WO2023010774A1 - 页岩油气光纤智能地球物理数据采集系统及采集方法 - Google Patents

页岩油气光纤智能地球物理数据采集系统及采集方法 Download PDF

Info

Publication number
WO2023010774A1
WO2023010774A1 PCT/CN2021/141024 CN2021141024W WO2023010774A1 WO 2023010774 A1 WO2023010774 A1 WO 2023010774A1 CN 2021141024 W CN2021141024 W CN 2021141024W WO 2023010774 A1 WO2023010774 A1 WO 2023010774A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical cable
acoustic wave
well
downhole
ground
Prior art date
Application number
PCT/CN2021/141024
Other languages
English (en)
French (fr)
Inventor
余刚
梁兴
苟量
饶云江
王熙明
夏淑君
安树杰
吴俊军
陈沅忠
冉曾令
张仁志
Original Assignee
中国石油集团东方地球物理勘探有限责任公司
中油奥博(成都)科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国石油集团东方地球物理勘探有限责任公司, 中油奥博(成都)科技有限公司 filed Critical 中国石油集团东方地球物理勘探有限责任公司
Priority to GB2304799.6A priority Critical patent/GB2614196B/en
Publication of WO2023010774A1 publication Critical patent/WO2023010774A1/zh
Priority to US18/119,829 priority patent/US20230213669A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/28Processing seismic data, e.g. for interpretation or for event detection
    • G01V1/30Analysis
    • G01V1/306Analysis for determining physical properties of the subsurface, e.g. impedance, porosity or attenuation profiles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/22Transmitting seismic signals to recording or processing apparatus
    • G01V1/226Optoseismic systems
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B17/00Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
    • E21B17/02Couplings; joints
    • E21B17/023Arrangements for connecting cables or wirelines to downhole devices
    • E21B17/026Arrangements for fixing cables or wirelines to the outside of downhole devices
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/11Perforators; Permeators
    • E21B43/116Gun or shaped-charge perforators
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/11Perforators; Permeators
    • E21B43/119Details, e.g. for locating perforating place or direction
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/25Methods for stimulating production
    • E21B43/26Methods for stimulating production by forming crevices or fractures
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/007Measuring stresses in a pipe string or casing
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/06Measuring temperature or pressure
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/06Measuring temperature or pressure
    • E21B47/07Temperature
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/09Locating or determining the position of objects in boreholes or wells, e.g. the position of an extending arm; Identifying the free or blocked portions of pipes
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/10Locating fluid leaks, intrusions or movements
    • E21B47/107Locating fluid leaks, intrusions or movements using acoustic means
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/12Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/12Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling
    • E21B47/13Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling by electromagnetic energy, e.g. radio frequency
    • E21B47/135Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling by electromagnetic energy, e.g. radio frequency using light waves, e.g. infrared or ultraviolet waves
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B49/00Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35338Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using other arrangements than interferometer arrangements
    • G01D5/35354Sensor working in reflection
    • G01D5/35358Sensor working in reflection using backscattering to detect the measured quantity
    • G01D5/35361Sensor working in reflection using backscattering to detect the measured quantity using elastic backscattering to detect the measured quantity, e.g. using Rayleigh backscattering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/3537Optical fibre sensor using a particular arrangement of the optical fibre itself
    • G01D5/35374Particular layout of the fiber
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H9/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by using radiation-sensitive means, e.g. optical means
    • G01H9/004Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by using radiation-sensitive means, e.g. optical means using fibre optic sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/28Processing seismic data, e.g. for interpretation or for event detection
    • G01V1/282Application of seismic models, synthetic seismograms
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/28Processing seismic data, e.g. for interpretation or for event detection
    • G01V1/284Application of the shear wave component and/or several components of the seismic signal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/28Processing seismic data, e.g. for interpretation or for event detection
    • G01V1/30Analysis
    • G01V1/307Analysis for determining seismic attributes, e.g. amplitude, instantaneous phase or frequency, reflection strength or polarity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/40Seismology; Seismic or acoustic prospecting or detecting specially adapted for well-logging
    • G01V1/42Seismology; Seismic or acoustic prospecting or detecting specially adapted for well-logging using generators in one well and receivers elsewhere or vice versa
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/40Seismology; Seismic or acoustic prospecting or detecting specially adapted for well-logging
    • G01V1/44Seismology; Seismic or acoustic prospecting or detecting specially adapted for well-logging using generators and receivers in the same well
    • G01V1/48Processing data
    • G01V1/50Analysing data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/40Seismology; Seismic or acoustic prospecting or detecting specially adapted for well-logging
    • G01V1/52Structural details
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B33/00Sealing or packing boreholes or wells
    • E21B33/10Sealing or packing boreholes or wells in the borehole
    • E21B33/13Methods or devices for cementing, for plugging holes, crevices or the like
    • E21B33/14Methods or devices for cementing, for plugging holes, crevices or the like for cementing casings into boreholes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V2210/00Details of seismic processing or analysis
    • G01V2210/10Aspects of acoustic signal generation or detection
    • G01V2210/12Signal generation
    • G01V2210/123Passive source, e.g. microseismics
    • G01V2210/1234Hydrocarbon reservoir, e.g. spontaneous or induced fracturing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V2210/00Details of seismic processing or analysis
    • G01V2210/10Aspects of acoustic signal generation or detection
    • G01V2210/16Survey configurations
    • G01V2210/161Vertical seismic profiling [VSP]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V2210/00Details of seismic processing or analysis
    • G01V2210/60Analysis
    • G01V2210/61Analysis by combining or comparing a seismic data set with other data
    • G01V2210/614Synthetically generated data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V2210/00Details of seismic processing or analysis
    • G01V2210/60Analysis
    • G01V2210/62Physical property of subsurface
    • G01V2210/622Velocity, density or impedance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V2210/00Details of seismic processing or analysis
    • G01V2210/60Analysis
    • G01V2210/62Physical property of subsurface
    • G01V2210/622Velocity, density or impedance
    • G01V2210/6222Velocity; travel time
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V2210/00Details of seismic processing or analysis
    • G01V2210/60Analysis
    • G01V2210/63Seismic attributes, e.g. amplitude, polarity, instant phase
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V2210/00Details of seismic processing or analysis
    • G01V2210/60Analysis
    • G01V2210/64Geostructures, e.g. in 3D data cubes
    • G01V2210/646Fractures

Definitions

  • the invention belongs to the technical field of geophysical exploration and exploration and development of shale oil and gas resources, and in particular relates to a shale oil and gas optical fiber intelligent geophysical data collection system and a collection method.
  • Optical fiber sensing technology began in 1977 and developed rapidly with the development of optical fiber communication technology. Optical fiber sensing technology is an important symbol to measure the degree of informatization of a country. Optical fiber sensing technology has been widely used in military, national defense, aerospace, industrial and mining enterprises, energy and environmental protection, industrial control, medicine and health, metrology and testing, construction, household appliances and other fields, and has a broad market. There are hundreds of optical fiber sensing technologies in the world, and physical quantities such as temperature, pressure, flow, displacement, vibration, rotation, bending, liquid level, speed, acceleration, sound field, current, voltage, magnetic field and radiation have achieved different performances. sensing.
  • the optical fiber sensing system can be used for the measurement of surface three-component seismic signals and downhole pressure, temperature, noise, vibration, sound wave, seismic wave, flow rate, component analysis, electric field and magnetic field.
  • the system is based on a fully armored fiber optic cable construction, with sensors and connection and data transmission cables made of optical fibers.
  • laying armored optical cables underground and downhole such as burying them in shallow trenches below the surface, placing them in downhole control pipelines, putting them into coiled tubing, and directly integrating them into the coiled tubing wall made of composite materials.
  • Middle tied and fixed on the outside of the coiled tubing, placed in the casing, tied on the outside of the casing and permanently fixed with cementing cement and other layout methods.
  • the most widely used in the industry is the conventional in-hole three-component geophone to collect in-hole seismic or vertical seismic profile (VSP) data.
  • VSP vertical seismic profile
  • the downhole geophone array is also equipped with circuit modules such as amplification, filtering, denoising, analog-to-digital conversion, data storage and data transmission of the analog signal output by the geophone, so that the downhole three-component
  • the seismic data in the well collected by the geophone array is transmitted to the acquisition control computer on the instrument truck next to the wellhead through the armored logging cable thousands of meters long for storage.
  • the downhole three-component geophone array Due to the high-temperature and high-pressure working environment in deep wells, it is required that the downhole three-component geophone array can work stably and reliably for a long time in the downhole, which brings great difficulties to the development of the downhole three-component geophone array.
  • the electronic devices in the downhole conventional three-component geophone array are difficult to work in a high temperature environment for a long time.
  • the seismic data collected by the downhole three-component geophone array are completely transmitted from downhole to the ground by armored logging cables. kilometer) cable data transmission limitations, there is no way to achieve high-speed transmission of a large amount of underground data to the ground. The above factors greatly limit the development and popularization of downhole three-component geophone array technology.
  • the shale oil and gas optical fiber intelligent geophysical data acquisition system includes a metal casing, and a pipe string is placed inside the metal casing, and an outer armored optical cable is fixed on the outside of the metal casing; an inner armored optical cable is fixed outside the pipe string;
  • the outer armored optical cable includes a downhole acoustic wave sensing optical cable, two multimode optical fibers, a strain optical cable and a pressure sensor array;
  • the shallow part of the ground is arranged with ground acoustic wave sensing optical cables arranged horizontally according to the orthogonal grid, and the artificial seismic source excitation points are arranged on the ground according to the orthogonal grid;
  • the two DTS signal ports of the instrument are connected to two downhole multimode optical fibers, the DSS signal input port of the composite modem instrument is connected to the head end of the strain optical cable, and the DPS signal input port of the composite modem instrument is connected to the pressure sensor array The head end is connected;
  • the tubing string is coiled tubing or coiled gas tubing
  • the downhole acoustic wave sensing optical cable is an acoustic wave sensing optical cable with high temperature resistance and high sensitivity;
  • the multimode fiber is a multimode fiber with high temperature resistance and high sensitivity
  • the strained optical cable is a strained optical cable with high temperature resistance and high sensitivity
  • the pressure sensor array is a pressure sensor array with high temperature resistance and high sensitivity
  • the ground acoustic wave sensing optical cable is a high-sensitivity three-component seismic wave elastic body sensitization transmission acoustic wave sensing optical cable;
  • the composite modulation and demodulation instrument is a DAS/DTS/DSS/DPS composite modulation and demodulation instrument.
  • the outer downhole acoustic wave sensing optical cable uses three super-bend-resistant Rayleigh scattering enhanced sensing optical fibers, which are respectively wound on the seismic wave elastic body to form an underground acoustic wave sensing optical cable.
  • the downhole acoustic wave sensing optical cable and the multimode optical fiber are encapsulated by at least one layer of continuous metal tubules; the strained optical cable is extruded with a layer of high-strength and high-temperature-resistant composite material outside the high-temperature-resistant single-mode optical fiber, and there is at least one layer of It is tightly packaged with layers of continuous metal thin tubes and twisted together with armored steel wires on the outermost layer of the outer armored optical cable.
  • the tail end of the downhole acoustic wave sensing optical cable and the tail end of the ground acoustic wave sensing optical cable are respectively equipped with a light extinguisher, and the tail ends of the two multimode optical fibers are welded together in a U shape at the bottom of the well for connecting to the composite Double-ended signal input port for two DTS signals of modem instruments.
  • the optical fiber pressure sensor on the pressure sensor array is composed of any of the following pressure sensors: diaphragm type miniature F-P cavity optical fiber pressure sensor, corrugated diaphragm type optical fiber Fabry-Perot pressure sensor, fiber grating pressure sensor, composite
  • the optical fiber pressure sensor of the type Faper cavity, the pressure sensors are distributed at equal intervals, and the interval is between 20 meters and 100 meters.
  • It also includes ring-shaped metal clips, and the ring-shaped metal clips distributed at equal intervals are installed and fixed at each metal casing shoe to protect and fix the outer armored optical cable.
  • the inner armored optical cable is also installed and fixed outside the column with equidistant annular metal clips to protect and fix the inner armored optical cable.
  • the excitation point of the artificial source is an explosive source or a vibrator or an air gun source or a hammer drop source or an electric spark source.
  • the acquisition method of the shale oil and gas optical fiber intelligent geophysical data acquisition system comprises the following steps:
  • the artificial excitation source is used to excite sequentially at the positions of the artificial source excitation points arranged according to the orthogonal grid.
  • (k) Process the downhole three-component seismic data and surface three-dimensional three-component seismic data collected in the downhole and surrounding areas, then use the full waveform inversion technology to obtain the three-dimensional seismic compressional wave and shear wave velocity data volume, and finally use acoustic wave logging Velocity data and VSP velocity data are used to calibrate, adjust and update the 3D seismic P-wave and S-wave velocity data obtained through full waveform inversion, and obtain the preliminary seismic P-wave and S-wave velocity fields of the formations around the horizontal well;
  • inversion Calculate the three-dimensional space position of the microseismic event generated during the perforation operation; if the inverted position of the microseismic event generated by the perforation is inconsistent with the perforation position, adjust the compressional and shear wave velocity fields of the underground formation until the inversion
  • the position of the microseismic event generated by the perforation and the perforation position are within the allowable error range; the three-dimensional longitudinal wave and shear wave velocity volume after repeated adjustment is the velocity field of the underground formation that is finally used for the positioning of the hydraulic fracturing microseismic event;
  • this system can use the downhole acoustic wave sensing optical cable and the ground acoustic wave sensing optical cable to jointly carry out hydraulic fracturing microseismic monitoring, that is, the downhole acoustic wave sensing optical cable and the ground acoustic wave sensing optical cable and composite modulation
  • the hydraulic fracturing operation recorded continuously by the demodulation instrument causes the travel time difference of the compressional wave and shear wave of the microseismic event or signal generated when the underground formation of the side well or the same well is ruptured, combined with the compressional wave and shear wave velocity of the underground formation obtained in step (p) Distribution, inverse calculation of the occurrence time, three-dimensional spatial position and energy magnitude of the microseismic events generated when the underground formation is ruptured;
  • the downhole temperature change is monitored using composite modulation and demodulation instruments and multimode optical fibers; the temperature change of the entire well section can reflect the migration process and state of the fracturing fluid; The temperature change can analyze and judge the amount of fracturing fluid entering the formation and the speed of fracturing fluid flowback; from the DTS data, it can also be reflected that the lower the temperature, the greater the fluid production or gas production at that place;
  • Fig. 1 is a schematic diagram of the layout of the ground and the outside of the metal casing and the three-dimensional joint exploration operation of the well and the ground according to the present invention.
  • Fig. 2 is a schematic diagram of the layout of the ground and the outside of the pipe string and the three-dimensional joint exploration operation of the well and the ground according to the present invention.
  • Fig. 3 is a schematic diagram of the real-time monitoring and evaluation of the effect of vertical well hydraulic fracturing reservoir reconstruction according to the present invention.
  • Fig. 4 is a schematic diagram of the real-time monitoring and evaluation of the hydraulic fracturing effect of the horizontal well reservoir in the present invention.
  • Fig. 5 is a schematic diagram of the cross-sectional structure of the downhole acoustic wave sensing optical cable of the embodiment.
  • Fig. 6 is a schematic diagram of the cross-sectional structure of the ground acoustic wave sensing optical cable of the embodiment.
  • the source excitation point 7 also includes a composite modulation and demodulation instrument 5 placed near the wellhead.
  • the downhole acoustic wave sensing optical cable 10 uses three super-bend-resistant Rayleigh scattering enhanced sensing optical fibers, which are respectively wound on the seismic wave elastic body to form the downhole acoustic wave sensing optical cable 10 .
  • Fig. 2 is a schematic diagram of the composition of the ground and outer string shale oil and gas optical fiber intelligent geophysical data acquisition system of the present invention and the layout of well-ground three-dimensional joint exploration operations.
  • Fig. 3 is a schematic diagram of real-time monitoring and evaluation of the effect of vertical well hydraulic fracturing reservoir reconstruction by the shale oil and gas optical fiber intelligent geophysical data acquisition system of the present invention.
  • Fig. 4 is a schematic diagram of the real-time monitoring and evaluation of the hydraulic fracturing effect of the horizontal well hydraulic fracturing reservoir by the shale oil and gas optical fiber intelligent geophysical data acquisition system of the present invention.
  • the hydraulic fracturing microseismic monitoring is performed on the well itself (same well monitoring) and other horizontal branch wells.
  • Fig. 5 is a schematic diagram of the cross-sectional structure of the downhole acoustic wave sensing optical cable of the embodiment.
  • Fig. 6 is a schematic diagram of the cross-sectional structure of the ground acoustic wave sensing optical cable of the embodiment.
  • the downhole acoustic wave sensing optical cable 10 and the multimode optical fiber 11 are packaged with at least one layer of continuous metal thin tubes; There is at least one layer of continuous thin metal tubes for tight packaging, and the outermost layer of the armored optical cable is twisted together with the armored steel wire of the outer armored optical cable of the metal sleeve 1 .
  • the tail end of the downhole acoustic wave sensing optical cable 10 and the tail end of the ground acoustic wave sensing optical cable 14 are respectively equipped with a light extinguisher 3, and the tail ends 15 of the two downhole multimode optical fibers 11 are welded in a U shape at the bottom of the well. Together, the double-ended signal input port for connection to the two DTS signals of the composite modem instrument 5.
  • the shale oil and gas optical fiber intelligent geophysical data acquisition system also includes annular metal clamps 4, and the equally spaced annular metal clamps 4 are installed and fixed at each metal casing 1 boot to protect and fix the outer armor
  • the optical cable 2 will not be damaged by impact, extrusion or abrasion during casing running operation.
  • the optical fiber pressure sensor on the pressure sensor array 13 can be the optical fiber of diaphragm type miniature F-P cavity optical fiber pressure sensor or corrugated diaphragm type optical fiber Fabry-Perot pressure sensor or fiber grating pressure sensor or composite type Fabry-Perot cavity
  • the pressure sensors and the optical fiber pressure sensors are distributed at equal intervals, and the intervals are between 20 meters and 100 meters.
  • the inner armored optical cable 22 arranged outside the pipe column 6 is also installed and fixed outside the pipe column 6 with equally spaced annular metal clips 4, so as to protect and prevent the inner armored optical cable 22 from being bumped when the pipe column 6 is operated. Extrusion or abrasion damage.
  • the artificial seismic source excitation point 7 is an explosive seismic source or a vibrator or an air gun seismic source or a heavy hammer falling seismic source or an electric spark seismic source.
  • the acquisition method of the shale oil and gas optical fiber intelligent geophysical data acquisition system of the present invention comprises the following steps:
  • (k) Process the downhole three-component seismic data and surface three-dimensional three-component seismic data collected in the downhole and surrounding areas, then use the full waveform inversion technology to obtain the three-dimensional seismic compressional wave and shear wave velocity data volume, and finally use acoustic wave logging Velocity data and VSP velocity data are used to calibrate, adjust and update the 3D seismic P-wave and S-wave velocity data obtained through full waveform inversion, and obtain the preliminary seismic P-wave and S-wave velocity fields of the formations around the horizontal well;
  • this system can use the downhole acoustic wave sensing optical cable 10 and the ground acoustic wave sensing optical cable 14 to jointly carry out hydraulic fracturing microseismic monitoring, that is, to use the downhole acoustic wave sensing optical cable 10 and the ground acoustic wave sensing optical cable 14 and the hydraulic fracturing operation recorded continuously by the compound modem instrument 5 causes microseismic events or the travel time difference of the compressional wave and the shear wave of the signal produced when the underground formation of the side well or the same well ruptures, combined with the underground formation obtained in step (p)
  • the composite modem instrument 5 and the multimode optical fiber 11 are used to monitor the downhole temperature change; the temperature change of the whole well section can reflect the migration process and state of the fracturing fluid; the perforated layer The temperature change around the section can be used to analyze and judge the amount of fracturing fluid entering the formation and the speed of fracturing fluid flowback; from the DTS data, it can also be reflected that the lower the temperature, the greater the fluid production or gas production in the area ;

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Remote Sensing (AREA)
  • Geophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Acoustics & Sound (AREA)
  • Mechanical Engineering (AREA)
  • Electromagnetism (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Light Guides In General And Applications Therefor (AREA)

Abstract

页岩油气光纤智能地球物理数据采集系统及采集方法,金属套管(1)内安置有管柱(6),金属套管(1)外侧固定有外铠装光缆(2);管柱(6)外固定有内铠装光缆(22);外铠装光缆(2)内包括井下声波传感光缆(10)、两根多模光纤(11)、应变光缆(12)和压力传感器阵列(13);地面浅部按照正交网格布设有水平布设的地面声波传感光缆(14),地面按照正交网格布设的人工震源激发点(7);复合调制解调仪器(5)的6个DAS信号端口分别与井下声波传感光缆(10)和地面声波传感光缆(14)相连接,复合调制解调仪器(5)的两个DTS信号端口与井下两根多模光纤(11)相连接,复合调制解调仪器(5)的DSS信号输入端口与应变光缆(12)的首端相连接,复合调制解调仪器(5)的DPS信号输入端口与压力传感器阵列(13)的首端相连接。

Description

页岩油气光纤智能地球物理数据采集系统及采集方法 技术领域
本发明属于地球物理勘探及页岩油气资源勘探开发技术领域,具体涉及一种页岩油气光纤智能地球物理数据采集系统及采集方法。
背景技术
光纤传感技术始于1977年,伴随光纤通信技术的发展而迅速发展起来的,光纤传感技术是衡量一个国家信息化程度的重要标志。光纤传感技术已广泛用于军事、国防、航天航空、工矿企业、能源环保、工业控制、医药卫生、计量测试、建筑、家用电器等领域有着广阔的市场。世界上已有光纤传感技术上百种,诸如温度、压力、流量、位移、振动、转动、弯曲、液位、速度、加速度、声场、电流、电压、磁场及辐射等物理量都实现了不同性能的传感。
光纤传感系统可以用于地面三分量地震信号和井下压力、温度、噪声、振动、声波、地震波、流量、组分分析、电场和磁场的测量。该系统以全铠装光缆结构为基础,传感器和连接及数据传输缆都用光纤制成。目前有多种地下和井下铠装光缆的布设方法,比如埋放在地表以下的浅沟内、安放在井下控制管线内、投放到连续油管内、直接集成到复合材料制成的连续油管管壁中、捆绑固定在连续油管外侧、投放在套管内和捆绑在套管外侧并用固井水泥进行永久性固定等布设方法。
目前行业内使用最广泛的就是常规的井中三分量检波器采集井中地震或垂直地震剖面(VSP)数据。为了记录井下检波器感应到的震动信号,井下检波器阵列内还设置有检波器输出的模拟信号放大、滤波、去噪、模数转换、数据存储和数据传输等电路模块,以便将井下三分量检波器阵列采集到的井中地震数据通过数千米长的铠装测井电缆传送到井口旁边仪器车上的采集控制计算机里存储起来。由于深井下的高温高压作业环境,要求井下三分量检波器阵列要能够在井下长期稳定可靠的工作,这样的要求给井下三分量检波器阵列的研制带来了很大的困难。井下常规三分量检波器阵列里面的电子器件难以在高温环境下长期工作,另外目前井下三分量检波器阵列采集的井中地震数据完全靠铠装测井电缆从井下向地面传输,由于长距离(数千米)电缆数据传输的局限性,没有办法实现井下大量数据向地面的高速传输。上面这些因素极大的限制了井下三分量检波器阵列技术的发展和推广应用。
传统的井下压力、温度、噪声和振动信号测量通常使用的是井下测井仪器或井下电子传感器,这些电子传感器都需要耐高温、耐高压、在井下长时间工作,而这些工作环境和条件对常规电子传感器是非常困难的挑战,这些电子传感器还没有办法布设到套管的外侧,也没有办法实现全井段的井下压力、温度、噪声和振动信号的测量和监测。
发明内容
为了实现地下页岩油气资源的甜点预测与评估、储层水力压裂改造效果的综合精准评价、地下应力场的实时监测和套损可能发生的预警、储层内各位置的孔隙流体压力测量、实时测量每个油气产出井段的油、气、水的流量及其变化(产液剖面)或井下每个注水或注蒸汽或注二氧化碳或注聚合物井段的注入量及其变化(吸水剖面)等一体化智能勘探开发,大幅度降低页岩油气资源的勘探开发成本,提高最终采收率,本发明提出了页岩油气光纤智能地球物理数据采集系统及采集方法,利用地面布设的井下声波传感光缆、井下金属套管外永久埋设的外铠装光缆、管柱外固定的内铠装光缆、外铠装光缆内置的应变光缆和压力传感器阵列,地面按照正交网格布设的人工震源激发点,以及放置于井口附近的复合调制解调仪器,构建页岩油气光纤智能地球物理数据采集系统和一体化勘探开发工程体系。
为实现上述目的,本发明的具体技术方案为:
页岩油气光纤智能地球物理数据采集系统,包括金属套管,金属套管内还安置有管柱,金属套管外侧固定有外铠装光缆;管柱外固定有内铠装光缆;
所述的外铠装光缆内包括井下声波传感光缆、两根多模光纤、应变光缆和压力传感器阵列;
还包括,地面浅部按照正交网格布设有水平布设的地面声波传感光缆,地面按照正交网格布设的人工震源激发点;
还包括,放置于井口附近的复合调制解调仪器;所述复合调制解调仪器的6个DAS信号端口分别与外井下声波传感光缆和地面声波传感光缆相连接,所述复合调制解调仪器的两个DTS信号端口与井下两根多模光纤相连接,复合调制解调仪器的DSS信号输入端口与应变光缆的首端相连接,复合调制解调仪器的DPS信号输入端口与压力传感器阵列的首端相连接;
所述的管柱为连续油管或连续气管;
所述的井下声波传感光缆为耐高温高灵敏度的声波传感光缆;
所述的多模光纤为耐高温高灵敏度的多模光纤;
所述的应变光缆为耐高温高灵敏度的应变光缆;
所述的压力传感器阵列为耐高温高灵敏度的压力传感器阵列;
所述的地面声波传感光缆为高灵敏度三分量地震波弹性体增敏传声波感光缆;
所述的复合调制解调仪器为DAS/DTS/DSS/DPS复合调制解调仪器。
所述的外井下声波传感光缆内采用3根超级抗弯瑞利散射增强型传感光纤,分别缠绕在地震波弹性体上构建成井下声波传感光缆。
所述的井下声波传感光缆、多模光纤外有至少一层连续金属细管对其进行封装;应变光缆中耐高温单模光纤外挤压有一层高强度耐高温复合材料,外面有至少一层连续金属细管对 其进行紧包封装,并且与铠装钢丝一起绞合在外铠装光缆的最外层。
所述的井下声波传感光缆尾端和地面声波传感光缆的尾端分别安装有消光器,两根所述多模光纤的尾端在井底呈U字形熔接在一起,用于连接到复合调制解调仪器的两个DTS信号的双端信号输入端口。
所述的压力传感器阵列上的光纤压力传感器为以下任一种压力传感器组成:膜片式微型F-P腔光纤压力传感器、波纹膜片式光纤法布里-珀罗压力传感器、光纤光栅压力传感器、复合式法珀腔的光纤压力传感器,压力传感器之间按等间距分布,间距在20米到100米之间。
还包括环形金属卡子,等间距分布的环形金属卡子安装固定在每根金属套管靴处,保护并固定外铠装光缆。所述的内铠装光缆也用等间距分布的环形金属卡子安装固定在管柱外,保护并固定内铠装光缆。
人工震源激发点为炸药震源或可控震源或气枪震源或重锤下落震源或电火花震源。
所述的页岩油气光纤智能地球物理数据采集系统的采集方法,包括以下步骤:
(a)把金属套管和外铠装光缆同步缓慢的下入完钻的井孔里;
(b)在井口把所述的环形金属卡子安装在两根金属套管的连接处,固定并保护外铠装光缆在下套管过程中不会旋转移动和/或被损坏;
(c)在井口用所述的环形金属卡子把内铠装光缆和管柱固定在一起,保护内铠装光缆在下管柱的过程中不会旋转移动和/或被损坏;
(d)用高压泵车从井底泵入水泥浆,使水泥浆从井底沿金属套管外壁和钻孔之间的环空区返回到井口,水泥浆固结后,把金属套管、外铠装光缆和地层岩石永久性的固定在一起;
(e)在井口周围地面浅部按照正交网格埋设水平布设的地面声波传感光缆,按照正交网格布设人工震源激发点;
(f)在井下声波传感光缆尾端和地面声波传感光缆的尾端分别安装消光器,把井下两根多模光纤的尾端在井底呈U字形熔接在一起;
(g)在井口处把井下声波传感光缆首端、地面声波传感光缆首端和两根多模光纤分别连接到复合调制解调仪器的DAS和DTS信号输入端;把应变光缆的首端与复合调制解调仪器的DSS信号输入端口相连接,把压力传感器阵列的首端与复合调制解调仪器的DPS信号输入端口相连接;
(h)利用井下射孔枪内置的声源发射器在金属套管内连续发射声源信号,根据外铠装光缆和地面的复合调制解调仪器检测到的声源信号的振幅特征,对全井段的外铠装光缆进行定向和定位;
(i)根据测量到的全井段的外铠装光缆的位置和方位,调整射孔枪内射孔弹的方位和射 孔位置,通过定向射孔作业避免在射孔时将外铠装光缆射断;
(j)在地面使用人工激发震源在按照正交网格布设的人工震源激发点的位置上依次进行激发,井下声波传感光缆和地面声波传感光缆同步同时联合采集地面人工震源激发的井中和地面三分量地震数据;
(k)对井下和井周围区域采集的井下三分量地震数据和地面三维三分量地震数据进行处理,然后使用全波形反演技术求取三维地震纵波和横波速度数据体,最后再用声波测井速度数据和VSP速度数据对通过全波形反演得到的三维地震纵波和横波速度数据体进行标定、调整和更新,获得水平井周围地层的初步地震纵波和横波速度场;
(l)根据井中采集的地震数据的初至走时和地面震源的人工震源激发点到井下检波点的距离,计算求取地下介质的准确平均速度值和层速度值;根据井中地震数据的反射层深度位置进行地面地震数据里的多次波去除处理,标定各地面地震数据的地震地质反射层;
(m)处理井中地震数据,提供地层吸收衰减参数Q;根据从井中地震数据中提取的真振幅恢复因子,对井中-地面联合采集的地面三维地震数据建立井控速度场并进行基于速度场的振幅恢复处理;根据从井中地震数据中提取的反褶积参数,对井中-地面联合采集的地面三维地震数据进行反褶积处理;
(n)基于三维井中地震数据或多方位Walkaway VSP或WalkaroundVSP数据计算提取地下地层的各向异性参数;进行基于VSP井驱参数约束的速度、各向异性三维参数联合建模;利用井中地震数据参数进行井控地面地震数据的提高分辨率处理;根据从井中地震数据中精确计算提取的地下地层的各向异性参数,对井中-地面联合采集的地面三维地震数据进行各向异性偏移处理;根据从井中地震数据中提取的地层吸收衰减参数Q,对井中-地面联合采集的地面三维地震数据进行叠前道集数据的Q补偿或Q偏移处理;
(o)对应变光缆实时采集的沿井筒的金属套管外壁的应变数据进行处理,实时监测和了解井下的金属套管外应力场的变化,及时发现应力或应变异常井段,防止应力或应变区域的套管发生挤压损坏;
(p)在井下预先设计的射孔位置依次对金属套管进行定向射孔作业,同时利用井下布设的井下声波传感光缆和地面声波传感光缆以及井口附近的复合调制解调仪器记录定向射孔作业时产生的微地震信号,利用这些射孔微地震事件或信号的纵波和横波的走时差,结合步骤(k)标定、调整和更新后的地下地层的初步纵波和横波速度分布,反演计算进行射孔作业时产生的微地震事件的三维空间位置;如果反演出来的射孔产生的微地震事件的位置与射孔位置不一致,则调整地下地层的纵波和横波速度场,直到反演出的射孔产生的微地震事件的位置与射孔位置在允许误差范围为止;此反复调整后的三维纵波和横波速度体就是最终用于水 力压裂微地震事件定位的地下地层的速度场;
(q)在水力压裂作业时,此系统可以用井下声波传感光缆与地面声波传感光缆联合进行水力压裂微地震监测,即利用井下声波传感光缆和地面声波传感光缆以及复合调制解调仪器连续记录的水力压裂作业导致旁井或同井的地下地层破裂时产生的微地震事件或信号的纵波和横波的走时差,结合步骤(p)获得的地下地层的纵波和横波速度分布,反演计算进行地下地层破裂时产生的微地震事件的发生时间、三维空间位置和能量大小;
(r)根据水力压裂作业过程中实时监测到的地下地层破裂时产生的微地震事件的发生时间、三维空间位置和能量大小,观察所有已发生的微地震事件三维空间位置的动态分布及变化,实时优化调整水力压裂作业时的各种参数,避免水力压裂作业激活地层中的小断层,或因为压力过大而压穿需要被改造的储层进而发生储层被上下地层的水浸淹没;
(s)水力压裂期间,应用复合调制解调仪器和多模光纤进行井下温度变化的监测;全井段温度的变化,可以反映出压裂液的运移过程和状态;射孔层段周围的温度变化可以对压裂液进入地层的液量以及压裂液返排快慢多少进行分析判断;从DTS数据中也能反应出温度越低表征了该处产液量或产气量越大;
(t)水力压裂结束后,根据记录到的水力压裂作业导致地下地层破裂时产生的微地震事件的纵波和横波信号特征进行三维动量反演,获得大部分微地震事件的破裂机理,分析水力压裂改造后张性裂缝和剪切性以及复合型裂缝的分布特征和规律;利用所有实时监测到的所有微地震事件在三维空间分布范围的包络计算水力压力作业产生的总被改造体积(SRV);根据张性裂缝和剪切性以及复合型裂缝的分布特征和规律以及所有微地震事件在三维空间分布范围,进行基于震源机制的裂缝地震成像,生成水力压裂裂缝离散网络模型(FMDFN);最后综合上面获得的张性裂缝和剪切性以及复合型裂缝的分布特征和规律、总被改造体积和裂缝离散网络模型(FMDFN),并将所有相互连通的裂缝从裂缝离散网络模型中分离出来,估算其体积大小,获得有效被改造体积(ESRV),具此对水平井的储层水力压裂改造效果进行有效可靠的定性和定量评价;
(u)当进行过水力压裂储层改造后的水平井投入油气生产后,利用外铠装光缆和与之相连接的复合调制解调仪器,实时连续测量每个射孔点位置的噪声和温度数据,以及压力传感器阵列上各压力传感器位置实时测量的储层孔隙流体压力,利用多参数综合反演方法计算出井下每个油气产出井段的油、气、水的流量及其变化(产液剖面),或井下每个注水或注蒸汽或注二氧化碳或注聚合物井段的注入量及其变化(吸水剖面),从而实现对油气井开发生产过程及其井液产量变化的长期实时动态监测;
(v)利用地面布设的井下声波传感光缆、外铠装光缆、内铠装光缆、人工震源激发点、 复合调制解调仪器,构建页岩油气光纤智能地球物理数据采集系统和一体化勘探开发工程体系,实现地下页岩油气资源的甜点预测与评价、储层水力压裂改造效果的综合精准评价、地下应力场的实时监测和套损可能发生的预警、储层内各位置的孔隙流体压力测量、实时测量每个油气产出井段的油、气、水的流量及其变化(产液剖面)或井下每个注水或注蒸汽或注二氧化碳或注聚合物井段的注入量及其变化(吸水剖面)等一体化智能开发,大幅度降低页岩油气资源的勘探开发成本,提高最终采收率。
本发明具体的技术效果:
附图说明
图1是本发明的地面和金属套管外构成和进行井地立体联合勘探作业的布设示意图。
图2是本发明的地面和管柱外构成和进行井地立体联合勘探作业的布设示意图。
图3是本发明进行直井水力压裂储层改造效果实时监测和评价设示意图。
图4是本发明进行水平井水力压裂储层改造效果实时监测和评价设示意图。
图5是实施例的井下声波传感光缆横截面结构示意图。
图6是实施例的地面声波传感光缆横截面结构示意图。
具体实施方式
为了便于理解本发明,下面结合附图和具体实施例,对本发明进行更详细的说明。附图给出了本发明的较佳的实施例。但是,本发明可以以许多不同的形式来实现,并不限于本说明书所描述的实施例。相反地,提供这些实施例的目的是使对本发明公开内容的理解更加透彻全面。它们并不构成对本发明的限定,仅作举例而已,同时通过说明本发明的优点将变得更加清楚和容易理解。
本发明的地面和金属套管1外页岩油气光纤智能地球物理数据采集系统构成和进行井地立体联合勘探作业的布设示意图如图1所示:
包括金属套管1,金属套管1内还安置有管柱6,金属套管1外侧固定有外铠装光缆2,外铠装光缆2内有传感光缆10、两根多模光纤11、应变光缆12和压力传感器阵列13,管柱6外固定有内铠装光缆22,地面浅部按照正交网格布设有水平布设的地面声波传感光缆14,地面按照正交网格布设的人工震源激发点7,还包括放置于井口附近的复合调制解调仪器5。所述的井下声波传感光缆10内采用3根超级抗弯瑞利散射增强型传感光纤,分别缠绕在地震波弹性体上构建成井下声波传感光缆10。
图2是本发明地面和管柱外页岩油气光纤智能地球物理数据采集系统构成和进行井地立体联合勘探作业的布设示意图。
图3是本发明页岩油气光纤智能地球物理数据采集系统进行直井水力压裂储层改造效果 实时监测和评价设示意图。图4是本发明页岩油气光纤智能地球物理数据采集系统进行水平井水力压裂储层改造效果实时监测和评价设示意图。在这种情况下,结合地面浅部埋设的地面声波传感光缆14,共同对井自身(同井监测)和其它水平分支井进行水力压裂微地震监测(邻井监测)。在此直井或水平分支井投入油气生产后,继续利用外铠装光缆2实时连续测量各油气生产井段的噪声和温度变化,提供产液剖面数据,实时监测每个射孔段的油、气、水产量的动态变化,优化开发生产方案,提高油气采收率。
图5是实施例的井下声波传感光缆横截面结构示意图。图6是实施例的地面声波传感光缆横截面结构示意图。
所述的井下声波传感光缆10、多模光纤11外有至少一层连续金属细管对其进行封装;应变光缆12中耐高温单模光纤外挤压有一层高强度耐高温复合材料,外面有至少一层连续金属细管对其进行紧包封装,并且与金属套管1外铠装光缆的铠装钢丝一起绞合在铠装光缆的最外层。
所述的井下声波传感光缆10尾端和地面声波传感光缆14的尾端分别安装有消光器3,所述的井下两根多模光纤11的尾端15在井底呈U字形熔接在一起,用于连接到复合调制解调仪器5的两个DTS信号的双端信号输入端口。
所述的页岩油气光纤智能地球物理数据采集系统,还包括环形金属卡子4,所述的等间距分布的环形金属卡子4安装固定在每根金属套管1靴处,保护并固定外铠装光缆2在下套管作业时不会被撞击、挤压或磨损破坏。
所述的压力传感器阵列13上的光纤压力传感器可以是膜片式微型F-P腔光纤压力传感器或波纹膜片式光纤法布里-珀罗压力传感器或光纤光栅压力传感器或复合式法珀腔的光纤压力传感器,光纤压力传感器之间按等间距分布,间距在20米到100米之间。
所述的管柱6外布设的内铠装光缆22也用等间距分布的环形金属卡子4安装固定在管柱6外,保护并内铠装光缆22在管柱6作业时不会被撞击、挤压或磨损破坏。
人工震源激发点7为炸药震源或可控震源或气枪震源或重锤下落震源或电火花震源。
本发明所述的页岩油气光纤智能地球物理数据采集系统的采集方法,包括以下步骤:
(a)把金属套管1和外铠装光缆2同步缓慢的下入完钻的井孔里;
(b)在井口把所述的环形金属卡子4安装在两根金属套管1的连接处,固定并保护外铠装光缆2在下套管过程中不会旋转移动和/或被损坏;
(c)在井口用所述的环形金属卡子4把内铠装光缆22和管柱6固定在一起,保护内铠装光缆22在下管柱6的过程中不会旋转移动和/或被损坏;
(d)用高压泵车从井底泵入水泥浆,使水泥浆从井底沿金属套管1外壁和钻孔之间的环 空区返回到井口,水泥浆固结后,把金属套管1、外铠装光缆2和地层岩石永久性的固定在一起;
(e)在井口周围地面浅部按照正交网格埋设水平布设的地面声波传感光缆14,按照正交网格布设人工震源激发点7;
(f)在井下声波传感光缆10尾端和地面声波传感光缆14的尾端分别安装消光器3,把井下两根多模光纤11的尾端15在井底呈U字形熔接在一起;
(g)在井口处把井下声波传感光缆10首端、地面声波传感光缆14首端和两根多模光纤11分别连接到复合调制解调仪器5的DAS和DTS信号输入端;把应变光缆12的首端与复合调制解调仪器5的DSS信号输入端口相连接,把压力传感器阵列13的首端与复合调制解调仪器5的DPS信号输入端口相连接;
(h)利用井下射孔枪内置的声源发射器在金属套管1内连续发射声源信号,根据外铠装光缆2和地面的复合调制解调仪器5检测到的声源信号的振幅特征,对全井段的外铠装光缆2进行定向和定位;
(i)根据测量到的全井段的外铠装光缆2的位置和方位,调整射孔枪内射孔弹的方位和射孔位置9,通过定向射孔作业避免在射孔时将外铠装光缆2射断;
(j)在地面使用人工激发震源在按照正交网格布设的人工震源激发点7的位置上依次进行激发,井下声波传感光缆10和地面声波传感光缆14同步同时联合采集地面人工震源激发的井中和地面三分量地震数据;
(k)对井下和井周围区域采集的井下三分量地震数据和地面三维三分量地震数据进行处理,然后使用全波形反演技术求取三维地震纵波和横波速度数据体,最后再用声波测井速度数据和VSP速度数据对通过全波形反演得到的三维地震纵波和横波速度数据体进行标定、调整和更新,获得水平井周围地层的初步地震纵波和横波速度场;
(l)根据井中采集的地震数据的初至走时和地面震源的人工震源激发点7到井下检波点的距离,计算求取地下介质的准确平均速度值和层速度值;根据井中地震数据的反射层深度位置进行地面地震数据里的多次波去除处理,标定各地面地震数据的地震地质反射层;
(m)处理井中地震数据,提供地层吸收衰减参数Q;根据从井中地震数据中提取的真振幅恢复因子,对井中-地面联合采集的地面三维地震数据建立井控速度场并进行基于速度场的振幅恢复处理;根据从井中地震数据中提取的反褶积参数,对井中-地面联合采集的地面三维地震数据进行反褶积处理;
(n)基于三维井中地震数据或多方位Walkaway VSP或WalkaroundVSP数据计算提取地下地层的各向异性参数;进行基于VSP井驱参数约束的速度、各向异性三维参数联合建模; 利用井中地震数据参数进行井控地面地震数据的提高分辨率处理;根据从井中地震数据中精确计算提取的地下地层的各向异性参数,对井中-地面联合采集的地面三维地震数据进行各向异性偏移处理;根据从井中地震数据中提取的地层吸收衰减参数Q,对井中-地面联合采集的地面三维地震数据进行叠前道集数据的Q补偿或Q偏移处理;
(o)对应变光缆12实时采集的沿井筒的金属套管1外壁的应变数据进行处理,实时监测和了解井下的金属套管1外应力场的变化,及时发现应力或应变异常井段,防止应力或应变区域的套管发生挤压损坏;
(p)在井下预先设计的射孔位置9依次对金属套管1进行定向射孔作业,同时利用井下布设的井下声波传感光缆10和地面声波传感光缆14以及井口附近的复合调制解调仪器5记录定向射孔作业时产生的微地震信号,利用这些射孔微地震事件或信号的纵波和横波的走时差,结合步骤(k)标定、调整和更新后的地下地层的初步纵波和横波速度分布,反演计算进行射孔作业时产生的微地震事件的三维空间位置;如果反演出来的射孔产生的微地震事件的位置与射孔位置9不一致,则调整地下地层的纵波和横波速度场,直到反演出的射孔产生的微地震事件的位置与射孔位置9在允许误差范围为止;此反复调整后的三维纵波和横波速度体就是最终用于水力压裂微地震事件定位的地下地层的速度场;
(q)在水力压裂作业时,此系统可以用井下声波传感光缆10与地面声波传感光缆14联合进行水力压裂微地震监测,即利用井下声波传感光缆10和地面声波传感光缆14以及复合调制解调仪器5连续记录的水力压裂作业导致旁井或同井的地下地层破裂时产生的微地震事件或信号的纵波和横波的走时差,结合步骤(p)获得的地下地层的纵波和横波速度分布,反演计算进行地下地层破裂时产生的微地震事件的发生时间、三维空间位置和能量大小;
(r)根据水力压裂作业过程中实时监测到的地下地层破裂时产生的微地震事件的发生时间、三维空间位置和能量大小,观察所有已发生的微地震事件三维空间位置的动态分布及变化,实时优化调整水力压裂作业时的各种参数,避免水力压裂作业激活地层中的小断层,或因为压力过大而压穿需要被改造的储层进而发生储层被上下地层的水浸淹没;
(s)水力压裂期间,应用复合调制解调仪器5和多模光纤11进行井下温度变化的监测;全井段温度的变化,可以反映出压裂液的运移过程和状态;射孔层段周围的温度变化可以对压裂液进入地层的液量以及压裂液返排快慢多少进行分析判断;从DTS数据中也能反应出温度越低表征了该处产液量或产气量越大;
(t)水力压裂结束后,根据记录到的水力压裂作业导致地下地层破裂时产生的微地震事件的纵波和横波信号特征进行三维动量反演,获得大部分微地震事件的破裂机理,分析水力压裂改造后张性裂缝和剪切性以及复合型裂缝的分布特征和规律;利用所有实时监测到的所 有微地震事件在三维空间分布范围的包络计算水力压力作业产生的总被改造体积(SRV);根据张性裂缝和剪切性以及复合型裂缝的分布特征和规律以及所有微地震事件在三维空间分布范围,进行基于震源机制的裂缝地震成像,生成水力压裂裂缝离散网络模型(FMDFN);最后综合上面获得的张性裂缝和剪切性以及复合型裂缝的分布特征和规律、总被改造体积和裂缝离散网络模型(FMDFN),并将所有相互连通的裂缝从裂缝离散网络模型中分离出来,估算其体积大小,获得有效被改造体积(ESRV),具此对水平井的储层水力压裂改造效果进行有效可靠的定性和定量评价;
(u)当进行过水力压裂储层改造后的水平井投入油气生产后,利用外铠装光缆2和与之相连接的复合调制解调仪器5,实时连续测量每个射孔点位置的噪声和温度数据,以及压力传感器阵列13上各压力传感器位置实时测量的储层孔隙流体压力,利用多参数综合反演方法计算出井下每个油气产出井段的油、气、水的流量及其变化(产液剖面),或井下每个注水或注蒸汽或注二氧化碳或注聚合物井段的注入量及其变化(吸水剖面),从而实现对油气井开发生产过程及其井液产量变化的长期实时动态监测;
(v)利用地面布设的井下声波传感光缆14、外铠装光缆2、内铠装光缆22、人工震源激发点7、复合调制解调仪器5,构建页岩油气光纤智能地球物理数据采集系统和一体化勘探开发工程体系,实现地下页岩油气资源的甜点预测与评价、储层水力压裂改造效果的综合精准评价、地下应力场的实时监测和套损可能发生的预警、储层内各位置的孔隙流体压力测量、实时测量每个油气产出井段的油、气、水的流量及其变化(产液剖面)或井下每个注水或注蒸汽或注二氧化碳或注聚合物井段的注入量及其变化(吸水剖面)等一体化智能开发,大幅度降低页岩油气资源的勘探开发成本,提高最终采收率。

Claims (9)

  1. 页岩油气光纤智能地球物理数据采集系统,其特征在于,包括金属套管(1),金属套管(1)内安置有管柱(6),金属套管(1)外侧固定有外铠装光缆(2);管柱(6)外固定有内铠装光缆(22);
    所述的外铠装光缆(2)内包括井下声波传感光缆(10)、两根多模光纤(11)、应变光缆(12)和压力传感器阵列(13);
    还包括,地面浅部按照正交网格布设有水平布设的地面声波传感光缆(14),地面按照正交网格布设的人工震源激发点(7);
    还包括,放置于井口附近的复合调制解调仪器(5);所述复合调制解调仪器(5)的6个DAS信号端口分别与外井下声波传感光缆(10)和地面声波传感光缆(14)相连接,所述复合调制解调仪器(5)的两个DTS信号端口与井下两根多模光纤(11)相连接,复合调制解调仪器(5)的DSS信号输入端口与应变光缆(12)的首端相连接,复合调制解调仪器(5)的DPS信号输入端口与压力传感器阵列(13)的首端相连接;
    所述的管柱(6)为连续油管或连续气管;
    所述的井下声波传感光缆(10)为耐高温高灵敏度的声波传感光缆;
    所述的多模光纤(11)为耐高温高灵敏度的多模光纤;
    所述的应变光缆(12)为耐高温高灵敏度的应变光缆;
    所述的压力传感器阵列(13)为耐高温高灵敏度的压力传感器阵列;
    所述的地面声波传感光缆(14)为高灵敏度三分量地震波弹性体声波增敏传感光缆;
    所述的复合调制解调仪器(5)为DAS/DTS/DSS/DPS复合调制解调仪器。
  2. 根据权利要求1所述的页岩油气光纤智能地球物理数据采集系统,其特征在于,所述的外井下声波传感光缆(10)内采用3根超级抗弯瑞利散射增强型传感光纤,分别缠绕在地震波弹性体上构建成井下高灵敏度三分量地震波弹性体声波增敏传感光缆(10)。
  3. 根据权利要求1所述的页岩油气光纤智能地球物理数据采集系统,其特征在于,所述的井下声波传感光缆(10)、多模光纤(11)外有至少一层连续金属细管对其进行封装;应变光缆(12)中耐高温单模光纤外挤压有一层高强度耐高温复合材料,外面有至少一层连续金属细管对其进行紧包封装,并且与铠装钢丝一起绞合在外铠装光缆(2)的最外层。
  4. 根据权利要求1所述的页岩油气光纤智能地球物理数据采集系统,其特征在于,所述的井下声波传感光缆(10)尾端和地面声波传感光缆(14)的尾端分别安装有消光器(3),两根所述多模光纤(11)的尾端(15)在井底呈U字形熔接在一起,用于连接到复合调制解调仪器(5)的两个DTS信号的双端信号输入端口。
  5. 根据权利要求1所述的页岩油气光纤智能地球物理数据采集系统,其特征在于,所述 的压力传感器阵列(13)上的光纤压力传感器为以下任一种压力传感器组成:膜片式微型F-P腔光纤压力传感器、波纹膜片式光纤法布里-珀罗压力传感器、光纤光栅压力传感器、复合式法珀腔的光纤压力传感器,压力传感器之间按等间距分布,间距在20米到100米之间。
  6. 根据权利要求1所述的页岩油气光纤智能地球物理数据采集系统,其特征在于,还包括环形金属卡子(4),等间距分布的环形金属卡子(4)安装固定在每根金属套管(1)靴处,保护并固定外铠装光缆(2)。
  7. 根据权利要求6所述的页岩油气光纤智能地球物理数据采集系统,其特征在于,所述的内铠装光缆(22)也用等间距分布的环形金属卡子(4)安装固定在管柱(6)外,保护并固定内铠装光缆(22)。
  8. 根据权利要求1所述的页岩油气光纤智能地球物理数据采集系统,其特征在于,人工震源激发点(7)为炸药震源或可控震源或气枪震源或重锤下落震源或电火花震源。
  9. 根据权利要求1到8任一项所述的页岩油气光纤智能地球物理数据采集系统的采集方法,其特征在于,包括以下步骤:
    (a)把金属套管(1)和外铠装光缆(2)同步缓慢的下入完钻的井孔里;
    (b)在井口把所述的环形金属卡子(4)安装在两根金属套管(1)的连接处,固定并保护外铠装光缆(2)在下套管过程中不会旋转移动和/或被损坏;
    (c)在井口用所述的环形金属卡子(4)把内铠装光缆(22)和管柱(6)固定在一起,保护内铠装光缆(22)在下管柱(6)的过程中不会旋转移动和/或被损坏;
    (d)用高压泵车从井底泵入水泥浆,使水泥浆从井底沿金属套管(1)外壁和钻孔之间的环空区返回到井口,水泥浆固结后,把金属套管(1)、外铠装光缆(2)和地层岩石永久性的固定在一起;
    (e)在井口周围地面浅部按照正交网格埋设水平布设的地面声波传感光缆(14),按照正交网格布设人工震源激发点(7);
    (f)在井下声波传感光缆(10)尾端和地面声波传感光缆(14)的尾端分别安装消光器(3),把井下两根多模光纤(11)的尾端(15)在井底呈U字形熔接在一起;
    (g)在井口处把井下声波传感光缆(10)首端、地面声波传感光缆(14)首端和两根多模光纤(11)分别连接到复合调制解调仪器(5)的DAS和DTS信号输入端;把应变光缆(12)的首端与复合调制解调仪器(5)的DSS信号输入端口相连接,把压力传感器阵列(13)的首端与复合调制解调仪器(5)的DPS信号输入端口相连接;
    (h)利用井下射孔枪内置的声源发射器在金属套管(1)内连续发射声源信号,根据外铠装光缆(2)和地面的复合调制解调仪器(5)检测到的声源信号的振幅特征,对全井段的 外铠装光缆(2)进行定向和定位;
    (i)根据测量到的全井段的外铠装光缆(2)的位置和方位,调整射孔枪内射孔弹的方位和射孔位置(9),通过定向射孔作业避免在射孔时将外铠装光缆(2)射断;
    (j)在地面使用人工激发震源在按照正交网格布设的人工震源激发点(7)的位置上依次进行激发,井下声波传感光缆(10)和地面声波传感光缆(14)同步同时联合采集地面人工震源激发的井中和地面三分量地震数据;
    (k)对井下和井周围区域采集的井下三分量地震数据和地面三维三分量地震数据进行处理,然后使用全波形反演技术求取三维地震纵波和横波速度数据体,最后再用声波测井速度数据和VSP速度数据对通过全波形反演得到的三维地震纵波和横波速度数据体进行标定、调整和更新,获得水平井周围地层的初步地震纵波和横波速度场;
    (l)根据井中采集的地震数据的初至走时和地面震源的人工震源激发点(7)到井下检波点的距离,计算求取地下介质的准确平均速度值和层速度值;根据井中地震数据的反射层深度位置进行地面地震数据里的多次波去除处理,标定各地面地震数据的地震地质反射层;
    (m)处理井中地震数据,提供地层吸收衰减参数Q;根据从井中地震数据中提取的真振幅恢复因子,对井中-地面联合采集的地面三维地震数据建立井控速度场并进行基于速度场的振幅恢复处理;根据从井中地震数据中提取的反褶积参数,对井中-地面联合采集的地面三维地震数据进行反褶积处理;
    (n)基于三维井中地震数据或多方位Walkaway VSP或WalkaroundVSP数据计算提取地下地层的各向异性参数;进行基于VSP井驱参数约束的速度、各向异性三维参数联合建模;利用井中地震数据参数进行井控地面地震数据的提高分辨率处理;根据从井中地震数据中精确计算提取的地下地层的各向异性参数,对井中-地面联合采集的地面三维地震数据进行各向异性偏移处理;根据从井中地震数据中提取的地层吸收衰减参数Q,对井中-地面联合采集的地面三维地震数据进行叠前道集数据的Q补偿或Q偏移处理;
    (o)对应变光缆(12)实时采集的沿井筒的金属套管(1)外壁的应变数据进行处理,实时监测和了解井下的金属套管(1)外应力场的变化,及时发现应力或应变异常井段,防止应力或应变区域的套管发生挤压损坏;
    (p)在井下预先设计的射孔位置(9)依次对金属套管(1)进行定向射孔作业,同时利用井下布设的井下声波传感光缆(10)和地面声波传感光缆(14)以及井口附近的复合调制解调仪器(5)记录定向射孔作业时产生的微地震信号,利用这些射孔微地震事件或信号的纵波和横波的走时差,结合步骤(k)标定、调整和更新后的地下地层的初步纵波和横波速度分布,反演计算进行射孔作业时产生的微地震事件的三维空间位置;如果反演出来的射孔产生 的微地震事件的位置与射孔位置(9)不一致,则调整地下地层的纵波和横波速度场,直到反演出的射孔产生的微地震事件的位置与射孔位置(9)在允许误差范围为止;此反复调整后的三维纵波和横波速度体就是最终用于水力压裂微地震事件定位的地下地层的速度场;
    (q)在水力压裂作业时,此系统用井下声波传感光缆(10)与地面声波传感光缆(14)联合进行水力压裂微地震监测,即利用井下声波传感光缆(10)和地面声波传感光缆(14)以及复合调制解调仪器(5)连续记录的水力压裂作业导致旁井或同井的地下地层破裂时产生的微地震事件或信号的纵波和横波的走时差,结合步骤(p)获得的地下地层的纵波和横波速度分布,反演计算进行地下地层破裂时产生的微地震事件的发生时间、三维空间位置和能量大小;
    (r)根据水力压裂作业过程中实时监测到的地下地层破裂时产生的微地震事件的发生时间、三维空间位置和能量大小,观察所有已发生的微地震事件三维空间位置的动态分布及变化,实时优化调整水力压裂作业时的各种参数,避免水力压裂作业激活地层中的小断层,或因为压力过大而压穿需要被改造的储层进而发生储层被上下地层的水浸淹没;
    (s)水力压裂期间,应用复合调制解调仪器(5)和多模光纤(11)进行井下温度变化的监测;全井段温度的变化,反映出压裂液的运移过程和状态;射孔层段周围的温度变化对压裂液进入地层的液量以及压裂液返排快慢多少进行分析判断;从DTS数据中也能反应出温度越低表征了该处产液量或产气量越大;
    (t)水力压裂结束后,根据记录到的水力压裂作业导致地下地层破裂时产生的微地震事件的纵波和横波信号特征进行三维动量反演,获得大部分微地震事件的破裂机理,分析水力压裂改造后张性裂缝和剪切性以及复合型裂缝的分布特征和规律;利用所有实时监测到的所有微地震事件在三维空间分布范围的包络计算水力压力作业产生的总被改造体积SRV;根据张性裂缝和剪切性以及复合型裂缝的分布特征和规律以及所有微地震事件在三维空间分布范围,进行基于震源机制的裂缝地震成像,生成水力压裂裂缝离散网络模型FMDFN;最后综合上面获得的张性裂缝和剪切性以及复合型裂缝的分布特征和规律、总被改造体积和裂缝离散网络模型FMDFN,并将所有相互连通的裂缝从裂缝离散网络模型中分离出来,估算其体积大小,获得有效被改造体积ESRV,具此对水平井的储层水力压裂改造效果进行有效可靠的定性和定量评价;
    (u)当进行过水力压裂储层改造后的水平井投入油气生产后,利用外铠装光缆(2)和与之相连接的复合调制解调仪器(5),实时连续测量每个射孔点位置的噪声和温度数据,以及压力传感器阵列(13)上各压力传感器位置实时测量的储层孔隙流体压力,利用多参数综合反演方法计算出井下每个油气产出井段的油、气、水的流量及其变化,或井下每个注水或 注蒸汽或注二氧化碳或注聚合物井段的注入量及其变化,从而实现对油气井开发生产过程及其井液产量变化的长期实时动态监测;
    (v)利用地面布设的井下声波传感光缆(14)、外铠装光缆(2)、内铠装光缆(22)、人工震源激发点(7)、复合调制解调仪器(5),构建页岩油气光纤智能地球物理数据采集系统和一体化勘探开发工程体系,实现地下页岩油气资源的甜点预测与评价、储层水力压裂改造效果的综合精准评价、地下应力场的实时监测和套损可能发生的预警、储层内各位置的孔隙流体压力测量、实时测量每个油气产出井段的油、气、水的流量及其变化或井下每个注水或注蒸汽或注二氧化碳或注聚合物井段的注入量及其变化。
PCT/CN2021/141024 2021-08-02 2021-12-24 页岩油气光纤智能地球物理数据采集系统及采集方法 WO2023010774A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
GB2304799.6A GB2614196B (en) 2021-08-02 2021-12-24 Optical-fiber intelligent geophysical data acquisition system for shale oil and gas, and acquisition method
US18/119,829 US20230213669A1 (en) 2021-08-02 2023-03-10 Intelligent geophysical data acquisition system and acquisition method for shale oil and gas optical fiber

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110879066.2 2021-08-02
CN202110879066.2A CN113484912A (zh) 2021-08-02 2021-08-02 页岩油气光纤智能地球物理数据采集系统及采集方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/119,829 Continuation US20230213669A1 (en) 2021-08-02 2023-03-10 Intelligent geophysical data acquisition system and acquisition method for shale oil and gas optical fiber

Publications (1)

Publication Number Publication Date
WO2023010774A1 true WO2023010774A1 (zh) 2023-02-09

Family

ID=77945051

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/141024 WO2023010774A1 (zh) 2021-08-02 2021-12-24 页岩油气光纤智能地球物理数据采集系统及采集方法

Country Status (4)

Country Link
US (1) US20230213669A1 (zh)
CN (1) CN113484912A (zh)
GB (1) GB2614196B (zh)
WO (1) WO2023010774A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113484912A (zh) * 2021-08-02 2021-10-08 中油奥博(成都)科技有限公司 页岩油气光纤智能地球物理数据采集系统及采集方法
CN113944452B (zh) * 2021-10-13 2022-12-13 中国科学院武汉岩土力学研究所 一种水力压裂套管断裂研究方法
CN113847019A (zh) * 2021-10-18 2021-12-28 中油奥博(成都)科技有限公司 基于光纤传感的地震地质工程一体化数据采集系统及方法
TWI810777B (zh) * 2022-01-05 2023-08-01 國立中央大學 地層變形監測裝置、系統與方法
CN114542040B (zh) * 2022-02-25 2024-04-26 山西蓝焰煤层气集团有限责任公司 一种连续脉冲水力压裂系统
CN116717227B (zh) * 2023-08-07 2023-11-17 中煤科工西安研究院(集团)有限公司 一种井地联合煤矿井下定向长钻孔水力压裂方法
CN117148430B (zh) * 2023-09-18 2024-04-05 大庆亿莱检验检测技术服务有限公司 一种页岩油压裂微地震监测方法
CN117687077B (zh) * 2023-12-05 2024-05-03 光软(北京)科技有限责任公司 利用das和检波器混合阵列监测微震的方法和系统
CN117647833A (zh) * 2024-01-29 2024-03-05 北京世纪金道石油技术开发有限公司 一种连续的地震散射波采集方法及装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120257475A1 (en) * 2011-04-08 2012-10-11 Halliburton Energy Services, Inc. Optical Fiber Based Downhole Seismic Sensor Systems and Methods
CN105277971A (zh) * 2015-10-16 2016-01-27 中国石油天然气集团公司 一种微地震监测系统及方法
CN106646617A (zh) * 2016-12-27 2017-05-10 中国石油天然气集团公司 一种地震数据采集方法及装置
CN111536892A (zh) * 2020-06-12 2020-08-14 中油奥博(成都)科技有限公司 基于分布式光纤传感的地下管线监测系统及监测方法
CN111665568A (zh) * 2020-07-09 2020-09-15 中油奥博(成都)科技有限公司 基于分布式光纤声波传感技术的微测井装置及测量方法
CN112268642A (zh) * 2020-11-24 2021-01-26 中油奥博(成都)科技有限公司 基于分布式光纤传感的地下应力测量装置及测量方法
CN112593924A (zh) * 2020-12-28 2021-04-02 中油奥博(成都)科技有限公司 地下储气库安全运行监测系统及监测方法
CN113484912A (zh) * 2021-08-02 2021-10-08 中油奥博(成都)科技有限公司 页岩油气光纤智能地球物理数据采集系统及采集方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110541702B (zh) * 2019-10-14 2024-04-05 中油奥博(成都)科技有限公司 基于分布式光纤传感的井下流体分布监测系统及监测方法
CN112031743A (zh) * 2020-09-28 2020-12-04 中油奥博(成都)科技有限公司 基于分布式光纤传感技术的井下流体识别装置及测量方法
CN112647936A (zh) * 2021-01-05 2021-04-13 中油奥博(成都)科技有限公司 基于分布式光纤传感的优化油藏开发数据采集系统及方法
CN112746837A (zh) * 2021-01-20 2021-05-04 中油奥博(成都)科技有限公司 基于分布式光纤传感的页岩油藏勘探数据采集系统及方法
CN112780256B (zh) * 2021-03-03 2023-11-03 中油奥博(成都)科技有限公司 基于分布式光纤传感的水平井微地震监测系统及监测方法
CN113090251B (zh) * 2021-04-14 2022-04-12 中油奥博(成都)科技有限公司 基于光纤传感的测井vsp复合数据采集系统及采集处理方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120257475A1 (en) * 2011-04-08 2012-10-11 Halliburton Energy Services, Inc. Optical Fiber Based Downhole Seismic Sensor Systems and Methods
CN105277971A (zh) * 2015-10-16 2016-01-27 中国石油天然气集团公司 一种微地震监测系统及方法
CN106646617A (zh) * 2016-12-27 2017-05-10 中国石油天然气集团公司 一种地震数据采集方法及装置
CN111536892A (zh) * 2020-06-12 2020-08-14 中油奥博(成都)科技有限公司 基于分布式光纤传感的地下管线监测系统及监测方法
CN111665568A (zh) * 2020-07-09 2020-09-15 中油奥博(成都)科技有限公司 基于分布式光纤声波传感技术的微测井装置及测量方法
CN112268642A (zh) * 2020-11-24 2021-01-26 中油奥博(成都)科技有限公司 基于分布式光纤传感的地下应力测量装置及测量方法
CN112593924A (zh) * 2020-12-28 2021-04-02 中油奥博(成都)科技有限公司 地下储气库安全运行监测系统及监测方法
CN113484912A (zh) * 2021-08-02 2021-10-08 中油奥博(成都)科技有限公司 页岩油气光纤智能地球物理数据采集系统及采集方法

Also Published As

Publication number Publication date
CN113484912A (zh) 2021-10-08
GB202304799D0 (en) 2023-05-17
GB2614196A (en) 2023-06-28
GB2614196A8 (en) 2023-07-12
US20230213669A1 (en) 2023-07-06
GB2614196B (en) 2024-01-03

Similar Documents

Publication Publication Date Title
WO2023010774A1 (zh) 页岩油气光纤智能地球物理数据采集系统及采集方法
CN112780256B (zh) 基于分布式光纤传感的水平井微地震监测系统及监测方法
CN110541702B (zh) 基于分布式光纤传感的井下流体分布监测系统及监测方法
RU2561009C2 (ru) Волоконно-оптическая скважинная сейсмическая система измерения на основе рэлеевского обратного рассеяния
RU2661747C2 (ru) Распределенное акустическое измерение для пассивной дальнометрии
US9523790B1 (en) Hybrid sensing apparatus and method
CN107810431A (zh) 校准地震检波器阵列的深度的方法
CN214366030U (zh) 基于分布式光纤传感的水平井微地震监测系统
CN210598961U (zh) 基于分布式光纤传感的井下流体分布监测系统
CN112746837A (zh) 基于分布式光纤传感的页岩油藏勘探数据采集系统及方法
CN113568037B (zh) 基于光纤传感技术的地震和地质灾害监测系统及监测方法
CN112647936A (zh) 基于分布式光纤传感的优化油藏开发数据采集系统及方法
CN112268642A (zh) 基于分布式光纤传感的地下应力测量装置及测量方法
CN113090251B (zh) 基于光纤传感的测井vsp复合数据采集系统及采集处理方法
AU2014407527B2 (en) Integrating vertical seismic profile data for microseismic anisotropy velocity analysis
CN113847019A (zh) 基于光纤传感的地震地质工程一体化数据采集系统及方法
CN107479098B (zh) 一种水力压裂过程中同井微地震监测工艺
MX2013014709A (es) Sistemas y metodos para medir parametros de una formacion.
RU2649195C1 (ru) Способ определения параметров трещины гидроразрыва пласта
CN214576965U (zh) 基于分布式光纤传感的页岩油藏勘探数据采集系统
CN106062312A (zh) 用于储层测试和监控的方法和设备
CN115079250A (zh) 基于光纤传感技术的co2封存地选址、安全监测系统及方法
CN114152371A (zh) 基于分布式螺旋状铠装光缆的地下应力场测量装置及方法
Wills et al. Active and passive imaging of hydraulic fractures
Soroush et al. Downhole Monitoring Using Distributed Acoustic Sensing: Fundamentals and Two Decades Deployment in Oil and Gas Industries

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21952637

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 202304799

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20211224

NENP Non-entry into the national phase

Ref country code: DE