WO2023010557A1 - A methods and apparatus of dci for trs resource availability indication and pei - Google Patents

A methods and apparatus of dci for trs resource availability indication and pei Download PDF

Info

Publication number
WO2023010557A1
WO2023010557A1 PCT/CN2021/111290 CN2021111290W WO2023010557A1 WO 2023010557 A1 WO2023010557 A1 WO 2023010557A1 CN 2021111290 W CN2021111290 W CN 2021111290W WO 2023010557 A1 WO2023010557 A1 WO 2023010557A1
Authority
WO
WIPO (PCT)
Prior art keywords
trs
pei
control signal
indication
availability indication
Prior art date
Application number
PCT/CN2021/111290
Other languages
French (fr)
Inventor
Yingying Li
Zhi YAN
Yuantao Zhang
Hongmei Liu
Haiming Wang
Original Assignee
Lenovo (Beijing) Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lenovo (Beijing) Limited filed Critical Lenovo (Beijing) Limited
Priority to PCT/CN2021/111290 priority Critical patent/WO2023010557A1/en
Publication of WO2023010557A1 publication Critical patent/WO2023010557A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W68/00User notification, e.g. alerting and paging, for incoming communication, change of service or the like
    • H04W68/02Arrangements for increasing efficiency of notification or paging channel
    • H04W68/025Indirect paging
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals

Definitions

  • the subject matter disclosed herein relates generally to wireless communication and more particularly relates to, but not limited to, methods and apparatus of Downlink Control Information (DCI) for Tracking Reference Signal (TRS) resource availability indication and Paging Early Indication (PEI) .
  • DCI Downlink Control Information
  • TRS Tracking Reference Signal
  • PEI Paging Early Indication
  • 5G Fifth Generation Partnership Project
  • 5G New Radio
  • NR New Radio
  • LTE Long Term Evolution
  • LTE-A LTE Advanced
  • eNB E-UTRAN Node B /Evolved Node B
  • UMTS Universal Mobile Telecommunications System
  • WiMAX Worldwide Interoperability for Microwave Access
  • E-UTRAN Evolved UMTS Terrestrial Radio Access Network
  • WLAN Wireless Local Area Networking
  • OFDM Orthogonal Frequency Division Multiplexing
  • SC-FDMA Single-Carrier Frequency-Division Multiple Access
  • DL Downlink
  • UL Uplink
  • UL User Entity/Equipment
  • UE Network Equipment
  • RAT Radio Access Technology
  • RX Receive or Receiver
  • TX Transmit or Transmitter
  • a wireless mobile network may provide a seamless wireless communication service to a wireless communication terminal having mobility, i.e., user equipment (UE) .
  • the wireless mobile network may be formed of a plurality of base stations and a base station may perform wireless communication with the UEs.
  • the 5G New Radio is the latest in the series of 3GPP standards which supports very high data rate with lower latency compared to its predecessor LTE (4G) technology.
  • Two types of frequency range (FR) are defined in 3GPP. Frequency of sub-6 GHz range (from 450 to 6000 MHz) is called FR1 and millimeter wave range (from 24.25 GHz to 52.6 GHz) is called FR2.
  • FR1 Frequency of sub-6 GHz range (from 450 to 6000 MHz)
  • millimeter wave range from 24.25 GHz to 52.6 GHz
  • the 5G NR supports both FR1 and FR2 frequency bands.
  • NR supports RRC_INACTIVE state or RRC_IDLE state, and UEs with infrequent (periodic and/or non-periodic) data transmission are generally maintained by the network in the RRC_INACTIVE state or RRC_IDLE state.
  • a method including: receiving, by a receiver, a control signal; and determining, by a processor, information transmitted by the control signal based on: a functionality indication field in the control signal, and/or a pre-defined rule; wherein the information transmitted by the control signal is determined as comprising: Paging Early Indication (PEI) , Tracking Reference Signal (TRS) availability indication, or both of PEI and TRS availability indication; wherein the pre-defined rule is based on at least a bitwidth of a field for PEI.
  • PEI Paging Early Indication
  • TRS Tracking Reference Signal
  • a method including: determining, by a processor, information to be transmitted by a control signal, which comprises: Paging Early Indication (PEI) , Tracking Reference Signal (TRS) availability indication, or both of PEI and TRS availability indication; constructing, by the processor, the control signal based on the information to be transmitted by the control signal; and transmitting, by a transmitter, the control signal with the information; wherein the information transmitted by the control signal is determinable by a receiving device with: a functionality indication field in the control signal, and/or a pre-defined rule based on at least a bitwidth of a field for PEI.
  • PEI Paging Early Indication
  • TRS Tracking Reference Signal
  • an apparatus including: a receiver that receives a control signal; and a processor that determines information transmitted by the control signal based on: a functionality indication field in the control signal, and/or a pre-defined rule; wherein the information transmitted by the control signal is determined as comprising: Paging Early Indication (PEI) , Tracking Reference Signal (TRS) availability indication, or both of PEI and TRS availability indication; wherein the pre-defined rule is based on at least a bitwidth of a field for PEI.
  • PEI Paging Early Indication
  • TRS Tracking Reference Signal
  • an apparatus including: a processor that determines information to be transmitted by a control signal, which comprises: Paging Early Indication (PEI) , Tracking Reference Signal (TRS) availability indication, or both of PEI and TRS availability indication; wherein the processor further constructs the control signal based on the information to be transmitted by the control signal; and a transmitter that transmits the control signal with the information; wherein the information transmitted by the control signal is determinable by a receiving device with: a functionality indication field in the control signal, and/or a pre-defined rule based on at least a bitwidth of a field for PEI.
  • PEI Paging Early Indication
  • TRS Tracking Reference Signal
  • Figure 1 is a schematic diagram illustrating a wireless communication system in accordance with some implementations of the present disclosure
  • FIG. 2 is a schematic block diagram illustrating components of user equipment (UE) in accordance with some implementations of the present disclosure
  • FIG. 3 is a schematic block diagram illustrating components of network equipment (NE) in accordance with some implementations of the present disclosure
  • Figure 4 is a schematic diagram illustrating an example of one-to-multiple PEI and PO mapping in accordance with some implementations of the present disclosure
  • Figure 5 is a schematic diagram illustrating an example of implicit indication of information carried in DCI in accordance with some implementations of the present disclosure
  • Figure 6 is a schematic diagram illustrating an example of determination of available bits for TRS availability indication in accordance with some implementations of the present disclosure
  • Figure 7 is a schematic diagram illustrating an example of using reserved bits in DCI format 1_0 with CRC scrambled by P-RNTI for PEI and/or TRS availability indication in accordance with some implementations of the present disclosure
  • Figure 8 is a schematic diagram illustrating an example of a new DCI format for PEI and/or TRS availability indication in accordance with some implementations of the present disclosure
  • Figure 9A is a schematic diagram illustrating an example of grouping of TRS resource sets in accordance with some implementations of the present disclosure.
  • Figure 9B is a schematic diagram illustrating an example of grouping of TRS resources according to a defined order in accordance with some implementations of the present disclosure
  • Figure 9C is a schematic diagram illustrating an example of grouping of TRS resources in which resources with alternate SSB indexes are grouped in accordance with some implementations of the present disclosure
  • Figure 9D is a schematic diagram illustrating an example of grouping of TRS resources in which resources with successive SSB indexes are grouped in accordance with some implementations of the present disclosure
  • Figure 9E is a schematic diagram illustrating an example of grouping of TRS resources based on TRS resource ID in accordance with some implementations of the present disclosure
  • Figure 10 is a flow chart illustrating steps of receiving DCI for TRS resource availability indication and PEI by UE in accordance with some implementations of the present disclosure.
  • Figure 11 is a flow chart illustrating steps of transmitting DCI for TRS resource availability indication and PEI by gNB or NE in accordance with some implementations of the present disclosure.
  • embodiments may be embodied as a system, an apparatus, a method, or a program product. Accordingly, embodiments may take the form of an all-hardware embodiment, an all-software embodiment (including firmware, resident software, micro-code, etc. ) or an embodiment combining software and hardware aspects.
  • one or more embodiments may take the form of a program product embodied in one or more computer readable storage devices storing machine readable code, computer readable code, and/or program code, referred to hereafter as “code. ”
  • code computer readable code
  • the storage devices may be tangible, non-transitory, and/or non-transmission.
  • references throughout this specification to “one embodiment, ” “an embodiment, ” “an example, ” “some embodiments, ” “some examples, ” or similar language means that a particular feature, structure, or characteristic described is included in at least one embodiment or example.
  • instances of the phrases “in one embodiment, ” “in an example, ” “in some embodiments, ” and similar language throughout this specification may, but do not necessarily, all refer to the same embodiment (s) . It may or may not include all the embodiments disclosed.
  • Features, structures, elements, or characteristics described in connection with one or some embodiments are also applicable to other embodiments, unless expressly specified otherwise.
  • the terms “including, ” “comprising, ” “having, ” and variations thereof mean “including but not limited to, ” unless expressly specified otherwise.
  • first, ” “second, ” “third, ” and etc. are all used as nomenclature only for references to relevant devices, components, procedural steps, and etc. without implying any spatial or chronological orders, unless expressly specified otherwise.
  • a “first device” and a “second device” may refer to two separately formed devices, or two parts or components of the same device. In some cases, for example, a “first device” and a “second device” may be identical, and may be named arbitrarily.
  • a “first step” of a method or process may be carried or performed after, or simultaneously with, a “second step. ”
  • a and/or B may refer to any one of the following three combinations: existence of A only, existence of B only, and co-existence of both A and B.
  • the character “/” generally indicates an “or” relationship of the associated items. This, however, may also include an “and” relationship of the associated items.
  • A/B means “A or B, ” which may also include the co-existence of both A and B, unless the context indicates otherwise.
  • the code may also be stored in a storage device that can direct a computer, other programmable data processing apparatus, or other devices to function in a particular manner, such that the instructions stored in the storage device produce an article of manufacture including instructions which implement the function or act specified in the schematic flowchart diagrams and/or schematic block diagrams.
  • each block in the schematic flowchart diagrams and/or schematic block diagrams may represent a module, segment, or portion of code, which includes one or more executable instructions of the code for implementing the specified logical function (s) .
  • the flowchart diagrams need not necessarily be practiced in the sequence shown and are able to be practiced without one or more of the specific steps, or with other steps not shown.
  • Figure 1 is a schematic diagram illustrating a wireless communication system. It depicts an embodiment of a wireless communication system 100.
  • the wireless communication system 100 may include a user equipment (UE) 102 and a network equipment (NE) 104. Even though a specific number of UEs 102 and NEs 104 is depicted in Figure 1, one skilled in the art will recognize that any number of UEs 102 and NEs 104 may be included in the wireless communication system 100.
  • UE user equipment
  • NE network equipment
  • the UEs 102 may be referred to as remote devices, remote units, subscriber units, mobiles, mobile stations, users, terminals, mobile terminals, fixed terminals, subscriber stations, user terminals, apparatus, devices, or by other terminology used in the art.
  • the UEs 102 may be autonomous sensor devices, alarm devices, actuator devices, remote control devices, or the like.
  • the UEs 102 may include computing devices, such as desktop computers, laptop computers, personal digital assistants (PDAs) , tablet computers, smart phones, smart televisions (e.g., televisions connected to the Internet) , set-top boxes, game consoles, security systems (including security cameras) , vehicle on-board computers, network devices (e.g., routers, switches, modems) , or the like.
  • the UEs 102 include wearable devices, such as smart watches, fitness bands, optical head-mounted displays, or the like. The UEs 102 may communicate directly with one or more of the NEs 104.
  • the NE 104 may also be referred to as a base station, an access point, an access terminal, a base, a Node-B, an eNB, a gNB, a Home Node-B, a relay node, an apparatus, a device, or by any other terminology used in the art.
  • a reference to a base station may refer to any one of the above referenced types of the network equipment 104, such as the eNB and the gNB.
  • the NEs 104 may be distributed over a geographic region.
  • the NE 104 is generally part of a radio access network that includes one or more controllers communicably coupled to one or more corresponding NEs 104.
  • the radio access network is generally communicably coupled to one or more core networks, which may be coupled to other networks, like the Internet and public switched telephone networks. These and other elements of radio access and core networks are not illustrated, but are well known generally by those having ordinary skill in the art.
  • the wireless communication system 100 is compliant with a 3GPP 5G new radio (NR) .
  • the wireless communication system 100 is compliant with a 3GPP protocol, where the NEs 104 transmit using an OFDM modulation scheme on the DL and the UEs 102 transmit on the uplink (UL) using a SC-FDMA scheme or an OFDM scheme.
  • the wireless communication system 100 may implement some other open or proprietary communication protocols, for example, WiMAX.
  • WiMAX open or proprietary communication protocols
  • the NE 104 may serve a number of UEs 102 within a serving area, for example, a cell (or a cell sector) or more cells via a wireless communication link.
  • the NE 104 transmits DL communication signals to serve the UEs 102 in the time, frequency, and/or spatial domain.
  • Communication links are provided between the NE 104 and the UEs 102a, 102b, 102c, and 102d, which may be NR UL or DL communication links, for example. Some UEs 102 may simultaneously communicate with different Radio Access Technologies (RATs) , such as NR and LTE. Direct or indirect communication link between two or more NEs 104 may be provided.
  • RATs Radio Access Technologies
  • the NE 104 may also include one or more transmit receive points (TRPs) 104a.
  • the network equipment may be a gNB 104 that controls a number of TRPs 104a.
  • the network equipment may be a TRP 104a that is controlled by a gNB.
  • Communication links are provided between the NEs 104, 104a and the UEs 102, 102a, respectively, which, for example, may be NR UL/DL communication links. Some UEs 102, 102a may simultaneously communicate with different Radio Access Technologies (RATs) , such as NR and LTE.
  • RATs Radio Access Technologies
  • the UE 102a may be able to communicate with two or more TRPs 104a that utilize a non-ideal backhaul, simultaneously.
  • a TRP may be a transmission point of a gNB. Multiple beams may be used by the UE and/or TRP (s) .
  • the two or more TRPs may be TRPs of different gNBs, or a same gNB. That is, different TRPs may have the same Cell-ID or different Cell-IDs.
  • TRP and “transmitting-receiving identity” may be used interchangeably throughout the disclosure.
  • the technology disclosed may be applicable to scenarios with multiple TRPs or without multiple TRPs, as long as multiple PDCCH transmissions are supported.
  • FIG. 2 is a schematic block diagram illustrating components of user equipment (UE) according to one embodiment.
  • a UE 200 may include a processor 202, a memory 204, an input device 206, a display 208, and a transceiver 210.
  • the input device 206 and the display 208 are combined into a single device, such as a touchscreen.
  • the UE 200 may not include any input device 206 and/or display 208.
  • the UE 200 may include one or more processors 202 and may not include the input device 206 and/or the display 208.
  • the processor 202 may include any known controller capable of executing computer-readable instructions and/or capable of performing logical operations.
  • the processor 202 may be a microcontroller, a microprocessor, a central processing unit (CPU) , a graphics processing unit (GPU) , an auxiliary processing unit, a field programmable gate array (FPGA) , or similar programmable controller.
  • the processor 202 executes instructions stored in the memory 204 to perform the methods and routines described herein.
  • the processor 202 is communicatively coupled to the memory 204 and the transceiver 210.
  • the memory 204 in one embodiment, is a computer readable storage medium.
  • the memory 204 includes volatile computer storage media.
  • the memory 204 may include a RAM, including dynamic RAM (DRAM) , synchronous dynamic RAM (SDRAM) , and/or static RAM (SRAM) .
  • the memory 204 includes non-volatile computer storage media.
  • the memory 204 may include a hard disk drive, a flash memory, or any other suitable non-volatile computer storage device.
  • the memory 204 includes both volatile and non-volatile computer storage media.
  • the memory 204 stores data relating to trigger conditions for transmitting the measurement report to the network equipment.
  • the memory 204 also stores program code and related data.
  • the input device 206 may include any known computer input device including a touch panel, a button, a keyboard, a stylus, a microphone, or the like.
  • the input device 206 may be integrated with the display 208, for example, as a touchscreen or similar touch-sensitive display.
  • the display 208 may include any known electronically controllable display or display device.
  • the display 208 may be designed to output visual, audio, and/or haptic signals.
  • the transceiver 210 in one embodiment, is configured to communicate wirelessly with the network equipment.
  • the transceiver 210 comprises a transmitter 212 and a receiver 214.
  • the transmitter 212 is used to transmit UL communication signals to the network equipment and the receiver 214 is used to receive DL communication signals from the network equipment.
  • the transmitter 212 and the receiver 214 may be any suitable type of transmitters and receivers. Although only one transmitter 212 and one receiver 214 are illustrated, the transceiver 210 may have any suitable number of transmitters 212 and receivers 214.
  • the UE 200 includes a plurality of the transmitter 212 and the receiver 214 pairs for communicating on a plurality of wireless networks and/or radio frequency bands, with each of the transmitter 212 and the receiver 214 pairs configured to communicate on a different wireless network and/or radio frequency band.
  • FIG. 3 is a schematic block diagram illustrating components of network equipment (NE) 300 according to one embodiment.
  • the NE 300 may include a processor 302, a memory 304, an input device 306, a display 308, and a transceiver 310.
  • the processor 302, the memory 304, the input device 306, the display 308, and the transceiver 310 may be similar to the processor 202, the memory 204, the input device 206, the display 208, and the transceiver 210 of the UE 200, respectively.
  • the processor 302 controls the transceiver 310 to transmit DL signals or data to the UE 200.
  • the processor 302 may also control the transceiver 310 to receive UL signals or data from the UE 200.
  • the processor 302 may control the transceiver 310 to transmit DL signals containing various configuration data to the UE 200.
  • the transceiver 310 comprises a transmitter 312 and a receiver 314.
  • the transmitter 312 is used to transmit DL communication signals to the UE 200 and the receiver 314 is used to receive UL communication signals from the UE 200.
  • the transceiver 310 may communicate simultaneously with a plurality of UEs 200.
  • the transmitter 312 may transmit DL communication signals to the UE 200.
  • the receiver 314 may simultaneously receive UL communication signals from the UE 200.
  • the transmitter 312 and the receiver 314 may be any suitable type of transmitters and receivers. Although only one transmitter 312 and one receiver 314 are illustrated, the transceiver 310 may have any suitable number of transmitters 312 and receivers 314.
  • the NE 300 may serve multiple cells and/or cell sectors, where the transceiver 310 includes a transmitter 312 and a receiver 314 for each cell or cell sector.
  • configuration for TRS/CSI-RS occasion (s) for idle/inactive UEs is based on periodic TRS only, including following limitations: configuration parameters that are necessary to provide configuration of periodic TRS for idle/inactive UEs; applicable values that are necessary to provide configuration of periodic TRS for idle/inactive UEs; if the configuration is provided, idle/inactive UEs can always implicitly assume that trs-info is configured. (The parameter trs-info does not need to be provided in the configuration) . Thus, the idle/inactive UE can assume that TRS/CSI-RS at the configured occasion (s) is TRS.
  • TRS in the disclosure indicates TRS/CSI-RS at the configured occasion (s) to the idle/inactive UEs.
  • DCI format 1_0 may be used as one possible option.
  • DCI format 1_0 with CRC scrambled by P-RNTI is paging DCI.
  • the PEI design may use reserved bits in paging DCI in one Paging Occasion (PO) as paging early indication for UEs in one or more groups in other POs.
  • Paging Occasion PO
  • there are only 6 bits reserved in this format of DCI and another 5 bits reserved in Short Message (bits 4-8) as shown in Table 1 and Table 2 below.
  • Short message indicator is ‘01’
  • the short message is not used, so there are another 3 bits unused (the first 3 bits) .
  • short message indicator is ‘10’ , the scheduling information for Paging is not present, so there are another about 10 bits unused.
  • DCI format 2_6 is introduced in Release 16, which is block-wise, and each block contains 1 bit for wake-up indication for the next occurrence of drx_OnDuration and several bits for dormancy indication.
  • the bit segmentation and size of one block for DCI format 2_6 are configured by dedicated RRC.
  • idle mode UE cannot receive dedicated RRC, so the corresponding parameters should be reconfigured, and the functionality of block bits needs to be re-interpreted.
  • a new DCI format may be designed for PEI and the TRS availability indication, which may be similar to the DCI format 2_6.
  • the performance control information for paging is dominated by the joint BLER of PEI and paging PDCCH. It is known that the performance control shall be better than that for the paging data channel. This results in a limit on the number of bits carried in the PEI to guarantee the robust performance. From 3GPP evaluations, only several bits (about 12 bits) might be included in the PEI for paging indication.
  • bits number of the DCI for these two features should be small for robust performance of paging PDCCH.
  • FIG. 4 is a schematic diagram illustrating an example of one-to-multiple PEI and PO mapping in accordance with some implementations of the present disclosure.
  • the PEI 410 is mapped to (or associated with) three POs 421, 422, and 423.
  • one-to-one or one-to-multiple PEI and PO mapping is a network implementation if UE only needs to decide whether to monitor a PO from one detected PEI.
  • the DCI design for PEI is related to the PEI and PO mapping, and UE should know the bit field in the DCI for PEI detection.
  • DCI designs are proposed such that PEI and TRS availability indication may be transmitted simultaneously in a paging DCI or a new DCI format, which may be similar to DCI format 2_6.
  • the grouping of TRS resources for TRS availability indication is also specified.
  • PEI and TRS availability indication may be transmitted simultaneously in a DCI, which may be referred to as a control signal.
  • a DCI which may be referred to as a control signal.
  • TRS availability indication may not be sent.
  • PEI feature might not be needed.
  • the information, or features, carried on a DCI may be any of the following three types: PEI; TRS availability indication; or both of PEI and TRS availability indication, based on paging probability, DCI performance or link state.
  • the features carried on the DCI may be configured by a signal explicitly or be indicated implicitly.
  • the features carried on the DCI may also be referred to as “information transmitted by the control signal” in the disclosure.
  • a signal may be carried on the DCI to indicate the types of features carried on the DCI.
  • a functionality indication field may be included in the DCI, for carrying the signal.
  • the signal of functionality indication may be configured by SIB, or configured by RRC when UE in RRC connected mode.
  • the functionality indication field may include two bits on the DCI to indicate the functions or features of the DCI (i.e., information transmitted by the DCI) : a first bit indicating whether the information transmitted by the control signal includes PEI; and a second bit indicating whether the information transmitted by the control signal includes TRS availability indication.
  • a value “11” may indicate that the control signal includes both PEI and TRS availability indication; a value “10” of the functionality indication field may indicate that the control signal includes PEI only (i.e., not including TRS availability indication) ; and a value “01” may indicate that the control signal includes TRS availability indication only (i.e., not including PEI) .
  • the functionality indication field may indicate the function of the DCI according to its values, in which a first value of the functionality indication field indicates that the information transmitted by the control signal includes PEI without TRS availability indication; a second value of the functionality indication filed indicates that the information transmitted by the control signal includes TRS availability indication without PEI; and a third value of the functionality indication filed indicates that the information transmitted by the control signal include both PEI and TRS availability indication.
  • UE is able to determine which features are carried on the DCI: PEI; TRS availability indication; or both of PEI and TRS availability indication.
  • FIG. 5 is a schematic diagram illustrating an example of implicit indication of information transmitted by DCI in accordance with some implementations of the present disclosure.
  • the bits on the DCI 500 available for PEI and/or TRS availability indication may include: bit field used for PEI 510 and remaining bits 520.
  • UE may assume that only feature of PEI is carried on the DCI, where M may be pre-defined in the specification or configured by higher layer (e.g., SIB) , or may be the TRS group number.
  • M may be pre-defined in the specification or configured by higher layer (e.g., SIB) , or may be the TRS group number.
  • UE determines the information transmitted by the control signal based on at least the bitwidth of the bit field used for PEI.
  • the number of bits of the DCI for PEI and/or TRS availability indication is small.
  • the total number N of bits for PEI and/or TRS availability indication is assumed for PEI and/or TRS availability indication, i.e., a limited DCI size is N; and T TRS resources or resource sets are configured by SIB, so the number of TRS resource or resource set is T.
  • each bit can be linked to a UE sub-group of a PO.
  • each bit can be linked to a TRS group.
  • TRS group number may be configured by higher layer (e.g., SIB) ; and if the TRS group number is smaller than N, unused bits on the DCI can be reserved.
  • the TRS group number can be N, that is, TRS can be grouped to fully occupy the DCI when the DCI only carries TRS availability indication.
  • Figure 6 is a schematic diagram illustrating an example of determination of available bits for TRS availability indication in accordance with some implementations of the present disclosure.
  • the DCI of size N 600 includes X bits used for PEI 610 and Y bits avaiable for TRS availability indication 620.
  • X is determined at least by a PEI group number of a PO and a PO number corresponding to the PEI; and Y is determined at least by the DCI size N (or, a total number of bits N available in the control signal for PEI and/or TRS availability indication) , a PEI group number of a PO and a PO number corresponding to the PEI.
  • TRS group number cannot be larger than the available bits for TRS availability indication Y.
  • the TRS group number may be determined at least by the DCI size N (or, a total number of bits N available in the control signal for PEI and/or TRS availability indication) , a PEI group number of a PO, a PO number corresponding to the PEI, and TRS resource/TRS resource set number.
  • the TRS group number can be Y. If the TRS resource, or TRS resoource set, number T is smaller than the available bits for TRS availability indication Y, the TRS group number is determined by the resource number or resource set number. That is, each resource or each seource set is a resource group, or the resources or resource sets are not grouped.
  • the UE may determine the information on the DCI by determining a total number of bits N available in the DCI for PEI and/or TRS availability indication; determining a bitwidth X of the field for PEI; and comparing a value of M with a value of N-X. If the value of N-X is less than M, UE determines that the DCI carries only PEI without TRS availability indication; If the value of N-X is greater than or equal to M, UE determines that the DCI carries both PEI and TRS availability indication.
  • TRS group number is configured by higher layer or may be determined at least by the DCI size N (or, a total number of bits N available in the control signal for PEI and/or TRS availability indication) , a PEI group number of a PO, a PO number corresponding to the PEI, and TRS resource/TRS resource set number.
  • reserved bits in paging DCI in one PO are used for PEI and/or TRS availability indication for the following PO (s) .
  • Figure 7 is a schematic diagram illustrating an example of using reserved bits in DCI format 1_0 with CRC scrambled by P-RNTI for PEI and/or TRS availability indication in accordance with some implementations of the present disclosure.
  • Table 1 and Table 2 there are 6 bits reserved in DCI format 1_0, and another 5 bits reserved in Short Message of this DCI format. That is, a maximum of 11 reserved bits are available for PEI and/or TRS availability indication.
  • These reserved bits in paging DCI 700 include: X bits used for PEI 710, where X is determined at least by a PEI group number of a PO and a PO number corresponding to the PEI; and Y bits available for TRS availability indication 720.
  • the remaining TRS groups which availability is not indicated by the available Y bits may follow a default assumption or their availability may be indicated by the bits which can be used conditionally. For example, if Short Message Indicator of the DCI format 1_0 with CRC scrambled by P-RNTI is 01, the first 3 Short Message bits may be used for more TRS resource group availability; and if Short Message Indicator is 10, about 10 bits of scheduling field may be used for more TRS resource group availability.
  • the TRS group number may be Y.
  • the DCI may only carry PEI.
  • a new DCI format similar as DCI format 2_6 may be introduced for PEI and/or TRS availability indication.
  • the UE should monitor a bit field for PEI for the PO corresponding to the UE and a common bit field for TRS availability indication.
  • the number of bit field of the DCI is determined by the number of POs corresponding to a DCI plus one for TRS availability indication.
  • the size of the bit field for PEI is determined by the PEI group number of a PO.
  • the size of the bit field for TRS availability indication is determined by TRS group number.
  • the start position of the bit field for TRS availability indication is determined at least by a PEI group number of a PO and a PO number corresponding to the PEI.
  • the start position of a bit field of PEI is determined at least by the TRS group number and a PEI group number of a PO and PO order of the DCI.
  • FIG. 8 is a schematic diagram illustrating an example of a new DCI format for PEI and/or TRS availability indication in accordance with some implementations of the present disclosure.
  • PEI group number of a PO is 4; one DCI corresponds to 2 POs; and TRS group number is 4.
  • bit field 1 for PO1 811 and bit field 2 for PO2 812 is determined by the PEI group number of a PO, 4; and the size of bit field 3 for TRS availability indication 820 is determined by the TRS group number, 4.
  • Each bit of a bit field for PEI is linked to a UE subgroup of a PO, e.g.
  • bit 811a is linked to PEI group 1 of PO1, bit 811b is linked to PEI group 2 of PO1, bit 812a is linked to PEI group 1 of PO2, bit 812b is linked to PEI group 2 of PO2, etc.; and each bit of the bit field for TRS availability indication is linked to a TRS group, e.g., bit 821 is linked to TRS group 1, bit 822 is linked to TRS group 2, etc.
  • the starting position of PEI is the leftmost bit of the DCI, so the start position of the bit field for TRS availability indication is determined at least by a PEI group number of a PO and a PO number corresponding to the PEI.
  • the PEI group number of a PO is 4; and the PO number corresponding to the PEI is 2.
  • the starting position of the bit field for TRS availability indication may be determined by multiplying the PEI group number of a PO with the PO number corresponding to the PEI, which is 8 (i.e., 4 x 2) . This indicates that the bit field for TRS availability indication starts from the 9 th bit of the DCI.
  • the DCI may also includes a functionality indication field.
  • the functionality indication field may be a two-bits field at the left most part of the DCI, right most part of the DCI, or between the fields of PEI and the TRS availability indication.
  • TRS group number may be configured by higher layer (e.g., by SIB) , or determined according to: the total number of bits available in the DCI for PEI and/or TRS availability indication, a PEI group number of a PO, a PO number corresponding to the PEI, and/or a TRS resource number or TRS resource set number.
  • the grouping of TRS resources may be determined based on at least one of: SSB index, resource ID, resource set ID, TRS resource number, or TRS resource set number, and TRS group number.
  • TRS grouping is based on TRS resource set ID or TRS resource ID or SSB index.
  • a TRS resource or a TRS resource set corresponds to a TRS group with a TRS group ID which is determined as:
  • TRS resource set ID (TRS resource set ID, TRS resource ID, or SSB index) mod (TRS group number) +1
  • FIG. 9A is a schematic diagram illustrating an example of grouping of TRS resource sets in accordance with some implementations of the present disclosure.
  • SIB configures four TRS resource sets 910 (including TRS resource set 1 911a, TRS resource set 2 912a, TRS resource set 3 913a and TRS resource set 4 914a) with a parameter of TRS resource set ID, i.e., the four TRS resource sets 911a, 912a, 913a and 914a are configured with TRS resource set 1, 2, 3 and 4, respectively.
  • the four TRS resource sets 910 are grouped into to TRS groups 900.
  • the TRS group ID for each TRS resource set is determined by:
  • the TRS resources sets 1 and 3 are assigned to TRS group 1 901a and the TRS resource sets 2 and 4 are assigned to TRS group 2 902a.
  • TRS resources or TRS resource sets are grouped according to an order as follows.
  • the grouping may include three steps.
  • TRS resources or TRS resource sets are mapped to TRS groups in increasing order of TRS resource ID or TRS resource set ID in a beam firstly, and in increasing order of SSB index secondly.
  • TRS resources or TRS resource sets may be mapped to TRS groups in increasing order of SSB index, or TRS resource ID, or TRS resource set ID in all beams.
  • TRS resources or TRS resource sets are associated with one TRS group.
  • the value of R is determined by TRS group number, TRS resource or TRS resource set number for a beam, or TRS resource or TRS resource set number for all beams.
  • R may be determined based on the formula of:
  • R floor (the resource number for a beam /TRS group number) ; and consecutive R TRS resources are associated with one TRS group.
  • step 2 the procedures of step 2 are repeated until all the TRS resources or TRS resource sets are assigned to a TRS group.
  • TRS resource or TRS resource set in/for a beam is TRS resource or TRS resource set with same SSB index.
  • TRS resource or TRS resource set in/for all beams is all TRS resource or TRS resource set configured by network.
  • FIG. 9B is a schematic diagram illustrating an example of grouping of TRS resources according to a defined order in accordance with some implementations of the present disclosure.
  • the four TRS resources 910 are grouped into two TRS groups 900. In this case, R equals floor (2/2) , i.e., 1.
  • the TRS resource 1 911b of order 1 is associated with TRS group 1 901b;
  • TRS resource 3 912b of order 2 is then associated with TRS group 2 902b;
  • TRS resource 2 913b of order 3 is associated with TRS group 1 901b;
  • TRS resource 4 914b of order 4 is associated with TRS group 2 902b.
  • the TRS resources or resource sets with multiple SSB indexes may be assigned to the same TRS group.
  • Such grouping may be used for the cases where the number of actual transmitted SSB is large.
  • Figure 9C is a schematic diagram illustrating an example of grouping of TRS resources in which resources with alternate SSB indexes are grouped in accordance with some implementations of the present disclosure
  • Figure 9D is a schematic diagram illustrating an example of grouping of TRS resources in which resources with successive SSB indexes are grouped in accordance with some implementations of the present disclosure.
  • a beam i.e., an SSB index
  • R is the number of TRS resources or TRS resource sets in a beam.
  • Resources with alternate SSB indexes are assigned to a TRS group, that is, SSB indexes in a TRS group are spaced.
  • R is the number of TRS resources or resource sets in multiple beams.
  • Resources with successive SSB indexes are assigned to a TRS group, that is, SSB indexes in a TRS group are continuous.
  • Figure 9E is a schematic diagram illustrating an example of grouping of TRS resources based on TRS resource ID in accordance with some implementations of the present disclosure.
  • the TRS resources 910 (including TRS resource 1 911e, TRS resource 2 912e, TRS resource 3 913e and TRS resource 4 914e) are sorted according to the order of resource ID, that is, in the order of TRS resources 1, 2, 3 and 4.
  • R is determined by the TRS resource number in all beams and the TRS group number, which is 2 in this example.
  • Figure 10 is a flow chart illustrating steps of receiving DCI for TRS resource availability indication and PEI by UE 200 in accordance with some implementations of the present disclosure.
  • the receiver 214 of UE 200 receives a control signal.
  • the processor 202 of UE 200 determines information transmitted by the control signal based on: a functionality indication field in the control signal, and/or a pre-defined rule; wherein the information transmitted by the control signal is determined as comprising: Paging Early Indication (PEI) , Tracking Reference Signal (TRS) availability indication, or both of PEI and TRS availability indication; wherein the pre-defined rule is based on at least a bitwidth of a field for PEI.
  • PEI Paging Early Indication
  • TRS Tracking Reference Signal
  • Figure 11 is a flow chart illustrating steps of transmitting DCI for TRS resource availability indication and PEI by gNB or NE 300 in accordance with some implementations of the present disclosure.
  • the processor 302 of NE 300 determines information to be transmitted by a control signal, which comprises: Paging Early Indication (PEI) , Tracking Reference Signal (TRS) availability indication, or both of PEI and TRS availability indication.
  • PEI Paging Early Indication
  • TRS Tracking Reference Signal
  • the processor 302 of NE 300 constructs the control signal based on the information to be transmitted by the control signal.
  • the transmitter 314 of NE 300 transmits the control signal with the information; wherein the information transmitted by the control signal is determinable by a receiving device with: a functionality indication field in the control signal, and/or a pre-defined rule based on at least a bitwidth of a field for PEI.
  • a method comprising:
  • control signal wherein the information transmitted by the control signal is determined as comprising:
  • Paging Early Indication Paging Early Indication
  • TRS Tracking Reference Signal
  • the pre-defined rule is based on at least a bitwidth of a field for PEI.
  • the functionality indication field comprises a first bit indicating whether the information transmitted by the control signal comprises PEI; and a second bit indicating whether the information transmitted by the control signal comprises TRS availability indication.
  • the processor upon determining that the information transmitted by the control signal comprises both PEI and TRS availability indication, the processor further determines a bitwidth of a field for TRS availability indication according to a TRS group number.
  • each bit of TRS availability indication corresponds to a TRS group.
  • a starting position of PEI is a leftmost bit on the control signal
  • the processor further determines a starting position of TRS availability indication according to a PEI group number of a Paging Occasion (PO) and a PO number corresponding to the PEI.
  • PO Paging Occasion
  • TRS group number is configured by higher layer, or is determined according to: a total number of bits N available in the control signal for PEI and/or TRS availability indication, a PEI group number of a PO, a PO number corresponding to the PEI, and/or a TRS resource number or TRS resource set number.
  • TRS group of a TRS resource is determined based on at least one of: a Synchronization Signal Block (SSB) index, a resource index (ID) , a resource set ID, a resource number, and a TRS group number.
  • SSB Synchronization Signal Block
  • ID resource index
  • TRS group number a TRS group number
  • TRS group ID for the TRS group is determined as: (TRS resource set ID, TRS resource ID, or SSB index) mod (TRS group number) +1.
  • a method comprising:
  • determining, by a processor, information to be transmitted by a control signal which comprises:
  • Paging Early Indication Paging Early Indication
  • TRS Tracking Reference Signal
  • control signal based on the information to be transmitted by the control signal
  • the information transmitted by the control signal is determinable by a receiving device with: a functionality indication field in the control signal, and/or a pre-defined rule based on at least a bitwidth of a field for PEI.
  • the functionality indication field comprises a first bit indicating whether the information transmitted by the control signal comprises PEI; and a second bit indicating whether the information transmitted by the control signal comprises TRS availability indication.
  • a first value of the functionality indication field indicates that the information transmitted by the control signal comprises PEI without TRS availability indication
  • a second value of the functionality indication filed indicates that the information transmitted by the control signal comprises TRS availability indication without PEI
  • a third value of the functionality indication filed indicates that the information transmitted by the control signal comprises both PEI and TRS availability indication.
  • each bit of TRS availability indication corresponds to a TRS group.
  • a starting position of PEI is a leftmost bit on the control signal
  • the processor further determines a starting position of TRS availability indication at least according to a PEI group number of a Paging Occasion (PO) and a PO number corresponding to the PEI.
  • PO Paging Occasion
  • TRS group number is configured by higher layer, or is determined according to: a total number of bits N available in the control signal for PEI and/or TRS availability indication, a PEI group number of a PO, a PO number corresponding to the PEI, and/or a TRS resource number or TRS resource set number.
  • TRS group of a TRS resource is determined based on at least one of: a Synchronization Signal Block (SSB) index, a resource index (ID) , a resource set ID, a resource number, and a TRS group number.
  • SSB Synchronization Signal Block
  • ID resource index
  • TRS group number a TRS group number
  • TRS group ID for the TRS group is determined as: (TRS resource set ID, TRS resource ID, or SSB index) mod (TRS group number) +1.
  • An apparatus comprising:
  • a processor that determines information transmitted by the control signal based on: a functionality indication field in the control signal, and/or a pre-defined rule;
  • control signal wherein the information transmitted by the control signal is determined as comprising:
  • Paging Early Indication Paging Early Indication
  • TRS Tracking Reference Signal
  • the pre-defined rule is based on at least a bitwidth of a field for PEI.
  • the functionality indication field comprises a first bit indicating whether the information transmitted by the control signal comprises PEI; and a second bit indicating whether the information transmitted by the control signal comprises TRS availability indication.
  • a first value of the functionality indication field indicates that the information transmitted by the control signal comprises PEI without TRS availability indication
  • a second value of the functionality indication filed indicates that the information transmitted by the control signal comprises TRS availability indication without PEI
  • a third value of the functionality indication filed indicates that the information transmitted by the control signal comprises both PEI and TRS availability indication.
  • the processor upon determining that the information transmitted by the control signal comprises both PEI and TRS availability indication, the processor further determines a bitwidth of a field for TRS availability indication according to a TRS group number.
  • each bit of TRS availability indication corresponds to a TRS group.
  • a starting position of PEI is a leftmost bit on the control signal
  • the processor further determines a starting position of TRS availability indication at least according to a PEI group number of a Paging Occasion (PO) and a PO number corresponding to the PEI.
  • PO Paging Occasion
  • a starting position of TRS availability indication is a leftmost bit on the control signal
  • the processor further determines a starting position of PEI at least according to the TRS group number.
  • TRS group number is configured by higher layer, or is determined according to: a total number of bits N available in the control signal for PEI and/or TRS availability indication, a PEI group number of a PO, a PO number corresponding to the PEI, and/or a TRS resource number or TRS resource set number.
  • TRS group of a TRS resource is determined based on at least one of: a Synchronization Signal Block (SSB) index, a resource index (ID) , a resource set ID, a resource number, and a TRS group number.
  • SSB Synchronization Signal Block
  • ID resource index
  • TRS group number a TRS group number
  • TRS group ID for the TRS group is determined as: (TRS resource set ID, TRS resource ID, or SSB index) mod (TRS group number) +1.
  • TRS resource or TRS resource set
  • TRS resource is mapped to the TRS group in increasing order of TRS resource ID or TRS resource set ID in a beam firstly, and in increasing order of SSB index secondly.
  • An apparatus comprising:
  • a processor that determines information to be transmitted by a control signal which comprises:
  • Paging Early Indication Paging Early Indication
  • TRS Tracking Reference Signal
  • processor further constructs the control signal based on the information to be transmitted by the control signal
  • the information transmitted by the control signal is determinable by a receiving device with: a functionality indication field in the control signal, and/or a pre-defined rule based on at least a bitwidth of a field for PEI.
  • the functionality indication field comprises a first bit indicating whether the information transmitted by the control signal comprises PEI; and a second bit indicating whether the information transmitted by the control signal comprises TRS availability indication.
  • a first value of the functionality indication field indicates that the information transmitted by the control signal comprises PEI without TRS availability indication
  • a second value of the functionality indication filed indicates that the information transmitted by the control signal comprises TRS availability indication without PEI
  • a third value of the functionality indication filed indicates that the information transmitted by the control signal comprises both PEI and TRS availability indication.
  • the processor upon determining that the information to be transmitted by the control signal comprises both PEI and TRS availability indication, the processor further determines a bitwidth of a field for TRS availability indication according to a TRS group number.
  • each bit of TRS availability indication corresponds to a TRS group.
  • a starting position of PEI is a leftmost bit on the control signal
  • the processor further determines a starting position of TRS availability indication at least according to a PEI group number of a Paging Occasion (PO) and a PO number corresponding to the PEI.
  • PO Paging Occasion
  • a starting position of TRS availability indication is a leftmost bit on the control signal
  • the processor further determines a starting position of PEI at least according to the TRS group number.
  • TRS group number is configured by higher layer, or is determined according to: a total number of bits N available in the control signal for PEI and/or TRS availability indication, a PEI group number of a PO, a PO number corresponding to the PEI, and/or a TRS resource number or TRS resource set number.
  • TRS group of a TRS resource is determined based on at least one of: a Synchronization Signal Block (SSB) index, a resource index (ID) , a resource set ID, a resource number, and a TRS group number.
  • SSB Synchronization Signal Block
  • ID resource index
  • TRS group number a TRS group number
  • TRS group ID for the TRS group is determined as: (TRS resource set ID, TRS resource ID, or SSB index) mod (TRS group number) +1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Methods and apparatus of Downlink Control Information (DCI) for Tracking Reference Signal (TRS) resource availability indication and Paging Early Indication (PEI) are disclosed. The method includes: receiving, by a receiver, a control signal; and determining, by a processor, information transmitted by the control signal based on: a functionality indication field in the control signal, and/or a pre-defined rule; wherein the information transmitted by the control signal is determined as comprising: Paging Early Indication (PEI), Tracking Reference Signal (TRS) availability indication, or both of PEI and TRS availability indication; wherein the pre-defined rule is based on at least a bitwidth of a field for PEI.

Description

[Rectified under Rule 91, 23.05.2022] A METHODS AND APPARATUS OF DCI FOR TRS RESOURCE AVAILABILITY INDICATION AND PEI FIELD
The subject matter disclosed herein relates generally to wireless communication and more particularly relates to, but not limited to, methods and apparatus of Downlink Control Information (DCI) for Tracking Reference Signal (TRS) resource availability indication and Paging Early Indication (PEI) .
BACKGROUND
The following abbreviations and acronyms are herewith defined, at least some of which are referred to within the specification:
Third Generation Partnership Project (3GPP) , 5th Generation (5G) , New Radio (NR) , 5G Node B /generalized Node B (gNB) , Long Term Evolution (LTE) , LTE Advanced (LTE-A) , E-UTRAN Node B /Evolved Node B (eNB) , Universal Mobile Telecommunications System (UMTS) , Worldwide Interoperability for Microwave Access (WiMAX) , Evolved UMTS Terrestrial Radio Access Network (E-UTRAN) , Wireless Local Area Networking (WLAN) , Orthogonal Frequency Division Multiplexing (OFDM) , Single-Carrier Frequency-Division Multiple Access (SC-FDMA) , Downlink (DL) , Uplink (UL) , User Entity/Equipment (UE) , Network Equipment (NE) , Radio Access Technology (RAT) , Receive or Receiver (RX) , Transmit or Transmitter (TX) , Physical Downlink Control Channel (PDCCH) , Block Error Rate (BLER) , Cyclic redundancy check (CRC) , Channel State Information (CSI) , Channel State Information Reference Signal (CSI-RS) , Downlink Control Information (DCI) , Frequency Division Multiple Access (FDMA) , Identifier (ID) , Paging Occasion (PO) , Physical Resource Block (PRB) , Radio Resource Control (RRC) , Reference Signal (RS) , System Information Block (SIB) , Synchronization Signal Block (SSB) , Transmission and Reception Point (TRP) , Broadcast Control Channel (BCCH) , Frequency Range 1 (FR1) , Frequency Range 2 (FR2) , Paging Radio Network Temporary Identifier (P-RNTI) , Tracking Reference Signal (TRS) , Layer 1 /physical layer (L1) , Paging Early Indication (PEI) .
In wireless communication, such as a Third Generation Partnership Project (3GPP) mobile network, a wireless mobile network may provide a seamless wireless communication service to a wireless communication terminal having mobility, i.e., user equipment (UE) . The wireless mobile network may be formed of a plurality of base stations and a base station may perform wireless communication with the UEs.
The 5G New Radio (NR) is the latest in the series of 3GPP standards which supports very high data rate with lower latency compared to its predecessor LTE (4G) technology. Two types of frequency range (FR) are defined in 3GPP. Frequency of sub-6 GHz range (from 450 to 6000 MHz) is called FR1 and millimeter wave range (from 24.25 GHz to 52.6 GHz) is called FR2. The 5G NR supports both FR1 and FR2 frequency bands.
NR supports RRC_INACTIVE state or RRC_IDLE state, and UEs with infrequent (periodic and/or non-periodic) data transmission are generally maintained by the network in the RRC_INACTIVE state or RRC_IDLE state.
SUMMARY
Methods and apparatus of DCI for TRS resource availability indication and PEI are disclosed.
According to a first aspect, there is provided a method, including: receiving, by a receiver, a control signal; and determining, by a processor, information transmitted by the control signal based on: a functionality indication field in the control signal, and/or a pre-defined rule; wherein the information transmitted by the control signal is determined as comprising: Paging Early Indication (PEI) , Tracking Reference Signal (TRS) availability indication, or both of PEI and TRS availability indication; wherein the pre-defined rule is based on at least a bitwidth of a field for PEI.
According to a second aspect, there is provided a method, including: determining, by a processor, information to be transmitted by a control signal, which comprises: Paging Early Indication (PEI) , Tracking Reference Signal (TRS) availability indication, or both of PEI and TRS availability indication; constructing, by the processor, the control signal based on the information to be transmitted by  the control signal; and transmitting, by a transmitter, the control signal with the information; wherein the information transmitted by the control signal is determinable by a receiving device with: a functionality indication field in the control signal, and/or a pre-defined rule based on at least a bitwidth of a field for PEI.
According to a third aspect, there is provided an apparatus, including: a receiver that receives a control signal; and a processor that determines information transmitted by the control signal based on: a functionality indication field in the control signal, and/or a pre-defined rule; wherein the information transmitted by the control signal is determined as comprising: Paging Early Indication (PEI) , Tracking Reference Signal (TRS) availability indication, or both of PEI and TRS availability indication; wherein the pre-defined rule is based on at least a bitwidth of a field for PEI.
According to a fourth aspect, there is provided an apparatus, including: a processor that determines information to be transmitted by a control signal, which comprises: Paging Early Indication (PEI) , Tracking Reference Signal (TRS) availability indication, or both of PEI and TRS availability indication; wherein the processor further constructs the control signal based on the information to be transmitted by the control signal; and a transmitter that transmits the control signal with the information; wherein the information transmitted by the control signal is determinable by a receiving device with: a functionality indication field in the control signal, and/or a pre-defined rule based on at least a bitwidth of a field for PEI.
BRIEF DESCRIPTION OF THE DRAWINGS
A more particular description of the embodiments will be rendered by reference to specific embodiments illustrated in the appended drawings. Given that these drawings depict only some embodiments and are not therefore considered to be limiting in scope, the embodiments will be described and explained with additional specificity and details through the use of the accompanying drawings, in which:
Figure 1 is a schematic diagram illustrating a wireless communication system in accordance with some implementations of the present disclosure;
Figure 2 is a schematic block diagram illustrating components of user equipment (UE) in accordance with some implementations of the present disclosure;
Figure 3 is a schematic block diagram illustrating components of network equipment (NE) in accordance with some implementations of the present disclosure;
Figure 4 is a schematic diagram illustrating an example of one-to-multiple PEI and PO mapping in accordance with some implementations of the present disclosure;
Figure 5 is a schematic diagram illustrating an example of implicit indication of information carried in DCI in accordance with some implementations of the present disclosure;
Figure 6 is a schematic diagram illustrating an example of determination of available bits for TRS availability indication in accordance with some implementations of the present disclosure;
Figure 7 is a schematic diagram illustrating an example of using reserved bits in DCI format 1_0 with CRC scrambled by P-RNTI for PEI and/or TRS availability indication in accordance with some implementations of the present disclosure;
Figure 8 is a schematic diagram illustrating an example of a new DCI format for PEI and/or TRS availability indication in accordance with some implementations of the present disclosure;
Figure 9A is a schematic diagram illustrating an example of grouping of TRS resource sets in accordance with some implementations of the present disclosure;
Figure 9B is a schematic diagram illustrating an example of grouping of TRS resources according to a defined order in accordance with some implementations of the present disclosure;
Figure 9C is a schematic diagram illustrating an example of grouping of TRS resources in which resources with alternate SSB indexes are grouped in accordance with some implementations of the present disclosure;
Figure 9D is a schematic diagram illustrating an example of grouping of TRS resources in which resources with successive SSB indexes are grouped in accordance with some implementations of the present disclosure;
Figure 9E is a schematic diagram illustrating an example of grouping of TRS resources based on TRS resource ID in accordance with some implementations of the present disclosure;
Figure 10 is a flow chart illustrating steps of receiving DCI for TRS resource availability indication and PEI by UE in accordance with some implementations of the present disclosure; and
Figure 11 is a flow chart illustrating steps of transmitting DCI for TRS resource availability indication and PEI by gNB or NE in accordance with some implementations of the present disclosure.
DETAILED DESCRIPTION
As will be appreciated by one skilled in the art, aspects of the embodiments may be embodied as a system, an apparatus, a method, or a program product. Accordingly, embodiments may take the form of an all-hardware embodiment, an all-software embodiment (including firmware, resident software, micro-code, etc. ) or an embodiment combining software and hardware aspects.
Furthermore, one or more embodiments may take the form of a program product embodied in one or more computer readable storage devices storing machine readable code, computer readable code, and/or program code, referred to hereafter as “code. ” The storage devices may be tangible, non-transitory, and/or non-transmission.
Reference throughout this specification to “one embodiment, ” “an embodiment, ” “an example, ” “some embodiments, ” “some examples, ” or similar language means that a particular feature, structure, or characteristic described is included in at least one embodiment or example. Thus, instances of the phrases “in one embodiment, ” “in an example, ” “in some embodiments, ” and similar language throughout this specification may, but do not necessarily, all refer to the same embodiment (s) . It may or may not include all the embodiments disclosed. Features, structures, elements, or characteristics described in connection with one or some embodiments are also applicable to other embodiments, unless expressly specified otherwise. The terms “including, ” “comprising, ” “having, ” and variations thereof mean “including but not limited to, ” unless expressly specified otherwise.
An enumerated listing of items does not imply that any or all of the items are mutually exclusive, unless expressly specified otherwise. The terms “a, ” “an, ” and “the” also refer to “one or more” unless expressly specified otherwise.
Throughout the disclosure, the terms “first, ” “second, ” “third, ” and etc. are all used as nomenclature only for references to relevant devices, components, procedural steps, and etc. without implying any spatial or chronological orders, unless expressly specified otherwise. For example, a “first device” and a “second device” may refer to two separately formed devices, or two parts or components of the same device. In some cases, for example, a “first device” and a “second device” may be identical, and may be named arbitrarily. Similarly, a “first step” of a method or process may be carried or performed after, or simultaneously with, a “second step. ”
It should be understood that the term “and/or” as used herein refers to and includes any and all possible combinations of one or more of the associated listed items. For example, “A and/or B” may refer to any one of the following three combinations: existence of A only, existence of B only, and co-existence of both A and B. The character “/” generally indicates an “or” relationship of the associated items. This, however, may also include an “and” relationship of the associated items. For example, “A/B” means “A or B, ” which may also include the co-existence of both A and B, unless the context indicates otherwise.
Furthermore, the described features, structures, or characteristics of the embodiments may be combined in any suitable manner. In the following description, numerous specific details are provided, such as examples of programming, software modules, user selections, network transactions, database queries, database structures, hardware modules, hardware circuits, hardware chips, etc., to provide a thorough understanding of embodiments. One skilled in the relevant art will recognize, however, that embodiments may be practiced without one or more of the specific details, or with other methods, components, materials, and so forth. In other instances, well-known structures, materials, or operations are not shown or described in detail to avoid obscuring aspects of an embodiment.
Aspects of various embodiments are described below with reference to schematic flowchart diagrams and/or schematic block diagrams of methods,  apparatuses, systems, and program products. It will be understood that each block of the schematic flowchart diagrams and/or schematic block diagrams, as well as combinations of blocks in the schematic flowchart diagrams and/or schematic block diagrams, may be implemented by code. This code may be provided to a processor of a general-purpose computer, special purpose computer, or other programmable data processing apparatus to produce a machine, such that the instructions executed via the processor of the computer or other programmable data processing apparatus create a means for implementing the functions or acts specified in the schematic flowchart diagrams and/or schematic block diagrams.
The code may also be stored in a storage device that can direct a computer, other programmable data processing apparatus, or other devices to function in a particular manner, such that the instructions stored in the storage device produce an article of manufacture including instructions which implement the function or act specified in the schematic flowchart diagrams and/or schematic block diagrams.
The schematic flowchart diagrams and/or schematic block diagrams in the Figures illustrate the architecture, functionality, and operation of possible implementations of different apparatuses, systems, methods, and program products according to various embodiments. In this regard, each block in the schematic flowchart diagrams and/or schematic block diagrams may represent a module, segment, or portion of code, which includes one or more executable instructions of the code for implementing the specified logical function (s) . One skilled in the relevant art will recognize, however, that the flowchart diagrams need not necessarily be practiced in the sequence shown and are able to be practiced without one or more of the specific steps, or with other steps not shown.
It should also be noted that, in some alternative implementations, the functions noted in the identified blocks may occur out of the order noted in the Figures. For example, two blocks shown in succession may, in fact, be substantially executed in concurrence, or the blocks may sometimes be executed in reverse order, depending upon the functionality involved.
Figure 1 is a schematic diagram illustrating a wireless communication system. It depicts an embodiment of a wireless communication system 100. In one  embodiment, the wireless communication system 100 may include a user equipment (UE) 102 and a network equipment (NE) 104. Even though a specific number of UEs 102 and NEs 104 is depicted in Figure 1, one skilled in the art will recognize that any number of UEs 102 and NEs 104 may be included in the wireless communication system 100.
The UEs 102 may be referred to as remote devices, remote units, subscriber units, mobiles, mobile stations, users, terminals, mobile terminals, fixed terminals, subscriber stations, user terminals, apparatus, devices, or by other terminology used in the art.
In one embodiment, the UEs 102 may be autonomous sensor devices, alarm devices, actuator devices, remote control devices, or the like. In some other embodiments, the UEs 102 may include computing devices, such as desktop computers, laptop computers, personal digital assistants (PDAs) , tablet computers, smart phones, smart televisions (e.g., televisions connected to the Internet) , set-top boxes, game consoles, security systems (including security cameras) , vehicle on-board computers, network devices (e.g., routers, switches, modems) , or the like. In some embodiments, the UEs 102 include wearable devices, such as smart watches, fitness bands, optical head-mounted displays, or the like. The UEs 102 may communicate directly with one or more of the NEs 104.
The NE 104 may also be referred to as a base station, an access point, an access terminal, a base, a Node-B, an eNB, a gNB, a Home Node-B, a relay node, an apparatus, a device, or by any other terminology used in the art. Throughout this specification, a reference to a base station may refer to any one of the above referenced types of the network equipment 104, such as the eNB and the gNB.
The NEs 104 may be distributed over a geographic region. The NE 104 is generally part of a radio access network that includes one or more controllers communicably coupled to one or more corresponding NEs 104. The radio access network is generally communicably coupled to one or more core networks, which may be coupled to other networks, like the Internet and public switched telephone networks. These and other elements of radio access and core networks are not illustrated, but are well known generally by those having ordinary skill in the art.
In one implementation, the wireless communication system 100 is compliant with a 3GPP 5G new radio (NR) . In some implementations, the wireless communication system 100 is compliant with a 3GPP protocol, where the NEs 104 transmit using an OFDM modulation scheme on the DL and the UEs 102 transmit on the uplink (UL) using a SC-FDMA scheme or an OFDM scheme. More generally, however, the wireless communication system 100 may implement some other open or proprietary communication protocols, for example, WiMAX. The present disclosure is not intended to be limited to the implementation of any particular wireless communication system architecture or protocol.
The NE 104 may serve a number of UEs 102 within a serving area, for example, a cell (or a cell sector) or more cells via a wireless communication link. The NE 104 transmits DL communication signals to serve the UEs 102 in the time, frequency, and/or spatial domain.
Communication links are provided between the NE 104 and the  UEs  102a, 102b, 102c, and 102d, which may be NR UL or DL communication links, for example. Some UEs 102 may simultaneously communicate with different Radio Access Technologies (RATs) , such as NR and LTE. Direct or indirect communication link between two or more NEs 104 may be provided.
The NE 104 may also include one or more transmit receive points (TRPs) 104a. In some embodiments, the network equipment may be a gNB 104 that controls a number of TRPs 104a. In addition, there is a backhaul between two TRPs 104a. In some other embodiments, the network equipment may be a TRP 104a that is controlled by a gNB.
Communication links are provided between the  NEs  104, 104a and the  UEs  102, 102a, respectively, which, for example, may be NR UL/DL communication links. Some  UEs  102, 102a may simultaneously communicate with different Radio Access Technologies (RATs) , such as NR and LTE.
In some embodiments, the UE 102a may be able to communicate with two or more TRPs 104a that utilize a non-ideal backhaul, simultaneously. A TRP may be a transmission point of a gNB. Multiple beams may be used by the UE and/or TRP (s) . The two or more TRPs may be TRPs of different gNBs, or a same gNB. That is, different TRPs may have the same Cell-ID or different Cell-IDs. The terms “TRP”  and “transmitting-receiving identity” may be used interchangeably throughout the disclosure.
The technology disclosed, or at least some of the examples, may be applicable to scenarios with multiple TRPs or without multiple TRPs, as long as multiple PDCCH transmissions are supported.
Figure 2 is a schematic block diagram illustrating components of user equipment (UE) according to one embodiment. A UE 200 may include a processor 202, a memory 204, an input device 206, a display 208, and a transceiver 210. In some embodiments, the input device 206 and the display 208 are combined into a single device, such as a touchscreen. In certain embodiments, the UE 200 may not include any input device 206 and/or display 208. In various embodiments, the UE 200 may include one or more processors 202 and may not include the input device 206 and/or the display 208.
The processor 202, in one embodiment, may include any known controller capable of executing computer-readable instructions and/or capable of performing logical operations. For example, the processor 202 may be a microcontroller, a microprocessor, a central processing unit (CPU) , a graphics processing unit (GPU) , an auxiliary processing unit, a field programmable gate array (FPGA) , or similar programmable controller. In some embodiments, the processor 202 executes instructions stored in the memory 204 to perform the methods and routines described herein. The processor 202 is communicatively coupled to the memory 204 and the transceiver 210.
The memory 204, in one embodiment, is a computer readable storage medium. In some embodiments, the memory 204 includes volatile computer storage media. For example, the memory 204 may include a RAM, including dynamic RAM (DRAM) , synchronous dynamic RAM (SDRAM) , and/or static RAM (SRAM) . In some embodiments, the memory 204 includes non-volatile computer storage media. For example, the memory 204 may include a hard disk drive, a flash memory, or any other suitable non-volatile computer storage device. In some embodiments, the memory 204 includes both volatile and non-volatile computer storage media. In some embodiments, the memory 204 stores data relating to trigger conditions for  transmitting the measurement report to the network equipment. In some embodiments, the memory 204 also stores program code and related data.
The input device 206, in one embodiment, may include any known computer input device including a touch panel, a button, a keyboard, a stylus, a microphone, or the like. In some embodiments, the input device 206 may be integrated with the display 208, for example, as a touchscreen or similar touch-sensitive display.
The display 208, in one embodiment, may include any known electronically controllable display or display device. The display 208 may be designed to output visual, audio, and/or haptic signals.
The transceiver 210, in one embodiment, is configured to communicate wirelessly with the network equipment. In certain embodiments, the transceiver 210 comprises a transmitter 212 and a receiver 214. The transmitter 212 is used to transmit UL communication signals to the network equipment and the receiver 214 is used to receive DL communication signals from the network equipment.
The transmitter 212 and the receiver 214 may be any suitable type of transmitters and receivers. Although only one transmitter 212 and one receiver 214 are illustrated, the transceiver 210 may have any suitable number of transmitters 212 and receivers 214. For example, in some embodiments, the UE 200 includes a plurality of the transmitter 212 and the receiver 214 pairs for communicating on a plurality of wireless networks and/or radio frequency bands, with each of the transmitter 212 and the receiver 214 pairs configured to communicate on a different wireless network and/or radio frequency band.
Figure 3 is a schematic block diagram illustrating components of network equipment (NE) 300 according to one embodiment. The NE 300 may include a processor 302, a memory 304, an input device 306, a display 308, and a transceiver 310. As may be appreciated, the processor 302, the memory 304, the input device 306, the display 308, and the transceiver 310 may be similar to the processor 202, the memory 204, the input device 206, the display 208, and the transceiver 210 of the UE 200, respectively.
In some embodiments, the processor 302 controls the transceiver 310 to transmit DL signals or data to the UE 200. The processor 302 may also control the  transceiver 310 to receive UL signals or data from the UE 200. In another example, the processor 302 may control the transceiver 310 to transmit DL signals containing various configuration data to the UE 200.
In some embodiments, the transceiver 310 comprises a transmitter 312 and a receiver 314. The transmitter 312 is used to transmit DL communication signals to the UE 200 and the receiver 314 is used to receive UL communication signals from the UE 200.
The transceiver 310 may communicate simultaneously with a plurality of UEs 200. For example, the transmitter 312 may transmit DL communication signals to the UE 200. As another example, the receiver 314 may simultaneously receive UL communication signals from the UE 200. The transmitter 312 and the receiver 314 may be any suitable type of transmitters and receivers. Although only one transmitter 312 and one receiver 314 are illustrated, the transceiver 310 may have any suitable number of transmitters 312 and receivers 314. For example, the NE 300 may serve multiple cells and/or cell sectors, where the transceiver 310 includes a transmitter 312 and a receiver 314 for each cell or cell sector.
It was agreed, in a 3GPP meeting, to: configuration for TRS/CSI-RS occasion (s) for idle/inactive UEs is based on periodic TRS only, including following limitations: configuration parameters that are necessary to provide configuration of periodic TRS for idle/inactive UEs; applicable values that are necessary to provide configuration of periodic TRS for idle/inactive UEs; if the configuration is provided, idle/inactive UEs can always implicitly assume that trs-info is configured. (The parameter trs-info does not need to be provided in the configuration) . Thus, the idle/inactive UE can assume that TRS/CSI-RS at the configured occasion (s) is TRS. TRS in the disclosure indicates TRS/CSI-RS at the configured occasion (s) to the idle/inactive UEs.
It was agreed, in a 3GPP meeting, to: support at least L1 based signaling for the availability indication of TRS/CSI-RS at the configured occasion (s) to the idle/inactive UEs; and for the information provided by a physical layer availability indication of TRS/CSI-RS at the configured occasion (s) to the idle/inactive UEs, support availability/unavailability information for configured RS resources using a  bitmap or codepoint. A working assumption is to: support paging PDCCH based availability indication of TRS/CSI-RS occasions for idle/inactive UEs; and support PEI based availability indication of TRS/CSI-RS occasions for idle/inactive UEs at least if PDCCH-based PEI is down-selected. Thus, it may be desirable to simultaneously transmit the PEI and the TRS availability indication on one DCI, either by extending an existing DCI format or by redesigning a new DCI format.
Existing DCI format 1_0 may be used as one possible option. DCI format 1_0 with CRC scrambled by P-RNTI is paging DCI. The PEI design may use reserved bits in paging DCI in one Paging Occasion (PO) as paging early indication for UEs in one or more groups in other POs. However, there are only 6 bits reserved in this format of DCI, and another 5 bits reserved in Short Message (bits 4-8) as shown in Table 1 and Table 2 below. As shown in Table 3, if short message indicator is ‘01’ , the short message is not used, so there are another 3 bits unused (the first 3 bits) . If short message indicator is ‘10’ , the scheduling information for Paging is not present, so there are another about 10 bits unused.
Table 1. DCI format 1_0 with CRC scrambled by P-RNTI in Release 16
Field (Item) Bits
Short Message Indicator 2
Short Messages 8
Frequency domain resource assignment Variable
Time domain resource assignment 4
VRB-to-PRB mapping 1
Modulation and coding scheme 5
TB Scaling 2
Reserved 6
Table 2. Short Message in NR Release 16
Figure PCTCN2021111290-appb-000001
Figure PCTCN2021111290-appb-000002
Table 3. Short Message Indicator in NR Release 16
Bit field Short Message Indicator
00 Reserved
01 Only scheduling information for Paging is present in the DCI
10 Only short message is present in the DCI
11 Both scheduling information for Paging and short message are present in the DCI
DCI format 2_6 is introduced in Release 16, which is block-wise, and each block contains 1 bit for wake-up indication for the next occurrence of drx_OnDuration and several bits for dormancy indication. The bit segmentation and size of one block for DCI format 2_6 are configured by dedicated RRC.
However, idle mode UE cannot receive dedicated RRC, so the corresponding parameters should be reconfigured, and the functionality of block bits needs to be re-interpreted. Thus, for a UE in RRC idle mode or RRC inactive mode, a new DCI format may be designed for PEI and the TRS availability indication, which may be similar to the DCI format 2_6.
With PEI, the performance control information for paging is dominated by the joint BLER of PEI and paging PDCCH. It is known that the performance control shall be better than that for the paging data channel. This results in a limit on the number of bits carried in the PEI to guarantee the robust performance. From 3GPP evaluations, only several bits (about 12 bits) might be included in the PEI for paging indication.
Thus, bits number of the DCI for these two features, i.e. PEI and TRS availability indication, should be small for robust performance of paging PDCCH.
In NR, One PEI may associate with one PO, or multiple POs. Figure 4 is a schematic diagram illustrating an example of one-to-multiple PEI and PO mapping in accordance with some implementations of the present disclosure. In the example  shown in Figure 4, the PEI 410 is mapped to (or associated with) three  POs  421, 422, and 423.
From UE point of view, one-to-one or one-to-multiple PEI and PO mapping is a network implementation if UE only needs to decide whether to monitor a PO from one detected PEI. However, the DCI design for PEI is related to the PEI and PO mapping, and UE should know the bit field in the DCI for PEI detection.
In this disclosure, DCI designs are proposed such that PEI and TRS availability indication may be transmitted simultaneously in a paging DCI or a new DCI format, which may be similar to DCI format 2_6. The grouping of TRS resources for TRS availability indication is also specified.
Joint DCI Design for PEI and TRS Availability Indication
Features of PEI and TRS availability indication may be transmitted simultaneously in a DCI, which may be referred to as a control signal. However, considering the limited size of the DCI to guarantee the robust performance, there might not be enough bits used for these two features. And there may exist other scenarios that only one of these two features is transmitted on the DCI.
For example, when UE is in good coverage (link state) and only needs one SSB for T/F tracking, the UE might not need to use TRS. In this case, TRS availability indication may not be sent.
In another example, in the case of high paging probability where UE sub-group of a PO may not bring much benefit, PEI feature might not be needed.
Therefore, the information, or features, carried on a DCI may be any of the following three types: PEI; TRS availability indication; or both of PEI and TRS availability indication, based on paging probability, DCI performance or link state.
The features carried on the DCI may be configured by a signal explicitly or be indicated implicitly. The features carried on the DCI may also be referred to as “information transmitted by the control signal” in the disclosure.
According to one embodiment, a signal may be carried on the DCI to indicate the types of features carried on the DCI. A functionality indication field may be included in the DCI, for carrying the signal.
In some other embodiments, the signal of functionality indication may be configured by SIB, or configured by RRC when UE in RRC connected mode.
In an example, the functionality indication field may include two bits on the DCI to indicate the functions or features of the DCI (i.e., information transmitted by the DCI) : a first bit indicating whether the information transmitted by the control signal includes PEI; and a second bit indicating whether the information transmitted by the control signal includes TRS availability indication.
In this example, a value “11” may indicate that the control signal includes both PEI and TRS availability indication; a value “10” of the functionality indication field may indicate that the control signal includes PEI only (i.e., not including TRS availability indication) ; and a value “01” may indicate that the control signal includes TRS availability indication only (i.e., not including PEI) .
In another example, the functionality indication field may indicate the function of the DCI according to its values, in which a first value of the functionality indication field indicates that the information transmitted by the control signal includes PEI without TRS availability indication; a second value of the functionality indication filed indicates that the information transmitted by the control signal includes TRS availability indication without PEI; and a third value of the functionality indication filed indicates that the information transmitted by the control signal include both PEI and TRS availability indication.
Thus, based on the functionality indication field on the DCI, UE is able to determine which features are carried on the DCI: PEI; TRS availability indication; or both of PEI and TRS availability indication.
For the case of implicit indication, UE determines which features are carried on the DCI based on pre-defined rules. Figure 5 is a schematic diagram illustrating an example of implicit indication of information transmitted by DCI in accordance with some implementations of the present disclosure. As shown in Figure 5, the bits on the DCI 500 available for PEI and/or TRS availability indication may include: bit field used for PEI 510 and remaining bits 520.
If bits number used for PEI 510 is large and the number of remaining bits 520 on the DCI is smaller than M, UE may assume that only feature of PEI is carried on  the DCI, where M may be pre-defined in the specification or configured by higher layer (e.g., SIB) , or may be the TRS group number.
In the example shown in Figure 5, there are only three (3) remaining bits on the DCI. Thus, when M is configured as four (M=4) , only PEI feature is carried on the DCI. In this example, UE determines the information transmitted by the control signal based on at least the bitwidth of the bit field used for PEI.
For robust performance of paging PDCCH, the number of bits of the DCI for PEI and/or TRS availability indication is small. In one example, the total number N of bits for PEI and/or TRS availability indication is assumed for PEI and/or TRS availability indication, i.e., a limited DCI size is N; and T TRS resources or resource sets are configured by SIB, so the number of TRS resource or resource set is T.
In the example, in the case where the DCI only carries PEI, each bit can be linked to a UE sub-group of a PO.
In the case where the DCI only carries TRS availability indication, each bit can be linked to a TRS group. TRS group number may be configured by higher layer (e.g., SIB) ; and if the TRS group number is smaller than N, unused bits on the DCI can be reserved. Alternatively, the TRS group number can be N, that is, TRS can be grouped to fully occupy the DCI when the DCI only carries TRS availability indication.
In the case where the DCI carries both of PEI and TRS availability indication, the bits in the DCI may be divided into two parts for these two features. If X bits are used for PEI, available bits for TRS availability indication are the Y remaining bits, where Y=N-X.
Figure 6 is a schematic diagram illustrating an example of determination of available bits for TRS availability indication in accordance with some implementations of the present disclosure. As shown in the example of Figure 6, the DCI of size N 600 includes X bits used for PEI 610 and Y bits avaiable for TRS availability indication 620.
X is determined at least by a PEI group number of a PO and a PO number corresponding to the PEI; and Y is determined at least by the DCI size N (or, a total  number of bits N available in the control signal for PEI and/or TRS availability indication) , a PEI group number of a PO and a PO number corresponding to the PEI.
In the case where the DCI carries both of PEI and TRS availability indication, TRS group number cannot be larger than the available bits for TRS availability indication Y. The TRS group number may be determined at least by the DCI size N (or, a total number of bits N available in the control signal for PEI and/or TRS availability indication) , a PEI group number of a PO, a PO number corresponding to the PEI, and TRS resource/TRS resource set number. For example, the TRS group number can be Y. If the TRS resource, or TRS resoource set, number T is smaller than the available bits for TRS availability indication Y, the TRS group number is determined by the resource number or resource set number. That is, each resource or each seource set is a resource group, or the resources or resource sets are not grouped.
Based on the above discussion, the UE, receiving the DCI carrying PEI and/or TRS availability indication, may determine the information on the DCI by determining a total number of bits N available in the DCI for PEI and/or TRS availability indication; determining a bitwidth X of the field for PEI; and comparing a value of M with a value of N-X. If the value of N-X is less than M, UE determines that the DCI carries only PEI without TRS availability indication; If the value of N-X is greater than or equal to M, UE determines that the DCI carries both PEI and TRS availability indication. And TRS group number is configured by higher layer or may be determined at least by the DCI size N (or, a total number of bits N available in the control signal for PEI and/or TRS availability indication) , a PEI group number of a PO, a PO number corresponding to the PEI, and TRS resource/TRS resource set number.
According to some embodiments, reserved bits in paging DCI in one PO (DCI format 1_0 with CRC scrambled by P-RNTI) are used for PEI and/or TRS availability indication for the following PO (s) .
Figure 7 is a schematic diagram illustrating an example of using reserved bits in DCI format 1_0 with CRC scrambled by P-RNTI for PEI and/or TRS availability indication in accordance with some implementations of the present disclosure. As  shown in Table 1 and Table 2, there are 6 bits reserved in DCI format 1_0, and another 5 bits reserved in Short Message of this DCI format. That is, a maximum of 11 reserved bits are available for PEI and/or TRS availability indication. These reserved bits in paging DCI 700 include: X bits used for PEI 710, where X is determined at least by a PEI group number of a PO and a PO number corresponding to the PEI; and Y bits available for TRS availability indication 720.
If the number of available bits Y is smaller than M, the remaining TRS groups which availability is not indicated by the available Y bits may follow a default assumption or their availability may be indicated by the bits which can be used conditionally. For example, if Short Message Indicator of the DCI format 1_0 with CRC scrambled by P-RNTI is 01, the first 3 Short Message bits may be used for more TRS resource group availability; and if Short Message Indicator is 10, about 10 bits of scheduling field may be used for more TRS resource group availability.
In this example, if the number of available bits Y is larger than or equal to M, the TRS group number may be Y. In another example, if the number of available bits Y is smaller than M, the DCI may only carry PEI.
According to some embodiments, a new DCI format similar as DCI format 2_6 may be introduced for PEI and/or TRS availability indication.
UE should monitor a bit field for PEI for the PO corresponding to the UE and a common bit field for TRS availability indication. The number of bit field of the DCI is determined by the number of POs corresponding to a DCI plus one for TRS availability indication.
The size of the bit field for PEI is determined by the PEI group number of a PO.
The size of the bit field for TRS availability indication is determined by TRS group number.
If the starting position of PEI is the leftmost bit of the DCI, the start position of the bit field for TRS availability indication is determined at least by a PEI group number of a PO and a PO number corresponding to the PEI.
If the starting position of the bit field for TRS availability indication is the leftmost bit of the DCI, the start position of a bit field of PEI is determined at least  by the TRS group number and a PEI group number of a PO and PO order of the DCI.
Figure 8 is a schematic diagram illustrating an example of a new DCI format for PEI and/or TRS availability indication in accordance with some implementations of the present disclosure. In Figure 8, PEI group number of a PO is 4; one DCI corresponds to 2 POs; and TRS group number is 4. Accordinlgy, the DCI format includes one bit field for each PO (bit field 1 for PO1 811, bit field 2 for PO2 812) for PEI, and one bit field for TRS availability indication (bit filed 3 for TRS availability indication 820) ; that is, the number of bit field of the DCI is 2 (number of POs) + 1=3. The size/bitwidth of bit field 1 for PO1 811 and bit field 2 for PO2 812 is determined by the the PEI group number of a PO, 4; and the size of bit field 3 for TRS availability indication 820 is determined by the TRS group number, 4. Each bit of a bit field for PEI is linked to a UE subgroup of a PO, e.g. bit 811a is linked to PEI group 1 of PO1, bit 811b is linked to PEI group 2 of PO1, bit 812a is linked to PEI group 1 of PO2, bit 812b is linked to PEI group 2 of PO2, etc.; and each bit of the bit field for TRS availability indication is linked to a TRS group, e.g., bit 821 is linked to TRS group 1, bit 822 is linked to TRS group 2, etc.
In the example, the starting position of PEI is the leftmost bit of the DCI, so the start position of the bit field for TRS availability indication is determined at least by a PEI group number of a PO and a PO number corresponding to the PEI. In this case, the PEI group number of a PO is 4; and the PO number corresponding to the PEI is 2. Thus, the starting position of the bit field for TRS availability indication may be determined by multiplying the PEI group number of a PO with the PO number corresponding to the PEI, which is 8 (i.e., 4 x 2) . This indicates that the bit field for TRS availability indication starts from the 9 th bit of the DCI.
In another example, in addition to the bit field for PEI and the bit field for TRS availability indication, the DCI may also includes a functionality indication field. The functionality indication field may be a two-bits field at the left most part of the DCI, right most part of the DCI, or between the fields of PEI and the TRS availability indication.
Grouping of TRS Resources for TRS Availability Indication
TRS group number may be configured by higher layer (e.g., by SIB) , or determined according to: the total number of bits available in the DCI for PEI and/or TRS availability indication, a PEI group number of a PO, a PO number corresponding to the PEI, and/or a TRS resource number or TRS resource set number. The grouping of TRS resources may be determined based on at least one of: SSB index, resource ID, resource set ID, TRS resource number, or TRS resource set number, and TRS group number.
According to one embodiment, TRS grouping is based on TRS resource set ID or TRS resource ID or SSB index.
A TRS resource or a TRS resource set corresponds to a TRS group with a TRS group ID which is determined as:
(TRS resource set ID, TRS resource ID, or SSB index) mod (TRS group number) +1
Figure 9A is a schematic diagram illustrating an example of grouping of TRS resource sets in accordance with some implementations of the present disclosure. In Figure 9A, SIB configures four TRS resource sets 910 (including TRS resource set 1 911a, TRS resource set 2 912a, TRS resource set 3 913a and TRS resource set 4 914a) with a parameter of TRS resource set ID, i.e., the four TRS resource sets 911a, 912a, 913a and 914a are configured with TRS resource set 1, 2, 3 and 4, respectively. The four TRS resource sets 910 are grouped into to TRS groups 900. The TRS group ID for each TRS resource set is determined by:
(TRS resource set ID) mod (TRS group number) + 1
Accordingly, the TRS resources sets 1 and 3 are assigned to TRS group 1 901a and the TRS resource sets 2 and 4 are assigned to TRS group 2 902a.
According to another embodiment, TRS resources or TRS resource sets are grouped according to an order as follows.
In the embodiment, the grouping may include three steps.
Step 1:
TRS resources or TRS resource sets are mapped to TRS groups in increasing order of TRS resource ID or TRS resource set ID in a beam firstly, and in increasing order of SSB index secondly. Alternatively, TRS resources or TRS  resource sets may be mapped to TRS groups in increasing order of SSB index, or TRS resource ID, or TRS resource set ID in all beams.
Step 2:
R TRS resources or TRS resource sets are associated with one TRS group.
The value of R is determined by TRS group number, TRS resource or TRS resource set number for a beam, or TRS resource or TRS resource set number for all beams.
In one example, R may be determined based on the formula of:
floor (TRS resource number for a beam /TRS group number)
If floor (TRS resource number for a beam /TRS group number) >=1, R = floor (the resource number for a beam /TRS group number) ; and consecutive R TRS resources are associated with one TRS group.
If floor (TRS resource number for a beam /TRS group number) < 1, R = 1; and one TRS resource is be assigned to one TRS group. In some other embodiments, one TRS resource may be assigned to multiple TRS groups.
Step 3:
