WO2023010449A1 - User equipment, base station, and wireless communication method for unicast and/or mbs - Google Patents

User equipment, base station, and wireless communication method for unicast and/or mbs Download PDF

Info

Publication number
WO2023010449A1
WO2023010449A1 PCT/CN2021/111003 CN2021111003W WO2023010449A1 WO 2023010449 A1 WO2023010449 A1 WO 2023010449A1 CN 2021111003 W CN2021111003 W CN 2021111003W WO 2023010449 A1 WO2023010449 A1 WO 2023010449A1
Authority
WO
WIPO (PCT)
Prior art keywords
ptp
ptm
wireless communication
harq
communication method
Prior art date
Application number
PCT/CN2021/111003
Other languages
French (fr)
Inventor
Ahmed MOHAMMED MIKAEIL
Original Assignee
Huizhou Tcl Cloud Internet Corporation Technology Co. Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huizhou Tcl Cloud Internet Corporation Technology Co. Ltd filed Critical Huizhou Tcl Cloud Internet Corporation Technology Co. Ltd
Priority to PCT/CN2021/111003 priority Critical patent/WO2023010449A1/en
Priority to CN202180101372.1A priority patent/CN117813844A/en
Publication of WO2023010449A1 publication Critical patent/WO2023010449A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1822Automatic repetition systems, e.g. Van Duuren systems involving configuration of automatic repeat request [ARQ] with parallel processes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1896ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L2001/0092Error control systems characterised by the topology of the transmission link
    • H04L2001/0093Point-to-multipoint
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/06Selective distribution of broadcast services, e.g. multimedia broadcast multicast service [MBMS]; Services to user groups; One-way selective calling services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/30Resource management for broadcast services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/40Resource management for direct mode communication, e.g. D2D or sidelink

Definitions

  • the present disclosure relates to the field of wireless communication systems, and more particularly, to a user equipment (UE) , a base station, and wireless communication methods for unicast and/or multicast/broadcast service (MBS) , which can provide a configuration of initial simultaneous transmission/re-transmission of semi-persistent and/or dynamical scheduled unicast and/or MBS over 5G point to point (PTP) and point to multipoint (PTM) system.
  • UE user equipment
  • MBS multicast/broadcast service
  • Wireless communication systems are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so on. These wireless communication systems may be capable of supporting communication with multiple users by sharing available system resources (e.g., time, frequency, and power) .
  • Examples of such multiple-access systems include fourth generation (4G) systems such as long term evolution (LTE) systems and fifth generation (5G) systems which may be referred to as new radio (NR) systems.
  • 4G systems such as long term evolution (LTE) systems
  • 5G systems which may be referred to as new radio (NR) systems.
  • 4G systems such as long term evolution (LTE) systems
  • 5G systems which may be referred to as new radio (NR) systems.
  • LTE long term evolution
  • 5G systems which may be referred to as new radio (NR) systems.
  • LTE long term evolution
  • 5G systems which may be referred to as new radio (NR) systems.
  • NR new radio
  • CDMA code division multiple access
  • TDMA time division multiple access
  • a wireless multiple-access communications system may include a number of base stations or network access nodes, each simultaneously supporting communication for multiple communication devices, which may be otherwise known as user equipments (UEs) .
  • a wireless communication network may include a base station that can support communication for a UE.
  • the UE may communicate with the base station via downlink (DL) and uplink (UL) .
  • the DL refers to a communication link from the base station to the UE
  • the UL refers to a communication link from the UE to the base station.
  • broadcast and multicast services may be transported via a transport service called multimedia broadcast/multicast service (MBMS) .
  • MBMS multimedia broadcast/multicast service
  • a broadcast multicast service center (BM-SC) server is responsible to disseminate a media content to a group of subscribers.
  • BM-SC broadcast multicast service center
  • BM-SC broadcast multicast service center
  • MBMS is a point-to-multipoint (PTM) interface specification designed to provide efficient delivery of broadcast and multicast services within 3GPP cellular networks. Examples of MBMS interface specifications include those described in universal mobile telecommunication system (UMTS) and long term evolution (LTE) communication specifications.
  • UMTS universal mobile telecommunication system
  • LTE long term evolution
  • the specifications define transmission over single-frequency network configurations. Intended applications include mobile TV, news, radio broadcasting, file delivery, emergency alerts, and others.
  • MBMS multimedia broadcast/multicast service single frequency network
  • wireless communication devices such as cellular phones, tablets, laptops, and other devices with wireless transceivers that communicate with the base station within the communication system.
  • the base station provides wireless service to the wireless communication devices, sometimes referred to as mobile devices or UEs, within cells.
  • a user can access at least some multimedia services through a UE using either a point-to-point (PTP) connection or a PTM transmission.
  • PTP services can be provided using unicast techniques and PTM transmissions can be provided using MBMS communication, transmitted over an MBSFN or single cell point to multipoint (SC-PTM) communication.
  • PTP point-to-point
  • SC-PTM single cell point to multipoint
  • MBMS is provided using eMBMS. Accordingly, an MBMS service can be provided using either unicast service, MBSFN, or SC-PTM in an LTE system.
  • LTE long term evolution
  • RAN radio access network
  • MBS multicast/broadcast services
  • NR new radio
  • One of main objectives of the work item description is to specify a group scheduling mechanism to allow UEs to receive Broadcast/Multicast service [RAN1, RAN2] . This objective includes specifying necessary enhancements that are required to enable simultaneous operation with unicast reception.
  • One of main objectives of the WID is to specify required changes to improve reliability of Broadcast/Multicast service, e.g., by uplink (UL) feedback. The level of reliability should be based on the requirements of the application/service provided [RAN1, RAN2] .
  • One way to improve the resource efficiency is to re-transmit only the part of the transport block which the UE fails to decode.
  • this principle requires dividing/splitting the transport block into smaller blocks and provides a multi-bit HARQ related information over downlink channel by a gNB as well as a multi-bit HARQ feedback over the uplink channel by a UE which could increases the system overhead.
  • a user equipment UE
  • a base station a base station
  • wireless communication methods which can solve issues in the prior art, reduce a UE HARQ feedback overhead, reduce a UE complexity, increase a network efficiency, and reduce a downlink control information, and/or provide a good and/or reliable communication performance.
  • An object of the present disclosure is to propose a user equipment (UE) , a base station, and a wireless communication method for unicast and/or multicast/broadcast service (MBS) , which can solve issues in the prior art, reduce a UE HARQ feedback overhead, reduce a UE complexity, increase a network efficiency, and reduce a downlink control information, and/or provide a good and/or reliable communication performance.
  • UE user equipment
  • MBS multicast/broadcast service
  • a wireless communication method for unicast and/or multicast/broadcast service (MBS) performed by a user equipment (UE) comprises receiving, from a base station, a downlink (DL) assignment comprising point to point (PTP) /point to multipoint (PTM) data and a PTP/PTM hybrid automatic repeat request (HARQ) information, configuring a single HARQ process to receive the DL assignment comprising the PTP/PTM data, and decoding a cyclic redundancy check (CRC) for PTP/PTM transport blocks (TBs) /code block groups (CBGs) within the DL assignment.
  • DL downlink
  • PTP point to point
  • PTM point to multipoint
  • HARQ hybrid automatic repeat request
  • a wireless communication method for unicast and/or MBS performed by a base station comprises configuring, to a user equipment (UE) , hybrid automatic repeat request (HARQ) processes for point to point (PTP) /point to multipoint (PTM) data, activating a downlink (DL) assignment comprising the PTP/PTM data and a PTP/PTM HARQ information, and sending, to the UE, the DL assignment comprising the PTP/PTM data and the PTP/PTM HARQ information.
  • HARQ hybrid automatic repeat request
  • PTP point to point
  • PTM point to multipoint
  • DL downlink
  • a user equipment comprises a memory, a transceiver, and a processor coupled to the memory and the transceiver.
  • the transceiver is configured to receive, from a base station, a downlink (DL) assignment comprising point to point (PTP) /point to multipoint (PTM) data and a PTP/PTM hybrid automatic repeat request (HARQ) information
  • the processor is configured to configure a single HARQ process to receive the DL assignment comprising the PTP/PTM data
  • the processor is configured to decode a cyclic redundancy check (CRC) for PTP/PTM transport blocks (TBs) /code block groups (CBGs) within the DL assignment.
  • CRC cyclic redundancy check
  • a base station comprises a memory, a transceiver, and a processor coupled to the memory and the transceiver.
  • the processor is configured to configure, to a user equipment (UE) , hybrid automatic repeat request (HARQ) processes for point to point (PTP) /point to multipoint (PTM) data, the processor is configured to activate a downlink (DL) assignment comprising the PTP/PTM data and a PTP/PTM HARQ information, and the transceiver is configured to send, to the UE, the DL assignment comprising the PTP/PTM data and the PTP/PTM HARQ information.
  • UE user equipment
  • HARQ hybrid automatic repeat request
  • PTP point to point
  • PTM point to multipoint
  • DL downlink
  • the transceiver is configured to send, to the UE, the DL assignment comprising the PTP/PTM data and the PTP/PTM HARQ information.
  • a non-transitory machine-readable storage medium has stored thereon instructions that, when executed by a computer, cause the computer to perform the above method.
  • a chip includes a processor, configured to call and run a computer program stored in a memory, to cause a device in which the chip is installed to execute the above method.
  • a computer readable storage medium in which a computer program is stored, causes a computer to execute the above method.
  • a computer program product includes a computer program, and the computer program causes a computer to execute the above method.
  • a computer program causes a computer to execute the above method.
  • FIG. 1 is a block diagram of one or more user equipments (UEs) and a base station (e.g., gNB) of communication in a communication network system according to an embodiment of the present disclosure.
  • UEs user equipments
  • gNB base station
  • FIG. 2 is a flowchart illustrating a wireless communication method for unicast and/or MBS transmission and retransmission performed by a UE according to an embodiment of the present disclosure.
  • FIG. 3 is a flowchart illustrating a wireless communication method for unicast and/or MBS transmission and retransmission performed by a base station according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic diagram illustrating an example of a retransmission of single codebook group according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic diagram illustrating an example of a size of bit for CBG based HARQ information indicator and HARQ feedback according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic diagram illustrating an example of a wireless communication method for unicast and/or MBS performed by a base station and one or more UEs according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic diagram illustrating an example of a wireless communication method for unicast and/or MBS performed by a base station according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic diagram illustrating an example of a wireless communication method for unicast and/or MBS performed by a user equipment according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic diagram illustrating an example of PTP and PTM HARQ processes configuration at a gNB according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic diagram illustrating an example of CBG based PTP/PM initial transmission and retransmission according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic diagram illustrating an example of TB based PTP/PM initial transmission and retransmission according to an embodiment of the present disclosure.
  • FIG. 12 is a block diagram of a system for wireless communication according to an embodiment of the present disclosure.
  • WID RAN Meeting #88-e during June 29 and July 3, 2020
  • MBS Multicast/Broadcast Services
  • the aims of this WID is to provide the support in RAN for objective A of SA2 study item SID (SP-190726) , which is related to enabling general MBS services over 5GS to support different MBS services such as public safety and mission critical, V2X applications, transparent IPv4/IPv6 multicast delivery, IPTV, software delivery over wireless, group communications and IoT applications.
  • SID SA2 study item SID
  • One of the key objectives of the WID includes: 1. Specify a group scheduling mechanism to allow UEs to receive Broadcast/Multicast service [RAN1, RAN2] .
  • This objective includes specifying necessary enhancements that are required to enable simultaneous operation with unicast reception. 2. Specify required changes to improve reliability of Broadcast/Multicast service, e.g., by UL feedback. The level of reliability should be based on the requirements of the application/service provided [RAN1, RAN2] .
  • PTP transmission For RRC_CONNECTED UEs, use UE-specific PDCCH with cyclic redundancy check (CRC) scrambled by UE-specific radio network temporary identifier (e.g., C-RNTI) to schedule UE-specific PDSCH which is scrambled with the same UE-specific RNTI.
  • CRC cyclic redundancy check
  • PTM transmission scheme 1 For RRC_CONNECTED UEs in the same MBS group, use group-common PDCCH with CRC scrambled by group-common RNTI to schedule group-common PDSCH which is scrambled with the same group-common RNTI. This scheme can also be called group-common PDCCH based group scheduling scheme.
  • PTM transmission scheme 2 For RRC_CONNECTED UEs in the same MBS group, use UE-specific PDCCH with CRC scrambled by UE-specific RNTI (e.g., C-RNTI) to schedule group-common PDSCH which is scrambled with group-common RNTI.
  • UE-specific RNTI e.g., C-RNTI
  • This scheme can also be called UE-specific PDCCH based group scheduling schemes
  • the reliability of multicast/broadcast services in RAN1, it has been agreed to support acknowledged and non-acknowledged (ACK) and/or NACK only based hybrid automatic repeat request (HARQ) for semi-persistently scheduled (SPS) or dynamically scheduled PTM transmission and retransmission and to support ACK/NACK based for SPS/dynamic scheduled PTP transmission and retransmission.
  • ACK acknowledged and non-acknowledged
  • HARQ hybrid automatic repeat request
  • SPS semi-persistently scheduled
  • PTM multicast/broadcast
  • the configuration of HARQ process should allow multiplexing of PTP and PTM transmission with at least one MAC layer transport block (TB) for UE supporting only one TB per slot and allow multiplexing of multiple PTP and PTP TBs within one slot for UE capable of supporting multiple TBs per slot.
  • TB MAC layer transport block
  • some embodiments of the present disclosure provide an efficient and low overhead HARQ transmission and retransmission method for dynamic and/or semi-persistent scheduling of simultaneous MBS (PTP/PTM) and unicast (PTP) scheduling for UE in a slot.
  • the exemplary method avoids the downlink transmission deficiency by employing the partial retransmission of only the PTP or PTM part of transport block instead of a retransmission a whole transport block and prevents from higher control signalling overhead by utilizing one-bit HARQ indicator in downlink and two/double bits reconfigurable ACK/NACK uplink feedback.
  • the gNB configures different/separate HARQ processes for PTP and PTM data, combines/maps/multiplex data from HARQ process configured for PTP/PTM into a DL assignment, and indicates HARQ control information about the PTP/PTM combination as well as the HARQ process ID, to one or more UEs.
  • the UE Upon the reception of HARQ control information and the DL assignment from gNB, the UE configures a single HARQ process to receive PTP and PTM DL data within the assignment of, decodes and checks the CRC of PTP and PTM data (TBs) included within the DL assignment to determine the faulty part of DL assignment (which could be either the PTP part, the PTM part or both the PTP and PTM parts) . After that, UE configures PTP/PTM ACK/NACK feedback bits, sends the feedback bits in uplink channel to the gNB.
  • PTP/PTM ACK/NACK feedback bits sends the feedback bits in uplink channel to the gNB.
  • the gNB determines based on received ACK/NACK feedback bits, whether a retransmission is needed for the PTP or PTM on both; if so, the gNB retransmits the parts of DL assignment as indicated by the feedback bits to UE. Finally, the UE receives the re-transmitted part of the DL assignment for the previous uplink feedback which it sends to the gNB earlier.
  • Some embodiments of the present disclosure provide new semi-persistent scheduling mechanism for scheduling of the initial simultaneous transmission/re-transmission of multicast-broadcast and unicast service (MBS) over 5G point to point (PTP) and point to multipoint (PTM) system.
  • MMS multicast-broadcast and unicast service
  • PTP point to point
  • PTM point to multipoint
  • the new exemplary method helps reducing UE HARQ feedback overhead, as only a single bit feedback is used acknowledging/no-acknowledging of one or more transport block or CBGs configured for unicast (PTP) and multicast/broadcast (PTM/PTM) data unit instead of sending multiple bits of feedback for each TBs/CBGs individually inside the large transport block.
  • PTP unicast
  • PTM/PTM multicast/broadcast
  • the new exemplary method allows the UE to be configured with only one HARQ process to correspond the two independent HARQ processes at gNB (for unicast PTM and PTP) . This helps reducing UE complexity.
  • the new exemplary method helps increasing the network efficiency and reducing the downlink control information by the reducing of the size of the HARQ related information transmitted over the downlink scheduling assignment.
  • FIG. 1 illustrates that, in some embodiments, one or more user equipments (UEs) 10 and a base station (e.g., gNB) 20 for communication in a communication network system 30 according to an embodiment of the present disclosure are provided.
  • the communication network system 30 includes the one or more UEs 10 and the base station 20.
  • the one or more UEs 10 may include a memory 12, a transceiver 13, and a processor 11 coupled to the memory 12 and the transceiver 13.
  • the base station 20 may include a memory 22, a transceiver 23, and a processor 21 coupled to the memory 22 and the transceiver 23.
  • the processor 11 or 21 may be configured to implement proposed functions, procedures and/or methods described in this description. Layers of radio interface protocol may be implemented in the processor 11 or 21.
  • the memory 12 or 22 is operatively coupled with the processor 11 or 21 and stores a variety of information to operate the processor 11 or 21.
  • the transceiver 13 or 23 is operatively coupled with the processor 11 or 21, and the transceiver 13 or 23 transmits and/or receives a radio signal.
  • the processor 11 or 21 may include application-specific integrated circuit (ASIC) , other chipset, logic circuit and/or data processing device.
  • the memory 12 or 22 may include read-only memory (ROM) , random access memory (RAM) , flash memory, memory card, storage medium and/or other storage device.
  • the transceiver 13 or 23 may include baseband circuitry to process radio frequency signals.
  • modules e.g., procedures, functions, and so on
  • the modules can be stored in the memory 12 or 22 and executed by the processor 11 or 21.
  • the memory 12 or 22 can be implemented within the processor 11 or 21 or external to the processor 11 or 21 in which case those can be communicatively coupled to the processor 11 or 21 via various means as is known in the art.
  • the transceiver 13 is configured to receive, from the base station 20, a downlink (DL) assignment comprising point to point (PTP) /point to multipoint (PTM) data and a PTP/PTM hybrid automatic repeat request (HARQ) information
  • the processor is configured to configure a single HARQ process to receive the DL assignment comprising the PTP/PTM data
  • the processor is configured to decode a cyclic redundancy check (CRC) for PTP/PTM transport blocks (TBs) /code block groups (CBGs) within the DL assignment.
  • CRC cyclic redundancy check
  • the processor 21 is configured to configure, to the UE 10, hybrid automatic repeat request (HARQ) processes for point to point (PTP) /point to multipoint (PTM) data, the processor 21 is configured to activate a downlink (DL) assignment comprising the PTP/PTM data and a PTP/PTM HARQ information, and the transceiver 23 is configured to send, to the UE, the DL assignment comprising the PTP/PTM data and the PTP/PTM HARQ information.
  • HARQ hybrid automatic repeat request
  • PTP point to point
  • PTM point to multipoint
  • the transceiver 23 is configured to send, to the UE, the DL assignment comprising the PTP/PTM data and the PTP/PTM HARQ information.
  • FIG. 2 illustrates a wireless communication method 200 for unicast and/or multicast/broadcast service (MBS) transmission and retransmission performed by a user equipment (UE) according to an embodiment of the present disclosure.
  • the method 200 includes: a block 202, receiving, from a base station, a downlink (DL) assignment comprising point to point (PTP) /point to multipoint (PTM) data and a PTP/PTM hybrid automatic repeat request (HARQ) information, a block 204, configuring a single HARQ process to receive the DL assignment comprising the PTP/PTM data, a block 206, decoding a cyclic redundancy check (CRC) for PTP/PTM transport blocks (TBs) /code block groups (CBGs) within the DL assignment, a block 208, configuring an acknowledgment (ACK) /non-acknowledgment (NACK) feedback code bit; and sending a PTP/PTM uplink feedback code to the base station, and
  • FIG. 3 illustrates a wireless communication method 300 for unicast and/or multicast/broadcast service (MBS) transmission and retransmission performed by a base station according to an embodiment of the present disclosure.
  • the method 300 includes: a block 302, configuring, to a user equipment (UE) , hybrid automatic repeat request (HARQ) processes for point to point (PTP) /point to multipoint (PTM) data, a block 304, activating a downlink (DL) assignment comprising the PTP/PTM data and a PTP/PTM HARQ information, a block 306, sending, to the UE, the DL assignment comprising the PTP/PTM data and the PTP/PTM HARQ information, and a block 308, reconfiguring/resending a retransmission based on a received PTP/PTM feedback indication from the UE.
  • UE user equipment
  • HARQ hybrid automatic repeat request
  • PTP point to point
  • PTM point to multipoint
  • a block 304 activating
  • the wireless communication method further comprises configuring an acknowledgment (ACK) /non-acknowledgment (NACK) feedback code bit, sending a PTP/PTM uplink feedback code to the base station, and receiving, from the base station, a re-transmitted DL assignment for a previous PTP/PTM ACK/NACK uplink feedback.
  • configuring an acknowledgment (ACK) /non-acknowledgment (NACK) feedback code bit compromise.
  • configuring an acknowledgment (ACK) /non-acknowledgment (NACK) feedback code bit compromise a PTP/PTM ACK code bit indicating to gNB that the initial PTM transmission is successfully received and the initial PTP transmission is not received or received with an error. In some embodiments, configuring an acknowledgment (ACK) /non-acknowledgment (NACK) feedback code bit compromise a PTP/PTM ACK code bit indicating to gNB that the initial PTP transmission is successfully received and the initial PTM transmission is not received or received with an error.
  • configuring an acknowledgment (ACK) /non-acknowledgment (NACK) feedback code bit compromise a PTP/PTM ACK code bit indicating to gNB both PTP and PTM initial transmissions are successfully received by the UE. In some embodiments, configuring an acknowledgment (ACK) /non-acknowledgment (NACK) feedback code bit compromise a PTP/PTM ACK code bit indicating to gNB both PTP and PTM initial transmissions are not successfully received by the UE. In some embodiments, configuring an acknowledgment (ACK) /non-acknowledgment (NACK) feedback code bit compromise a double/two bits.
  • the wireless communication method further comprises configuring a single HARQ process to receive the DL assignment comprising the PTP/PTM data in a slot. In some embodiments, the wireless communication method further comprises receiving, from the base station, a re-transmitted DL assignment for a previous PTP/PTM ACK/NACK uplink feedback. In some embodiments, one or more HARQ processes are configured in corresponding to an upper layer radio access network (RAN) protocol data unit, and the upper layer RAN protocol data unit comprises a PTP/PTM medium access control (MAC) service data unit (SDU) and/or a PTP/PTM radio link control (RLC) segment.
  • RAN radio access network
  • MAC medium access control
  • RLC radio link control
  • a PTP HARQ process is corresponding to a unicast and/or multicast (PTP) upper layer RAN protocol data unit, and/or a PTM HARQ process is corresponding to a multicast and/or broadcast (PTM) upper layer RAN protocol data unit.
  • PTP HARQ process is configured in a way such that a retransmission of a PTP initial transmission can be by a PTP only transmission, and/or a PTM HARQ process is configured in a way such that a PTM retransmission can be by either a PTP transmission or a PTM transmission.
  • both PTP HARQ process or PTM HARQ process can be configured in corresponding to either a dynamic scheduling or a semi-persistent scheduling of a PTP or PTM protocol data unit over PTP/PTM HARQ downlink transport resources.
  • one or more configured scheduling-RNTIs can be configured to activate/deactivate and schedule PTP HARQ downlink transport resources semi-persistently or dynamically over a UE-specific physical downlink shared channel.
  • one or more group common-CS_RNTI G-CS-RNTIs
  • G-RNTIs can be configured to activate/deactivate and schedule PTPM HARQ downlink transport resources semi-persistently or dynamically over a group common physical downlink shared channel.
  • an initial transmission of the DL assignment, a retransmission of the DL assignment, and lower layer downlink transport resources of a PTP or PTM HARQ process is configured either by CBG method or by a TBs method.
  • a CBG based PTP/PM initial transmission and retransmission of the DL assignment only one transport block is configured per slot for a UE.
  • different HARQ processes comprising one process for PTP and other for PTM RAN upper layer protocol data unit are configured by the base station.
  • a TB is divided into only two equal parts of TB or CBG sets each scrambled by different/separate (CRC) bits associated with a specific RNTI comprising a CS-RNTI/C-RNTI for PTP or a G-CS-RNTI/G-RNTI for PTM by the base station.
  • CRC common/separate
  • a first half of TB is allocated to protocol data units, CBs or CBGs which are generated from the PTP HARQ process, and a second half of TB is allocated to the protocol data units or CBGs which generated from the PTM HARQ.
  • a number of CBGs allocated for PTP and PTM processes within one TB can be equal.
  • TBs generated from different PTP and PTM processes are mapped into different CBGs within one TB according to the type of process generating the TBs.
  • a single bit PTP/PTM HARQ information indicator per TB is generated by the UE and the UE receives the single bit PTP/PTM HARQ information indicator per TB from the base station to help the UE to identify that a given DL assignment contains a simultaneous PTP and PTM TB, such that that the UE can activate and use a PTP/PTM ACK/NACK configuration table.
  • the UE receives, from the base station, a single bit PTP/PTM HARQ information indicator along with one HARQ process ID comprising either identity of PTP or PTM HARQ process to inform the UE about a configuration of PTP and PTM for a given specific/configured HARQ for a given TB/slot or downlink assignment.
  • the UE when the UE transmits, to the base station, the PTP/PTM ACK/NACK uplink feedback indicating a NACK feedback code bit 01 to indicate that the UE has failed to decode a PTP part of the DL assignment but the UE has successfully decoded a PTM part, the UE receives, from the base station, a retransmission comprising only protocol data units which are mapped into a CBG index configured for PTP for other code bit the base station can react.
  • a retransmission comprising only protocol data units which are mapped into a CBG index configured for PTP for other code bit the base station can react.
  • several transport blocks are configured per slot for a UE.
  • different HARQ processes comprising one process for PTP and other for PTM RAN upper layer protocol data unit are configured by the base station.
  • a slot configured for PTP and PTM HARQ processes is divided into only two equal parts each scrambled by different/separate (CRC) bits associated with a specific RNTI comprising a CS-RNTI/C-RNTI for PTP or a G-CS-RNTI/G-RNTI for PTM SPS/dynamic scheduling by the base station.
  • the slot for PTP and PTM HARQ processes is configured by the base station in a way such that the first half part of the slot is allocated to protocol data units or the TBs which are generated from a PTP HARQ process, and a second half part of the slot is allocated to the protocol data units or TBs which are generated from a PTM HARQ.
  • a number of TBs allocated for PTP and PTM processes within a slot can be equal.
  • a single bit PTP/PTM HARQ information indicator per slot is generated/configured by the base station to provide an indication to the UE and the UE provides a code bit feedback to the base station for reaction, and an interaction between the UE and the base station is in slot basis comprising multiple TBs.
  • the single bit PTP/PTM HARQ information indicator indicates to a UE that either PTP/PTM based HARQ procedure is configured and first half part of the TB or the slot is configured for PTP or indicate that PTP/PTM is configured and first half part of the TB or the slot is configured for PTM or indicate that PTP/PTM is not configured.
  • Multicast/Broadcast Services is expected to cover diversity of 5G applications and services ranging from public safety, mission critical, V2X, transparent IPv4/IPv6 multicast delivery, IPTV, software delivery over wireless to group communications and IoT applications.
  • WID RP-201308
  • WID RP-201308
  • One of the main objectives of working item it to study and specify a group scheduling mechanism to allow UEs to receive Broadcast/Multicast service from RAN1 and RAN2 standardization perspectives. This objective includes: 1) specifying the necessary enhancements required to enable simultaneous operation of MBS with unicast reception and 2) specifying the required changes to improve reliability of broadcast/multicast service reception.
  • PTP transmission For RRC_CONNECTED UEs, use UE-specific PDCCH with cyclic redundancy check (CRC) scrambled by UE-specific radio network temporary identifier (e.g., C-RNTI) to schedule UE-specific PDSCH which is scrambled with the same UE-specific RNTI.
  • CRC cyclic redundancy check
  • PTM transmission scheme 1 For RRC_CONNECTED UEs in the same MBS group, use group-common PDCCH with CRC scrambled by group-common RNTI to schedule group-common PDSCH which is scrambled with the same group-common RNTI. This scheme can also be called group-common PDCCH based group scheduling scheme.
  • PTM transmission scheme 2 For RRC_CONNECTED UEs in the same MBS group, use UE-specific PDCCH with CRC scrambled by UE-specific RNTI (e.g., C-RNTI) to schedule group-common PDSCH which is scrambled with group-common RNTI.
  • UE-specific RNTI e.g., C-RNTI
  • This scheme can also be called UE-specific PDCCH based group scheduling schemes.
  • the reliability of multicast/broadcast services In RAN1, it has been agreed to support acknowledged and non-acknowledged (ACK) and/or NACK only based hybrid automatic repeat request (HARQ) for SPS/dynamic scheduled PTM transmission and retransmission and to support ACK/NACK based for SPS/dynamic scheduled PTP transmission and retransmission.
  • ACK acknowledged and non-acknowledged
  • HARQ hybrid automatic repeat request
  • discussion of the reliability is still in its early stage in RAN2; therefore, it is still unclear how HARQ or the transmission and re-transmission process can be configured/designed in such a way that enable the support of simultaneous SPS and/or dynamic scheduling of unicast (PTP) and multicast/broadcast (PTM) within a slot.
  • the configuration of HARQ process should allow multiplexing of PTP and PTM transmission with at least one MAC layer transport block (TB) for UE supporting only one TB per slot and allow multiplexing of multiple PTP and PTP TBs within one slot for UE capable of supporting multiple TBs per slot.
  • the simplest design way is consider reusing for simultaneous multicast (PTP/PTM) and unicast (PTP) services transmission and retransmission the same HARQ design used for NR unicast.
  • PTP/PTM simultaneous multicast
  • PTP unicast
  • the size of the transport block generated by HARQ processes will be very large. Retransmitting of such a huge transport block again and again in downlink every time the CRC check fail for the specific TB at UE would result in a low spectral and downlink transmission efficiency.
  • FIG. 4 illustrates an example of a retransmission of single codebook group according to an embodiment of the present disclosure.
  • the CRC bits check will only fail for the CBG which has an erroneous Code block; thereby, only that CBG will be retransmitted instead of whole transport block ad illustrated in FIG. 4.
  • FIG. 5 illustrates an example of a size of bit for CBG based HARQ information indicator and HARQ feedback according to an embodiment of the present disclosure.
  • This exemplary procedure i.e., the CBG based retransmission
  • the CBG based retransmission increases the HARQ indication and feedback overhead, as in case of single TB, a single bit is required per transport block for HARQ indication and ACK/NACK feedback but now the gNB needs to send multiple bits indication (i.e., one bit for each CBG) and the UE also need to provide multi-bits ACK/NACK as illustrated in FIG. 5. This will increase both uplink and downlink control singling overhead.
  • FIG. 6 illustrates an example of a wireless communication method for unicast and/or MBS performed by a base station and one or more UEs according to an embodiment of the present disclosure.
  • FIG. 7 illustrates an example of a wireless communication method for unicast and/or MBS performed by a base station according to an embodiment of the present disclosure.
  • FIG. 8 illustrates an example of a wireless communication method for unicast and/or MBS performed by a user equipment according to an embodiment of the present disclosure.
  • FIG. 9 illustrates an example of PTP and PTM HARQ processes configuration at a gNB according to an embodiment of the present disclosure.
  • this exemplary method provides an efficient and low overhead HARQ transmission and retransmission method for dynamic and/or semi-persistent scheduling of simultaneous MBS (PTP/PTM) and unicast (PTP) scheduling for UE in a slot.
  • the exemplary method avoids the downlink transmission deficiency by employing the partial retransmission of only the PTP or PTM part of transport block instead of a retransmission a whole transport block and prevents from higher control signalling overhead by utilizing one-bit HARQ indicator in downlink and two/double bits reconfigurable ACK/NACK uplink feedback.
  • the gNB configures different/separate HARQ processes for PTP and PTM data, combines/maps/multiplex data from HARQ process configured for PTP/PTM into a DL assignment, and indicates HARQ control information about the PTP/PTM combination as well as the HARQ process ID (either the identity of PTP or PTM HARQ process) , to one or more UEs.
  • the UE Upon the reception of HARQ control information and the DL assignment from gNB, the UE configure a single HARQ process to receive PTP and PTM DL data within the assignment of, decodes and checks the CRC of PTP and PTM data included within the DL assignment to determine the faulty part of DL assignment (which could be either the PTP part, the PTM part or both the PTP and PTM parts) . After that, UE configures PTP/PTM ACK/NACK feedback bits, sends the feedback bits in uplink channel to the gNB.
  • the gNB determines based on received ACK/NACK feedback bits, whether a retransmission is needed for the PTP or PTM or both; if so, the gNB retransmits the parts of DL assignment as indicated by the feedback bits to UE. Finally, the UE receives the re-transmitted part of the DL assignment for the previous uplink feedback which it sends to the gNB earlier.
  • the one or more HARQ processes /entities are configured in corresponding to an upper layer RAN protocol data unit such as a PTP/PTM MAC service data unit SDU and/or a PTP/PTM RLC segment.
  • a PTP HARQ process is corresponding to the unicast and/or multicast (PTP) upper layer RAN protocol data unit
  • a PTM HARQ process is corresponding to the multicast and/or broadcast (PTM) upper layer RAN protocol data unit.
  • the PTP HARQ process is configured in a way such that the retransmission of PTP initial transmission can be by PTP only transmission scheme, and the HARQ process is configured in a way such that the PTM the retransmission of PTM initial transmission can be by either PTP or PTM transmission scheme.
  • Both PTP or PTM HARQ process can be configured in corresponding to either dynamic or semi-persistent scheduling of a PTP or PTM protocol data unit over the PTP/PTM HARQ downlink transport resources.
  • one or more CS-RNTI/C-RNTI can be configured to activate/deactivate and schedule the PTP HARQ downlink transport resources dynamically or semi-persistently over a UE-specific physical downlink shared channel.
  • one or more G-CS-RNTI/G-RNTI can be configured to activate/deactivate and schedule the PTPM HARQ downlink transport resources dynamically or semi-persistently over a group common physical downlink shared channel.
  • the initial transmissions and the retransmission and the lower layer downlink transport resources of a PTP or PTM HARQ process is configured either by a code group blocks (CBGs) method as described in some embodiments or by a transport block (TBs) method as described in some embodiments.
  • CBGs code group blocks
  • TBs transport block
  • FIG. 10 illustrates an example of CBG based PTP/PM initial transmission and retransmission according to an embodiment of the present disclosure.
  • FIG. 10 illustrates that, in some embodiments, part a provides combining or multiplexing of HARQ PTP and PTM data in a TB, and part b provides the generated HARQ indication information bits per TB is provided.
  • an exemplary configuration assumes that only one transport block is configured per slot for a UE. In this type of configuration, the gNB configures different HARQ processes (e.g., one process for PTP and other for PTM RAN upper layer protocol data unit) .
  • gNB may divide the transport block (TB) into only two equal parts or code block groups (CBGs) regions/sets each scrambled by a different/separate (CRC) bits associated with a specific RNTI (e.g., CS-RNTI/C-RNTI for PTP or G-CS-RNTI/G-RNTI for PTM) .
  • CBGs code block groups
  • half of CBGs (i.e., 1, 2, 3, 4) can be allocated to the protocol data units which are generated from PTP HARQ process and the second half to the protocol data units or CB sets which generated from PTM HARQ (i.e., the number of a CBGs allocated for PTP and PTM processes within a TB can be equal as illustrated in part a of FIG. 10) . From this figure, we can notice that CBs generated from different PTP and PTM process are mapped into different CBGs within a TB according to the type of process generating them.
  • the set of transport blocs indexed as CB0, CB1, and CB2 were mapped into a same region of the TB (i.e., CBG 0) ; whereas CB0, CB1, and CB2 were mapped into other CBG region of the TB (i.e., CBG 1) .
  • the gNB is aware of both the indexes where the PTP and PTM protocol data unit were mapped into within the TB (i.e., CBG 0 and CBG1) as well as the HARQ processes IDs.
  • the gNB may generate a single bit PTP/PTM HARQ information indicator per TB (part b of FIG. 10, Table1) and provides it to UE to help UE to identify that the given DL assignment contains a simultaneous PTP and PTM TB so that it can activate and use PTP/PTM ACK/NACK configuration table (Table 2) instead of legacy unicast ACK/NACK configuration.
  • the gNB sends the single bit PTP/PTM HARQ information indicator along with one HARQ process ID (either PTP or PTM) to UE to inform UE about the configuration of PTP and PTM for a given specific as well as the configured HARQ for a given TB/slot or downlink assignment.
  • the gNB From UE side, it only needs to configure a single HARQ process to receive the configured PTP/PTM DL assignment, decodes its CRC for the configured PTP and PTM CGBs within the DL assignment in order to send back the appropriate ACK/NACK uplink feedback to the gNB. For example, when the gNB receive the feedback e.g., indicating a NACK feedback code bit [01] it will recognize that UE has failed to decode the PTP part of initial DL assignment, but it has successfully decoded PTM part; therefore, it will retransmit only the protocol data units which is mapped into the CBG index configured for PTP for other code bit the gNB will react as indicated in table 2.
  • the feedback e.g., indicating a NACK feedback code bit [01] it will recognize that UE has failed to decode the PTP part of initial DL assignment, but it has successfully decoded PTM part; therefore, it will retransmit only the protocol data units which is mapped into the CBG
  • FIG. 11 illustrates an example of TB based PTP/PM initial transmission and retransmission according to an embodiment of the present disclosure.
  • FIG. 11 illustrates that, in some embodiments, part a provides combining or multiplexing of HARQ PTP and PTM transport blocks data in a slot, and part b provides the generated HARQ indication info bit per slot.
  • This exemplary configuration assumes that several transport blocks are configured per slot for a UE (in NR UE normally may support up to 2, 4 and/or 7 different unicast transport blocks per slot) .
  • the gNB may configure different HARQ processes (e.g., one process for PTP and other for PTM RAN upper layer protocol data unit) .
  • a slot configured for PTP and PTM HARQ processes may divide a slot configured for PTP and PTM HARQ processes into two parts each scrambled by a different/separate cyclic redundancy check (CRC) bit associated with a specific RNTI (e.g., CS-RNTI/C-RNTI for PTP or CS-RNTI/G-RNTI for PTM SPS/dynamic scheduling) .
  • CRC cyclic redundancy check
  • the gNB configures the slot for PTP and PTM HARQ processes in a way such that first half parts of the slot is allocated to the protocol data units or TBs which are generated from PTP HARQ process, and the second half parts of the slot is allocated to the protocol data units which are generated from PTM HARQ (i.e., the number of TBs allocated for PTP and PTM processes can be equal within a slot) (as illustrated in part a of FIG. 11) .
  • the gNB may generate a single bit PTP/PTM HARQ information indicator per slot as illustrated in part b of FIG.
  • Table 1 PTP/PTM HARQ indication information bit which is provided by NB to the UE
  • Table 2 PTP/PTM ACK/NACK feedback bits which is provided by the network to the UE
  • some embodiments of this disclosure provide an efficient and low overhead HARQ transmission and retransmission method for dynamic and/or semi-persistent scheduling of simultaneous MBS (PTP/PTM) and unicast (PTP) scheduling for UE in a slot.
  • the exemplary method avoids the downlink transmission deficiency by employing the partial retransmission of only the PTP or PTM part of transport block instead of a retransmission a whole transport block and prevents from higher control signalling overhead by utilizing one-bit HARQ indicator in downlink and two/double bits reconfigurable ACK/NACK uplink feedback.
  • the gNB configures different/separate HARQ processes for PTP and PTM data, combines/maps/multiplex data from HARQ process configured for PTP/PTM into a DL assignment, and indicates HARQ control information about the PTP/PTM combination as well as the HARQ process ID, to one or more UEs.
  • the UE Upon the reception of HARQ control information and the DL assignment from gNB, the UE configures a single HARQ process to receive PTP and PTM DL data within the assignment of, decodes and checks the CRC of PTP and PTM data (TBs) included within the DL assignment to determine the faulty part of DL assignment (which could be either the PTP part, the PTM part or both the PTP and PTM parts) . After that, UE configures PTP/PTM ACK/NACK feedback bits, sends the feedback bits in uplink channel to the gNB.
  • PTP/PTM ACK/NACK feedback bits sends the feedback bits in uplink channel to the gNB.
  • the gNB determines based on received ACK/NACK feedback bits, whether a retransmission is needed for the PTP or PTM on both; if so, the gNB retransmits the parts of DL assignment as indicated by the feedback bits to UE. Finally, the UE receives the re-transmitted part of the DL assignment for the previous uplink feedback which it sends to the gNB earlier.
  • some embodiments of the present disclosure provide an efficient an low overhead method for configuration of HARQ process initial transmission and re-transmission to support simultaneous scheduling of multicast/broadcast (PTP/PTM) and unicast (PTP) for UE in a slot:
  • the major innovative aspects of the new exemplary method may include: 1.
  • the new exemplary method has introduced an HARQ mechanism that allow to support simultaneous SPS and/or dynamic scheduling of unicast (PTP) and multicast (PTM) within a slot.
  • the new exemplary method has introduced a new indication method to help UE identify that the given DL assignment contains a simultaneous PTP and PTM TB so that it can activate/deactivate the usage of PTP/PTM ACK/NACK configuration. 3.
  • the new exemplary method has introduced a double bit fixed feedback design as appose to a CGB feedback which increase the uplink signalling overhead according to the number of configured CBG bits (i.e., form 2 bits to 4, 6, 8 bits) . 4.
  • the new exemplary method has introduced the idea of configuring a single HARQ process at UE instead of two at UE in corresponding to two PTP and PTM HRAQ process at the network which help decrease UE complexity.
  • FIG. 12 is a block diagram of an example system 700 for wireless communication according to an embodiment of the present disclosure. Embodiments described herein may be implemented into the system using any suitably configured hardware and/or software.
  • FIG. 12 illustrates the system 700 including a radio frequency (RF) circuitry 710, a baseband circuitry 720, an application circuitry 730, a memory/storage 740, a display 750, a camera 760, a sensor 770, and an input/output (I/O) interface 780, coupled with each other at least as illustrated.
  • the application circuitry 730 may include a circuitry such as, but not limited to, one or more single-core or multi-core processors.
  • the processors may include any combination of general-purpose processors and dedicated processors, such as graphics processors, application processors.
  • the processors may be coupled with the memory/storage and configured to execute instructions stored in the memory/storage to enable various applications and/or operating systems running on the system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A user equipment (UE), a base station, and wireless communication methods for unicast and/or multicast/broadcast service (MBS) are provided. A wireless communication method for unicast and/or MBS performed by the UE includes receiving, from a base station, a downlink (DL) assignment comprising point to point (PTP) /point to multipoint (PTM) data and a PTP/PTM HARQ information, configuring a single HARQ process to receive the DL assignment containing both PTP and PTM data, decoding the cyclic redundancy check (CRC) of the DL assignment to determine whether PTP or PTM or both have received with error, then configuring an acknowledgment/non-acknowledgment feedback code bit based on the determined faulty part of DL assignment, and sending the code bit as uplink HARQ feedback to the base station, so that it can retransmit the faulty part only. This can reduce a UE HARQ feedback overhead, increase a network efficiency, and/or provide a reliable communication performance.

Description

USER EQUIPMENT, BASE STATION, AND WIRELESS COMMUNICATION METHOD FOR UNICAST AND/OR MBS
BACKGROUND OF DISCLOSURE
1. Field of the Disclosure
The present disclosure relates to the field of wireless communication systems, and more particularly, to a user equipment (UE) , a base station, and wireless communication methods for unicast and/or multicast/broadcast service (MBS) , which can provide a configuration of initial simultaneous transmission/re-transmission of semi-persistent and/or dynamical scheduled unicast and/or MBS over 5G point to point (PTP) and point to multipoint (PTM) system.
2. Description of the Related Art
Wireless communication systems are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so on. These wireless communication systems may be capable of supporting communication with multiple users by sharing available system resources (e.g., time, frequency, and power) . Examples of such multiple-access systems include fourth generation (4G) systems such as long term evolution (LTE) systems and fifth generation (5G) systems which may be referred to as new radio (NR) systems. These systems may employ technologies such as code division multiple access (CDMA) , time division multiple access (TDMA) , frequency division multiple access (FDMA) , orthogonal frequency division multiple access (OFDMA) , or discrete Fourier transform-spread-OFDM (DFT-S-OFDM) . A wireless multiple-access communications system may include a number of base stations or network access nodes, each simultaneously supporting communication for multiple communication devices, which may be otherwise known as user equipments (UEs) . A wireless communication network may include a base station that can support communication for a UE. The UE may communicate with the base station via downlink (DL) and uplink (UL) . The DL refers to a communication link from the base station to the UE, and the UL refers to a communication link from the UE to the base station.
In a 3rd generation partnership project (3GPP) cellular network, broadcast and multicast services may be transported via a transport service called multimedia broadcast/multicast service (MBMS) . A broadcast multicast service center (BM-SC) server is responsible to disseminate a media content to a group of subscribers. When a UE moves out of a network coverage, the UE may be unable to use the MBMS because uplink and downlink connections to the BM-SC server are no longer available. MBMS is a point-to-multipoint (PTM) interface specification designed to provide efficient delivery of broadcast and multicast services within 3GPP cellular networks. Examples of MBMS interface specifications include those described in universal mobile telecommunication system (UMTS) and long term evolution (LTE) communication specifications. For broadcast transmission across multiple cells, the specifications define transmission over single-frequency network configurations. Intended applications include mobile TV, news, radio broadcasting, file delivery, emergency alerts, and others. When services are broadcasted by MBMS, all cells inside a multimedia broadcast/multicast service single frequency network (MBSFN) area transmit the same MBMS service.
Users access these services and obtain the MBMS content through wireless communication devices such as cellular phones, tablets, laptops, and other devices with wireless transceivers that communicate with the base station within the communication system. The base station provides wireless service to the wireless communication devices, sometimes referred to as mobile devices or UEs, within cells. A user can access at least some multimedia services through a UE using either a point-to-point (PTP) connection or a PTM transmission. In 3GPP systems, PTP services can be provided using unicast techniques and PTM transmissions can be provided using MBMS communication, transmitted over an MBSFN or single cell point to multipoint (SC-PTM) communication. In systems operating in accordance with a revision of 3GPP long  term evolution (LTE) communication specification, MBMS is provided using eMBMS. Accordingly, an MBMS service can be provided using either unicast service, MBSFN, or SC-PTM in an LTE system.
In radio access network (RAN) meeting #88-e held during June 29, 2020 to July 3, 2020, a new working item was approved to target a RAN support of multicast/broadcast services (MBS) in 5G. Aims of this working item is to provide the support in RAN to enable general MBS services over 5GS to support different MBS services such as public safety and mission critical, V2X applications, transparent IPv4/IPv6 multicast delivery, IPTV, software delivery over wireless, group communications, and IoT applications. One of key objectives of this RAN working item is to study and specify the support for basic mobility with service continuity for 5G new radio (NR) multicast/broadcast services (MBS) .
One of main objectives of the work item description (WID) is to specify a group scheduling mechanism to allow UEs to receive Broadcast/Multicast service [RAN1, RAN2] . This objective includes specifying necessary enhancements that are required to enable simultaneous operation with unicast reception. One of main objectives of the WID is to specify required changes to improve reliability of Broadcast/Multicast service, e.g., by uplink (UL) feedback. The level of reliability should be based on the requirements of the application/service provided [RAN1, RAN2] .
Current companies focus is to reusing for simultaneous multicast (PTP/PTM) and unicast (PTP) services transmission and retransmission the same HARQ design used for NR unicast. However, due to the fact the in NR, the initial transmission of both multicast (PTP/PTM) and unicast (PTP) could be form high data services. Therefore, the size of the transport block that will be generated by the configured HARQ processes for (PTM and PTM) transmission will become very large. Retransmitting of such a huge transport block (TB) again and again in the downlink resources every time the cyclic redundancy check (CRC) check fails for the specific TB by the UE would result in a lower spectral and downlink transmission resources efficiency. One way to improve the resource efficiency is to re-transmit only the part of the transport block which the UE fails to decode. However, this principle requires dividing/splitting the transport block into smaller blocks and provides a multi-bit HARQ related information over downlink channel by a gNB as well as a multi-bit HARQ feedback over the uplink channel by a UE which could increases the system overhead.
Therefore, there is a need for a user equipment (UE) , a base station, and wireless communication methods, which can solve issues in the prior art, reduce a UE HARQ feedback overhead, reduce a UE complexity, increase a network efficiency, and reduce a downlink control information, and/or provide a good and/or reliable communication performance.
SUMMARY
An object of the present disclosure is to propose a user equipment (UE) , a base station, and a wireless communication method for unicast and/or multicast/broadcast service (MBS) , which can solve issues in the prior art, reduce a UE HARQ feedback overhead, reduce a UE complexity, increase a network efficiency, and reduce a downlink control information, and/or provide a good and/or reliable communication performance.
In a first aspect of the present disclosure, a wireless communication method for unicast and/or multicast/broadcast service (MBS) performed by a user equipment (UE) comprises receiving, from a base station, a downlink (DL) assignment comprising point to point (PTP) /point to multipoint (PTM) data and a PTP/PTM hybrid automatic repeat request (HARQ) information, configuring a single HARQ process to receive the DL assignment comprising the PTP/PTM data, and decoding a cyclic redundancy check (CRC) for PTP/PTM transport blocks (TBs) /code block groups (CBGs) within the DL assignment.
In a second aspect of the present disclosure, a wireless communication method for unicast and/or MBS performed by a base station comprises configuring, to a user equipment (UE) , hybrid automatic repeat request (HARQ) processes for point to point (PTP) /point to multipoint (PTM) data, activating a downlink (DL) assignment comprising the PTP/PTM data and a PTP/PTM HARQ information, and sending, to the UE, the DL assignment comprising the PTP/PTM data and the PTP/PTM HARQ information.
In a third aspect of the present disclosure, a user equipment (UE) comprises a memory, a transceiver, and a processor coupled to the memory and the transceiver. The transceiver is configured to receive, from a base station, a downlink (DL) assignment comprising point to point (PTP) /point to multipoint (PTM) data and a PTP/PTM hybrid automatic repeat request (HARQ) information, the processor is configured to configure a single HARQ process to receive the DL assignment comprising the PTP/PTM data, and the processor is configured to decode a cyclic redundancy check (CRC) for PTP/PTM transport blocks (TBs) /code block groups (CBGs) within the DL assignment.
In a fourth aspect of the present disclosure, a base station comprises a memory, a transceiver, and a processor coupled to the memory and the transceiver. The processor is configured to configure, to a user equipment (UE) , hybrid automatic repeat request (HARQ) processes for point to point (PTP) /point to multipoint (PTM) data, the processor is configured to activate a downlink (DL) assignment comprising the PTP/PTM data and a PTP/PTM HARQ information, and the transceiver is configured to send, to the UE, the DL assignment comprising the PTP/PTM data and the PTP/PTM HARQ information.
In a fifth aspect of the present disclosure, a non-transitory machine-readable storage medium has stored thereon instructions that, when executed by a computer, cause the computer to perform the above method.
In a sixth aspect of the present disclosure, a chip includes a processor, configured to call and run a computer program stored in a memory, to cause a device in which the chip is installed to execute the above method.
In a seventh aspect of the present disclosure, a computer readable storage medium, in which a computer program is stored, causes a computer to execute the above method.
In an eighth aspect of the present disclosure, a computer program product includes a computer program, and the computer program causes a computer to execute the above method.
In a ninth aspect of the present disclosure, a computer program causes a computer to execute the above method.
BRIEF DESCRIPTION OF DRAWINGS
In order to illustrate the embodiments of the present disclosure or related art more clearly, the following figures will be described in the embodiments are briefly introduced. It is obvious that the drawings are merely some embodiments of the present disclosure, a person having ordinary skill in this field can obtain other figures according to these figures without paying the premise.
FIG. 1 is a block diagram of one or more user equipments (UEs) and a base station (e.g., gNB) of communication in a communication network system according to an embodiment of the present disclosure.
FIG. 2 is a flowchart illustrating a wireless communication method for unicast and/or MBS transmission and retransmission performed by a UE according to an embodiment of the present disclosure.
FIG. 3 is a flowchart illustrating a wireless communication method for unicast and/or MBS transmission and retransmission performed by a base station according to an embodiment of the present disclosure.
FIG. 4 is a schematic diagram illustrating an example of a retransmission of single codebook group according to an embodiment of the present disclosure.
FIG. 5 is a schematic diagram illustrating an example of a size of bit for CBG based HARQ information indicator and HARQ feedback according to an embodiment of the present disclosure.
FIG. 6 is a schematic diagram illustrating an example of a wireless communication method for unicast and/or MBS performed by a base station and one or more UEs according to an embodiment of the present disclosure.
FIG. 7 is a schematic diagram illustrating an example of a wireless communication method for unicast and/or MBS performed by a base station according to an embodiment of the present disclosure.
FIG. 8 is a schematic diagram illustrating an example of a wireless communication method for unicast and/or MBS performed by a user equipment according to an embodiment of the present disclosure.
FIG. 9 is a schematic diagram illustrating an example of PTP and PTM HARQ processes configuration at a gNB according to an embodiment of the present disclosure.
FIG. 10 is a schematic diagram illustrating an example of CBG based PTP/PM initial transmission and retransmission according to an embodiment of the present disclosure.
FIG. 11 is a schematic diagram illustrating an example of TB based PTP/PM initial transmission and retransmission according to an embodiment of the present disclosure.
FIG. 12 is a block diagram of a system for wireless communication according to an embodiment of the present disclosure.
DETAILED DESCRIPTION OF EMBODIMENTS
Embodiments of the present disclosure are described in detail with the technical matters, structural features, achieved objects, and effects with reference to the accompanying drawings as follows. Specifically, the terminologies in the embodiments of the present disclosure are merely for describing the purpose of the certain embodiment, but not to limit the disclosure.
In RAN Meeting #88-e during June 29 and July 3, 2020, a new working item was approved WID (RP-201308) targeting the RAN support of Multicast/Broadcast Services (MBS) . The aims of this WID is to provide the support in RAN for objective A of SA2 study item SID (SP-190726) , which is related to enabling general MBS services over 5GS to support different MBS services such as public safety and mission critical, V2X applications, transparent IPv4/IPv6 multicast delivery, IPTV, software delivery over wireless, group communications and IoT applications. One of the key objectives of the WID includes: 1. Specify a group scheduling mechanism to allow UEs to receive Broadcast/Multicast service [RAN1, RAN2] . This objective includes specifying necessary enhancements that are required to enable simultaneous operation with unicast reception. 2. Specify required changes to improve reliability of Broadcast/Multicast service, e.g., by UL feedback. The level of reliability should be based on the requirements of the application/service provided [RAN1, RAN2] .
To achieve the first objective, it has been agreed in RAN1 meetings to support simultaneous delivery and reception in time a slot both of unicast services scheduled dynamically or semi-persistently by PTP transmission over physical downlink shared channel (PDSCH) and multicast/broadcast services scheduled dynamically or semi-persistently by PTP transmission over PDSCH or by PTM transmission over group-common PDSCH. In addition, the following transmission schemes were agreed to support the unicast (PTP) and MBS (PTP/PTM) transmission.
PTP transmission: For RRC_CONNECTED UEs, use UE-specific PDCCH with cyclic redundancy check (CRC) scrambled by UE-specific radio network temporary identifier (e.g., C-RNTI) to schedule UE-specific PDSCH which is scrambled with the same UE-specific RNTI.
PTM transmission scheme 1: For RRC_CONNECTED UEs in the same MBS group, use group-common PDCCH with CRC scrambled by group-common RNTI to schedule group-common PDSCH which is scrambled with the same group-common RNTI. This scheme can also be called group-common PDCCH based group scheduling scheme.
PTM transmission scheme 2: For RRC_CONNECTED UEs in the same MBS group, use UE-specific PDCCH with CRC scrambled by UE-specific RNTI (e.g., C-RNTI) to schedule group-common PDSCH which is scrambled with group-common RNTI. This scheme can also be called UE-specific PDCCH based group scheduling schemes
As for the second objective (i.e., the reliability of multicast/broadcast services) , in RAN1, it has been agreed to support acknowledged and non-acknowledged (ACK) and/or NACK only based hybrid automatic repeat request (HARQ) for semi-persistently scheduled (SPS) or dynamically scheduled PTM transmission and retransmission and to support  ACK/NACK based for SPS/dynamic scheduled PTP transmission and retransmission. However, the reliability discussion still in its early stage in RAN2; therefore, it is still unclear how HARQ or the transmission and re-transmission process can be configured/designed in such a way that enable the support of simultaneous SPS and/or dynamic scheduling of unicast (PTP) and multicast/broadcast (PTM) within a slot. To achieve this, the configuration of HARQ process should allow multiplexing of PTP and PTM transmission with at least one MAC layer transport block (TB) for UE supporting only one TB per slot and allow multiplexing of multiple PTP and PTP TBs within one slot for UE capable of supporting multiple TBs per slot. Although, during the latest RAN2 meeting some companies have provided some view on SPS and HARQ process configuration for MBS [R2-2106283, R2-2104756, R2-2105287, R2-2105834, R2-2106241, R2-2106283] but still no conclusion has been achieved on the above-mentioned issue in RAN2.
To overcome the above problems, some embodiments of the present disclosure provide an efficient and low overhead HARQ transmission and retransmission method for dynamic and/or semi-persistent scheduling of simultaneous MBS (PTP/PTM) and unicast (PTP) scheduling for UE in a slot. The exemplary method avoids the downlink transmission deficiency by employing the partial retransmission of only the PTP or PTM part of transport block instead of a retransmission a whole transport block and prevents from higher control signalling overhead by utilizing one-bit HARQ indicator in downlink and two/double bits reconfigurable ACK/NACK uplink feedback. In this exemplary method, the gNB configures different/separate HARQ processes for PTP and PTM data, combines/maps/multiplex data from HARQ process configured for PTP/PTM into a DL assignment, and indicates HARQ control information about the PTP/PTM combination as well as the HARQ process ID, to one or more UEs. Upon the reception of HARQ control information and the DL assignment from gNB, the UE configures a single HARQ process to receive PTP and PTM DL data within the assignment of, decodes and checks the CRC of PTP and PTM data (TBs) included within the DL assignment to determine the faulty part of DL assignment (which could be either the PTP part, the PTM part or both the PTP and PTM parts) . After that, UE configures PTP/PTM ACK/NACK feedback bits, sends the feedback bits in uplink channel to the gNB. Then, the gNB determines based on received ACK/NACK feedback bits, whether a retransmission is needed for the PTP or PTM on both; if so, the gNB retransmits the parts of DL assignment as indicated by the feedback bits to UE. Finally, the UE receives the re-transmitted part of the DL assignment for the previous uplink feedback which it sends to the gNB earlier.
Some embodiments of the present disclosure provide new semi-persistent scheduling mechanism for scheduling of the initial simultaneous transmission/re-transmission of multicast-broadcast and unicast service (MBS) over 5G point to point (PTP) and point to multipoint (PTM) system. The major advantages of the new exemplary method compared to prior art include:
From UE side:
1. The new exemplary method helps reducing UE HARQ feedback overhead, as only a single bit feedback is used acknowledging/no-acknowledging of one or more transport block or CBGs configured for unicast (PTP) and multicast/broadcast (PTM/PTM) data unit instead of sending multiple bits of feedback for each TBs/CBGs individually inside the large transport block.
The new exemplary method allows the UE to be configured with only one HARQ process to correspond the two independent HARQ processes at gNB (for unicast PTM and PTP) . This helps reducing UE complexity.
From network side:
The new exemplary method helps increasing the network efficiency and reducing the downlink control information by the reducing of the size of the HARQ related information transmitted over the downlink scheduling assignment.
FIG. 1 illustrates that, in some embodiments, one or more user equipments (UEs) 10 and a base station (e.g., gNB) 20 for communication in a communication network system 30 according to an embodiment of the present disclosure are  provided. The communication network system 30 includes the one or more UEs 10 and the base station 20. The one or more UEs 10 may include a memory 12, a transceiver 13, and a processor 11 coupled to the memory 12 and the transceiver 13. The base station 20 may include a memory 22, a transceiver 23, and a processor 21 coupled to the memory 22 and the transceiver 23. The  processor  11 or 21 may be configured to implement proposed functions, procedures and/or methods described in this description. Layers of radio interface protocol may be implemented in the  processor  11 or 21. The  memory  12 or 22 is operatively coupled with the  processor  11 or 21 and stores a variety of information to operate the  processor  11 or 21. The  transceiver  13 or 23 is operatively coupled with the  processor  11 or 21, and the  transceiver  13 or 23 transmits and/or receives a radio signal.
The  processor  11 or 21 may include application-specific integrated circuit (ASIC) , other chipset, logic circuit and/or data processing device. The  memory  12 or 22 may include read-only memory (ROM) , random access memory (RAM) , flash memory, memory card, storage medium and/or other storage device. The  transceiver  13 or 23 may include baseband circuitry to process radio frequency signals. When the embodiments are implemented in software, the techniques described herein can be implemented with modules (e.g., procedures, functions, and so on) that perform the functions described herein. The modules can be stored in the  memory  12 or 22 and executed by the  processor  11 or 21. The  memory  12 or 22 can be implemented within the  processor  11 or 21 or external to the  processor  11 or 21 in which case those can be communicatively coupled to the  processor  11 or 21 via various means as is known in the art.
In some embodiments, the transceiver 13 is configured to receive, from the base station 20, a downlink (DL) assignment comprising point to point (PTP) /point to multipoint (PTM) data and a PTP/PTM hybrid automatic repeat request (HARQ) information, the processor is configured to configure a single HARQ process to receive the DL assignment comprising the PTP/PTM data, and the processor is configured to decode a cyclic redundancy check (CRC) for PTP/PTM transport blocks (TBs) /code block groups (CBGs) within the DL assignment. This can solve issues in the prior art, reduce a UE HARQ feedback overhead, reduce a UE complexity, increase a network efficiency, and reduce a downlink control information, and/or provide a good and/or reliable communication performance.
In some embodiments, the processor 21 is configured to configure, to the UE 10, hybrid automatic repeat request (HARQ) processes for point to point (PTP) /point to multipoint (PTM) data, the processor 21 is configured to activate a downlink (DL) assignment comprising the PTP/PTM data and a PTP/PTM HARQ information, and the transceiver 23 is configured to send, to the UE, the DL assignment comprising the PTP/PTM data and the PTP/PTM HARQ information. This can solve issues in the prior art, reduce a UE HARQ feedback overhead, reduce a UE complexity, increase a network efficiency, and reduce a downlink control information, and/or provide a good and/or reliable communication performance.
FIG. 2 illustrates a wireless communication method 200 for unicast and/or multicast/broadcast service (MBS) transmission and retransmission performed by a user equipment (UE) according to an embodiment of the present disclosure. In some embodiments, the method 200 includes: a block 202, receiving, from a base station, a downlink (DL) assignment comprising point to point (PTP) /point to multipoint (PTM) data and a PTP/PTM hybrid automatic repeat request (HARQ) information, a block 204, configuring a single HARQ process to receive the DL assignment comprising the PTP/PTM data, a block 206, decoding a cyclic redundancy check (CRC) for PTP/PTM transport blocks (TBs) /code block groups (CBGs) within the DL assignment, a block 208, configuring an acknowledgment (ACK) /non-acknowledgment (NACK) feedback code bit; and sending a PTP/PTM uplink feedback code to the base station, and a block 210, receiving, from the base station, a re-transmitted DL assignment for a previously transmitted PTP/PTM ACK/NACK uplink feedback. This can solve issues in the prior art, reduce a UE HARQ feedback overhead, reduce a UE complexity, increase a network efficiency, and reduce a downlink control information, and/or provide a good and/or reliable communication performance.
FIG. 3 illustrates a wireless communication method 300 for unicast and/or multicast/broadcast service (MBS) transmission and retransmission performed by a base station according to an embodiment of the present disclosure. In some  embodiments, the method 300 includes: a block 302, configuring, to a user equipment (UE) , hybrid automatic repeat request (HARQ) processes for point to point (PTP) /point to multipoint (PTM) data, a block 304, activating a downlink (DL) assignment comprising the PTP/PTM data and a PTP/PTM HARQ information, a block 306, sending, to the UE, the DL assignment comprising the PTP/PTM data and the PTP/PTM HARQ information, and a block 308, reconfiguring/resending a retransmission based on a received PTP/PTM feedback indication from the UE. This can solve issues in the prior art, reduce a UE HARQ feedback overhead, reduce a UE complexity, increase a network efficiency, and reduce a downlink control information, and/or provide a good and/or reliable communication performance.
In some embodiments, the wireless communication method further comprises configuring an acknowledgment (ACK) /non-acknowledgment (NACK) feedback code bit, sending a PTP/PTM uplink feedback code to the base station, and receiving, from the base station, a re-transmitted DL assignment for a previous PTP/PTM ACK/NACK uplink feedback. In some embodiments, configuring an acknowledgment (ACK) /non-acknowledgment (NACK) feedback code bit compromise. In some embodiments, configuring an acknowledgment (ACK) /non-acknowledgment (NACK) feedback code bit compromise a PTP/PTM ACK code bit indicating to gNB that the initial PTM transmission is successfully received and the initial PTP transmission is not received or received with an error. In some embodiments, configuring an acknowledgment (ACK) /non-acknowledgment (NACK) feedback code bit compromise a PTP/PTM ACK code bit indicating to gNB that the initial PTP transmission is successfully received and the initial PTM transmission is not received or received with an error. In some embodiments, configuring an acknowledgment (ACK) /non-acknowledgment (NACK) feedback code bit compromise a PTP/PTM ACK code bit indicating to gNB both PTP and PTM initial transmissions are successfully received by the UE. In some embodiments, configuring an acknowledgment (ACK) /non-acknowledgment (NACK) feedback code bit compromise a PTP/PTM ACK code bit indicating to gNB both PTP and PTM initial transmissions are not successfully received by the UE. In some embodiments, configuring an acknowledgment (ACK) /non-acknowledgment (NACK) feedback code bit compromise a double/two bits.
In some embodiments, the wireless communication method further comprises configuring a single HARQ process to receive the DL assignment comprising the PTP/PTM data in a slot. In some embodiments, the wireless communication method further comprises receiving, from the base station, a re-transmitted DL assignment for a previous PTP/PTM ACK/NACK uplink feedback. In some embodiments, one or more HARQ processes are configured in corresponding to an upper layer radio access network (RAN) protocol data unit, and the upper layer RAN protocol data unit comprises a PTP/PTM medium access control (MAC) service data unit (SDU) and/or a PTP/PTM radio link control (RLC) segment. In some embodiments, a PTP HARQ process is corresponding to a unicast and/or multicast (PTP) upper layer RAN protocol data unit, and/or a PTM HARQ process is corresponding to a multicast and/or broadcast (PTM) upper layer RAN protocol data unit. In some embodiments, a PTP HARQ process is configured in a way such that a retransmission of a PTP initial transmission can be by a PTP only transmission, and/or a PTM HARQ process is configured in a way such that a PTM retransmission can be by either a PTP transmission or a PTM transmission. In some embodiments, both PTP HARQ process or PTM HARQ process can be configured in corresponding to either a dynamic scheduling or a semi-persistent scheduling of a PTP or PTM protocol data unit over PTP/PTM HARQ downlink transport resources.
In some embodiments, for PTP HARQ process, one or more configured scheduling-RNTIs (CS-RNTIs) or C-RNTIs can be configured to activate/deactivate and schedule PTP HARQ downlink transport resources semi-persistently or dynamically over a UE-specific physical downlink shared channel. In some embodiments, for PTM HARQ process, one or more group common-CS_RNTI (G-CS-RNTIs) or G-RNTIs can be configured to activate/deactivate and schedule PTPM HARQ downlink transport resources semi-persistently or dynamically over a group common physical downlink shared channel. In some embodiments, an initial transmission of the DL assignment, a retransmission of the DL assignment, and lower layer downlink transport resources of a PTP or PTM HARQ process is configured either by CBG method or by a TBs method. In some embodiments, for a CBG based PTP/PM initial transmission and retransmission of the DL assignment,  only one transport block is configured per slot for a UE. In some embodiments, for the CBG based PTP/PM initial transmission and retransmission of the DL assignment, different HARQ processes comprising one process for PTP and other for PTM RAN upper layer protocol data unit are configured by the base station.
In some embodiments, for the CBG based PTP/PM initial transmission and retransmission of the DL assignment, a TB is divided into only two equal parts of TB or CBG sets each scrambled by different/separate (CRC) bits associated with a specific RNTI comprising a CS-RNTI/C-RNTI for PTP or a G-CS-RNTI/G-RNTI for PTM by the base station. In some embodiments, for the CBG based PTP/PM initial transmission and retransmission of the DL assignment, for simultaneous PTP and PTM HARQ process operation, a first half of TB is allocated to protocol data units, CBs or CBGs which are generated from the PTP HARQ process, and a second half of TB is allocated to the protocol data units or CBGs which generated from the PTM HARQ. In some embodiments, a number of CBGs allocated for PTP and PTM processes within one TB can be equal. In some embodiments, TBs generated from different PTP and PTM processes are mapped into different CBGs within one TB according to the type of process generating the TBs. In some embodiments, after mapping the PTP/PTM data into two the two parts of TB, a single bit PTP/PTM HARQ information indicator per TB is generated by the UE and the UE receives the single bit PTP/PTM HARQ information indicator per TB from the base station to help the UE to identify that a given DL assignment contains a simultaneous PTP and PTM TB, such that that the UE can activate and use a PTP/PTM ACK/NACK configuration table. In some embodiments, the UE receives, from the base station, a single bit PTP/PTM HARQ information indicator along with one HARQ process ID comprising either identity of PTP or PTM HARQ process to inform the UE about a configuration of PTP and PTM for a given specific/configured HARQ for a given TB/slot or downlink assignment.
In some embodiments, for the CBG based PTP/PM initial transmission and retransmission of the DL assignment, when the UE transmits, to the base station, the PTP/PTM ACK/NACK uplink feedback indicating a NACK feedback code bit 01 to indicate that the UE has failed to decode a PTP part of the DL assignment but the UE has successfully decoded a PTM part, the UE receives, from the base station, a retransmission comprising only protocol data units which are mapped into a CBG index configured for PTP for other code bit the base station can react. In some embodiments, for a TB based PTP/PM initial transmission and retransmission of the DL assignment, several transport blocks are configured per slot for a UE. In some embodiments, for the TB based PTP/PM initial transmission and retransmission of the DL assignment, different HARQ processes comprising one process for PTP and other for PTM RAN upper layer protocol data unit are configured by the base station. In some embodiments, for the TB based PTP/PM initial transmission and retransmission of the DL assignment, a slot configured for PTP and PTM HARQ processes is divided into only two equal parts each scrambled by different/separate (CRC) bits associated with a specific RNTI comprising a CS-RNTI/C-RNTI for PTP or a G-CS-RNTI/G-RNTI for PTM SPS/dynamic scheduling by the base station. In some embodiments, for the TB based PTP/PM initial transmission and retransmission of the DL assignment, the slot for PTP and PTM HARQ processes is configured by the base station in a way such that the first half part of the slot is allocated to protocol data units or the TBs which are generated from a PTP HARQ process, and a second half part of the slot is allocated to the protocol data units or TBs which are generated from a PTM HARQ. In some embodiments, a number of TBs allocated for PTP and PTM processes within a slot can be equal. In some embodiments, when the PTP/PTM data or TBs is mapped into the two parts of the slot, a single bit PTP/PTM HARQ information indicator per slot is generated/configured by the base station to provide an indication to the UE and the UE provides a code bit feedback to the base station for reaction, and an interaction between the UE and the base station is in slot basis comprising multiple TBs. In some embodiments, the single bit PTP/PTM HARQ information indicator indicates to a UE that either PTP/PTM based HARQ procedure is configured and first half part of the TB or the slot is configured for PTP or indicate that PTP/PTM is configured and first half part of the TB or the slot is configured for PTM or indicate that PTP/PTM is not configured.
Multicast/Broadcast Services (MBS) is expected to cover diversity of 5G applications and services ranging from public safety, mission critical, V2X, transparent IPv4/IPv6 multicast delivery, IPTV, software delivery over wireless to group communications and IoT applications. As a part of 5G NR R17 standardization, a new working item is approved WID [RP-201308] targeting the RAN support of (MBS) . One of the main objectives of working item it to study and specify a group scheduling mechanism to allow UEs to receive Broadcast/Multicast service from RAN1 and RAN2 standardization perspectives. This objective includes: 1) specifying the necessary enhancements required to enable simultaneous operation of MBS with unicast reception and 2) specifying the required changes to improve reliability of broadcast/multicast service reception. To achieve first objective, it has been agreed in RAN1 meetings to support simultaneous delivery and reception in time a slot both of unicast services scheduled dynamically or semi-persistently by PTP transmission over physical downlink shared channel (PDSCH) and multicast/broadcast services scheduled dynamically or semi-persistently by PTP transmission over PDSCH or by PTM transmission over group-common PDSCH. In addition, the following transmission schemes were agreed to support the unicast (PTP) and MBS (PTP/PTM) transmission.
PTP transmission: For RRC_CONNECTED UEs, use UE-specific PDCCH with cyclic redundancy check (CRC) scrambled by UE-specific radio network temporary identifier (e.g., C-RNTI) to schedule UE-specific PDSCH which is scrambled with the same UE-specific RNTI.
PTM transmission scheme 1: For RRC_CONNECTED UEs in the same MBS group, use group-common PDCCH with CRC scrambled by group-common RNTI to schedule group-common PDSCH which is scrambled with the same group-common RNTI. This scheme can also be called group-common PDCCH based group scheduling scheme.
PTM transmission scheme 2: For RRC_CONNECTED UEs in the same MBS group, use UE-specific PDCCH with CRC scrambled by UE-specific RNTI (e.g., C-RNTI) to schedule group-common PDSCH which is scrambled with group-common RNTI. This scheme can also be called UE-specific PDCCH based group scheduling schemes.
As for the second objective (i.e., the reliability of multicast/broadcast services) , In RAN1, it has been agreed to support acknowledged and non-acknowledged (ACK) and/or NACK only based hybrid automatic repeat request (HARQ) for SPS/dynamic scheduled PTM transmission and retransmission and to support ACK/NACK based for SPS/dynamic scheduled PTP transmission and retransmission. However, discussion of the reliability is still in its early stage in RAN2; therefore, it is still unclear how HARQ or the transmission and re-transmission process can be configured/designed in such a way that enable the support of simultaneous SPS and/or dynamic scheduling of unicast (PTP) and multicast/broadcast (PTM) within a slot. To achieve this, the configuration of HARQ process should allow multiplexing of PTP and PTM transmission with at least one MAC layer transport block (TB) for UE supporting only one TB per slot and allow multiplexing of multiple PTP and PTP TBs within one slot for UE capable of supporting multiple TBs per slot. The simplest design way is consider reusing for simultaneous multicast (PTP/PTM) and unicast (PTP) services transmission and retransmission the same HARQ design used for NR unicast. However, due to the fact the in NR both multicast (PTP/PTM) and unicast (PTP) transmission could be for high data services. The size of the transport block generated by HARQ processes will be very large. Retransmitting of such a huge transport block again and again in downlink every time the CRC check fail for the specific TB at UE would result in a low spectral and downlink transmission efficiency.
To overcome this issue, bring more efficiency and improve latency, a concept called code block groups (CBGs) based transmission is introduced in 5G NR, in which a large transport block is essentially divided into smaller units calls code blocks (CBs) and the smaller code blocks are further grouped into code block groups (CBGs) each can be scrambled with different (CRC) bits. FIG. 4 illustrates an example of a retransmission of single codebook group according to an embodiment of the present disclosure. In this way, in case of an error of a specific Code block, the CRC bits check will only fail for the CBG which has an erroneous Code block; thereby, only that CBG will be retransmitted instead of whole transport block ad illustrated in FIG. 4.
FIG. 5 illustrates an example of a size of bit for CBG based HARQ information indicator and HARQ feedback according to an embodiment of the present disclosure. One of major disadvantage of this exemplary procedure (i.e., the CBG based retransmission) is that it increases the HARQ indication and feedback overhead, as in case of single TB, a single bit is required per transport block for HARQ indication and ACK/NACK feedback but now the gNB needs to send multiple bits indication (i.e., one bit for each CBG) and the UE also need to provide multi-bits ACK/NACK as illustrated in FIG. 5. This will increase both uplink and downlink control singling overhead.
FIG. 6 illustrates an example of a wireless communication method for unicast and/or MBS performed by a base station and one or more UEs according to an embodiment of the present disclosure. FIG. 7 illustrates an example of a wireless communication method for unicast and/or MBS performed by a base station according to an embodiment of the present disclosure. FIG. 8 illustrates an example of a wireless communication method for unicast and/or MBS performed by a user equipment according to an embodiment of the present disclosure. FIG. 9 illustrates an example of PTP and PTM HARQ processes configuration at a gNB according to an embodiment of the present disclosure. FIG. 6, FIG. 7, FIG. 8, and FIG. 9 illustrate that, in some embodiments, to overcome the above problems, this exemplary method provides an efficient and low overhead HARQ transmission and retransmission method for dynamic and/or semi-persistent scheduling of simultaneous MBS (PTP/PTM) and unicast (PTP) scheduling for UE in a slot. The exemplary method avoids the downlink transmission deficiency by employing the partial retransmission of only the PTP or PTM part of transport block instead of a retransmission a whole transport block and prevents from higher control signalling overhead by utilizing one-bit HARQ indicator in downlink and two/double bits reconfigurable ACK/NACK uplink feedback. In this exemplary method, the gNB configures different/separate HARQ processes for PTP and PTM data, combines/maps/multiplex data from HARQ process configured for PTP/PTM into a DL assignment, and indicates HARQ control information about the PTP/PTM combination as well as the HARQ process ID (either the identity of PTP or PTM HARQ process) , to one or more UEs. Upon the reception of HARQ control information and the DL assignment from gNB, the UE configure a single HARQ process to receive PTP and PTM DL data within the assignment of, decodes and checks the CRC of PTP and PTM data included within the DL assignment to determine the faulty part of DL assignment (which could be either the PTP part, the PTM part or both the PTP and PTM parts) . After that, UE configures PTP/PTM ACK/NACK feedback bits, sends the feedback bits in uplink channel to the gNB. Then, the gNB determines based on received ACK/NACK feedback bits, whether a retransmission is needed for the PTP or PTM or both; if so, the gNB retransmits the parts of DL assignment as indicated by the feedback bits to UE. Finally, the UE receives the re-transmitted part of the DL assignment for the previous uplink feedback which it sends to the gNB earlier.
In some embodiments, the one or more HARQ processes /entities are configured in corresponding to an upper layer RAN protocol data unit such as a PTP/PTM MAC service data unit SDU and/or a PTP/PTM RLC segment. A PTP HARQ process is corresponding to the unicast and/or multicast (PTP) upper layer RAN protocol data unit, and A PTM HARQ process is corresponding to the multicast and/or broadcast (PTM) upper layer RAN protocol data unit. The PTP HARQ process is configured in a way such that the retransmission of PTP initial transmission can be by PTP only transmission scheme, and the HARQ process is configured in a way such that the PTM the retransmission of PTM initial transmission can be by either PTP or PTM transmission scheme. Both PTP or PTM HARQ process can be configured in corresponding to either dynamic or semi-persistent scheduling of a PTP or PTM protocol data unit over the PTP/PTM HARQ downlink transport resources. For PTP HARQ process, one or more CS-RNTI/C-RNTI can be configured to activate/deactivate and schedule the PTP HARQ downlink transport resources dynamically or semi-persistently over a UE-specific physical downlink shared channel. For PTM HARQ process, one or more G-CS-RNTI/G-RNTI can be configured to activate/deactivate and schedule the PTPM HARQ downlink transport resources dynamically or semi-persistently over a group common physical downlink shared channel. The initial transmissions and the retransmission and the lower layer  downlink transport resources of a PTP or PTM HARQ process is configured either by a code group blocks (CBGs) method as described in some embodiments or by a transport block (TBs) method as described in some embodiments.
Code block group based PTP/PM initial transmission and retransmission:
FIG. 10 illustrates an example of CBG based PTP/PM initial transmission and retransmission according to an embodiment of the present disclosure. FIG. 10 illustrates that, in some embodiments, part a provides combining or multiplexing of HARQ PTP and PTM data in a TB, and part b provides the generated HARQ indication information bits per TB is provided. In some embodiments, an exemplary configuration assumes that only one transport block is configured per slot for a UE. In this type of configuration, the gNB configures different HARQ processes (e.g., one process for PTP and other for PTM RAN upper layer protocol data unit) . In order to avoid mapping of the protocol data unit (e.g., code blocks) generated by the configured PTP and PTM HARQ process into a larger protocol transport block which could decrease the downlink transmission efficiency and to prevent from a higher control signalling overhead, gNB may divide the transport block (TB) into only two equal parts or code block groups (CBGs) regions/sets each scrambled by a different/separate (CRC) bits associated with a specific RNTI (e.g., CS-RNTI/C-RNTI for PTP or G-CS-RNTI/G-RNTI for PTM) . Currently in NR for unicast transmission, a transport block can be divided into 2, 4, 6 or 8 CBGs. For simultaneous PTP and PTM HARQ process operation, half of CBGs (i.e., 1, 2, 3, 4) can be allocated to the protocol data units which are generated from PTP HARQ process and the second half to the protocol data units or CB sets which generated from PTM HARQ (i.e., the number of a CBGs allocated for PTP and PTM processes within a TB can be equal as illustrated in part a of FIG. 10) . From this figure, we can notice that CBs generated from different PTP and PTM process are mapped into different CBGs within a TB according to the type of process generating them. For example, the set of transport blocs indexed as CB0, CB1, and CB2 were mapped into a same region of the TB (i.e., CBG 0) ; whereas CB0, CB1, and CB2 were mapped into other CBG region of the TB (i.e., CBG 1) . In this way, the gNB is aware of both the indexes where the PTP and PTM protocol data unit were mapped into within the TB (i.e., CBG 0 and CBG1) as well as the HARQ processes IDs. After mapping PTP and PTM data or CBs into the two parts of TB, the gNB may generate a single bit PTP/PTM HARQ information indicator per TB (part b of FIG. 10, Table1) and provides it to UE to help UE to identify that the given DL assignment contains a simultaneous PTP and PTM TB so that it can activate and use PTP/PTM ACK/NACK configuration table (Table 2) instead of legacy unicast ACK/NACK configuration. Then, the gNB sends the single bit PTP/PTM HARQ information indicator along with one HARQ process ID (either PTP or PTM) to UE to inform UE about the configuration of PTP and PTM for a given specific as well as the configured HARQ for a given TB/slot or downlink assignment.
From UE side, it only needs to configure a single HARQ process to receive the configured PTP/PTM DL assignment, decodes its CRC for the configured PTP and PTM CGBs within the DL assignment in order to send back the appropriate ACK/NACK uplink feedback to the gNB. For example, when the gNB receive the feedback e.g., indicating a NACK feedback code bit [01] it will recognize that UE has failed to decode the PTP part of initial DL assignment, but it has successfully decoded PTM part; therefore, it will retransmit only the protocol data units which is mapped into the CBG index configured for PTP for other code bit the gNB will react as indicated in table 2.
Transport block based initial transmission and retransmission:
FIG. 11 illustrates an example of TB based PTP/PM initial transmission and retransmission according to an embodiment of the present disclosure. FIG. 11 illustrates that, in some embodiments, part a provides combining or multiplexing of HARQ PTP and PTM transport blocks data in a slot, and part b provides the generated HARQ indication info bit per slot. This exemplary configuration assumes that several transport blocks are configured per slot for a UE (in NR UE normally may support up to 2, 4 and/or 7 different unicast transport blocks per slot) . In this type of configuration, the gNB may configure different HARQ processes (e.g., one process for PTP and other for PTM RAN upper layer protocol data unit) . Then, it may divide a slot configured for PTP and PTM HARQ processes into two parts each scrambled by a  different/separate cyclic redundancy check (CRC) bit associated with a specific RNTI (e.g., CS-RNTI/C-RNTI for PTP or CS-RNTI/G-RNTI for PTM SPS/dynamic scheduling) . And the gNB configures the slot for PTP and PTM HARQ processes in a way such that first half parts of the slot is allocated to the protocol data units or TBs which are generated from PTP HARQ process, and the second half parts of the slot is allocated to the protocol data units which are generated from PTM HARQ (i.e., the number of TBs allocated for PTP and PTM processes can be equal within a slot) (as illustrated in part a of FIG. 11) . After mapping PTP and PTM data or the TBs sets into the two parts of a slot, the gNB may generate a single bit PTP/PTM HARQ information indicator per slot as illustrated in part b of FIG. 11 and Table1, provide the indication to UE, and react/reconfigure a retransmission according to the code bit feedback received from UE as given described in the above some embodiments, the only difference is that the UE and gNB interaction would be in slot basis (multiple TBs) basis instead of a single TB basis in the above some embodiments.
Table 1: PTP/PTM HARQ indication information bit which is provided by NB to the UE
Figure PCTCN2021111003-appb-000001
Table 2: PTP/PTM ACK/NACK feedback bits which is provided by the network to the UE
Figure PCTCN2021111003-appb-000002
In summary, some embodiments of this disclosure provide an efficient and low overhead HARQ transmission and retransmission method for dynamic and/or semi-persistent scheduling of simultaneous MBS (PTP/PTM) and unicast (PTP) scheduling for UE in a slot. The exemplary method avoids the downlink transmission deficiency by employing the partial retransmission of only the PTP or PTM part of transport block instead of a retransmission a whole transport block and prevents from higher control signalling overhead by utilizing one-bit HARQ indicator in downlink and two/double bits reconfigurable ACK/NACK uplink feedback. In this exemplary method, the gNB configures different/separate HARQ processes for PTP and PTM data, combines/maps/multiplex data from HARQ process configured for PTP/PTM into a DL assignment, and indicates HARQ control information about the PTP/PTM combination as well as the HARQ process ID, to one or more UEs. Upon the reception of HARQ control information and the DL assignment from gNB, the UE configures a single HARQ process to receive PTP and PTM DL data within the assignment of, decodes and checks the CRC of PTP and PTM data (TBs) included within the DL assignment to determine the faulty part of DL assignment (which could be either the PTP part, the PTM part or both the PTP and PTM parts) . After that, UE configures PTP/PTM ACK/NACK feedback bits, sends the feedback bits in uplink channel to the gNB. Then, the gNB determines based on received ACK/NACK feedback bits, whether a retransmission is needed for the PTP or PTM on both; if so, the gNB retransmits the  parts of DL assignment as indicated by the feedback bits to UE. Finally, the UE receives the re-transmitted part of the DL assignment for the previous uplink feedback which it sends to the gNB earlier.
In the above, some embodiments of the present disclosure provide an efficient an low overhead method for configuration of HARQ process initial transmission and re-transmission to support simultaneous scheduling of multicast/broadcast (PTP/PTM) and unicast (PTP) for UE in a slot: The major innovative aspects of the new exemplary method may include: 1. The new exemplary method has introduced an HARQ mechanism that allow to support simultaneous SPS and/or dynamic scheduling of unicast (PTP) and multicast (PTM) within a slot. 2. The new exemplary method has introduced a new indication method to help UE identify that the given DL assignment contains a simultaneous PTP and PTM TB so that it can activate/deactivate the usage of PTP/PTM ACK/NACK configuration. 3. The new exemplary method has introduced a double bit fixed feedback design as appose to a CGB feedback which increase the uplink signalling overhead according to the number of configured CBG bits (i.e., form 2 bits to 4, 6, 8 bits) . 4. The new exemplary method has introduced the idea of configuring a single HARQ process at UE instead of two at UE in corresponding to two PTP and PTM HRAQ process at the network which help decrease UE complexity.
FIG. 12 is a block diagram of an example system 700 for wireless communication according to an embodiment of the present disclosure. Embodiments described herein may be implemented into the system using any suitably configured hardware and/or software. FIG. 12 illustrates the system 700 including a radio frequency (RF) circuitry 710, a baseband circuitry 720, an application circuitry 730, a memory/storage 740, a display 750, a camera 760, a sensor 770, and an input/output (I/O) interface 780, coupled with each other at least as illustrated. The application circuitry 730 may include a circuitry such as, but not limited to, one or more single-core or multi-core processors. The processors may include any combination of general-purpose processors and dedicated processors, such as graphics processors, application processors. The processors may be coupled with the memory/storage and configured to execute instructions stored in the memory/storage to enable various applications and/or operating systems running on the system.
While the present disclosure has been described in connection with what is considered the most practical and preferred embodiments, it is understood that the present disclosure is not limited to the disclosed embodiments but is intended to cover various arrangements made without departing from the scope of the broadest interpretation of the appended claims.

Claims (58)

  1. A wireless communication method for unicast and/or multicast/broadcast service (MBS) performed by a user equipment (UE) , comprising:
    receiving, from a base station, a downlink (DL) assignment comprising point to point (PTP) /point to multipoint (PTM) data and a PTP/PTM hybrid automatic repeat request (HARQ) information;
    configuring a single HARQ process to receive the DL assignment comprising the PTP/PTM data; and
    decoding a cyclic redundancy check (CRC) for PTP/PTM transport blocks (TBs) /code block groups (CBGs) within the DL assignment.
  2. The wireless communication method of claim 1, further comprising configuring an acknowledgment (ACK) /non-acknowledgment (NACK) feedback code bit;
    sending a PTP/PTM uplink feedback code to the base station; and
    receiving, from the base station, a re-transmitted DL assignment for a previous PTP/PTM ACK/NACK uplink feedback.
  3. The wireless communication method of claim 2, wherein configuring an acknowledgment (ACK) /non-acknowledgment (NACK) feedback code bit compromise.
  4. The wireless communication method of claim 2, wherein configuring an acknowledgment (ACK) /non-acknowledgment (NACK) feedback code bit compromise a PTP/PTM ACK code bit indicating to gNB that the initial PTM transmission is successfully received and the initial PTP transmission is not received or received with an error.
  5. The wireless communication method of claim 2, wherein configuring an acknowledgment (ACK) /non-acknowledgment (NACK) feedback code bit compromise a PTP/PTM ACK code bit indicating to gNB that the initial PTP transmission is successfully received and the initial PTM transmission is not received or received with an error.
  6. The wireless communication method of claim 2, wherein configuring an acknowledgment (ACK) /non-acknowledgment (NACK) feedback code bit compromise a PTP/PTM ACK code bit indicating to gNB both PTP and PTM initial transmissions are successfully received by the UE.
  7. The wireless communication method of claim 2, wherein configuring an acknowledgment (ACK) /non-acknowledgment (NACK) feedback code bit compromise a PTP/PTM ACK code bit indicating to gNB both PTP and PTM initial transmissions are not successfully received by the UE.
  8. The wireless communication method of claim 2, wherein configuring an acknowledgment (ACK) /non-acknowledgment (NACK) feedback code bit compromise a double/two bits.
  9. The wireless communication method of claim 1, wherein for a CBG based PTP/PM initial transmission and retransmission of the DL assignment, only one transport block is configured per slot for a UE.
  10. The wireless communication method of claim 9, wherein for the CBG based PTP/PM initial transmission and retransmission of the DL assignment, different HARQ processes comprising one process for PTP and other for PTM RAN upper layer protocol data unit are configured by the base station.
  11. The wireless communication method of claim 9, wherein for the CBG based PTP/PM initial transmission and retransmission of the DL assignment, a TB is divided into only two equal parts or CBGs sets each scrambled by different/separate (CRC) bits associated with a specific RNTI comprising a CS-RNTI/C-RNTI for PTP or a G-CS-RNTI/G-RNTI for PTM by the base station.
  12. The wireless communication method of claim 9, wherein for the CBG based PTP/PM initial transmission and retransmission of the DL assignment, for simultaneous PTP and PTM HARQ process operation, a first half of TB is allocated to protocol data units which are generated from the PTP HARQ process and a second half is allocated to the protocol data units which generated from the PTM HARQ.
  13. The wireless communication method of claim 12, wherein a number of CBGs allocated for PTP and PTM processes within one TB can be equal.
  14. The wireless communication method of claim 12, wherein TBs generated from different PTP and PTM processes are mapped into different CBGs within one TB according to the type of process generating the TBs.
  15. The wireless communication method of claim 14, wherein after mapping the PTP/PTM data into the two parts of the TB or CBGs set, a single bit PTP/PTM HARQ information indicator per TB is generated by the UE and the UE receives the single bit PTP/PTM HARQ information indicator per TB from the base station to help the UE to identify that a given DL assignment contains a simultaneous PTP and PTM TB, such that that the UE can activate and use a PTP/PTM ACK/NACK configuration table.
  16. The wireless communication method of claim 15, wherein the UE receives, from the base station, a single bit PTP/PTM HARQ information indicator along with one HARQ process ID comprising either PTP or PTM to inform the UE about a configuration of PTP and PTM for a given specific/configured HARQ for a given TB/slot or downlink assignment.
  17. The wireless communication method of claim 9, wherein for the CBG based PTP/PM initial transmission and retransmission of the DL assignment, when the UE transmits, to the base station, the PTP/PTM ACK/NACK uplink feedback indicating a NACK feedback code bit 01 to indicate that the UE has failed to decode a PTP part of the DL assignment but the UE has successfully decoded a PTM part, the UE receives, from the base station, a retransmission comprising only protocol data units which are mapped into a CBG index configured for PTP for other code bit the base station can react.
  18. The wireless communication method of claim 1, wherein for a TB based PTP/PM initial transmission and retransmission of the DL assignment, several transport blocks are configured per slot for a UE.
  19. The wireless communication method of claim 18, wherein for the TB based PTP/PM initial transmission and retransmission of the DL assignment, different HARQ processes comprising one process for PTP and other for PTM RAN upper layer protocol data unit are configured by the base station.
  20. The wireless communication method of claim 18, wherein for the TB based PTP/PM initial transmission and retransmission of the DL assignment, a slot configured for PTP and PTM HARQ processes is divided into only two parts each scrambled by different/separate (CRC) bits associated with a specific RNTI comprising a CS-RNTI/C-RNTI for PTP or a G-CS-RNTI/G-RNTI for PTM SPS/dynamic scheduling by the base station.
  21. The wireless communication method of claim 18, wherein for the TB based PTP/PM initial transmission and retransmission of the DL assignment, the slot for PTP and PTM HARQ processes is configured by the base station in a way such that a first half of the TBs per slot is allocated to protocol data units which are generated from a PTP HARQ process and a second half of the TBs are allocated to the protocol data units which are generated from a PTM HARQ.
  22. The wireless communication method of claim 21, wherein a number of TBs allocated for PTP and PTM processes within a slot can be equal.
  23. The wireless communication method of claim 22, wherein when the PTP/PTM data is mapped into the two parts of the slots, a single bit PTP/PTM HARQ information indicator per slot is generate/configured by the base station to provide an indication to the UE and the UE provides a code bit feedback to the base station for reaction, and an interaction between the UE and the base station is in slot basis comprising multiple TBs.
  24. The wireless communication method of claim 22, wherein the single bit PTP/PTM HARQ information indicator indicates to a UE that either PTP/PTM based HARQ procedure is configured and first half part of the TB or the slot is configured for PTP or indicate that PTP/PTM is configured and first half part of the TB or the slot is configured for PTM or indicate that PTP/PTM is not configured.
  25. A wireless communication method for unicast and/or multicast/broadcast service (MBS) performed by a base station, comprising:
    configuring, to a user equipment (UE) , hybrid automatic repeat request (HARQ) processes for point to point (PTP) /point to multipoint (PTM) data;
    activating a downlink (DL) assignment comprising the PTP/PTM data and a PTP/PTM HARQ information; and sending, to the UE, the DL assignment comprising the PTP/PTM data and the PTP/PTM HARQ information.
  26. The wireless communication method of claim 25, further comprising receiving a PTP/PTM acknowledgment (ACK) /non-acknowledgment (NACK) uplink feedback from the UE, and/or reconfiguring/resending a retransmission based on a received PTP/PTM feedback indication from the UE.
  27. The wireless communication method of claim 26, further comprising determines a retransmission of either PTP or PTM of parts DL assignment or both based on a received PTP/PTM ACK/NACK uplink feedback and retransmitting the DL assignment for a previous PTP/PTM ACK/NACK uplink feedback to the UE.
  28. The wireless communication method of claim 25, wherein one or more HARQ processes are configured in corresponding to an upper layer radio access network (RAN) protocol data unit, and the upper layer RAN protocol data unit comprises a PTP/PTM medium access control (MAC) service data unit (SDU) and/or a PTP/PTM radio link control (RLC) segment.
  29. The wireless communication method of claim 25, wherein a PTP HARQ process is corresponding to a unicast and/or multicast (PTP) upper layer RAN protocol data unit, and/or a PTM HARQ process is corresponding to a multicast and/or broadcast (PTM) upper layer RAN protocol data unit.
  30. The wireless communication method of claim 25, wherein a PTP HARQ process is configured in a way such that a retransmission of a PTP initial transmission can be by a PTP only transmission, and/or a PTM HARQ process is configured in a way such that a PTM retransmission can be by either a PTP transmission or a PTM transmission.
  31. The wireless communication method of claim 25, wherein both PTP HARQ process or PTM HARQ process can be configured in corresponding to either a dynamic scheduling or a semi-persistent scheduling of a PTP or PTM protocol data unit over PTP/PTM HARQ downlink transport resources.
  32. The wireless communication method of claim 25, wherein for PTP HARQ process, one or more CS-RNTIs/C-RNTIs can be configured to activate/deactivate and schedule PTP HARQ downlink transport resources dynamically or semi-persistently over a UE-specific physical downlink shared channel.
  33. The wireless communication method of claim 25, wherein for PTM HARQ process, one or more G-CS-RNTIs/G-RNTIs can be configured to activate/deactivate and schedule PTPM HARQ downlink transport resources dynamically or semi-persistently over a group common physical downlink shared channel.
  34. The wireless communication method of claim 25, wherein an initial transmission of the DL assignment, a retransmission of the DL assignment, and lower layer downlink transport resources of a PTP or PTM HARQ process is configured either by CBG method or by a TBs method.
  35. The wireless communication method of claim 25, wherein for a CBG based PTP/PM initial transmission and retransmission of the DL assignment, only one transport block is configured per slot or a UE.
  36. The wireless communication method of claim 35, wherein for the CBG based PTP/PM initial transmission and retransmission of the DL assignment, different HARQ processes comprising one process for PTP and other for PTM RAN upper layer protocol data unit are configured by the base station.
  37. The wireless communication method of claim 35, wherein for the CBG based PTP/PM initial transmission and retransmission of the DL assignment, a TB is divided into only two parts or CBGs sets each scrambled by different/separate (CRC) bits associated with a specific RNTI comprising a CS-RNTI/C-RNTI for PTP or a G-CS-RNTI/G-RNTI for PTM by the base station.
  38. The wireless communication method of claim 35, wherein for the CBG based PTP/PM initial transmission and retransmission of the DL assignment, for simultaneous PTP and PTM HARQ process operation, a first half of TB is allocated to protocol data units or CBGs which are generated from the PTP HARQ process and a second half to the protocol data units which generated from the PTM HARQ.
  39. The wireless communication method of claim 38, wherein a number of CBGs allocated for PTP and PTM processes within one TB can be equal.
  40. The wireless communication method of claim 38, wherein TBs generated from different PTP and PTM processes are mapped into different CBGs within one TB according to the type of process generating the TBs.
  41. The wireless communication method of claim 40, wherein after mapping the PTP/PTM data into two parts of a TB or CBGs sets, a single bit PTP/PTM HARQ information indicator per TB is generated by the UE and the base station transmits, to the UE, the single bit PTP/PTM HARQ information indicator per TB to help the UE to identify that a given DL assignment contains a simultaneous PTP and PTM TB, such that that the base station controls the UE to activate and use a PTP/PTM ACK/NACK configuration table.
  42. The wireless communication method of claim 41, wherein the base station transmits, to the UE, a single bit PTP/PTM HARQ information indicator along with one HARQ process ID comprising either PTP or PTM to inform the UE about a configuration of PTP and PTM for a given specific/configured HARQ for a given TB/slot or downlink assignment.
  43. The wireless communication method of claim 41, wherein the single bit PTP/PTM HARQ information indicator indicate to a UE that either PTP/PTM based HARQ procedure is configured and first half part of the TB or the slot is configured for PTP or indicate that PTP/PTM is configured and first half part of the TB or the slot is configured for PTM or indicate that PTP/PTM is not configured.
  44. The wireless communication method of claim 35, wherein for the CBG based PTP/PM initial transmission and retransmission of the DL assignment, when the base station receives, from the UE, the PTP/PTM ACK/NACK uplink feedback indicating a NACK feedback code bit 01 which indicate that the UE has failed to decode a PTP part of the DL assignment but the UE has successfully decoded a PTM part, the base station receives, from the UE, a retransmission comprising only protocol data units which are mapped into a CBG index configured for PTP for other code bit the base station can react.
  45. The wireless communication method of claim 25, wherein for a TB based PTP/PM initial transmission and retransmission of the DL assignment, several transport blocks are configured per slot for a UE.
  46. The wireless communication method of claim 45, wherein for the TB based PTP/PM initial transmission and retransmission of the DL assignment, different HARQ processes comprising one process for PTP and other for PTM RAN upper layer protocol data unit are configured by the base station.
  47. The wireless communication method of claim 45, wherein for the TB based PTP/PM initial transmission and retransmission of the DL assignment, a slot configured for PTP and PTM HARQ processes is divided into only two parts or TB sets each scrambled by different/separate (CRC) bits associated with a specific RNTI comprising a CS-RNTI/C-RNTI for PTP or a G-CS-RNTI/G-RNTI for PTM SPS/dynamic scheduling by the base station.
  48. The wireless communication method of claim 45, wherein for the TB based PTP/PM initial transmission and retransmission of the DL assignment, the slot for PTP and PTM HARQ processes is configured by the base station in a way such that a first half part of slot is allocated to protocol data units or TB sets which are generated from a PTP HARQ process and a second half of the slot is allocated to the protocol data units which are generated from a PTM HARQ.
  49. The wireless communication method of claim 48, wherein a number of TBs allocated for PTP and PTM processes within a slot can be equal.
  50. The wireless communication method of claim 49, wherein when the PTP/PTM data is mapped into two TBs, a single bit PTP/PTM HARQ information indicator per slot is generated by the base station to provide an indication to the UE and the base station receives, from the UE, a code bit feedback for reaction, and an interaction between the UE and the base station is in slot basis comprising multiple TBs.
  51. The wireless communication method of claim 49, wherein the single bit PTP/PTM HARQ information indicator indicates to a UE that either PTP/PTM based HARQ procedure is configured and first half part of the TB or the slot is configured for PTP or indicate that PTP/PTM is configured and first half part of the TB or the slot is configured for PTM or indicate that PTP/PTM is not configured.
  52. A user equipment (UE) , comprising:
    a memory;
    a transceiver; and
    a processor coupled to the memory and the transceiver;
    wherein the processor is configured to execute the method of any one of claims 1 to 24.
  53. A base station, comprising:
    a memory;
    a transceiver; and
    a processor coupled to the memory and the transceiver;
    wherein the processor is configured to execute the method of any one of claims 25 to 51.
  54. A non-transitory machine-readable storage medium having stored thereon instructions that, when executed by a computer, cause the computer to perform the method of any one of claims 1 to 51.
  55. A chip, comprising:
    a processor, configured to call and run a computer program stored in a memory, to cause a device in which the chip is installed to execute the method of any one of claims 1 to 51.
  56. A computer readable storage medium, in which a computer program is stored, wherein the computer program causes a computer to execute the method of any one of claims 1 to 51.
  57. A computer program product, comprising a computer program, wherein the computer program causes a computer to execute the method of any one of claims 1 to 51.
  58. A computer program, wherein the computer program causes a computer to execute the method of any one of claims 1 to 51.
PCT/CN2021/111003 2021-08-05 2021-08-05 User equipment, base station, and wireless communication method for unicast and/or mbs WO2023010449A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2021/111003 WO2023010449A1 (en) 2021-08-05 2021-08-05 User equipment, base station, and wireless communication method for unicast and/or mbs
CN202180101372.1A CN117813844A (en) 2021-08-05 2021-08-05 User equipment, base station and wireless communication method for unicast and/or MBS

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/111003 WO2023010449A1 (en) 2021-08-05 2021-08-05 User equipment, base station, and wireless communication method for unicast and/or mbs

Publications (1)

Publication Number Publication Date
WO2023010449A1 true WO2023010449A1 (en) 2023-02-09

Family

ID=85154073

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/111003 WO2023010449A1 (en) 2021-08-05 2021-08-05 User equipment, base station, and wireless communication method for unicast and/or mbs

Country Status (2)

Country Link
CN (1) CN117813844A (en)
WO (1) WO2023010449A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100296427A1 (en) * 2007-08-13 2010-11-25 Panasonic Corporation Soft-Buffer Management of a Re-Transmission Protocol for Unicast and Multicast Transmissions
CN110268661A (en) * 2017-02-13 2019-09-20 高通股份有限公司 The control overhead of low latency communication system is reduced
CN110535565A (en) * 2019-08-09 2019-12-03 中兴通讯股份有限公司 A kind of method of sending and receiving of feedback information, device and storage medium
CN110574320A (en) * 2017-05-02 2019-12-13 华为技术有限公司 HARQ feedback method for eMTC and terminal equipment
US20210167888A1 (en) * 2018-08-24 2021-06-03 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method and device for determining length of feedback information, and communication apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100296427A1 (en) * 2007-08-13 2010-11-25 Panasonic Corporation Soft-Buffer Management of a Re-Transmission Protocol for Unicast and Multicast Transmissions
CN110268661A (en) * 2017-02-13 2019-09-20 高通股份有限公司 The control overhead of low latency communication system is reduced
CN110574320A (en) * 2017-05-02 2019-12-13 华为技术有限公司 HARQ feedback method for eMTC and terminal equipment
US20210167888A1 (en) * 2018-08-24 2021-06-03 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method and device for determining length of feedback information, and communication apparatus
CN110535565A (en) * 2019-08-09 2019-12-03 中兴通讯股份有限公司 A kind of method of sending and receiving of feedback information, device and storage medium

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
MEDIATEK INC.: "HARQ operation to improve reliability for PTM transmission", 3GPP DRAFT; R2-2100172, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. electronic; 20210125 - 20210205, 15 January 2021 (2021-01-15), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051973385 *
MEDIATEK INC.: "L1 HARQ operation for PTM transmission", 3GPP DRAFT; R2-2102785, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. electronic; 20210412 - 20210420, 2 April 2021 (2021-04-02), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052174375 *
MEDIATEK INC.: "L1 HARQ operation for PTM transmission", 3GPP DRAFT; R2-2104951, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. electronic; 20210519 - 20210527, 11 May 2021 (2021-05-11), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP052006691 *
QUALCOMM INCORPORATED: "Design Details of the Shortened PDSCH", 3GPP DRAFT; R1-1702566 DESIGN DETAILS OF THE SHORTENED PDSCH, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Athens, Greece; 20170213 - 20170217, 12 February 2017 (2017-02-12), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051209720 *

Also Published As

Publication number Publication date
CN117813844A (en) 2024-04-02

Similar Documents

Publication Publication Date Title
US10057913B2 (en) System and method for hybrid automatic repeat request timing for device-to-device communication overlaid on a cellular network
US20180270022A1 (en) Multi-harq methods and apparatus for codeblock group based transmissions
US9319200B2 (en) System and method for message acknowledgment feedback for device-to-device communication overlaid on a cellular network
US20140355493A1 (en) Multicast service using unicast subframe
EP3654722B1 (en) Method and apparatus for channel access in unlicensed band in wireless communication system
EP4096128A1 (en) Feedback method and device for hybrid automatic repeat request information
JP2020507266A (en) Method for partial retransmission
EP3771120A1 (en) Method and device for transmitting and receiving control information in wireless cellular communication system
KR20080086384A (en) Mbms data transmission and receiving in packet based on mobile communication system
EP3667997A1 (en) Method and apparatus for transmitting and receiving control information in wireless communication system
US20230050170A1 (en) Methods and apparatus of group scheduling for nr multicast service
US11949598B2 (en) Window adjustment method and apparatus, network device, terminal device
US11463222B2 (en) Method and device for transmitting or receiving uplink control channel in wireless communication system
CN113678500B (en) Feedback resource allocation method, communication method, device and communication equipment
CN114499771B (en) Feedback and retransmission method and device for ACK/NACK information of MBS
US20230189301A1 (en) Method performed by user equipment, and user equipment
WO2022150937A1 (en) Method and apparatus for receiving data, and method and apparatus for sending data
US20240008054A1 (en) Method and apparatus for hybrid automatic retransmission request
WO2018199643A1 (en) Method and apparatus for determining uplink transmission timing in wireless communication system
WO2023010449A1 (en) User equipment, base station, and wireless communication method for unicast and/or mbs
WO2024031307A1 (en) Hybrid automatic repeat request (harq) feedback method and apparatus, and device and medium
US20240163027A1 (en) Method and apparatus for negative acknowledgement (nack)-only based hybrid automatic repeat-request acknowledgement (harq-ack) feedback multiplexing
WO2024031395A1 (en) Repeated transmission methods, terminal devices, and network devices
US20230361927A1 (en) Wireless communication method, terminal device and network device
WO2023115411A1 (en) Communication method and apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21952337

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180101372.1

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE