknillinen Tutkimuskeskus A method and an apparatus for collecting information on the mass of load of a vehicle in heavy road traffic
CN104457937A (zh) * 2014-10-11 2015-03-25 中国第一汽车股份有限公司 计算车辆总质量的方法及节油控制方法
CN110376608A (zh) * 2019-07-19 2019-10-25 成都云科新能汽车技术有限公司 一种基于功率平衡的车辆总质量动态测量方法
EP3760986A1 (en) * 2019-07-05 2021-01-06 CNH Industrial Italia S.p.A. Method for estimating the mass of an off road vehicle and a related off-road vehicle
CN113449246A (zh) * 2021-08-02 2021-09-28 刘伟锋 一种电动汽车质量的动态计算方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013200299A1 (de) * 2013-01-11 2014-07-31 Robert Bosch Gmbh Verfahren und Vorrichtung zum Bestimmen einer Masse eines Fahrzeugs und Verfahren und Vorrichtung zum Ansteuern zumindest eines mit einer Masse eines Fahrzeugs parametrisierbaren Fahrzeugsystems
KR20210077073A (ko) * 2019-12-16 2021-06-25 현대자동차주식회사 차고 조절 장치를 이용한 차량 중량 추정 장치 및 그 방법
CN111806449A (zh) * 2020-06-23 2020-10-23 西安法士特汽车传动有限公司 一种纯电动车的整车质量和路面坡度的估算方法
CN112498357B (zh) * 2020-11-20 2022-06-21 奇瑞新能源汽车股份有限公司 车辆总质量计算装置和方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006136648A1 (en) * 2005-06-21 2006-12-28 Valtion Teknillinen Tutkimuskeskus A method and an apparatus for collecting information on the mass of load of a vehicle in heavy road traffic
CN104457937A (zh) * 2014-10-11 2015-03-25 中国第一汽车股份有限公司 计算车辆总质量的方法及节油控制方法
EP3760986A1 (en) * 2019-07-05 2021-01-06 CNH Industrial Italia S.p.A. Method for estimating the mass of an off road vehicle and a related off-road vehicle
CN110376608A (zh) * 2019-07-19 2019-10-25 成都云科新能汽车技术有限公司 一种基于功率平衡的车辆总质量动态测量方法
CN113449246A (zh) * 2021-08-02 2021-09-28 刘伟锋 一种电动汽车质量的动态计算方法

Also Published As

Publication number Publication date
US20230392975A2 (en) 2023-12-07
TW202306815A (zh) 2023-02-16
CN114936343A (zh) 2022-08-23
CN113449246A (zh) 2021-09-28
TWI806670B (zh) 2023-06-21
US20230117709A1 (en) 2023-04-20

Similar Documents

Publication Publication Date Title
WO2023010939A1 (zh) 一种电动汽车质量的动态计算方法及装置
CN113335290B (zh) 一种车辆滚动阻力获取方法、获取模块及存储介质
CN102870270A (zh) 用于车辆中的量程计算的系统及方法
CN105109490B (zh) 一种基于三轴加速度传感器判断车辆急转弯的方法
CN113607251B (zh) 一种车辆载重测量方法及装置
CN104057952A (zh) 一种混合动力汽车坡道阻力获取方法
EP2505448A1 (en) On-board real-time weight prediction system by using CAN data bus
CN111179465B (zh) 一种汽车油耗预测方法
CN104089666A (zh) 汽车等速百公里油耗模拟计算检测方法
CN110376608B (zh) 一种基于功率平衡的车辆总质量动态测量方法
CN114940132A (zh) 电动车续航里程预测方法、测试方法和系统
CN205317434U (zh) 传动轴与后桥总成振动性能综合测试装置及测试系统
CN117664601A (zh) 一种汽车预见性巡航技术节能效果测试评价方法及系统
CN101963519B (zh) 台试模拟路试标准状态燃料消耗量检测方法
CN108445250B (zh) 车速检测方法及装置
CN109342078B (zh) 电动四驱车型的经济性测试方法、装置及测试装置
CN100504119C (zh) 估算传动换档期间车辆减速度的方法
CN116853001A (zh) 车辆续航里程确定方法、装置、电子设备及存储介质
CN110132585A (zh) 一种基于虚拟仪器和动静态垂向加载装置的电动轮综合试验台
CN110132586A (zh) 一种基于动静态垂向加载装置和实时仿真的电动轮综合试验台
CN105258830B (zh) 汽车驱动轮表面输出功率检测方法
CN112781880B (zh) 一种电驱动总成起步抖动测试方法
CN115165396A (zh) 确定车辆的车载氢系统测试数据的方法、装置和介质
CN110361081A (zh) 一种基于递归最小二乘法的车辆总质量动态测量方法
KR101334277B1 (ko) 전기 이륜차 시험장치 및 시험제어방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22851658

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE