WO2023008950A1 - Sterilization module and fluid treatment apparatus comprising same - Google Patents

Sterilization module and fluid treatment apparatus comprising same Download PDF

Info

Publication number
WO2023008950A1
WO2023008950A1 PCT/KR2022/011193 KR2022011193W WO2023008950A1 WO 2023008950 A1 WO2023008950 A1 WO 2023008950A1 KR 2022011193 W KR2022011193 W KR 2022011193W WO 2023008950 A1 WO2023008950 A1 WO 2023008950A1
Authority
WO
WIPO (PCT)
Prior art keywords
light source
unit
light
collecting
fluid
Prior art date
Application number
PCT/KR2022/011193
Other languages
French (fr)
Korean (ko)
Inventor
이정훈
Original Assignee
서울바이오시스주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울바이오시스주식회사 filed Critical 서울바이오시스주식회사
Publication of WO2023008950A1 publication Critical patent/WO2023008950A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/16Disinfection, sterilisation or deodorisation of air using physical phenomena
    • A61L9/18Radiation

Definitions

  • the present invention relates to a sterilization module and a fluid treatment device including the same.
  • Pathogenic infectious agents can be transmitted by movement of fluids such as air.
  • cases of transmission of pathogenic infectious agents are increasing through air conditioners for purifying and circulating indoor air.
  • An object to be solved by the present invention is to provide a sterilization module capable of sterilizing a fluid and a fluid treatment device including the same.
  • an object to be solved by the present invention is to provide a sterilization module capable of collecting and sterilizing contaminants included in a fluid and a fluid treatment device including the same.
  • a sterilization module including a collecting unit and a light source unit.
  • the collecting unit may include a plurality of collecting units that collect pollutants included in the fluid and are connected to each other.
  • the light source unit may include at least one light source emitting light for sterilizing the contaminant.
  • the collecting unit may be formed such that neighboring collecting units are inclined in opposite directions.
  • the light source unit may emit the light to the collecting unit and the sterilization space.
  • the sterilization space may be a space surrounded by collection surfaces of the neighboring collection units.
  • the collecting surface may be one surface of the collecting unit facing the light source unit. Also, ends of collection units adjacent to each other may be located within the sterilization area.
  • the collecting part may include a plurality of first through holes through which the fluid passes.
  • the diameter of the first through hole may be 30 nm to 10 ⁇ m.
  • Ends of the collection units adjacent to each other may be located on different horizontal lines.
  • At least one of ends of the collecting units adjacent to each other may be located at an outermost angle of the beam angle of the light source.
  • the sterilization module may further include a reflector disposed between the light source unit and the collecting unit.
  • the reflector may include a plurality of second through holes through which the fluid passes.
  • the collecting part may include a plurality of first through holes through which the fluid passes. Also, a diameter of the second through hole may be greater than a diameter of the first through hole.
  • the first through hole and the second through hole may be formed such that central axes do not match each other.
  • the reflection part may have greater rigidity than the collecting part.
  • the reflector may have a transmittance of 70% or more for light emitted from the light source.
  • the reflective part may include a plurality of reflective layers.
  • the reflector may be further disposed in a rear direction of the collecting unit.
  • the rear direction of the collecting unit may be opposite to the direction in which the light source unit is disposed.
  • the collecting unit may further include a reflective material.
  • a fluid treatment device including a housing and a sterilization module.
  • the housing may be formed with an inlet and an outlet.
  • the sterilization module may be disposed inside the housing to sterilize the fluid passing through the inside of the housing.
  • the sterilization module may include a collecting unit and a light source unit.
  • the collecting unit may include a plurality of collecting units that collect pollutants included in the fluid and are connected to each other.
  • the light source unit may include at least one light source emitting light for sterilizing the contaminant.
  • the collecting unit may be formed such that neighboring collecting units are inclined in opposite directions.
  • the light source unit may emit the light to the collecting unit and the sterilization space.
  • the sterilization space may be a space surrounded by collection surfaces of the neighboring collection units.
  • the collecting surface may be one surface of the collecting unit facing the light source unit. Also, ends of collection units adjacent to each other may be located within the sterilization area.
  • the collecting part may include a plurality of first through holes through which the fluid passes.
  • the sterilization module may further include a reflector disposed between the light source unit and the collecting unit and having a plurality of second through holes formed therein.
  • a diameter of the second through hole may be greater than a diameter of the first through hole.
  • the reflective part may include a plurality of reflective layers.
  • the reflector may be further disposed in a rear direction of the collecting unit.
  • the rear direction of the collecting unit may be opposite to the direction in which the light source unit is disposed.
  • the fluid treatment device may further include a fluid suction unit for inducing movement of the fluid.
  • the sterilization module of the present invention and a fluid treatment device including the same may improve sterilization efficiency of a fluid by including a collection unit capable of collecting contaminants and a light source unit emitting light having a sterilization effect.
  • the area of the collecting unit disposed in an arbitrary area may be increased, and sterilization efficiency may be improved by disposing the collecting unit in consideration of the beam angle of the light source unit.
  • FIG. 1 is a perspective view showing a sterilization module according to a first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of a sterilization module according to a first embodiment of the present invention.
  • FIG 3 is an exemplary view showing a sterilization module according to a second embodiment of the present invention.
  • FIG. 4 is a cross-sectional view of a sterilization module according to a third embodiment of the present invention.
  • FIG 5 is an exemplary view showing a sterilization module according to a fourth embodiment of the present invention.
  • FIG. 6 is an exemplary view showing a sterilization module according to a fifth embodiment of the present invention.
  • FIG. 7 is an exemplary view showing a light source according to a first embodiment of the present invention.
  • FIG 8 is an exemplary view showing a light source according to a second embodiment of the present invention.
  • FIG 9 is an exemplary view showing a light source according to a third embodiment of the present invention.
  • FIG. 10 is an exemplary view showing a light source according to a fourth embodiment of the present invention.
  • FIG. 11 is an exemplary view showing a light source according to a fifth embodiment of the present invention.
  • FIG. 12 is an exemplary view illustrating a fluid treatment device according to an embodiment of the present invention.
  • FIG 1 and 2 are exemplary views showing a sterilization module according to a first embodiment of the present invention.
  • FIG. 1 is a perspective view showing a sterilization module 100 according to a first embodiment of the present invention.
  • 2 is a cross-sectional view of the sterilization module 100 according to the first embodiment of the present invention.
  • the sterilization module 100 may include a collecting unit 120 and a light source unit 110 .
  • the collecting unit 120 may collect contaminants included in the fluid.
  • a fluid can be a gas or a liquid.
  • the gas may be air and the liquid may be water.
  • the type of fluid is not limited to air and water.
  • the fluid can be any kind of gas or liquid that requires purification.
  • Contamination sources may be substances that have a harmful effect on the human body, such as pathogenic microorganisms and dust.
  • microorganisms that have a harmful effect on the human body may be bacteria, viruses, fungi, and the like.
  • the fluid may be a droplet containing a contaminant.
  • the collecting unit 120 may have a plurality of through holes 125 formed therein.
  • the fluid may pass through the collecting unit 120 through the through hole 125 .
  • the collecting unit 120 may collect contaminants included in the fluid when the fluid passes through the through hole 125 .
  • the through hole 125 formed in the collecting unit 120 may have a size sufficient to separate the contaminants included in the fluid from the fluid. That is, the through hole 125 may be formed to have a smaller size than the contamination source included in the fluid. According to this embodiment, each through hole 125 may be formed to have a diameter of about 30 nm to 10 ⁇ m. For example, when the collecting target is bacteria, the diameter of the through hole 125 of the collecting unit 120 may be about 1 ⁇ m to about 5 ⁇ m. In addition, when the collection target is a virus, the diameter of the through hole 125 of the collection unit 120 may be about 30 nm to 300 nm.
  • the diameter of the through hole 125 of the collecting unit 120 may be about 5 ⁇ m to about 10 ⁇ m.
  • the size of the through hole 125 is not limited thereto. The size of the through hole 125 may be variously changed according to the type of pollutant to be collected.
  • the light source unit 110 may include a substrate 111 and at least one light source 112 disposed on the substrate 111 .
  • a wire may be formed on the substrate 111 , and the wire formed on the substrate 111 may be electrically connected to the light source 112 .
  • the light source 112 may emit light by receiving power through the substrate 111 .
  • the light source 112 may be light in a wavelength band capable of sterilizing a fluid by inactivating or killing a contaminant.
  • sterilizing the fluid means sterilizing a contaminant included in the fluid, and the sterilization of the fluid and the sterilization of the contaminant may be understood as the same meaning.
  • the light source 112 may emit light having a peak wavelength in a wavelength range of about 250 nm to about 420 nm.
  • light emitted from the light source 112 may have a full width at half maximum (FWHM) of 30 nm or less.
  • the half width of light emitted from the light source 112 may be 20 nm or less.
  • the light beam angle of the light source 112 may be 140 degrees or less. Furthermore, the light directing angle of the light source 112 may be greater than or equal to 70 degrees and less than or equal to 120 degrees.
  • a peak wavelength of light emitted from the light source 112, a half-maximum width of light, or a beam angle of light may vary depending on the type of contamination source.
  • the light source 112 may be a light emitting diode or a chip or package containing a light emitting diode.
  • the light source unit 110 may include one light source 112 or may include a plurality of light sources 112 .
  • the plurality of light sources 112 may emit light of the same wavelength range.
  • at least one light source 112 among the plurality of light sources 112 may emit light having a peak wavelength different from that of the other light sources 112.
  • at least one light source 112 among the plurality of light sources 112 may emit light having a different half width from that of the other light sources 112.
  • at least one light source 112 among the plurality of light sources 112 may have a different angle of view from other light sources 112.
  • the light source unit 110 may include a plurality of light sources 112 to emit light having an appropriate peak wavelength, full width at half maximum, or beam angle according to the type of contamination source. That is, the light source unit 110 includes a light source for emitting light with a peak wavelength, half-width or beam angle suitable for killing bacteria, a light source for emitting light with a peak wavelength, half-maximum width or beam angle suitable for killing viruses, and a light source for killing fungi. A light source that emits light having a peak wavelength, a full width at half maximum, or a beam angle may be included. Accordingly, the light source unit 110 may improve the sterilization efficiency of the fluid by emitting light having a peak wavelength, half-maximum width, or beam angle suitable for sterilization of the corresponding pollutant according to the type of pollutant to be sterilized.
  • the light source unit 110 may be disposed to emit light to the collecting surface of the collecting unit 120 .
  • the collecting surface may be one surface of the collecting part 120 facing the direction in which the fluid flows. That is, the collecting surface is one surface located in the direction in which the fluid flows into the through hole 125 of the collecting unit 120.
  • the collecting surface is one surface of the collecting unit 120 facing the light source unit 110 .
  • the collecting unit 120 may include a plurality of collecting units 121 sequentially connected.
  • the plurality of collecting units 121 may be formed to be inclined in a different direction from neighboring collecting units 121 .
  • the plurality of collecting units 121 may be formed to be inclined in the opposite direction to the neighboring collecting units 121 .
  • the collecting unit 120 may have a plurality of bent structures as shown in FIG. 1 .
  • the plurality of collecting units 121 may be areas in which the collecting unit 120 is divided into a plurality of parts.
  • the light source 112 may be disposed in each of the two collecting units 121 adjacent to each other.
  • the two collection units 121 adjacent to each other may form a sterilization space, which is a convex space in the opposite direction of the light source 112 . That is, the sterilization space may be a space in which the light source 112 emitted from the light source 112 is irradiated while being surrounded by the collecting surfaces of the collecting units 121 adjacent to each other.
  • neighboring collection units 121 surrounding the sterilization space may include a first end 131 , a second end 132 , and a third end 133 .
  • the sterilization space may be a space formed by connecting the first end 131 , the second end 132 , and the third end 133 .
  • the first end 131 is one end of one collecting unit 121
  • the second end 132 is one end of the other collecting unit 121
  • the third end 133 is one collecting unit 121 connected to each other. It is the other end of and the other end of the other collection unit 121.
  • the first end 131, the second end 132, and the third end 133 may be located on different horizontal lines according to angles formed by the collecting units 121 adjacent to each other. That is, the first end 131 and the second end 132 may have the same or different distances from the substrate 111 depending on the angle formed by the collecting units 121 connected to the respective ends. In addition, a distance between the third end 133 and the substrate 111 may be changed according to an angle formed by the collecting units 121 connected to the third end 133 . In the case of the third end 133, the height may vary according to the positions of the first end 131 and the second end 132.
  • each collecting unit 121 of this embodiment As long as the length or area of each collecting unit 121 of this embodiment is not changed, the size of the sterilization space is not changed even if the position of the first end part 131 to the third end part 133 is changed.
  • the sterilization module 100 of the present embodiment can have better sterilization efficiency than the conventional sterilization module that directly sterilizes fluid without the collecting unit 120 .
  • the sterilization module 100 has a structure in which the collecting unit 120 does not have a generally flat structure but includes a plurality of inclined surfaces. Therefore, in the sterilization module 100 of the present embodiment, the area of the collecting unit 120 disposed in the same size area may be larger than that of the conventional flat collecting unit 120 . That is, the sterilization module 100 of this embodiment may increase the area of the collecting unit 120 disposed in an arbitrary predetermined area. Therefore, the sterilization module 100 of this embodiment can improve the collection efficiency of pollutants.
  • the light source unit 110 is disposed to emit light toward the collecting surface of the collecting unit 120 . That is, the light source unit 110 and the collecting unit 120 are sequentially disposed along the direction in which the fluid flows. Accordingly, the light source unit 110 may directly irradiate light toward the fluid before passing through the collecting unit 120 as well as radiating light to the collecting surface where the contaminants are collected. Therefore, the sterilization module 100 according to the present embodiment simultaneously sterilizes the contaminants included in the fluid and the contaminants collected in the collecting unit 120, so that the sterilization efficiency of the fluid can be improved.
  • the maximum width of the sterilization space of the collecting unit 120 decreases, the area of the collecting surface disposed in an arbitrary predetermined area increases.
  • the maximum width of the sterilization space is the distance between ends of the collecting units 121 adjacent to each other. That is, it is the distance between the first end 131 and the second end 132 of the neighboring collection units 121 surrounding the sterilization space.
  • the number of through holes 125 of the collecting unit 120 located in the predetermined area also increases. That is, the total area of the through hole 125 of the collecting unit 120 disposed in the predetermined area is increased.
  • the velocity of the fluid may increase.
  • the time during which the fluid is exposed to the light of the light source unit 110 decreases.
  • the maximum width of the sterilization space of the collecting unit 120 decreases, the distance between the light source 112 and the other end of the collecting unit 121 increases.
  • the other end of the collection unit 121 is the third end 133 .
  • the difference between the distance from the substrate 111 to one end of the collecting unit 121 and the other end increases. In this case, the light intensity difference between one end and the other end of the collecting unit 121 also increases, and thus the uniformity of the light irradiated to the collecting unit 121 decreases.
  • the total area of the through hole 125 of the collecting unit 120 disposed in a predetermined area decreases. In this case, since the area where the fluid passes through the collecting unit 120 is reduced, the flow of the fluid may not be smooth. If the flow of the fluid is not smooth, the amount of fluid to be sterilized per hour is reduced.
  • one end of the collecting unit 121 may be positioned out of the light irradiation area of the light source 112 . That is, light may not be irradiated to a part of the collecting unit 121 . Accordingly, uniformity of light irradiated to the collecting unit 121 may decrease. Furthermore, a portion of the fluid may pass through the collecting unit 120 without being exposed to light from the light source 112 .
  • the sterilization efficiency may decrease.
  • one ends of the collection units 121 adjacent to each other may be located inside the light beam angle of the light source 112 . That is, the maximum width of the sterilization space formed by the collection units 121 adjacent to each other may be equal to or smaller than the width of the beam beam angle on the same line.
  • the light directing angle is the light directing angle of the light source 112 radiating light to the sterilization space formed by the collecting units 121 adjacent to each other. Therefore, when the light beam angle of the light source 112 increases, the maximum width of the sterilization area may also increase. Accordingly, the angle formed by the collection units 121 adjacent to each other or the distance between ends may also increase.
  • the third end 133 of the sterilization space may be located on the same vertical line as the central axis of the light exit surface of the light source 112 .
  • the third end 133 of the sterilization space may be positioned adjacent to the central axis of the light exit surface of the light source 112 .
  • the first end 131 and the second end 132 of the sterilization space may be located at or adjacent to the outermost angle of the beam angle of the light source 112 .
  • the sterilization module 100 of the present embodiment may form the collecting unit 120 so that ends of the collecting units 121 adjacent to each other are positioned within the light irradiation area of the light source 112 . Therefore, the sterilization module 100 of the present embodiment allows the light of the light source unit 110 to be irradiated to the entire collecting unit 120 and improves the uniformity of the light irradiated to the collecting unit 120 to improve sterilization efficiency.
  • the angle between the collection units 121 adjacent to each other and the distance between ends may be freely changed within the light irradiation area of the light source 112 . That is, the sterilization module 100 of this embodiment can adjust the speed of the fluid passing through the collecting unit 120 while maintaining light uniformity. Therefore, the sterilization module 100 of the present embodiment can improve sterilization efficiency by adjusting light uniformity and fluid flow rate.
  • FIG 3 is an exemplary view showing a sterilization module according to a second embodiment of the present invention.
  • the sterilization module 200 may include a collecting unit 220 , a light source unit 110 and a reflecting unit 250 .
  • the sterilization module 200 of this embodiment is obtained by adding a reflector 250 to the sterilization module 100 according to the first embodiment of FIG. 1 . That is, the collecting unit 220 and the light source unit 110 of this embodiment are the same as the collecting unit 120 and the light source unit 110 of the sterilization module 100 according to the first embodiment of FIG.
  • the reflector 250 may be disposed between the light source unit 110 and the collecting unit 220 . In this case, the reflector 250 may be located closer to the collecting unit 220 than the light source unit 110 .
  • the reflector 250 may be made of a material that reflects light emitted from the light source unit 110 . Also, a material constituting the reflector 250 may vary according to a peak wavelength (center wavelength) of light emitted from the light source 112 .
  • the reflector 250 may be formed of a material having a reflectance of 70% or more for light emitted from the light source unit 110 .
  • the reflector 250 may have a reflectance of 90% or more for light emitted from the light source unit 110 . That is, the reflector 250 may have a transmittance of less than 10% for light emitted from the light source unit 110 .
  • the reflector 250 may include a plurality of through holes.
  • the fluid may pass through the through hole of the reflector 250 and move to the collecting unit 220 .
  • the through hole of the collecting unit 220 is the first through hole 225
  • the through hole of the reflecting unit 250 is the second through hole 255 .
  • the second through hole 255 of the reflector 250 may be formed to have a larger diameter than the first through hole 225 of the collecting part 220 .
  • the second through hole 255 of the reflector 250 may be formed to have a size exposing the plurality of first through holes 225 of the collecting part 220 . Accordingly, some of the light emitted from the light source unit 110 may be irradiated to the collecting unit 220 through the second through hole 255 of the reflecting unit 250 .
  • the reflector 250 may be formed so that the center of the second through hole 255 and the center of the first through hole 225 of the collecting part 220 are not located on the same line. That is, the center of the second through hole 255 of the reflector 250 and the center of the first through hole 225 of the collecting unit 220 may not match. Accordingly, the collecting surface of the collecting unit 220 may be maximally exposed to the light of the light source unit 110 through the second through hole 255 of the reflecting unit 250 .
  • the reflector 250 is formed of a light reflective material, light from the light source unit 110 passing through the second through hole 255 may be scattered by the reflector 250 . Accordingly, the light passing through the second through hole 255 can be irradiated to the collecting unit 220 as widely and uniformly as possible.
  • light from the light source unit 110 may be reflected from one surface of the reflector 250 facing the light source unit 110 .
  • the fluid may be exposed to both the light emitted from the light source unit 110 and the light reflected by the reflector 250 . Therefore, the sterilization efficiency of the fluid can be improved by the reflector 250 .
  • the reflector 250 of the present embodiment can minimize the resistance that fluid receives by the reflector 250, so that the fluid flows smoothly. Also, the reflector 250 may uniformly irradiate light to the collecting unit 220 . In addition, the reflector 250 may increase the amount of time the fluid is exposed to light or the amount of light irradiated to the fluid. Therefore, the sterilization efficiency of the sterilization module 200 according to the present embodiment may be improved by the reflector 250 .
  • the reflector 250 of this embodiment may be disposed between the light source unit 110 and the collecting unit 220 to relieve the pressure of the fluid that the collecting unit 220 receives. That is, the reflector 250 may protect the collecting unit 220 from the pressure of the fluid, thereby improving durability and reliability of the sterilization module 200 .
  • the reflector 250 may be formed to have a thickness equal to or smaller than that of the collecting unit 220 .
  • the thickness is the length between one side into which the fluid is introduced and the other side through which the fluid is discharged.
  • the reflector 250 may have greater rigidity than the collecting unit 220 .
  • the reflector 250 may be formed of a metal material. Therefore, even if the thickness of the reflecting part 250 is less than the thickness of the collecting part 220, the collecting part 220 can be protected without being deformed or damaged by the pressure of the fluid.
  • FIG. 4 is an exemplary view showing a sterilization module according to a third embodiment of the present invention.
  • the sterilization module 300 according to the third embodiment is different from the sterilization module 200 according to the second embodiment of FIG. 2 in the structure of the collecting unit 320 and the reflection unit 350.
  • the collecting unit 320 and the reflecting unit 350 of the sterilization module 300 of this embodiment may have a structure in which a plurality of layers are stacked.
  • the collection unit 320 of this embodiment may include a first collection layer 321 and a second collection layer 325 .
  • the first collection layer 321 and the second collection layer 325 may be formed of the same material.
  • the first collection layer 321 and the second collection layer 325 may respectively collect contamination sources of the fluid passing through the collection unit 320 . That is, contaminants included in the fluid may be double-removed from the fluid while passing through the collecting unit 320 .
  • the first collection layer 321 and the second collection layer 325 may be formed of different materials. At this time, the first collection layer 321 and the second collection layer 325 may collect all contaminants included in the fluid. In addition, the first collection layer 321 and the second collection layer 325 may collect certain types of contaminants better than other types of contaminants depending on the material. That is, at least one of the first collection layer 321 and the second collection layer 325 may be formed of a material optimized for collecting a specific type of pollutant. Alternatively, the first collection layer 321 and the second collection layer 325 may be formed of different materials to be optimized for collecting different specific types of pollutants.
  • Each of the first collection layer 321 and the second collection layer 325 may have a plurality of through holes through which fluid passes.
  • the through hole of the first collection layer 321 is the 1-1 through hole 322
  • the through hole of the second collection layer 325 is the 1-2 through hole 326 .
  • the 1-1st through hole 322 and the 1-2nd through hole 326 may have the same diameter.
  • the 1-1st through hole 322 and the 1-2nd through hole 326 may have different diameters as shown in FIG. 4 .
  • first collection layer 321 and the second collection layer 325 may be formed so that the center of the 1-1st through hole 322 and the center of the 1-2nd through hole 326 are offset from each other. .
  • the center of the 1-1 through hole 322 coincides with the center of the 1-2 through hole 326, the fluid that has passed through the 1-1 through hole 322 is transferred to the 1-2 through hole 326 as it is. ), so that the pollutant collection efficiency of the second collection layer 325 is reduced.
  • the center of the 1-1 through hole 322 and the center of gravity of the 1-2 through hole 326 are misaligned, at least a portion of the fluid passing through the 1-1 through hole 322 is transferred to the second collection layer 325.
  • the contaminants may be collected in the second filter unit by contacting the collecting surface of the second filter unit. Therefore, the first collection layer 321 and the second collection layer 325 are formed so that the center of the 1-1st through hole 322 and the center of the 1-2nd through hole 326 are offset from each other, thereby preventing contamination.
  • the collection efficiency for can be improved.
  • first collection layer 321 and the second collection layer 325 may be disposed to be in close contact with each other or may be disposed to be spaced apart from each other.
  • the reflector 350 of this embodiment may include a first reflective layer 351 and a second reflective layer 355 .
  • the first reflective layer 351 and the second reflective layer 355 may be formed of the same material or different materials.
  • first reflective layer 351 and the second reflective layer 355 may include a plurality of through holes through which fluid passes.
  • the through hole of the first reflective layer 351 is the 2-1 through hole 352
  • the through hole of the second reflective layer 355 is the 2-2 through hole 356 .
  • the 2-1st through hole 352 and the 2-2nd through hole 356 may have the same diameter. Also, the 2-1st through hole 352 and the 2-2nd through hole 356 may have different diameters as shown in FIG. 4 .
  • first reflective layer 351 and the second reflective layer 355 may be formed so that the center of the 2-1 through hole 352 and the center of the 2-2 through hole 356 are offset from each other.
  • both the 2-1 through hole 352 of the first reflective layer 351 and the 2-2 through hole 356 of the second reflective layer 355 are the 1-1 through hole of the first collection layer 321. It may be formed to have a larger diameter than the hole 322 and the first-second through hole 326 of the second collection layer 325 .
  • first reflective layer 351 and the second reflective layer 355 include at least one of the 2-1st through holes 352 and 2-2nd through holes 356 and the 1-1st through hole 322. At least one of the first and second through holes 326 and the central axis may be misaligned.
  • the collection surface of the first collection layer 321 and the second At least a portion of the collection surface of the collection layer 325 may be exposed to light.
  • the first collection layer 321 and the second collection layer 325 may be covered by the first reflective layer 351 and the second reflective layer 355 so that the light from the light source unit 110 is not directly irradiated. Light reflected by the first reflective layer 351 and the second reflective layer 355 may be scattered and irradiated to this portion.
  • first reflective layer 351 and the second reflective layer 355 may be formed to be in close contact with or spaced apart from each other.
  • first reflective layer 351 and the second reflective layer 355 are spaced apart, light reflection may repeatedly occur in the spaced apart space. Accordingly, the fluid between the first reflective layer 351 and the second reflective layer 355 may be continuously exposed to the reflected light. Therefore, the fluid can be sterilized by the reflected light even between the first reflective layer 351 and the second reflective layer 355 where the light emitted from the light source unit 110 does not reach.
  • the sterilization module 300 of the present embodiment improves the collection efficiency of contaminants by forming the reflector 350 and the collection unit 320 as a plurality of layers, and increases the sterilization efficiency by increasing the time the contaminants are exposed to light. can improve
  • FIG 5 is an exemplary view showing a sterilization module according to a fourth embodiment of the present invention.
  • the sterilization module 400 may include a collecting unit 420, a light source unit 110, a first reflecting unit 450, and a second reflecting unit 460.
  • the sterilization module 400 according to the fourth embodiment includes a second reflector 460.
  • the first reflector 450 of this embodiment is the reflector 250 of the sterilization module 200 of the second embodiment of FIG. 3 or the reflector 350 of the sterilization module 300 of the third embodiment of FIG. 4 can be the same as
  • the first reflector 450 is disposed on the front side of the collecting unit 420
  • the second reflector 460 is disposed on the rear side of the collecting unit 420.
  • the front of the collecting unit 420 is one side facing the light source unit 110
  • the rear side is the opposite side of the front side.
  • the first reflector 450 and the second reflector 460 may be disposed adjacent to the collecting unit 420 and spaced apart from the collecting unit 420 . Accordingly, the fluid passes through the second reflection part 460 after passing through the first reflection part 450 and the collecting part 420 .
  • the second reflector 460 may reflect light passing through the collecting unit 420 .
  • the light reflected by the second reflector 460 may be irradiated to the fluid passing through the collecting unit 420 . Accordingly, contaminants that are not sterilized while passing through the first reflector 450 and the collecting unit 420 may be exposed to the light reflected by the second reflector 460 to be sterilized.
  • the second reflector 460 may be the same as the reflector 250 of the sterilization module 200 of the second embodiment of FIG. 3 or the reflector 350 of the sterilization module 300 of the third embodiment of FIG. 4 . . That is, the second reflector 460 may be formed as a single layer or may include a plurality of layers.
  • the fluid is sterilized by being exposed to the light of the light source unit 110 and the light reflected by the first reflector 450 before passing through the collecting unit 420, and is separated from the contaminant when passing through the collecting unit 420, After passing through the collection unit 420, the light reflected by the second reflector 460 may be exposed to sterilization.
  • the sterilization module 400 of this embodiment can improve sterilization efficiency by sterilizing the fluid in various ways.
  • the second reflector 460 may protect the collecting part 420 from fluid pressure, similar to the first reflector 450 . Therefore, the durability and reliability of the sterilization module 400 of this embodiment can be improved by the first reflector 450 and the second reflector 460 .
  • FIG. 6 is an exemplary view showing a sterilization module according to a fifth embodiment of the present invention.
  • the sterilization module 500 may include a light source unit 110 and a collecting unit 520.
  • the light source unit 110 of this embodiment is the same as the light source unit 110 of the sterilization module 100 of the first embodiment of FIGS. 1 and 2 .
  • the collecting unit 520 of this embodiment may include a reflective material at least in part.
  • the collecting unit 520 may be formed by mixing a material capable of collecting pollutants and a material reflecting light.
  • the collecting unit 520 may include a base 521 formed of a material capable of collecting pollutants and a reflective material formed on the front surface of the base 521 .
  • the reflective material may be the reflective layer 522 formed on the entire front surface or a part of the front surface of the base 521 .
  • the base 2521 may be the collecting unit 120 of FIGS. 1 and 2 .
  • the reflective material of the collecting unit 520 may reflect light from the light source unit 110 and radiate light to a fluid flowing between the light source unit 110 and the collecting unit 520 . At this time, the reflective material of the collecting unit 520 is reflected at various angles so that the light is uniformly irradiated to the entire space between the light source unit 110 and the collecting unit 520 .
  • Contaminants of the fluid may be collected in a portion of the collecting unit 520 made of a collecting material without a reflective material.
  • the contaminant may be collected on a part of the front surface of the collecting unit 520 where the reflective material is not formed or on an inner wall forming a through hole (not shown) of the collecting unit 520 .
  • light is scattered in various directions by the reflective material of the collecting unit 520 and may be irradiated to the inner wall of the through hole. Therefore, in the present embodiment, the pollutants collected by the collecting unit 520 may be sterilized by being exposed to light emitted from the light source unit 110 or exposed to light reflected by a reflective material.
  • the sterilization module 500 of the present embodiment can improve sterilization efficiency by improving the uniformity of light in a space through which fluid passes through a reflective material and maximally exposing the fluid and contaminants to light.
  • the collecting unit 520 may be improved by the reflective material. Therefore, the collecting unit 520 of this embodiment can be prevented from being damaged or broken by the pressure of the fluid. Thus, the durability and reliability of the sterilization module 500 of this embodiment can be improved.
  • FIG. 7 is an exemplary view showing a light source according to a first embodiment of the present invention.
  • the light source 1000 may be a light emitting diode that can be directly mounted on a substrate.
  • the light source 1000 includes a mesa M including a first conductivity-type semiconductor layer 1111, an active layer 1112, and a second conductivity-type semiconductor layer 1113; 1 insulating layer 1130 (1130a, 1130b), a first electrode 1140, and a second insulating layer 1150 may be included, and further, a growth substrate 1100 and a second electrode 1120 may be included. there is.
  • the growth substrate 1100 is not limited as long as it can grow the first conductivity-type semiconductor layer 1111, the active layer 1112, and the second conductivity-type semiconductor layer 1113, and examples thereof include a sapphire substrate and silicon. It may be a carbide substrate, a gallium nitride substrate, an aluminum nitride substrate, a silicon substrate, or the like. A side surface of the growth substrate 1100 may include an inclined surface, and thus extraction of light generated from the active layer 1112 may be improved.
  • the second conductivity-type semiconductor layer 1113 may be disposed on the first conductivity-type semiconductor layer 1111, and the active layer 1112 includes the first conductivity-type semiconductor layer 1111 and the second conductivity-type semiconductor layer 1113. can be placed in between.
  • the first conductivity type semiconductor layer 1111, the active layer 1112, and the second conductivity type semiconductor layer 1113 may include a III-V series compound semiconductor, for example, (Al, Ga, In)N It may include a nitride-based semiconductor such as.
  • the first conductivity-type semiconductor layer 1111 may include an n-type impurity (eg, Si), and the second conductivity-type semiconductor layer 1113 may include a p-type impurity (eg, Mg). there is. Also, the opposite may be true.
  • the active layer 1112 may include a multi-quantum well structure (MQM).
  • MQM multi-quantum well structure
  • the first conductivity-type semiconductor layer 1111, the active layer 1112, and the second conductivity-type semiconductor layer 1113 are formed on a growth substrate ( 1100) can be grown on.
  • the light source 1000 may include at least one mesa M including an active layer 1112 and a second conductive semiconductor layer 1113 .
  • the mesa M may include a plurality of protrusions, and the plurality of protrusions may be spaced apart from each other. It is not limited thereto, and the light source 1000 may include a plurality of mesas M spaced apart from each other.
  • the side surface of the mesa M may be formed to be inclined by using a technique such as photoresist reflow, and the inclined side surface of the mesa M may improve light emitting efficiency generated in the active layer 1112 .
  • the first conductivity-type semiconductor layer 1111 may include a first contact region R1 and a second contact region R2 exposed through the mesa M. Since the mesa M is formed by removing the active layer 1112 and the second conductivity type semiconductor layer 1113 disposed on the first conductivity type semiconductor layer 1111, the portion excluding the mesa M is the first conductivity type semiconductor layer. It becomes the contact region which is the exposed upper surface of the type semiconductor layer 1111.
  • the first electrode 1140 may be electrically connected to the first conductive semiconductor layer 1111 by contacting the first contact region R1 and the second contact region R2 .
  • the first contact region R1 may be disposed around the mesa M along the periphery of the first conductivity-type semiconductor layer 1111, and specifically, between the mesa M and the side surface of the light source 1000, the first contact region R1 may be disposed around the mesa M. It may be disposed along the outer edge of the upper surface of the conductive semiconductor layer.
  • the second contact region R2 may be at least partially surrounded by the mesa M.
  • the length of the second contact region R2 in the direction of the major axis may be 0.5 times or more than the length of one side of the light source 1000 .
  • the contact area between the first electrode 1140 and the first conductivity type semiconductor layer 1111 may increase, the current flowing from the first electrode 1140 to the first conductivity type semiconductor layer 1111 is more effective. It can be dissipated, so the forward voltage can be further reduced.
  • the second electrode 1120 is disposed on the second conductivity type semiconductor layer 1113 and can be electrically connected to the second conductivity type semiconductor layer 1113 .
  • the second electrode 1120 is formed on the mesa M and may have the same shape as the mesa M.
  • the second electrode 1120 includes the reflective metal layer 1121 and may further include a barrier metal layer 1122, and the barrier metal layer 1122 may cover top and side surfaces of the reflective metal layer 1121.
  • the barrier metal layer 1122 may be formed to cover the upper and side surfaces of the reflective metal layer 1121 .
  • the reflective metal layer 1121 may be formed by depositing and patterning Ag, Ag alloy, Ni/Ag, NiZn/Ag, or TiO/Ag layers.
  • the barrier metal layer 1122 may be formed of Ni, Cr, Ti, Pt, Au, or a composite layer thereof, and specifically, Ni/Ag/[Ni/ Ti]2/Au/Ti may be a composite layer, and more specifically, at least a portion of the upper surface of the second electrode 1120 may include a Ti layer having a thickness of 300 ⁇ .
  • the region of the upper surface of the second electrode 1120 in contact with the first insulating layer is made of a Ti layer, the adhesive strength between the first insulating layer 1130 and the second electrode 1120 is improved, thereby increasing the reliability of the light source 1000. can be improved
  • An electrode protection layer 1160 may be disposed on the second electrode 1120, and the electrode protection layer 1160 may be made of the same material as the first electrode 1140, but is not limited thereto.
  • the first insulating layer 1130 may be disposed between the first electrode 1140 and the mesa M. Through the first insulating layer 1130 , the first electrode 1140 may be insulated from the mesa M, and the first electrode 1140 may be insulated from the second electrode 1120 .
  • the first insulating layer 1130 may partially expose the first contact region R1 and the second contact region R2. In detail, the first insulating layer 1130 may expose a portion of the second contact region R2 through the opening 1130a, and the first insulating layer 1130 may cover the first conductive semiconductor layer 1111. At least a portion of the first contact region R1 may be exposed by covering only a portion of the first contact region R1 between the periphery and the mesa M.
  • the first insulating layer 1130 may be disposed on the second contact region R2 and along the periphery of the second contact region R2. At the same time, the first insulating layer 1130 may be disposed adjacent to the mesa M rather than the area where the first contact region R1 and the first electrode 1140 come into contact.
  • the first insulating layer 1130 may have an opening 1130b exposing the second electrode 1120 .
  • the second electrode 1120 may be electrically connected to a pad or a bump through the opening 1130b.
  • a region where the first contact region R1 and the first electrode 140 come into contact is disposed along the entire outer perimeter of the upper surface of the first conductivity type semiconductor layer.
  • the region where the first contact region R1 and the first electrode 1140 come into contact may be disposed to be adjacent to all four side surfaces of the first conductive semiconductor layer 1111 and completely surround the mesa M. can In this case, since the contact area between the first electrode 1140 and the first conductivity type semiconductor layer 1111 may increase, the current flowing from the first electrode 1140 to the first conductivity type semiconductor layer 1111 is more effective. It can be dissipated, so the forward voltage can be further reduced.
  • the first electrode 1140 and the second electrode 1120 of the light source 1000 may be mounted on the substrate 1100 directly or through pads.
  • the light source 1000 when the light source 1000 is mounted on a substrate through a pad, two pads disposed between the light source 1000 and the substrate 1100 may be provided, and each of the two pads may have a first electrode ( 1140) and the second electrode 1120.
  • the pad may be solder or eutectic metal, but is not limited thereto.
  • AuSn may be used as the eutectic metal.
  • the bonding material may include an adhesive material having conductive properties.
  • the bonding material may include at least one conductive material among silver (Ag), tin (Sn), and copper (Cu).
  • the bonding material may include various materials having conductivity.
  • FIG 8 is an exemplary view showing a light source according to a second embodiment of the present invention.
  • a light source 2000 may include a support member 2100, a light emitting diode 2200, a side wall portion 2300, and a sealing member 2400.
  • the light emitting diode 2200 of this embodiment may be the light source 1000 of the first embodiment of FIG. 8 .
  • the support member 2100 may include a base 2110 and wires 2120 .
  • the base 2110 may be formed of an insulating material, and the wiring 2120 may be formed of a conductive material.
  • the wiring 2120 may include an upper wiring 2121 formed on the upper surface of the base 2110, a lower wiring 2122 formed under the base 2110, and a via 2123 formed to penetrate the base 2110. can
  • the upper wiring 2121 may be electrically connected to the light emitting diode 2200 disposed on the support member 2100 .
  • the lower wiring 2122 is a component electrically connected to an external component.
  • the via 2123 may pass through the base 2110 and be connected to the upper wiring 2121 and the lower wiring 2122 , respectively.
  • the upper wiring 2121 and the lower wiring 2122 may be electrically connected to each other by the via 2123 .
  • the support member 2100 is a component that electrically connects the light emitting diode 2200 to an external component.
  • the light emitting diode 2200 may operate by receiving power from an external component through the support member 2100 .
  • the support member 2100 may be a printed circuit board.
  • the side wall portion 2300 is formed on the support member 2100 and may be formed to surround a side surface of the light emitting diode 2200 . That is, the light emitting diode 2200 may be disposed on the upper surface of the support member 2100 through the opening formed by the side wall portion 2300 . In addition, the light emitting diode 2200 may be spaced apart from the inner wall of the side wall portion 2300 .
  • the side wall portion 2300 may be formed of an insulating material.
  • the side wall portion 2300 may be formed of silicone resin.
  • the type of material constituting the side wall portion 2300 is not limited to silicone resin.
  • the sidewall portion 2300 may be formed of various materials applied to a known light emitting diode 2200 package.
  • the sidewall portion 2300 may further include a light reflective material such as TiO 2 dispersed inside the insulating material.
  • a light reflection layer may be further formed on the inner wall of the side wall portion 2300 .
  • the inner wall of the side wall portion 2300 forming the opening may be formed to have an inclination. Accordingly, light emitted from the side of the light emitting diode 2200 may be reflected from the inner wall of the side wall 2300 and directed upward.
  • the sealing member 2400 may be formed to cover the light emitting diode 2200 by filling the cavity 2310 of the side wall portion 2300 .
  • the sealing member 2400 may seal the cavity 2310 to protect the light emitting diode 2200 from foreign substances such as dust and moisture outside the light source 2000 .
  • the sealing member 2400 may be formed of an insulating light-transmitting material.
  • the light-transmitting material forming the sealing member 2400 may have transmittance of 70% or more or 85% or more of light emitted from the light emitting diode 2200 .
  • the light-transmitting material of the sealing member 2400 may have a transmittance of 80% or more for light in a wavelength range of 220 nm to 400 nm.
  • the light transmitting material may be an epoxy resin, a silicone resin or a fluororesin.
  • the sealing member 2400 may further include a diffusing agent dispersed inside the light-transmitting material.
  • FIG 9 is an exemplary view showing a light source according to a third embodiment of the present invention.
  • the light source 3000 may include a support member 2100, a light emitting diode 2200, and an optical member 3500.
  • the light emitting diode 2200 may be disposed above the supporting member 2100 .
  • the support member 2100 and the light emitting diode 2200 of the light source 3000 of this embodiment are the same as the support member 2100 and the light emitting diode 2200 of the light source 2000 according to the second embodiment of FIG. 8 .
  • an optical member 3500 may be formed above the support member 2100 and cover the light emitting diode 2200 . Also, the optical member 3500 may be formed to contact at least one surface of the light emitting diode 2200 .
  • the optical member 3500 may have a curved outer surface. Light emitted from the light emitting diode 2200 may pass through the optical member 3500 and be emitted to the outside of the light source 3000 . That is, the outer surface of the optical member 3500 is an exit surface. The optical member 3500 thus formed can adjust the beam angle of the light source 3000 by dispersing the light emitted from the light emitting diode 2200 .
  • the optical member 3500 may be formed of a light-transmissive material.
  • the light-transmissive material may have transmittance of 70% or more or 85% or more of light emitted from the light emitting diode 2200 .
  • the light-transmitting material of the optical member 3500 may have a transmittance of 80% or more for light in a wavelength range of 220 nm to 400 nm.
  • the light transmitting material may be an epoxy resin, a silicone resin or a fluororesin.
  • the optical member 3500 may be formed of at least one of quartz, glass, silicon, sapphire, and fluorine resin.
  • the optical member 3500 may further include a diffusing agent dispersed inside the light-transmitting material.
  • the outer surface of the optical member 3500 in FIG. 9 is made of a curved surface
  • the structure of the optical member 3500 is not limited thereto.
  • the optical member 3500 may be formed in various structures to adjust the beam angle of the light source 3000 .
  • FIG. 10 is an exemplary view showing a light source according to a fourth embodiment of the present invention.
  • the light source 4000 may include a support member 2100, a light emitting diode 2200, and an optical member 4500.
  • the light emitting diode 2200 is disposed on the supporting member 2100, and the optical member 4500 may be formed to cover the light emitting diode 2200.
  • the light source 4000 of this embodiment is the same in other configurations except for the structure of the light source 3000 and the optical member 4500 of the third embodiment of FIG. 9 .
  • the optical member 4500 of this embodiment may include a light input unit 4510 and a light output unit 4520.
  • the light entrance part 4510 is formed on the lower surface of the optical member 4500 .
  • the light entrance part 4510 may be formed concave upward from the lower surface of the optical member 4500 .
  • the light entrance part 4510 may have a structure in which a width gradually decreases from the lower surface of the optical member 4500 toward the upper part.
  • the light emitting part 4520 is an outer surface of the optical member 4500 through which light is emitted to the outside.
  • the light emitting unit 4520 may include a first light emitting unit 4521 and a second light emitting unit 4522 .
  • the first light emitting part 4521 is connected to the lower surface of the optical member 4500 and is located below the second light emitting part 4522 .
  • the first light exit portion 4521 may be an inclined surface, and may have a structure in which the width gradually decreases from the lower surface of the optical member 4500 toward the upper surface.
  • the second light exit part 4522 may be located above the first light exit part 4521 .
  • the second light exit portion 4522 may have a curved surface, and may have a structure in which a width gradually decreases toward an upper direction. That is, the second light exit part 4522 may be formed in a hemispherical shape.
  • the maximum width of the first light exit part 4521 is greater than the maximum width of the second light exit part 4522 .
  • the structure of the optical member 4500 of this embodiment is not limited thereto.
  • the optical member 4500 may have a structure in which the maximum width of the first light emitting part 4521 and the maximum width of the second light emitting part 4522 are the same.
  • the optical member 4500 may have a structure in which the first light emitting part 4520 has the same width from the bottom to the top.
  • the light emitting diode 2200 is disposed in the light input part 4510 of the optical member 4500 . Accordingly, light emitted from the light emitting diode 2200 may be incident into the optical member 4500 through the light input unit 4510 . In addition, light may pass through the inside of the optical member 4500 and be emitted to the outside of the light source 4000 through the light exit unit 4520 .
  • the optical member 4500 of this embodiment is not limited to the structure shown in FIG. 10 .
  • the optical member 4500 may be formed in various structures in consideration of the angle of view of the light source 4000 and the direction of light emission.
  • FIG. 11 is an exemplary view showing a light source according to a fifth embodiment of the present invention.
  • a light source 5000 according to the fifth embodiment may include a support member 5100, a light emitting diode 2200, and an optical member 5500.
  • the support member 5100 may be formed of an insulating material.
  • the support member 5100 may be formed of a ceramic material.
  • the support member 5100 may include a cavity 5110 with an open upper surface.
  • the support member 5100 may include a wire 5120 made of a conductive material. A portion of the wire 5120 may be exposed by the cavity 5110 of the support member 5100 . That is, a portion of the wiring 5120 may be formed on the bottom surface of the cavity 5110 of the support member 5100 . In addition, another part of the wiring 5120 may be exposed from the lower surface of the support member 5100 .
  • the wiring 5120 formed on the mounting surface of the support member 5100 and the wiring 5120 formed on the lower surface of the support member 5100 may be electrically connected.
  • the light emitting diode 2200 may be disposed in the cavity 5110 of the support member 5100 and electrically connected to the wire 5120 exposed by the cavity 5110 .
  • the light emitting diode 2200 of this embodiment may be the same as the light source 1000 of FIG. 7 .
  • the inner wall forming the cavity 5110 of the support member 5100 has a structure perpendicular to the bottom surface. That is, the cavity 5110 has a structure in which a lower portion and an upper portion have the same width.
  • the structure of the support member 5100 is not limited thereto.
  • An inner wall of the support member 5100 may be inclined or curved.
  • the support member 5100 may include a material that reflects light.
  • the support member 5100 itself may be made of a light reflective material.
  • the support member 5100 may be formed by mixing a light reflective material with an insulating material.
  • the inner wall of the support member 5100 may be coated with a light reflecting material. Accordingly, light that hits the inner wall of the support member 5100 from the light emitting diode 2200 may be reflected and directed toward the optical member 5500 positioned above.
  • the optical member 5500 may be disposed on the upper surface of the support member 5100 to cover the cavity 5110 .
  • the light emitting diode 2200 is disposed on the support member 5100, and the optical member 5500 may be formed to cover the light emitting diode 2200.
  • the optical member 5500 may be formed of a material that transmits light emitted from the light emitting diode 2200 .
  • the optical member 5500 may be formed of at least one of quartz, glass, silicon, and sapphire.
  • the optical member 5500 may further include a diffusing agent dispersed inside the light-transmitting material.
  • the optical member 5500 has a structure in which upper and lower surfaces are flat.
  • this embodiment is not limited to the structure of the optical member 5500 shown in FIG. 11 .
  • the optical member 5500 may be formed in various structures capable of covering the cavity 5110 of the support member 5100 .
  • the light sources 110 of the sterilization modules 100, 200, 300, 400, and 500 according to the first to fifth embodiments of the present invention are the light sources 1000, 2000, 3000, 4000, 5000) may include at least one.
  • FIG. 12 is an exemplary view illustrating a fluid treatment device according to an embodiment of the present invention.
  • the fluid treatment device 1 may include a housing 10 and a sterilization module 600 .
  • the housing 10 may include an inlet 11 through which the fluid is introduced and an outlet 12 through which the fluid is discharged.
  • the inner space of the housing 10 may be a passage through which fluid moves.
  • a sterilization module 600 may be disposed inside the housing 10 .
  • the sterilization module 600 includes a light source unit 610 and a collecting unit 620 .
  • the structure of the sterilization module 600 is not limited thereto.
  • the sterilization module 600 of this embodiment may be one of the previously described sterilization modules of various embodiments.
  • the collecting part 620 of the sterilization module 600 may be formed to block the inner space of the housing 10 . That is, the edge of the collecting unit 620 may be formed to be in close contact with the inner wall of the housing 10 . Accordingly, all fluids flowing into the housing 10 may pass through the collecting unit 620 and be directed toward the outlet 12 . Therefore, the fluid treatment device 1 of the present embodiment can sterilize all fluids flowing into the housing 10 .
  • the fluid processing device 1 of this embodiment may further include a fluid suction unit.
  • the fluid suction unit may induce movement of the fluid.
  • the fluid suction unit of this embodiment may be disposed between the inlet 11 of the housing 10 and the sterilization module 600 inside the housing 10 . Accordingly, the fluid suction unit may induce a flow of fluid so that the fluid outside the housing 10 and the fluid passing through the inlet 11 of the housing 10 pass through the sterilization module 600 .
  • the fluid intake may be a pump or fan.
  • the fluid suction unit is disposed between the inlet 11 of the housing 10 and the sterilization module 600, but the present embodiment is not limited thereto.
  • a fluid suction unit may be disposed between the sterilization module 600 and the outlet 12 .
  • the fluid suction unit may be disposed adjacent to the inlet 11 or the outlet 12 outside the housing 10 .
  • the fluid treatment device 1 can be placed in any space, such as an indoor space of a building. Therefore, fluid in an arbitrary space may be introduced through the inlet 11 of the housing 10, and the sterilized fluid may be discharged into an arbitrary space through the outlet 12.
  • the inlet 11 and the outlet 12 of the housing 10 of the fluid treatment device 1 may be connected to external pipes through which fluid flows, respectively.
  • the fluid handling device 1 can be coupled to air conditioners in buildings and vehicles.

Landscapes

  • Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Apparatus For Disinfection Or Sterilisation (AREA)

Abstract

The present invention relates to a sterilization module and a fluid treatment apparatus comprising same, the sterilization module comprising: a collection unit which collects pollutants included in a fluid and includes a plurality of collection units connected to each other; and a light source unit including at least one light source emitting light that sterilizes the pollutants, wherein the collection units are formed such that neighboring collection units are inclined in opposite directions, the light source unit emits light into the collection units and sterilization spaces, the sterilization spaces are spaces surrounded by collection surfaces of the neighboring collection units, the collection surfaces are one surface of the collection units, respectively, each one surface facing the light source unit, and one end of each of the neighboring collection units is located in a sterilization area.

Description

살균 모듈 및 이를 포함하는 유체 처리 장치Sterilization module and fluid treatment device including the same
본 발명은 살균 모듈 및 이를 포함하는 유체 처리 장치에 관한 것이다.The present invention relates to a sterilization module and a fluid treatment device including the same.
병원성 감염원은 공기와 같은 유체의 이동에 따라 전파될 수 있다. 특히 실내 공기를 정화하고 순환시키기 위한 공조기를 통해 병원성 감염원의 전파사례가 늘어나고 있다. Pathogenic infectious agents can be transmitted by movement of fluids such as air. In particular, cases of transmission of pathogenic infectious agents are increasing through air conditioners for purifying and circulating indoor air.
이에 따라, 실내 공간의 공기 또는 공조기로 유입되어 실내로 순환되는 공기를 살균할 수 있는 기술이 요구된다.Accordingly, there is a need for a technology capable of sterilizing air in an indoor space or air that is introduced into an air conditioner and circulated into the room.
본 발명의 해결하고자 하는 과제는 유체를 살균할 수 있는 살균 모듈 및 이를 포함하는 유체 처리 장치를 제공하는 데 있다.An object to be solved by the present invention is to provide a sterilization module capable of sterilizing a fluid and a fluid treatment device including the same.
또한, 본 발명의 해결하고자 하는 과제는 유체에 포함된 오염원을 포집하고, 살균할 수 있는 살균 모듈 및 이를 포함하는 유체 처리 장치를 제공하는 데 있다.In addition, an object to be solved by the present invention is to provide a sterilization module capable of collecting and sterilizing contaminants included in a fluid and a fluid treatment device including the same.
본 발명의 일 실시 예에 따르면, 포집부 및 광원부를 포함하는 살균 모듈이 제공된다. 상기 포집부는 유체에 포함된 오염원을 포집하며, 서로 연결된 복수의 포집 유닛을 포함할 수 있다. 상기 광원부는 상기 오염원을 살균하는 광을 방출하는 적어도 하나의 광원을 포함할 수 있다. 상기 포집부는 이웃한 포집 유닛들이 서로 반대 방향으로 경사지도록 형성될 수 있다. 상기 광원부는 상기 포집부 및 살균 공간으로 상기 광을 방출할 수 있다. 상기 살균 공간은 상기 이웃한 포집 유닛들의 포집면들로 둘러싸인 공간일 수 있다. 상기 포집면은 상기 광원부를 마주하는 상기 포집부의 일면일 수 있다. 또한, 서로 이웃하는 포집 유닛들의 일단들은 상기 살균 영역 내에 위치할 수 있다.According to one embodiment of the present invention, a sterilization module including a collecting unit and a light source unit is provided. The collecting unit may include a plurality of collecting units that collect pollutants included in the fluid and are connected to each other. The light source unit may include at least one light source emitting light for sterilizing the contaminant. The collecting unit may be formed such that neighboring collecting units are inclined in opposite directions. The light source unit may emit the light to the collecting unit and the sterilization space. The sterilization space may be a space surrounded by collection surfaces of the neighboring collection units. The collecting surface may be one surface of the collecting unit facing the light source unit. Also, ends of collection units adjacent to each other may be located within the sterilization area.
상기 포집부는 상기 유체가 통과하는 복수의 제1 관통공을 포함할 수 있다.The collecting part may include a plurality of first through holes through which the fluid passes.
상기 제1 관통공의 직경은 30㎚ 내지 10㎛일 수 있다.The diameter of the first through hole may be 30 nm to 10 μm.
상기 서로 이웃하는 포집 유닛들의 일단들은 서로 다른 수평선상에 위치할 수 있다.Ends of the collection units adjacent to each other may be located on different horizontal lines.
상기 서로 이웃하는 포집 유닛들의 일단들 중 적어도 하나는 상기 광원의 지향각의 최외각에 위치할 수 있다.At least one of ends of the collecting units adjacent to each other may be located at an outermost angle of the beam angle of the light source.
상기 살균 모듈은 상기 광원부와 상기 포집부 사이에 배치되는 반사부를 더 포함할 수 있다. The sterilization module may further include a reflector disposed between the light source unit and the collecting unit.
상기 반사부는 상기 유체가 통과하는 복수의 제2 관통공을 포함할 수 있다.The reflector may include a plurality of second through holes through which the fluid passes.
상기 포집부는 상기 유체가 통과하는 복수의 제1 관통공을 포함할 수 있다. 또한, 상기 제2 관통공의 직경은 상기 제1 관통공의 직경보다 클 수 있다.The collecting part may include a plurality of first through holes through which the fluid passes. Also, a diameter of the second through hole may be greater than a diameter of the first through hole.
상기 제1 관통공과 상기 제2 관통공은 중심축이 서로 불일치하도록 형성될 수 있다.The first through hole and the second through hole may be formed such that central axes do not match each other.
상기 반사부는 상기 포집부보다 큰 강성을 가질 수 있다.The reflection part may have greater rigidity than the collecting part.
상기 반사부는 상기 광원에서 방출된 광에 대한 투과율이 70% 이상일 수 있다.The reflector may have a transmittance of 70% or more for light emitted from the light source.
상기 반사부는 복수의 반사층을 포함할 수 있다.The reflective part may include a plurality of reflective layers.
상기 반사부는 상기 포집부의 후면 방향에 더 배치될 수 있다. 여기서, 상기 포집부의 후면 방향은 상기 광원부가 배치된 방향의 반대 방향일 수 있다.The reflector may be further disposed in a rear direction of the collecting unit. Here, the rear direction of the collecting unit may be opposite to the direction in which the light source unit is disposed.
상기 포집부는 반사 물질을 더 포함할 수 있다.The collecting unit may further include a reflective material.
본 발명의 다른 실시 예에 따르면, 하우징 및 살균 모듈을 포함하는 유체 처리 장치가 제공된다. 상기 하우징은 유입구와 배출구가 형성될 수 있다. 상기 살균 모듈은 상기 하우징의 내부에 배치되어 상기 하우징의 내부를 통과하는 유체를 살균할 수 있다. 상기 살균 모듈은 포집부 및 광원부를 포함할 수 있다. 상기 포집부는 유체에 포함된 오염원을 포집하며, 서로 연결된 복수의 포집 유닛을 포함할 수 있다. 상기 광원부는 상기 오염원을 살균하는 광을 방출하는 적어도 하나의 광원을 포함할 수 있다. 상기 포집부는 이웃한 포집 유닛들이 서로 반대 방향으로 경사지도록 형성될 수 있다. 상기 광원부는 상기 포집부 및 살균 공간으로 상기 광을 방출할 수 있다. 상기 살균 공간은 상기 이웃한 포집 유닛들의 포집면들로 둘러싸인 공간일 수 있다. 상기 포집면은 상기 광원부를 마주하는 상기 포집부의 일면일 수 있다. 또한, 서로 이웃하는 포집 유닛들의 일단들은 상기 살균 영역 내에 위치할 수 있다.According to another embodiment of the present invention, a fluid treatment device including a housing and a sterilization module is provided. The housing may be formed with an inlet and an outlet. The sterilization module may be disposed inside the housing to sterilize the fluid passing through the inside of the housing. The sterilization module may include a collecting unit and a light source unit. The collecting unit may include a plurality of collecting units that collect pollutants included in the fluid and are connected to each other. The light source unit may include at least one light source emitting light for sterilizing the contaminant. The collecting unit may be formed such that neighboring collecting units are inclined in opposite directions. The light source unit may emit the light to the collecting unit and the sterilization space. The sterilization space may be a space surrounded by collection surfaces of the neighboring collection units. The collecting surface may be one surface of the collecting unit facing the light source unit. Also, ends of collection units adjacent to each other may be located within the sterilization area.
상기 포집부는 상기 유체가 통과하는 복수의 제1 관통공을 포함할 수 있다.The collecting part may include a plurality of first through holes through which the fluid passes.
상기 살균 모듈은 상기 광원부와 상기 포집부 사이에 배치되며, 복수의 제2 관통공을이 형성된 반사부를 더 포함할 수 있다. 상기 제2 관통공의 직경은 상기 제1 관통공의 직경보다 클 수 있다.The sterilization module may further include a reflector disposed between the light source unit and the collecting unit and having a plurality of second through holes formed therein. A diameter of the second through hole may be greater than a diameter of the first through hole.
상기 반사부는 복수의 반사층을 포함할 수 있다.The reflective part may include a plurality of reflective layers.
상기 반사부는 상기 포집부의 후면 방향에 더 배치될 수 있다. 여기서, 상기 포집부의 후면 방향은 상기 광원부가 배치된 방향의 반대 방향일 수 있다.The reflector may be further disposed in a rear direction of the collecting unit. Here, the rear direction of the collecting unit may be opposite to the direction in which the light source unit is disposed.
상기 유체 처리 장치는 상기 유체의 이동을 유도하는 유체 흡입부를 더 포함할 수 있다.The fluid treatment device may further include a fluid suction unit for inducing movement of the fluid.
본 발명의 살균 모듈 및 이를 포함하는 유체 처리 장치는 오염원을 포집할 수 있는 포집부 및 살균 효과를 갖는 광을 방출하는 광원부를 포함하여 유체의 살균 효율을 향상시킬 수 있다.The sterilization module of the present invention and a fluid treatment device including the same may improve sterilization efficiency of a fluid by including a collection unit capable of collecting contaminants and a light source unit emitting light having a sterilization effect.
또한, 본 실시 예의 유체 처리 장치는 임의의 영역에 배치되는 포집부의 면적을 증가시키며, 광원부의 지향각을 고려하여 포집부를 배치하여 살균 효율을 향상시킬 수 있다.In addition, in the fluid treatment device of the present embodiment, the area of the collecting unit disposed in an arbitrary area may be increased, and sterilization efficiency may be improved by disposing the collecting unit in consideration of the beam angle of the light source unit.
도 1은 본 발명의 제1 실시 예에 따른 살균 모듈을 나타낸 사시도이다.1 is a perspective view showing a sterilization module according to a first embodiment of the present invention.
도 2는 본 발명의 제1 실시 예에 따른 살균 모듈의 단면도이다.2 is a cross-sectional view of a sterilization module according to a first embodiment of the present invention.
도 3은 본 발명의 제2 실시 예에 따른 살균 모듈을 나타낸 예시도이다.3 is an exemplary view showing a sterilization module according to a second embodiment of the present invention.
도 4는 본 발명의 제3 실시 예에 따른 살균 모듈의 단면도이다.4 is a cross-sectional view of a sterilization module according to a third embodiment of the present invention.
도 5는 본 발명의 제4 실시 예에 따른 살균 모듈을 나타낸 예시도이다.5 is an exemplary view showing a sterilization module according to a fourth embodiment of the present invention.
도 6은 본 발명의 제5 실시 예에 따른 살균 모듈을 나타낸 예시도이다.6 is an exemplary view showing a sterilization module according to a fifth embodiment of the present invention.
도 7은 본 발명의 제1 실시 예에 따른 광원을 나타낸 예시도이다.7 is an exemplary view showing a light source according to a first embodiment of the present invention.
도 8은 본 발명의 제2 실시 예에 따른 광원을 나타낸 예시도이다.8 is an exemplary view showing a light source according to a second embodiment of the present invention.
도 9는 본 발명의 제3 실시 예에 따른 광원을 나타낸 예시도이다.9 is an exemplary view showing a light source according to a third embodiment of the present invention.
도 10은 본 발명의 제4 실시 예에 따른 광원을 나타낸 예시도이다.10 is an exemplary view showing a light source according to a fourth embodiment of the present invention.
도 11은 본 발명의 제5 실시 예에 따른 광원을 나타낸 예시도이다.11 is an exemplary view showing a light source according to a fifth embodiment of the present invention.
도 12는 본 발명의 일 실시 예에 따른 유체 처리 장치를 나타낸 예시도이다.12 is an exemplary view illustrating a fluid treatment device according to an embodiment of the present invention.
이하, 첨부한 도면들을 참고하여 본 발명의 실시 예들을 상세히 설명하기로 한다. 다음에 소개되는 실시 예들은 당업자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위한 예시로서 제공되는 것이다. 따라서, 본 발명은 이하 설명되는 실시 예들에 한정되지 않고 다른 형태로 구체화될 수도 있다. 그리고 도면들에서, 구성요소의 폭, 길이, 두께 등은 편의를 위하여 과장되어 표현될 수 있다. 명세서 전체에 걸쳐서 동일한 참고번호들은 동일한 구성요소들을 나타내고 유사한 참고번호는 대응하는 유사한 구성요소를 나타낸다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. The embodiments introduced below are provided as examples to sufficiently convey the spirit of the present invention to those skilled in the art. Accordingly, the present invention may be embodied in other forms without being limited to the embodiments described below. And in the drawings, the width, length, thickness, etc. of components may be exaggerated for convenience. Like reference numbers indicate like elements throughout the specification, and like reference numbers indicate corresponding like elements.
도 1 및 도 2는 본 발명의 제1 실시 예에 따른 살균 모듈을 나타낸 예시도이다. 1 and 2 are exemplary views showing a sterilization module according to a first embodiment of the present invention.
도 1은 본 발명의 제1 실시 예에 따른 살균 모듈(100)을 나타낸 사시도이다. 또한, 도 2는 본 발명의 제1 실시 예에 따른 살균 모듈(100)의 단면도이다.1 is a perspective view showing a sterilization module 100 according to a first embodiment of the present invention. 2 is a cross-sectional view of the sterilization module 100 according to the first embodiment of the present invention.
도 1 및 도 2를 참고하면, 제1 실시 예에 따른 살균 모듈(100)은 포집부(120) 및 광원부(110)를 포함할 수 있다. Referring to FIGS. 1 and 2 , the sterilization module 100 according to the first embodiment may include a collecting unit 120 and a light source unit 110 .
포집부(120)는 유체에 포함되는 오염원을 포집할 수 있다. The collecting unit 120 may collect contaminants included in the fluid.
유체는 기체 또는 액체일 수 있다. 예를 들어, 기체는 공기이고, 액체는 물일 수 있다. 그러나 유체의 종류가 공기와 물로 한정되는 것은 아니다. 유체는 정화가 필요한 어떠한 종류의 기체 및 액체도 될 수 있다. A fluid can be a gas or a liquid. For example, the gas may be air and the liquid may be water. However, the type of fluid is not limited to air and water. The fluid can be any kind of gas or liquid that requires purification.
오염원은 병원성 미생물, 먼지와 같이 인체에 유해한 영향을 주는 물질일 수 있다. 예를 들어, 인체에 유해한 영향을 주는 미생물은 박테리아, 바이러스, 곰팡이 등일 수 있다. 또는 유체는 오염원을 포함하는 비말일 수 있다.Contamination sources may be substances that have a harmful effect on the human body, such as pathogenic microorganisms and dust. For example, microorganisms that have a harmful effect on the human body may be bacteria, viruses, fungi, and the like. Alternatively, the fluid may be a droplet containing a contaminant.
포집부(120)는 복수의 관통홀(125)이 형성될 수 있다. 관통홀(125)을 통해서 유체는 포집부(120)를 통과할 수 있다. 포집부(120)는 유체가 관통홀(125)을 통과할 때, 유체에 포함된 오염원을 포집할 수 있다. The collecting unit 120 may have a plurality of through holes 125 formed therein. The fluid may pass through the collecting unit 120 through the through hole 125 . The collecting unit 120 may collect contaminants included in the fluid when the fluid passes through the through hole 125 .
따라서, 포집부(120)에 형성된 관통홀(125)은 유체에 포함된 오염원을 유체로부터 분리할 수 있을 정도의 크기를 가질 수 있다. 즉, 관통홀(125)은 유체에 포함된 오염원보다 작은 크기를 갖도록 형성될 수 있다. 본 실시 예에 따르면, 각각의 관통홀(125)은 약 30㎚ 내지 10㎛의 직경을 갖는 크기로 형성될 수 있다. 예를 들어, 포집 대상이 박테리아인 경우, 포집부(120)의 관통홀(125)의 직경은 약 1㎛ 내지 5㎛일 수 있다. 또한, 포집 대상이 바이러스인 경우, 포집부(120)의 관통홀(125)의 직경은 약 30㎚ 내지 300㎚일 수 있다. 또한, 유체가 기체이며, 포집 대상이 비말인 경우, 포집부(120)의 관통홀(125)의 직경은 약 5㎛ 내지 10㎛일 수 있다. 관통홀(125)의 크기는 이에 한정되는 것은 아니다. 관통홀(125)의 크기는 포집 대상인 오염원의 종류에 따라 다양하게 변경될 수 있다.Accordingly, the through hole 125 formed in the collecting unit 120 may have a size sufficient to separate the contaminants included in the fluid from the fluid. That is, the through hole 125 may be formed to have a smaller size than the contamination source included in the fluid. According to this embodiment, each through hole 125 may be formed to have a diameter of about 30 nm to 10 μm. For example, when the collecting target is bacteria, the diameter of the through hole 125 of the collecting unit 120 may be about 1 μm to about 5 μm. In addition, when the collection target is a virus, the diameter of the through hole 125 of the collection unit 120 may be about 30 nm to 300 nm. In addition, when the fluid is a gas and the collecting target is droplets, the diameter of the through hole 125 of the collecting unit 120 may be about 5 μm to about 10 μm. The size of the through hole 125 is not limited thereto. The size of the through hole 125 may be variously changed according to the type of pollutant to be collected.
광원부(110)는 기판(111) 및 기판(111) 상에 배치된 적어도 하나의 광원(112)을 포함할 수 있다.The light source unit 110 may include a substrate 111 and at least one light source 112 disposed on the substrate 111 .
기판(111)에는 배선이 형성되어 있을 수 있으며, 기판(111)에 형성된 배선은 광원(112)과 전기적으로 연결될 수 있다. A wire may be formed on the substrate 111 , and the wire formed on the substrate 111 may be electrically connected to the light source 112 .
광원(112)은 기판(111)을 통해서 전원을 공급받아 발광할 수 있다. 광원(112)은 오염원을 불활성화 또는 사멸시켜 유체를 살균할 수 있는 파장대의 광일 수 있다. 여기서, 유체를 살균하는 것은 유체에 포함된 오염원을 살균하는 것으로, 유체 살균과 오염원 살균은 동일한 의미로 이해될 수 있다. 예를 들어, 광원(112)은 약 250㎚ 내지 420nm의 파장대에 피크 파장을 갖는 광을 방출할 수 있다. 또한, 광원(112)이 방출하는 광은 30㎚ 이하의 반치폭(Full width at half maximum, FWHM)을 가질 수 있다. 더 나아가 광원(112)이 방출하는 광의 반치폭은 20㎚ 이하일 수 있다.The light source 112 may emit light by receiving power through the substrate 111 . The light source 112 may be light in a wavelength band capable of sterilizing a fluid by inactivating or killing a contaminant. Here, sterilizing the fluid means sterilizing a contaminant included in the fluid, and the sterilization of the fluid and the sterilization of the contaminant may be understood as the same meaning. For example, the light source 112 may emit light having a peak wavelength in a wavelength range of about 250 nm to about 420 nm. In addition, light emitted from the light source 112 may have a full width at half maximum (FWHM) of 30 nm or less. Furthermore, the half width of light emitted from the light source 112 may be 20 nm or less.
본 실시 예에 따르면, 광원(112)의 광 지향각은 140도 이하일 수 있다. 더 나아가, 광원(112)의 광 지향각은 70도 이상 120도 이하일 수 있다.According to this embodiment, the light beam angle of the light source 112 may be 140 degrees or less. Furthermore, the light directing angle of the light source 112 may be greater than or equal to 70 degrees and less than or equal to 120 degrees.
광원(112)에서 방출되는 광의 피크 파장, 광의 반치폭 또는 광의 지향각은 오염원의 종류에 따라 달라질 수 있다. A peak wavelength of light emitted from the light source 112, a half-maximum width of light, or a beam angle of light may vary depending on the type of contamination source.
예를 들어, 광원(112)은 발광 다이오드이거나 발광 다이오드를 포함하는 칩 또는 패키지일 수 있다.For example, the light source 112 may be a light emitting diode or a chip or package containing a light emitting diode.
광원부(110)는 하나의 광원(112)을 포함하거나 복수의 광원(112)을 포함할 수 있다. 광원부(110)가 복수의 광원(112)을 포함하는 경우, 복수의 광원(112)은 동일한 파장대의 광을 방출할 수 있다. 또는 광원부(110)가 복수의 광원(112)을 포함하는 경우, 복수의 광원(112) 중 적어도 하나의 광원(112)은 다른 광원(112)과 서로 다른 피크 파장을 갖는 광을 방출할 수 있다. 또한, 광원부(110)가 복수의 광원(112)을 포함하는 경우, 복수의 광원(112) 중 적어도 하나의 광원(112)은 다른 광원(112)과 서로 다른 반치폭을 갖는 광을 방출할 수 있다. 또는 광원부(110)가 복수의 광원(112)을 포함하는 경우, 복수의 광원(112) 중 적어도 하나의 광원(112)은 다른 광원(112)과 서로 다른 지향각을 가질 수 있다. The light source unit 110 may include one light source 112 or may include a plurality of light sources 112 . When the light source unit 110 includes a plurality of light sources 112, the plurality of light sources 112 may emit light of the same wavelength range. Alternatively, when the light source unit 110 includes a plurality of light sources 112, at least one light source 112 among the plurality of light sources 112 may emit light having a peak wavelength different from that of the other light sources 112. . In addition, when the light source unit 110 includes a plurality of light sources 112, at least one light source 112 among the plurality of light sources 112 may emit light having a different half width from that of the other light sources 112. . Alternatively, when the light source unit 110 includes a plurality of light sources 112, at least one light source 112 among the plurality of light sources 112 may have a different angle of view from other light sources 112.
예를 들어, 광원부(110)는 오염원의 종류에 따라 적합한 피크 파장, 반치폭 또는 지향각을 갖는 광을 방출하도록 복수의 광원(112)을 포함할 수 있다. 즉, 광원부(110)는 박테리아를 사멸시키는데 적합한 피크 파장, 반치폭 또는 지향각의 광을 방출하는 광원, 바이러스를 사멸시키는데 적합한 피크 파장, 반치폭 또는 지향각의 광을 방출하는 광원, 곰팡이를 사멸시키는데 적합한 피크 파장, 반치폭 또는 지향각의 광을 방출하는 광원 등을 포함할 수 있다. 따라서, 광원부(110)는 살균 대상인 오염원의 종류에 따라 해당 오염원의 살균에 적합한 피크 파장, 반치폭 또는 지향각의 광을 방출하여, 유체의 살균 효율을 향상시킬 수 있다.For example, the light source unit 110 may include a plurality of light sources 112 to emit light having an appropriate peak wavelength, full width at half maximum, or beam angle according to the type of contamination source. That is, the light source unit 110 includes a light source for emitting light with a peak wavelength, half-width or beam angle suitable for killing bacteria, a light source for emitting light with a peak wavelength, half-maximum width or beam angle suitable for killing viruses, and a light source for killing fungi. A light source that emits light having a peak wavelength, a full width at half maximum, or a beam angle may be included. Accordingly, the light source unit 110 may improve the sterilization efficiency of the fluid by emitting light having a peak wavelength, half-maximum width, or beam angle suitable for sterilization of the corresponding pollutant according to the type of pollutant to be sterilized.
광원부(110)는 포집부(120)의 포집면으로 광을 방출하도록 배치될 수 있다. 예를 들어, 포집면은 유체가 흐르는 방향을 마주하는 포집부(120)의 일면일 수 있다. 즉, 포집면은 포집부(120)의 관통홀(125)로 유체가 유입되어 들어오는 방향에 위치한 일면이다. 또한, 포집면은 광원부(110)를 마주하는 포집부(120)의 일면이다.The light source unit 110 may be disposed to emit light to the collecting surface of the collecting unit 120 . For example, the collecting surface may be one surface of the collecting part 120 facing the direction in which the fluid flows. That is, the collecting surface is one surface located in the direction in which the fluid flows into the through hole 125 of the collecting unit 120. In addition, the collecting surface is one surface of the collecting unit 120 facing the light source unit 110 .
도 1 및 도 2를 참고하면, 포집부(120)는 차례대로 연결된 복수의 포집 유닛(121)을 포함할 수 있다. 복수의 포집 유닛(121)은 이웃한 포집 유닛(121)과 다른 방향으로 경사지도록 형성될 수 있다. 예를 들어, 복수의 포집 유닛(121)은 이웃한 포집 유닛(121)과 반대 방향으로 경사지도록 형성될 수 있다. 따라서, 포집부(120)는 도 1에 도시된 바와 같이 복수로 구부러진 구조를 가질 수 있다. 복수의 포집 유닛(121)은 포집부(120)를 복수로 나눈 영역일 수 있다.Referring to FIGS. 1 and 2 , the collecting unit 120 may include a plurality of collecting units 121 sequentially connected. The plurality of collecting units 121 may be formed to be inclined in a different direction from neighboring collecting units 121 . For example, the plurality of collecting units 121 may be formed to be inclined in the opposite direction to the neighboring collecting units 121 . Accordingly, the collecting unit 120 may have a plurality of bent structures as shown in FIG. 1 . The plurality of collecting units 121 may be areas in which the collecting unit 120 is divided into a plurality of parts.
광원(112)은 서로 이웃하는 두개의 포집 유닛(121)들 마다 배치될 수 있다. 이때, 서로 이웃하는 두개의 포집 유닛(121)은 광원(112)의 반대 방향으로 볼록한 공간인 살균 공간을 형성할 수 있다. 즉, 살균 공간은 서로 이웃하는 포집 유닛(121)의 포집면들로 둘러싸이면서, 광원(112)에서 방출된 광원(112)이 조사되는 공간일 수 있다.The light source 112 may be disposed in each of the two collecting units 121 adjacent to each other. At this time, the two collection units 121 adjacent to each other may form a sterilization space, which is a convex space in the opposite direction of the light source 112 . That is, the sterilization space may be a space in which the light source 112 emitted from the light source 112 is irradiated while being surrounded by the collecting surfaces of the collecting units 121 adjacent to each other.
도 2를 참고하면, 살균 공간을 둘러싸는 이웃하는 포집 유닛(121)들은 제1 단부(131), 제2 단부(132) 및 제3 단부(133)를 포함할 수 있다. 예를 들어, 살균 공간은 제1 단부(131), 제2 단부(132) 및 제3 단부(133)를 연결하여 형성된 공간일 수 있다. 제1 단부(131)는 일 포집 유닛(121)의 일단이며, 제2 단부(132)는 타 포집 유닛(121)의 일단이며, 제3 단부(133)는 서로 연결되는 일 포집 유닛(121)의 타단과 타 포집 유닛(121)의 타단이다.Referring to FIG. 2 , neighboring collection units 121 surrounding the sterilization space may include a first end 131 , a second end 132 , and a third end 133 . For example, the sterilization space may be a space formed by connecting the first end 131 , the second end 132 , and the third end 133 . The first end 131 is one end of one collecting unit 121, the second end 132 is one end of the other collecting unit 121, and the third end 133 is one collecting unit 121 connected to each other. It is the other end of and the other end of the other collection unit 121.
제1 단부(131), 제2 단부(132) 및 제3 단부(133)는 서로 이웃하는 포집 유닛(121)들이 이루는 각도에 따라 서로 다른 수평선상에 위치할 수 있다. 즉, 제1 단부(131) 및 제2 단부(132)는 각각의 단부와 연결되는 포집 유닛(121)들이 이루는 각도에 따라 기판(111)과의 거리가 서로 동일하거나 다를 수 있다. 또한, 제3 단부(133)는 제3 단부(133)와 연결되는 포집 유닛(121)들이 이루는 각도에 따라 기판(111)과의 거리가 변경될 수 있다. 제3 단부(133)의 경우, 제1 단부(131)와 제2 단부(132)의 위치에 따라 높이가 달라진다 할 수도 있다.The first end 131, the second end 132, and the third end 133 may be located on different horizontal lines according to angles formed by the collecting units 121 adjacent to each other. That is, the first end 131 and the second end 132 may have the same or different distances from the substrate 111 depending on the angle formed by the collecting units 121 connected to the respective ends. In addition, a distance between the third end 133 and the substrate 111 may be changed according to an angle formed by the collecting units 121 connected to the third end 133 . In the case of the third end 133, the height may vary according to the positions of the first end 131 and the second end 132.
본 실시 예의 포집 유닛(121)들은 각각의 길이 또는 면적이 변경되지 않는 한, 제1 단부(131) 내지 제3 단부(133)의 위치가 변경되더라도 살균 공간의 크기는 변경되지 않는다.As long as the length or area of each collecting unit 121 of this embodiment is not changed, the size of the sterilization space is not changed even if the position of the first end part 131 to the third end part 133 is changed.
본 실시 예에서 오염원은 유체가 포집부(120)의 관통홀(125)을 통과할 때 포집된다. 따라서, 포집부(120)에 포집되는 오염원의 대부분은 광원(112)과 마주하는 포집부(120)의 포집면에 포집될 수 있다. 오염원은 포집부(120)에 포집된 상태로 광원부(110)의 광에 노출될 수 있다. 이때, 오염원의 대부분이 포집되는 포집면이 광원(112)과 마주하므로, 포집면의 오염원은 광원(112)이 광을 방출하는 동안 계속해서 광에 노출될 수 있다. 따라서, 본 실시 예의 살균 모듈(100)은 포집부(120)가 없이 유체를 직접 살균하는 종래의 살균 모듈보다 살균 효율이 향상될 수 있다.In this embodiment, contaminants are collected when the fluid passes through the through hole 125 of the collecting unit 120 . Therefore, most of the pollutants collected by the collecting unit 120 may be collected on the collecting surface of the collecting unit 120 facing the light source 112 . Contaminants may be exposed to the light of the light source unit 110 while being collected by the collecting unit 120 . At this time, since the collecting surface on which most of the pollutants are collected faces the light source 112, the pollutant on the collecting surface may be continuously exposed to light while the light source 112 emits light. Therefore, the sterilization module 100 of the present embodiment can have better sterilization efficiency than the conventional sterilization module that directly sterilizes fluid without the collecting unit 120 .
또한, 본 실시 예에 따른 살균 모듈(100)은 포집부(120)가 전체적으로 평평한 구조가 아니라 복수의 경사면을 포함하는 구조이다. 따라서, 본 실시 예의 살균 모듈(100)은 동일한 크기의 영역에 배치되는 포집부(120)의 면적이 종래의 평평한 구조의 포집부(120)보다 더 클 수 있다. 즉, 본 실시 예의 살균 모듈(100)은 임의의 소정 영역에 배치되는 포집부(120)의 면적을 증가시킬 수 있다. 따라서, 본 실시 예의 살균 모듈(100)은 오염원에 대한 포집 효율이 향상될 수 있다.In addition, the sterilization module 100 according to this embodiment has a structure in which the collecting unit 120 does not have a generally flat structure but includes a plurality of inclined surfaces. Therefore, in the sterilization module 100 of the present embodiment, the area of the collecting unit 120 disposed in the same size area may be larger than that of the conventional flat collecting unit 120 . That is, the sterilization module 100 of this embodiment may increase the area of the collecting unit 120 disposed in an arbitrary predetermined area. Therefore, the sterilization module 100 of this embodiment can improve the collection efficiency of pollutants.
또한, 본 실시 예에 따른 살균 모듈(100)은 포집부(120)의 포집면을 향해 광을 방출하도록 광원부(110)가 배치된다. 즉, 유체가 흐르는 방향을 따라 광원부(110)와 포집부(120)가 차례대로 배치된다. 따라서, 광원부(110)는 오염원이 포집되는 포집면에 광을 조사할 뿐만아니라 포집부(120)를 통과하기 전의 유체를 향해 직접 광을 조사할 수 있다. 따라서, 본 실시 예에 따른 살균 모듈(100)은 유체에 포함된 오염원과 포집부(120)에 포집된 오염원을 동시에 살균함으로써, 유체에 대한 살균 효율이 향상될 수 있다.In addition, in the sterilization module 100 according to the present embodiment, the light source unit 110 is disposed to emit light toward the collecting surface of the collecting unit 120 . That is, the light source unit 110 and the collecting unit 120 are sequentially disposed along the direction in which the fluid flows. Accordingly, the light source unit 110 may directly irradiate light toward the fluid before passing through the collecting unit 120 as well as radiating light to the collecting surface where the contaminants are collected. Therefore, the sterilization module 100 according to the present embodiment simultaneously sterilizes the contaminants included in the fluid and the contaminants collected in the collecting unit 120, so that the sterilization efficiency of the fluid can be improved.
포집부(120)의 살균 공간의 최대 폭이 감소할수록 임의의 소정 영역에 배치되는 포집면의 면적이 증가하게 된다. 여기서, 살균 공간의 최대 폭은 서로 이웃하는 포집 유닛(121)들의 일단들 간의 거리이다. 즉, 살균 공간을 둘러싸는 이웃하는 포집 유닛(121)들의 제1 단부(131)와 제2 단부(132) 사이의 거리이다. 소정 영역에 배치되는 포집면의 면적이 커지면서, 소정 영역에 위치하는 포집부(120)의 관통홀(125)의 개수 역시 증가하게 된다. 즉, 소정 영역에 배치되는 포집부(120)의 관통홀(125)의 전체 면적이 증가하게 된다. 소정 영역에 유체가 통과할 수 있는 면적이 증가하게 되면, 유체의 속도가 증가할 수 있다. 유체의 속도가 증가하면, 유체가 광원부(110)의 광에 노출되는 시간이 감소하게 된다. As the maximum width of the sterilization space of the collecting unit 120 decreases, the area of the collecting surface disposed in an arbitrary predetermined area increases. Here, the maximum width of the sterilization space is the distance between ends of the collecting units 121 adjacent to each other. That is, it is the distance between the first end 131 and the second end 132 of the neighboring collection units 121 surrounding the sterilization space. As the area of the collecting surface disposed in the predetermined area increases, the number of through holes 125 of the collecting unit 120 located in the predetermined area also increases. That is, the total area of the through hole 125 of the collecting unit 120 disposed in the predetermined area is increased. When the area through which the fluid can pass is increased in a predetermined region, the velocity of the fluid may increase. When the speed of the fluid increases, the time during which the fluid is exposed to the light of the light source unit 110 decreases.
또한, 포집부(120)의 살균 공간의 최대 폭이 감소할수록 광원(112)과 포집 유닛(121)의 타단 사이의 거리가 증가하게 된다. 여기서, 포집 유닛(121)의 타단은 제3 단부(133)이다. 또한, 살균 공간의 최대 폭이 감소할수록 기판(111)으로부터 포집 유닛(121)의 일단까지의 거리와 타단까지의 거리의 차이가 증가하게 된다. 이 경우, 포집 유닛(121)의 일단과 타단에 조사되는 광도 차이도 증가하여 포집 유닛(121)에 조사되는 광 균일도가 감소하게 된다.In addition, as the maximum width of the sterilization space of the collecting unit 120 decreases, the distance between the light source 112 and the other end of the collecting unit 121 increases. Here, the other end of the collection unit 121 is the third end 133 . In addition, as the maximum width of the sterilization space decreases, the difference between the distance from the substrate 111 to one end of the collecting unit 121 and the other end increases. In this case, the light intensity difference between one end and the other end of the collecting unit 121 also increases, and thus the uniformity of the light irradiated to the collecting unit 121 decreases.
또한, 포집부(120)의 살균 공간의 최대 폭이 증가할수록 소정 영역에 배치되는 포집부(120)의 관통홀(125)의 전체 면적이 감소하게 된다. 이 경우, 유체가 포집부(120)를 통과하는 영역이 감소하므로, 유체의 흐름이 원활하지 않을 수 있다. 유체의 흐름이 원활하지 않으면, 시간당 살균되는 유체의 양이 감소하게 된다. In addition, as the maximum width of the sterilization space of the collecting unit 120 increases, the total area of the through hole 125 of the collecting unit 120 disposed in a predetermined area decreases. In this case, since the area where the fluid passes through the collecting unit 120 is reduced, the flow of the fluid may not be smooth. If the flow of the fluid is not smooth, the amount of fluid to be sterilized per hour is reduced.
또한, 포집부(120)의 살균 공간의 최대 폭이 증가하게 되면, 포집 유닛(121)의 일단이 광원(112)의 광 조사 영역을 벗어나 위치할 수 있다. 즉, 포집 유닛(121)의 일부에는 광이 조사되지 않을 수 있다. 따라서 포집 유닛(121)에 조사되는 광 균일도가 감소할 수 있다. 더 나아가, 유체의 일부는 광원(112)의 광에 노출되지 않고 포집부(120)를 통과할 수 있다.In addition, when the maximum width of the sterilization space of the collecting unit 120 increases, one end of the collecting unit 121 may be positioned out of the light irradiation area of the light source 112 . That is, light may not be irradiated to a part of the collecting unit 121 . Accordingly, uniformity of light irradiated to the collecting unit 121 may decrease. Furthermore, a portion of the fluid may pass through the collecting unit 120 without being exposed to light from the light source 112 .
이와 같이, 포집부(120)의 살균 공간의 최대 폭이 너무 작거나 너무 큰 경우, 살균 효율이 감소할 수 있다.As such, when the maximum width of the sterilization space of the collecting unit 120 is too small or too large, the sterilization efficiency may decrease.
본 실시 예의 살균 모듈(100)은 서로 이웃하는 포집 유닛(121)들의 일단이 광원(112)의 광 지향각의 내측에 위치할 수 있다. 즉, 서로 이웃하는 포집 유닛(121)이 형성하는 살균 공간의 최대 폭은 동일 선상에서의 광 지향각의 너비와 동일하거나 작을 수 있다. 여기서, 광 지향각은 서로 이웃하는 포집 유닛(121)이 형성하는 살균 공간에 광을 조사하는 광원(112)의 광 지향각이다. 따라서, 광원(112)의 광 지향각이 증가하면, 살균 영역의 최대 폭 역시 증가할 수 있다. 이에 따라, 서로 이웃하는 포집 유닛(121)들이 이루는 각도 또는 일단들 간의 거리 역시 증가할 수 있다. In the sterilization module 100 of this embodiment, one ends of the collection units 121 adjacent to each other may be located inside the light beam angle of the light source 112 . That is, the maximum width of the sterilization space formed by the collection units 121 adjacent to each other may be equal to or smaller than the width of the beam beam angle on the same line. Here, the light directing angle is the light directing angle of the light source 112 radiating light to the sterilization space formed by the collecting units 121 adjacent to each other. Therefore, when the light beam angle of the light source 112 increases, the maximum width of the sterilization area may also increase. Accordingly, the angle formed by the collection units 121 adjacent to each other or the distance between ends may also increase.
더 나아가, 살균 공간의 제3 단부(133)는 광원(112)의 광 출사면의 중심축과 동일한 수직선상에 위치할 수 있다. 또한, 살균 공간의 제3 단부(133)는 광원(112)의 광 출사면의 중심 축에 인접하도록 위치할 수 있다. 또한, 살균 공간의 제1 단부(131) 및 제2 단부(132)는 광원(112)의 지향각의 최외각 또는 최외각에 인접하게 위치할 수 있다. Furthermore, the third end 133 of the sterilization space may be located on the same vertical line as the central axis of the light exit surface of the light source 112 . In addition, the third end 133 of the sterilization space may be positioned adjacent to the central axis of the light exit surface of the light source 112 . In addition, the first end 131 and the second end 132 of the sterilization space may be located at or adjacent to the outermost angle of the beam angle of the light source 112 .
이와 같이, 본 실시 예의 살균 모듈(100)은 서로 이웃하는 포집 유닛(121)들의 일단들이 광원(112)의 광 조사 영역 내에 위치하도록 포집부(120)를 형성할 수 있다. 따라서, 본 실시 예의 살균 모듈(100)은 포집부(120) 전체에 광원부(110)의 광이 조사되도록 하고, 포집부(120)에 조사되는 광의 균일도를 향상시켜 살균 효율을 향상시킬 수 있다.As such, the sterilization module 100 of the present embodiment may form the collecting unit 120 so that ends of the collecting units 121 adjacent to each other are positioned within the light irradiation area of the light source 112 . Therefore, the sterilization module 100 of the present embodiment allows the light of the light source unit 110 to be irradiated to the entire collecting unit 120 and improves the uniformity of the light irradiated to the collecting unit 120 to improve sterilization efficiency.
또한, 본 실시 예의 살균 모듈(100)은 서로 이웃하는 포집 유닛(121)들 간의 각도 및 일단들 간의 거리가 광원(112)의 광 조사 영역 내에서 자유롭게 변경될 수 있다. 즉, 본 실시 예의 살균 모듈(100)은 광 균일도를 유지하면서, 포집부(120)를 통과하는 유체의 속도를 조절할 수 있다. 따라서, 본 실시 예의 살균 모듈(100)은 광 균일도와 유체의 유속을 조절함으로써, 살균 효율을 향상시킬 수 있다.In addition, in the sterilization module 100 of this embodiment, the angle between the collection units 121 adjacent to each other and the distance between ends may be freely changed within the light irradiation area of the light source 112 . That is, the sterilization module 100 of this embodiment can adjust the speed of the fluid passing through the collecting unit 120 while maintaining light uniformity. Therefore, the sterilization module 100 of the present embodiment can improve sterilization efficiency by adjusting light uniformity and fluid flow rate.
도 3은 본 발명의 제2 실시 예에 따른 살균 모듈을 나타낸 예시도이다.3 is an exemplary view showing a sterilization module according to a second embodiment of the present invention.
도 3을 참고하면, 제2 실시 예에 따른 살균 모듈(200)은 포집부(220), 광원부(110) 및 반사부(250)를 포함할 수 있다.Referring to FIG. 3 , the sterilization module 200 according to the second embodiment may include a collecting unit 220 , a light source unit 110 and a reflecting unit 250 .
본 실시 예의 살균 모듈(200)은 도 1의 제1 실시 예에 따른 살균 모듈(100)에 반사부(250)가 추가된 것이다. 즉, 본 실시 예의 포집부(220) 및 광원부(110)는 도 1의 제1 실시 예에 따른 살균 모듈(100)의 포집부(120) 및 광원부(110)와 동일하다. The sterilization module 200 of this embodiment is obtained by adding a reflector 250 to the sterilization module 100 according to the first embodiment of FIG. 1 . That is, the collecting unit 220 and the light source unit 110 of this embodiment are the same as the collecting unit 120 and the light source unit 110 of the sterilization module 100 according to the first embodiment of FIG.
도 3을 참고하면, 반사부(250)는 광원부(110)와 포집부(220) 사이에 배치될 수 있다. 이때, 반사부(250)는 광원부(110)보다 포집부(220)에 더 가깝게 위치할 수 있다.Referring to FIG. 3 , the reflector 250 may be disposed between the light source unit 110 and the collecting unit 220 . In this case, the reflector 250 may be located closer to the collecting unit 220 than the light source unit 110 .
반사부(250)는 광원부(110)가 방출하는 광을 반사하는 물질로 이루어질 수 있다. 또한, 반사부(250)를 이루는 물질은 광원(112)이 방출하는 광의 피크 파장(중심 파장)에 따라 달라질 수 있다. 예를 들어, 반사부(250)는 광원부(110)에서 방출한 광에 대한 반사율이 70% 이상인 물질로 형성될 수 있다. 더 나아가 반사부(250)는 광원부(110)에서 방출한 광에 대한 반사율이 90% 이상일 수 있다. 즉, 반사부(250)는 광원부(110)에서 방출한 광에 대한 투과율이 10% 미만일 수 있다.The reflector 250 may be made of a material that reflects light emitted from the light source unit 110 . Also, a material constituting the reflector 250 may vary according to a peak wavelength (center wavelength) of light emitted from the light source 112 . For example, the reflector 250 may be formed of a material having a reflectance of 70% or more for light emitted from the light source unit 110 . Furthermore, the reflector 250 may have a reflectance of 90% or more for light emitted from the light source unit 110 . That is, the reflector 250 may have a transmittance of less than 10% for light emitted from the light source unit 110 .
도 3을 참고하면, 반사부(250)는 복수의 관통홀을 포함할 수 있다. 유체는 반사부(250)의 관통홀을 통과하여 포집부(220)로 이동할 수 있다. 본 실시 예에서, 포집부(220)의 관통홀은 제1 관통홀(225)이고, 반사부(250)의 관통홀은 제2 관통홀(255)이다.Referring to FIG. 3 , the reflector 250 may include a plurality of through holes. The fluid may pass through the through hole of the reflector 250 and move to the collecting unit 220 . In this embodiment, the through hole of the collecting unit 220 is the first through hole 225 , and the through hole of the reflecting unit 250 is the second through hole 255 .
예를 들어, 반사부(250)의 제2 관통홀(255)은 포집부(220)의 제1 관통홀(225)보다 큰 직경을 갖도록 형성될 수 있다. 또한, 반사부(250)의 제2 관통홀(255)은 포집부(220)의 복수의 제1 관통홀(225)을 노출하는 크기를 갖도록 형성될 수 있다. 따라서, 광원부(110)에서 방출된 광의 일부가 반사부(250)의 제2 관통홀(255)을 통해서 포집부(220)에 조사될 수 있다.For example, the second through hole 255 of the reflector 250 may be formed to have a larger diameter than the first through hole 225 of the collecting part 220 . In addition, the second through hole 255 of the reflector 250 may be formed to have a size exposing the plurality of first through holes 225 of the collecting part 220 . Accordingly, some of the light emitted from the light source unit 110 may be irradiated to the collecting unit 220 through the second through hole 255 of the reflecting unit 250 .
또한, 반사부(250)는 제2 관통홀(255)의 중심과 포집부(220)의 제1 관통홀(225)의 중심이 동일 선상에 위치하지 않도록 형성될 수 있다. 즉, 반사부(250)의 제2 관통홀(255)의 중심과 포집부(220)의 제1 관통홀(225)의 중심의 위치가 불일치할 수 있다. 따라서, 반사부(250)의 제2 관통홀(255)을 통해서 포집부(220)의 포집면이 광원부(110)의 광에 최대한 노출될 수 있다.In addition, the reflector 250 may be formed so that the center of the second through hole 255 and the center of the first through hole 225 of the collecting part 220 are not located on the same line. That is, the center of the second through hole 255 of the reflector 250 and the center of the first through hole 225 of the collecting unit 220 may not match. Accordingly, the collecting surface of the collecting unit 220 may be maximally exposed to the light of the light source unit 110 through the second through hole 255 of the reflecting unit 250 .
반사부(250)는 광 반사 물질로 형성되므로, 제2 관통홀(255)을 통과한 광원부(110)의 광이 반사부(250)에 의해서 산란될 수 있다. 따라서, 제2 관통홀(255)을 통과한 광이 포집부(220)에 최대한 넓고 균일하게 조사될 수 있다.Since the reflector 250 is formed of a light reflective material, light from the light source unit 110 passing through the second through hole 255 may be scattered by the reflector 250 . Accordingly, the light passing through the second through hole 255 can be irradiated to the collecting unit 220 as widely and uniformly as possible.
또한, 광원부(110)의 광은 광원부(110)와 마주하는 반사부(250)의 일면에서 반사될 수 있다. 이때, 유체는 광원부(110)에서 방출된 광과 반사부(250)에 의해서 반사된 광에 모두 노출될 수 있다. 따라서, 반사부(250)에 의해서 유체의 살균 효율이 향상될 수 있다.In addition, light from the light source unit 110 may be reflected from one surface of the reflector 250 facing the light source unit 110 . At this time, the fluid may be exposed to both the light emitted from the light source unit 110 and the light reflected by the reflector 250 . Therefore, the sterilization efficiency of the fluid can be improved by the reflector 250 .
본 실시 예의 반사부(250)는 유체가 반사부(250)에 의해 받는 저항을 최소화하여, 유체의 흐름이 원활하도록 할 수 있다. 또한, 반사부(250)는 포집부(220)에 광이 균일하게 조사되도록 할 수 있다. 또한, 반사부(250)는 유체가 광에 노출되는 시간 또는 유체에 조사되는 광량이 증가하도록 할 수 있다. 따라서, 본 실시 예의 살균 모듈(200)은 반사부(250)에 의해서 살균 효율이 향상될 수 있다.The reflector 250 of the present embodiment can minimize the resistance that fluid receives by the reflector 250, so that the fluid flows smoothly. Also, the reflector 250 may uniformly irradiate light to the collecting unit 220 . In addition, the reflector 250 may increase the amount of time the fluid is exposed to light or the amount of light irradiated to the fluid. Therefore, the sterilization efficiency of the sterilization module 200 according to the present embodiment may be improved by the reflector 250 .
유체의 유속 또는 유량이 증가하면, 포집부(220)에 가해지는 압력이 증가하여, 포집부(220)가 변형되거나 파손될 수 있다. 본 실시 예의 반사부(250)는 광원부(110)와 포집부(220) 사이에 배치되어, 포집부(220)가 받는 유체의 압력을 완화시킬 수 있다. 즉, 반사부(250)는 유체의 압력으로부터 포집부(220)를 보호하여, 살균 모듈(200)의 내구성 및 신뢰성을 향상시킬 수 있다.When the flow rate or flow rate of the fluid increases, the pressure applied to the collecting unit 220 increases, and thus the collecting unit 220 may be deformed or damaged. The reflector 250 of this embodiment may be disposed between the light source unit 110 and the collecting unit 220 to relieve the pressure of the fluid that the collecting unit 220 receives. That is, the reflector 250 may protect the collecting unit 220 from the pressure of the fluid, thereby improving durability and reliability of the sterilization module 200 .
본 실시 예에서 반사부(250)는 포집부(220)와 동일하거나 더 작은 두께를 갖도록 형성될 수 있다. 여기서, 두께는 유체가 유입되는 일면과 유체가 배출되는 타면 사이의 길이이다.In this embodiment, the reflector 250 may be formed to have a thickness equal to or smaller than that of the collecting unit 220 . Here, the thickness is the length between one side into which the fluid is introduced and the other side through which the fluid is discharged.
또한, 본 실시 예에서 반사부(250)는 포집부(220)보다 강성이 더 클 수 있다. 예를 들어, 반사부(250)는 금속 재질로 형성될 수 있다. 따라서, 반사부(250)의 두께가 포집부(220)의 두께 이하여도 유체의 압력에 의해 변형 또는 파손되지 않고 포집부(220)를 보호할 수 있다. Also, in this embodiment, the reflector 250 may have greater rigidity than the collecting unit 220 . For example, the reflector 250 may be formed of a metal material. Therefore, even if the thickness of the reflecting part 250 is less than the thickness of the collecting part 220, the collecting part 220 can be protected without being deformed or damaged by the pressure of the fluid.
도 4는 본 발명의 제3 실시 예에 따른 살균 모듈을 나타낸 예시도이다4 is an exemplary view showing a sterilization module according to a third embodiment of the present invention
제3 실시 예에 따른 살균 모듈(300)은 도 2의 제2 실시 예에 따른 살균 모듈(200)과 포집부(320) 및 반사부(350)의 구조가 상이하다.The sterilization module 300 according to the third embodiment is different from the sterilization module 200 according to the second embodiment of FIG. 2 in the structure of the collecting unit 320 and the reflection unit 350.
본 실시 예의 살균 모듈(300)의 포집부(320) 및 반사부(350)는 복수의 층이 적층된 구조일 수 있다. The collecting unit 320 and the reflecting unit 350 of the sterilization module 300 of this embodiment may have a structure in which a plurality of layers are stacked.
본 실시 예의 포집부(320)는 제1 포집층(321) 및 제2 포집층(325)을 포함할 수 있다. The collection unit 320 of this embodiment may include a first collection layer 321 and a second collection layer 325 .
제1 포집층(321)과 제2 포집층(325)은 동일한 물질로 형성될 수 있다. 제1 포집층(321)과 제2 포집층(325)은 포집부(320)를 통과하는 유체의 오염원을 각각 포집할 수 있다. 즉, 유체에 포함된 오염원은 포집부(320)를 통과하면서 이중으로 유체로부터 제거될 수 있다. The first collection layer 321 and the second collection layer 325 may be formed of the same material. The first collection layer 321 and the second collection layer 325 may respectively collect contamination sources of the fluid passing through the collection unit 320 . That is, contaminants included in the fluid may be double-removed from the fluid while passing through the collecting unit 320 .
또한, 제1 포집층(321)과 제2 포집층(325)은 서로 다른 물질로 형성될 수 있다. 이때, 제1 포집층(321)과 제2 포집층(325)은 유체에 포함된 모든 오염원을 포집할 수 있다. 또한, 제1 포집층(321)과 제2 포집층(325)은 재질에 따라 특정 종류의 오염원을 다른 종류의 오염원보다 더 잘 포집할 수도 있다. 즉, 제1 포집층(321)과 제2 포집층(325) 중 적어도 하나는 특정 종류의 오염원을 포집하는데 최적화된 재질로 형성될 수 있다. 또는 제1 포집층(321)과 제2 포집층(325)은 서로 다른 재질로 형성되어 서로 다른 특정 종류의 오염원을 포집하는 데 최적화될 수 있다.Also, the first collection layer 321 and the second collection layer 325 may be formed of different materials. At this time, the first collection layer 321 and the second collection layer 325 may collect all contaminants included in the fluid. In addition, the first collection layer 321 and the second collection layer 325 may collect certain types of contaminants better than other types of contaminants depending on the material. That is, at least one of the first collection layer 321 and the second collection layer 325 may be formed of a material optimized for collecting a specific type of pollutant. Alternatively, the first collection layer 321 and the second collection layer 325 may be formed of different materials to be optimized for collecting different specific types of pollutants.
제1 포집층(321) 및 제2 포집층(325)은 각각 유체가 통과하는 복수의 관통홀이 형성될 수 있다. 제1 포집층(321)의 관통홀은 제1-1 관통홀(322)이며, 제2 포집층(325)의 관통홀은 제1-2 관통홀(326)이다. 본 실시 예에서 제1-1 관통홀(322)과 제1-2 관통홀(326)은 직경이 서로 동일할 수 있다. 또는 제1-1 관통홀(322)과 제1-2 관통홀(326)은 도 4에 도시된 바와 같이 직경이 서로 다를 수 있다. Each of the first collection layer 321 and the second collection layer 325 may have a plurality of through holes through which fluid passes. The through hole of the first collection layer 321 is the 1-1 through hole 322 , and the through hole of the second collection layer 325 is the 1-2 through hole 326 . In this embodiment, the 1-1st through hole 322 and the 1-2nd through hole 326 may have the same diameter. Alternatively, the 1-1st through hole 322 and the 1-2nd through hole 326 may have different diameters as shown in FIG. 4 .
또한, 제1 포집층(321) 및 제2 포집층(325)은 제1-1 관통홀(322)의 중심과 및 제1-2 관통홀(326)의 중심이 서로 어긋나도록 형성될 수 있다. 제1-1 관통홀(322)의 중심과 제1-2 관통홀(326)의 중심이 일치하면, 제1-1 관통홀(322)을 통과한 유체가 그대로 제1-2 관통홀(326)을 통과하게 되어 제2 포집층(325)의 오염원 포집 효율이 감소하게 된다. 제1-1 관통홀(322)의 중심과 제1-2 관통홀(326)의 중시이 어긋나게 배치되면, 제1-1 관통홀(322)을 통과한 유체의 적어도 일부가 제2 포집층(325)의 포집면과 접촉하여 오염원이 제2 필터부에 포집될 수 있다. 따라서, 제1 포집층(321) 및 제2 포집층(325)은 제1-1 관통홀(322)의 중심과 및 제1-2 관통홀(326)의 중심이 서로 어긋나도록 형성됨으로써, 오염원에 대한 포집 효율이 향상될 수 있다.In addition, the first collection layer 321 and the second collection layer 325 may be formed so that the center of the 1-1st through hole 322 and the center of the 1-2nd through hole 326 are offset from each other. . When the center of the 1-1 through hole 322 coincides with the center of the 1-2 through hole 326, the fluid that has passed through the 1-1 through hole 322 is transferred to the 1-2 through hole 326 as it is. ), so that the pollutant collection efficiency of the second collection layer 325 is reduced. When the center of the 1-1 through hole 322 and the center of gravity of the 1-2 through hole 326 are misaligned, at least a portion of the fluid passing through the 1-1 through hole 322 is transferred to the second collection layer 325. ) The contaminants may be collected in the second filter unit by contacting the collecting surface of the second filter unit. Therefore, the first collection layer 321 and the second collection layer 325 are formed so that the center of the 1-1st through hole 322 and the center of the 1-2nd through hole 326 are offset from each other, thereby preventing contamination. The collection efficiency for can be improved.
또한, 제1 포집층(321) 및 제2 포집층(325)은 서로 밀착하도록 배치될 수도 있으며, 서로 이격되도록 배치될 수 있다. In addition, the first collection layer 321 and the second collection layer 325 may be disposed to be in close contact with each other or may be disposed to be spaced apart from each other.
본 실시 예의 반사부(350)는 제1 반사층(351) 및 제2 반사층(355)을 포함할 수 있다. The reflector 350 of this embodiment may include a first reflective layer 351 and a second reflective layer 355 .
제1 반사층(351)과 제2 반사층(355)은 동일한 물질로 형성되거나 서로 다른 물질로 형성될 수 있다. The first reflective layer 351 and the second reflective layer 355 may be formed of the same material or different materials.
또한, 제1 반사층(351)과 제2 반사층(355)은 유체가 통과하는 복수의 관통홀을 포함할 수 있다. 제1 반사층(351)의 관통홀은 제2-1 관통홀(352)이며, 제2 반사층(355)의 관통홀은 제2-2 관통홀(356)이다. Also, the first reflective layer 351 and the second reflective layer 355 may include a plurality of through holes through which fluid passes. The through hole of the first reflective layer 351 is the 2-1 through hole 352 , and the through hole of the second reflective layer 355 is the 2-2 through hole 356 .
본 실시 예에서 제2-1 관통홀(352)과 제2-2 관통홀(356)은 동일한 직경을 가질 수 있다. 또한, 제2-1 관통홀(352)과 제2-2 관통홀(356)은 도 4에 도시된 바와 같이 서로 다른 직경을 가질 수 있다.In this embodiment, the 2-1st through hole 352 and the 2-2nd through hole 356 may have the same diameter. Also, the 2-1st through hole 352 and the 2-2nd through hole 356 may have different diameters as shown in FIG. 4 .
또한, 제1 반사층(351) 및 제2 반사층(355)은 제2-1 관통홀(352)의 중심과 제2-2 관통홀(356)의 중심이 서로 어긋나도록 형성될 수 있다. 또한, 제1 반사층(351)의 제2-1 관통홀(352) 및 제2 반사층(355)의 제2-2 관통홀(356)은 모두 제1 포집층(321)의 제1-1 관통홀(322) 및 제2 포집층(325)의 제1-2 관통홀(326)보다 큰 직경을 갖도록 형성될 수 있다.In addition, the first reflective layer 351 and the second reflective layer 355 may be formed so that the center of the 2-1 through hole 352 and the center of the 2-2 through hole 356 are offset from each other. In addition, both the 2-1 through hole 352 of the first reflective layer 351 and the 2-2 through hole 356 of the second reflective layer 355 are the 1-1 through hole of the first collection layer 321. It may be formed to have a larger diameter than the hole 322 and the first-second through hole 326 of the second collection layer 325 .
또한, 제1 반사층(351) 및 제2 반사층(355)은 제2-1 관통홀(352)들 및 제2-2 관통홀(356)들 중 적어도 하나와 제1-1 관통홀(322)들 및 제1-2 관통홀(326)들 중 적어도 하나와 중심축이 어긋나도록 형성될 수 있다.In addition, the first reflective layer 351 and the second reflective layer 355 include at least one of the 2-1st through holes 352 and 2-2nd through holes 356 and the 1-1st through hole 322. At least one of the first and second through holes 326 and the central axis may be misaligned.
따라서, 제1 반사층(351)의 제2-1 관통홀(352) 및 제2 반사층(355)의 제2-2 관통홀(356)을 통해서 제1 포집층(321)의 포집면 및 제2 포집층(325)의 포집면의 적어도 일부가 광에 노출될 수 있다. 제1 포집층(321) 및 제2 포집층(325)은 제1 반사층(351) 및 제2 반사층(355)에 가려져 광원부(110)의 광이 직접 조사되지 않는 부분이 있을 수 있다. 이 부분에는 제1 반사층(351) 및 제2 반사층(355)에 의해서 반사된 광이 산란되어 조사될 수 있다.Therefore, through the 2-1 through hole 352 of the first reflective layer 351 and the 2-2 through hole 356 of the second reflective layer 355, the collection surface of the first collection layer 321 and the second At least a portion of the collection surface of the collection layer 325 may be exposed to light. The first collection layer 321 and the second collection layer 325 may be covered by the first reflective layer 351 and the second reflective layer 355 so that the light from the light source unit 110 is not directly irradiated. Light reflected by the first reflective layer 351 and the second reflective layer 355 may be scattered and irradiated to this portion.
또한, 제1 반사층(351) 및 제2 반사층(355)은 서로 밀착 또는 이격되도록 형성될 수 있다. 제1 반사층(351) 및 제2 반사층(355)이 이격되는 경우, 이격 공간에서 광 반사가 반복적으로 발생할 수 있다. 따라서, 제1 반사층(351)과 제2 반사층(355) 사이에서 유체는 반사광에 지속적으로 노출될 수 있다. 따라서, 유체는 광원부(110)에서 방출된 광이 도달하지 않는 제1 반사층(351)과 제2 반사층(355) 사이에서도 반사광에 의해서 살균될 수 있다.In addition, the first reflective layer 351 and the second reflective layer 355 may be formed to be in close contact with or spaced apart from each other. When the first reflective layer 351 and the second reflective layer 355 are spaced apart, light reflection may repeatedly occur in the spaced apart space. Accordingly, the fluid between the first reflective layer 351 and the second reflective layer 355 may be continuously exposed to the reflected light. Therefore, the fluid can be sterilized by the reflected light even between the first reflective layer 351 and the second reflective layer 355 where the light emitted from the light source unit 110 does not reach.
이와 같이, 본 실시 예의 살균 모듈(300)은 반사부(350) 및 포집부(320)를 복수의 층으로 형성하여 오염원의 포집 효율을 향상시키고, 오염원이 광에 노출되는 시간을 증가시켜 살균 효율을 향상시킬 수 있다.As such, the sterilization module 300 of the present embodiment improves the collection efficiency of contaminants by forming the reflector 350 and the collection unit 320 as a plurality of layers, and increases the sterilization efficiency by increasing the time the contaminants are exposed to light. can improve
도 5는 본 발명의 제4 실시 예에 따른 살균 모듈을 나타낸 예시도이다.5 is an exemplary view showing a sterilization module according to a fourth embodiment of the present invention.
도 5를 참고하면, 제4 실시 예에 따른 살균 모듈(400)은 포집부(420), 광원부(110), 제1 반사부(450) 및 제2 반사부(460)를 포함할 수 있다. Referring to FIG. 5 , the sterilization module 400 according to the fourth embodiment may include a collecting unit 420, a light source unit 110, a first reflecting unit 450, and a second reflecting unit 460.
제4 실시 예에 따른 살균 모듈(400)은 제2 실시 예에 따른 살균 모듈(도 3의 200) 또는 제3 실시 예에 따른 살균 모듈(도 4의 300)에 제2 반사부(460)가 추가된 것이다. 여기서, 본 실시 예의 제1 반사부(450)는 도 3의 제2 실시 예의 살균 모듈(200)의 반사부(250) 또는 도 4의 제3 실시 예의 살균 모듈(300)의 반사부(350)와 동일 할 수 있다.In the sterilization module 400 according to the fourth embodiment, the sterilization module (200 in FIG. 3) according to the second embodiment or the sterilization module (300 in FIG. 4) according to the third embodiment includes a second reflector 460. it has been added Here, the first reflector 450 of this embodiment is the reflector 250 of the sterilization module 200 of the second embodiment of FIG. 3 or the reflector 350 of the sterilization module 300 of the third embodiment of FIG. 4 can be the same as
본 실시 예에 따르면, 제1 반사부(450)는 포집부(420)의 전면에 배치되며, 제2 반사부(460)는 포집부(420)의 후면에 배치된다. 포집부(420)의 전면은 광원부(110)를 향하는 일면이며, 후면은 전면의 반대면이다. 이때, 제1 반사부(450) 및 제2 반사부(460)는 포집부(420)에 인접하게 배치되되, 포집부(420)와 이격될 수 있다. 따라서, 유체는 제1 반사부(450) 및 포집부(420)를 통과한 후에 제2 반사부(460)를 통과하게 된다.According to this embodiment, the first reflector 450 is disposed on the front side of the collecting unit 420, and the second reflector 460 is disposed on the rear side of the collecting unit 420. The front of the collecting unit 420 is one side facing the light source unit 110, and the rear side is the opposite side of the front side. In this case, the first reflector 450 and the second reflector 460 may be disposed adjacent to the collecting unit 420 and spaced apart from the collecting unit 420 . Accordingly, the fluid passes through the second reflection part 460 after passing through the first reflection part 450 and the collecting part 420 .
제2 반사부(460)는 포집부(420)를 통과한 광을 반사할 수 있다. 제2 반사부(460)에서 반사된 광은 포집부(420)를 통과한 유체에 조사될 수 있다. 따라서, 제1 반사부(450)와 포집부(420)를 통과하면서 살균되지 않은 오염원은 제2 반사부(460)에 반사된 광에 노출되어 살균될 수 있다.The second reflector 460 may reflect light passing through the collecting unit 420 . The light reflected by the second reflector 460 may be irradiated to the fluid passing through the collecting unit 420 . Accordingly, contaminants that are not sterilized while passing through the first reflector 450 and the collecting unit 420 may be exposed to the light reflected by the second reflector 460 to be sterilized.
제2 반사부(460)는 도 3의 제2 실시 예의 살균 모듈(200)의 반사부(250) 또는 도 4의 제3 실시 예의 살균 모듈(300)의 반사부(350)와 동일할 수 있다. 즉, 제2 반사부(460)는 단층으로 형성되거나 복수의 층을 포함하도록 형성될 수 있다.The second reflector 460 may be the same as the reflector 250 of the sterilization module 200 of the second embodiment of FIG. 3 or the reflector 350 of the sterilization module 300 of the third embodiment of FIG. 4 . . That is, the second reflector 460 may be formed as a single layer or may include a plurality of layers.
따라서, 유체는 포집부(420)를 통과하기 전에 광원부(110)의 광 및 제1 반사부(450)에 반사된 광에 노출되어 살균되고, 포집부(420)를 통과하면 오염원과 분리되며, 포집부(420)를 통과한 이후 제2 반사부(460)에 반사된 광에 노출되어 살균될 수 있다. 이와 같은 본 실시 예의 살균 모듈(400)은 유체를 다양한 방법으로 살균하여 살균 효율을 향상시킬 수 있다.Therefore, the fluid is sterilized by being exposed to the light of the light source unit 110 and the light reflected by the first reflector 450 before passing through the collecting unit 420, and is separated from the contaminant when passing through the collecting unit 420, After passing through the collection unit 420, the light reflected by the second reflector 460 may be exposed to sterilization. The sterilization module 400 of this embodiment can improve sterilization efficiency by sterilizing the fluid in various ways.
또한, 제2 반사부(460)는 제1 반사부(450)와 마찬가지로 유체의 압력으로부터 포집부(420)를 보호할 수 있다. 따라서, 본 실시 예의 살균 모듈(400)은 제1 반사부(450) 및 제2 반사부(460)에 의해서 내구성 및 신뢰성이 향상될 수 있다.In addition, the second reflector 460 may protect the collecting part 420 from fluid pressure, similar to the first reflector 450 . Therefore, the durability and reliability of the sterilization module 400 of this embodiment can be improved by the first reflector 450 and the second reflector 460 .
도 6은 본 발명의 제5 실시 예에 따른 살균 모듈을 나타낸 예시도이다.6 is an exemplary view showing a sterilization module according to a fifth embodiment of the present invention.
도 6을 참고하면, 제5 실시 예에 따른 살균 모듈(500)은 광원부(110) 및 포집부(520)를 포함할 수 있다. 본 실시 예의 광원부(110)는 도 1 및 도 2의 제1 실시 예의 살균 모듈(100)의 광원부(110)와 동일하다.Referring to FIG. 6 , the sterilization module 500 according to the fifth embodiment may include a light source unit 110 and a collecting unit 520. The light source unit 110 of this embodiment is the same as the light source unit 110 of the sterilization module 100 of the first embodiment of FIGS. 1 and 2 .
본 실시 예의 포집부(520)는 적어도 일부에 반사 물질을 포함할 수 있다. 예를 들어, 포집부(520)는 오염원을 포집할 수 있는 물질과 광을 반사하는 물질을 혼합하여 형성될 수 있다. 또는 포집부(520)는 오염원을 포집할 수 있는 물질로 형성된 베이스(521) 및 베이스(521)의 전면에 형성된 반사 물질을 포함할 수 있다. 여기서, 반사 물질은 베이스(521)의 전면 전체 또는 전면의 일부에 형성된 반사층(522)일 수 있다. 또한, 베이스(2521)는 도 1 및 도 2의 포집부(120)일 수 있다.The collecting unit 520 of this embodiment may include a reflective material at least in part. For example, the collecting unit 520 may be formed by mixing a material capable of collecting pollutants and a material reflecting light. Alternatively, the collecting unit 520 may include a base 521 formed of a material capable of collecting pollutants and a reflective material formed on the front surface of the base 521 . Here, the reflective material may be the reflective layer 522 formed on the entire front surface or a part of the front surface of the base 521 . Also, the base 2521 may be the collecting unit 120 of FIGS. 1 and 2 .
포집부(520)의 반사 물질은 광원부(110)의 광을 반사하여 광원부(110)와 포집부(520) 사이에서 유동하는 유체에 광을 조사할 수 있다. 이때, 포집부(520)의 반사 물질은 다양한 각도로 반사되어 광원부(110)와 포집부(520) 사이의 공간 전체에 균일하게 광이 조사되도록 할 수 있다.The reflective material of the collecting unit 520 may reflect light from the light source unit 110 and radiate light to a fluid flowing between the light source unit 110 and the collecting unit 520 . At this time, the reflective material of the collecting unit 520 is reflected at various angles so that the light is uniformly irradiated to the entire space between the light source unit 110 and the collecting unit 520 .
유체의 오염원은 포집부(520)에서 반사 물질이 없는 포집 물질로 이루어진 부분에 포집될 수 있다. 예를 들어, 오염원은 반사 물질이 형성되지 않은 포집부(520)의 전면의 일부 또는 포집부(520)의 관통홀(미도시)을 이루는 내벽에 포집될 수 있다. 본 실시 예에서 광은 포집부(520)의 반사 물질에 의해서 다양한 방향으로 산란되어 관통홀의 내벽에도 조사될 수 있다. 따라서, 본 실시 예에서 포집부(520)에 포집된 오염원은 광원부(110)에서 방출된 광에 노출되거나 반사 물질에 의해 반사된 광에 노출되어 살균될 수 있다. Contaminants of the fluid may be collected in a portion of the collecting unit 520 made of a collecting material without a reflective material. For example, the contaminant may be collected on a part of the front surface of the collecting unit 520 where the reflective material is not formed or on an inner wall forming a through hole (not shown) of the collecting unit 520 . In this embodiment, light is scattered in various directions by the reflective material of the collecting unit 520 and may be irradiated to the inner wall of the through hole. Therefore, in the present embodiment, the pollutants collected by the collecting unit 520 may be sterilized by being exposed to light emitted from the light source unit 110 or exposed to light reflected by a reflective material.
즉, 본 실시 예의 살균 모듈(500)은 반사 물질에 의해서 유체가 통과하는 공간의 광 균일도를 향상시키고, 유체 및 오염원이 광에 최대한 노출되도록 하여 살균 효율을 향상시킬 수 있다.That is, the sterilization module 500 of the present embodiment can improve sterilization efficiency by improving the uniformity of light in a space through which fluid passes through a reflective material and maximally exposing the fluid and contaminants to light.
또한, 반사 물질에 의해서 포집부(520)는 내구성이 향상될 수 있다. 따라서, 본 실시 예의 포집부(520)는 유체의 압력에 의해서 손상되거나 파손되는 것을 방지할 수 있다. 따라서, 본 실시 예의 살균 모듈(500)은 내구성 및 신뢰성이 향상될 수 있다. In addition, durability of the collecting unit 520 may be improved by the reflective material. Therefore, the collecting unit 520 of this embodiment can be prevented from being damaged or broken by the pressure of the fluid. Thus, the durability and reliability of the sterilization module 500 of this embodiment can be improved.
도 7은 본 발명의 제1 실시 예에 따른 광원을 나타낸 예시도이다.7 is an exemplary view showing a light source according to a first embodiment of the present invention.
제1 실시 예에 따른 광원(1000)은 기판에 직접 실장될 수 있는 발광 다이오드일 수 있다. The light source 1000 according to the first embodiment may be a light emitting diode that can be directly mounted on a substrate.
도 7을 참고하면, 제1 실시 예에 따른 광원(1000)은 제1 도전형 반도체층(1111), 활성층(1112)과 제2 도전형 반도체층(1113)을 포함하는 메사(M), 제1 절연층(1130: 1130a, 1130b), 제1 전극(1140), 및 제2 절연층(1150)을 포함할 수 있으며, 나아가, 성장 기판(1100) 및 제2 전극(1120)을 포함할 수 있다. Referring to FIG. 7 , the light source 1000 according to the first embodiment includes a mesa M including a first conductivity-type semiconductor layer 1111, an active layer 1112, and a second conductivity-type semiconductor layer 1113; 1 insulating layer 1130 (1130a, 1130b), a first electrode 1140, and a second insulating layer 1150 may be included, and further, a growth substrate 1100 and a second electrode 1120 may be included. there is.
성장 기판(1100)은 제1 도전형 반도체층(1111), 활성층(1112), 및 제2 도전형 반도체층(1113)을 성장시킬 수 있는 기판이면 한정되지 않으며, 예를 들어, 사파이어 기판, 실리콘 카바이드 기판, 질화갈륨 기판, 질화알루미늄 기판, 실리콘 기판 등일 수 있다. 성장 기판(1100)의 측면은 경사면을 포함할 수 있으며, 이에 따라 활성층(1112)에서 생성된 광의 추출이 개선될 수 있다. 제2 도전형 반도체층(1113)은 제1 도전형 반도체층(1111) 상에 배치될 수 있으며, 활성층(1112)은 제1 도전형 반도체층(1111) 및 제2 도전형 반도체층(1113) 사이에 배치될 수 있다. 제1 도전형 반도체층(1111), 활성층(1112), 및 제2 도전형 반도체층(1113)은 Ⅲ-Ⅴ 계열 화합물 반도체를 포함할 수 있고, 예를 들어, (Al, Ga, In)N과 같은 질화물계 반도체를 포함할 수 있다. 제1 도전형 반도체층(1111)은 n형 불순물(예를 들어, Si)을 포함할 수 있고, 제2 도전형 반도체층(1113)은 p형 불순물(예를 들어, Mg)을 포함할 수 있다. 또한, 그 반대일 수도 있다. The growth substrate 1100 is not limited as long as it can grow the first conductivity-type semiconductor layer 1111, the active layer 1112, and the second conductivity-type semiconductor layer 1113, and examples thereof include a sapphire substrate and silicon. It may be a carbide substrate, a gallium nitride substrate, an aluminum nitride substrate, a silicon substrate, or the like. A side surface of the growth substrate 1100 may include an inclined surface, and thus extraction of light generated from the active layer 1112 may be improved. The second conductivity-type semiconductor layer 1113 may be disposed on the first conductivity-type semiconductor layer 1111, and the active layer 1112 includes the first conductivity-type semiconductor layer 1111 and the second conductivity-type semiconductor layer 1113. can be placed in between. The first conductivity type semiconductor layer 1111, the active layer 1112, and the second conductivity type semiconductor layer 1113 may include a III-V series compound semiconductor, for example, (Al, Ga, In)N It may include a nitride-based semiconductor such as. The first conductivity-type semiconductor layer 1111 may include an n-type impurity (eg, Si), and the second conductivity-type semiconductor layer 1113 may include a p-type impurity (eg, Mg). there is. Also, the opposite may be true.
활성층(1112)은 다중양자우물구조(MQM)를 포함할 수 있다. 광원(1000)에 순방향 바이어스가 가해지면 활성층(1112)에서 전자와 정공이 결합하면서 빛을 방출하게 된다. 제1 도전형 반도체층(1111), 활성층(1112), 및 제2 도전형 반도체층(1113)은 금속유기화학 기상증착(MOCVD) 또는 분자선에피택시(MBE) 등의 기술을 이용하여 성장 기판(1100) 상에 성장될 수 있다.The active layer 1112 may include a multi-quantum well structure (MQM). When a forward bias is applied to the light source 1000, light is emitted while electrons and holes are combined in the active layer 1112. The first conductivity-type semiconductor layer 1111, the active layer 1112, and the second conductivity-type semiconductor layer 1113 are formed on a growth substrate ( 1100) can be grown on.
광원(1000)은 활성층(1112) 및 제2 도전형 반도체층(1113)을 포함하는 적어도 하나의 메사(M)를 포함할 수 있다. 메사(M)는 복수개의 돌출부를 포함할 수 있으며, 복수개의 돌출부들 사이는 서로 이격 될 수 있다. 이에 한정되는 것은 아니며, 광원(1000)는 서로 이격된 복수개의 메사(M)를 포함할 수도 있다. 메사(M)의 측면은 포토레지스트 리플로우와 같은 기술을 사용함으로써 경사지게 형성될 수 있으며, 경사진 메사(M)의 측면은 활성층(1112)에서 생성된 발광 효율을 향상시킬 수 있다.The light source 1000 may include at least one mesa M including an active layer 1112 and a second conductive semiconductor layer 1113 . The mesa M may include a plurality of protrusions, and the plurality of protrusions may be spaced apart from each other. It is not limited thereto, and the light source 1000 may include a plurality of mesas M spaced apart from each other. The side surface of the mesa M may be formed to be inclined by using a technique such as photoresist reflow, and the inclined side surface of the mesa M may improve light emitting efficiency generated in the active layer 1112 .
제1 도전형 반도체층(1111)은 메사(M)를 통해 노출되는 제1 컨택 영역(R1) 및 제2 컨택 영역(R2)을 포함할 수 있다. 메사(M)는 제1 도전형 반도체층(1111) 상에 배치된 활성층(1112) 및 제2 도전형 반도체층(1113)을 제거하여 형성하기 때문에, 메사(M)를 제외한 부분은 제1 도전형 반도체층(1111)의 노출된 상면인 컨택 영역이 된다. 제1 전극(1140)은 제1 컨택 영역(R1) 및 제2 컨택 영역(R2)과 접함으로써, 제1 도전형 반도체층(1111)과 전기적으로 접속될 수 있다. 제1 컨택 영역(R1)은 제1 도전형 반도체층(1111)의 외곽을 따라 메사(M) 주위에 배치될 수 있으며, 구체적으로, 메사(M)와 광원(1000)의 측면 사이에서 제1 도전형 반도체층의 상면 외곽을 따라 배치될 수 있다. 제2 컨택 영역(R2)은 메사(M)에 의해 적어도 부분적으로 둘러싸일 수 있다.The first conductivity-type semiconductor layer 1111 may include a first contact region R1 and a second contact region R2 exposed through the mesa M. Since the mesa M is formed by removing the active layer 1112 and the second conductivity type semiconductor layer 1113 disposed on the first conductivity type semiconductor layer 1111, the portion excluding the mesa M is the first conductivity type semiconductor layer. It becomes the contact region which is the exposed upper surface of the type semiconductor layer 1111. The first electrode 1140 may be electrically connected to the first conductive semiconductor layer 1111 by contacting the first contact region R1 and the second contact region R2 . The first contact region R1 may be disposed around the mesa M along the periphery of the first conductivity-type semiconductor layer 1111, and specifically, between the mesa M and the side surface of the light source 1000, the first contact region R1 may be disposed around the mesa M. It may be disposed along the outer edge of the upper surface of the conductive semiconductor layer. The second contact region R2 may be at least partially surrounded by the mesa M.
제2 컨택 영역(R2)의 장축 방향의 길이는 광원(1000)의 일 변 길이의 0.5배 이상일 수 있다. 이 경우, 제1 전극(1140)과 제1 도전형 반도체층(1111)이 접하는 영역이 증가할 수 있으므로, 제1 전극(1140)에서 제1 도전형 반도체층(1111)으로 흐르는 전류가 더욱 효과적으로 분산될 수 있어서, 순방향 전압이 더욱 감소될 수 있다. The length of the second contact region R2 in the direction of the major axis may be 0.5 times or more than the length of one side of the light source 1000 . In this case, since the contact area between the first electrode 1140 and the first conductivity type semiconductor layer 1111 may increase, the current flowing from the first electrode 1140 to the first conductivity type semiconductor layer 1111 is more effective. It can be dissipated, so the forward voltage can be further reduced.
제2 전극(1120)은 제2 도전형 반도체층(1113) 상에 배치되며, 제2 도전형 반도체층(1113)과 전기적으로 접속할 수 있다. 제2 전극(1120)은 메사(M) 상에 형성되며, 메사(M)의 형상을 따라 동일한 형상을 가질 수 있다. 제2 전극(1120)은 반사 금속층(1121)을 포함하며, 나아가 장벽 금속층(1122)을 포함할 수 있으며, 장벽 금속층(1122)은 반사 금속층(1121)의 상면 및 측면을 덮을 수 있다. 예컨대, 반사 금속층(1121)의 패턴을 형성하고, 그 위에 장벽 금속층(1122)을 형성함으로써, 장벽 금속층(1122)이 반사 금속층(1121)의 상면 및 측면을 덮도록 형성될 수 있다. 예를 들어, 반사 금속층(1121)은 Ag, Ag 합금, Ni/Ag, NiZn/Ag, TiO/Ag층을 증착 및 패터닝하여 형성될 수 있다.The second electrode 1120 is disposed on the second conductivity type semiconductor layer 1113 and can be electrically connected to the second conductivity type semiconductor layer 1113 . The second electrode 1120 is formed on the mesa M and may have the same shape as the mesa M. The second electrode 1120 includes the reflective metal layer 1121 and may further include a barrier metal layer 1122, and the barrier metal layer 1122 may cover top and side surfaces of the reflective metal layer 1121. For example, by forming a pattern of the reflective metal layer 1121 and forming the barrier metal layer 1122 thereon, the barrier metal layer 1122 may be formed to cover the upper and side surfaces of the reflective metal layer 1121 . For example, the reflective metal layer 1121 may be formed by depositing and patterning Ag, Ag alloy, Ni/Ag, NiZn/Ag, or TiO/Ag layers.
한편, 장벽 금속층(1122)은 Ni, Cr, Ti, Pt, Au 또는 그 복합층으로 형성될 수 있으며, 구체적으로, 제2 도전형 반도체층(1113) 상면에 순차적으로 Ni/Ag/[Ni/Ti]2/Au/Ti으로 형성된 복합층일 수 있으며, 더욱 구체적으로, 제2 전극(1120)의 상면의 적어도 일부는 300Å 두께의 Ti층을 포함할 수 있다. 제2 전극(1120)의 상면 중 제1 절연층과 접하는 영역이 Ti층으로 이루어지는 경우, 제1 절연층(1130)과 제2 전극(1120)의 접착력이 개선되어, 광원(1000)의 신뢰성이 개선될 수 있다.Meanwhile, the barrier metal layer 1122 may be formed of Ni, Cr, Ti, Pt, Au, or a composite layer thereof, and specifically, Ni/Ag/[Ni/ Ti]2/Au/Ti may be a composite layer, and more specifically, at least a portion of the upper surface of the second electrode 1120 may include a Ti layer having a thickness of 300 Å. When the region of the upper surface of the second electrode 1120 in contact with the first insulating layer is made of a Ti layer, the adhesive strength between the first insulating layer 1130 and the second electrode 1120 is improved, thereby increasing the reliability of the light source 1000. can be improved
제2 전극(1120) 상에 전극 보호층(1160)이 배치될 수 있으며, 전극 보호층(1160)은 제1 전극(1140)과 동일한 재료일 수 있으나, 이에 한정된 것은 아니다.An electrode protection layer 1160 may be disposed on the second electrode 1120, and the electrode protection layer 1160 may be made of the same material as the first electrode 1140, but is not limited thereto.
제1 절연층(1130)은 제1 전극(1140)과 메사(M) 사이에 배치될 수 있다. 제1 절연층(1130)을 통해, 제1 전극(1140)과 메사(M)가 절연될 수 있으며, 제1 전극(1140)과 제2 전극(1120)이 절연될 수 있다. 제1 절연층(1130)은 제1 컨택 영역(R1) 및 제2 컨택 영역(R2)을 부분적으로 노출시킬 수 있다. 구체적으로, 제1 절연층(1130)은 개구부(1130a)를 통해 제2 컨택 영역(R2)의 일부를 노출시킬 수 있으며, 제1 절연층(1130)이 제1 도전형 반도체층(1111)의 외곽과 메사(M) 사이에서 제1 컨택 영역(R1)의 일부 영역만을 덮어, 제1 컨택 영역(R1)의 적어도 일부가 노출될 수 있다.The first insulating layer 1130 may be disposed between the first electrode 1140 and the mesa M. Through the first insulating layer 1130 , the first electrode 1140 may be insulated from the mesa M, and the first electrode 1140 may be insulated from the second electrode 1120 . The first insulating layer 1130 may partially expose the first contact region R1 and the second contact region R2. In detail, the first insulating layer 1130 may expose a portion of the second contact region R2 through the opening 1130a, and the first insulating layer 1130 may cover the first conductive semiconductor layer 1111. At least a portion of the first contact region R1 may be exposed by covering only a portion of the first contact region R1 between the periphery and the mesa M.
제1 절연층(1130)이 제2 컨택 영역(R2) 상에서, 제2 컨택 영역(R2)의 외곽을 따라 배치될 수 있다. 동시에, 제1 절연층(1130)은 제1 컨택 영역(R1)과 제1 전극(1140)이 접하는 영역보다 메사(M)에 인접하게 한정되어 배치될 수 있다.The first insulating layer 1130 may be disposed on the second contact region R2 and along the periphery of the second contact region R2. At the same time, the first insulating layer 1130 may be disposed adjacent to the mesa M rather than the area where the first contact region R1 and the first electrode 1140 come into contact.
제1 절연층(1130)은 제2 전극(1120)을 노출시키는 개구부(1130b)를 가질 수 있다. 개구부(1130b)를 통해 제2 전극(1120)은 패드 또는 범프 등과 전기적으로 접속할 수 있다.The first insulating layer 1130 may have an opening 1130b exposing the second electrode 1120 . The second electrode 1120 may be electrically connected to a pad or a bump through the opening 1130b.
제1 컨택 영역(R1)과 제1 전극(140)이 접하는 영역이 제1 도전형 반도체층 상면의 전 외곽을 따라 배치된다. 구체적으로, 제1 컨택 영역(R1)과 제1 전극(1140)이 접하는 영역은 제1 도전형 반도체층(1111)의 네 측면과 모두 인접하도록 배치될 수 있으며, 메사(M)를 완전히 둘러쌀 수 있다. 이 경우, 제1 전극(1140)과 제1 도전형 반도체층(1111)이 접하는 영역이 증가할 수 있으므로, 제1 전극(1140)에서 제1 도전형 반도체층(1111)으로 흐르는 전류가 더욱 효과적으로 분산될 수 있어서, 순방향 전압이 더욱 감소될 수 있다.A region where the first contact region R1 and the first electrode 140 come into contact is disposed along the entire outer perimeter of the upper surface of the first conductivity type semiconductor layer. Specifically, the region where the first contact region R1 and the first electrode 1140 come into contact may be disposed to be adjacent to all four side surfaces of the first conductive semiconductor layer 1111 and completely surround the mesa M. can In this case, since the contact area between the first electrode 1140 and the first conductivity type semiconductor layer 1111 may increase, the current flowing from the first electrode 1140 to the first conductivity type semiconductor layer 1111 is more effective. It can be dissipated, so the forward voltage can be further reduced.
본 개시 사항의 일 실시 예에 있어서, 광원(1000)의 제1 전극(1140) 및 제2전극(1120)은 직접 혹은 패드를 통하여 기판(1100)에 실장될 수 있다.In one embodiment of the present disclosure, the first electrode 1140 and the second electrode 1120 of the light source 1000 may be mounted on the substrate 1100 directly or through pads.
예를 들어, 광원(1000)이 패드를 통하여 기판에 실장되는 경우, 광원(1000)과 기판 (1100) 사이에 배치된 두 개의 패드가 제공될 수 있으며, 두 개의 패드 각각은 각각 제1 전극(1140) 및 제2 전극(1120)에 접할 수 있다. 예를 들어, 패드는 솔더 또는 유테틱 메틸(Eutectic Metal) 일 수 있으나, 이에 한정되는 것은 아니다. 예를 들어, 유테틱 메탈로 AuSn이 사용될 수 있다.For example, when the light source 1000 is mounted on a substrate through a pad, two pads disposed between the light source 1000 and the substrate 1100 may be provided, and each of the two pads may have a first electrode ( 1140) and the second electrode 1120. For example, the pad may be solder or eutectic metal, but is not limited thereto. For example, AuSn may be used as the eutectic metal.
다른 예로, 광원(1000)이 직접 기판(1100)에 실장되는 경우, 광원(1000)의 제1 전극(1140) 및 제2 전극(1120)이 직접 기판(240) 상의 배선에 본딩될 수 있다. 이 경우, 본딩 물질은 도전 성질을 갖는 접착 물질을 포함할 수 있다. 예를 들어, 본딩 물질은 은(Ag), 주석(Sn), 구리(Cu) 중 적어도 어느 하나의 도전성 재료를 포함할 수 있다. 다만, 이는 예시적인 것이며, 본딩 물질은 도전성을 갖는 다양한 물질을 포함할 수 있다.As another example, when the light source 1000 is directly mounted on the substrate 1100, the first electrode 1140 and the second electrode 1120 of the light source 1000 may be directly bonded to wires on the substrate 240. In this case, the bonding material may include an adhesive material having conductive properties. For example, the bonding material may include at least one conductive material among silver (Ag), tin (Sn), and copper (Cu). However, this is exemplary, and the bonding material may include various materials having conductivity.
도 8은 본 발명의 제2 실시 예에 따른 광원을 나타낸 예시도이다.8 is an exemplary view showing a light source according to a second embodiment of the present invention.
도 8을 참고하면, 제2 실시 예에 따른 광원(2000)은 지지 부재(2100), 발광 다이오드(2200), 측벽부(2300) 및 밀봉 부재(2400)를 포함할 수 있다.Referring to FIG. 8 , a light source 2000 according to the second embodiment may include a support member 2100, a light emitting diode 2200, a side wall portion 2300, and a sealing member 2400.
본 실시 예의 발광 다이오드(2200)는 도 8의 제1 실시 예의 광원(1000)일 수 있다.The light emitting diode 2200 of this embodiment may be the light source 1000 of the first embodiment of FIG. 8 .
지지 부재(2100)는 베이스(2110) 및 배선(2120)을 포함할 수 있다. 베이스(2110)는 절연성 물질로 형성되며, 배선(2120)은 도전성 물질로 형성될 수 있다. 또한, 배선(2120)은 베이스(2110)의 상면에 형성된 상부 배선(2121), 베이스(2110)의 하부에 형성된 하부 배선(2122) 및 베이스(2110)를 관통하도록 형성된 비아(2123)를 포함할 수 있다. The support member 2100 may include a base 2110 and wires 2120 . The base 2110 may be formed of an insulating material, and the wiring 2120 may be formed of a conductive material. In addition, the wiring 2120 may include an upper wiring 2121 formed on the upper surface of the base 2110, a lower wiring 2122 formed under the base 2110, and a via 2123 formed to penetrate the base 2110. can
상부 배선(2121)은 지지 부재(2100)의 상부에 배치된 발광 다이오드(2200)와 전기적으로 연결될 수 있다. 하부 배선(2122)은 외부 구성부와 전기적으로 연결되는 구성이다. 비아(2123)는 베이스(2110)를 관통하여 상부 배선(2121)과 하부 배선(2122)에 각각 연결될 수 있다. 비아(2123)에 의해서 상부 배선(2121)과 하부 배선(2122)이 서로 전기적으로 연결될 수 있다.The upper wiring 2121 may be electrically connected to the light emitting diode 2200 disposed on the support member 2100 . The lower wiring 2122 is a component electrically connected to an external component. The via 2123 may pass through the base 2110 and be connected to the upper wiring 2121 and the lower wiring 2122 , respectively. The upper wiring 2121 and the lower wiring 2122 may be electrically connected to each other by the via 2123 .
이와 같이, 지지 부재(2100)는 발광 다이오드(2200)를 외부 구성부와 전기적으로 연결되도록 하는 구성부이다. 발광 다이오드(2200)는 지지 부재(2100)에 의해서 외부 구성부로부터 전원을 공급받아 동작할 수 있다. 예를 들어, 지지 부재(2100)는 인쇄회로기판일 수 있다.In this way, the support member 2100 is a component that electrically connects the light emitting diode 2200 to an external component. The light emitting diode 2200 may operate by receiving power from an external component through the support member 2100 . For example, the support member 2100 may be a printed circuit board.
측벽부(2300)는 지지 부재(2100)의 상부에 형성되며, 발광 다이오드(2200)의 측면을 둘러싸도록 형성될 수 있다. 즉, 발광 다이오드(2200)는 측벽부(2300)에 의해 형성된 개구부를 통해서 지지 부재(2100)의 상면에 배치될 수 있다. 또한, 발광 다이오드(2200)는 측벽부(2300)의 내벽과 이격될 수 있다.The side wall portion 2300 is formed on the support member 2100 and may be formed to surround a side surface of the light emitting diode 2200 . That is, the light emitting diode 2200 may be disposed on the upper surface of the support member 2100 through the opening formed by the side wall portion 2300 . In addition, the light emitting diode 2200 may be spaced apart from the inner wall of the side wall portion 2300 .
측벽부(2300)는 절연성 물질로 형성될 수 있다. 예를 들어, 측벽부(2300)는 실리콘 수지로 형성될 수 있다. 그러나 측벽부(2300)를 이루는 물질의 종류가 실리콘 수지로 한정되는 것은 아니다. 측벽부(2300)는 이미 공지된 발광 다이오드(2200) 패키지에 적용된 다양한 물질로 형성될 수 있다. 또한, 측벽부(2300)는 절연성 물질 내부에 분산되는 TiO2와 같은 광 반사 물질을 더 포함할 수 있다. 또한, 미도시 되었지만, 측벽부(2300)의 내벽에 광 반사층이 더 형성될 수 있다. The side wall portion 2300 may be formed of an insulating material. For example, the side wall portion 2300 may be formed of silicone resin. However, the type of material constituting the side wall portion 2300 is not limited to silicone resin. The sidewall portion 2300 may be formed of various materials applied to a known light emitting diode 2200 package. In addition, the sidewall portion 2300 may further include a light reflective material such as TiO 2 dispersed inside the insulating material. In addition, although not shown, a light reflection layer may be further formed on the inner wall of the side wall portion 2300 .
도 8을 참고하면, 개구부를 형성하는 측벽부(2300)의 내벽은 경사를 갖도록 형성될 수 있다. 따라서, 발광 다이오드(2200)의 측면에서 방출된 광은 측벽부(2300)에 내벽에서 반사되어 상부 방향을 향할 수 있다.Referring to FIG. 8 , the inner wall of the side wall portion 2300 forming the opening may be formed to have an inclination. Accordingly, light emitted from the side of the light emitting diode 2200 may be reflected from the inner wall of the side wall 2300 and directed upward.
밀봉 부재(2400)는 측벽부(2300)의 캐비티(2310)를 채워 발광 다이오드(2200)를 덮도록 형성될 수 있다. 밀봉 부재(2400)는 캐비티(2310)를 밀봉하여 광원(2000)의 외부의 먼지 및 수분과 같은 이물질로부터 발광 다이오드(2200)를 보호할 수 있다. 밀봉 부재(2400)는 절연성의 투광 물질로 형성될 수 있다. 밀봉부재(2400)를 형성하는 투광 물질은 발광 다이오드(2200)로부터 출사된 광의 투과율이 70% 이상 또는 85% 이상일 수 있다. 구체적으로 밀봉부재(2400)의 투광 물질은 220㎚ 내지 400㎚의 파장대의 광에 대한 투과율이 80%이상일 수 있다. 예를 들어, 투광 물질은 에폭시 수지, 실리콘 수지 또는 불소 수지일 수 있다. 또한, 밀봉 부재(2400)는 투광 물질의 내부에 분산된 확산제를 더 포함할 수도 있다.The sealing member 2400 may be formed to cover the light emitting diode 2200 by filling the cavity 2310 of the side wall portion 2300 . The sealing member 2400 may seal the cavity 2310 to protect the light emitting diode 2200 from foreign substances such as dust and moisture outside the light source 2000 . The sealing member 2400 may be formed of an insulating light-transmitting material. The light-transmitting material forming the sealing member 2400 may have transmittance of 70% or more or 85% or more of light emitted from the light emitting diode 2200 . Specifically, the light-transmitting material of the sealing member 2400 may have a transmittance of 80% or more for light in a wavelength range of 220 nm to 400 nm. For example, the light transmitting material may be an epoxy resin, a silicone resin or a fluororesin. Also, the sealing member 2400 may further include a diffusing agent dispersed inside the light-transmitting material.
도 9는 본 발명의 제3 실시 예에 따른 광원을 나타낸 예시도이다.9 is an exemplary view showing a light source according to a third embodiment of the present invention.
제3 실시 에에 따른 광원(3000)은 지지 부재(2100), 발광 다이오드(2200) 및 광학 부재(3500)를 포함할 수 있다.The light source 3000 according to the third embodiment may include a support member 2100, a light emitting diode 2200, and an optical member 3500.
본 실시 예의 광원(3000)은 지지 부재(2100)의 상부에 발광 다이오드(2200)가 배치될 수 있다. 본 실시 예의 광원(3000)의 지지 부재(2100) 및 발광 다이오드(2200)는 도 8의 제2 실시 예에 따른 광원(2000)의 지지 부재(2100) 및 발광 다이오드(2200)와 동일하다.In the light source 3000 according to the present embodiment, the light emitting diode 2200 may be disposed above the supporting member 2100 . The support member 2100 and the light emitting diode 2200 of the light source 3000 of this embodiment are the same as the support member 2100 and the light emitting diode 2200 of the light source 2000 according to the second embodiment of FIG. 8 .
도 9를 참고하면, 광학 부재(3500)는 지지 부재(2100)의 상부에 형성되며, 발광 다이오드(2200)를 덮도록 형성될 수 있다. 또한, 광학 부재(3500)는 발광 다이오드(2200)의 적어도 일면과 접촉하도록 형성될 수 있다.Referring to FIG. 9 , an optical member 3500 may be formed above the support member 2100 and cover the light emitting diode 2200 . Also, the optical member 3500 may be formed to contact at least one surface of the light emitting diode 2200 .
광학 부재(3500)는 외부면이 곡면으로 이루어지도록 형성될 수 있다. 발광 다이오드(2200)에서 방출된 광은 광학 부재(3500)를 통과하여 광원(3000)의 외부로 방출될 수 있다. 즉, 광학 부재(3500)의 외부면은 출사면이다. 이와 같이 형성된 광학 부재(3500)는 발광 다이오드(2200)에서 방출된 광을 분산시켜 광원(3000)의 지향각을 조절할 수 있다.The optical member 3500 may have a curved outer surface. Light emitted from the light emitting diode 2200 may pass through the optical member 3500 and be emitted to the outside of the light source 3000 . That is, the outer surface of the optical member 3500 is an exit surface. The optical member 3500 thus formed can adjust the beam angle of the light source 3000 by dispersing the light emitted from the light emitting diode 2200 .
광학 부재(3500)는 투광 물질로 형성될 수 있다. 투광 물질은 발광 다이오드(2200)로부터 출사된 광의 투과율이 70% 이상 또는 85% 이상일 수 있다. 더 나아가, 광학 부재(3500)의 투광 물질은 220㎚ 내지 400㎚의 파장대의 광에 대한 투과율이 80%이상일 수 있다. 예를 들어, 투광 물질은 에폭시 수지, 실리콘 수지 또는 불소 수지일 수 있다. 예를 들어, 광학 부재(3500)는 석영, 유리, 실리콘, 사파이어, 불소 수지 중 적어도 하나로 형성될 수 있다. 또한, 광학 부재(3500)는 투광 물질 내부에 분산된 확산제를 더 포함할 수 있다.The optical member 3500 may be formed of a light-transmissive material. The light-transmissive material may have transmittance of 70% or more or 85% or more of light emitted from the light emitting diode 2200 . Furthermore, the light-transmitting material of the optical member 3500 may have a transmittance of 80% or more for light in a wavelength range of 220 nm to 400 nm. For example, the light transmitting material may be an epoxy resin, a silicone resin or a fluororesin. For example, the optical member 3500 may be formed of at least one of quartz, glass, silicon, sapphire, and fluorine resin. In addition, the optical member 3500 may further include a diffusing agent dispersed inside the light-transmitting material.
도 9에서 광학 부재(3500)는 외부면이 곡면으로 이루어져 있지만, 광학 부재(3500)의 구조가 이에 한정되는 것은 아니다. 광학 부재(3500)는 광원(3000)의 지향각 조절을 위해 다양한 구조로 형성될 수 있다.Although the outer surface of the optical member 3500 in FIG. 9 is made of a curved surface, the structure of the optical member 3500 is not limited thereto. The optical member 3500 may be formed in various structures to adjust the beam angle of the light source 3000 .
도 10은 본 발명의 제4 실시 예에 따른 광원을 나타낸 예시도이다.10 is an exemplary view showing a light source according to a fourth embodiment of the present invention.
제4 실시 에에 따른 광원(4000)은 지지 부재(2100), 발광 다이오드(2200) 및 광학 부재(4500)를 포함할 수 있다.The light source 4000 according to the fourth embodiment may include a support member 2100, a light emitting diode 2200, and an optical member 4500.
본 실시 예의 광원(4000)은 지지 부재(2100)의 상부에 발광 다이오드(2200)가 배치되며, 광학 부재(4500)가 발광 다이오드(2200)를 덮도록 형성될 수 있다.In the light source 4000 of this embodiment, the light emitting diode 2200 is disposed on the supporting member 2100, and the optical member 4500 may be formed to cover the light emitting diode 2200.
본 실시 예의 광원(4000)은 도 9의 제3 실시 예의 광원(3000)과 광학 부재(4500)의 구조를 제외한 다른 구성은 동일하다.The light source 4000 of this embodiment is the same in other configurations except for the structure of the light source 3000 and the optical member 4500 of the third embodiment of FIG. 9 .
본 실시 예의 광학 부재(4500)는 입광부(4510) 및 출광부(4520)를 포함할 수 있다. The optical member 4500 of this embodiment may include a light input unit 4510 and a light output unit 4520.
입광부(4510)는 광학 부재(4500)의 하부면에 형성된다. 또한, 입광부(4510)는 광학 부재(4500)의 하부면에서 상부 방향으로 오목하게 형성될 수 있다. 또한, 입광부(4510)는 광학 부재(4500)의 하부면에서 상부 방향으로 갈수록 폭이 점점 좁아지는 구조를 가질 수 있다. The light entrance part 4510 is formed on the lower surface of the optical member 4500 . In addition, the light entrance part 4510 may be formed concave upward from the lower surface of the optical member 4500 . In addition, the light entrance part 4510 may have a structure in which a width gradually decreases from the lower surface of the optical member 4500 toward the upper part.
출광부(4520)는 광이 외부로 방출되는 광학 부재(4500)의 외부면이다. 도 10을 참고하면, 출광부(4520)는 제1 출광부(4521)와 제2 출광부(4522)를 포함할 수 있다. The light emitting part 4520 is an outer surface of the optical member 4500 through which light is emitted to the outside. Referring to FIG. 10 , the light emitting unit 4520 may include a first light emitting unit 4521 and a second light emitting unit 4522 .
제1 출광부(4521)는 광학 부재(4500)의 하부면과 연결되며, 제2 출광부(4522)의 하부에 위치한다. 또한, 제1 출광부(4521)는 경사면일 수 있으며, 광학 부재(4500)의 하부면에서 상부 방향으로 갈수록 폭이 점점 좁아지는 구조일 수 있다.The first light emitting part 4521 is connected to the lower surface of the optical member 4500 and is located below the second light emitting part 4522 . In addition, the first light exit portion 4521 may be an inclined surface, and may have a structure in which the width gradually decreases from the lower surface of the optical member 4500 toward the upper surface.
제2 출광부(4522)는 제1 출광부(4521)의 상부에 위치할 수 있다. 제2 출광부(4522)는 곡면이며, 상부 방향으로 갈수록 폭이 점점 좁아지는 구조일 수 있다. 즉, 제2 출광부(4522)는 반구 형태로 형성될 수 있다. The second light exit part 4522 may be located above the first light exit part 4521 . The second light exit portion 4522 may have a curved surface, and may have a structure in which a width gradually decreases toward an upper direction. That is, the second light exit part 4522 may be formed in a hemispherical shape.
본 실시 예에서, 제1 출광부(4521)의 최대 폭은 제2 출광부(4522)의 최대 폭보다 크다. 그러나 본 실시 예의 광학 부재(4500)의 구조는 이에 한정되는 것은 아니다. 광학 부재(4500)는 제1 출광부(4521)의 최대 폭과 제2 출광부(4522)의 최대 폭이 동일한 구조일 수도 있다. 또한, 광학 부재(4500)는 제1 출광부(4520)가 하부에서 상부까지 동일한 폭을 갖는 구조일 수도 있다.In this embodiment, the maximum width of the first light exit part 4521 is greater than the maximum width of the second light exit part 4522 . However, the structure of the optical member 4500 of this embodiment is not limited thereto. The optical member 4500 may have a structure in which the maximum width of the first light emitting part 4521 and the maximum width of the second light emitting part 4522 are the same. Also, the optical member 4500 may have a structure in which the first light emitting part 4520 has the same width from the bottom to the top.
발광 다이오드(2200)는 광학 부재(4500)의 입광부(4510)에 배치된다. 따라서, 발광 다이오드(2200)에서 방출된 광은 입광부(4510)를 통해서 광학 부재(4500)의 내부로 입사될 수 있다. 또한, 광은 광학 부재(4500)의 내부를 통과하여 출광부(4520)를 통해서 광원(4000)의 외부로 방출될 수 있다.The light emitting diode 2200 is disposed in the light input part 4510 of the optical member 4500 . Accordingly, light emitted from the light emitting diode 2200 may be incident into the optical member 4500 through the light input unit 4510 . In addition, light may pass through the inside of the optical member 4500 and be emitted to the outside of the light source 4000 through the light exit unit 4520 .
본 실시 예의 광학 부재(4500)는 도 10에 도시된 구조로 한정되는 것은 아니다. 광학 부재(4500)는 광원(4000)의 지향각, 광 방출 방향 등을 고려하여 다양한 구조로 형성될 수 있다.The optical member 4500 of this embodiment is not limited to the structure shown in FIG. 10 . The optical member 4500 may be formed in various structures in consideration of the angle of view of the light source 4000 and the direction of light emission.
도 11은 본 발명의 제5 실시 예에 따른 광원을 나타낸 예시도이다.11 is an exemplary view showing a light source according to a fifth embodiment of the present invention.
제5 실시 에에 따른 광원(5000)은 지지 부재(5100), 발광 다이오드(2200) 및 광학 부재(5500)를 포함할 수 있다.A light source 5000 according to the fifth embodiment may include a support member 5100, a light emitting diode 2200, and an optical member 5500.
지지 부재(5100)는 절연성 물질로 형성될 수 있다. 예를 들어, 지지 부재(5100)는 세라믹 재질로 형성될 수 있다. 본 실시 예에서 지지 부재(5100)는 상면이 개방된 캐비티(5110)를 포함할 수 있다.The support member 5100 may be formed of an insulating material. For example, the support member 5100 may be formed of a ceramic material. In this embodiment, the support member 5100 may include a cavity 5110 with an open upper surface.
또한, 지지 부재(5100)는 전도성 물질로 형성된 배선(5120)을 포함할 수 있다. 배선(5120)의 일부는 지지 부재(5100)의 캐비티(5110)에 의해 노출될 수 있다. 즉, 배선(5120)의 일부는 지지 부재(5100)의 캐비티(5110)의 바닥면에 형성될 수 있다. 또한, 배선(5120)의 다른 일부는 지지 부재(5100)의 하면에서 노출될 수 있다. 지지 부재(5100)의 실장면에 형성된 배선(5120)과 지지 부재(5100)의 하면에 형성된 배선(5120)은 전기적으로 연결될 수 있다. Also, the support member 5100 may include a wire 5120 made of a conductive material. A portion of the wire 5120 may be exposed by the cavity 5110 of the support member 5100 . That is, a portion of the wiring 5120 may be formed on the bottom surface of the cavity 5110 of the support member 5100 . In addition, another part of the wiring 5120 may be exposed from the lower surface of the support member 5100 . The wiring 5120 formed on the mounting surface of the support member 5100 and the wiring 5120 formed on the lower surface of the support member 5100 may be electrically connected.
발광 다이오드(2200)는 지지 부재(5100)의 캐비티(5110)에 배치되어, 캐비티(5110)에 의해 노출된 배선(5120)과 전기적으로 연결될 수 있다. 본 실시 예의 발광 다이오드(2200)는 도 7의 광원(1000)과 동일할 수 있다.The light emitting diode 2200 may be disposed in the cavity 5110 of the support member 5100 and electrically connected to the wire 5120 exposed by the cavity 5110 . The light emitting diode 2200 of this embodiment may be the same as the light source 1000 of FIG. 7 .
본 실시 예에서 지지 부재(5100)의 캐비티(5110)를 형성하는 내벽이 바닥면에 수직한 구조를 갖는다. 즉, 캐비티(5110)는 하부와 상부가 동일한 폭을 갖는 구조이다. 그러나 지지 부재(5100) 구조가 이에 한정되는 것은 아니다. 지지 부재(5100)의 내벽은 경사지거나 곡면으로 형성될 수 있다.In this embodiment, the inner wall forming the cavity 5110 of the support member 5100 has a structure perpendicular to the bottom surface. That is, the cavity 5110 has a structure in which a lower portion and an upper portion have the same width. However, the structure of the support member 5100 is not limited thereto. An inner wall of the support member 5100 may be inclined or curved.
또한, 지지 부재(5100)는 광을 반사하는 물질을 포함하여 형성될 수 있다. 예를 들어, 지지 부재(5100) 자체가 광 반사 물질로 이루어질 수 있다. 또는 지지 부재(5100)는 절연 물질에 광 반사 물질을 혼합하여 형성될 수 있다. 또는 지지 부재(5100)는 내벽에 광 반사 물질이 코팅된 것일 수 있다. 따라서, 발광 다이오드(2200)에서 지지 부재(5100)의 내벽에 부딪힌 광은 반사되어 상부에 위치한 광학 부재(5500)를 향할 수 있다.Also, the support member 5100 may include a material that reflects light. For example, the support member 5100 itself may be made of a light reflective material. Alternatively, the support member 5100 may be formed by mixing a light reflective material with an insulating material. Alternatively, the inner wall of the support member 5100 may be coated with a light reflecting material. Accordingly, light that hits the inner wall of the support member 5100 from the light emitting diode 2200 may be reflected and directed toward the optical member 5500 positioned above.
광학 부재(5500)는 지지 부재(5100)의 상면에 배치되어 캐비티(5110)를 덮도록 형성될 수 있다. The optical member 5500 may be disposed on the upper surface of the support member 5100 to cover the cavity 5110 .
본 실시 예의 광원(5000)은 지지 부재(5100)의 상부에 발광 다이오드(2200)가 배치되며, 광학 부재(5500)가 발광 다이오드(2200)를 덮도록 형성될 수 있다. 광학 부재(5500)는 발광 다이오드(2200)에서 방출되는 광을 투과시키는 물질로 형성될 수 있다. 예를 들어, 광학 부재(5500)는 석영, 유리, 실리콘 또는 사파이어 중 적어도 하나로 형성될 수 있다. 또한, 광학 부재(5500)는 투광 물질 내부에 분산된 확산제를 더 포함할 수 있다.In the light source 5000 of this embodiment, the light emitting diode 2200 is disposed on the support member 5100, and the optical member 5500 may be formed to cover the light emitting diode 2200. The optical member 5500 may be formed of a material that transmits light emitted from the light emitting diode 2200 . For example, the optical member 5500 may be formed of at least one of quartz, glass, silicon, and sapphire. In addition, the optical member 5500 may further include a diffusing agent dispersed inside the light-transmitting material.
본 실시 예에서 광학 부재(5500)는 상면 및 하면이 평탄한 구조이다. 그러나, 도 11에 도시된 광학 부재(5500)의 구조로 본 실시 예가 한정되는 것은 아니다. 광학 부재(5500)는 지지 부재(5100)의 캐비티(5110)를 덮을 수 있는 다양한 구조로 형성될 수 있다.In this embodiment, the optical member 5500 has a structure in which upper and lower surfaces are flat. However, this embodiment is not limited to the structure of the optical member 5500 shown in FIG. 11 . The optical member 5500 may be formed in various structures capable of covering the cavity 5110 of the support member 5100 .
본 발명의 제1 실시 예 내지 제5 실시 예에 따른 살균 모듈(100, 200, 300, 400, 500)의 광원(110)은 도 7 내지 도 11을 통해 설명한 광원들(1000, 2000, 3000, 4000, 5000) 중 적어도 하나를 포함할 수 있다.The light sources 110 of the sterilization modules 100, 200, 300, 400, and 500 according to the first to fifth embodiments of the present invention are the light sources 1000, 2000, 3000, 4000, 5000) may include at least one.
도 12는 본 발명의 일 실시 예에 따른 유체 처리 장치를 나타낸 예시도이다.12 is an exemplary view illustrating a fluid treatment device according to an embodiment of the present invention.
도 12를 참고하면, 유체 처리 장치(1)는 하우징(10) 및 살균 모듈(600)을 포함할 수 있다. Referring to FIG. 12 , the fluid treatment device 1 may include a housing 10 and a sterilization module 600 .
하우징(10)은 유체가 유입되는 유입구(11) 및 유체가 배출되는 배출구(12)를 포함할 수 있다. 또한, 하우징(10)의 내부 공간은 유체가 이동하는 통로가 될 수 있다.The housing 10 may include an inlet 11 through which the fluid is introduced and an outlet 12 through which the fluid is discharged. In addition, the inner space of the housing 10 may be a passage through which fluid moves.
하우징(10)의 내부에는 살균 모듈(600)이 배치될 수 있다. 따라서, 하우징(10)의 내부를 통과하는 유체는 살균 모듈(600)에 의해서 살균될 수 있다. 도 12를 참고하면, 살균 모듈(600)은 광원부(610) 및 포집부(620)를 포함한다. 그러나 살균 모듈(600)의 구조는 이에 한정되는 것은 아니다. 본 실시 예의 살균 모듈(600)은 이전에 설명한 다양한 실시 예의 살균 모듈들 중 하나일 수 있다. A sterilization module 600 may be disposed inside the housing 10 . Thus, the fluid passing through the inside of the housing 10 can be sterilized by the sterilization module 600 . Referring to FIG. 12 , the sterilization module 600 includes a light source unit 610 and a collecting unit 620 . However, the structure of the sterilization module 600 is not limited thereto. The sterilization module 600 of this embodiment may be one of the previously described sterilization modules of various embodiments.
살균 모듈(600)의 포집부(620)는 하우징(10)의 내부 공간을 가로막도록 형성될 수 있다. 즉, 포집부(620)의 테두리가 하우징(10)의 내벽에 밀착되도록 형성될 수 있다. 따라서, 하우징(10)으로 유입된 모든 유체가 포집부(620)를 통과하여 배출구(12)를 향하도록 할 수 있다. 따라서, 본 실시 예의 유체 처리 장치(1)는 하우징(10)에 유입된 모든 유체에 대해 살균을 수행할 수 있다. The collecting part 620 of the sterilization module 600 may be formed to block the inner space of the housing 10 . That is, the edge of the collecting unit 620 may be formed to be in close contact with the inner wall of the housing 10 . Accordingly, all fluids flowing into the housing 10 may pass through the collecting unit 620 and be directed toward the outlet 12 . Therefore, the fluid treatment device 1 of the present embodiment can sterilize all fluids flowing into the housing 10 .
본 실시 예의 유체 처리 장치(1)는 유체 흡입부를 더 포함할 수 있다. 유체 흡입부는 유체의 이동을 유도할 수 있다. 본 실시 예의 유체 흡입부는 하우징(10)의 내부에서 하우징(10)의 유입구(11)와 살균 모듈(600) 사이에 배치될 수 있다. 따라서, 유체 흡입부는 하우징(10)의 외부의 유체 및 하우징(10)의 유입구(11)를 통과한 유체가 살균 모듈(600)을 통과하도록 유체의 흐름을 유도할 수 있다. 예를 들어, 유체 흡입부는 펌프 또는 팬일 수 있다.The fluid processing device 1 of this embodiment may further include a fluid suction unit. The fluid suction unit may induce movement of the fluid. The fluid suction unit of this embodiment may be disposed between the inlet 11 of the housing 10 and the sterilization module 600 inside the housing 10 . Accordingly, the fluid suction unit may induce a flow of fluid so that the fluid outside the housing 10 and the fluid passing through the inlet 11 of the housing 10 pass through the sterilization module 600 . For example, the fluid intake may be a pump or fan.
도 12를 참고하면, 유체 흡입부가 하우징(10)의 유입구(11)와 살균 모듈(600) 사이에 배치되지만, 본 실시 예가 이에 한정되는 것은 아니다. 유체 흡입부는 살균 모듈(600)과 배출구(12) 사이에 배치될 수도 있다. 또한, 유체 흡입부는 하우징(10)의 외부에서 유입구(11) 또는 배출구(12)와 인접하게 배치될 수도 있다.Referring to FIG. 12 , the fluid suction unit is disposed between the inlet 11 of the housing 10 and the sterilization module 600, but the present embodiment is not limited thereto. A fluid suction unit may be disposed between the sterilization module 600 and the outlet 12 . Also, the fluid suction unit may be disposed adjacent to the inlet 11 or the outlet 12 outside the housing 10 .
유체 처리 장치(1)는 건물의 실내 공간과 같은 임의의 공간에 배치될 수 있다. 따라서, 하우징(10)의 유입구(11)를 통해서 임의의 공간의 유체가 유입되고, 살균 처리된 유체는 배출구(12)를 통해서 임의의 공간으로 배출될 수 있다.The fluid treatment device 1 can be placed in any space, such as an indoor space of a building. Therefore, fluid in an arbitrary space may be introduced through the inlet 11 of the housing 10, and the sterilized fluid may be discharged into an arbitrary space through the outlet 12.
유체 처리 장치(1)의 하우징(10)의 유입구(11) 및 배출구(12)는 각각 유체가 유동하는 외부 배관과 연결될 수 있다. 예를 들어, 유체 처리 장치(1)는 건물 및 차량의 공조기에 결합될 수 있다. The inlet 11 and the outlet 12 of the housing 10 of the fluid treatment device 1 may be connected to external pipes through which fluid flows, respectively. For example, the fluid handling device 1 can be coupled to air conditioners in buildings and vehicles.
이상과 같이 본 발명에 대해서 예시한 도면을 참조로 하여 설명하였으나, 본 명세서에 개시된 실시예와 도면에 의해 본 발명이 한정되는 것은 아니며, 본 발명의 기술사상의 범위 내에서 통상의 기술자에 의해 다양한 변형이 이루어질 수 있음은 자명하다. 예를 들어, 상술한 실시예들은 본 발명의 개념에서 벗어나지 않는 한도 내에서 다양하게 조합될 수 있다. As described above, the present invention has been described with reference to the drawings illustrated, but the present invention is not limited by the embodiments and drawings disclosed herein, and various modifications are made by those skilled in the art within the scope of the technical idea of the present invention. It is obvious that variations can be made. For example, the above-described embodiments may be combined in various ways without departing from the concept of the present invention.

Claims (20)

  1. 유체에 포함된 오염원을 포집하며, 서로 연결된 복수의 포집 유닛을 포함하는 포집부; 및a collection unit that collects contaminants included in the fluid and includes a plurality of collection units connected to each other; and
    상기 오염원을 살균하는 광을 방출하는 적어도 하나의 광원을 포함하는 광원부;를 포함하며,A light source unit including at least one light source emitting light for sterilizing the contaminant; includes,
    상기 포집부는 이웃한 포집 유닛들이 서로 반대 방향으로 경사지도록 형성되고,The collecting unit is formed such that neighboring collecting units are inclined in opposite directions to each other,
    상기 광원부는 상기 포집부 및 살균 공간으로 상기 광을 방출하며,The light source unit emits the light to the collecting unit and the sterilization space,
    상기 살균 공간은 상기 이웃한 포집 유닛들의 포집면들로 둘러싸인 공간이고,The sterilization space is a space surrounded by the collection surfaces of the neighboring collection units,
    상기 포집면은 상기 광원부를 마주하는 상기 포집부의 일면이며,The collecting surface is one surface of the collecting unit facing the light source unit,
    서로 이웃하는 포집 유닛들의 일단들은 상기 살균 영역 내에 위치하는 살균 모듈.Ends of the collection units adjacent to each other are located in the sterilization area.
  2. 청구항 1에 있어서,The method of claim 1,
    상기 포집부는 상기 유체가 통과하는 복수의 제1 관통공을 포함하는 살균 모듈.The collecting unit sterilization module including a plurality of first through-holes through which the fluid passes.
  3. 청구항 2에 있어서,The method of claim 2,
    상기 제1 관통공의 직경은 30㎚ 내지 10㎛인 살균 모듈.The diameter of the first through hole is 30 nm to 10 μm sterilization module.
  4. 청구항 1에 있어서,The method of claim 1,
    상기 서로 이웃하는 포집 유닛들의 일단들은 서로 다른 수평선상에 위치하는 살균 모듈.The sterilization module wherein ends of the collection units adjacent to each other are located on different horizontal lines.
  5. 청구항 1에 있어서,The method of claim 1,
    상기 서로 이웃하는 포집 유닛들의 일단들 중 적어도 하나는 상기 광원의 지향각의 최외각에 위치하는 살균 모듈.At least one of the ends of the collection units adjacent to each other is located at the outermost part of the beam angle of the light source.
  6. 청구항 1에 있어서,The method of claim 1,
    상기 광원부와 상기 포집부 사이에 배치되는 반사부를 더 포함하는 살균 모듈. Sterilization module further comprising a reflector disposed between the light source unit and the collecting unit.
  7. 청구항 6에 있어서,The method of claim 6,
    상기 반사부는 상기 유체가 통과하는 복수의 제2 관통공을 포함하는 살균 모듈.The reflective unit includes a plurality of second through-holes through which the fluid passes.
  8. 청구항 7에 있어서,The method of claim 7,
    상기 포집부는 상기 유체가 통과하는 복수의 제1 관통공을 포함하며,The collecting part includes a plurality of first through-holes through which the fluid passes,
    상기 제2 관통공의 직경은 상기 제1 관통공의 직경보다 큰 살균 모듈.A sterilization module having a diameter of the second through hole larger than a diameter of the first through hole.
  9. 청구항 8에 있어서,The method of claim 8,
    상기 제1 관통공과 상기 제2 관통공은 중심축이 서로 불일치하도록 형성되는 살균 모듈.The first through hole and the second through hole are formed such that central axes do not match each other.
  10. 청구항 6에 있어서,The method of claim 6,
    상기 반사부는 상기 포집부보다 큰 강성을 갖는 살균 모듈.The reflecting unit has a greater rigidity than the collecting unit sterilization module.
  11. 청구항 6에 있어서,The method of claim 6,
    상기 반사부는 상기 광원에서 방출된 광에 대한 투과율이 70% 이상인 살균 모듈.The reflector has a transmittance of 70% or more to the light emitted from the light source.
  12. 청구항 6에 있어서,The method of claim 6,
    상기 반사부는 복수의 반사층을 포함하는 살균 모듈.The sterilization module comprising a plurality of reflective layers.
  13. 청구항 6에 있어서,The method of claim 6,
    상기 반사부는 상기 포집부의 후면 방향에 더 배치되며,The reflector is further disposed in the rear direction of the collecting unit,
    상기 포집부의 후면 방향은 상기 광원부가 배치된 방향의 반대 방향인 살균 모듈.The rear direction of the collecting unit is a sterilization module in the opposite direction to the direction in which the light source unit is disposed.
  14. 청구항 1에 있어서,The method of claim 1,
    상기 포집부는 반사 물질을 더 포함하는 살균 모듈.The collecting unit sterilization module further comprises a reflective material.
  15. 유입구와 배출구가 형성된 하우징; 및A housing having an inlet and an outlet; and
    상기 하우징의 내부에 배치되어 상기 하우징의 내부를 통과하는 유체를 살균하는 살균 모듈;을 포함하고, A sterilization module disposed inside the housing to sterilize the fluid passing through the housing;
    상기 살균 모듈은The sterilization module
    상기 유체에 포함된 오염원을 포집하며, 서로 연결된 복수의 포집 유닛을 포함하는 포집부; 및a collection unit that collects pollutants included in the fluid and includes a plurality of collection units connected to each other; and
    상기 오염원을 살균하는 광을 방출하는 적어도 하나의 광원을 포함하는 광원부;를 포함하며,A light source unit including at least one light source emitting light for sterilizing the contaminant; includes,
    상기 포집부는 이웃한 포집 유닛들이 서로 반대 방향으로 경사지도록 형성되고,The collecting unit is formed such that neighboring collecting units are inclined in opposite directions to each other,
    상기 광원부는 상기 포집부 및 살균 공간으로 상기 광을 방출하며,The light source unit emits the light to the collecting unit and the sterilization space,
    상기 살균 공간은 상기 이웃한 포집 유닛들의 포집면들로 둘러싸인 공간이고,The sterilization space is a space surrounded by the collection surfaces of the neighboring collection units,
    상기 포집면은 상기 광원부를 마주하는 상기 포집부의 일면이며,The collecting surface is one surface of the collecting unit facing the light source unit,
    서로 이웃하는 포집 유닛들의 일단들은 상기 살균 영역 내에 위치하는 유체 처리 장치.Ends of collection units adjacent to each other are positioned within the sterilization area.
  16. 청구항 15에 있어서,The method of claim 15
    상기 포집부는 상기 유체가 통과하는 복수의 제1 관통공을 포함하는 유체 처리 장치.The fluid treatment device of claim 1 , wherein the collecting part includes a plurality of first through-holes through which the fluid passes.
  17. 청구항 16에 있어서,The method of claim 16
    상기 광원부와 상기 포집부 사이에 배치되며, 복수의 제2 관통공을이 형성된 반사부를 더 포함하며,It is disposed between the light source unit and the collecting unit, and further includes a reflector having a plurality of second through holes formed therein,
    상기 제2 관통공의 직경은 상기 제1 관통공의 직경보다 큰 유체 처리 장치.The second through hole has a larger diameter than the first through hole.
  18. 청구항 17에 있어서,The method of claim 17
    상기 반사부는 복수의 반사층을 포함하는 유체 처리 장치.The fluid processing device of claim 1 , wherein the reflector includes a plurality of reflective layers.
  19. 청구항 17에 있어서,The method of claim 17
    상기 반사부는 상기 포집부의 후면 방향에 더 배치되며,The reflector is further disposed in the rear direction of the collecting unit,
    상기 포집부의 후면 방향은 상기 광원부가 배치된 방향의 반대 방향인 유체 처리 장치.A rear surface direction of the collecting unit is a direction opposite to a direction in which the light source unit is disposed.
  20. 청구항 15에 있어서,The method of claim 15
    상기 유체의 이동을 유도하는 유체 흡입부를 더 포함하는 유체 처리 장치.The fluid treatment device further comprising a fluid suction unit for inducing movement of the fluid.
PCT/KR2022/011193 2021-07-30 2022-07-29 Sterilization module and fluid treatment apparatus comprising same WO2023008950A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202163227660P 2021-07-30 2021-07-30
US63/227,660 2021-07-30

Publications (1)

Publication Number Publication Date
WO2023008950A1 true WO2023008950A1 (en) 2023-02-02

Family

ID=85088017

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/011193 WO2023008950A1 (en) 2021-07-30 2022-07-29 Sterilization module and fluid treatment apparatus comprising same

Country Status (1)

Country Link
WO (1) WO2023008950A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000189835A (en) * 1998-12-22 2000-07-11 Carrier Corp Air cleaning assembly
KR20020063246A (en) * 1999-12-28 2002-08-01 가부시키 가이샤 에바라 세이사꾸쇼 Method and device for preventing oxidation on substrate surface
KR20050008724A (en) * 2002-05-20 2005-01-21 시어도어 에이. 엠. 알츠 Air decontamination devices
KR20120123868A (en) * 2011-05-02 2012-11-12 씨원 주식회사 Air cleaner for vehicles
KR20150062402A (en) * 2013-11-29 2015-06-08 서울바이오시스 주식회사 Air washer having sterilization module and deodorization module

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000189835A (en) * 1998-12-22 2000-07-11 Carrier Corp Air cleaning assembly
KR20020063246A (en) * 1999-12-28 2002-08-01 가부시키 가이샤 에바라 세이사꾸쇼 Method and device for preventing oxidation on substrate surface
KR20050008724A (en) * 2002-05-20 2005-01-21 시어도어 에이. 엠. 알츠 Air decontamination devices
KR20120123868A (en) * 2011-05-02 2012-11-12 씨원 주식회사 Air cleaner for vehicles
KR20150062402A (en) * 2013-11-29 2015-06-08 서울바이오시스 주식회사 Air washer having sterilization module and deodorization module

Similar Documents

Publication Publication Date Title
WO2016017969A1 (en) Light-emitting element and light source module comprising same
WO2015016561A1 (en) Light emitting diode, method of fabricating the same and led module having the same
WO2014088201A1 (en) Light-emitting diode and application therefor
WO2016148539A1 (en) Light-emitting device and camera module having same
WO2017179944A1 (en) Light-emitting device, light-emitting device package, and light-emitting module
WO2014069880A1 (en) Lens and light emitting module for surface illumination
WO2019124843A1 (en) Chip scale package light emitting diode
WO2017135801A1 (en) Light source unit and light unit having same
WO2017119661A1 (en) Semiconductor device
WO2013162337A1 (en) Light emitting device and light emitting device package
WO2015147518A1 (en) Lens and light-emitting device module comprising same
WO2016190651A1 (en) Optical lens, lighting module, and light unit comprising same
WO2019074149A1 (en) Light emitting element package and light source element
WO2019066372A2 (en) Light emitting diode, light emitting diode module, and display device comprising same
WO2017074035A1 (en) Light emitting device package and lighting system comprising same
WO2023008950A1 (en) Sterilization module and fluid treatment apparatus comprising same
WO2019027192A1 (en) Semiconductor device package and light source device
WO2019035683A1 (en) Insect trap
WO2017003095A1 (en) Light-emitting element package and light-emitting element module comprising same
WO2013183878A1 (en) Light-emitting device, light-emitting device package, and light unit
WO2019054750A1 (en) Light-emitting device package and light source device
WO2016186330A1 (en) Light-emitting element
WO2019066339A1 (en) Light emitting diode chip
WO2019013539A1 (en) Fluid treatment apparatus
WO2019088701A1 (en) Light-emitting device package and light source apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22849925

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22849925

Country of ref document: EP

Kind code of ref document: A1