the procedures of step 2 are repeated until all the TRS resources or TRS resource sets are assigned to a TRS group.
TRS resource or TRS resource set in/for a beam is TRS resource or TRS resource set with same SSB index. TRS resource or TRS resource set in/for all beams is all TRS resource or TRS resource set configured by network.
Figure 9B is a schematic diagram illustrating an example of grouping of TRS resources according to a defined order in accordance with some implementations of the present disclosure. In the example shown in Figure 9B, 2 TRS resources are configured for a beam, in which TRS resource 1 911b and TRS resource 3 912b are configured for one beam (i.e., SSB index=1) ; and TRS resource 2 913b and TRS resource 4 914b are configured for one beam (i.e., SSB index=2) . The four TRS resources 910 are grouped into two TRS groups 900. In this case, R equals floor (2/2) , i.e., 1. Accordingly, the TRS resource 1 911b of order 1 is associated with TRS group 1 901b; TRS resource 3 912b of order 2 is then associated with TRS group 2 902b; TRS resource 2 913b of order 3 is associated with TRS group 1 901b; and TRS resource 4 914b of order 4 is associated with TRS group 2 902b.
According to some examples, the TRS resources or resource sets with multiple SSB indexes may be assigned to the same TRS group.
Such grouping may be used for the cases where the number of actual transmitted SSB is large.
Figure 9C is a schematic diagram illustrating an example of grouping of TRS resources in which resources with alternate SSB indexes are grouped in accordance with some implementations of the present disclosure; and Figure 9D is a schematic diagram illustrating an example of grouping of TRS resources in which resources with successive SSB indexes are grouped in accordance with some implementations of the present disclosure. In these two examples, a beam (i.e., an SSB index) can be configured with multiple resources/resource sets or one resource/resource set.
In Figure 9C, R is the number of TRS resources or TRS resource sets in a beam. Resources with alternate SSB indexes are assigned to a TRS group, that is, SSB indexes in a TRS group are spaced. As shown in Figure 9C, resource (s) 911c configured for a beam (i.e., SSB index=1) and resource (s) 913c configured for a beam (i.e., SSB index=3) are associated with TRS group 1 901c; resource (s) 912c configured for a beam (i.e., SSB index=2) and resource (s) 914c configured for a beam (i.e., SSB index=4) are associated with TRS group 2 902c.
In Figure 9D, R is the number of TRS resources or resource sets in multiple beams. Resources with successive SSB indexes are assigned to a TRS group, that is, SSB indexes in a TRS group are continuous. As shown in Figure 9D, resource (s) 911d configured for a beam (i.e., SSB index=1) and resource (s) 912d configured for a beam (i.e., SSB index=2) are associated with TRS group 1 901d; resource (s) 913d configured for a beam (i.e., SSB index=3) and resource (s) 914d configured for a beam (i.e., SSB index=4) are associated with TRS group 2 902d.
Figure 9E is a schematic diagram illustrating an example of grouping of TRS resources based on TRS resource ID in accordance with some implementations of the present disclosure. As shown in Figure 9E, the TRS resources 910 (including TRS resource 1 911e, TRS resource 2 912e, TRS resource 3 913e and TRS resource 4 914e) are sorted according to the order of resource ID, that is, in the order of  TRS resources  1, 2, 3 and 4. R is determined by the TRS resource number in all beams and the TRS group number, which is 2 in this example.
Figure 10 is a flow chart illustrating steps of receiving DCI for TRS resource availability indication and PEI by UE 200 in accordance with some implementations of the present disclosure.
At step 1002, the receiver 214 of UE 200 receives a control signal.
At step 1004, the processor 202 of UE 200 determines information transmitted by the control signal based on: a functionality indication field in the control signal, and/or a pre-defined rule; wherein the information transmitted by the control signal is determined as comprising: Paging Early Indication (PEI) , Tracking Reference Signal (TRS) availability indication, or both of PEI and TRS availability indication; wherein the pre-defined rule is based on at least a bitwidth of a field for PEI.
Figure 11 is a flow chart illustrating steps of transmitting DCI for TRS resource availability indication and PEI by gNB or NE 300 in accordance with some implementations of the present disclosure.
At step 1102, the processor 302 of NE 300 determines information to be transmitted by a control signal, which comprises: Paging Early Indication (PEI) , Tracking Reference Signal (TRS) availability indication, or both of PEI and TRS availability indication.
At step 1104, the processor 302 of NE 300 constructs the control signal based on the information to be transmitted by the control signal.
At step 1106, the transmitter 314 of NE 300 transmits the control signal with the information; wherein the information transmitted by the control signal is determinable by a receiving device with: a functionality indication field in the control signal, and/or a pre-defined rule based on at least a bitwidth of a field for PEI.
In one aspect, some items as examples of the disclosure concerning a method of a UE or remote device may be summarized as follows:
1. A method comprising:
receiving, by a receiver, a control signal; and
determining, by a processor, information transmitted by the control signal based on:a functionality indication field in the control signal, and/or a pre-defined rule;
wherein the information transmitted by the control signal is determined as comprising:
Paging Early Indication (PEI) ,
Tracking Reference Signal (TRS) availability indication, or
both of PEI and TRS availability indication;
wherein the pre-defined rule is based on at least a bitwidth of a field for PEI.
2. The method of item 1, wherein the functionality indication field comprises a first bit indicating whether the information transmitted by the control signal comprises PEI; and a second bit indicating whether the information transmitted by the control signal comprises TRS availability indication.
3. The method of item 1, wherein a first value of the functionality indication field indicates that the information transmitted by the control signal comprises PEI without TRS availability indication; a second value of the functionality indication filed indicates that the information transmitted by the control signal comprises TRS availability indication without PEI; and a third value of the functionality indication filed indicates that the information transmitted by the control signal comprises both PEI and TRS availability indication.
4. The method of item 1, wherein the pre-defined rule comprises:
determining a total number of bits N available in the control signal for PEI and/or TRS availability indication;
determining a bitwidth X of the field for PEI; and
comparing a value of M with a value of N-X.
5. The method of item 4, wherein the value M is a pre-defined value, or a value configured by higher layer, or a TRS group number.
6. The method of item 5, wherein upon determining that the value of N-X is less than M, the information transmitted by the control signal is determined as comprising PEI, without TRS availability indication.
7. The method of item 5, wherein upon determining that the value of N-X is greater than or equal to M, the information transmitted by the control signal is determined as comprising both PEI and TRS availability indication.
8. The method of item 1, wherein upon determining that the information transmitted by the control signal comprises both PEI and TRS availability  indication, the processor further determines a bitwidth of a field for TRS availability indication according to a TRS group number.
9. The method of item 8, wherein each bit of TRS availability indication corresponds to a TRS group.
10. The method of item 8, wherein a starting position of PEI is a leftmost bit on the control signal, and the processor further determines a starting position of TRS availability indication according to a PEI group number of a Paging Occasion (PO) and a PO number corresponding to the PEI.
11. The method of item 8, wherein a starting position of TRS availability indication is a leftmost bit on the control signal, and the processor further determines a starting position of PEI according to the TRS group number.
12. The method of item 8, wherein the TRS group number is configured by higher layer, or is determined according to: a total number of bits N available in the control signal for PEI and/or TRS availability indication, a PEI group number of a PO, a PO number corresponding to the PEI, and/or a TRS resource number or TRS resource set number.
13. The method of item 1, wherein a TRS group of a TRS resource, or TRS resource set, is determined based on at least one of: a Synchronization Signal Block (SSB) index, a resource index (ID) , a resource set ID, a resource number, and a TRS group number.
14. The method of item 13, wherein a TRS group ID for the TRS group is determined as: (TRS resource set ID, TRS resource ID, or SSB index) mod (TRS group number) +1.
15. The method of item 13, wherein the TRS resource, or TRS resource set, is mapped to the TRS group in increasing order of TRS resource ID or TRS resource set ID in a beam firstly, and in increasing order of SSB index secondly.
In another aspect, some items as examples of the disclosure concerning a method of a NE or gNB may be summarized as follows:
16. A method comprising:
determining, by a processor, information to be transmitted by a control signal, which comprises:
Paging Early Indication (PEI) ,
Tracking Reference Signal (TRS) availability indication, or
both of PEI and TRS availability indication;
constructing, by the processor, the control signal based on the information to be transmitted by the control signal; and
transmitting, by a transmitter, the control signal with the information;
wherein the information transmitted by the control signal is determinable by a receiving device with: a functionality indication field in the control signal, and/or a pre-defined rule based on at least a bitwidth of a field for PEI.
17. The method of item 16, wherein the functionality indication field comprises a first bit indicating whether the information transmitted by the control signal comprises PEI; and a second bit indicating whether the information transmitted by the control signal comprises TRS availability indication.
18. The method of item 16, wherein a first value of the functionality indication field indicates that the information transmitted by the control signal comprises PEI without TRS availability indication; a second value of the functionality indication filed indicates that the information transmitted by the control signal comprises TRS availability indication without PEI; and a third value of the functionality indication filed indicates that the information transmitted by the control signal comprises both PEI and TRS availability indication.
19. The method of item 16, wherein the pre-defined rule comprises:
determining a total number of bits N available in the control signal for PEI and/or TRS availability indication;
determining a bitwidth X of the field for PEI; and
comparing a value of M with a value of N-X.
20. The method of item 19, wherein the value M is a pre-defined value, or a value configured by higher layer, or a TRS group number.
21. The method of item 20, wherein the value of N-X being less than M indicates that the information transmitted by the control signal comprises PEI, without TRS availability indication.
22. The method of item 20, wherein the value of N-X being greater than or equal to M indicates that the information transmitted by the control signal comprises both PEI and TRS availability indication.
23. The method of item 16, wherein upon determining that the information to be transmitted by the control signal comprises both PEI and TRS availability indication, the processor further determines a bitwidth of a field for TRS availability indication according to a TRS group number.
24. The method of item 23, wherein each bit of TRS availability indication corresponds to a TRS group.
25. The method of item 23, wherein a starting position of PEI is a leftmost bit on the control signal, and the processor further determines a starting position of TRS availability indication at least according to a PEI group number of a Paging Occasion (PO) and a PO number corresponding to the PEI.
26. The method of item 23, wherein a starting position of TRS availability indication is a leftmost bit on the control signal, and the processor further determines a starting position of PEI at least according to the TRS group number.
27. The method of item 23, wherein the TRS group number is configured by higher layer, or is determined according to: a total number of bits N available in the control signal for PEI and/or TRS availability indication, a PEI group number of a PO, a PO number corresponding to the PEI, and/or a TRS resource number or TRS resource set number.
28. The method of item 16, wherein a TRS group of a TRS resource, or TRS resource set, is determined based on at least one of: a Synchronization Signal Block (SSB) index, a resource index (ID) , a resource set ID, a resource number, and a TRS group number.
29. The method of item 28, wherein a TRS group ID for the TRS group is determined as: (TRS resource set ID, TRS resource ID, or SSB index) mod (TRS group number) +1.
30. The method of item 28, wherein the TRS resource, or TRS resource set, is mapped to the TRS group in increasing order of TRS resource ID or TRS resource set ID in a beam firstly, and in increasing order of SSB index secondly.
In a further aspect, some items as examples of the disclosure concerning a UE or remote device may be summarized as follows:
31. An apparatus comprising:
a receiver that receives a control signal; and
a processor that determines information transmitted by the control signal based on: a functionality indication field in the control signal, and/or a pre-defined rule;
wherein the information transmitted by the control signal is determined as comprising:
Paging Early Indication (PEI) ,
Tracking Reference Signal (TRS) availability indication, or
both of PEI and TRS availability indication;
wherein the pre-defined rule is based on at least a bitwidth of a field for PEI.
32. The apparatus of item 31, wherein the functionality indication field comprises a first bit indicating whether the information transmitted by the control signal comprises PEI; and a second bit indicating whether the information transmitted by the control signal comprises TRS availability indication.
33. The apparatus of item 31, wherein a first value of the functionality indication field indicates that the information transmitted by the control signal comprises PEI without TRS availability indication; a second value of the functionality indication filed indicates that the information transmitted by the control signal comprises TRS availability indication without PEI; and a third value of the functionality indication filed indicates that the information transmitted by the control signal comprises both PEI and TRS availability indication.
34. The apparatus of item 31, wherein the pre-defined rule comprises:
determining a total number of bits N available in the control signal for PEI and/or TRS availability indication;
determining a bitwidth X of the field for PEI; and
comparing a value of M with a value of N-X.
35. The apparatus of item 34, wherein the value M is a pre-defined value, or a value configured by higher layer, or a TRS group number.
36. The apparatus of item 35, wherein upon determining that the value of N-X is less than M, the information transmitted by the control signal is determined as comprising PEI, without TRS availability indication.
37. The apparatus of item 35, wherein upon determining that the value of N-X is greater than or equal to M, the information transmitted by the control signal is determined as comprising both PEI and TRS availability indication.
38. The apparatus of item 31, wherein upon determining that the information transmitted by the control signal comprises both PEI and TRS availability indication, the processor further determines a bitwidth of a field for TRS availability indication according to a TRS group number.
39. The apparatus of item 38, wherein each bit of TRS availability indication corresponds to a TRS group.
40. The apparatus of item 38, wherein a starting position of PEI is a leftmost bit on the control signal, and the processor further determines a starting position of TRS availability indication at least according to a PEI group number of a Paging Occasion (PO) and a PO number corresponding to the PEI.
41. The apparatus of item 38, wherein a starting position of TRS availability indication is a leftmost bit on the control signal, and the processor further determines a starting position of PEI at least according to the TRS group number.
42. The apparatus of item 38, wherein the TRS group number is configured by higher layer, or is determined according to: a total number of bits N available in the control signal for PEI and/or TRS availability indication, a PEI group number of a PO, a PO number corresponding to the PEI, and/or a TRS resource number or TRS resource set number.
43. The apparatus of item 31, wherein a TRS group of a TRS resource, or TRS resource set, is determined based on at least one of: a Synchronization Signal Block (SSB) index, a resource index (ID) , a resource set ID, a resource number, and a TRS group number.
44. The apparatus of item 43, wherein a TRS group ID for the TRS group is determined as: (TRS resource set ID, TRS resource ID, or SSB index) mod (TRS group number) +1.
45. The apparatus of item 43, wherein the TRS resource, or TRS resource set, is mapped to the TRS group in increasing order of TRS resource ID or TRS resource set ID in a beam firstly, and in increasing order of SSB index secondly.
In a yet further aspect, some items as examples of the disclosure concerning a NE or gNB may be summarized as follows:
46. An apparatus comprising:
a processor that determines information to be transmitted by a control signal, which comprises:
Paging Early Indication (PEI) ,
Tracking Reference Signal (TRS) availability indication, or
both of PEI and TRS availability indication;
wherein the processor further constructs the control signal based on the information to be transmitted by the control signal; and
a transmitter that transmits the control signal with the information;
wherein the information transmitted by the control signal is determinable by a receiving device with: a functionality indication field in the control signal, and/or a pre-defined rule based on at least a bitwidth of a field for PEI.
47. The apparatus of item 46, wherein the functionality indication field comprises a first bit indicating whether the information transmitted by the control signal comprises PEI; and a second bit indicating whether the information transmitted by the control signal comprises TRS availability indication.
48. The apparatus of item 46, wherein a first value of the functionality indication field indicates that the information transmitted by the control signal comprises PEI without TRS availability indication; a second value of the functionality indication filed indicates that the information transmitted by the control signal comprises TRS availability indication without PEI; and a third value of the functionality indication filed indicates that the information transmitted by the control signal comprises both PEI and TRS availability indication.
49. The apparatus of item 46, wherein the pre-defined rule comprises:
determining a total number of bits N available in the control signal for PEI and/or TRS availability indication;
determining a bitwidth X of the field for PEI; and
comparing a value of M with a value of N-X.
50. The apparatus of item 49, wherein the value M is a pre-defined value, or a value configured by higher layer, or a TRS group number.
51. The apparatus of item 50, wherein the value of N-X being less than M indicates that the information transmitted by the control signal comprises PEI, without TRS availability indication.
52. The apparatus of item 50, wherein the value of N-X being greater than or equal to M indicates that the information transmitted by the control signal comprises both PEI and TRS availability indication.
53. The apparatus of item 46, wherein upon determining that the information to be transmitted by the control signal comprises both PEI and TRS availability indication, the processor further determines a bitwidth of a field for TRS availability indication according to a TRS group number.
54. The apparatus of item 53, wherein each bit of TRS availability indication corresponds to a TRS group.
55. The apparatus of item 53, wherein a starting position of PEI is a leftmost bit on the control signal, and the processor further determines a starting position of TRS availability indication at least according to a PEI group number of a Paging Occasion (PO) and a PO number corresponding to the PEI.
56. The apparatus of item 53, wherein a starting position of TRS availability indication is a leftmost bit on the control signal, and the processor further determines a starting position of PEI at least according to the TRS group number.
57. The apparatus of item 53, wherein the TRS group number is configured by higher layer, or is determined according to: a total number of bits N available in the control signal for PEI and/or TRS availability indication, a PEI group number of a PO, a PO number corresponding to the PEI, and/or a TRS resource number or TRS resource set number.
58. The apparatus of item 46, wherein a TRS group of a TRS resource, or TRS resource set, is determined based on at least one of: a Synchronization Signal Block (SSB) index, a resource index (ID) , a resource set ID, a resource number, and a TRS group number.
59. The apparatus of item 58, wherein a TRS group ID for the TRS group is determined as: (TRS resource set ID, TRS resource ID, or SSB index) mod (TRS group number) +1.
60. The apparatus of item 58, wherein the TRS resource, or TRS resource set, is mapped to the TRS group in increasing order of TRS resource ID or TRS resource set ID in a beam firstly, and in increasing order of SSB index secondly.
Various embodiments and/or examples are disclosed to provide exemplary and explanatory information to enable a person of ordinary skill in the art to put the disclosure into practice. Features or components disclosed with reference to one embodiment or example are also applicable to all embodiments or examples unless specifically indicated otherwise.
Embodiments may be practiced in other specific forms. The described embodiments are to be considered in all respects only as illustrative and not restrictive. The scope is, therefore, indicated by the appended claims rather than by the foregoing description. All changes which come within the meaning and range of equivalency of the claims are to be embraced within their scope.

Claims (15)

  1. A method comprising:
    receiving, by a receiver, a control signal; and
    determining, by a processor, information transmitted by the control signal based on: a functionality indication field in the control signal, and/or a pre-defined rule;
    wherein the information transmitted by the control signal is determined as comprising:
    Paging Early Indication (PEI) ,
    Tracking Reference Signal (TRS) availability indication, or
    both of PEI and TRS availability indication;
    wherein the pre-defined rule is based on at least a bitwidth of a field for PEI.
  2. The method of claim 1, wherein the functionality indication field comprises a first bit indicating whether the information transmitted by the control signal comprises PEI; and a second bit indicating whether the information transmitted by the control signal comprises TRS availability indication.
  3. The method of claim 1, wherein a first value of the functionality indication field indicates that the information transmitted by the control signal comprises PEI without TRS availability indication; a second value of the functionality indication filed indicates that the information transmitted by the control signal comprises TRS availability indication without PEI; and a third value of the functionality indication filed indicates that the information transmitted by the control signal comprises both PEI and TRS availability indication.
  4. The method of claim 1, wherein the pre-defined rule comprises:
    determining a total number of bits N available in the control signal for PEI and/or TRS availability indication;
    determining a bitwidth X of the field for PEI; and
    comparing a value of M with a value of N-X.
  5. The method of claim 4, wherein the value M is a pre-defined value, or a value configured by higher layer, or a TRS group number.
  6. The method of claim 5, wherein upon determining that the value of N-X is less than M, the information transmitted by the control signal is determined as comprising PEI, without TRS availability indication.
  7. The method of claim 5, wherein upon determining that the value of N-X is greater than or equal to M, the information transmitted by the control signal is determined as comprising both PEI and TRS availability indication.
  8. The method of claim 1, wherein upon determining that the information transmitted by the control signal comprises both PEI and TRS availability indication, the processor further determines a bitwidth of a field for TRS availability indication according to a TRS group number.
  9. The method of claim 8, wherein each bit of TRS availability indication corresponds to a TRS group.
  10. The method of claim 8, wherein a starting position of PEI is a leftmost bit on the control signal, and the processor further determines a starting position of TRS availability indication at least according to a PEI group number of a Paging Occasion (PO) and a PO number corresponding to the PEI.
  11. The method of claim 8, wherein a starting position of TRS availability indication is a leftmost bit on the control signal, and the processor further determines a starting position of PEI at least according to the TRS group number.
  12. The method of claim 8, wherein the TRS group number is configured by higher layer, or is determined according to: a total number of bits N available in the control signal for PEI and/or TRS availability indication, a PEI group number of a PO, a PO number corresponding to the PEI, and/or a TRS resource number or TRS resource set number.
  13. The method of claim 1, wherein a TRS group of a TRS resource, or TRS resource set, is determined based on at least one of: a Synchronization Signal Block (SSB) index, a resource index (ID) , a resource set ID, a resource number, and a TRS group number.
  14. The method of claim 13, wherein a TRS group ID for the TRS group is determined as: (TRS resource set ID, TRS resource ID, or SSB index) mod (TRS group number) +1.
  15. The method of claim 13, wherein the TRS resource, or TRS resource set, is mapped to the TRS group in increasing order of TRS resource ID or TRS resource set ID in a beam firstly, and in increasing order of SSB index secondly.
PCT/CN2021/111290 2021-08-06 2021-08-06 A methods and apparatus of dci for trs resource availability indication and pei WO2023010557A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/111290 WO2023010557A1 (en) 2021-08-06 2021-08-06 A methods and apparatus of dci for trs resource availability indication and pei

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/111290 WO2023010557A1 (en) 2021-08-06 2021-08-06 A methods and apparatus of dci for trs resource availability indication and pei

Publications (1)

Publication Number Publication Date
WO2023010557A1 true WO2023010557A1 (en) 2023-02-09

Family

ID=85154111

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/111290 WO2023010557A1 (en) 2021-08-06 2021-08-06 A methods and apparatus of dci for trs resource availability indication and pei

Country Status (1)

Country Link
WO (1) WO2023010557A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113056951A (en) * 2021-02-26 2021-06-29 北京小米移动软件有限公司 Information transmission method, device, communication equipment and storage medium
US20210227496A1 (en) * 2020-01-17 2021-07-22 Qualcomm Incorporated Reference signal monitoring occasion updates for idle and inactive user equipment

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210227496A1 (en) * 2020-01-17 2021-07-22 Qualcomm Incorporated Reference signal monitoring occasion updates for idle and inactive user equipment
CN113056951A (en) * 2021-02-26 2021-06-29 北京小米移动软件有限公司 Information transmission method, device, communication equipment and storage medium

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "Assistance RS occasions for IDLE/inactive mode", 3GPP DRAFT; R1-2104252, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. E-meeting; 20210510 - 20210527, 12 May 2021 (2021-05-12), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP052010706 *
OPPO: "Paging and TRS indication in idle/inactive modes", 3GPP DRAFT; R1-2104789, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20210510 - 20210527, 12 May 2021 (2021-05-12), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP052011030 *
QUALCOMM INCORPORATED: "TRS/CSI-RS for idle/inactive UE power saving", 3GPP DRAFT; R1-2103178, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20210412 - 20210420, 7 April 2021 (2021-04-07), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052177977 *

Similar Documents

Publication Publication Date Title
CN110313202B (en) Controlling user equipment carrier aggregation configuration with enhanced multimedia broadcast multicast service
JP6321183B2 (en) System and method for modulation coding scheme selection and setting
US11601248B2 (en) Communication method and communications apparatus
US10674405B2 (en) System and method for throttling carrier aggregation activation
CN109561499B (en) Paging method, paging device and readable storage medium
US20140314012A1 (en) Method and Apparatus for Processing Information
EP4035275A1 (en) Methods and apparatuses for channel state information configuration and reporting for multi-transmission reception point operation
US20210014736A1 (en) Communication method, communications apparatus, and system
TW202110233A (en) Wake-up signal assisted link management
JP7211541B2 (en) UE, radio station and method
WO2021027739A1 (en) Beam failure recovery method and device
KR20220166262A (en) Apparatus and method for enhanced PDCCH transmission involving multiple beams from multiple TRPs in a common search space set
WO2017051078A1 (en) Paging for enhanced coverage user equipment
WO2023010557A1 (en) A methods and apparatus of dci for trs resource availability indication and pei
WO2023000298A1 (en) Methods and apparatus of monitoring enhanced pdcch scheduling common information with multiple trp transmission
WO2022027446A1 (en) Apparatus and methods of simultaneous ue rx beam refinement
WO2023050327A1 (en) Methods and apparatus of indicating states of availability of trs resources
WO2023077361A1 (en) Methods and apparatus of monitoring behaviour determination for overlapping epdcch and csi-rs/ssb/pdsch/pdcch
WO2023010274A1 (en) Methods and apparatus of determining trp-specific beam failure detection reference signal set
WO2023168654A1 (en) Methods and apparatus of dynamic switching of waveforms
WO2023279365A1 (en) Methods and apparatus of monitoring pdcch scheduling common information with multiple trp transmission
WO2023050308A1 (en) Methods and apparatus of meeting ue memory requirement for decoding of enhanced pdcch
WO2022150960A1 (en) Methods and apparatus of rate matching mechanism
US11889335B2 (en) Downlink channel quality report for narrowband internet of things user equipment
WO2021223199A1 (en) Communication schemes for multi-user payloads

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21952431

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE