WO2023010255A1 - Uplink configuration method, user equipment, and base station - Google Patents

Uplink configuration method, user equipment, and base station Download PDF

Info

Publication number
WO2023010255A1
WO2023010255A1 PCT/CN2021/110143 CN2021110143W WO2023010255A1 WO 2023010255 A1 WO2023010255 A1 WO 2023010255A1 CN 2021110143 W CN2021110143 W CN 2021110143W WO 2023010255 A1 WO2023010255 A1 WO 2023010255A1
Authority
WO
WIPO (PCT)
Prior art keywords
tboms
configuration
transport block
type
uplink
Prior art date
Application number
PCT/CN2021/110143
Other languages
French (fr)
Inventor
Aijuan Feng
Jia SHENG
Original Assignee
Huizhou Tcl Cloud Internet Corporation Technology Co. Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huizhou Tcl Cloud Internet Corporation Technology Co. Ltd filed Critical Huizhou Tcl Cloud Internet Corporation Technology Co. Ltd
Priority to PCT/CN2021/110143 priority Critical patent/WO2023010255A1/en
Publication of WO2023010255A1 publication Critical patent/WO2023010255A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/51Allocation or scheduling criteria for wireless resources based on terminal or device properties

Definitions

  • the present disclosure relates to the field of communication systems, and more particularly, to an uplink configuration method, a user equipment, and a base station.
  • Wireless communication systems such as the third-generation (3G) of mobile telephone standards and technology are well known.
  • 3G standards and technology have been developed by the Third Generation Partnership Project (3GPP) .
  • the 3rd generation of wireless communications has generally been developed to support macro-cell mobile phone communications.
  • Communication systems and networks have developed towards being a broadband and mobile system.
  • UE user equipment
  • RAN radio access network
  • the RAN comprises a set of base stations (BSs) which provide wireless links to the UEs located in cells covered by the base station, and an interface to a core network (CN) which provides overall network control.
  • BSs base stations
  • CN core network
  • the RAN and CN each conduct respective functions in relation to the overall network.
  • LTE Long Term Evolution
  • E-UTRAN Evolved Universal Mobile Telecommunication System Territorial Radio Access Network
  • 5G or NR new radio
  • NR coverage enhancements are one of the key factors of service quality for a cellular communication network. Compared to LTE, NR is designed to operate at much higher frequencies such as 28GHz or 39GHz in FR2. Due to the higher frequencies, it is inevitable that NR wireless channels will be subject to higher path-loss making it more challenging to maintain an adequate quality of service comparable to that of legacy radio access technologies (RATs) . Coverage-enhancement techniques are essentially providing UEs with good service quality wherever the UEs are located.
  • Coverage enhancement is to specify enhancements for physical uplink shared channel (PUSCH) , physical uplink control channel (PUCCH) and Msg3 PUSCH for both FR1 and FR2 as well as time-division duplex (TDD) and frequency-division duplex (FDD) .
  • the most valuable resource for coverage enhancement is the time resource, so the time resource should be exploited for efficient use.
  • Transport block over multi-slot (TBoMS) is an important technique for coverage enhancement.
  • type A TBoMS can have segments of a PUSCH or PUCCH transport block (TB) in discontinuous (non-back-to-back) PUSCH transmission that has a gap between adjacent segments.
  • Type B TBoMS can have segments of a PUSCH or PUCCH TB in continuous (back-to-back) PUSCH transmission in FDD.
  • Type B TBoMS has discontinuous (non-back-to-back) PUSCH transmission in TDD, which can be deemed as continuous allocated in a time domain if unavailable slots and symbols are not counted as a portion of the type B TBoMS.
  • Type A TBoMS in release 17. Development of Type B TBoMS is still in progress. It is desired to provide methods to support PUSCH repetition Type B like time domain resource allocation (TDRA) (TDRA type B) .
  • TDRA time domain resource allocation
  • An object of the present disclosure is to propose an uplink configuration method, a user equipment, and a base station
  • an embodiment of the invention provides an uplink configuration method, executable in a user equipment (UE) , comprising:
  • TB transport block
  • an embodiment of the invention provides a user equipment (UE) comprising a processor, configured to call and run a computer program stored in a memory, to cause a device in which the chip is installed to execute the disclosed method.
  • UE user equipment
  • an embodiment of the invention provides uplink configuration method, executable in a base station, comprising:
  • TBoMS configuration comprises resource configuration of the TBoMS representations.
  • an embodiment of the invention provides a base station comprising a processor, configured to call and run a computer program stored in a memory, to cause a device in which the chip is installed to execute the disclosed method.
  • the disclosed method may be implemented in a chip.
  • the chip may include a processor, configured to call and run a computer program stored in a memory, to cause a device in which the chip is installed to execute the disclosed method.
  • the disclosed method may be programmed as computer executable instructions stored in non-transitory computer-readable medium.
  • the non-transitory computer readable medium when loaded to a computer, directs a processor of the computer to execute the disclosed method.
  • the non-transitory computer-readable medium may comprise at least one from a group consisting of: a hard disk, a CD-ROM, an optical storage device, a magnetic storage device, a read only memory, a programmable read only memory, an erasable programmable read only memory, EPROM, an electrically erasable programmable read only memory and a flash memory.
  • the disclosed method may be programmed as computer program product, that causes a computer to execute the disclosed method.
  • the disclosed method may be programmed as a computer program, that causes a computer to execute the disclosed method.
  • Embodiments of the invention proposes a design for radio resource allocation and repetition of TBoMS.
  • the proposed schemes introduce TBoMS capability identification, TDRA design, MSG3 supporting TBoMS, and TBoMS repetition.
  • FIG. 1 illustrates a schematic view of a telecommunication system.
  • FIG. 2 illustrates a schematic view showing an uplink configuration method according to an embodiment of the invention.
  • FIG. 3 illustrates a schematic view showing an embodiment of UE capability exposure.
  • FIG. 4 illustrates a schematic view showing random access preamble groups.
  • FIG. 5 illustrates a schematic view showing an embodiment of UE capability inquiry.
  • FIG. 6 illustrates a schematic view showing random access preamble groups for type A and type B TBoMS.
  • FIG. 7 illustrates a schematic view showing TDRA configuration for TDRA type A.
  • FIG. 8 illustrates a schematic view showing available symbols for type A TBoMS.
  • FIG. 9 illustrates a schematic view showing special slots and available slots for type A TBoMS.
  • FIG. 10 illustrates a schematic view showing an example of TDRA configuration for type B TBoMS (or TDRA type B) .
  • FIG. 11 illustrates a schematic view showing another example of TDRA configuration for type B TBoMS (or TDRA type B) .
  • FIG. 12 illustrates a schematic view showing special slots and available slots for type B TBoMS.
  • FIG. 13 illustrates a schematic view showing a gap being configured in repetition type A of TBoMS.
  • FIG. 14 illustrates a schematic view showing a gap being configured in repetition type B of TBoMS.
  • FIG. 15 illustrates a schematic view showing an example of the random access response (RAR) carrying the TBoMS configuration in a field or a sub-field.
  • RAR random access response
  • FIG. 16 illustrates a schematic view showing examples of intra-slot frequency hopping with repetition type A.
  • FIG. 17 illustrates a schematic view showing s examples of intra-slot frequency hopping with repetition type B.
  • FIG. 18 illustrates a schematic view showing examples of inter-slot frequency hopping with repetition type A.
  • FIG. 19 illustrates a schematic view showing examples of inter-slot frequency hopping with repetition type B.
  • FIG. 20 illustrates a schematic view showing examples of inter-repetition frequency hopping with repetition type A.
  • FIG. 21 illustrates a schematic view showing examples of inter-repetition frequency hopping with repetition type B.
  • FIG. 22 illustrates a schematic view showing examples of inter-slot frequency hopping with repetition type A and with bundling/TDW.
  • FIG. 23 illustrates a schematic view showing examples of inter-slot frequency hopping with repetition type B and with bundling/TDW.
  • FIG. 24 illustrates a schematic view showing examples of inter-repetition frequency hopping with repetition type A and with bundling/TDW
  • FIG. 25 illustrates a schematic view showing examples of inter-repetition frequency hopping with repetition type B and with bundling/TDW.
  • FIG. 26 illustrates a schematic view showing a system for wireless communication according to an embodiment of the present disclosure.
  • FIG. 27 illustrates a schematic view showing examples of type A TBoMS TB and type B TBoMS TB.
  • Fifth-generation (5G) wireless systems are generally a cellular communication system in a frequency range 2 (FR2) ranging from 24.25 GHz to 52.6 GHz, where multiplex transmit (Tx) and receive (Rx) beams are employed by a base station (BS) and/or a user equipment (UE) to combat a large path loss in a high frequency band. Due to hardware limitations and costs, the BS and the UE might only be equipped with a limited number of transmission and reception units (TXRUs) .
  • Tx transmit
  • Rx receive
  • TXRUs transmission and reception units
  • a telecommunication system including a UE 10a, a UE 10b, a base station (BS) 20a, and a network entity device 30 executes the disclosed method according to an embodiment of the present disclosure.
  • FIG. 1 is shown for illustrative not limiting, and the system may comprise more UEs, BSs, and CN entities. Connections between devices and device components are shown as lines and arrows in the FIGs.
  • the UE 10a may include a processor 11a, a memory 12a, and a transceiver 13a.
  • the UE 10b may include a processor 11b, a memory 12b, and a transceiver 13b.
  • the base station 20a may include a processor 21a, a memory 22a, and a transceiver 23a.
  • the network entity device 30 may include a processor 31, a memory 32, and a transceiver 33.
  • Each of the processors 11a, 11b, 21a, and 31 may be configured to implement proposed functions, procedures and/or methods described in the description. Layers of radio interface protocol may be implemented in the processors 11a, 11b, 21a, and 31.
  • Each of the memory 12a, 12b, 22a, and 32 operatively stores a variety of programs and information to operate a connected processor.
  • Each of the transceivers 13a, 13b, 23a, and 33 is operatively coupled with a connected processor, transmits and/or receives radio signals or wireline signals.
  • the base station 20a may be an eNB, a gNB, or one of other types of radio nodes, and may configure radio resources for the UE 10a and UE 10b.
  • Each of the processors 11a, 11b, 21a, and 31 may include application-specific integrated circuits (ASICs) , other chipsets, logic circuits and/or data processing devices.
  • ASICs application-specific integrated circuits
  • Each of the memory 12a, 12b, 22a, and 32 may include read-only memory (ROM) , a random access memory (RAM) , a flash memory, a memory card, a storage medium and/or other storage devices.
  • Each of the transceivers 13a, 13b, 23a, and 33 may include baseband circuitry and radio frequency (RF) circuitry to process radio frequency signals.
  • RF radio frequency
  • the network entity device 30 may be a node in a CN.
  • CN may include LTE CN or 5G core (5GC) which includes user plane function (UPF) , session management function (SMF) , mobility management function (AMF) , unified data management (UDM) , policy control function (PCF) , control plane (CP) /user plane (UP) separation (CUPS) , authentication server (AUSF) , network slice selection function (NSSF) , and the network exposure function (NEF) .
  • a network in the description may be a telecommunication network.
  • the telecommunication network may be a 3GPP compatible network.
  • the telecommunication network is referred to as the network and may comprise a RAN and a CN, at least one of the RAN or the CN, or at least one of the base station 20a or the network entity device 30.
  • an example of a UE 10 in the description may include one of the UE 10a or UE 10b.
  • An example of a base station 20 in the description may include the base station 20a.
  • Uplink (UL) transmission of a control signal or data may be a transmission operation from a UE to a base station.
  • Downlink (DL) transmission of a control signal or data may be a transmission operation from a base station to a UE.
  • the UE 10 executes the uplink configuration method.
  • the UE 10 and base station 20 negotiates coverage enhancement configuration for uplink transmission, where the coverage enhancement configuration includes one transport block (TB) over multi-slot (TBoMS) configuration (step 210) .
  • the at least one transport block may comprise a physical uplink shared channel (PUSCH) or a physical uplink control channel (PUCCH) .
  • the coverage enhancement configuration including the TBoMS configuration may be related to NR coverage enhancements.
  • the UE 10 may optionally provide UE capabilities of the UE 10 to the base station 20.
  • the UE capabilities may comprise an indication whether the UE support TBoMS, a TBoMS type, a repetition type, frequency hopping (FH) capability, bundling capability, time domain window (TDW) , or any combination thereof.
  • the UE 10 allocates the TBoMS representations of at least one transport block (TB) into a set of the uplink radio resources for uplink transmission based on the coverage enhancement configuration including the TBoMS configuration including the TBoMS configuration (step 212) .
  • the coverage enhancement configuration comprises at least one or a combination of TBoMS configuration, repetition configuration, frequency hopping configuration, bundling configuration, and TDW configuration, of the TBoMS representations.
  • the TBoMS representations of at least one transport block may comprise segments of one transport block in a transmission mode of one TB over multi-slot (TBoMS) .
  • the TB transmitted in the transmission mode of TBoMS may be referred to as TBoMS TB in the following.
  • the TBoMS representations of at least one transport block may comprise repetitions of one transport block.
  • the frequency hopping configuration may comprise an indication for enabling or disabling of a frequency hopping function for the TBoMS representations of the at least one transport block.
  • the frequency hopping configuration may comprise an indication of a mode configuration of the frequency hopping function for the TBoMS representations of the at least one transport block.
  • the frequency hopping configuration may comprise both of the indications.
  • the UE 10 may receive from the base station 20 a control signal carrying an indication for enabling or disabling of the frequency hopping function for the TBoMS representations of the at least one transport block.
  • the mode configuration of the frequency hopping function comprises frequency hopping type indicating intra-slot frequency hopping, inter-slot frequency hopping, or inter-repetition frequency hopping.
  • the bundling configuration of the TBoMS representations may comprise an indication for enabling or disabling a bundling function for the TBoMS representations of the at least one transport block.
  • the bundling configuration of the TBoMS representations may comprise an indication of a mode configuration of the bundling function for the TBoMS representations of the at least one transport block.
  • the bundling configuration may comprise both of the indication.
  • the UE 10 may receive from the base station 20 a control signal carrying an indication for enabling or disabling of a bundling function for the TBoMS representations of the at least one transport block.
  • the bundling configuration of the TBoMS representations may be explicitly represented by a control signal or implicitly represented by the frequency hopping configuration.
  • the TDW configuration of the TBoMS representations may comprise an indication for enabling or disabling of a TDW function for the TBoMS representations of the at least one transport block.
  • the TDW configuration of the TBoMS representations may comprise an indication of a mode configuration of the TDW function for the TBoMS representations of the at least one transport block.
  • the TDW configuration may comprise both of the indication.
  • the UE 10 may receive from the base station 20 a control signal carrying an indication for enabling or disabling of a TDW function for the TBoMS representations of the at least one transport block.
  • the TDW configuration of the TBoMS representations may be explicitly represented by a control signal or implicitly represented by the frequency hopping configuration.
  • the control signals, the frequency hopping configuration, the TDW configuration, and/or the bundling configuration of the TBoMS representations may be included in a message of downlink control information (DCI) , radio resource control (RRC) , or configured grant (CG) configuration.
  • DCI downlink control information
  • RRC radio resource control
  • CG configured grant
  • the UE 10 transmits the TBoMS representations of the at least one transport block on the set of the uplink radio resources to the base station 20 based on the coverage enhancement configuration including the TBoMS configuration (step 214) .
  • the base station 20 receives the TBoMS representations of the at least one transport block on the set of the uplink radio resources from the UE 10 based on the coverage enhancement configuration including the TBoMS configuration (step 216) .
  • the UE 10 reports TBoMS capability of the UE 10 to the base station 20 via a UE capability message (220) .
  • the UE capability message carrying the TBoMS capability of the UE 10 may comprise a message of MSG1, MSGA, MSG3, and/or MSG5 or one of other messages.
  • the base station 20 provides the TBoMS configuration for the UE 10 and schedules TBoMS transmission for the UE 10 (222) .
  • the TBoMS configuration comprises resource configuration for the TBoMS representations.
  • Resource configuration for scheduling PUSCH may be performed through configured grant (CG) type 1 or type 2 or dynamic grant (DG) .
  • PUSCH can be dynamically scheduled through DG using following types of transmissions:
  • Two types of CG or grant free configuration schemes comprises two type:
  • TWG Transmission without grant
  • TWG Type 2 Uplink grant configuration provided via RRC signaling and its activation/deactivation via PDCCH grant (via UL DCIs) .
  • the UE 10 performs TBoMS transmission by transmitting one TB over multiple slots (such as in an MSG3 message) to the base station 20 based on the TBoMS configuration (224) .
  • the UE 10 may autonomously provide UE capability of the UE 10 or provide the UE capability of the UE 10 in response to a request for the UE capability of the UE 10, and the UE capability comprises TBoMS capability of the UE 10.
  • the UE 10 provides the UE capability in a message of MSG1, MSG3, or MSG5.
  • the UE 10 provides the UE capability in a message of MSG1 with a random access preamble that indicates the TBoMS capability of the UE 10.
  • the UE may select he random access preamble from a TBoMS-supporting subgroup or a non-TBoMS-supporting subgroup of random access preambles.
  • the UE 10 may send to the base station 20 an indication in an MSG1 message or an MSGA message that indicates whether the UE 10 support the capability of TBoMS.
  • MSG1, MSG2, MSG3, and MSG4 messages are used in four-step random access (RA) while MSGA and MSGB messages are used in two-step RA.
  • the base station 20 can schedule one TB over multiple slots for subsequent physical uplink shared channel (PUSCH) transmissions (e.g., MSG3) from the UE 10.
  • PUSCH physical uplink shared channel
  • RA preambles are partitioned into 3 sections, that is, Group A, Group B, and contention-free random access (CFRA) preamble, among which Group A and Group B are both contention-based preambles.
  • CFRA contention-free random access
  • Group A and/or Group B may be subdivided into a TBoMS-supporting subgroup and a non-TBoMS-supporting subgroup.
  • the base station 20 configures the Group A into a non-TBoMS-supporting subgroup 301 and a TBoMS-supporting subgroup 302, and the Group B into a non-TBoMS-supporting subgroup 303 and a TBoMS-supporting subgroup 304.
  • the UE 10 If the UE 10 supports TBoMS, during a random access procedure, the UE 10 selects a preamble in a TBoMS-supporting subgroup, which indicates that the UE 10 supports TBoMS, and transmits an MSG1 message with the selected preamble.
  • the base station 20 provides the TBoMS configurations for the UE.
  • the TBoMS configurations includes TBoMS resources configuration for the UE.
  • the UE 10 transmits one TB over multiple slots (such as MSG3) based on the TBoMS configurations.
  • MSG3/MSG5 is not a specific message and varies according to a state and application scenarios of the UE 10.
  • a radio resource control (RRC) connection request may be included and transmitted in an MSG3 message from the UE 10.
  • RRC connection re-establishment procedure an RRC connection re-establishment request may be included and transmitted in an MSG3 message from the UE 10.
  • An MSG3 message may comprise an RRC setup request, an RRC re-establishment request, an RRC resume request, an RRC re-configuration, or others.
  • an MSG5 message may comprise an RRC setup complete, an RRC Re-establishment complete, an RRC resume complete, an RRC re-configuration complete, or others.
  • Other messages such as UE capability information, security mode complete, UL information transfer, UE information response, measurement report, also can be used to report the TBoMS capability of the UE 10.
  • the parameters related to the TBoMS capability of the UE 10 can be included in a new information element (IE) or a legacy IE.
  • the TBoMS capability indicates whether the UE 10 support TBoMS or not.
  • Table 1 shows an example of a new IE with an indicator field (or parameter) supTBoMS that indicate the TBoMS capability of the UE 10:
  • the UE 10 may include the TBoMS capability in a legacy IE, such as Phy-Parameters or RF-Parameters.
  • a legacy IE such as Phy-Parameters or RF-Parameters.
  • Table 2 and Table 3 shows examples of a legacy IE with the indicator field (or parameter) supTBoMS that indicate the TBoMS capability of the UE 10:
  • the network such as the base station 20, initiates a UE capability inquiry procedure by sending a UE capability request to the UE 10 when the network needs (additional) TBoMS capability or other radio access capability information of the UE 10 (230) .
  • the UE 10 report its capability including the TBoMS capability to the base station 20 in response to the request (232) .
  • the base station 20 After receiving or retrieving the capability of the UE 10, the base station 20 provides the TBoMS configurations (including resources configuration) for the UE 10.
  • the UE 10 transmits one TB over multiple slots based on TBoMS configurations.
  • the TBoMS representations of the at least one transport block may comprise segments of one transport block in a transmission mode of a first type TBoMS or a second type TBoMS.
  • the first type TBoMS has non-back-to-back (discontinuous) time domain resource allocation (TDRA) in frequency division duplex (FDD) or discontinuous TDRA in time division duplex (TDD)
  • the second type TBoMS has back-to-back (continuous) TDRA in FDD or discontinuous TDRA in TDD.
  • TDRA time domain resource allocation
  • FDD frequency division duplex
  • TDD time division duplex
  • the second type TBoMS has back-to-back (continuous) TDRA in FDD or discontinuous TDRA in TDD.
  • the non-back-to-back (discontinuous) TDRA two adjacent segments in the segments of the transport block are separately allocated to two slots.
  • transmission of the transport block is continuously or back-to-back allocated to one or more adjacent slots,
  • TBoMS supports PUSCH repetition with Type A like TDRA (referred to as TDRA type A) and/or Type B like TDRA (referred to as TDRA type B) .
  • Type A like TDRA
  • Type B like TDRA
  • the two types of TDRA may include different features:
  • ⁇ PUSCH repetition type A like TDRA the number of allocated symbols is the same in each slot.
  • ⁇ PUSCH repetition type B like TDRA the number of allocated symbols in each slot are different.
  • TBoMS with TDRA type A may be referred to as type A TBoMS
  • TBoMS with TDRA type B may be referred to as type B TBoMS
  • the first type TBoMS may comprise the type A TBoMS
  • the second type TBoMS may comprise the type B TBoMS. If the UE 10 supports both types, the UE 10 may send an indication that indicates the UE 10 supports the Type A TBoMS or Type B TBoMS or both.
  • Preamble Group A and/or Group B may be subdivided into a TBoMS-TdraTypeA sub-group, a TBoMS-TdraTypeB sub-group, and non-TBoMS-supporting subgroups.
  • the TBoMS-supporting subgroup 302 in the preamble Group A comprises a TBoMS-TdraTypeA sub-group 305 and a TBoMS-TdraTypeB sub-group 306.
  • the TBoMS-supporting subgroup 304 in the preamble Group B comprises a TBoMS-TdraTypeA sub-group 307 and a TBoMS-TdraTypeB sub-group 308.
  • the UE 10 may use a preamble selected from a TBoMS-TdraTypeA sub-group to implicitly notify the base station that the UE 10 supports type A TBoMS, and use a preamble selected from a TBoMS-TdraTypeB sub-group to implicitly notify the base station that the UE 10 supports type B TBoMS.
  • the TBoMS-supporting subgroup 302 in the preamble Group A may comprise a TBoMS-TdraTypeA sub-group while the TBoMS-supporting subgroup 304 in the preamble Group B may comprise a TBoMS-TdraTypeB sub-group.
  • the TBoMS-supporting subgroup 302 in the preamble Group A may comprise a TBoMS-TdraTypeB sub-group while the TBoMS-supporting subgroup 304 in the preamble Group B may comprise a TBoMS-TdraTypeA sub-group.
  • the UE 10 may use one or two parameters as an indication to indicate one or more TBoMS types as the TBoMS capability of the UE 10.
  • Table 4 shows an example of the indicator field (or parameter) supTBoMS that indicates one or more TBoMS types as the TBoMS capability of the UE 10
  • Table 5 shows an example of the indicator field (or parameter) supTdraTypeforTBoMS that indicates one or more TBoMS types as the TBoMS capability of the UE 10:
  • the TBoMS representations of the at least one transport block may comprise segments of one transport block in the transmission mode of the first type TBoMS.
  • the UE 10 transmits one TB over the consecutive available slots, and time domain symbols assigned to each segment of the TB are the same in each of those slots.
  • Table 6 shows an example of TBoMS configuration comprises TDRA configuration for TBoMS of the UE 10:
  • the network may configure the maximum number of TBoMS configurations in a PUSCH TDRA table PUSCH-TdraForTBoMS using a parameter, such as maxNrofTBoMS.
  • the parameter maxNrofTBoMS representing the maximum number of TBoMS configurations in the PUSCH TDRA table may be set to 2, 4, 8, or 16.
  • the PUSCH TDRA table PUSCH-TdraForTBoMS comprises configuration fields, each of which represents a TDRA configuration of TBoMS.
  • Table 7 shows an example of the PUSCH TDRA table PUSCH-TdraForTBoMS as a portion of the TBoMS configuration:
  • FIG. 7 (a) shows TDRA configuration of TBoMS specified by a start symbol S and a length L of each segment of a type A TBoMS TB of the UE 10 in each slot allocated to segments of the TB in the type A TBoMS transmission mode of the UE 10.
  • Each of the UE 10 and the base station 20 may obtain a start and length indicator value (SLIV) from the start symbol S and the length L or obtain the start symbol S and the length L from the SLIV.
  • SLIV start and length indicator value
  • each of the UE 10 and the base station 20 may obtain the SLIV from the start symbol S and the end symbol Z or obtain the start symbol S and the end symbol Z from the SLIV.
  • Table 8 show an example of SLIV derivation.
  • Table 9 shows an example of the PUSCH TDRA table PUSCH-TdraForTBoMS as a portion of the TBoMS configuration.
  • a parameter startSymbolAndLength is the SLIV that specifies the start symbol S and the length L.
  • a parameter numberOfSlot represents a number of slots of one TBoMS transmission, not including multiple receptions.
  • Table 10 shows another example of the PUSCH TDRA table PUSCH-TdraForTBoMS as a portion of the TBoMS configuration.
  • a parameter startSymbol specifies the start symbol S, and a parameter length specifies the length L of a segment of the TB.
  • the parameter numberOfSlot represents a number of slots of one TBoMS transmission, not including multiple receptions.
  • Table 11 shows another example of the PUSCH TDRA table PUSCH-TdraForTBoMS as a portion of the TBoMS configuration.
  • the parameter startSymbol specifies the start symbol S
  • a parameter endSymbol specifies the end symbol Z.
  • the parameter numberOfSlot represents a number of slots of one TBoMS transmission, not including multiple receptions.
  • TDRA type A For TDRA type A, “length” and “endSymbol” are relative to the start symbol S of the same time slot.
  • the number of slots is part of the TDRA table, so the complete time domain resource information can be obtained by determining a row index of the TDRA table.
  • the UE 10 and the base station 20 may negotiate the TDRA configuration of TBoMS by sending an RRC message or DCI carrying the row index from the base station 20 to the UE 10.
  • a value of the numberOfSlot needs to be signified and determined through an RRC message or DCI from the base station 20 to the UE 10.
  • the complete TDRA configuration can be determined by the value of the numberOfSlot in combination with the row index of the TDRA table.
  • the UE 10 allocates available resources, such as available slots or available symbols, to the TB for TBoMS.
  • TDD time division duplexing
  • the DL slots are not counted as available slots for TBoMS of the UE 10.
  • the UL slots are counted as the available slots for TBoMS of the UE 10.
  • UL slots are conditionally counted as available slots for TBoMS of the UE 10.
  • the condition is that the number of continuous available UL symbols (e.g., rule out the invalid symbols) is greater than a certain threshold.
  • the one or more UL slots are counted as available slots for TBoMS of the UE 10.
  • the one or more UL slots are not counted as available slots for TBoMS of the UE 10.
  • the special slot can be scheduled by the UE 10 as a resource (i.e., an available slot) for TBoMS.
  • a resource i.e., an available slot
  • the threshold value is 6, slot formats 10-15, 34-42 in TS 38.213 Table 11.1.1-1 can be scheduled as a resource for TBoMS.
  • the special slot is not scheduled as a resource (i.e., an available slot) for TBoMS of the UE 10, and the UE 10 schedules the first subsequent UL slot for TBoMS of the UE 10.
  • the continuous available UL symbols can comprise symbols other than those occupied by other UL transmissions, e.g., sounding reference signal (SRS) and uplink control information (UCI) multiplexing.
  • SRS sounding reference signal
  • UCI uplink control information
  • the UE 10 determines that SRS symbols are counted as a consecutive or continuous available UL symbols.
  • the UE 10 determines that SRS symbols are not counted as a consecutive or continuous available UL symbols.
  • the UE 10 may obtain a group of resources (e.g., available slots) for TBoMS as a transmission occasion for TBoMS (TOT) .
  • a TOT is constituted of at least one slot or multiple consecutive physical slots for UL transmission of TBoMS TB segments.
  • the UE 10 transmits a TBoMS TS 340 in TOT#1, TOT#2, and TOT#3 to the base station 20.
  • the resource configuration of the TBoMS representations of the at least one TB comprises one or more of:
  • the TB is carried out in the consecutive symbols and slots.
  • TDRA Type A is to be supported in standardization as TDRA configuration for TBoMS.
  • the network such as the base station 20, sends a type indicator in the TBoMS configuration to enable the Type B TBoMS for the UE 10.
  • Table 12 shows an example of the type indicator in TDRA configuration in the TBoMS configuration for the TBoMS of the UE 10.
  • the parameter pusch-TbomsTypeIndicator specifies one of the type A TBoMS (or TDRA type A) or the type B TBoMS (or TDRA type B) .
  • a constant pusch-TbomsTypeA represents the type A TBoMS (or TDRA type A)
  • a constant pusch-TbomsTypeB represents the type B TBoMS (or TDRA type B) .
  • the TBoMS representations of the at least one transport block may comprise segments of one transport block in the transmission mode of the second type TBoMS.
  • the resource configuration of the TBoMS representations of the at least one TB comprises one or more of:
  • FIG. 10 shows an example of TDRA configuration for type B TBoMS (or TDRA type B) .
  • Table 13 shows an example of the PUSCH TDRA table PUSCH-TdraForTBoMS as a portion of the TBoMS configuration.
  • a parameter mappingType specifies one of the type A TBoMS (or TDRA type A) or the type B TBoMS (or TDRA type B) .
  • a constant typeA represents the type A TBoMS (or TDRA type A)
  • a constant typeB represents the type B TBoMS (or TDRA type B) .
  • the parameter startSymbol specifies the start symbol S
  • a parameter endSymbol specifies the end symbol Z.
  • the parameter numberOfSlot represents a number of slots of one TBoMS transmission, not including multiple receptions.
  • FIG. 11 shows another example of TDRA configuration for type B TBoMS (or TDRA type B) .
  • Table 14 shows an example of the PUSCH TDRA table PUSCH-TdraForTBoMS as a portion of the TBoMS configuration.
  • the parameter mappingType specifies one of the type A TBoMS (or TDRA type A) or the type B TBoMS (or TDRA type B) .
  • the constant typeA represents the type A TBoMS (or TDRA type A)
  • the constant typeB represents the type B TBoMS (or TDRA type B) .
  • the parameter startSymbol specifies the start symbol S
  • a parameter endSymbol specifies the end symbol Z.
  • the parameter numberOfSlot represents a number of slots of one TBoMS transmission, not including multiple receptions.
  • the parameter startSymbolAndLength is the SLIV that specifies the start symbol S and the length L.
  • the parameter startSymbol indicates the start symbol of the first slot of the TBoMS TB in PUSCH transmission
  • the parameter endSymbol indicates the end symbol of the last slot of the TBoMS TB in PUSCH transmission.
  • the number of slots is part of the TDRA table, so the complete time domain resource information can be obtained by determining a row index of the TDRA table.
  • the UE 10 and the base station 20 may negotiate the TDRA configuration of TBoMS by sending an RRC message or DCI carrying the row index from the base station 20 to the UE 10.
  • a value of the numberOfSlot needs to be signified and determined through an RRC message or DCI from the base station 20 to the UE 10.
  • the complete TDRA configuration can be determined by the value of the numberOfSlot in combination with the row index of the TDRA table.
  • the DL slots are not counted as the available slot for TBoMS of the UE 10.
  • the UL slots are counted as the available slot for TBoMS of the UE 10.
  • Special slots such as special slots in FIG. 12, are counted as the available slot for TBoMS of the UE 10.
  • special slots such as special slots in FIG. 12, are conditionally counted as available slots for TBoMS.
  • the condition is that the number of continuous available UL symbols is greater than a certain threshold. If the number of continuous available UL symbols in the special slot is greater than a certain threshold, the special slot can be scheduled by the UE 10 as a resource (i.e., available slot) for TBoMS.
  • this threshold may be smaller than that of TDRA Type A. An example of the case is shown in FIG. 7.
  • the UE 10 may obtain a group of resources for TBoMS as a transmission occasion for TBoMS (TOT) .
  • a TOT is constituted of at least one slot or multiple consecutive physical slots for UL transmission.
  • the UE 10 transmits a TBoMS TS 340 in TOT#1, TOT#2, and TOT#3 to the base station 20.
  • the TBoMS configuration comprises time domain resource allocation (TDRA) configuration of the segments of the transport block
  • the TDRA configuration comprises an indication of continuous TDRA for the segments of the transport block of the first type TBoMS (e.g., Type A TBoMS) in FDD, continuous TDRA for the segments of the transport block of the first type TBoMS in TDD, continuous TDRA for the segments of the transport block of the second type TBoMS (e.g., Type B TBoMS) in FDD, continuous TDRA for the segments of the transport block of the second type TBoMS in TDD, or continuous TDRA for the segments of the transport block of the second type TBoMS in TDD
  • TDRA time domain resource allocation
  • the repetition configuration may comprise a field of the upper limit of repetitions, which represents an upper limit of repetitions of the TB, and the UE limits a number of repetitions of the TB to the upper limit of repetitions.
  • the upper limit is a number selected from ⁇ 1, 2, 3, 4, 7, 8 ⁇ .
  • a gap can be set between two repetitions to give other UL transmission an opportunity and avoid continuous resources being occupied by the TBoMS TB.
  • the TBoMS configuration comprises repetition configuration including a repetition type of the repetitions of the transport block, the repetition type comprises an indication of a first repetition type or a second repetition type of the repetitions of the transport block.
  • the first repetition type two adjacent repetitions in the repetitions of the transport block are separately allocated to two slots.
  • the second repetition type two adjacent nominal repetitions in the repetitions of the transport block are continuously or back-to-back allocated to one or more adjacent slots, i.e., two adjacent nominal repetitions in the repetitions of the transport block are continuously allocated to one or more adjacent slots.
  • the first repetition type comprises repetition type A
  • the second repetition type comprises repetition type B.
  • the time domain symbols assigned to a repetition of the TBoMS TB are the same.
  • a gap is optionally configured and located between two repetitions of the TB in units of slots, frames, or symbols.
  • a length of the gap may be optionally configured to 0, 1, 2, 3, or 4 time slots.
  • the UE 10, during the gap performs downlink reception or uplink transmission with a different phase or a different power level.
  • FIG. 13 shows a gap and a repetition Rep#1, and a repetition Rep#2 of the TBoMS TB of the UE 10. The repetitions Rep#1 and Rep#2 are arranged in the repetition type A.
  • the time domain resources are continuous between repetitions of the TBoMS TB.
  • a gap is optionally configured and located between two repetitions of the TB in units of slots, frames, or symbols.
  • a length of the gap may be optionally configured to 0, 1, 2, 3, or 4 time slots.
  • the UE 10, during the gap performs downlink reception or uplink transmission with a different phase or a different power level.
  • FIG. 14 shows a gap and a repetition Rep#1, and a repetition Rep#2 of the TBoMS TB of the UE 10.
  • the repetitions Rep#1 and Rep#2 are arranged in the repetition type B.
  • the time domain resources, such as symbols, allocated to the repetitions of the TB are continuous except for the gap, and symbols assigned to each repetition of the TBoMS TB may be the same or different.
  • the number of symbols allocated to each of the repetitions is the same.
  • Table 15 shows an example of a new IE as a portion of the repetition configuration with a repetition type indicator field (or parameter) repTypeIndicator that indicates the repetition type for the TBoMS TB of the UE 10.
  • the IE including the repetition type indicator field (or parameter) repTypeIndicator may be transmitted in an RRC message or DCI.
  • the parameter numberOfRepetitions specifies a number of repetitions for the TBoMS TB of the UE 10.
  • the parameter gapOfRepetitions specifies a length of the gap between two repetitions for the TBoMS TB of the UE 10
  • the PUSCH TDRA for TBoMS of the UE 10 may be configured along with the cell specific PUSCH parameters (e.g., in SIB1) .
  • Table 16 shows an example of a new IE of PUSCH configuration PUSCH-ConfigCommon in SIB1 with TDRA configuration for TBoMS of the UE 10 specified by a parameter pusch-TimeDomainAllocationListForTBoMS.
  • the parameter pusch-TimeDomainAllocationListForTBoMS refers to a TDRA table of TBoMS (i.e., PUSCH-TdraForTBoMS) .
  • FIG. 15 shows an example of the RAR carrying the TBoMS configuration in a field or a sub-field.
  • the TBoMS configuration may be contained in a sub-field 312 of a “UL Grant” field in a RAR 300b (as shown in FIG. 15 (b) ) or a new field 311 in the RAR 300a (as shown in FIG. 15 (a) ) .
  • the field “UL Grant” is related to MSG3 PUSCH resources.
  • Table 17 shows an example of a field “PUSCH time resource allocation” of the RAR. If the TBoMS configuration indicates TBoMS enabled, the “PUSCH time resource allocation” field value indicates one row of the time domain resource allocation table of TBoMS (i.e., PUSCH-TdraForTBoMS) . Otherwise, the field indicates one row of the legacy time domain resource allocation table (e.g., TS 38.331 PUSCH time domain resource allocation list table) . If the field “PUSCH time resource allocation” has 4 bits, a value of the field “PUSCH time resource allocation” may indicate one among 16 rows of the TDRA table (i.e., PUSCH-TdraForTBoMS) .
  • TDRA table The determination and processing of the TDRA table are defined in TS 38.214 Clause 6.1.2.1.1.
  • Each indexed row in the TDRA table i.e., PUSCH-TdraForTBoMS
  • TBoMS i.e., PUSCH-TdraForTBoMS
  • the UE 10 supports repetitions of the TBoMS TB (i.e., PUSCH) in an MSG3 message
  • the related repetition configuration may be configured along with the TDRA configuration (e.g., in SIB1) .
  • the UE 10 determines the MSG3 repetition according to the repetition configuration.
  • the UE 10 may support frequency hopping (FH) for TBoMS without repetition as has been disclosed in patent application PCT/CN2021/093048.
  • FH frequency hopping
  • the base station 20 and the UE 10 may support intra-slot and inter-slot FH for TBoMS TB (i.e., PUSCH) .
  • TBoMS TB i.e., PUSCH
  • the base station 20 and the UE 10 may support intra-slot and inter-slot FH for TBoMS TB (i.e., PUSCH) .
  • TBoMS TB i.e., PUSCH
  • the base station 20 and the UE 10 may support FH for TBoMS TB (i.e., PUSCH) with repetitions.
  • the base station 20 and the UE 10 may support intra-slot FH (as shown in FIG. 16 to FIG. 17) , and inter-slot FH (FIG. 18 to FIG. 19) , and inter-repetition FH (FIG. 20 to FIG. 21) for TBoMS with repetition type A and/or repetition type B. Unavailable slots are ignored for frequency hopping in TDD case.
  • the repetition type may be indicated via an RRC message or DCI.
  • the frequency hopping type also may be indicated via an RRC message or DCI, and the types may be intra-slot FH, inter-slot FH or inter-repetition FH.
  • the TBoMS representations of the at least one transport block may comprise segments of one transport block in a transmission mode of the first type TBoMS (e.g., type A TBoMS) or a second type TBoMS (e.g., type B TBoMS) .
  • the TBoMS configuration comprises repetition configuration including a repetition type of the repetitions of the transport block, the repetition type comprises an indication of the first repetition type (e.g., repetition type A) or the second repetition type (e.g., repetition type B) of the repetitions of the transport block.
  • the first repetition type e.g., repetition type A
  • two adjacent repetitions in the repetitions of the transport block are separately allocated to two slots.
  • two adjacent nominal repetitions in the repetitions of the transport block are continuously or back-to-back allocated to one or more adjacent slots, i.e., two adjacent nominal repetitions in the repetitions of the transport block are continuously allocated to one or more adjacent slots.
  • the UE 10 and the base station 20 negotiate frequency hopping configuration of a frequency hopping function.
  • the frequency hopping configuration comprises an indication of a mode configuration of the frequency hopping function for the TBoMS representations of the at least one transport block.
  • the mode configuration of the frequency hopping function comprises a frequency hopping type.
  • the frequency hopping (FH) type of the frequency hopping function indicates one of the inter-symbol FH, intra-slot FH, inter-slot FH or inter-repetition FH applicable to the first repetition type (e.g., repetition type A) , one of inter-symbol FH, intra-slot FH, inter-slot FH or inter-repetition FH applicable to the second repetition type (e.g., repetition type B) .
  • the frequency hopping configuration comprises a control signal carrying an indication for enabling or disabling of the frequency hopping function.
  • the frequency hopping configuration is included in a message of downlink control information (DCI) , radio resource control (RRC) , or configured grant (CG) configuration.
  • DCI downlink control information
  • RRC radio resource control
  • CG configured grant
  • Time domain window (TDW) and bundling are Time domain window (TDW) and bundling:
  • the coverage enhancement configuration including the TBoMS configuration may further comprise time domain window (TDW) configuration and bundling configuration of the TBoMS representations.
  • TDW time domain window
  • bundling configuration of the TBoMS representations may be changed during 3GPP standardization efforts.
  • a time domain window used in the specification and can be replaced by other technical terms.
  • the base station 20, such as a gNB configures the time domain window, such that the UE 10 maintains power consistency and phase continuity among PUSCH transmissions during the window. All of the schemes in the aforementioned embodiments may be applied to the time domain windows.
  • the UE 10 negotiates with the base station 20 TDW configuration of a TDW function.
  • the time domain window configuration of the TBoMS representations comprises one or more of:
  • an indication for enabling or disabling of the time domain window function for the TBoMS representations of the at least one transport block
  • an indication of a mode configuration of the time domain window function for the TBoMS representations of the at least one transport block.
  • the mode configuration of the time domain window function comprises one or both of a time domain window type and a time domain window size.
  • the time domain window type indicates inter-slot time domain window or inter-repetition time domain window.
  • the time domain window size indicates a number of slots for the inter-slot time domain window or a number of repetitions for the inter-repetition time domain window.
  • the time domain window configuration comprises a control signal carrying an indication for enabling or disabling of the time domain window function.
  • the time domain window configuration is included in a message of downlink control information (DCI) , radio resource control (RRC) , or configured grant (CG) configuration.
  • DCI downlink control information
  • RRC radio resource control
  • CG configured grant
  • the UE 10 negotiates with the base station 20 bundling configuration of a bundling function.
  • the bundling configuration of the TBoMS representations comprises one or more of:
  • an indication for enabling or disabling of the bundling function for the TBoMS representations of the at least one transport block
  • an indication of a mode configuration of the bundling function for the TBoMS representations of the at least one transport block.
  • the mode configuration of the bundling function comprises one or both of a bundling type and a bundling size.
  • the bundling type indicates inter-slot bundling or inter-repetition bundling.
  • the bundling size indicates a number of slots for the inter-slot bundling or a number of repetitions for the inter-repetition bundling.
  • the bundling configuration comprises a control signal carrying an indication for enabling or disabling of the bundling function.
  • the bundling configuration is included in a message of downlink control information (DCI) , radio resource control (RRC) , or configured grant (CG) configuration.
  • DCI downlink control information
  • RRC radio resource control
  • CG configured grant
  • Table 18 shows possible combinations of TDW types, bundling types, frequency hopping types, and repetition type A/B.
  • FIG. 16 to FIG. 25 show the cases in Table 18.
  • TDW type can be indicated implicitly by the FH type.
  • An explicit indication of the TDW configuration including TDW type and TDW size is not excluded.
  • the TDW configuration including TDW type and TDW size may be configured by a higher layer parameter (e.g., PUSCH configuration or configured UL grant) or a DCI (e.g., DCI 0_x) field explicitly or implicitly.
  • Inter-symbol FH represents the FH function enabled between the UE 10 and base station 20 based on a granularity of one or more symbols;
  • “Intra-slot FH” represents the FH function enabled between the UE 10 and base station 20 based on a granularity of symbols or sub-slot (s) ;
  • Inter-slot FH represents the FH function enabled between the UE 10 and base station 20 based on a granularity of one or more slots;
  • Inter-repetition FH represents the FH function enabled between the UE 10 and base station 20 based on a granularity of one or more repetitions.
  • the TBoMS representations of the at least one transport block comprise repetitions of one TBoMS transport block.
  • the TBoMS TB may be type A TBoMS or type B TBoMS.
  • TDW and bundling may be operated with repetition type A/B without frequency hopping.
  • Table 19 shows possible combinations of TDW types, bundling types, and repetition type A/B without frequency hopping.
  • Inter-slot TDW represents the TDW function enabled between the UE 10 and base station 20 based on a granularity of one or more slots;
  • Inter-repetition TDW represents the TDW function enabled between the UE 10 and base station 20 based on a granularity of one or more repetitions
  • Inter-symbol TDW represents the TDW function enabled between the UE 10 and base station 20 based on a granularity of one or more symbols
  • Inter-slot bundling represents the bundling function enabled between the UE 10 and base station 20 based on a granularity of one or more slots;
  • Inter-repetition bundling represents the bundling function enabled between the UE 10 and base station 20 based on a granularity of one or more repetitions
  • Inter-symbol bundling represents the bundling function enabled between the UE 10 and base station 20 based on a granularity of one or more slots.
  • FIG. 16 shows examples of intra-slot frequency hopping with repetition type A.
  • An axis f represents a frequency domain.
  • segments of the TB in repetition Rep#1 and Rep#2 are transmitted on different frequency bands from the UE 10 to base station 20 during intra-slot frequency hopping operations.
  • FIG. 17 shows examples of intra-slot frequency hopping with repetition type B.
  • segments of the TB in repetition Rep#1 and Rep#2 are transmitted on different frequency bands from the UE 10 to base station 20 during intra-slot frequency hopping operations.
  • FIG. 18 shows examples of inter-slot frequency hopping with repetition type A.
  • segments of the TB in repetition Rep#1 and Rep#2 are transmitted on different frequency bands from the UE 10 to base station 20 during inter-slot frequency hopping operations.
  • FIG. 19 shows examples of inter-slot frequency hopping with repetition type B.
  • segments of the TB in repetition Rep#1 and Rep#2 are transmitted on different frequency bands from the UE 10 to base station 20 during inter-slot frequency hopping operations.
  • FIG. 20 shows examples of inter-repetition frequency hopping with repetition type A.
  • segments of the TB in repetition Rep#1 are transmitted on the same frequency band (referred to as a first frequency band) from the UE 10 to the base station 20 during inter-repetition frequency hopping operations.
  • Segments of the TB in repetition Rep#2 are transmitted on the same frequency band (referred to as a second frequency band) from the UE 10 to the base station 20 during inter-repetition frequency hopping operations.
  • the first frequency band is different from the second frequency band.
  • FIG. 21 shows examples of inter-repetition frequency hopping with repetition type B.
  • segments of the TB in repetition Rep#1 are transmitted on the same frequency band (referred to as a first frequency band) from the UE 10 to the base station 20 during inter-repetition frequency hopping operations.
  • Segments of the TB in repetition Rep#2 are transmitted on the same frequency band (referred to as a second frequency band) from the UE 10 to the base station 20 during inter-repetition frequency hopping operations.
  • the first frequency band is different from the second frequency band.
  • Frequency hopping bundling and/or time domain window
  • the UE 10 and the base station 20 may perform bundling of frequency hopping and time domain window (TDW) .
  • TDW time domain window
  • the aforementioned cases of TBoMS with repetition type A and type B should support the bundling of frequency hopping and/or time domain window.
  • the base station 20 can receive the UE capability and provides bundling configuration and/or TDW configuration for the UE 10.
  • the bundling or TDW may be specified in units of repetitions, slots, and/or symbols, and specified via RRC or DCI.
  • FIG. 22 shows examples of inter-slot frequency hopping with repetition type A and with bundling/TDW.
  • the UE 10 transmits to the base station 20 TBoMS TB with the bundling function and/or the TDW function in units of slots.
  • segments of the TB in a bundling or a TDW are transmitted on the same frequency band (referred to as a first frequency band) from the UE 10 to base station 20 during frequency hopping operations.
  • a second frequency band the same frequency band from the UE 10 to base station 20 during frequency hopping operations.
  • the first frequency band is different from the second frequency band.
  • FIG. 23 shows examples of inter-slot frequency hopping with repetition type B and with bundling/TDW.
  • the UE 10 transmits to the base station 20 TBoMS TB with the bundling function and/or the TDW function in units of slots.
  • segments of the TB in a bundling or a TDW are transmitted on the same frequency band (referred to as a first frequency band) from the UE 10 to base station 20 during frequency hopping operations.
  • a second frequency band the same frequency band from the UE 10 to base station 20 during frequency hopping operations.
  • the first frequency band is different from the second frequency band.
  • FIG. 24 shows examples of inter-repetition frequency hopping with repetition type A and with bundling/TDW.
  • the UE 10 transmits to the base station 20 TBoMS TB with the bundling function and/or the TDW function in units of slots or repetitions.
  • segments of the TB in a bundling or a TDW are transmitted on the same frequency band (referred to as a first frequency band) from the UE 10 to base station 20 during frequency hopping operations.
  • Segments of the TB in a subsequent bundling or a subsequent TDW are transmitted on the same frequency band (referred to as a second frequency band) from the UE 10 to base station 20 during frequency hopping operations.
  • the first frequency band is different from the second frequency band.
  • FIG. 25 shows examples of inter-repetition frequency hopping with repetition type B and with bundling/TDW.
  • the UE 10 transmits to the base station 20 TBoMS TB with the bundling function and/or the TDW function in units of slots or repetitions.
  • segments of the TB in a bundling or a TDW are transmitted on the same frequency band (referred to as a first frequency band) from the UE 10 to the base station 20 during frequency hopping operations.
  • Segments of the TB in a subsequent bundling or a subsequent TDW are transmitted on the same frequency band (referred to as a second frequency band) from the UE 10 to the base station 20 during frequency hopping operations.
  • the first frequency band is different from the second frequency band.
  • FIG. 26 is a block diagram of an example system 700 for wireless communication according to an embodiment of the present disclosure. Embodiments described herein may be implemented into the system using any suitably configured hardware and/or software.
  • FIG. 26 illustrates the system 700 including a radio frequency (RF) circuitry 710, a baseband circuitry 720, a processing unit 730, a memory/storage 740, a display 750, a camera 760, a sensor 770, and an input/output (I/O) interface 780, coupled with each other as illustrated.
  • RF radio frequency
  • the processing unit 730 may include circuitry, such as, but not limited to, one or more single-core or multi-core processors.
  • the processors may include any combinations of general-purpose processors and dedicated processors, such as graphics processors and application processors.
  • the processors may be coupled with the memory/storage and configured to execute instructions stored in the memory/storage to enable various applications and/or operating systems running on the system.
  • the radio control functions may include, but are not limited to, signal modulation, encoding, decoding, radio frequency shifting, etc.
  • the baseband circuitry may provide for communication compatible with one or more radio technologies.
  • the baseband circuitry may support communication with 5G NR, LTE, an evolved universal terrestrial radio access network (EUTRAN) and/or other wireless metropolitan area networks (WMAN) , a wireless local area network (WLAN) , a wireless personal area network (WPAN) .
  • EUTRAN evolved universal terrestrial radio access network
  • WMAN wireless metropolitan area networks
  • WLAN wireless local area network
  • WPAN wireless personal area network
  • Embodiments in which the baseband circuitry is configured to support radio communications of more than one wireless protocol may be referred to as multi-mode baseband circuitry.
  • the baseband circuitry 720 may include circuitry to operate with signals that are not strictly considered as being in a baseband frequency.
  • baseband circuitry may include circuitry to operate with signals having an intermediate frequency, which is between a baseband frequency and a radio frequency.
  • the system 700 may be a mobile computing device such as, but not limited to, a laptop computing device, a tablet computing device, a netbook, an ultrabook, a smartphone, etc.
  • the system may have more or less components, and/or different architectures.
  • the methods described herein may be implemented as a computer program.
  • the computer program may be stored on a storage medium, such as a non-transitory storage medium.
  • the embodiment of the present disclosure is a combination of techniques/processes that can be adopted in 3GPP specification to create an end product.
  • the software function unit is realized and used and sold as a product, it can be stored in a readable storage medium in a computer.
  • the technical plan proposed by the present disclosure can be essentially or partially realized as the form of a software product.
  • one part of the technical plan beneficial to the conventional technology can be realized as the form of a software product.
  • the software product in the computer is stored in a storage medium, including a plurality of commands for a computational device (such as a personal computer, a server, or a network device) to run all or some of the steps disclosed by the embodiments of the present disclosure.
  • the storage medium includes a USB disk, a mobile hard disk, a read-only memory (ROM) , a random access memory (RAM) , a floppy disk, or other kinds of media capable of storing program codes.
  • a user equipment (UE) and a base station uplink execute a configuration method comprising negotiating TBoMS configuration for uplink transmission.
  • the UE allocates TBoMS representations of at least one transport block (TB) into a set of the uplink radio resources for uplink transmission based on the TBoMS configuration.
  • the TBoMS configuration can be applied in combination with bundling configuration and frequency hopping configuration of the TBoMS representations.
  • the TBoMS representations may comprise repetitions of a TB, or segments of a TB.
  • Embodiments of this disclosure are to provide methods to solve the problem of joint channel estimation (JCE) for PUSCH.
  • JCE joint channel estimation
  • the invention provides specific methods to support type B TBoMS.

Abstract

A user equipment (UE) and a base station uplink configuration execute a method comprising negotiating TBoMS configuration for uplink transmission. The UE allocates TBoMS representations of at least one transport block (TB) into a set of the uplink radio resources for uplink transmission based on the TBoMS configuration. The TBoMS configuration can be applied in combination with time domain window configuration, bundling configuration, and/or frequency hopping configuration of the TBoMS representations. The TBoMS representations may comprise repetitions of a TB, or segments of a TB.

Description

UPLINK CONFIGURATION METHOD, USER EQUIPMENT, AND BASE STATION Technical Field
The present disclosure relates to the field of communication systems, and more particularly, to an uplink configuration method, a user equipment, and a base station.
Background Art
Wireless communication systems, such as the third-generation (3G) of mobile telephone standards and technology are well known. Such 3G standards and technology have been developed by the Third Generation Partnership Project (3GPP) . The 3rd generation of wireless communications has generally been developed to support macro-cell mobile phone communications. Communication systems and networks have developed towards being a broadband and mobile system. In cellular wireless communication systems, user equipment (UE) is connected by a wireless link to a radio access network (RAN) . The RAN comprises a set of base stations (BSs) which provide wireless links to the UEs located in cells covered by the base station, and an interface to a core network (CN) which provides overall network control. As will be appreciated the RAN and CN each conduct respective functions in relation to the overall network. The 3rd Generation Partnership Project has developed the so-called Long Term Evolution (LTE) system, namely, an Evolved Universal Mobile Telecommunication System Territorial Radio Access Network, (E-UTRAN) , for a mobile access network where one or more macro-cells are supported by a base station known as an eNodeB or eNB (evolved NodeB) . More recently, LTE is evolving further towards the so-called 5G or NR (new radio) systems where one or more cells are supported by a base station known as a gNB.
Technical Problem
In 3GPP Release 17, the work item “NR coverage enhancements” is in progress. Coverage is one of the key factors of service quality for a cellular communication network. Compared to LTE, NR is designed to operate at much higher frequencies such as 28GHz or 39GHz in FR2. Due to the higher frequencies, it is inevitable that NR wireless channels will be subject to higher path-loss making it more challenging to maintain an adequate quality of service comparable to that of legacy radio access technologies (RATs) . Coverage-enhancement techniques are essentially providing UEs with good service quality wherever the UEs are located.
Coverage enhancement is to specify enhancements for physical uplink shared channel (PUSCH) , physical uplink control channel (PUCCH) and Msg3 PUSCH for both FR1 and FR2 as well as time-division duplex (TDD) and frequency-division duplex (FDD) . The most valuable resource for coverage enhancement is the time resource, so the time resource should be exploited for efficient use. Transport block over multi-slot (TBoMS) is an important technique for coverage enhancement. With reference to FIG. 27, type A TBoMS can have segments of a PUSCH or PUCCH transport block (TB) in discontinuous (non-back-to-back) PUSCH transmission that has a gap between adjacent segments. Type B TBoMS can have segments of a PUSCH or PUCCH TB in continuous (back-to-back) PUSCH transmission in FDD. Type B TBoMS has discontinuous (non-back-to-back) PUSCH transmission in TDD, which can be deemed as continuous allocated in a time domain if unavailable slots and symbols are not counted as a portion of the type B TBoMS.
3GPP standards will support Type A TBoMS in release 17. Development of Type B TBoMS is still in progress. It is desired to provide methods to support PUSCH repetition Type B like time domain resource allocation (TDRA) (TDRA type B) .
Technical Solution
An object of the present disclosure is to propose an uplink configuration method, a user equipment, and a  base station
In a first aspect, an embodiment of the invention provides an uplink configuration method, executable in a user equipment (UE) , comprising:
negotiating one transport block over multi-slot (TBoMS) configuration for uplink transmission; and
allocating TBoMS representations of at least one transport block (TB) into a set of uplink radio resources for uplink transmission based on the TBoMS configuration, wherein the TBoMS configuration comprises resource configuration of the TBoMS representations.
In a second aspect, an embodiment of the invention provides a user equipment (UE) comprising a processor, configured to call and run a computer program stored in a memory, to cause a device in which the chip is installed to execute the disclosed method.
In a third aspect, an embodiment of the invention provides uplink configuration method, executable in a base station, comprising:
negotiating one transport block over multi-slot (TBoMS) configuration for uplink transmission; and
receiving TBoMS representations of at least one transport block (TB) on a set of uplink radio resources for uplink transmission based on the TBoMS configuration, wherein the TBoMS configuration comprises resource configuration of the TBoMS representations.
In a fourth aspect, an embodiment of the invention provides a base station comprising a processor, configured to call and run a computer program stored in a memory, to cause a device in which the chip is installed to execute the disclosed method.
The disclosed method may be implemented in a chip. The chip may include a processor, configured to call and run a computer program stored in a memory, to cause a device in which the chip is installed to execute the disclosed method.
The disclosed method may be programmed as computer executable instructions stored in non-transitory computer-readable medium. The non-transitory computer readable medium, when loaded to a computer, directs a processor of the computer to execute the disclosed method.
The non-transitory computer-readable medium may comprise at least one from a group consisting of: a hard disk, a CD-ROM, an optical storage device, a magnetic storage device, a read only memory, a programmable read only memory, an erasable programmable read only memory, EPROM, an electrically erasable programmable read only memory and a flash memory.
The disclosed method may be programmed as computer program product, that causes a computer to execute the disclosed method.
The disclosed method may be programmed as a computer program, that causes a computer to execute the disclosed method.
Advantageous Effects
Embodiments of the invention proposes a design for radio resource allocation and repetition of TBoMS. The proposed schemes, introduce TBoMS capability identification, TDRA design, MSG3 supporting TBoMS, and TBoMS repetition.
Description of Drawings
In order to more clearly illustrate the embodiments of the present disclosure or related art, the following figures will be described in the embodiments are briefly introduced. It is obvious that the drawings are merely some  embodiments of the present disclosure, a person having ordinary skill in this field can obtain other figures according to these figures without paying the premise.
FIG. 1 illustrates a schematic view of a telecommunication system.
FIG. 2 illustrates a schematic view showing an uplink configuration method according to an embodiment of the invention.
FIG. 3 illustrates a schematic view showing an embodiment of UE capability exposure.
FIG. 4 illustrates a schematic view showing random access preamble groups.
FIG. 5 illustrates a schematic view showing an embodiment of UE capability inquiry.
FIG. 6 illustrates a schematic view showing random access preamble groups for type A and type B TBoMS.
FIG. 7 illustrates a schematic view showing TDRA configuration for TDRA type A.
FIG. 8 illustrates a schematic view showing available symbols for type A TBoMS.
FIG. 9 illustrates a schematic view showing special slots and available slots for type A TBoMS.
FIG. 10 illustrates a schematic view showing an example of TDRA configuration for type B TBoMS (or TDRA type B) .
FIG. 11 illustrates a schematic view showing another example of TDRA configuration for type B TBoMS (or TDRA type B) .
FIG. 12 illustrates a schematic view showing special slots and available slots for type B TBoMS.
FIG. 13 illustrates a schematic view showing a gap being configured in repetition type A of TBoMS.
FIG. 14 illustrates a schematic view showing a gap being configured in repetition type B of TBoMS.
FIG. 15 illustrates a schematic view showing an example of the random access response (RAR) carrying the TBoMS configuration in a field or a sub-field.
FIG. 16 illustrates a schematic view showing examples of intra-slot frequency hopping with repetition type A.
FIG. 17 illustrates a schematic view showing s examples of intra-slot frequency hopping with repetition type B.
FIG. 18 illustrates a schematic view showing examples of inter-slot frequency hopping with repetition type A.
FIG. 19 illustrates a schematic view showing examples of inter-slot frequency hopping with repetition type B.
FIG. 20 illustrates a schematic view showing examples of inter-repetition frequency hopping with repetition type A.
FIG. 21 illustrates a schematic view showing examples of inter-repetition frequency hopping with repetition type B.
FIG. 22 illustrates a schematic view showing examples of inter-slot frequency hopping with repetition type A and with bundling/TDW.
FIG. 23 illustrates a schematic view showing examples of inter-slot frequency hopping with repetition type B and with bundling/TDW.
FIG. 24 illustrates a schematic view showing examples of inter-repetition frequency hopping with repetition  type A and with bundling/TDW
FIG. 25 illustrates a schematic view showing examples of inter-repetition frequency hopping with repetition type B and with bundling/TDW.
FIG. 26 illustrates a schematic view showing a system for wireless communication according to an embodiment of the present disclosure.
FIG. 27 illustrates a schematic view showing examples of type A TBoMS TB and type B TBoMS TB.
DETAILED DESCRIPTION OF EMBODIMENTS
Embodiments of the disclosure are described in detail with the technical matters, structural features, achieved objects, and effects with reference to the accompanying drawings as follows. Specifically, the terminologies in the embodiments of the present disclosure are merely for describing the purpose of the certain embodiment, but not to limit the disclosure.
Fifth-generation (5G) wireless systems are generally a cellular communication system in a frequency range 2 (FR2) ranging from 24.25 GHz to 52.6 GHz, where multiplex transmit (Tx) and receive (Rx) beams are employed by a base station (BS) and/or a user equipment (UE) to combat a large path loss in a high frequency band. Due to hardware limitations and costs, the BS and the UE might only be equipped with a limited number of transmission and reception units (TXRUs) .
With reference to FIG. 1, a telecommunication system including a UE 10a, a UE 10b, a base station (BS) 20a, and a network entity device 30 executes the disclosed method according to an embodiment of the present disclosure. FIG. 1 is shown for illustrative not limiting, and the system may comprise more UEs, BSs, and CN entities. Connections between devices and device components are shown as lines and arrows in the FIGs. The UE 10a may include a processor 11a, a memory 12a, and a transceiver 13a. The UE 10b may include a processor 11b, a memory 12b, and a transceiver 13b. The base station 20a may include a processor 21a, a memory 22a, and a transceiver 23a. The network entity device 30 may include a processor 31, a memory 32, and a transceiver 33. Each of the  processors  11a, 11b, 21a, and 31 may be configured to implement proposed functions, procedures and/or methods described in the description. Layers of radio interface protocol may be implemented in the  processors  11a, 11b, 21a, and 31. Each of the  memory  12a, 12b, 22a, and 32 operatively stores a variety of programs and information to operate a connected processor. Each of the  transceivers  13a, 13b, 23a, and 33 is operatively coupled with a connected processor, transmits and/or receives radio signals or wireline signals. The base station 20a may be an eNB, a gNB, or one of other types of radio nodes, and may configure radio resources for the UE 10a and UE 10b.
Each of the  processors  11a, 11b, 21a, and 31 may include application-specific integrated circuits (ASICs) , other chipsets, logic circuits and/or data processing devices. Each of the  memory  12a, 12b, 22a, and 32 may include read-only memory (ROM) , a random access memory (RAM) , a flash memory, a memory card, a storage medium and/or other storage devices. Each of the  transceivers  13a, 13b, 23a, and 33 may include baseband circuitry and radio frequency (RF) circuitry to process radio frequency signals. When the embodiments are implemented in software, the techniques described herein can be implemented with modules, procedures, functions, entities and so on, that perform the functions described herein. The modules can be stored in a memory and executed by the processors. The memory can be implemented within a processor or external to the processor, in which those can be communicatively coupled to the processor via various means are known in the art.
The network entity device 30 may be a node in a CN. CN may include LTE CN or 5G core (5GC) which includes user plane function (UPF) , session management function (SMF) , mobility management function (AMF) ,  unified data management (UDM) , policy control function (PCF) , control plane (CP) /user plane (UP) separation (CUPS) , authentication server (AUSF) , network slice selection function (NSSF) , and the network exposure function (NEF) . A network in the description may be a telecommunication network. The telecommunication network may be a 3GPP compatible network. In the description, the telecommunication network is referred to as the network and may comprise a RAN and a CN, at least one of the RAN or the CN, or at least one of the base station 20a or the network entity device 30.
With reference to FIG. 2, an example of a UE 10 in the description may include one of the UE 10a or UE 10b. An example of a base station 20 in the description may include the base station 20a. Uplink (UL) transmission of a control signal or data may be a transmission operation from a UE to a base station. Downlink (DL) transmission of a control signal or data may be a transmission operation from a base station to a UE.
The UE 10 executes the uplink configuration method. The UE 10 and base station 20 negotiates coverage enhancement configuration for uplink transmission, where the coverage enhancement configuration includes one transport block (TB) over multi-slot (TBoMS) configuration (step 210) . The at least one transport block may comprise a physical uplink shared channel (PUSCH) or a physical uplink control channel (PUCCH) . The coverage enhancement configuration including the TBoMS configuration may be related to NR coverage enhancements. For example, in the negotiation of the coverage enhancement configuration, the UE 10 may optionally provide UE capabilities of the UE 10 to the base station 20. The UE capabilities may comprise an indication whether the UE support TBoMS, a TBoMS type, a repetition type, frequency hopping (FH) capability, bundling capability, time domain window (TDW) , or any combination thereof. To perform radio resource allocation, the UE 10 allocates the TBoMS representations of at least one transport block (TB) into a set of the uplink radio resources for uplink transmission based on the coverage enhancement configuration including the TBoMS configuration including the TBoMS configuration (step 212) . The coverage enhancement configuration comprises at least one or a combination of TBoMS configuration, repetition configuration, frequency hopping configuration, bundling configuration, and TDW configuration, of the TBoMS representations. In an embodiment of the invention, the TBoMS representations of at least one transport block may comprise segments of one transport block in a transmission mode of one TB over multi-slot (TBoMS) . The TB transmitted in the transmission mode of TBoMS may be referred to as TBoMS TB in the following. In an embodiment of the invention, the TBoMS representations of at least one transport block may comprise repetitions of one transport block.
In an embodiment of the invention, the frequency hopping configuration may comprise an indication for enabling or disabling of a frequency hopping function for the TBoMS representations of the at least one transport block. In an embodiment of the invention, the frequency hopping configuration may comprise an indication of a mode configuration of the frequency hopping function for the TBoMS representations of the at least one transport block. In an embodiment of the invention, the frequency hopping configuration may comprise both of the indications. Alternatively, the UE 10 may receive from the base station 20 a control signal carrying an indication for enabling or disabling of the frequency hopping function for the TBoMS representations of the at least one transport block. The mode configuration of the frequency hopping function comprises frequency hopping type indicating intra-slot frequency hopping, inter-slot frequency hopping, or inter-repetition frequency hopping.
In an embodiment of the invention, the bundling configuration of the TBoMS representations may comprise an indication for enabling or disabling a bundling function for the TBoMS representations of the at least one transport block. In an embodiment of the invention, the bundling configuration of the TBoMS representations may comprise an  indication of a mode configuration of the bundling function for the TBoMS representations of the at least one transport block. In an embodiment of the invention, the bundling configuration may comprise both of the indication. Alternatively, the UE 10 may receive from the base station 20 a control signal carrying an indication for enabling or disabling of a bundling function for the TBoMS representations of the at least one transport block. The bundling configuration of the TBoMS representations may be explicitly represented by a control signal or implicitly represented by the frequency hopping configuration.
In an embodiment of the invention, the TDW configuration of the TBoMS representations may comprise an indication for enabling or disabling of a TDW function for the TBoMS representations of the at least one transport block. In an embodiment of the invention, the TDW configuration of the TBoMS representations may comprise an indication of a mode configuration of the TDW function for the TBoMS representations of the at least one transport block. In an embodiment of the invention, the TDW configuration may comprise both of the indication. Alternatively, the UE 10 may receive from the base station 20 a control signal carrying an indication for enabling or disabling of a TDW function for the TBoMS representations of the at least one transport block. The TDW configuration of the TBoMS representations may be explicitly represented by a control signal or implicitly represented by the frequency hopping configuration. The control signals, the frequency hopping configuration, the TDW configuration, and/or the bundling configuration of the TBoMS representations may be included in a message of downlink control information (DCI) , radio resource control (RRC) , or configured grant (CG) configuration.
The UE 10 transmits the TBoMS representations of the at least one transport block on the set of the uplink radio resources to the base station 20 based on the coverage enhancement configuration including the TBoMS configuration (step 214) . The base station 20 receives the TBoMS representations of the at least one transport block on the set of the uplink radio resources from the UE 10 based on the coverage enhancement configuration including the TBoMS configuration (step 216) .
With reference to FIG. 3, in an embodiment, the UE 10 reports TBoMS capability of the UE 10 to the base station 20 via a UE capability message (220) . The UE capability message carrying the TBoMS capability of the UE 10 may comprise a message of MSG1, MSGA, MSG3, and/or MSG5 or one of other messages. When receiving or retrieving the TBoMS capability of the UE 10, the base station 20 provides the TBoMS configuration for the UE 10 and schedules TBoMS transmission for the UE 10 (222) . The TBoMS configuration comprises resource configuration for the TBoMS representations. Resource configuration for scheduling PUSCH may be performed through configured grant (CG) type 1 or type 2 or dynamic grant (DG) . PUSCH can be dynamically scheduled through DG using following types of transmissions:
● UL grant in uplink DCI format DCI_0_0 or DCI_0_1;
● UL grant in Random Access Response (RAR) ; or
● Semi statically configured UL grant via RRC signaling.
Two types of CG or grant free configuration schemes comprises two type:
● Transmission without grant (TWG) Type 1: Uplink grant configuration, activation/deactivation provided by RRC signaling; and
● TWG Type 2: Uplink grant configuration provided via RRC signaling and its activation/deactivation via PDCCH grant (via UL DCIs) .
The UE 10 performs TBoMS transmission by transmitting one TB over multiple slots (such as in an MSG3 message) to the base station 20 based on the TBoMS configuration (224) .
The UE 10 may autonomously provide UE capability of the UE 10 or provide the UE capability of the UE 10 in response to a request for the UE capability of the UE 10, and the UE capability comprises TBoMS capability of the UE 10. The UE 10 provides the UE capability in a message of MSG1, MSG3, or MSG5. The UE 10 provides the UE capability in a message of MSG1 with a random access preamble that indicates the TBoMS capability of the UE 10. The UE may select he random access preamble from a TBoMS-supporting subgroup or a non-TBoMS-supporting subgroup of random access preambles.
UE capability notification during Msg1/MsgA transmission:
The UE 10 may send to the base station 20 an indication in an MSG1 message or an MSGA message that indicates whether the UE 10 support the capability of TBoMS. MSG1, MSG2, MSG3, and MSG4 messages are used in four-step random access (RA) while MSGA and MSGB messages are used in two-step RA. After receiving the indication, the base station 20 can schedule one TB over multiple slots for subsequent physical uplink shared channel (PUSCH) transmissions (e.g., MSG3) from the UE 10.
Currently, RA preambles are partitioned into 3 sections, that is, Group A, Group B, and contention-free random access (CFRA) preamble, among which Group A and Group B are both contention-based preambles.
To support TBoMS, Group A and/or Group B may be subdivided into a TBoMS-supporting subgroup and a non-TBoMS-supporting subgroup. With reference to FIG. 4, for example, the base station 20 configures the Group A into a non-TBoMS-supporting subgroup 301 and a TBoMS-supporting subgroup 302, and the Group B into a non-TBoMS-supporting subgroup 303 and a TBoMS-supporting subgroup 304.
If the UE 10 supports TBoMS, during a random access procedure, the UE 10 selects a preamble in a TBoMS-supporting subgroup, which indicates that the UE 10 supports TBoMS, and transmits an MSG1 message with the selected preamble. The base station 20 provides the TBoMS configurations for the UE. The TBoMS configurations includes TBoMS resources configuration for the UE. The UE 10 transmits one TB over multiple slots (such as MSG3) based on the TBoMS configurations.
UE capability notification during Msg3/Msg5 transmission and other transmission:
MSG3/MSG5 is not a specific message and varies according to a state and application scenarios of the UE 10. For example, in initial access of the UE 10, a radio resource control (RRC) connection request may be included and transmitted in an MSG3 message from the UE 10. In an RRC connection re-establishment procedure, an RRC connection re-establishment request may be included and transmitted in an MSG3 message from the UE 10. An MSG3 message may comprise an RRC setup request, an RRC re-establishment request, an RRC resume request, an RRC re-configuration, or others. On the other hand, an MSG5 message may comprise an RRC setup complete, an RRC Re-establishment complete, an RRC resume complete, an RRC re-configuration complete, or others.
Other messages, such as UE capability information, security mode complete, UL information transfer, UE information response, measurement report, also can be used to report the TBoMS capability of the UE 10.
The parameters related to the TBoMS capability of the UE 10 can be included in a new information element (IE) or a legacy IE. The TBoMS capability indicates whether the UE 10 support TBoMS or not.
Table 1 shows an example of a new IE with an indicator field (or parameter) supTBoMS that indicate the TBoMS capability of the UE 10:
Table 1
Figure PCTCN2021110143-appb-000001
Figure PCTCN2021110143-appb-000002
Extension of a legacy IE as an example:
When using UE capability information to transfer the TBoMS capability, the UE 10 may include the TBoMS capability in a legacy IE, such as Phy-Parameters or RF-Parameters. For example:
Table 2 and Table 3 shows examples of a legacy IE with the indicator field (or parameter) supTBoMS that indicate the TBoMS capability of the UE 10:
Table 2
Figure PCTCN2021110143-appb-000003
Table 3
Figure PCTCN2021110143-appb-000004
With reference to FIG. 5, in an embodiment, the network, such as the base station 20, initiates a UE capability inquiry procedure by sending a UE capability request to the UE 10 when the network needs (additional) TBoMS capability or other radio access capability information of the UE 10 (230) . The UE 10 report its capability including the TBoMS capability to the base station 20 in response to the request (232) . After receiving or retrieving the capability of the UE 10, the base station 20 provides the TBoMS configurations (including resources configuration) for the UE 10. The UE 10 transmits one TB over multiple slots based on TBoMS configurations.
Time domain resources indication:
The TBoMS representations of the at least one transport block may comprise segments of one transport block in a transmission mode of a first type TBoMS or a second type TBoMS. The first type TBoMS has non-back-to-back (discontinuous) time domain resource allocation (TDRA) in frequency division duplex (FDD) or discontinuous TDRA in time division duplex (TDD) , and the second type TBoMS has back-to-back (continuous) TDRA in FDD or discontinuous TDRA in TDD. In the non-back-to-back (discontinuous) TDRA, two adjacent segments in the segments of the transport block are separately allocated to two slots. In the continuous TDRA, transmission of the transport block is continuously or back-to-back allocated to one or more adjacent slots, i.e., transmission of the transport block is continuously allocated to one or more adjacent slots.
For time domain resources, TBoMS supports PUSCH repetition with Type A like TDRA (referred to as TDRA type A) and/or Type B like TDRA (referred to as TDRA type B) . The two types of TDRA may include different features:
● PUSCH repetition type A like TDRA: the number of allocated symbols is the same in each slot.
● PUSCH repetition type B like TDRA: the number of allocated symbols in each slot are different.
TBoMS with TDRA type A may be referred to as type A TBoMS, and TBoMS with TDRA type B may be referred to as type B TBoMS. The first type TBoMS may comprise the type A TBoMS, and the second type TBoMS may comprise the type B TBoMS. If the UE 10 supports both types, the UE 10 may send an indication that indicates  the UE 10 supports the Type A TBoMS or Type B TBoMS or both.
Preamble Group A and/or Group B may be subdivided into a TBoMS-TdraTypeA sub-group, a TBoMS-TdraTypeB sub-group, and non-TBoMS-supporting subgroups. With reference to FIG. 6, for example, the TBoMS-supporting subgroup 302 in the preamble Group A comprises a TBoMS-TdraTypeA sub-group 305 and a TBoMS-TdraTypeB sub-group 306. The TBoMS-supporting subgroup 304 in the preamble Group B comprises a TBoMS-TdraTypeA sub-group 307 and a TBoMS-TdraTypeB sub-group 308. The UE 10 may use a preamble selected from a TBoMS-TdraTypeA sub-group to implicitly notify the base station that the UE 10 supports type A TBoMS, and use a preamble selected from a TBoMS-TdraTypeB sub-group to implicitly notify the base station that the UE 10 supports type B TBoMS. Alternatively, in another embodiment, the TBoMS-supporting subgroup 302 in the preamble Group A may comprise a TBoMS-TdraTypeA sub-group while the TBoMS-supporting subgroup 304 in the preamble Group B may comprise a TBoMS-TdraTypeB sub-group. Further, in another embodiment, the TBoMS-supporting subgroup 302 in the preamble Group A may comprise a TBoMS-TdraTypeB sub-group while the TBoMS-supporting subgroup 304 in the preamble Group B may comprise a TBoMS-TdraTypeA sub-group.
The UE 10 may use one or two parameters as an indication to indicate one or more TBoMS types as the TBoMS capability of the UE 10. For example, Table 4 shows an example of the indicator field (or parameter) supTBoMS that indicates one or more TBoMS types as the TBoMS capability of the UE 10, and Table 5 shows an example of the indicator field (or parameter) supTdraTypeforTBoMS that indicates one or more TBoMS types as the TBoMS capability of the UE 10:
Table 4
supTBoMS ENUMERATED {unsupported, TdraTypeA, TdraTypeB, TdraTypeA&B}
Table 5
Figure PCTCN2021110143-appb-000005
TBoMS time domain resources and repetition:
TDRA Type A:
The TBoMS representations of the at least one transport block may comprise segments of one transport block in the transmission mode of the first type TBoMS. In a transmission mode of the type A TBoMS, the UE 10 transmits one TB over the consecutive available slots, and time domain symbols assigned to each segment of the TB are the same in each of those slots. Table 6 shows an example of TBoMS configuration comprises TDRA configuration for TBoMS of the UE 10:
Table 6
Figure PCTCN2021110143-appb-000006
In an embodiment, the network, such as the base station 20, may configure the maximum number of TBoMS configurations in a PUSCH TDRA table PUSCH-TdraForTBoMS using a parameter, such as maxNrofTBoMS. For example, the parameter maxNrofTBoMS representing the maximum number of TBoMS configurations in the PUSCH  TDRA table may be set to 2, 4, 8, or 16. The PUSCH TDRA table PUSCH-TdraForTBoMS comprises configuration fields, each of which represents a TDRA configuration of TBoMS. Table 7 shows an example of the PUSCH TDRA table PUSCH-TdraForTBoMS as a portion of the TBoMS configuration:
Table 7
Figure PCTCN2021110143-appb-000007
FIG. 7 (a) shows TDRA configuration of TBoMS specified by a start symbol S and a length L of each segment of a type A TBoMS TB of the UE 10 in each slot allocated to segments of the TB in the type A TBoMS transmission mode of the UE 10. Each of the UE 10 and the base station 20 may obtain a start and length indicator value (SLIV) from the start symbol S and the length L or obtain the start symbol S and the length L from the SLIV. FIG. 7 (b) shows TDRA configuration of TBoMS specified by a start symbol S and an end symbol Z of each segment of a type A TBoMS TB of the UE 10 in each slot allocated to segments of the TB in the type A TBoMS transmission mode of the UE 10. Similarly, each of the UE 10 and the base station 20 may obtain the SLIV from the start symbol S and the end symbol Z or obtain the start symbol S and the end symbol Z from the SLIV. Table 8 show an example of SLIV derivation.
Table 8
Figure PCTCN2021110143-appb-000008
Where 0 < L ≤14-S.
Table 9 shows an example of the PUSCH TDRA table PUSCH-TdraForTBoMS as a portion of the TBoMS configuration. A parameter startSymbolAndLength is the SLIV that specifies the start symbol S and the length L. A parameter numberOfSlot represents a number of slots of one TBoMS transmission, not including multiple receptions.
Table 9
Figure PCTCN2021110143-appb-000009
Table 10 shows another example of the PUSCH TDRA table PUSCH-TdraForTBoMS as a portion of the TBoMS configuration. A parameter startSymbol specifies the start symbol S, and a parameter length specifies the length L of a segment of the TB. The parameter numberOfSlot represents a number of slots of one TBoMS transmission, not including multiple receptions.
Table 10
Figure PCTCN2021110143-appb-000010
Table 11 shows another example of the PUSCH TDRA table PUSCH-TdraForTBoMS as a portion of the TBoMS configuration. The parameter startSymbol specifies the start symbol S, and a parameter endSymbol specifies the end symbol Z. The parameter numberOfSlot represents a number of slots of one TBoMS transmission, not including multiple receptions.
Table 11
Figure PCTCN2021110143-appb-000011
For TDRA type A, “length” and “endSymbol” are relative to the start symbol S of the same time slot.
In the example above, the number of slots is part of the TDRA table, so the complete time domain resource information can be obtained by determining a row index of the TDRA table. The UE 10 and the base station 20 may negotiate the TDRA configuration of TBoMS by sending an RRC message or DCI carrying the row index from the base station 20 to the UE 10. Alternatively, in another embodiment, when the number of slots is not a part of the TDRA table, a value of the numberOfSlot needs to be signified and determined through an RRC message or DCI from the base station 20 to the UE 10. The complete TDRA configuration can be determined by the value of the numberOfSlot in combination with the row index of the TDRA table. The UE 10 allocates available resources, such as available slots or available symbols, to the TB for TBoMS.
In time division duplexing (TDD) case:
● The DL slots are not counted as available slots for TBoMS of the UE 10.
● The UL slots are counted as the available slots for TBoMS of the UE 10.
■ Optionally, UL slots are conditionally counted as available slots for TBoMS of the UE 10. The condition is that the number of continuous available UL symbols (e.g., rule out the invalid symbols) is greater than  a certain threshold. When one or more UL slots has a number of continuous available UL symbols greater than the certain threshold, the one or more UL slots are counted as available slots for TBoMS of the UE 10.When one or more UL slots has a number of continuous available UL symbols no greater than the certain threshold, the one or more UL slots are not counted as available slots for TBoMS of the UE 10.
● For a special slot, such as special slots in FIG. 9, if the number of continuous available UL symbols in the special slot is greater than a certain threshold, the special slot can be scheduled by the UE 10 as a resource (i.e., an available slot) for TBoMS. For example, when the threshold value is 6, slot formats 10-15, 34-42 in TS 38.213 Table 11.1.1-1 can be scheduled as a resource for TBoMS. When the number of UL symbols in the special slot is not greater than the certain threshold, the special slot is not scheduled as a resource (i.e., an available slot) for TBoMS of the UE 10, and the UE 10 schedules the first subsequent UL slot for TBoMS of the UE 10.
■ The continuous available UL symbols can comprise symbols other than those occupied by other UL transmissions, e.g., sounding reference signal (SRS) and uplink control information (UCI) multiplexing.
With reference to FIG. 8, in option 1 the UE 10 determines that SRS symbols are counted as a consecutive or continuous available UL symbols. In option 2, the UE 10 determines that SRS symbols are not counted as a consecutive or continuous available UL symbols. With reference to FIG. 9, the UE 10 may obtain a group of resources (e.g., available slots) for TBoMS as a transmission occasion for TBoMS (TOT) . A TOT is constituted of at least one slot or multiple consecutive physical slots for UL transmission of TBoMS TB segments. For example, the UE 10 transmits a TBoMS TS 340 in TOT#1, TOT#2, and TOT#3 to the base station 20.
As described in the aforementioned embodiments, the resource configuration of the TBoMS representations of the at least one TB comprises one or more of:
a start symbol, in a time slot, of one segment among the segments of the transport block;
a length of the segment;
an end symbol, in the time slot, of the segment; and
a number of slots allocated to the segments of the transport block.
TDRA Type B:
The TB is carried out in the consecutive symbols and slots. TDRA Type A is to be supported in standardization as TDRA configuration for TBoMS. When configuring the TDRA type B for TBoMS of the UE 10, the network, such as the base station 20, sends a type indicator in the TBoMS configuration to enable the Type B TBoMS for the UE 10.
Table 12 shows an example of the type indicator in TDRA configuration in the TBoMS configuration for the TBoMS of the UE 10. The parameter pusch-TbomsTypeIndicator specifies one of the type A TBoMS (or TDRA type A) or the type B TBoMS (or TDRA type B) . A constant pusch-TbomsTypeA represents the type A TBoMS (or TDRA type A) , and a constant pusch-TbomsTypeB represents the type B TBoMS (or TDRA type B) .
Table 12
Figure PCTCN2021110143-appb-000012
Figure PCTCN2021110143-appb-000013
The TBoMS representations of the at least one transport block may comprise segments of one transport block in the transmission mode of the second type TBoMS. The resource configuration of the TBoMS representations of the at least one TB comprises one or more of:
a start symbol, among a plurality of slots allocated to the transport block, of the segments of the transport block;
a length of the segments;
an end symbol, among the plurality of slots allocated to the transport block, of the segments of the transport block;
and
a number of the plurality of slots allocated to the segments of the transport block.
FIG. 10 shows an example of TDRA configuration for type B TBoMS (or TDRA type B) . Table 13 shows an example of the PUSCH TDRA table PUSCH-TdraForTBoMS as a portion of the TBoMS configuration. A parameter mappingType specifies one of the type A TBoMS (or TDRA type A) or the type B TBoMS (or TDRA type B) . A constant typeA represents the type A TBoMS (or TDRA type A) , and a constant typeB represents the type B TBoMS (or TDRA type B) . The parameter startSymbol specifies the start symbol S, and a parameter endSymbol specifies the end symbol Z. The parameter numberOfSlot represents a number of slots of one TBoMS transmission, not including multiple receptions.
Table 13
Figure PCTCN2021110143-appb-000014
FIG. 11 shows another example of TDRA configuration for type B TBoMS (or TDRA type B) . Table 14 shows an example of the PUSCH TDRA table PUSCH-TdraForTBoMS as a portion of the TBoMS configuration. The parameter mappingType specifies one of the type A TBoMS (or TDRA type A) or the type B TBoMS (or TDRA type B) . The constant typeA represents the type A TBoMS (or TDRA type A) , and the constant typeB represents the type B TBoMS (or TDRA type B) . The parameter startSymbol specifies the start symbol S, and a parameter endSymbol specifies the end symbol Z. The parameter numberOfSlot represents a number of slots of one TBoMS transmission, not including multiple receptions. The parameter startSymbolAndLength is the SLIV that specifies the start symbol S and the length L.
Table 14
Figure PCTCN2021110143-appb-000015
Figure PCTCN2021110143-appb-000016
For TDRA type B, the parameter startSymbol indicates the start symbol of the first slot of the TBoMS TB in PUSCH transmission, and the parameter endSymbol indicates the end symbol of the last slot of the TBoMS TB in PUSCH transmission.
In the example above, the number of slots is part of the TDRA table, so the complete time domain resource information can be obtained by determining a row index of the TDRA table. The UE 10 and the base station 20 may negotiate the TDRA configuration of TBoMS by sending an RRC message or DCI carrying the row index from the base station 20 to the UE 10. Alternatively, in another embodiment, when the number of slots is not a part of the TDRA table, a value of the numberOfSlot needs to be signified and determined through an RRC message or DCI from the base station 20 to the UE 10. The complete TDRA configuration can be determined by the value of the numberOfSlot in combination with the row index of the TDRA table.
In TDD case:
● The DL slots are not counted as the available slot for TBoMS of the UE 10.
● The UL slots are counted as the available slot for TBoMS of the UE 10.
● Special slots, such as special slots in FIG. 12, are counted as the available slot for TBoMS of the UE 10.
■ Optionally, special slots, such as special slots in FIG. 12, are conditionally counted as available slots for TBoMS. The condition is that the number of continuous available UL symbols is greater than a certain threshold. If the number of continuous available UL symbols in the special slot is greater than a certain threshold, the special slot can be scheduled by the UE 10 as a resource (i.e., available slot) for TBoMS. However, this threshold may be smaller than that of TDRA Type A. An example of the case is shown in FIG. 7.
With reference to FIG. 12, the UE 10 may obtain a group of resources for TBoMS as a transmission occasion for TBoMS (TOT) . A TOT is constituted of at least one slot or multiple consecutive physical slots for UL transmission. For example, the UE 10 transmits a TBoMS TS 340 in TOT#1, TOT#2, and TOT#3 to the base station 20.
As described in aforementioned embodiments, the TBoMS configuration comprises time domain resource allocation (TDRA) configuration of the segments of the transport block, and the TDRA configuration comprises an indication of continuous TDRA for the segments of the transport block of the first type TBoMS (e.g., Type A TBoMS) in FDD, continuous TDRA for the segments of the transport block of the first type TBoMS in TDD, continuous TDRA for the segments of the transport block of the second type TBoMS (e.g., Type B TBoMS) in FDD, continuous TDRA for the segments of the transport block of the second type TBoMS in TDD, or continuous TDRA for the segments of the transport block of the second type TBoMS in TDD
Repetition:
Since TBoMS has already crossed multiple time slots, the number of repetitions of the TBoMS TB should be limited to an upper limit to avoid the TB transmission task occupying too much time domain resources. The repetition configuration may comprise a field of the upper limit of repetitions, which represents an upper limit of repetitions of the TB, and the UE limits a number of repetitions of the TB to the upper limit of repetitions. For example, the upper limit is a number selected from {1, 2, 3, 4, 7, 8} . And a gap can be set between two repetitions to give other UL transmission an opportunity and avoid continuous resources being occupied by the TBoMS TB.
The TBoMS configuration comprises repetition configuration including a repetition type of the repetitions of the transport block, the repetition type comprises an indication of a first repetition type or a second repetition type of the repetitions of the transport block. In the first repetition type, two adjacent repetitions in the repetitions of the transport block are separately allocated to two slots. In the second repetition type, two adjacent nominal repetitions in the repetitions of the transport block are continuously or back-to-back allocated to one or more adjacent slots, i.e., two adjacent nominal repetitions in the repetitions of the transport block are continuously allocated to one or more adjacent slots. In an embodiment, the first repetition type comprises repetition type A, and the second repetition type comprises repetition type B.
For repetition type A, in each time slot allocated to the TBoMS TB, the time domain symbols assigned to a repetition of the TBoMS TB are the same. A gap is optionally configured and located between two repetitions of the TB in units of slots, frames, or symbols. For example, a length of the gap may be optionally configured to 0, 1, 2, 3, or 4 time slots. The UE 10, during the gap, performs downlink reception or uplink transmission with a different phase or a different power level. FIG. 13 shows a gap and a repetition Rep#1, and a repetition Rep#2 of the TBoMS TB of the UE 10. The repetitions Rep#1 and Rep#2 are arranged in the repetition type A.
For repetition type B, the time domain resources are continuous between repetitions of the TBoMS TB. A gap is optionally configured and located between two repetitions of the TB in units of slots, frames, or symbols. For example, a length of the gap may be optionally configured to 0, 1, 2, 3, or 4 time slots. The UE 10, during the gap, performs downlink reception or uplink transmission with a different phase or a different power level. FIG. 14 shows a gap and a repetition Rep#1, and a repetition Rep#2 of the TBoMS TB of the UE 10. The repetitions Rep#1 and Rep#2 are arranged in the repetition type B. The time domain resources, such as symbols, allocated to the repetitions of the TB are continuous except for the gap, and symbols assigned to each repetition of the TBoMS TB may be the same or different. The number of symbols allocated to each of the repetitions is the same.
The indication for TBoMS repetition via RRC or DCI:
Table 15 shows an example of a new IE as a portion of the repetition configuration with a repetition type indicator field (or parameter) repTypeIndicator that indicates the repetition type for the TBoMS TB of the UE 10. The IE including the repetition type indicator field (or parameter) repTypeIndicator may be transmitted in an RRC message or DCI. The parameter numberOfRepetitions specifies a number of repetitions for the TBoMS TB of the UE 10. The parameter gapOfRepetitions specifies a length of the gap between two repetitions for the TBoMS TB of the UE 10
Table 15
Figure PCTCN2021110143-appb-000017
UL Grant with TBoMS configuration for MSG3 (RAR)
In an embodiment, if the UE 10 support TBoMS transmission through an MSG3 message, the PUSCH TDRA for TBoMS of the UE 10 may be configured along with the cell specific PUSCH parameters (e.g., in SIB1) . For example, Table 16 shows an example of a new IE of PUSCH configuration PUSCH-ConfigCommon in SIB1 with  TDRA configuration for TBoMS of the UE 10 specified by a parameter pusch-TimeDomainAllocationListForTBoMS. The parameter pusch-TimeDomainAllocationListForTBoMS refers to a TDRA table of TBoMS (i.e., PUSCH-TdraForTBoMS) .
Table 16
Figure PCTCN2021110143-appb-000018
In an embodiment, if TBoMS transmission is scheduled in Msg3, TBoMS may be configured in the corresponding UL authorization (or grant) in a random access response (RAR) . Therefore, the TBoMS configuration including one or more of the aforementioned indicators may be carried in MSG2 RAR. FIG. 15 shows an example of the RAR carrying the TBoMS configuration in a field or a sub-field. For example, the TBoMS configuration may be contained in a sub-field 312 of a “UL Grant” field in a RAR 300b (as shown in FIG. 15 (b) ) or a new field 311 in the RAR 300a (as shown in FIG. 15 (a) ) . The field “UL Grant” is related to MSG3 PUSCH resources.
For example, Table 17 shows an example of a field “PUSCH time resource allocation” of the RAR. If the TBoMS configuration indicates TBoMS enabled, the “PUSCH time resource allocation” field value indicates one row of the time domain resource allocation table of TBoMS (i.e., PUSCH-TdraForTBoMS) . Otherwise, the field indicates one row of the legacy time domain resource allocation table (e.g., TS 38.331 PUSCH time domain resource allocation list table) . If the field “PUSCH time resource allocation” has 4 bits, a value of the field “PUSCH time resource allocation” may indicate one among 16 rows of the TDRA table (i.e., PUSCH-TdraForTBoMS) .
Table 17
Figure PCTCN2021110143-appb-000019
The determination and processing of the TDRA table are defined in TS 38.214 Clause 6.1.2.1.1. Each indexed row in the TDRA table (i.e., PUSCH-TdraForTBoMS) for TBoMS defines:
● the slot offset K2;
● the PUSCH mapping type;
● the start and length indicator SLIV (only for TDRA type A ) , or directly the start symbol S and the allocation length L (only for TDRA type B) , or directly the start symbol S and the end symbol Z (both for TDRA type A&B) ;
● the number of slots of TBoMS;
● the number of repetitions (if numberOfRepetitions is present in the resource allocation table) ;
● the gap of repetitions (if gapOfRepetitions is present in the resource allocation table) ; and
● others (if any in the resource allocation table) .
If the UE 10 supports repetitions of the TBoMS TB (i.e., PUSCH) in an MSG3 message, the related repetition configuration may be configured along with the TDRA configuration (e.g., in SIB1) . The UE 10 determines  the MSG3 repetition according to the repetition configuration.
TBoMS frequency domain resources and frequency hopping:
The UE 10 may support frequency hopping (FH) for TBoMS without repetition as has been disclosed in patent application PCT/CN2021/093048.
● For TypeA like TDRA, the base station 20 and the UE 10 may support intra-slot and inter-slot FH for TBoMS TB (i.e., PUSCH) .
● For RepTypeB like TDRA, the base station 20 and the UE 10 may support intra-slot and inter-slot FH for TBoMS TB (i.e., PUSCH) .
The base station 20 and the UE 10 may support FH for TBoMS TB (i.e., PUSCH) with repetitions. The base station 20 and the UE 10 may support intra-slot FH (as shown in FIG. 16 to FIG. 17) , and inter-slot FH (FIG. 18 to FIG. 19) , and inter-repetition FH (FIG. 20 to FIG. 21) for TBoMS with repetition type A and/or repetition type B. Unavailable slots are ignored for frequency hopping in TDD case.
The repetition type may be indicated via an RRC message or DCI. The frequency hopping type also may be indicated via an RRC message or DCI, and the types may be intra-slot FH, inter-slot FH or inter-repetition FH.
The TBoMS representations of the at least one transport block may comprise segments of one transport block in a transmission mode of the first type TBoMS (e.g., type A TBoMS) or a second type TBoMS (e.g., type B TBoMS) . The TBoMS configuration comprises repetition configuration including a repetition type of the repetitions of the transport block, the repetition type comprises an indication of the first repetition type (e.g., repetition type A) or the second repetition type (e.g., repetition type B) of the repetitions of the transport block. In the first repetition type (e.g., repetition type A) , two adjacent repetitions in the repetitions of the transport block are separately allocated to two slots. In the second repetition type (e.g., repetition type B) , two adjacent nominal repetitions in the repetitions of the transport block are continuously or back-to-back allocated to one or more adjacent slots, i.e., two adjacent nominal repetitions in the repetitions of the transport block are continuously allocated to one or more adjacent slots.
The UE 10 and the base station 20 negotiate frequency hopping configuration of a frequency hopping function. The frequency hopping configuration comprises an indication of a mode configuration of the frequency hopping function for the TBoMS representations of the at least one transport block. The mode configuration of the frequency hopping function comprises a frequency hopping type. The frequency hopping (FH) type of the frequency hopping function indicates one of the inter-symbol FH, intra-slot FH, inter-slot FH or inter-repetition FH applicable to the first repetition type (e.g., repetition type A) , one of inter-symbol FH, intra-slot FH, inter-slot FH or inter-repetition FH applicable to the second repetition type (e.g., repetition type B) .
