WO2023010816A1 - 一种基于压热效应的室温压卡制冷机 - Google Patents

一种基于压热效应的室温压卡制冷机 Download PDF

Info

Publication number
WO2023010816A1
WO2023010816A1 PCT/CN2022/072656 CN2022072656W WO2023010816A1 WO 2023010816 A1 WO2023010816 A1 WO 2023010816A1 CN 2022072656 W CN2022072656 W CN 2022072656W WO 2023010816 A1 WO2023010816 A1 WO 2023010816A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
heat exchange
pressure
hot
cold end
Prior art date
Application number
PCT/CN2022/072656
Other languages
English (en)
French (fr)
Inventor
李昺
宋睿琪
张志东
Original Assignee
中国科学院金属研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院金属研究所 filed Critical 中国科学院金属研究所
Priority to KR1020247007032A priority Critical patent/KR20240046197A/ko
Publication of WO2023010816A1 publication Critical patent/WO2023010816A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B23/00Machines, plants or systems, with a single mode of operation not covered by groups F25B1/00 - F25B21/00, e.g. using selective radiation effect
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices

Definitions

  • the invention relates to the technical field of refrigerators, in particular to a room-temperature press-card refrigerator based on the barothermal effect.
  • CFCs chlorofluorocarbons
  • HCFCs hydrochlorofluorocarbons
  • the compression refrigeration effect is more extensive in the selection of materials, and recently some scientists have found that the highest isothermal entropy change in plastic crystal materials can reach 687J kg -1 K -1 , which is an order of magnitude higher than traditional solid-state refrigeration materials. It is close to the traditional commercial liquid refrigerant, the driving condition is easy to realize, the material is easy to obtain and the price is low, and it is easy to realize the application. In this technology, when pressure is applied to the plastic crystal material or the pressure field is removed, the material will absorb or release heat due to the phase change, and then complete the cooling or heating effect by exchanging heat with the load. This process is called for the pressure heating effect. The thermodynamic cycle process of the barothermal effect is consistent with the reverse Carnot cycle. Based on the above-mentioned generation of materials with high isothermal entropy change at room temperature, it is necessary to develop corresponding refrigeration equipment.
  • the object of the present invention is to provide a room temperature press card refrigerator based on the pressure thermal effect.
  • the refrigerator is based on the above-mentioned press card thermal effect principle, and utilizes the characteristics of heat absorption and temperature rise after pressurization of the press card material, pressure relief, temperature reduction and heat release.
  • At room temperature using high-precision high-pressure injection pumps to provide materials with corresponding phase change pressure conditions, cooling and heat can be obtained in the system, and the fluid can be used to circulate through the system to bring the heat to the high-temperature heat source end, and the cooling Take it to the cold end load end to complete the entire refrigeration cycle.
  • a room temperature press card refrigerator based on the baroceroric effect including a high-precision high-pressure electric injection pump, a press card element, a heat exchange fluid, a cold end heat exchanger, and a hot end heat exchanger;
  • Pressing element It is a cylinder structure with a cylindrical cavity, and a solid refrigerant is installed in the cavity.
  • the upper part of the side wall of the cylindrical structure is provided with a hot end liquid outlet pipe and a cold end liquid outlet pipe, and the lower part of the side wall is provided with a
  • High-precision high-pressure electric injection pump used to provide constant pressure for the pressing element;
  • the oil injection pipe at the upper end of the injection pump is connected to the oil inlet in the pressing element, and is used to inject pressurized oil into the cavity of the pressing element , the oil for pressurization is used as a heat exchange fluid at the same time, and is in direct contact with the solid refrigerant;
  • Hot-end heat exchanger the hot-end liquid outlet pipe of the pressing element is connected to the liquid inlet of the hot-end heat exchanger, and the liquid outlet of the hot-end heat exchanger is connected to the hot-end liquid inlet pipe of the pressing element.
  • Cold end heat exchanger the cold end liquid outlet pipe of the pressing element is connected to the liquid inlet of the cold end heat exchanger, and the liquid outlet of the cold end heat exchanger is connected to the cold end liquid inlet pipe of the pressing element.
  • the solid refrigerant is carborane material, NaPF 6 , KPF 6 , NaSbF 6 or KSbF 6 , the operating temperature of the solid refrigerant is room temperature, and the applied driving pressure is 0.1MPa-400MPa.
  • the heat exchange fluid is anti-wear hydraulic oil.
  • the pressing element is made of high-pressure resistant stainless steel, the bottom of the cylinder structure is sealed, and the top is provided with a detachable cavity upper cover, and the solid refrigerant is placed inside the cylindrical cavity; the hot end of the pressing element
  • the liquid outlet pipe, the cold end liquid outlet pipe, the hot end liquid inlet pipe and the cold end liquid inlet pipe are all equipped with a sealed filter, which can prevent the position of the solid refrigerant from moving during the pressurization process, and at the same time avoid the The debris produced by the collision between the refrigerants flows away with the fluid to block the pipeline; the rubber ring is used to seal the top of the cylinder structure and the upper cover of the cavity to prevent the pressurized oil from flowing out of the cylindrical cavity.
  • the entire pressing element is fixedly placed on the plane.
  • a hydraulic pump is also provided on the hot end liquid outlet pipe of the pressing element, so that the heat exchange fluid in the pressing element flows into the hot end heat exchanger under the action of the hydraulic pump, and the heat exchange fluid in the hot end heat exchanger The hot fluid is pushed to flow into the pressing element, and this cycle continues;
  • a hydraulic pump is also provided on the cold end liquid outlet pipe of the pressing element, so that the heat exchange fluid in the pressing element is pumped under the action of the hydraulic pump. It flows into the cold end heat exchanger, and the heat exchange fluid in the cold end heat exchanger is pushed into the compression element, and this cycle continues.
  • the cold end heat exchanger includes a cubic cavity I and a heat exchange pipeline I in the cavity I, the heat exchange pipeline I is arranged in a U shape, and the heat exchange pipeline I is respectively connected to the cold end heat exchanger
  • the temperature sensor is used to feed back the temperature in the cavity I to the control system in real time.
  • the hot end heat exchanger includes a cubic cavity II and a heat exchange pipeline II in the cavity II, the heat exchange pipeline II is arranged in a spiral shape, and the heat exchange pipeline II is respectively connected to the inlet of the hot end heat exchanger.
  • the electric control cabinet includes a PLC control module (control system), and the pressure control valve and the temperature sensor are electrically connected to the PLC control module; the electric control cabinet is used to control the opening, closing and flow regulation of the pressure control valve, and can monitor The temperature information of the heat exchange fluid in the pressing element transmitted by the temperature sensor.
  • PLC control module control system
  • the pressure control valve and the temperature sensor are electrically connected to the PLC control module; the electric control cabinet is used to control the opening, closing and flow regulation of the pressure control valve, and can monitor The temperature information of the heat exchange fluid in the pressing element transmitted by the temperature sensor.
  • the refrigerating machine of the present invention produces pressure release heat and pressure relief heat absorption phenomenon due to the phase change under the action of the high-pressure injection pump through the pressurized refrigerant, and the heat exchange fluid reciprocates between the compressed refrigerant refrigerants to exchange heat and cold.
  • the high-precision high-pressure electric injection pump in the present invention provides pressure for the press card refrigeration cycle, and the pressure is constant output.
  • the form of pressurization is liquid pressure, which greatly improves the defect of uneven mechanical pressure transmission.
  • the oil used for pressurization is also used as a heat exchange fluid, which is in direct contact with the refrigerant, and the heat and cold driven by the pressure are directly brought into the hot end. , The cycle is completed in the cold end heat exchanger, which reduces the loss of heat.
  • the refrigerator of the present invention cooperates with an electric control cabinet, a pressure control valve and a temperature sensor so that the press card refrigerator in the present invention has the advantages of intelligent regulation and convenient operation.
  • the temperature sensor and pressure control valve will transmit the corresponding signal to the electric control cabinet to realize real-time monitoring of temperature and pressure, and can control the valve to open according to the set program
  • the high-precision high-pressure electric injection pump makes the pressing material (refrigerant working medium) inside the pressing element pressurized and depressurized to generate pressurization and heat, and realize the refrigeration cycle process.
  • Fig. 1 is a schematic diagram of the overall structure of a press card refrigerator based on the baroceroric effect of the present invention.
  • Fig. 2 is a schematic structural view of the high-precision high-pressure electric injection pump in the press card refrigerator of the present invention.
  • Fig. 3 is a schematic diagram of the structure of the compression card components in the compression card refrigerator of the present invention.
  • Fig. 4 is a schematic structural diagram of the cold end heat exchanger in the compression card refrigerator of the present invention.
  • Fig. 5 is a schematic structural diagram of the hot end heat exchanger in the compression card refrigerator of the present invention.
  • Fig. 6 is a schematic structural diagram of the electric control cabinet in the compression card refrigerator of the present invention.
  • 1-electric injection pump 101-oil injection pipe; 2-press card element; 201-cavity upper cover; 202-cylindrical cavity; 203-cold end liquid outlet pipe; 204-cold end liquid inlet pipe; 205-oil inlet; 206-hot end liquid inlet pipe; 207-hot end liquid outlet pipe; 3-cold end heat exchanger; 301-cold end heat exchanger liquid outlet; 302-heat exchange pipeline I; 303 -cold end heat exchanger liquid inlet; 304-cavity I; 4-hot end heat exchanger; 401-cavity II; 402-heat exchange pipeline II; 403-fan; 5-electric control cabinet; 6- pressure control valve; 7- temperature sensor.
  • the present invention provides a room temperature press card refrigerator based on the baroceroric effect, as shown in FIG. 1 .
  • the press card refrigerator includes a high-precision high-pressure electric injection pump 1, a press card component 2, a heat exchange fluid, a cold end heat exchanger 3 and a hot end heat exchanger 4; the structure of each part is as follows:
  • the high-precision high-pressure electric injection pump (Beijing Yijie Material Technology Co., Ltd., HP350A) is used to provide constant pressure for the pressing element 2;
  • the oil inlet 205 in the cylinder is connected to inject pressurized oil into the cavity of the pressing element;
  • the pressing element is a cylindrical structure with a cylindrical cavity 202, and a solid refrigerant is installed in the cavity.
  • the upper side wall of the cylindrical structure is provided with a hot end liquid outlet pipe 207 and a cooling tube.
  • the end liquid pipe 203, the lower part of the side wall of the cylindrical structure is provided with a hot end liquid inlet pipe 206 and a cold end liquid inlet pipe 204, and the middle part of the side wall is provided with an oil inlet 205, and the pressurized oil injected from the oil inlet At the same time, as a heat exchange fluid, it is in direct contact with the solid refrigerant.
  • the hot end liquid outlet pipe, the cold end liquid outlet pipe, the hot end liquid inlet pipe and the cold end liquid inlet pipe are all equipped with a pressure control valve 6, which is used to control the switch of the fluid and the adjustment of the fluid flow;
  • the pressing element It is made of high-pressure resistant stainless steel, the bottom of the cylinder structure is sealed, and the top is provided with a detachable cavity upper cover 201, and a rubber ring is used to seal between the top of the cylinder structure and the cavity upper cover 201 to prevent pressurized oil It flows out from the cylindrical cavity 202;
  • the hot end liquid outlet pipe, the cold end liquid outlet pipe, the hot end liquid inlet pipe and the cold end liquid inlet pipe of the pressing element are all equipped with a sealed filter to prevent the solid refrigerant from The position moves during the pressurization process, and at the same time, it can avoid the debris generated by the collision between the solid refrigerants flowing away with the fluid to block the pipeline; during the operation of the system, the entire pressing element is fixedly placed on the horizontal
  • the hot end liquid outlet pipe of the pressing element is provided with a hydraulic pump, so that the heat exchange fluid in the pressing element flows into the hot end heat exchanger under the action of the hydraulic pump, and the heat exchange fluid in the hot end heat exchanger The fluid is pushed to flow into the pressing element, and this cycle continues; a hydraulic pump is provided on the outlet pipe of the cold end of the pressing element, so that the heat exchange fluid in the pressing element flows into the cold end under the action of the hydraulic pump. end heat exchanger, while the heat exchange fluid in the cold end heat exchanger is forced to flow into the compression element, and this cycle continues.
  • the cold end heat exchanger 3 includes a cubic cavity I304 and a heat exchange pipeline I302 in the cavity I, the heat exchange pipeline I302 is arranged in a U shape, and the heat exchange pipeline I
  • the liquid inlet 303 of the cold end heat exchanger and the liquid outlet 301 of the cold end heat exchanger are respectively connected, and the liquid inlet 303 of the cold end heat exchanger and the liquid outlet 301 of the cold end heat exchanger are respectively connected with the cold end outlet of the pressing element.
  • the liquid pipe is connected with the liquid inlet pipe at the cold end to form a heat exchange circuit.
  • the heat exchange pipeline I is arranged in the flat interlayers; a temperature sensor 7 is installed on the top of the cubic cavity I to control the temperature of the cavity. I The internal temperature is fed back to the control system in real time.
  • the hot end heat exchanger 4 includes a cubic cavity II 401 and a heat exchange pipeline II 402 inside the cavity II, the heat exchange pipeline II is arranged in a spiral shape, and the heat exchange pipeline II is connected to
  • the liquid inlet and liquid outlet of the hot-end heat exchanger are respectively connected to the hot-end liquid outlet pipe and the hot-end liquid inlet pipe of the pressing element to form a heat exchange circuit;
  • the shell of cavity II It is designed as a hollow structure to facilitate internal heat exchange.
  • a fan 403 is placed on the top of the cavity II to facilitate the heat exchange between the hot end heat exchanger and the air; a temperature sensor is installed on the top of the cavity II to monitor the temperature of the cavity II in real time. feedback to the control system.
  • the room temperature pressure card refrigerator of the present invention also includes an electric control cabinet 5, the electric control cabinet includes a PLC control module (control system), and the pressure control valve 6 is electrically connected with the temperature sensor 7 and the PLC control module; the electric control cabinet is used for The opening, closing and flow adjustment of the pressure control valve are controlled, and at the same time, the temperature information of the heat exchange fluid in the compression element transmitted by the temperature sensor can be monitored in real time.
  • the electric control cabinet includes a PLC control module (control system), and the pressure control valve 6 is electrically connected with the temperature sensor 7 and the PLC control module; the electric control cabinet is used for The opening, closing and flow adjustment of the pressure control valve are controlled, and at the same time, the temperature information of the heat exchange fluid in the compression element transmitted by the temperature sensor can be monitored in real time.
  • the solid-state refrigerant in the present invention adopts a material that can realize the refrigeration effect based on the compression effect under normal temperature conditions, such as preferably carborane material, NaPF 6 , KPF 6 , NaSbF 6 or KSbF 6 , and the working temperature is room temperature , the driving pressure applied is 0.1MPa ⁇ 400MPa; the heat exchange fluid used is anti-wear hydraulic oil.
  • the working process of the press card refrigerator of the present invention is as follows:
  • the driving pressure value of the high-precision high-pressure injection pump 1 is set according to the driving pressure and the refrigeration interval of the solid refrigerant used under normal temperature conditions.
  • the oil injection pipe 11 on the upper part of the high-precision high-pressure injection pump 1 pumps the normal-temperature heat exchange fluid into the pressure element 2, the hot end heat exchanger 3 and the cold end heat exchanger 4 to the oil inlet 25 of the pressure element until the pressure is reached. All the refrigerant working fluid in the card element is covered by the heat exchange fluid.
  • the pressure control valve between the pressing element 2 and the heat exchanger 3 at the hot end is closed, and the pressure in the pressing element 2 is reduced to normal pressure by the high-precision high-pressure injection pump 1.
  • the pressing material absorbs heat after depressurization After the temperature drops, after the heat exchange is completed and the fluid temperature in the entire cavity drops to the same level, open the pressure control valve connected between the pressing element 2 and the cold end heat exchanger, and open the pressure control valve connected between the pressing element 2 and the cold end.
  • the liquid pump between the heat exchangers 4 makes the low-temperature fluid in the pressing element 2 flow into the cold end heat exchanger 4 under the action of the pump, and transfers the cold energy to the load (items placed on the flat interlayer), while the cold end
  • the normal-temperature fluid in the heat exchanger 4 flows into the pressing element 2, and circulates like this until the temperature at both ends returns to the ambient temperature.
  • the heat exchange cycles at the left and right ends operate continuously and alternately, which can realize the continuous reduction of the temperature of the cold end load until the expected cooling temperature is reached.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)

Abstract

一种基于压热效应的室温压卡制冷机包括高精密高压电动注射泵(1)、压卡元件(2)、换热流体、冷端换热器(3)和热端换热器(4),通过压卡工质在高精密高压电动注射泵(1)的作用下会由于相变产生加压放热和卸压吸热现象,换热流体在压卡制冷工质间往复流动而交换热量和冷量。高精密高压电动注射泵(1)为压卡制冷循环提供压力,压力恒定输出。加压形式为液体压力,加压用油同时作为换热流体,将压力驱动的热量与冷量直接带入热端换热器(4)、冷端换热器(3)中完成循环。

Description

一种基于压热效应的室温压卡制冷机 技术领域
本发明涉及制冷机技术领域,具体涉及一种基于压热效应的室温压卡制冷机。
背景技术
现代社会,制冷技术已经渗透到各生产技术及科学领域中,然而当前大量使用的传统气体压缩技术采用的常见制冷剂如氯氟碳化物(CFC)、氢氯氟碳化物(HCFC)都对臭氧层有不同程度的破坏作用,不符合当前大环境环保、绿色、节能的健康理念。
在此背景下,发展和研究环境友好型的制冷技术成为制冷技术革新的重要研究方向。目前有新型固态研究制冷技术在研发阶段,因具有零温室效应潜能(GWP)的优势,被认为是最有可能取代传统气体压缩的制冷方式之一。其中固态制冷技术原理基于不同的热效应可分为如下:磁热效应、电热效应、弹热效应以及压热效应。固态相变制冷材料的性能与液态制冷剂相比存在巨大差距,成为限制该技术走向应用的瓶颈之一。
压卡制冷效应是在材料的选择上更为广泛,且近期有科学家发现在塑晶材料中其最高等温熵变可以达到687J kg -1K -1,相比传统固态制冷材料高出一个数量级,与传统商业用液体制冷剂接近,驱动条件便于实现,材料易获得且价格低廉,便于实现应用。在该技术中,对塑晶材料施加压力或去除压力场时,材料会由于相的改变而产生吸热或放热现象,从而通过与负载进行热量交换而完成制冷或制热效应,该过程被称为压热效应。压热效应的热力学循环过程与逆卡诺循环一致。基于上述在室温条件下具有较高等温熵变的材料的产生,需要开发相应的制冷设备。
发明内容
本发明的目的在于提供一种基于压热效应的室温压卡制冷机,该制冷机是基于上述压卡热效应原理,利用对压卡材料加压后吸热升温、卸压降温放热的特点,在室温 环境下,利用高精密高压注射泵为材料提供对应的相变压力条件,便可以在系统内获得冷量与热量,并利用流体在系统中贯穿循环将热量带到高温热源端,将冷量带到冷端负载端,完成整个制冷循环。
为实现上述目的,本发明所采用的技术方案如下:
一种基于压热效应的室温压卡制冷机,包括高精密高压电动注射泵、压卡元件、换热流体、冷端换热器和热端换热器;其中:
压卡元件:为具有圆柱状腔体的筒体结构,腔体内装有固态制冷工质,该筒状结构的侧壁上部设有热端出液管和冷端出液管,侧壁下部设有热端进液管和冷端进液管,侧壁中部设有进油口;其中:热端出液管、冷端出液管、热端进液管和冷端进液管上均设有压力控制阀;
高精密高压电动注射泵:用于为压卡元件提供恒定压力;该注射泵上端的注油管与压卡元件中的进油口相连接,用于向压卡元件的腔体内注射加压用油,该加压用油同时作为换热流体,与固态制冷工质直接接触;
热端换热器:压卡元件的热端出液管与热端换热器的进液口相连接,热端换热器的出液口与压卡元件的热端进液管相连接,从而形成热交换回路;
冷端换热器:压卡元件的冷端出液管与冷端换热器的进液口相连接,冷端换热器的出液口与压卡元件的冷端进液管相连接,从而形成热交换回路。
所述固态制冷工质为碳硼烷材料、NaPF 6、KPF 6、NaSbF 6或KSbF 6,所述固态制冷工质的工作温度为室温,施加的驱动压力为0.1MPa~400MPa。所述换热流体为抗磨液压油。
所述压卡元件是由耐高压不锈钢制成,其筒体结构的底部密封,顶端设有可拆卸的腔体上盖,固态制冷工质放置于圆柱状腔体内部;压卡元件的热端出液管、冷端出液管、热端进液管和冷端进液管内均设有密封过滤网,可以防止固态制冷工质在加压过程中发生位置的移动,同时还能避免因为固态制冷工质间的碰撞而产生的碎屑随流体流走堵塞管路;所述筒体结构顶端与腔体上盖之间采用橡胶圈密封,防止加压用油从圆柱状腔体内流出,在系统运行过程中,整个压卡元件固定放置于平面上。
所述压卡元件的热端出液管上还设有液压泵,以使压卡元件中的换热流体在液压泵的作用下流入热端换热器,而热端换热器中的换热流体被推动流入压卡元件中,并持续此循环过程;所述压卡元件的冷端出液管上也设有液压泵,以使压卡元件中的换热流体在液压泵的作用下流入冷端换热器,而冷端换热器中的换热流体被推动流入压卡元件中,并持续此循环过程。
所述冷端换热器包括立方形腔体Ⅰ和腔体Ⅰ内的换热管路Ⅰ,所述换热管路Ⅰ呈U形排布,换热管路Ⅰ分别连接冷端换热器的进液口和出液口;腔体Ⅰ内设有若干平板夹层(平板夹层上面可以放置待制冷物品),换热管路Ⅰ在平板夹层内排布;立方形腔体Ⅰ的顶端安装有温度传感器,用于将腔体Ⅰ内温度实时反馈至控制系统。
所述热端换热器包括立方形腔体Ⅱ和腔体Ⅱ内的换热管路Ⅱ,换热管路Ⅱ呈螺旋状排布,换热管路Ⅱ分别连接热端换热器的进液口和出液口;腔体Ⅱ的外壳设计为镂空结构,以便于内部换热,腔体Ⅱ顶端置有风扇便于热端换热器完成与空气的热交换;腔体Ⅱ顶端安装有温度传感器,用于将腔体Ⅱ的温度实时反馈至控制系统。
所述电控柜包括PLC控制模块(控制系统),压力控制阀与温度传感器与PLC控制模块电连接;所述电控柜用于控制压力控制阀的开启、关闭以及流量调节,同时能够实时监测温度传感器传输的压卡元件内换热流体温度信息。
本发明的优点如下:
1、本发明制冷机通过压卡工质在高压注射泵的作用下由于相变产生加压放热和卸压吸热现象,所述的换热流体在压卡制冷工质间往复流动而交换热量和冷量。
2、本发明中的高精密高压电动注射泵为压卡制冷循环提供压力,压力恒定输出。加压形式为液体压力,很好的改善了机械压力传递不均匀的缺陷,加压用油同时作为换热流体,与制冷工质直接接触,将压力驱动的热量与冷量直接带入热端、冷端换热器中完成循环,减小了热量的损耗。
3、本发明致冷机配合电控柜、压力控制阀及温度传感器使得本发明中的压卡制冷机具有智能调控、方便操作等优势。当制冷机内的换热流体由于压力驱动在管路内流通时,温度传感器与压力控制阀将相应信号传递至电控柜,实现温度和压力的实时 监测,并能控制阀门按设定程序开启和关闭,通过高精密高压电动注射泵使在压卡元件内部的压卡材料(制冷工质)受压及卸压从而产生压热现象,实现制冷循环过程。
附图说明
图1为本发明基于压热效应的压卡制冷机整体结构示意图。
图2为本发明压卡制冷机中高精密高压电动注射泵结构示意图。
图3为本发明压卡制冷机中压卡元件结构示意图。
图4为本发明压卡制冷机中冷端换热器结构示意图。
图5为本发明压卡制冷机中热端换热器结构示意图。
图6为本发明压卡制冷机中电控柜结构示意图。
图中:1-电动注射泵;101-注油管;2-压卡元件;201-腔体上盖;202-圆柱状腔体;203-冷端出液管;204-冷端进液管;205-进油口;206-热端进液管;207-热端出液管;3-冷端换热器;301-冷端换热器出液口;302-换热管路Ⅰ;303-冷端换热器进液口;304-腔体Ⅰ;4-热端换热器;401-腔体Ⅱ;402-换热管路Ⅱ;403-风扇;5-电控柜;6-压力控制阀;7-温度传感器。
具体实施方式
为了进一步理解本发明,以下结合实例对本发明进行描述,但实例仅为对本发明的特点和优点做进一步阐述,而不是对本发明权利要求的限制。
本发明提供一种基于压热效应的室温压卡制冷机,如图1所示。该压卡制冷机包括高精密高压电动注射泵1、压卡元件2、换热流体、冷端换热器3和热端换热器4;各部分结构具体如下:
如图2所示,所述高精密高压电动注射泵(北京宜捷材料科技有限公司,HP350A)用于为压卡元件2提供恒定压力;该电动注射泵1上端的注油管101与压卡元件中的进油口205相连接,用于向压卡元件的腔体内注射加压用油;
如图3所示,所述压卡元件为具有圆柱状腔体202的筒体结构,腔体内装有固态制冷工质,该筒状结构的侧壁上部设有热端出液管207和冷端出液管203,该筒状结 构的侧壁下部设有热端进液管206和冷端进液管204,侧壁中部设有进油口205,由进油口注入的加压用油同时作为换热流体,与固态制冷工质直接接触。所述热端出液管、冷端出液管、热端进液管和冷端进液管上均设有压力控制阀6,用于控制流体的开关及流体流量调节;所述压卡元件是由耐高压不锈钢制成,其筒体结构的底部密封,顶端设有可拆卸的腔体上盖201,筒体结构顶端与腔体上盖201之间采用橡胶圈密封,防止加压用油从圆柱状腔体202内流出;压卡元件的热端出液管、冷端出液管、热端进液管和冷端进液管内均设有密封过滤网,可以防止固态制冷工质在加压过程中发生位置的移动,同时还能避免因为固态制冷工质间的碰撞而产生的碎屑随流体流走堵塞管路;在系统运行过程中,整个压卡元件固定放置于水平面上。所述压卡元件的热端出液管上设有液压泵,以使压卡元件中的换热流体在液压泵的作用下流入热端换热器,而热端换热器中的换热流体被推动流入压卡元件中,并持续此循环过程;所述压卡元件的冷端出液管上设有液压泵,以使压卡元件中的换热流体在液压泵的作用下流入冷端换热器,而冷端换热器中的换热流体被推动流入压卡元件中,并持续此循环过程。
如图4所示,所述冷端换热器3包括立方形腔体Ⅰ304和腔体Ⅰ内的换热管路Ⅰ302,所述换热管路Ⅰ302呈U形排布,换热管路Ⅰ分别连接冷端换热器进液口303和冷端换热器出液口301,冷端换热器进液口303和冷端换热器出液口301分别与压卡元件的冷端出液管和冷端进液管相连通,从而形成热交换回路。腔体Ⅰ内设有若干平板夹层(平板夹层上面可以放置待制冷物品),换热管路Ⅰ在平板夹层内排布;立方形腔体Ⅰ的顶端安装有温度传感器7,用于将腔体Ⅰ内温度实时反馈至控制系统。
如图5所示,所述热端换热器4包括立方形腔体Ⅱ401和腔体Ⅱ内的换热管路Ⅱ402,换热管路Ⅱ呈螺旋状排布,换热管路Ⅱ分别连接热端换热器的进液口和出液口,进液口和出液口分别连接压卡元件的热端出液管与热端进液管,从而形成热交换回路;腔体Ⅱ的外壳设计为镂空结构,以便于内部换热,腔体Ⅱ顶端置有风扇403便于热端换热器完成与空气的热交换;腔体Ⅱ顶端安装有温度传感器,用于将腔体Ⅱ的温度实时反馈至控制系统。
本发明室温压卡制冷机还包括电控柜5,所述电控柜包括PLC控制模块(控制系统),压力控制阀6与温度传感器7与PLC控制模块电连接;所述电控柜用于控制压力控制阀的开启、关闭以及流量调节,同时能够实时监测温度传感器传输的压卡元件内换热流体温度信息。
本发明中所述固态制冷工质采用能在常温条件下基于压卡效应实现致冷效果的材料,如优选为碳硼烷材料、NaPF 6、KPF 6、NaSbF 6或KSbF 6,工作温度为室温,施加的驱动压力为0.1MPa~400MPa;使用的换热流体为抗磨液压油。
本发明压卡致冷机工作过程如下:
根据所使用的固态制冷工质在常温条件下的驱动压力和致冷区间,设定高精密高压注射泵1的驱动压力值。高精密高压注射泵1上部的注油管11向压卡元件的进油口25将常温的换热流体泵入压卡元件2、热端换热器3和冷端换热器4中,直至压卡元件内所有制冷工质被换热流体覆盖。
开始循环时首先关闭压卡元件2与热端换热器3及冷端换热器4间的压力控制阀门,使用高压精密注射泵给压卡元件2中的制冷工质加压直至达到相变压力,此时压卡材料发生相变温度上升,此时压卡元件2中的换热流体与制冷工质换热,温度上升,等待换热完成整个腔体内的流体温度都上升至不变后,打开压卡元件2与热端换热器3之间的压力控制阀门6,再打开连接在压卡元件2与热端换热器3间的液体泵,使得压卡元件2中的高温流体在泵的作用下流入热端换热器3中,与外界环境在顶端风扇的作用下进行热交换,而热端换热器3中的常温流体被推动流入压卡元件2中。持续此循环过程直至两腔体内的流体温度一致,恢复到室温。
此时关闭压卡元件2与热端换热器3间的压力控制阀门,由高精密高压注射泵1将压卡元件2中的压力降至常压,此时压卡材料卸压后吸热温度降低,待换热完成,整个腔体内的流体温度都下降至不变后,打开压卡元件2与冷端换热器之间连接的压力控制阀门,打开连接在压卡元件2与冷端换热器4间的液体泵,使得压卡元件2中的低温流体在泵的作用下流入冷端换热器4中,将冷量传递给负载(平板夹层上放置的物品),而冷端换热器4中的常温流体流入压卡元件2中,如此循环直至两端温 度恢复至环境温度。左右两端换热循环连续交替运行,可实现冷端负载的温度连续下降知道达到预期降温温度。

Claims (8)

  1. 一种基于压热效应的室温压卡制冷机,其特征在于:该压卡制冷机包括高精密高压电动注射泵、压卡元件、换热流体、冷端换热器和热端换热器;其中:
    压卡元件:为具有圆柱状腔体的筒体结构,腔体内装有固态制冷工质,该筒状结构的侧壁上部设有热端出液管和冷端出液管,侧壁下部设有热端进液管和冷端进液管,侧壁中部设有进油口;其中:热端出液管、冷端出液管、热端进液管和冷端进液管上均设有压力控制阀;
    高精密高压电动注射泵:用于为压卡元件提供恒定压力;该注射泵上端的注油管与压卡元件中的进油口相连接,用于向压卡元件的腔体内注射加压用油,该加压用油同时作为换热流体,与固态制冷工质直接接触;
    热端换热器:压卡元件的热端出液管与热端换热器的进液口相连接,热端换热器的出液口与压卡元件的热端进液管相连接,从而形成热交换回路;
    冷端换热器:压卡元件的冷端出液管与冷端换热器的进液口相连接,冷端换热器的出液口与压卡元件的冷端进液管相连接,从而形成热交换回路。
  2. 根据权利要求1所述的基于压热效应的室温压卡制冷机,其特征在于:所述固态制冷工质为碳硼烷材料、NaPF 6、KPF 6、NaSbF 6或KSbF 6,所述固态制冷工质的工作温度为室温,施加的驱动压力为0.1MPa~400MPa。
  3. 根据权利要求1所述的基于压热效应的室温压卡制冷机,其特征在于:所述压卡元件是由耐高压不锈钢制成,其筒体结构的底部密封,顶端设有可拆卸的腔体上盖,固态制冷工质放置于圆柱状腔体内部;压卡元件的热端出液管、冷端出液管、热端进液管和冷端进液管内均设有密封过滤网,可以防止固态制冷工质在加压过程中发生位置的移动,同时还能避免因为固态制冷工质间的碰撞而产生的碎屑随流体流走堵塞管路;所述筒体结构顶端与腔体上盖之间采用橡胶圈密封,防止加压用油从圆柱状腔体内流出,在系统运行过程中,整个压卡元件固定放置于平面上。
  4. 根据权利要求1所述的基于压热效应的室温压卡制冷机,其特征在于:所述压卡元件的热端出液管上设有液压泵,以使压卡元件中的换热流体在液压泵的作用下 流入热端换热器,而热端换热器中的换热流体被推动流入压卡元件中,并持续此循环过程;所述压卡元件的冷端出液管上设有液压泵,以使压卡元件中的换热流体在液压泵的作用下流入冷端换热器,而冷端换热器中的换热流体被推动流入压卡元件中,并持续此循环过程。
  5. 根据权利要求1所述的基于压热效应的室温压卡制冷机,其特征在于:所述冷端换热器包括立方形腔体Ⅰ和腔体Ⅰ内的换热管路Ⅰ,所述换热管路Ⅰ呈U形排布,换热管路Ⅰ分别连接冷端换热器的进液口和出液口;腔体Ⅰ内设有若干平板夹层,换热管路Ⅰ在平板夹层内排布;立方形腔体Ⅰ的顶端安装有温度传感器,用于将腔体Ⅰ内温度实时反馈至控制系统。
  6. 根据权利要求1所述的基于压热效应的室温压卡制冷机,其特征在于:所述热端换热器包括立方形腔体Ⅱ和腔体Ⅱ内的换热管路Ⅱ,换热管路Ⅱ呈螺旋状排布,换热管路Ⅱ分别连接热端换热器的进液口和出液口;腔体Ⅱ的外壳设计为镂空结构,以便于内部换热,腔体Ⅱ顶端置有风扇便于热端换热器完成与空气的热交换;腔体Ⅱ顶端安装有温度传感器,用于将腔体Ⅱ的温度实时反馈至控制系统。
  7. 根据权利要求5或6所述的基于压热效应的室温压卡制冷机,其特征在于:所述电控柜包括PLC控制模块(控制系统),压力控制阀与温度传感器与PLC控制模块电连接;所述电控柜用于控制压力控制阀的开启、关闭以及流量调节,同时能够实时监测温度传感器传输的压卡元件内换热流体温度信息。
  8. 根据权利要求1所述的基于压热效应的室温压卡制冷机,其特征在于:所述换热流体为抗磨液压油。
PCT/CN2022/072656 2021-08-04 2022-01-19 一种基于压热效应的室温压卡制冷机 WO2023010816A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020247007032A KR20240046197A (ko) 2021-08-04 2022-01-19 압력 열량 효과 기반의 실온 압력 열량 냉동기

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110889207.9A CN113587489A (zh) 2021-08-04 2021-08-04 一种基于压热效应的室温压卡制冷机
CN202110889207.9 2021-08-04

Publications (1)

Publication Number Publication Date
WO2023010816A1 true WO2023010816A1 (zh) 2023-02-09

Family

ID=78254754

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/072656 WO2023010816A1 (zh) 2021-08-04 2022-01-19 一种基于压热效应的室温压卡制冷机

Country Status (3)

Country Link
KR (1) KR20240046197A (zh)
CN (1) CN113587489A (zh)
WO (1) WO2023010816A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113587489A (zh) * 2021-08-04 2021-11-02 中国科学院金属研究所 一种基于压热效应的室温压卡制冷机
CN114963598B (zh) * 2022-04-27 2023-03-31 东南大学 基于膨胀功回收的压卡制冷系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108562061A (zh) * 2018-06-08 2018-09-21 北京科技大学 一种基于记忆合金热弹效应的活塞-液缸制冷装置
CN108954901A (zh) * 2018-06-25 2018-12-07 上海交通大学 一种具有形状记忆合金管材的固态制冷系统
CN109140821A (zh) * 2018-08-24 2019-01-04 中国科学院金属研究所 一种基于塑晶材料静压驱动的固态制冷方法
CN110285516A (zh) * 2019-06-27 2019-09-27 重庆大学 基于固体相变压热效应的冷暖空调系统
CN113587489A (zh) * 2021-08-04 2021-11-02 中国科学院金属研究所 一种基于压热效应的室温压卡制冷机

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108562061A (zh) * 2018-06-08 2018-09-21 北京科技大学 一种基于记忆合金热弹效应的活塞-液缸制冷装置
CN108954901A (zh) * 2018-06-25 2018-12-07 上海交通大学 一种具有形状记忆合金管材的固态制冷系统
CN109140821A (zh) * 2018-08-24 2019-01-04 中国科学院金属研究所 一种基于塑晶材料静压驱动的固态制冷方法
CN110285516A (zh) * 2019-06-27 2019-09-27 重庆大学 基于固体相变压热效应的冷暖空调系统
CN113587489A (zh) * 2021-08-04 2021-11-02 中国科学院金属研究所 一种基于压热效应的室温压卡制冷机

Also Published As

Publication number Publication date
KR20240046197A (ko) 2024-04-08
CN113587489A (zh) 2021-11-02

Similar Documents

Publication Publication Date Title
WO2023010816A1 (zh) 一种基于压热效应的室温压卡制冷机
CN101900447B (zh) 带调相机构的g-m制冷机
WO2017118241A1 (zh) 一种机械振动隔离的无液氦消耗极低温制冷系统
Lu et al. Experimental analysis of an adsorption refrigerator with mass and heat-pipe heat recovery process
CN104913541B (zh) 斯特林循环和蒸气压缩制冷循环直接耦合的制冷机及方法
RU2006147231A (ru) Тепловой двигатель
Luo et al. Decoupled duplex Stirling machine: Conceptual design and theoretical analysis
CN203009189U (zh) 一种低品位热源驱动的驻波型气液相变热声发动机
CN212035759U (zh) 复叠式空气源超高温瞬时灭菌装置
US3817044A (en) Pulse tube refrigerator
CN204593940U (zh) 一种斯特林循环和蒸气压缩制冷循环直接耦合的制冷机
CN102734099B (zh) 低品位热源驱动的驻波型气液相变热声发动机
CN201764746U (zh) 带调相机构的g-m制冷机
CN104534721B (zh) 一种采用多级热耦合v‑m型脉冲管制冷机的制冷系统
CN204574593U (zh) 一种复叠式耦合循环开水器
CN216432150U (zh) 一种基于压热效应的室温压卡制冷机
WO2016015575A1 (zh) 一种热机
CN202442545U (zh) 传统活塞单热源闭合制冷系统
CN104296412B (zh) 使用液体工质的脉动冷管
CN111084230A (zh) 复叠式空气源超高温瞬时灭菌装置及方法
CN103982324B (zh) 闭式冷热循环发动机
CN202442546U (zh) 液体活塞单热源制冷系统
CN206377909U (zh) 磁制冷冷藏柜
CN1138952C (zh) 一种超临界回热加热热力驱动热泵装置
CN103913007B (zh) 一种吸收发生换热型吸收式制冷机及其循环方式

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22851544

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20247007032

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022851544

Country of ref document: EP

Effective date: 20240304