The frequency hopping configuration comprises a control signal carrying an indication for enabling or disabling of the frequency hopping function. The frequency hopping configuration is included in a message of downlink control information (DCI) , radio resource control (RRC) , or configured grant (CG) configuration.
Time domain window (TDW) and bundling:
In an embodiment of the invention, the coverage enhancement configuration including the TBoMS configuration may further comprise time domain window (TDW) configuration and bundling configuration of the TBoMS representations. The term of TDW may be changed during 3GPP standardization efforts.
In the topic of coverage enhancement, a time domain window used in the specification and can be replaced by other technical terms. The base station 20, such as a gNB, configures the time domain window, such that the UE 10 maintains power consistency and phase continuity among PUSCH transmissions during the window. All of the  schemes in the aforementioned embodiments may be applied to the time domain windows.
The UE 10 negotiates with the base station 20 TDW configuration of a TDW function. The time domain window configuration of the TBoMS representations comprises one or more of:
● an indication for enabling or disabling of the time domain window function for the TBoMS representations of the at least one transport block; and
● an indication of a mode configuration of the time domain window function for the TBoMS representations of the at least one transport block..
The mode configuration of the time domain window function comprises one or both of a time domain window type and a time domain window size. The time domain window type indicates inter-slot time domain window or inter-repetition time domain window. The time domain window size indicates a number of slots for the inter-slot time domain window or a number of repetitions for the inter-repetition time domain window. The time domain window configuration comprises a control signal carrying an indication for enabling or disabling of the time domain window function. The time domain window configuration is included in a message of downlink control information (DCI) , radio resource control (RRC) , or configured grant (CG) configuration.
The UE 10 negotiates with the base station 20 bundling configuration of a bundling function. The bundling configuration of the TBoMS representations comprises one or more of:
● an indication for enabling or disabling of the bundling function for the TBoMS representations of the at least one transport block; and
● an indication of a mode configuration of the bundling function for the TBoMS representations of the at least one transport block.
The mode configuration of the bundling function comprises one or both of a bundling type and a bundling size. The bundling type indicates inter-slot bundling or inter-repetition bundling. The bundling size indicates a number of slots for the inter-slot bundling or a number of repetitions for the inter-repetition bundling. The bundling configuration comprises a control signal carrying an indication for enabling or disabling of the bundling function. The bundling configuration is included in a message of downlink control information (DCI) , radio resource control (RRC) , or configured grant (CG) configuration.
Table 18
Figure PCTCN2021110143-appb-000020
Figure PCTCN2021110143-appb-000021
Table 18 shows possible combinations of TDW types, bundling types, frequency hopping types, and repetition type A/B. FIG. 16 to FIG. 25 show the cases in Table 18. TDW type can be indicated implicitly by the FH type. An explicit indication of the TDW configuration including TDW type and TDW size is not excluded. The TDW configuration including TDW type and TDW size may be configured by a higher layer parameter (e.g., PUSCH configuration or configured UL grant) or a DCI (e.g., DCI 0_x) field explicitly or implicitly.
For the cases as illustrated in Table 18,
● “Inter-symbol FH” represents the FH function enabled between the UE 10 and base station 20 based on a granularity of one or more symbols;
● “Intra-slot FH” represents the FH function enabled between the UE 10 and base station 20 based on a granularity of symbols or sub-slot (s) ;
● “Inter-slot FH” represents the FH function enabled between the UE 10 and base station 20 based on a granularity of one or more slots; and
● “Inter-repetition FH” represents the FH function enabled between the UE 10 and base station 20 based on a granularity of one or more repetitions.
The TBoMS representations of the at least one transport block comprise repetitions of one TBoMS transport block. The TBoMS TB may be type A TBoMS or type B TBoMS. TDW and bundling may be operated with repetition type A/B without frequency hopping. Table 19 shows possible combinations of TDW types, bundling types, and repetition type A/B without frequency hopping.
Table 19
Figure PCTCN2021110143-appb-000022
Figure PCTCN2021110143-appb-000023
For the cases as illustrated in Table 18 and Table 19,
● “Inter-slot TDW” represents the TDW function enabled between the UE 10 and base station 20 based on a granularity of one or more slots;
● “Inter-repetition TDW” represents the TDW function enabled between the UE 10 and base station 20 based on a granularity of one or more repetitions;
● “Inter-symbol TDW” represents the TDW function enabled between the UE 10 and base station 20 based on a granularity of one or more symbols;
● “Inter-slot bundling” represents the bundling function enabled between the UE 10 and base station 20 based on a granularity of one or more slots;
● “Inter-repetition bundling” represents the bundling function enabled between the UE 10 and base station 20 based on a granularity of one or more repetitions; and
● “Inter-symbol bundling” represents the bundling function enabled between the UE 10 and base station 20 based on a granularity of one or more slots.
Intra-slot FH with repetitions of a TBoMS TB:
FIG. 16 shows examples of intra-slot frequency hopping with repetition type A. An axis f represents a frequency domain. In the examples for TDRA type A and TDRA type B, segments of the TB in repetition Rep#1 and Rep#2 are transmitted on different frequency bands from the UE 10 to base station 20 during intra-slot frequency hopping operations.
FIG. 17 shows examples of intra-slot frequency hopping with repetition type B. In the examples for TDRA type A and TDRA type B, segments of the TB in repetition Rep#1 and Rep#2 are transmitted on different frequency bands from the UE 10 to base station 20 during intra-slot frequency hopping operations.
Inter-Slot FH with repetitions of a TBoMS TB:
FIG. 18 shows examples of inter-slot frequency hopping with repetition type A. In the examples for TDRA type A and TDRA type B, segments of the TB in repetition Rep#1 and Rep#2 are transmitted on different frequency bands from the UE 10 to base station 20 during inter-slot frequency hopping operations.
FIG. 19 shows examples of inter-slot frequency hopping with repetition type B. In the examples for TDRA type A and TDRA type B, segments of the TB in repetition Rep#1 and Rep#2 are transmitted on different frequency bands from the UE 10 to base station 20 during inter-slot frequency hopping operations.
Inter-repetition FH with repetitions of a TBoMS TB:
FIG. 20 shows examples of inter-repetition frequency hopping with repetition type A. In the examples for TDRA type A and TDRA type B, segments of the TB in repetition Rep#1 are transmitted on the same frequency band (referred to as a first frequency band) from the UE 10 to the base station 20 during inter-repetition frequency hopping operations. Segments of the TB in repetition Rep#2 are transmitted on the same frequency band (referred to as a second frequency band) from the UE 10 to the base station 20 during inter-repetition frequency hopping operations.  The first frequency band is different from the second frequency band.
FIG. 21 shows examples of inter-repetition frequency hopping with repetition type B. In the examples for TDRA type A and TDRA type B, segments of the TB in repetition Rep#1 are transmitted on the same frequency band (referred to as a first frequency band) from the UE 10 to the base station 20 during inter-repetition frequency hopping operations. Segments of the TB in repetition Rep#2 are transmitted on the same frequency band (referred to as a second frequency band) from the UE 10 to the base station 20 during inter-repetition frequency hopping operations. The first frequency band is different from the second frequency band.
Frequency hopping bundling and/or time domain window:
For joint channel estimation, the UE 10 and the base station 20 may perform bundling of frequency hopping and time domain window (TDW) . The aforementioned cases of TBoMS with repetition type A and type B should support the bundling of frequency hopping and/or time domain window.
If the UE 10 implicitly/explicitly indicates the UE capability of the UE 10 that supports bundling or TDW, the base station 20 can receive the UE capability and provides bundling configuration and/or TDW configuration for the UE 10. The bundling or TDW may be specified in units of repetitions, slots, and/or symbols, and specified via RRC or DCI.
Inter-slot FH with repetition type A and with bundling/TDW:
FIG. 22 shows examples of inter-slot frequency hopping with repetition type A and with bundling/TDW. In the examples, the UE 10 transmits to the base station 20 TBoMS TB with the bundling function and/or the TDW function in units of slots. In the examples for TDRA type A and TDRA type B, segments of the TB in a bundling or a TDW are transmitted on the same frequency band (referred to as a first frequency band) from the UE 10 to base station 20 during frequency hopping operations. Segments of the TB in a subsequent bundling or a subsequent TDW are transmitted on the same frequency band (referred to as a second frequency band) from the UE 10 to base station 20 during frequency hopping operations. The first frequency band is different from the second frequency band.
Inter-slot FH with repetition type B and with bundling/TDW
FIG. 23 shows examples of inter-slot frequency hopping with repetition type B and with bundling/TDW. In the examples, the UE 10 transmits to the base station 20 TBoMS TB with the bundling function and/or the TDW function in units of slots. In the examples for TDRA type A and TDRA type B, segments of the TB in a bundling or a TDW are transmitted on the same frequency band (referred to as a first frequency band) from the UE 10 to base station 20 during frequency hopping operations. Segments of the TB in a subsequent bundling or a subsequent TDW are transmitted on the same frequency band (referred to as a second frequency band) from the UE 10 to base station 20 during frequency hopping operations. The first frequency band is different from the second frequency band.
Inter-repetition FH with repetition type A and with bundling/TDW
FIG. 24 shows examples of inter-repetition frequency hopping with repetition type A and with bundling/TDW. In the examples, the UE 10 transmits to the base station 20 TBoMS TB with the bundling function and/or the TDW function in units of slots or repetitions. In the examples for TDRA type A and TDRA type B, segments of the TB in a bundling or a TDW are transmitted on the same frequency band (referred to as a first frequency band) from the UE 10 to base station 20 during frequency hopping operations. Segments of the TB in a subsequent bundling or a subsequent TDW are transmitted on the same frequency band (referred to as a second frequency band) from the UE 10 to base station 20 during frequency hopping operations. The first frequency band is different from the second  frequency band.
Inter-repetition FH with repetition type B and with bundling/TDW:
FIG. 25 shows examples of inter-repetition frequency hopping with repetition type B and with bundling/TDW. In the examples, the UE 10 transmits to the base station 20 TBoMS TB with the bundling function and/or the TDW function in units of slots or repetitions. In the examples for TDRA type A and TDRA type B, segments of the TB in a bundling or a TDW are transmitted on the same frequency band (referred to as a first frequency band) from the UE 10 to the base station 20 during frequency hopping operations. Segments of the TB in a subsequent bundling or a subsequent TDW are transmitted on the same frequency band (referred to as a second frequency band) from the UE 10 to the base station 20 during frequency hopping operations. The first frequency band is different from the second frequency band.
FIG. 26 is a block diagram of an example system 700 for wireless communication according to an embodiment of the present disclosure. Embodiments described herein may be implemented into the system using any suitably configured hardware and/or software. FIG. 26 illustrates the system 700 including a radio frequency (RF) circuitry 710, a baseband circuitry 720, a processing unit 730, a memory/storage 740, a display 750, a camera 760, a sensor 770, and an input/output (I/O) interface 780, coupled with each other as illustrated.
The processing unit 730 may include circuitry, such as, but not limited to, one or more single-core or multi-core processors. The processors may include any combinations of general-purpose processors and dedicated processors, such as graphics processors and application processors. The processors may be coupled with the memory/storage and configured to execute instructions stored in the memory/storage to enable various applications and/or operating systems running on the system.
The radio control functions may include, but are not limited to, signal modulation, encoding, decoding, radio frequency shifting, etc. In some embodiments, the baseband circuitry may provide for communication compatible with one or more radio technologies. For example, in some embodiments, the baseband circuitry may support communication with 5G NR, LTE, an evolved universal terrestrial radio access network (EUTRAN) and/or other wireless metropolitan area networks (WMAN) , a wireless local area network (WLAN) , a wireless personal area network (WPAN) . Embodiments in which the baseband circuitry is configured to support radio communications of more than one wireless protocol may be referred to as multi-mode baseband circuitry. In various embodiments, the baseband circuitry 720 may include circuitry to operate with signals that are not strictly considered as being in a baseband frequency. For example, in some embodiments, baseband circuitry may include circuitry to operate with signals having an intermediate frequency, which is between a baseband frequency and a radio frequency.
In various embodiments, the system 700 may be a mobile computing device such as, but not limited to, a laptop computing device, a tablet computing device, a netbook, an ultrabook, a smartphone, etc. In various embodiments, the system may have more or less components, and/or different architectures. Where appropriate, the methods described herein may be implemented as a computer program. The computer program may be stored on a storage medium, such as a non-transitory storage medium.
The embodiment of the present disclosure is a combination of techniques/processes that can be adopted in 3GPP specification to create an end product.
If the software function unit is realized and used and sold as a product, it can be stored in a readable storage medium in a computer. Based on this understanding, the technical plan proposed by the present disclosure can be essentially or partially realized as the form of a software product. Or, one part of the technical plan beneficial to the  conventional technology can be realized as the form of a software product. The software product in the computer is stored in a storage medium, including a plurality of commands for a computational device (such as a personal computer, a server, or a network device) to run all or some of the steps disclosed by the embodiments of the present disclosure. The storage medium includes a USB disk, a mobile hard disk, a read-only memory (ROM) , a random access memory (RAM) , a floppy disk, or other kinds of media capable of storing program codes.
A user equipment (UE) and a base station uplink execute a configuration method comprising negotiating TBoMS configuration for uplink transmission. The UE allocates TBoMS representations of at least one transport block (TB) into a set of the uplink radio resources for uplink transmission based on the TBoMS configuration. The TBoMS configuration can be applied in combination with bundling configuration and frequency hopping configuration of the TBoMS representations. The TBoMS representations may comprise repetitions of a TB, or segments of a TB. Embodiments of this disclosure are to provide methods to solve the problem of joint channel estimation (JCE) for PUSCH. The invention provides specific methods to support type B TBoMS.
While the present disclosure has been described in connection with what is considered the most practical and preferred embodiments, it is understood that the present disclosure is not limited to the disclosed embodiments but is intended to cover various arrangements made without departing from the scope of the broadest interpretation of the appended claims.

Claims (69)

  1. An uplink configuration method, executable in a user equipment (UE) , comprising:
    negotiating one transport block over multi-slot (TBoMS) configuration for uplink transmission; and
    allocating TBoMS representations of at least one transport block (TB) into a set of uplink radio resources for uplink transmission based on the TBoMS configuration, wherein the TBoMS configuration comprises resource configuration of the TBoMS representations.
  2. The uplink configuration method of claim 1, wherein the UE autonomously provides UE capability of the UE or provides the UE capability of the UE in response to a request for the UE capability of the UE, and the UE capability comprises TBoMS capability of the UE.
  3. The uplink configuration method of claim 2, wherein the UE provides the UE capability in a message of MSG1, MSG3, or MSG5, or after MSG5.
  4. The uplink configuration method of claim 3, wherein the UE provides the UE capability in a message of MSG1 with a random access preamble that indicates the TBoMS capability of the UE.
  5. The uplink configuration method of claim 4, wherein the random access preamble is selected from a TBoMS-supporting subgroup or a non-TBoMS-supporting subgroup of random access preambles.
  6. The uplink configuration method of claim 3, wherein the UE provides the UE capability in one or more messages of an radio resource control (RRC) setup request, an RRC re-establishment request, an RRC resume request, an RRC re-configuration, an RRC re-configuration complete, UE capability information, security mode complete, UL information transfer, UE information response, measurement report, Phy-Parameters, and RF-Parameters.
  7. The uplink configuration method of claim 1, wherein the TBoMS representations of the at least one transport block comprise segments of one transport block in a transmission mode of a first type one TB over multi-slot (TBoMS) or a second type TBoMS.
  8. The uplink configuration method of claim 7, wherein the first type TBoMS has discontinuous TDRA in frequency division duplex (FDD) or discontinuous TDRA in time division duplex (TDD) , and the second type TBoMS has continuous TDRA in FDD, or discontinuous TDRA in TDD;
    in the discontinuous TDRA, two adjacent segments in the segments of the transport block are separately allocated to two slots; and
    in the continuous TDRA, transmission of the transport block is continuously allocated to one or more adjacent slots.
  9. The uplink configuration method of claim 7, wherein the TBoMS representations of the at least one transport block comprise segments of one transport block in the transmission mode of the first type TBoMS, and the resource configuration of the TBoMS representations of the at least one TB comprises one or more of:
    a start symbol, in a time slot, of one segment among the segments of the transport block;
    a length of the segment;
    an end symbol, in the time slot, of the segment; and
    a number of slots allocated to the segments of the transport block.
  10. The uplink configuration method of claim 7, wherein the TBoMS representations of the at least one transport block comprise segments of one transport block in the transmission mode of the second type TBoMS, and the resource configuration of the TBoMS representations of the at least one TB comprises one or more of:
    a start symbol, among a plurality of slots allocated to the transport block, of the segments of the transport block;
    a length of the segments;
    an end symbol, among the plurality of slots allocated to the transport block, of the segments of the transport block; and
    a number of the plurality of slots allocated to the segments of the transport block.
  11. The uplink configuration method of claim 7, wherein an indication of a number of the plurality of slots allocated to the segments of the transport block is carried in a downlink control message to the UE, and the downlink control message comprises a message of downlink control information (DCI) , radio resource control (RRC) , or configured grant (CG) configuration.
  12. The uplink configuration method of claim 7, wherein the TBoMS configuration comprises time domain resource allocation (TDRA) configuration for the segments of the transport block, and the TDRA configuration comprises an indication of discontinuous TDRA for the segments of the transport block of the first type TBoMS in FDD, discontinuous TDRA for the segments of the transport block of the first type TBoMS in TDD , continuous TDRA for the segments of the transport block of the second type TBoMS in FDD, discontinuous TDRA for the segments of the transport block of the second type TBoMS in TDD, or continuous TDRA for the segments of the transport block of the second type TBoMS in TDD.
  13. The uplink configuration method of claim 7, wherein the TBoMS configuration comprises repetition configuration including a repetition type of repetitions of the transport block, the repetition type comprises an indication of a first repetition type or a second repetition type of the repetitions of the transport block;
    in the first repetition type, two adjacent repetitions in the repetitions of the transport block are separately allocated to two slots; and
    in the second repetition type, two adjacent nominal repetitions in the repetitions of the transport block are continuously allocated to one or more adjacent slots.
  14. The uplink configuration method of claim 13, wherein a gap is configured and located between two repetitions of the transport block, and a parameter of the repetition configuration specifies a length of gap.
  15. The uplink configuration method of claim 14, wherein the UE, during the gap, performs downlink reception or uplink transmission with a different phase or a different power level.
  16. The uplink configuration method of claim 13, wherein a parameter of the repetition configuration specifies a number of repetitions for the transport block.
  17. The uplink configuration method of claim 13, wherein the repetition type is transmitted in an RRC message of downlink control information (DCI) .
  18. The uplink configuration method of claim 13, wherein the UE negotiates frequency hopping configuration of a frequency hopping function, and the frequency hopping configuration comprises an indication of a mode configuration of the frequency hopping function for the TBoMS representations of the at least one transport block, and the mode configuration of the frequency hopping function comprises a frequency hopping type.
  19. The uplink configuration method of claim 18, wherein the frequency hopping (FH) type of the frequency hopping function indicates one of the inter-symbol FH, intra-slot FH, inter-slot FH or inter-repetition FH applicable to the first repetition type, one of inter-symbol FH, intra-slot FH, inter-slot FH or inter-repetition FH applicable to the second repetition type.
  20. The uplink configuration method of claim 18, wherein the frequency hopping configuration comprises a control signal carrying an indication for enabling or disabling of the frequency hopping function.
  21. The uplink configuration method of claim 18, wherein the frequency hopping configuration is included in a message of downlink control information (DCI) , radio resource control (RRC) , or configured grant (CG) configuration.
  22. The uplink configuration method of claim 19, wherein the UE negotiates bundling configuration of a bundling function, and the bundling configuration comprises an indication of a mode configuration of the bundling function for the TBoMS representations of the at least one transport block, and the mode configuration of the bundling function comprises one or both of a bundling type and a bundling size, the bundling type indicates inter-slot bundling or inter-repetition bundling, and the bundling size indicates a number of slots for the inter-slot bundling or a number of repetitions for the inter-repetition bundling.
  23. The uplink configuration method of claim 22, wherein the bundling configuration comprises a control signal carrying an indication for enabling or disabling of the bundling function.
  24. The uplink configuration method of claim 22, wherein the bundling configuration is included in a message of downlink control information (DCI) , radio resource control (RRC) , or configured grant (CG) configuration.
  25. The uplink configuration method of claim 19, wherein the UE negotiates time domain window configuration of a time domain window function, and the time domain window configuration comprises an indication of a mode configuration of the time domain window function for the TBoMS representations of the at least one transport block, and the mode configuration of the time domain window function comprises one or both of a time domain window type and a time domain window size, the time domain window type indicates inter-slot time domain window or inter-repetition time domain window, and the time domain window size indicates a number of slots for the inter-slot time domain window or a number of repetitions for the inter-repetition time domain window.
  26. The uplink configuration method of claim 25, wherein the time domain window configuration comprises a control signal carrying an indication for enabling or disabling of the time domain window function.
  27. The uplink configuration method of claim 25, wherein the time domain window configuration is included in a message of downlink control information (DCI) , radio resource control (RRC) , or configured grant (CG) configuration.
  28. The uplink configuration method of claim 7, wherein if a number of continuous available UL symbols in an UL slot is greater than a certain threshold, the UL slot is scheduled by the UE as an available slot for the TB;
    if the number of continuous available UL symbols in a UL slot is not greater than a certain threshold, the UL slot is not scheduled by the UE as an available slot for the TB.
  29. The uplink configuration method of claim 7, wherein if a number of continuous available UL symbols in a special slot is greater than a certain threshold, the special slot is scheduled by the UE as an available slot for the TB;
    if the number of continuous available UL symbols in a special slot is not greater than a certain threshold, the special slot is not scheduled by the UE as an available slot for the TB.
  30. The uplink configuration method of claim 28 or 29, wherein the UE obtains a group of available slots for TBoMS as a transmission occasion for TBoMS (TOT) .
  31. The uplink configuration method of claim 1, wherein the at least one transport block comprises a physical uplink shared channel (PUSCH) or a physical uplink control channel (PUCCH) .
  32. A user equipment (UE) comprising:
    a processor, configured to call and run a computer program stored in a memory, to cause a device in which the chip is installed to execute any of the methods of claims 1 to 31.
  33. A chip, comprising a processor, configured to call and run a computer program stored in a memory, to cause a device in which the chip is installed to execute any of the methods of claims 1 to 31.
  34. A computer readable storage medium, in which a computer program is stored, wherein the computer program  causes a computer to execute any of the methods of claims 1 to 31.
  35. A computer program product, comprising a computer program, wherein the computer program causes a computer to execute any of the methods of claims 1 to 31.
  36. A computer program, wherein the computer program causes a computer to execute any of the methods of claims 1 to 31.
  37. An uplink configuration method, executable in a base station, comprising:
    negotiating one transport block over multi-slot (TBoMS) configuration for uplink transmission; and
    receiving TBoMS representations of at least one transport block (TB) on a set of uplink radio resources for uplink transmission based on the TBoMS configuration, wherein the TBoMS configuration comprises resource configuration of the TBoMS representations.
  38. The uplink configuration method of claim 37, wherein the base station receives UE capability of a user equipment (UE) , and the UE capability comprises TBoMS capability of the UE.
  39. The uplink configuration method of claim 38, wherein the base station transmits a request for the UE capability of the UE.
  40. The uplink configuration method of claim 38, wherein the UE capability is in a message of MSG1, MSG3, or MSG5, or after MSG5.
  41. The uplink configuration method of claim 40, wherein the message of MSG1 has a random access preamble that indicates the TBoMS capability of the UE.
  42. The uplink configuration method of claim 41, wherein the random access preamble is selected from a TBoMS-supporting subgroup or a non-TBoMS-supporting subgroup of random access preambles.
  43. The uplink configuration method of claim 40, wherein the UE capability is carried in one or more messages of an radio resource control (RRC) setup request, an RRC re-establishment request, an RRC resume request, an RRC re-configuration, an RRC re-configuration complete, UE capability information, security mode complete, UL information transfer, UE information response, measurement report, Phy-Parameters, and RF-Parameters.
  44. The uplink configuration method of claim 37, wherein the TBoMS representations of the at least one transport block comprise segments of one transport block in a transmission mode of a first type one TB over multi-slot (TBoMS) or a second type TBoMS.
  45. The uplink configuration method of claim 44, wherein the first type TBoMS has discontinuous TDRA in frequency division duplex (FDD) or discontinuous TDRA in time division duplex (TDD) , and the second type TBoMS has continuous TDRA in FDD, or discontinuous TDRA in TDD;
    in the discontinuous TDRA, two adjacent segments in the segments of the transport block are separately allocated to two slots; and
    in the continuous TDRA, transmission of the transport block is continuously allocated to one or more adjacent slots.
  46. The uplink configuration method of claim 44, wherein the TBoMS representations of the at least one transport block comprise segments of one transport block in the transmission mode of the first type TBoMS, and the resource configuration of the TBoMS representations of the at least one TB comprises one or more of:
    a start symbol, in a time slot, of one segment among the segments of the transport block;
    a length of the segment;
    an end symbol, in the time slot, of the segment; and
    a number of slots allocated to the segments of the transport block.
  47. The uplink configuration method of claim 44, wherein the TBoMS representations of the at least one transport block comprise segments of one transport block in the transmission mode of the second type TBoMS, and the resource configuration of the TBoMS representations of the at least one TB comprises one or more of:
    a start symbol, among a plurality of slots allocated to the transport block, of the segments of the transport block;
    a length of the segments;
    an end symbol, among the plurality of slots allocated to the transport block, of the segments of the transport block; and
    a number of the plurality of slots allocated to the segments of the transport block.
  48. The uplink configuration method of claim 44, wherein an indication of a number of the plurality of slots allocated to the segments of the transport block is carried in a downlink control message, and the downlink control message comprises a message of downlink control information (DCI) , radio resource control (RRC) , or configured grant (CG) configuration.
  49. The uplink configuration method of claim 44, wherein he TBoMS configuration comprises time domain resource allocation (TDRA) configuration for the segments of the transport block, and the TDRA configuration comprises an indication of discontinuous TDRA for the segments of the transport block of the first type TBoMS in FDD, discontinuous TDRA for the segments of the transport block of the first type TBoMS in TDD, continuous TDRA for the segments of the transport block of the second type TBoMS in FDD, discontinuous TDRA for the segments of the transport block of the second type TBoMS in TDD, or continuous TDRA for the segments of the transport block of the second type TBoMS in TDD.
  50. The uplink configuration method of claim 44, wherein the TBoMS configuration comprises repetition configuration including a repetition type of repetitions of the transport block, the repetition type comprises an indication of a first repetition type or a second repetition type of the repetitions of the transport block;
    in the first repetition type, two adjacent repetitions in the repetitions of the transport block are separately allocated to two slots; and
    in the second repetition type, two adjacent nominal repetitions in the repetitions of the transport block are continuously allocated to one or more adjacent slots.
  51. The uplink configuration method of claim 50, wherein a gap is configured and located between two repetitions of the transport block, and a parameter of the repetition configuration specifies a length of gap.
  52. The uplink configuration method of claim 50, wherein a parameter of the repetition configuration specifies a number of repetitions for the transport block.
  53. The uplink configuration method of claim 50, wherein the repetition type is transmitted in an RRC message of downlink control information (DCI) .
  54. The uplink configuration method of claim 50, wherein the base station negotiates frequency hopping configuration of a frequency hopping function, and the frequency hopping configuration comprises an indication of a mode configuration of the frequency hopping function for the TBoMS representations of the at least one transport block, and the mode configuration of the frequency hopping function comprises a frequency hopping type.
  55. The uplink configuration method of claim 54, wherein the frequency hopping (FH) type of the frequency hopping function indicates one of the inter-symbol FH, intra-slot FH, inter-slot FH or inter-repetition FH applicable to the first repetition type, one of inter-symbol FH, intra-slot FH, inter-slot FH or inter-repetition FH applicable to the second repetition type.
  56. The uplink configuration method of claim 54, wherein the frequency hopping configuration comprises a control signal carrying an indication for enabling or disabling of the frequency hopping function.
  57. The uplink configuration method of claim 54, wherein the frequency hopping configuration is included in a message of downlink control information (DCI) , radio resource control (RRC) , or configured grant (CG) configuration.
  58. The uplink configuration method of claim 55, wherein the base station negotiates bundling configuration of a bundling function, and the bundling configuration comprises an indication of a mode configuration of the bundling function for the TBoMS representations of the at least one transport block, and the mode configuration of the bundling function comprises one or both of a bundling type and a bundling size, the bundling type indicates inter-slot bundling or inter-repetition bundling, and the bundling size indicates a number of slots for the inter-slot bundling or a number of repetitions for the inter-repetition bundling.
  59. The uplink configuration method of claim 58, wherein the bundling configuration comprises a control signal carrying an indication for enabling or disabling of the bundling function.
  60. The uplink configuration method of claim 58, wherein the bundling configuration is included in a message of downlink control information (DCI) , radio resource control (RRC) , or configured grant (CG) configuration.
  61. The uplink configuration method of claim 55, wherein the base station negotiates time domain window configuration of a time domain window function, and the time domain window configuration comprises an indication of a mode configuration of the time domain window function for the TBoMS representations of the at least one transport block, and the mode configuration of the time domain window function comprises one or both of a time domain window type and a time domain window size, the time domain window type indicates inter-slot time domain window or inter-repetition time domain window, and the time domain window size indicates a number of slots for the inter-slot time domain window or a number of repetitions for the inter-repetition time domain window.
  62. The uplink configuration method of claim 61, wherein the time domain window configuration comprises a control signal carrying an indication for enabling or disabling of the time domain window function.
  63. The uplink configuration method of claim 61, wherein the time domain window configuration is included in a message of downlink control information (DCI) , radio resource control (RRC) , or configured grant (CG) configuration.
  64. The uplink configuration method of claim 37, wherein the at least one transport block comprises a physical uplink shared channel (PUSCH) or a physical uplink control channel (PUCCH) .
  65. A base station comprising:
    a processor, configured to call and run a computer program stored in a memory, to cause a device in which the chip is installed to execute any of the methods of claims 37 to 64.
  66. A chip, comprising a processor, configured to call and run a computer program stored in a memory, to cause a device in which the chip is installed to execute any of the methods of claims 37 to 64.
  67. A computer readable storage medium, in which a computer program is stored, wherein the computer program causes a computer to execute any of the methods of claims 37 to 64.
  68. A computer program product, comprising a computer program, wherein the computer program causes a computer to execute any of the methods of claims 37 to 64.
  69. A computer program, wherein the computer program causes a computer to execute any of the methods of claims 37 to 64.
PCT/CN2021/110143 2021-08-02 2021-08-02 Uplink configuration method, user equipment, and base station WO2023010255A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/110143 WO2023010255A1 (en) 2021-08-02 2021-08-02 Uplink configuration method, user equipment, and base station

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/110143 WO2023010255A1 (en) 2021-08-02 2021-08-02 Uplink configuration method, user equipment, and base station

Publications (1)

Publication Number Publication Date
WO2023010255A1 true WO2023010255A1 (en) 2023-02-09

Family

ID=85154890

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/110143 WO2023010255A1 (en) 2021-08-02 2021-08-02 Uplink configuration method, user equipment, and base station

Country Status (1)

Country Link
WO (1) WO2023010255A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170279472A1 (en) * 2016-02-05 2017-09-28 Sony Corporation Communications devices, infrastructure equipment and methods
CN111344977A (en) * 2017-11-16 2020-06-26 高通股份有限公司 Multislot scheduling using repeated transmission of transport blocks with different redundancy versions

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170279472A1 (en) * 2016-02-05 2017-09-28 Sony Corporation Communications devices, infrastructure equipment and methods
CN111344977A (en) * 2017-11-16 2020-06-26 高通股份有限公司 Multislot scheduling using repeated transmission of transport blocks with different redundancy versions

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHINA TELECOM: "Discussion on PUSCH coverage enhancements", 3GPP DRAFT; R1-2007994, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20201026 - 20201113, 16 October 2020 (2020-10-16), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051939424 *
ZTE CORPORATION: "Discussion on TB processing over multi-slot PUSCH", 3GPP DRAFT; R1-2100096, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20210125 - 20210205, 19 January 2021 (2021-01-19), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051970801 *

Similar Documents

Publication Publication Date Title
US11765775B2 (en) Uplink carrier selection for PRACH transmission between a NR dedicated carrier and a LTE/NR shared carrier
KR102469974B1 (en) Method and device for configuring time-frequency resource transmission direction
RU2762809C1 (en) User apparatus and base station apparatus
CN111837428B (en) Reporting power headroom for multiple connected next generation networks
US10952168B2 (en) Method for transmitting downlink control signal and apparatus
EP3832939B1 (en) Communication method and device
CN104756534A (en) Communication control device, terminal device, program, and communication control method
US11076422B2 (en) Random access responding method and device, and random access method and device
EP4145750A1 (en) Positioning capabilities of reduced capability new radio devices
US20230156779A1 (en) Uplink signal sending and receiving method and apparatus
US20210235506A1 (en) Information processing method and apparatus
WO2019096232A1 (en) Communication method and communication apparatus
CN113950856A (en) Communication method, communication device and system
US20190045551A1 (en) Device and Method of Handling Physical Random Access Channel Resources on a Secondary Cell in Carrier Aggregation
US20220264638A1 (en) Systems and methods of enhanced random access procedure
US20230122456A1 (en) Early indication for reduced capability devices
US20220272755A1 (en) Wireless communication methods, user equipment and network device
WO2023010255A1 (en) Uplink configuration method, user equipment, and base station
EP4033831A1 (en) Communication method and apparatus
CN114520987A (en) Method, device and equipment for processing conflict of IAB (inter-access node) and readable storage medium
WO2022236675A1 (en) Uplink configuration method, user equipment, and base station
WO2023077469A1 (en) Uplink configuration method, user equipment, and base station
WO2023279401A1 (en) Initial access method, base station, and user equipment
WO2024031623A1 (en) User equipment, base station and method for configured grant uplink transmission
US20230354338A1 (en) Simultaneous uplink transmission on multiple panels in wireless communication

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21952165

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE