WO2023008631A1 - Lathe control apparatus and method - Google Patents

Lathe control apparatus and method Download PDF

Info

Publication number
WO2023008631A1
WO2023008631A1 PCT/KR2021/010723 KR2021010723W WO2023008631A1 WO 2023008631 A1 WO2023008631 A1 WO 2023008631A1 KR 2021010723 W KR2021010723 W KR 2021010723W WO 2023008631 A1 WO2023008631 A1 WO 2023008631A1
Authority
WO
WIPO (PCT)
Prior art keywords
correction value
correction
value
lathe
shelf
Prior art date
Application number
PCT/KR2021/010723
Other languages
French (fr)
Korean (ko)
Inventor
김민수
소창주
하성민
Original Assignee
한화정밀기계 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한화정밀기계 주식회사 filed Critical 한화정밀기계 주식회사
Publication of WO2023008631A1 publication Critical patent/WO2023008631A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/404Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control arrangements for compensation, e.g. for backlash, overshoot, tool offset, tool wear, temperature, machine construction errors, load, inertia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q15/00Automatic control or regulation of feed movement, cutting velocity or position of tool or work
    • B23Q15/007Automatic control or regulation of feed movement, cutting velocity or position of tool or work while the tool acts upon the workpiece
    • B23Q15/013Control or regulation of feed movement
    • B23Q15/02Control or regulation of feed movement according to the instantaneous size and the required size of the workpiece acted upon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q15/00Automatic control or regulation of feed movement, cutting velocity or position of tool or work
    • B23Q15/007Automatic control or regulation of feed movement, cutting velocity or position of tool or work while the tool acts upon the workpiece
    • B23Q15/12Adaptive control, i.e. adjusting itself to have a performance which is optimum according to a preassigned criterion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q15/00Automatic control or regulation of feed movement, cutting velocity or position of tool or work
    • B23Q15/20Automatic control or regulation of feed movement, cutting velocity or position of tool or work before or after the tool acts upon the workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/20Arrangements for observing, indicating or measuring on machine tools for indicating or measuring workpiece characteristics, e.g. contour, dimension, hardness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/22Arrangements for observing, indicating or measuring on machine tools for indicating or measuring existing or desired position of tool or work
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/4093Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by part programming, e.g. entry of geometrical information as taken from a technical drawing, combining this with machining and material information to obtain control information, named part programme, for the NC machine

Definitions

  • the present invention relates to an apparatus and method for controlling a lathe, and more particularly, to a apparatus and method for controlling a lathe that determines whether a tool installed in a shelf needs to be corrected and a correction value, and provides the correction value to the corresponding lathe.
  • the lathe is equipped with a plurality of tools to perform a processing operation on raw materials to produce a processed product.
  • the lathe may sequentially perform processing operations on a plurality of raw materials to produce a plurality of workpieces.
  • an error component of an actual tool may not be reflected in the correction value or an arbitrary component may be reflected by the user.
  • An object of the present invention is to provide a lathe control apparatus and method for determining whether a tool installed in a lathe needs correction and a correction value, and providing the correction value to the lathe.
  • a lathe control device includes a receiving unit for receiving a measurement value for a workpiece from a lathe producing a workpiece, and a location of a tool provided in the lathe with reference to the measurement value. a correction value calculation unit that calculates a correction value for , and a transmission unit that transmits the correction value to the lathe, wherein the lathe includes a plurality of tools, and the correction value calculation unit calculates a correction value for each of the plurality of tools. do.
  • the lathe control device further includes a control unit that compares the measured value with a processing reference value to determine whether to calculate a correction value.
  • the processing reference value includes a target processing value for a measurement point of a workpiece.
  • the shelf control device further includes an output unit outputting the correction value.
  • the shelf control device further includes an input unit for receiving a user confirmation of whether the correction value is transmitted in response to the correction value being output.
  • the shelf control device further includes a data management unit that reflects the correction values calculated by the correction value calculation unit in correction data including a history of correction values calculated for the shelf.
  • the correction data includes at least one of measurement time, shelf identification information, processing program identification information, correction values, production quantities, and processing conditions.
  • the lathe control device further includes a control unit that calculates a change pattern of a correction value for the production quantity of the workpiece with reference to the correction data, and determines whether to calculate the correction value by referring to the change pattern.
  • the correction value calculator learns the correction data and calculates a correction value with reference to the learning result.
  • a lathe control method includes the steps of receiving a measurement value for a workpiece from a lathe producing the workpiece, and calculating a correction value for the position of a tool provided on the lathe with reference to the measurement value. , and transmitting the correction values to the lathe, wherein the lathe includes a plurality of tools, and calculating the correction values includes calculating correction values for each of the plurality of tools.
  • the lathe control method may further include determining whether to calculate a correction value by comparing the measured value with a processing reference value.
  • the processing reference value includes a target processing value for a measurement point of a workpiece.
  • the shelf control method further includes outputting the correction value.
  • the shelf control method further includes receiving a user confirmation of whether or not the correction value is transmitted in response to the output of the correction value.
  • the shelf control method may further include reflecting the correction values calculated by the correction value calculator in correction data including a history of correction values calculated for the shelf.
  • the correction data includes at least one of measurement time, shelf identification information, processing program identification information, correction values, production quantities, and processing conditions.
  • the lathe control method further includes calculating a change pattern of a correction value for the production quantity of the workpiece with reference to the correction data, and determining whether to calculate the correction value by referring to the change pattern.
  • Calculating the correction value includes learning the correction data and calculating the correction value with reference to the learning result.
  • an appropriate correction value is provided to the lathe at an appropriate time because it determines whether a tool installed in the lathe needs correction and a correction value, and provides the correction value to the lathe.
  • 1 is a diagram showing a shelf control system.
  • FIG. 2 is a diagram for explaining communication between a shelf and a shelf control device.
  • FIG. 3 is a block diagram of a shelf control device according to an embodiment of the present invention.
  • FIG. 4 is a view showing a processing reference value table.
  • 5 is a diagram showing correction data.
  • FIG. 6 is a diagram showing a change pattern of a correction value for the production quantity of a workpiece.
  • FIG. 7 is a flowchart illustrating a shelf control method according to an embodiment of the present invention.
  • FIG. 8 is a flowchart illustrating a shelf control method according to another embodiment of the present invention.
  • 1 is a diagram showing a shelf control system.
  • a shelf control system 10 includes a shelf 100 and a shelf control device 200 .
  • the lathe 100 may process raw materials to produce processed products.
  • the lathe 100 may be an automatic lathe. Accordingly, the lathe 100 may include a plurality of tools, and may perform various processes on one raw material using the plurality of tools.
  • the shelf control system 10 may include a plurality of shelves 100 .
  • Each of the plurality of lathes 100 may produce the same processed product using the same raw material, or may produce different processed products using different raw materials.
  • the lathe 100 may produce a plurality of workpieces by processing raw materials to be fed.
  • the production of the workpiece may be repeatedly performed under the control of the controller 170 (see FIG. 2) provided in the lathe 100.
  • the controller 170 see FIG. 2 provided in the lathe 100.
  • the position of the tool is changed, or the end, tip, or part of the tool in contact with the raw material is worn, and the processing quality of the workpiece may be degraded.
  • a groove with a depth smaller than 1 mm may be formed.
  • the shelf control device 200 may control the shelf 100 . Specifically, the shelf control device 200 may control correction of tools provided in each shelf 100 .
  • the shelf control device 200 may calculate a correction value of each tool by referring to machining performance of a plurality of tools provided in each shelf 100 and transmit the correction value to the shelf 100 . Accordingly, the lathe 100 may produce a workpiece by calibrating the tool with the received correction value.
  • FIG. 2 is a diagram for explaining communication between a shelf and a shelf control device.
  • the shelf control device 200 may control the shelf 100 by communicating with the shelf 100 .
  • the lathe 100 may include a chamber 110, a motor 120, a spindle 130, a tool 140, a driving unit 150, a measuring unit 160, and a control unit 170.
  • the chamber 110 may accommodate a motor 120 , a tool 140 , a driving unit 150 , a measuring unit 160 and a control unit 170 .
  • at least one of the motor 120, the tool 140, the driving unit 150, the measuring unit 160, and the control unit 170 may be provided outside the chamber 110. .
  • the motor 120 may rotate the spindle 130 .
  • a raw material may be provided at the end of the spindle 130 .
  • the raw material may be rotated by the rotational force of the motor 120 .
  • the tool 140 can machine raw materials.
  • the tool 140 may perform a grinding or cutting operation on raw materials.
  • the lathe 100 may include a plurality of tools 140, and the plurality of tools 140 may perform individual tasks.
  • the driving unit 150 may move the tool 140 or adjust its posture.
  • the tool 140 may be moved in the direction or the opposite direction of the raw material by the driving unit 150, or the position of the tool 140 relative to the raw material may be adjusted.
  • the measurement unit 160 may generate a measurement value by measuring the workpiece.
  • the measurement unit 160 may generate measurement values by measuring the length, width, depth of a groove, height of a protrusion, inner diameter, and outer diameter of a workpiece.
  • the shelf 100 may include a plurality of measurement units 160, and each measurement unit 160 may perform an individual measurement task.
  • a driving unit (not shown) for adjusting the position and attitude of the measuring unit 160 may be provided.
  • the measurement unit 160 may perform a measurement operation on the workpiece while adjusting the position and attitude by a driving unit (not shown).
  • the control unit 170 may control the motor 120 , the driving unit 150 and the measuring unit 160 .
  • the controller 170 may control whether or not the motor 120 rotates and the rotation speed.
  • the controller 170 may control the driving unit 150 to adjust the position and attitude of the tool 140 .
  • the control unit 170 may control the driving unit 150 according to the correction value received from the lathe control device 200 so that the position and attitude of the tool 140 are adjusted.
  • the controller 170 may allow processing of raw materials to be performed with a specific processing program among a plurality of processing programs.
  • the machining program may include control commands for the motor 120 and the driving unit 150 to produce a workpiece.
  • a machining program may be provided for each workpiece, and the control unit 170 may control the motor 120 and the drive unit 150 with a corresponding machining program to produce a specific workpiece.
  • the shelf control device 200 may control the shelf 100 by communicating with the shelf 100 .
  • the shelf control device 200 may receive a measurement value from the measuring unit 160 and transmit a correction value to the controller 170 .
  • the controller 170 may adjust the position and attitude of the tool 140 according to the correction values received from the lathe control device 200 .
  • FIG. 2 shows that the shelf control device 200 receives the measurement value from the measurement unit 160
  • the shelf control device 200 may also receive the measurement value from the control unit 170.
  • the controller 170 may receive a measurement value measured by the measurement unit 160 and transmit it to the shelf control device 200 .
  • the shelf control device 200 will mainly describe the reception of the measurement value from the measuring unit 160 .
  • FIG. 3 is a block diagram of a lathe control device according to an embodiment of the present invention
  • FIG. 4 is a diagram showing a processing reference value table
  • FIG. 5 is a diagram showing correction data
  • FIG. 6 is a correction value for the production quantity of a workpiece. It is a diagram showing the change pattern of .
  • the shelf control device 200 includes a receiver 210, an input unit 220, a storage unit 230, a controller 240, a correction value calculator 250, data It is configured to include a management unit 260, a transmission unit 270 and an output unit 280.
  • the receiving unit 210 may receive a measurement value for a workpiece from the lathe 100 producing the workpiece.
  • the measurement unit 160 may measure the processed product to generate a measured value and transmit the measured value.
  • the measuring unit 160 may measure and transmit a measured value whenever a workpiece is produced, or may perform a measurement and transmit a measured value whenever there is a request from the shelf control device 200 .
  • the receiving unit 210 may receive the measurement time, shelf identification information, processing program identification information, production quantity, and processing conditions.
  • measurement time, shelf identification information, processing program identification information, production quantity, and processing conditions are referred to as measurement data.
  • the measurement data may be received simultaneously with the measurement value or may be received with a predetermined time difference.
  • measurement values and measurement data may be included in one communication packet and received through the receiver 210, or measurement values and measurement data may be included in different communication packets and received through the receiver 210, respectively. .
  • the measurement data may be used to generate correction data to be described later.
  • measurement data including measurement time, shelf identification information, processing program identification information, production quantity, and processing conditions
  • the initial temperature of raw materials outside temperature at the time of processing, temperature and vibration of the shelf 100 etc.
  • measurement data including measurement time, shelf identification information, processing program identification information, production quantity, and processing conditions will be mainly described.
  • the input unit 220 may receive a user command.
  • the user command may include user confirmation of whether to transmit the correction value.
  • the user can determine whether or not to transmit the calculated correction value.
  • the user may input a correction value transmission command or a transmission hold command through the input unit 220 .
  • the user command may be an input command of a processing reference value.
  • the processing reference value may represent a target processing value for a measurement point of a workpiece. For example, when a specific measurement point of a workpiece is processed with a machining reference value, it can be determined that optimal machining has been performed.
  • a machining reference value may be set for each of the plurality of tools 140 provided on the lathe 100 .
  • the measuring point may indicate a specific point on the workpiece that needs to be measured.
  • the measuring point may be a part corresponding to the length of the workpiece, a part corresponding to the width, a groove, a protrusion, a hole, or a part corresponding to the outer diameter of the workpiece.
  • a machining operation may be performed by a specific tool for each measuring point.
  • the user may input a machining reference value that is a target degree of a machining operation by a corresponding tool for each measuring point through the input unit 220 .
  • the input processing reference value may be configured in the form of a processing reference value table 300 as shown in FIG. 4 .
  • the storage unit 230 may temporarily or permanently store the processing reference value table 300 and correction data 400 (see FIG. 5 ) to be described later.
  • the correction value calculator 250 may calculate a correction value for the position of the tool 140 provided on the lathe 100 by referring to the measurement value received through the receiver 210 .
  • the correction value calculator 250 may calculate a correction value based on the processing reference value. For example, the correction value calculator 250 may calculate a difference between the measured value and the processing reference value as a correction value.
  • the correction value calculating unit 250 may learn the correction data 400 and calculate the correction value by referring to the learning result. That is, the correction value calculation unit 250 may calculate an optimal correction value to be applied to the tool by referring to the correction data 400 accumulated for a specific tool.
  • the data manager 260 serves to manage the correction data 400 .
  • the correction data 400 may include a history of correction values calculated for the shelf 100 .
  • the data manager 260 may reflect the correction value calculated by the correction value calculation unit 250 to the correction data 400 . That is, the data management unit 260 may update the correction data 400 by reflecting the correction value calculated by the correction value calculation unit 250 to the correction data 400 .
  • the correction data 400 may include at least one of measurement time, shelf identification information, processing program identification information, correction values, production quantity, and processing conditions.
  • the measuring time indicates the time when the measuring unit 160 measures the workpiece.
  • the shelf identification information indicates unique information assigned to each of the plurality of shelves 100 provided in the shelf control system 10 .
  • the machining program identification information indicates unique information assigned to each of a plurality of machining programs provided in the lathe 100 .
  • the correction value indicates that it is calculated by the correction value calculation unit 250 and provided to the shelf 100 .
  • the production quantity represents the cumulative number of workpieces produced by the lathe 100 .
  • the processing conditions represent environmental conditions in which raw materials are processed on the lathe 100 .
  • the processing conditions may include internal temperature and internal pressure of the chamber 110 .
  • the data management unit 260 may update the correction data 400 whenever a correction value is calculated by the correction value calculation unit 250 .
  • the lathe 100 may include a plurality of tools 140, and the correction value calculation unit 250 calculates correction values for each of the plurality of tools 140, and the data management unit 260 reflects the correction values to provide correction data. (400) can be updated.
  • the transmitter 270 may transmit the correction value to the shelf 100 .
  • the control unit 240 of the lathe 100 can calibrate the tool 140 using the correction value received from the transmitter 270, and allow the corrected tool 140 to perform a machining operation on the raw material thereafter. there is.
  • the output unit 280 may output the correction value calculated by the correction value calculation unit 250 .
  • the output unit 280 may be provided in the form of a display device to visually output a correction value.
  • the user may input user confirmation on whether or not to transmit the correction value through the input unit 220 .
  • the control unit 240 controls the overall control of the receiving unit 210, the input unit 220, the storage unit 230, the correction value calculation unit 250, the data management unit 260, the transmission unit 270, and the output unit 280. carry out In addition, the control unit 240 may compare the measurement value received through the receiver 210 with a processing reference value to determine whether a correction value is calculated. For example, when the difference between the measured value and the processing reference value exceeds a first threshold value set in advance, the controller 240 may determine that a correction value should be calculated. The correction value calculation unit 250 may calculate a correction value according to a control command of the control unit 240 .
  • control unit 240 may calculate a change pattern of the correction value for the production quantity of the workpiece with reference to the correction data 400 and determine whether to calculate the correction value by referring to the change pattern.
  • correction of the plurality of tools 140 provided in the lathe 100 may be performed under the control of the lathe control device 200 . As the number of workpieces produced by the lathe 100 increases, correction for each tool 140 may be performed. A change pattern of the correction value may be different for each tool 140 . The control unit 240 may determine whether to calculate the correction value by referring to the change pattern of the correction value for each tool 140 .
  • the control unit 240 should calculate a correction value when it is determined that the difference between the measured value for the tool and the machining reference value exceeds a first threshold value set in advance with reference to a correction value change pattern of a specific tool. It can be judged that According to the control command of the control unit 240, the correction value calculation unit 250 may calculate a correction value, and the transmission unit 270 may transmit the corresponding correction value. That is, the correction value may be calculated and provided to the lathe 100 before the difference between the measured value and the processing reference value exceeds the first threshold value.
  • the controller 240 may determine whether to calculate a correction value with reference to a correction value change pattern when the difference between the measured value and the processing reference value exceeds a preset second threshold value.
  • the second threshold may be a value smaller than the first threshold.
  • the control unit 240 may transmit a correction value calculation command to the correction value calculation unit 250 .
  • the correction value calculation unit 250 may calculate a correction value by referring to a change pattern of the correction value.
  • FIG. 7 is a flowchart illustrating a shelf control method according to an embodiment of the present invention.
  • the shelf control device 200 may calculate and transmit a correction value and update correction data 400 .
  • the receiver 210 of the shelf control device 200 may receive a measurement value of a workpiece from the shelf 100 (S510).
  • the control unit 240 may determine whether or not correction of the tool 140 is necessary by referring to the difference between the measured value and the machining reference value (S520).
  • the control unit 240 may transmit a correction value calculation command to the correction value calculation unit 250 .
  • the controller 240 may omit the subsequent operation.
  • the correction value calculating unit 250 may calculate the correction value according to the control command of the control unit 240 (S530).
  • the correction value calculator 250 may calculate a correction value based on the processing reference value. For example, the correction value calculator 250 may calculate a difference between the measured value and the processing reference value as a correction value.
  • the correction value calculation unit 250 may learn the correction data 400 up to now and calculate the correction value by referring to the learning result.
  • the correction value calculation unit 250 may calculate a correction value by machine learning the relationship between data such as the type of processing pattern for each tool, the number of processing times, the grinding depth, the cutting depth, and the processing duration time, and the measured value of the actual workpiece. If the measured value exceeds a preset threshold, the controller 240 may determine that the tool needs to be corrected. Determination of the need for correction and calculation of the correction value may be performed in real time while processing of the raw material is performed.
  • the output unit 280 may output the correction value (S540).
  • the control unit 240 may determine whether user confirmation is input through the input unit 220 in response to the correction value being output (S550). User confirmation may be a correction value transmission command.
  • the transmission unit 270 may transmit the correction values to the shelf 100 (S560). Meanwhile, when a correction value transmission command is not input or a correction value transmission hold command is input, the transmission unit 270 may not transmit the correction value.
  • the data management unit 260 may update the correction data 400 with the newly generated correction value (S570). At this time, the data management unit 260 may update the correction data 400 by referring to the measurement data received together with the measurement values.
  • FIG. 8 is a flowchart illustrating a shelf control method according to another embodiment of the present invention.
  • the shelf control device 200 may calculate and transmit a correction value and update correction data 400 .
  • the receiver 210 of the shelf control device 200 may receive a measurement value of a workpiece from the shelf 100 (S610).
  • the controller 240 may determine whether the tool 140 needs to be corrected by referring to the difference between the measured value and the machining reference value. For example, the controller 240 may determine whether to calculate a correction value referring to a correction value change pattern by referring to whether the difference between the measured value and the processing reference value exceeds the second threshold value (S620).
  • the control unit 240 may transmit a correction value calculation command to the correction value calculation unit 250 . Meanwhile, when it is determined that the tool 140 does not need to be calibrated, the controller 240 may omit the subsequent operation.
  • the correction value calculating unit 250 may calculate the correction value.
  • the correction value calculation unit 250 may calculate the correction value by referring to the change pattern of the correction value (S6300.
  • the output unit 280 may output the correction value (S640).
  • the control unit 240 may determine whether user confirmation is input through the input unit 220 in response to the correction value being output (S650). User confirmation may be a correction value transmission command.
  • the transmitter 270 may transmit the correction values to the shelf 100 (S660). Meanwhile, when a correction value transmission command is not input or a correction value transmission hold command is input, the transmission unit 270 may not transmit the correction value.
  • the data management unit 260 may update the correction data 400 with the newly generated correction value (S670). At this time, the data management unit 260 may update the correction data 400 by referring to the measurement data received together with the measurement values.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Geometry (AREA)
  • Automatic Control Of Machine Tools (AREA)
  • Numerical Control (AREA)

Abstract

The present invention relates to a lathe control apparatus and method, and to a lathe control apparatus and method for determining a correction value and whether correction of a tool included in a lathe is necessary, and providing the correction value to the lathe. A lathe control apparatus according to an embodiment of the present invention comprises: a reception unit for receiving a measurement value for a processed article from a lathe for producing the processed article; a correction value calculation unit for calculating a correction value for the position of a tool included in the lathe by referring to the measurement value; and a transmission unit for transmitting the correction value to the lathe, wherein the lathe includes a plurality of tools and the correction value calculation unit calculates a correction value for each of the plurality of tools.

Description

선반 제어 장치 및 방법Lathe control device and method
본 발명은 선반 제어 장치 및 방법에 관한 것으로서, 더욱 상세하게는 선반에 구비된 공구의 보정 필요 여부 및 보정값을 판단하고 해당 선반으로 보정값을 제공하는 선반 제어 장치 및 방법에 관한 것이다.The present invention relates to an apparatus and method for controlling a lathe, and more particularly, to a apparatus and method for controlling a lathe that determines whether a tool installed in a shelf needs to be corrected and a correction value, and provides the correction value to the corresponding lathe.
선반은 복수의 공구를 구비하여 원재료에 대한 가공 작업을 수행하여 가공물을 생산할 수 있다. 선반은 복수의 원재료에 대한 가공 작업을 순차적으로 수행하여 복수의 가공물을 생산할 수 있다.The lathe is equipped with a plurality of tools to perform a processing operation on raw materials to produce a processed product. The lathe may sequentially perform processing operations on a plurality of raw materials to produce a plurality of workpieces.
복수의 원재료에 대한 동일한 가공 작업을 수행하면서 구비된 공구 중 일부가 올바른 작업을 수행하지 못할 수 있다. 예를 들어, 연마 또는 절삭 공구의 원재료와의 지속적인 연마 또는 절삭 가공 등으로 공구의 접촉 부분이 마모되는 경우 원재료에 대하여 연마 또는 절삭된 깊이가 예측된 깊이에 비하여 작게 형성되고, 가공물의 형상이 올바르게 형성되지 못할 수 있는 것이다. 이와 같은 공구에 의한 오차를 보상하기 위하여 주기적으로 공구의 위치 또는 상태를 보정하거나 관찰하는 것이 필요하다.While performing the same machining operation on a plurality of raw materials, some of the provided tools may not perform the correct operation. For example, if the contact part of the tool is worn due to continuous grinding or cutting of the polishing or cutting tool with the raw material, the polished or cut depth of the raw material is smaller than the predicted depth, and the shape of the workpiece is correct. that may not be formed. In order to compensate for an error caused by such a tool, it is necessary to periodically correct or observe the position or state of the tool.
한편, 공구의 오차 보상이 사용자에 의해 수동으로 직접 수행되는 경우 보정값에 실제 공구의 오차 성분이 반영되지 못하거나 사용자에 의한 자의적인 성분이 반영될 수 있다.On the other hand, when tool error compensation is manually performed by a user, an error component of an actual tool may not be reflected in the correction value or an arbitrary component may be reflected by the user.
따라서, 적절한 시점에 적절한 보정값이 선반에 제공될 수 있도록 하는 발명의 등장이 요구된다.Therefore, there is a need for an invention capable of providing an appropriate correction value to a shelf at an appropriate time.
본 발명이 해결하고자 하는 과제는 선반에 구비된 공구의 보정 필요 여부 및 보정값을 판단하고 해당 선반으로 보정값을 제공하는 선반 제어 장치 및 방법을 제공하는 것이다.An object of the present invention is to provide a lathe control apparatus and method for determining whether a tool installed in a lathe needs correction and a correction value, and providing the correction value to the lathe.
본 발명의 과제들은 이상에서 언급한 과제로 제한되지 않으며, 언급되지 않은 또 다른 목적들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.The tasks of the present invention are not limited to the tasks mentioned above, and other objects not mentioned will be clearly understood by those skilled in the art from the description below.
상기 과제를 달성하기 위하여, 본 발명의 실시예에 따른 선반 제어 장치는 가공물을 생산하는 선반으로부터 가공물에 대한 측정값을 수신하는 수신부와, 상기 측정값을 참조하여 상기 선반에 구비된 공구의 위치에 대한 보정값을 산출하는 보정값 산출부, 및 상기 보정값을 상기 선반으로 송신하는 송신부를 포함하되, 상기 선반은 복수의 공구를 포함하고, 상기 보정값 산출부는 상기 복수의 공구별로 보정값을 산출한다.In order to achieve the above object, a lathe control device according to an embodiment of the present invention includes a receiving unit for receiving a measurement value for a workpiece from a lathe producing a workpiece, and a location of a tool provided in the lathe with reference to the measurement value. a correction value calculation unit that calculates a correction value for , and a transmission unit that transmits the correction value to the lathe, wherein the lathe includes a plurality of tools, and the correction value calculation unit calculates a correction value for each of the plurality of tools. do.
상기 선반 제어 장치는 상기 측정값을 가공 기준값과 비교하여 보정값의 산출 여부를 판단하는 제어부를 더 포함한다.The lathe control device further includes a control unit that compares the measured value with a processing reference value to determine whether to calculate a correction value.
상기 가공 기준값은 가공물의 측정 포인트에 대한 목적이 되는 가공값을 포함한다.The processing reference value includes a target processing value for a measurement point of a workpiece.
상기 선반 제어 장치는 상기 보정값을 출력하는 출력부를 더 포함한다.The shelf control device further includes an output unit outputting the correction value.
상기 선반 제어 장치는 상기 보정값이 출력된 것에 대한 응답으로 상기 보정값의 송신 여부에 대한 사용자 확인을 입력받는 입력부를 더 포함한다.The shelf control device further includes an input unit for receiving a user confirmation of whether the correction value is transmitted in response to the correction value being output.
상기 선반 제어 장치는 상기 선반에 대하여 산출된 보정값의 이력이 포함된 보정 데이터에 상기 보정값 산출부에 의해 산출된 보정값을 반영하는 데이터 관리부를 더 포함한다.The shelf control device further includes a data management unit that reflects the correction values calculated by the correction value calculation unit in correction data including a history of correction values calculated for the shelf.
상기 보정 데이터는 측정 시간, 선반 식별 정보, 가공 프로그램 식별 정보, 보정값, 생산 수량 및 가공 조건 중 적어도 하나를 포함한다.The correction data includes at least one of measurement time, shelf identification information, processing program identification information, correction values, production quantities, and processing conditions.
상기 선반 제어 장치는 상기 보정 데이터를 참조하여 가공물의 생산 수량에 대한 보정값의 변화 패턴을 산출하고, 상기 변화 패턴을 참조하여 보정값의 산출 여부를 판단하는 제어부를 더 포함한다.The lathe control device further includes a control unit that calculates a change pattern of a correction value for the production quantity of the workpiece with reference to the correction data, and determines whether to calculate the correction value by referring to the change pattern.
상기 보정값 산출부는 상기 보정 데이터를 학습하고, 학습 결과를 참조하여 보정값을 산출한다.The correction value calculator learns the correction data and calculates a correction value with reference to the learning result.
본 발명의 실시예에 따른 선반 제어 방법은 가공물을 생산하는 선반으로부터 가공물에 대한 측정값을 수신하는 단계와, 상기 측정값을 참조하여 상기 선반에 구비된 공구의 위치에 대한 보정값을 산출하는 단계, 및 상기 보정값을 상기 선반으로 송신하는 단계를 포함하되, 상기 선반은 복수의 공구를 포함하고, 상기 보정값을 산출하는 단계는 상기 복수의 공구별로 보정값을 산출하는 단계를 포함한다.A lathe control method according to an embodiment of the present invention includes the steps of receiving a measurement value for a workpiece from a lathe producing the workpiece, and calculating a correction value for the position of a tool provided on the lathe with reference to the measurement value. , and transmitting the correction values to the lathe, wherein the lathe includes a plurality of tools, and calculating the correction values includes calculating correction values for each of the plurality of tools.
상기 선반 제어 방법은 상기 측정값을 가공 기준값과 비교하여 보정값의 산출 여부를 판단하는 단계를 더 포함한다.The lathe control method may further include determining whether to calculate a correction value by comparing the measured value with a processing reference value.
상기 가공 기준값은 가공물의 측정 포인트에 대한 목적이 되는 가공값을 포함한다.The processing reference value includes a target processing value for a measurement point of a workpiece.
상기 선반 제어 방법은 상기 보정값을 출력하는 단계를 더 포함한다.The shelf control method further includes outputting the correction value.
상기 선반 제어 방법은 상기 보정값이 출력된 것에 대한 응답으로 상기 보정값의 송신 여부에 대한 사용자 확인을 입력받는 단계를 더 포함한다.The shelf control method further includes receiving a user confirmation of whether or not the correction value is transmitted in response to the output of the correction value.
상기 선반 제어 방법은 상기 선반에 대하여 산출된 보정값의 이력이 포함된 보정 데이터에 상기 보정값 산출부에 의해 산출된 보정값을 반영하는 단계를 더 포함한다.The shelf control method may further include reflecting the correction values calculated by the correction value calculator in correction data including a history of correction values calculated for the shelf.
상기 보정 데이터는 측정 시간, 선반 식별 정보, 가공 프로그램 식별 정보, 보정값, 생산 수량 및 가공 조건 중 적어도 하나를 포함한다.The correction data includes at least one of measurement time, shelf identification information, processing program identification information, correction values, production quantities, and processing conditions.
상기 선반 제어 방법은 상기 보정 데이터를 참조하여 가공물의 생산 수량에 대한 보정값의 변화 패턴을 산출하고, 상기 변화 패턴을 참조하여 보정값의 산출 여부를 판단하는 단계를 더 포함한다.The lathe control method further includes calculating a change pattern of a correction value for the production quantity of the workpiece with reference to the correction data, and determining whether to calculate the correction value by referring to the change pattern.
상기 보정값을 산출하는 단계는 상기 보정 데이터를 학습하고, 학습 결과를 참조하여 보정값을 산출하는 단계를 포함한다.Calculating the correction value includes learning the correction data and calculating the correction value with reference to the learning result.
기타 실시예들의 구체적인 사항들은 상세한 설명 및 도면들에 포함되어 있다.Details of other embodiments are included in the detailed description and drawings.
상기한 바와 같은 본 발명의 선반 제어 장치 및 방법에 따르면 선반에 구비된 공구의 보정 필요 여부 및 보정값을 판단하고 해당 선반으로 보정값을 제공하기 때문에 적절한 시점에 적절한 보정값이 선반에 제공되는 장점이 있다.As described above, according to the lathe control apparatus and method of the present invention, it is advantageous that an appropriate correction value is provided to the lathe at an appropriate time because it determines whether a tool installed in the lathe needs correction and a correction value, and provides the correction value to the lathe. there is
본 발명의 효과들은 이상에서 언급한 효과들로 제한되지 않으며, 언급되지 않은 또 다른 효과들은 청구범위의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.The effects of the present invention are not limited to the effects mentioned above, and other effects not mentioned will be clearly understood by those skilled in the art from the description of the claims.
도 1은 선반 제어 시스템을 나타낸 도면이다.1 is a diagram showing a shelf control system.
도 2는 선반과 선반 제어 장치 간의 통신을 설명하기 위한 도면이다.2 is a diagram for explaining communication between a shelf and a shelf control device.
도 3은 본 발명의 실시예에 다른 선반 제어 장치의 블록도이다.3 is a block diagram of a shelf control device according to an embodiment of the present invention.
도 4는 가공 기준값 테이블을 나타낸 도면이다.4 is a view showing a processing reference value table.
도 5는 보정 데이터를 나타낸 도면이다.5 is a diagram showing correction data.
도 6은 가공물의 생산 수량에 대한 보정값의 변화 패턴을 나타낸 도면이다.6 is a diagram showing a change pattern of a correction value for the production quantity of a workpiece.
도 7은 본 발명의 실시예에 따른 선반 제어 방법을 나타낸 흐름도이다.7 is a flowchart illustrating a shelf control method according to an embodiment of the present invention.
도 8은 본 발명의 다른 실시예에 따른 선반 제어 방법을 나타낸 흐름도이다.8 is a flowchart illustrating a shelf control method according to another embodiment of the present invention.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명한다. 본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시 예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 게시되는 실시 예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시 예들은 본 발명의 게시가 완전하도록 하고, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. Advantages and features of the present invention, and methods for achieving them, will become clear with reference to the embodiments described below in detail in conjunction with the accompanying drawings. However, the present invention is not limited to the embodiments disclosed below and may be implemented in various different forms, only the present embodiments make the disclosure of the present invention complete, and the common knowledge in the art to which the present invention belongs It is provided to fully inform the holder of the scope of the invention, and the present invention is only defined by the scope of the claims. Like reference numbers designate like elements throughout the specification.
다른 정의가 없다면, 본 명세서에서 사용되는 모든 용어(기술 및 과학적 용어를 포함)는 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 공통적으로 이해될 수 있는 의미로 사용될 수 있을 것이다. 또 일반적으로 사용되는 사전에 정의되어 있는 용어들은 명백하게 특별히 정의되어 있지 않는 한 이상적으로 또는 과도하게 해석되지 않는다.Unless otherwise defined, all terms (including technical and scientific terms) used in this specification may be used in a meaning commonly understood by those of ordinary skill in the art to which the present invention belongs. In addition, terms defined in commonly used dictionaries are not interpreted ideally or excessively unless explicitly specifically defined.
도 1은 선반 제어 시스템을 나타낸 도면이다.1 is a diagram showing a shelf control system.
도 1을 참조하면, 선반 제어 시스템(10)은 선반(100) 및 선반 제어 장치(200)를 포함하여 구성된다.Referring to FIG. 1 , a shelf control system 10 includes a shelf 100 and a shelf control device 200 .
선반(100)은 원재료를 가공하여 가공물을 생산할 수 있다. 본 발명에서 선반(100)은 자동 선반일 수 있다. 이에, 선반(100)은 복수의 공구를 구비할 수 있으며, 복수의 공구를 이용하여 하나의 원재료에 대한 다양한 가공을 수행할 수 있다.The lathe 100 may process raw materials to produce processed products. In the present invention, the lathe 100 may be an automatic lathe. Accordingly, the lathe 100 may include a plurality of tools, and may perform various processes on one raw material using the plurality of tools.
선반 제어 시스템(10)은 복수의 선반(100)을 포함할 수 있다. 복수의 선반(100) 각각은 동일한 원재료를 이용하여 동일한 가공물을 생산할 수 있고, 서로 다른 원재료를 이용하여 서로 다른 가공물을 생산할 수도 있다.The shelf control system 10 may include a plurality of shelves 100 . Each of the plurality of lathes 100 may produce the same processed product using the same raw material, or may produce different processed products using different raw materials.
선반(100)은 피딩되는 원재료를 가공하여 복수의 가공물을 생산할 수 있다. 가공물의 생산은 선반(100)에 구비된 제어부(170)(도 2 참조)의 제어에 의해 반복적으로 수행될 수 있다. 가공물의 생산이 진행되면서 공구의 위치가 변경되거나 공구의 단부, 팁 또는 원재료와의 접촉 부분이 마모되면서 가공물의 가공 품질이 저하될 수 있다. 예를 들어, 원재료를 가공하여 1mm 깊이의 홈을 형성하는 공구의 위치가 변경된 경우 1mm보다 작은 깊이의 홈이 형성될 수 있는 것이다. 이와 같은 가공 오차를 보상하기 위하여 가공물의 생산이 진행되면서 공구의 위치를 조절하는 보정이 수행되는 것이 바람직하다.The lathe 100 may produce a plurality of workpieces by processing raw materials to be fed. The production of the workpiece may be repeatedly performed under the control of the controller 170 (see FIG. 2) provided in the lathe 100. As the production of the workpiece progresses, the position of the tool is changed, or the end, tip, or part of the tool in contact with the raw material is worn, and the processing quality of the workpiece may be degraded. For example, when the position of a tool for processing a raw material to form a 1 mm deep groove is changed, a groove with a depth smaller than 1 mm may be formed. In order to compensate for such a machining error, it is preferable to perform correction by adjusting the position of the tool while the production of the workpiece is in progress.
선반 제어 장치(200)는 선반(100)을 제어할 수 있다. 구체적으로, 선반 제어 장치(200)는 각 선반(100)에 구비된 공구의 보정을 제어할 수 있다. 선반 제어 장치(200)는 각 선반(100)에 구비된 복수의 공구에 의한 가공 성능을 참조하여 각 공구의 보정값을 산출하고, 해당 보정값을 선반(100)으로 송신할 수 있다. 이에, 선반(100)은 수신된 보정값으로 공구를 보정하여 가공물을 생산할 수 있다.The shelf control device 200 may control the shelf 100 . Specifically, the shelf control device 200 may control correction of tools provided in each shelf 100 . The shelf control device 200 may calculate a correction value of each tool by referring to machining performance of a plurality of tools provided in each shelf 100 and transmit the correction value to the shelf 100 . Accordingly, the lathe 100 may produce a workpiece by calibrating the tool with the received correction value.
도 2는 선반과 선반 제어 장치 간의 통신을 설명하기 위한 도면이다.2 is a diagram for explaining communication between a shelf and a shelf control device.
도 2를 참조하면, 선반 제어 장치(200)는 선반(100)과 통신을 수행하여 선반(100)을 제어할 수 있다.Referring to FIG. 2 , the shelf control device 200 may control the shelf 100 by communicating with the shelf 100 .
선반(100)은 챔버(110), 모터(120), 스핀들(130), 공구(140), 구동부(150), 측정부(160) 및 제어부(170)를 포함할 수 있다. 챔버(110)는 모터(120), 공구(140), 구동부(150), 측정부(160) 및 제어부(170)를 수용할 수 있다. 또는, 본 발명의 몇몇 실시예에 따르면 모터(120), 공구(140), 구동부(150), 측정부(160) 및 제어부(170) 중 적어도 하나는 챔버(110)의 외부에 구비될 수도 있다.The lathe 100 may include a chamber 110, a motor 120, a spindle 130, a tool 140, a driving unit 150, a measuring unit 160, and a control unit 170. The chamber 110 may accommodate a motor 120 , a tool 140 , a driving unit 150 , a measuring unit 160 and a control unit 170 . Alternatively, according to some embodiments of the present invention, at least one of the motor 120, the tool 140, the driving unit 150, the measuring unit 160, and the control unit 170 may be provided outside the chamber 110. .
모터(120)는 스핀들(130)을 회전시킬 수 있다. 스핀들(130)의 말단에는 원재료가 구비될 수 있다. 모터(120)의 회전력에 의해 원재료가 회전할 수 있다.The motor 120 may rotate the spindle 130 . A raw material may be provided at the end of the spindle 130 . The raw material may be rotated by the rotational force of the motor 120 .
공구(140)는 원재료를 가공할 수 있다. 예를 들어, 공구(140)는 원재료에 대한 연마 작업 또는 절삭 작업을 수행할 수 있다. 선반(100)은 복수의 공구(140)를 구비할 수 있으며, 복수의 공구(140)는 개별적인 작업을 수행할 수 있다.The tool 140 can machine raw materials. For example, the tool 140 may perform a grinding or cutting operation on raw materials. The lathe 100 may include a plurality of tools 140, and the plurality of tools 140 may perform individual tasks.
구동부(150)는 공구(140)를 이동시키거나 자세를 조절할 수 있다. 공구(140)는 구동부(150)에 의해 원재료의 방향 또는 반대 방향으로 이동하거나 원재료에 대한 자세가 조절될 수 있다.The driving unit 150 may move the tool 140 or adjust its posture. The tool 140 may be moved in the direction or the opposite direction of the raw material by the driving unit 150, or the position of the tool 140 relative to the raw material may be adjusted.
측정부(160)는 가공물을 측정하여 측정값을 생성할 수 있다. 예를 들어, 측정부(160)는 가공물의 길이, 폭, 홈의 깊이, 돌출부의 높이, 내경 및 외경 등을 측정하여 측정값을 생성할 수 있다. 선반(100)은 복수의 측정부(160)를 구비할 수 있으며, 각 측정부(160)는 개별적인 측정 작업을 수행할 수 있다. 또한, 도시되어 있지는 않으나 측정부(160)의 위치 및 자세를 조절하기 위한 구동부(미도시)가 구비될 수 있다. 측정부(160)는 구동부(미도시)에 의해 위치 및 자세를 조절하면서 가공물에 대한 측정 작업을 수행할 수 있다.The measurement unit 160 may generate a measurement value by measuring the workpiece. For example, the measurement unit 160 may generate measurement values by measuring the length, width, depth of a groove, height of a protrusion, inner diameter, and outer diameter of a workpiece. The shelf 100 may include a plurality of measurement units 160, and each measurement unit 160 may perform an individual measurement task. In addition, although not shown, a driving unit (not shown) for adjusting the position and attitude of the measuring unit 160 may be provided. The measurement unit 160 may perform a measurement operation on the workpiece while adjusting the position and attitude by a driving unit (not shown).
제어부(170)는 모터(120), 구동부(150) 및 측정부(160)에 대한 제어를 수행할 수 있다. 예를 들어, 제어부(170)는 모터(120)의 회전 여부 및 회전 속도를 제어할 수 있다. 또한, 제어부(170)는 구동부(150)를 제어하여 공구(140)의 위치 및 자세가 조절되도록 할 수도 있다. 특히, 제어부(170)는 선반 제어 장치(200)로부터 수신된 보정값에 따라 구동부(150)를 제어하여 공구(140)의 위치 및 자세가 조절되도록 할 수 있다.The control unit 170 may control the motor 120 , the driving unit 150 and the measuring unit 160 . For example, the controller 170 may control whether or not the motor 120 rotates and the rotation speed. In addition, the controller 170 may control the driving unit 150 to adjust the position and attitude of the tool 140 . In particular, the control unit 170 may control the driving unit 150 according to the correction value received from the lathe control device 200 so that the position and attitude of the tool 140 are adjusted.
제어부(170)는 복수의 가공 프로그램 중 특정 가공 프로그램으로 원재료에 대한 가공이 수행되도록 할 수 있다. 가공 프로그램은 가공물을 생산하기 위한 모터(120) 및 구동부(150)의 제어 명령을 포함할 수 있다. 특정 가공 프로그램에 의해 모터(120) 및 구동부(150)가 제어되는 경우 특정 가공물이 생산될 수 있는 것이다. 가공물별로 가공 프로그램이 구비될 수 있는 것으로서, 제어부(170)는 특정 가공물의 생산을 위하여 대응하는 가공 프로그램으로 모터(120) 및 구동부(150)를 제어할 수 있다.The controller 170 may allow processing of raw materials to be performed with a specific processing program among a plurality of processing programs. The machining program may include control commands for the motor 120 and the driving unit 150 to produce a workpiece. When the motor 120 and the driving unit 150 are controlled by a specific machining program, a specific workpiece can be produced. A machining program may be provided for each workpiece, and the control unit 170 may control the motor 120 and the drive unit 150 with a corresponding machining program to produce a specific workpiece.
선반 제어 장치(200)는 선반(100)과 통신을 수행하여 선반(100)을 제어할 수 있다. 선반 제어 장치(200)는 측정부(160)로부터 측정값을 수신하고, 제어부(170)로 보정값을 송신할 수 있다. 제어부(170)는 선반 제어 장치(200)로부터 수신된 보정값에 따라 공구(140)의 위치 및 자세를 조절할 수 있다.The shelf control device 200 may control the shelf 100 by communicating with the shelf 100 . The shelf control device 200 may receive a measurement value from the measuring unit 160 and transmit a correction value to the controller 170 . The controller 170 may adjust the position and attitude of the tool 140 according to the correction values received from the lathe control device 200 .
한편, 도 2는 선반 제어 장치(200)가 측정부(160)로부터 측정값을 수신하는 것을 도시하고 있으나, 이는 예시적인 것으로서 선반 제어 장치(200)는 제어부(170)로부터 측정값을 수신할 수도 있다. 이를 위하여, 제어부(170)는 측정부(160)에 의해 측정된 측정값을 수신하고, 이를 선반 제어 장치(200)로 전달할 수 있다. 이하, 선반 제어 장치(200)가 측정부(160)로부터 측정값을 수신하는 것을 위주로 설명하기로 한다.Meanwhile, although FIG. 2 shows that the shelf control device 200 receives the measurement value from the measurement unit 160, this is exemplary and the shelf control device 200 may also receive the measurement value from the control unit 170. there is. To this end, the controller 170 may receive a measurement value measured by the measurement unit 160 and transmit it to the shelf control device 200 . Hereinafter, the shelf control device 200 will mainly describe the reception of the measurement value from the measuring unit 160 .
도 3은 본 발명의 실시예에 다른 선반 제어 장치의 블록도이고, 도 4는 가공 기준값 테이블을 나타낸 도면이고, 도 5는 보정 데이터를 나타낸 도면이며, 도 6은 가공물의 생산 수량에 대한 보정값의 변화 패턴을 나타낸 도면이다.3 is a block diagram of a lathe control device according to an embodiment of the present invention, FIG. 4 is a diagram showing a processing reference value table, FIG. 5 is a diagram showing correction data, and FIG. 6 is a correction value for the production quantity of a workpiece. It is a diagram showing the change pattern of .
도 3을 참조하면, 본 발명의 실시예에 따른 선반 제어 장치(200)는 수신부(210), 입력부(220), 저장부(230), 제어부(240), 보정값 산출부(250), 데이터 관리부(260), 송신부(270) 및 출력부(280)를 포함하여 구성된다.Referring to FIG. 3 , the shelf control device 200 according to an embodiment of the present invention includes a receiver 210, an input unit 220, a storage unit 230, a controller 240, a correction value calculator 250, data It is configured to include a management unit 260, a transmission unit 270 and an output unit 280.
수신부(210)는 가공물을 생산하는 선반(100)으로부터 가공물에 대한 측정값을 수신할 수 있다. 원재료에 대한 가공이 완료되어 가공물이 생산된 경우 측정부(160)는 가공물을 측정하여 측정값을 생산하고, 해당 측정값을 송신할 수 있다. 측정부(160)는 가공물이 생산될 때마다 측정을 수행하여 측정값을 송신할 수 있고, 선반 제어 장치(200)의 요청이 있을 때마다 측정을 수행하여 측정값을 송신할 수도 있다.The receiving unit 210 may receive a measurement value for a workpiece from the lathe 100 producing the workpiece. When processing of the raw material is completed and the processed product is produced, the measurement unit 160 may measure the processed product to generate a measured value and transmit the measured value. The measuring unit 160 may measure and transmit a measured value whenever a workpiece is produced, or may perform a measurement and transmit a measured value whenever there is a request from the shelf control device 200 .
측정값과는 별개로 수신부(210)는 측정 시간, 선반 식별 정보, 가공 프로그램 식별 정보, 생산 수량 및 가공 조건을 수신할 수 있다. 이하, 측정 시간, 선반 식별 정보, 가공 프로그램 식별 정보, 생산 수량 및 가공 조건을 측정 데이터라 한다. 측정 데이터는 측정값과 동시에 수신되거나 일정 시간 차를 두고 수신될 수 있다. 예를 들어, 하나의 통신 패킷에 측정값 및 측정 데이터가 포함되어 수신부(210)를 통해 수신되거나 서로 다른 통신 패킷에 측정값 및 측정 데이터가 각각 포함되어 수신부(210)를 통해 수신될 수 있는 것이다. 측정 데이터는 후술하는 보정 데이터의 생성에 이용될 수 있다.Apart from the measured value, the receiving unit 210 may receive the measurement time, shelf identification information, processing program identification information, production quantity, and processing conditions. Hereinafter, measurement time, shelf identification information, processing program identification information, production quantity, and processing conditions are referred to as measurement data. The measurement data may be received simultaneously with the measurement value or may be received with a predetermined time difference. For example, measurement values and measurement data may be included in one communication packet and received through the receiver 210, or measurement values and measurement data may be included in different communication packets and received through the receiver 210, respectively. . The measurement data may be used to generate correction data to be described later.
이상은 측정 시간, 선반 식별 정보, 가공 프로그램 식별 정보, 생산 수량 및 가공 조건을 포함하여 측정 데이터가 구성되는 것을 설명하였으나, 원재료의 초기 온도, 가공 시점의 외기 온도, 선반(100)의 온도 및 진동 등이 측정 데이터에 포함될 수도 있다. 이하, 측정 시간, 선반 식별 정보, 가공 프로그램 식별 정보, 생산 수량 및 가공 조건을 포함하는 측정 데이터를 위주로 설명하기로 한다.The above has described the composition of measurement data including measurement time, shelf identification information, processing program identification information, production quantity, and processing conditions, but the initial temperature of raw materials, outside temperature at the time of processing, temperature and vibration of the shelf 100 etc. may be included in the measurement data. Hereinafter, measurement data including measurement time, shelf identification information, processing program identification information, production quantity, and processing conditions will be mainly described.
입력부(220)는 사용자 명령을 입력받을 수 있다. 사용자 명령은 보정값의 송신 여부에 대한 사용자 확인을 포함할 수 있다. 후술하는 바와 같이, 보정값이 산출되면 사용자는 산출된 보정값의 송신 여부를 결정할 수 있다. 사용자는 입력부(220)를 통하여 보정값의 송신 명령을 입력하거나 송신 보류 명령을 입력할 수 있다.The input unit 220 may receive a user command. The user command may include user confirmation of whether to transmit the correction value. As will be described later, when a correction value is calculated, the user can determine whether or not to transmit the calculated correction value. The user may input a correction value transmission command or a transmission hold command through the input unit 220 .
사용자 명령은 가공 기준값의 입력 명령일 수 있다. 가공 기준값은 가공물의 측정 포인트에 대한 목적이 되는 가공값을 나타낸 것일 수 있다. 예를 들어, 가공물의 특정 측정 포인트가 가공 기준값으로 가공된 경우 최적의 가공이 수행된 것으로 판단될 수 있는 것이다. 가공 기준값은 선반(100)에 구비된 복수의 공구(140) 각각에 대하여 설정될 수 있다.The user command may be an input command of a processing reference value. The processing reference value may represent a target processing value for a measurement point of a workpiece. For example, when a specific measurement point of a workpiece is processed with a machining reference value, it can be determined that optimal machining has been performed. A machining reference value may be set for each of the plurality of tools 140 provided on the lathe 100 .
측정 포인트는 가공물에서 측정을 필요로 하는 특정 지점을 나타낸 것일 수 있다. 예를 들어, 측정 포인트는 가공물의 길이에 대응하는 부분, 폭에 대응하는 부분, 홈, 돌출부, 홀 또는 외경에 대응하는 부분일 수 있다. 측정 포인트별로 특정 공구에 의한 가공 작업이 수행될 수 있다.The measuring point may indicate a specific point on the workpiece that needs to be measured. For example, the measuring point may be a part corresponding to the length of the workpiece, a part corresponding to the width, a groove, a protrusion, a hole, or a part corresponding to the outer diameter of the workpiece. A machining operation may be performed by a specific tool for each measuring point.
사용자는 입력부(220)를 통하여 측정 포인트별 해당 공구에 의한 가공 작업의 목표 정도인 가공 기준값을 입력할 수 있다. 입력된 가공 기준값은 도 4에 도시된 바와 같이 가공 기준값 테이블(300)의 형태로 구성될 수 있다.The user may input a machining reference value that is a target degree of a machining operation by a corresponding tool for each measuring point through the input unit 220 . The input processing reference value may be configured in the form of a processing reference value table 300 as shown in FIG. 4 .
저장부(230)는 가공 기준값 테이블(300) 및 후술하는 보정 데이터(400)(도 5 참조)를 임시로 또는 영구적으로 저장할 수 있다.The storage unit 230 may temporarily or permanently store the processing reference value table 300 and correction data 400 (see FIG. 5 ) to be described later.
보정값 산출부(250)는 수신부(210)를 통하여 수신된 측정값을 참조하여 선반(100)에 구비된 공구(140)의 위치에 대한 보정값을 산출할 수 있다. 보정값 산출부(250)는 가공 기준값을 기초로 보정값을 산출할 수 있다. 예를 들어, 보정값 산출부(250)는 측정값과 가공 기준값 간의 차이를 보정값으로 산출할 수 있다.The correction value calculator 250 may calculate a correction value for the position of the tool 140 provided on the lathe 100 by referring to the measurement value received through the receiver 210 . The correction value calculator 250 may calculate a correction value based on the processing reference value. For example, the correction value calculator 250 may calculate a difference between the measured value and the processing reference value as a correction value.
또는, 보정값 산출부(250)는 보정 데이터(400)를 학습하고, 학습 결과를 참조하여 보정값을 산출할 수도 있다. 즉, 보정값 산출부(250)는 특정 공구에 대하여 누적된 보정 데이터(400)를 참조하여 해당 공구에 적용할 최적의 보정값을 산출할 수 있는 것이다.Alternatively, the correction value calculating unit 250 may learn the correction data 400 and calculate the correction value by referring to the learning result. That is, the correction value calculation unit 250 may calculate an optimal correction value to be applied to the tool by referring to the correction data 400 accumulated for a specific tool.
데이터 관리부(260)는 보정 데이터(400)를 관리하는 역할을 수행한다. 보정 데이터(400)는 선반(100)에 대하여 산출된 보정값의 이력을 포함할 수 있다. 데이터 관리부(260)는 보정값 산출부(250)에 의해 산출된 보정값을 보정 데이터(400)에 반영할 수 있다. 즉, 데이터 관리부(260)는 보정값 산출부(250)에 의해 산출된 보정값을 보정 데이터(400)에 반영하여 보정 데이터(400)를 갱신할 수 있는 것이다.The data manager 260 serves to manage the correction data 400 . The correction data 400 may include a history of correction values calculated for the shelf 100 . The data manager 260 may reflect the correction value calculated by the correction value calculation unit 250 to the correction data 400 . That is, the data management unit 260 may update the correction data 400 by reflecting the correction value calculated by the correction value calculation unit 250 to the correction data 400 .
도 5를 참조하면, 보정 데이터(400)는 측정 시간, 선반 식별 정보, 가공 프로그램 식별 정보, 보정값, 생산 수량 및 가공 조건 중 적어도 하나를 포함할 수 있다.Referring to FIG. 5 , the correction data 400 may include at least one of measurement time, shelf identification information, processing program identification information, correction values, production quantity, and processing conditions.
측정 시간은 측정부(160)에 의해 가공물에 대한 측정이 수행된 시간을 나타낸다. 선반 식별 정보는 선반 제어 시스템(10)에 구비된 복수의 선반(100) 각각에 부여된 고유 정보를 나타낸다. 가공 프로그램 식별 정보는 선반(100)에 구비된 복수의 가공 프로그램 각각에 부여된 고유 정보를 나타낸다. 보정값은 보정값 산출부(250)에 의해 산출되어 선반(100)으로 제공된 것을 나타낸다. 생산 수량은 선반(100)에 의하여 생산된 가공물의 누적 개수를 나타낸다. 가공 조건은 선반(100)에서 원재료에 대한 가공이 수행되는 환경 조건을 나타낸다. 예를 들어, 챔버(110)의 내부 온도 및 내부 압력 등이 가공 조건에 포함될 수 있다.The measuring time indicates the time when the measuring unit 160 measures the workpiece. The shelf identification information indicates unique information assigned to each of the plurality of shelves 100 provided in the shelf control system 10 . The machining program identification information indicates unique information assigned to each of a plurality of machining programs provided in the lathe 100 . The correction value indicates that it is calculated by the correction value calculation unit 250 and provided to the shelf 100 . The production quantity represents the cumulative number of workpieces produced by the lathe 100 . The processing conditions represent environmental conditions in which raw materials are processed on the lathe 100 . For example, the processing conditions may include internal temperature and internal pressure of the chamber 110 .
다시 도 3을 설명하면, 데이터 관리부(260)는 보정값 산출부(250)에 의해 보정값이 산출될 때마다 보정 데이터(400)를 갱신할 수 있다. 또한, 선반(100)은 복수의 공구(140)를 포함할 수 있는데 보정값 산출부(250)는 복수의 공구(140)별로 보정값을 산출하고, 데이터 관리부(260)는 이를 반영하여 보정 데이터(400)를 갱신할 수 있다.Referring back to FIG. 3 , the data management unit 260 may update the correction data 400 whenever a correction value is calculated by the correction value calculation unit 250 . In addition, the lathe 100 may include a plurality of tools 140, and the correction value calculation unit 250 calculates correction values for each of the plurality of tools 140, and the data management unit 260 reflects the correction values to provide correction data. (400) can be updated.
송신부(270)는 보정값을 선반(100)으로 송신할 수 있다. 선반(100)의 제어부(240)는 송신부(270)로부터 수신된 보정값을 이용하여 공구(140)를 보정하고, 이후의 원재료에 대해서는 보정된 공구(140)에 의한 가공 작업이 수행되도록 할 수 있다.The transmitter 270 may transmit the correction value to the shelf 100 . The control unit 240 of the lathe 100 can calibrate the tool 140 using the correction value received from the transmitter 270, and allow the corrected tool 140 to perform a machining operation on the raw material thereafter. there is.
출력부(280)는 보정값 산출부(250)에 의해 산출된 보정값을 출력할 수 있다. 예를 들어, 출력부(280)는 디스플레이 장치의 형태로 제공되어 보정값을 시각적으로 출력할 수 있다. 사용자는 출력부(280)를 통하여 보정값이 출력된 것에 대한 응답으로 보정값의 송신 여부에 대한 사용자 확인을 입력부(220)로 입력할 수 있다.The output unit 280 may output the correction value calculated by the correction value calculation unit 250 . For example, the output unit 280 may be provided in the form of a display device to visually output a correction value. In response to the correction value being output through the output unit 280 , the user may input user confirmation on whether or not to transmit the correction value through the input unit 220 .
제어부(240)는 수신부(210), 입력부(220), 저장부(230), 보정값 산출부(250), 데이터 관리부(260), 송신부(270) 및 출력부(280)에 대한 전반적인 제어를 수행한다. 또한, 제어부(240)는 수신부(210)를 통하여 수신된 측정값을 가공 기준값과 비교하여 보정값의 산출 여부를 판단할 수 있다. 예를 들어, 측정값과 가공 기준값 간의 차이가 사전에 설정된 제1 임계값을 초과하는 경우 제어부(240)는 보정값을 산출하여야 하는 것으로 판단할 수 있다. 보정값 산출부(250)는 제어부(240)의 제어 명령에 따라 보정값을 산출할 수 있다.The control unit 240 controls the overall control of the receiving unit 210, the input unit 220, the storage unit 230, the correction value calculation unit 250, the data management unit 260, the transmission unit 270, and the output unit 280. carry out In addition, the control unit 240 may compare the measurement value received through the receiver 210 with a processing reference value to determine whether a correction value is calculated. For example, when the difference between the measured value and the processing reference value exceeds a first threshold value set in advance, the controller 240 may determine that a correction value should be calculated. The correction value calculation unit 250 may calculate a correction value according to a control command of the control unit 240 .
또한, 제어부(240)는 보정 데이터(400)를 참조하여 가공물의 생산 수량에 대한 보정값의 변화 패턴을 산출하고, 변화 패턴을 참조하여 보정값의 산출 여부를 판단할 수도 있다. 도 6을 참조하여 설명하면, 선반 제어 장치(200)의 제어에 의해 선반(100)에 구비된 복수의 공구(140)에 대한 보정이 수행될 수 있다. 선반(100)에 의해 생산된 가공물의 생산 수량이 증가하면서 각 공구(140)에 대한 보정이 수행될 수 있다. 공구(140)별로 보정값의 변화 패턴의 상이할 수 있다. 제어부(240)는 이러한 공구(140)별 보정값의 변화 패턴을 참조하여 보정값의 산출 여부를 판단할 수 있다. 예를 들어, 제어부(240)는 특정 공구의 보정값 변화 패턴을 참조하여 해당 공구에 대한 측정값과 가공 기준값 간의 차이가 사전에 설정된 제1 임계값을 초과할 것으로 판단되는 경우 보정값이 산출되어야 하는 것으로 판단할 수 있다. 제어부(240)의 제어 명령에 따라 보정값 산출부(250)는 보정값을 산출하고, 송신부(270)는 해당 보정값을 송신할 수 있다. 즉, 측정값과 가공 기준값 간의 차이가 제1 임계값을 초과하기 전에 보정값이 산출되어 선반(100)으로 제공될 수 있는 것이다.In addition, the control unit 240 may calculate a change pattern of the correction value for the production quantity of the workpiece with reference to the correction data 400 and determine whether to calculate the correction value by referring to the change pattern. Referring to FIG. 6 , correction of the plurality of tools 140 provided in the lathe 100 may be performed under the control of the lathe control device 200 . As the number of workpieces produced by the lathe 100 increases, correction for each tool 140 may be performed. A change pattern of the correction value may be different for each tool 140 . The control unit 240 may determine whether to calculate the correction value by referring to the change pattern of the correction value for each tool 140 . For example, the control unit 240 should calculate a correction value when it is determined that the difference between the measured value for the tool and the machining reference value exceeds a first threshold value set in advance with reference to a correction value change pattern of a specific tool. It can be judged that According to the control command of the control unit 240, the correction value calculation unit 250 may calculate a correction value, and the transmission unit 270 may transmit the corresponding correction value. That is, the correction value may be calculated and provided to the lathe 100 before the difference between the measured value and the processing reference value exceeds the first threshold value.
또는, 제어부(240)는 측정값과 가공 기준값 간의 차이가 사전에 설정된 제2 임계값을 초과하는 경우 보정값 변화 패턴을 참조한 보정값의 산출 여부를 판단할 수도 있다. 여기서, 제2 임계값은 제1 임계값보다 작은 값일 수 있다. 측정값과 가공 기준값 간의 차이가 사전에 설정된 제2 임계값을 초과하는 경우 제어부(240)는 보정값의 산출 명령을 보정값 산출부(250)로 전달할 수 있다. 보정값 산출부(250)는 보정값의 변화 패턴을 참조하여 보정값을 산출할 수 있다.Alternatively, the controller 240 may determine whether to calculate a correction value with reference to a correction value change pattern when the difference between the measured value and the processing reference value exceeds a preset second threshold value. Here, the second threshold may be a value smaller than the first threshold. When the difference between the measured value and the processing reference value exceeds a preset second threshold value, the control unit 240 may transmit a correction value calculation command to the correction value calculation unit 250 . The correction value calculation unit 250 may calculate a correction value by referring to a change pattern of the correction value.
도 7은 본 발명의 실시예에 따른 선반 제어 방법을 나타낸 흐름도이다.7 is a flowchart illustrating a shelf control method according to an embodiment of the present invention.
도 7을 참조하면, 선반 제어 장치(200)는 보정값을 산출하여 송신하고, 보정 데이터(400)를 갱신할 수 있다.Referring to FIG. 7 , the shelf control device 200 may calculate and transmit a correction value and update correction data 400 .
우선, 선반 제어 장치(200)의 수신부(210)는 선반(100)으로부터 가공물에 대한 측정값을 수신할 수 있다(S510). 제어부(240)는 측정값과 가공 기준값 간의 차이를 참조하여 공구(140)의 보정 필요 여부를 판단할 수 있다(S520). 그리하여, 공구(140)의 보정이 필요한 것으로 판단되는 경우 제어부(240)는 보정값의 산출 명령을 보정값 산출부(250)로 전달할 수 있다. 한편, 공구(140)의 보정이 필요하지 않은 것으로 판단되는 경우 제어부(240)는 이후의 동작을 생략할 수 있다.First, the receiver 210 of the shelf control device 200 may receive a measurement value of a workpiece from the shelf 100 (S510). The control unit 240 may determine whether or not correction of the tool 140 is necessary by referring to the difference between the measured value and the machining reference value (S520). Thus, when it is determined that the tool 140 needs to be corrected, the control unit 240 may transmit a correction value calculation command to the correction value calculation unit 250 . Meanwhile, when it is determined that the tool 140 does not need to be calibrated, the controller 240 may omit the subsequent operation.
보정값 산출부(250)는 제어부(240)의 제어 명령에 따라 보정값을 산출할 수 있다(S530). 보정값 산출부(250)는 가공 기준값을 기초로 보정값을 산출할 수 있다. 예를 들어, 보정값 산출부(250)는 측정값과 가공 기준값 간의 차이를 보정값으로 산출할 수 있다.The correction value calculating unit 250 may calculate the correction value according to the control command of the control unit 240 (S530). The correction value calculator 250 may calculate a correction value based on the processing reference value. For example, the correction value calculator 250 may calculate a difference between the measured value and the processing reference value as a correction value.
또는, 보정값 산출부(250)는 현재까지의 보정 데이터(400)를 학습하고, 학습 결과를 참조하여 보정값을 산출할 수도 있다. 보정값 산출부(250)는 공구별 가공 패턴의 종류, 가공 횟수, 연마 깊이, 절삭 깊이 및 가공 지속 시간 등의 데이터와 실제 가공물의 측정값 간의 관계를 기계 학습함으로써 보정값을 산출할 수 있다. 측정값이 사전에 설정된 임계값을 초과하는 경우 제어부(240)는 공구에 대한 보정이 필요한 것으로 판단할 수 있다. 보정의 필요성 판단 및 보정값의 산출은 원재료에 대한 가공이 수행되는 도중에 실시간으로 수행될 수 있다.Alternatively, the correction value calculation unit 250 may learn the correction data 400 up to now and calculate the correction value by referring to the learning result. The correction value calculation unit 250 may calculate a correction value by machine learning the relationship between data such as the type of processing pattern for each tool, the number of processing times, the grinding depth, the cutting depth, and the processing duration time, and the measured value of the actual workpiece. If the measured value exceeds a preset threshold, the controller 240 may determine that the tool needs to be corrected. Determination of the need for correction and calculation of the correction value may be performed in real time while processing of the raw material is performed.
보정값 산출부(250)에 의하여 보정값이 산출되면, 출력부(280)는 보정값을 출력할 수 있다(S540). 제어부(240)는 보정값이 출력된 것에 대한 응답으로 입력부(220)를 통하 사용자 확인이 입력되는지 여부를 판단할 수 있다(S550). 사용자 확인은 보정값의 송신 명령일 수 있다.When the correction value is calculated by the correction value calculator 250, the output unit 280 may output the correction value (S540). The control unit 240 may determine whether user confirmation is input through the input unit 220 in response to the correction value being output (S550). User confirmation may be a correction value transmission command.
보정값 송신 명령이 입력된 경우 송신부(270)는 보정값을 선반(100)으로 보정값을 송신할 수 있다(S560). 한편, 보정값 송신 명령이 입력되지 않거나 보정값의 송신 보류 명령이 입력된 경우 송신부(270)는 보정값을 송신하지 않을 수 있다.When a correction value transmission command is input, the transmission unit 270 may transmit the correction values to the shelf 100 (S560). Meanwhile, when a correction value transmission command is not input or a correction value transmission hold command is input, the transmission unit 270 may not transmit the correction value.
보정값이 송신된 이후에 데이터 관리부(260)는 새롭게 생성된 보정값으로 보정 데이터(400)를 갱신할 수 있다(S570). 이 때, 데이터 관리부(260)는 측정값과 함께 수신된 측정 데이터를 참조하여 보정 데이터(400)를 갱신할 수 있다.After the correction value is transmitted, the data management unit 260 may update the correction data 400 with the newly generated correction value (S570). At this time, the data management unit 260 may update the correction data 400 by referring to the measurement data received together with the measurement values.
도 8은 본 발명의 다른 실시예에 따른 선반 제어 방법을 나타낸 흐름도이다.8 is a flowchart illustrating a shelf control method according to another embodiment of the present invention.
도 8을 참조하면, 선반 제어 장치(200)는 보정값을 산출하여 송신하고, 보정 데이터(400)를 갱신할 수 있다.Referring to FIG. 8 , the shelf control device 200 may calculate and transmit a correction value and update correction data 400 .
우선, 선반 제어 장치(200)의 수신부(210)는 선반(100)으로부터 가공물에 대한 측정값을 수신할 수 있다(S610). 제어부(240)는 측정값과 가공 기준값 간의 차이를 참조하여 공구(140)의 보정 필요 여부를 판단할 수 있다. 예를 들어, 제어부(240)는 측정값과 가공 기준값 간의 차이가 제2 임계값을 초과하는지를 참조하여 보정값 변화 패턴을 참조한 보정값의 산출 여부를 판단할 수 있다(S620). 그리하여, 공구(140)의 보정이 필요한 것으로 판단되는 경우 제어부(240)는 보정값의 산출 명령을 보정값 산출부(250)로 전달할 수 있다. 한편, 공구(140)의 보정이 필요하지 않은 것으로 판단되는 경우 제어부(240)는 이후의 동작을 생략할 수 있다.First, the receiver 210 of the shelf control device 200 may receive a measurement value of a workpiece from the shelf 100 (S610). The controller 240 may determine whether the tool 140 needs to be corrected by referring to the difference between the measured value and the machining reference value. For example, the controller 240 may determine whether to calculate a correction value referring to a correction value change pattern by referring to whether the difference between the measured value and the processing reference value exceeds the second threshold value (S620). Thus, when it is determined that the tool 140 needs to be corrected, the control unit 240 may transmit a correction value calculation command to the correction value calculation unit 250 . Meanwhile, when it is determined that the tool 140 does not need to be calibrated, the controller 240 may omit the subsequent operation.
제어부(240)의 제어 명령에 따라 보정값 산출부(250)는 보정값을 산출할 수 있다. 보정값 산출부(250)는 보정값의 변화 패턴을 참조하여 보정값을 산출할 수 있다(S6300.According to the control command of the control unit 240, the correction value calculating unit 250 may calculate the correction value. The correction value calculation unit 250 may calculate the correction value by referring to the change pattern of the correction value (S6300.
보정값 산출부(250)에 의하여 보정값이 산출되면, 출력부(280)는 보정값을 출력할 수 있다(S640). 제어부(240)는 보정값이 출력된 것에 대한 응답으로 입력부(220)를 통하 사용자 확인이 입력되는지 여부를 판단할 수 있다(S650). 사용자 확인은 보정값의 송신 명령일 수 있다.When the correction value is calculated by the correction value calculation unit 250, the output unit 280 may output the correction value (S640). The control unit 240 may determine whether user confirmation is input through the input unit 220 in response to the correction value being output (S650). User confirmation may be a correction value transmission command.
보정값 송신 명령이 입력된 경우 송신부(270)는 보정값을 선반(100)으로 보정값을 송신할 수 있다(S660). 한편, 보정값 송신 명령이 입력되지 않거나 보정값의 송신 보류 명령이 입력된 경우 송신부(270)는 보정값을 송신하지 않을 수 있다.When a correction value transmission command is input, the transmitter 270 may transmit the correction values to the shelf 100 (S660). Meanwhile, when a correction value transmission command is not input or a correction value transmission hold command is input, the transmission unit 270 may not transmit the correction value.
보정값이 송신된 이후에 데이터 관리부(260)는 새롭게 생성된 보정값으로 보정 데이터(400)를 갱신할 수 있다(S670). 이 때, 데이터 관리부(260)는 측정값과 함께 수신된 측정 데이터를 참조하여 보정 데이터(400)를 갱신할 수 있다.After the correction value is transmitted, the data management unit 260 may update the correction data 400 with the newly generated correction value (S670). At this time, the data management unit 260 may update the correction data 400 by referring to the measurement data received together with the measurement values.
이상과 첨부된 도면을 참조하여 본 발명의 실시예를 설명하였지만, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명이 그 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.Although the embodiments of the present invention have been described with reference to the above and accompanying drawings, those skilled in the art to which the present invention pertains can implement the present invention in other specific forms without changing the technical spirit or essential features. You will understand that there is Therefore, the embodiments described above should be understood as illustrative in all respects and not limiting.

Claims (18)

  1. 가공물을 생산하는 선반으로부터 가공물에 대한 측정값을 수신하는 수신부;A receiving unit for receiving a measurement value for the workpiece from the lathe producing the workpiece;
    상기 측정값을 참조하여 상기 선반에 구비된 공구의 위치에 대한 보정값을 산출하는 보정값 산출부; 및a correction value calculating unit that calculates a correction value for the position of the tool provided on the lathe by referring to the measured value; and
    상기 보정값을 상기 선반으로 송신하는 송신부를 포함하되,A transmitter for transmitting the correction value to the shelf,
    상기 선반은 복수의 공구를 포함하고,The lathe includes a plurality of tools,
    상기 보정값 산출부는 상기 복수의 공구별로 보정값을 산출하는 선반 제어 장치.The lathe control device of claim 1 , wherein the correction value calculator calculates a correction value for each of the plurality of tools.
  2. 제1 항에 있어서,According to claim 1,
    상기 측정값을 가공 기준값과 비교하여 보정값의 산출 여부를 판단하는 제어부를 더 포함하는 선반 제어 장치.The lathe control device further comprising a control unit that compares the measured value with a processing reference value to determine whether to calculate a correction value.
  3. 제2 항에 있어서,According to claim 2,
    상기 가공 기준값은 가공물의 측정 포인트에 대한 목적이 되는 가공값을 포함하는 선반 제어 장치.The processing reference value includes a processing value that is a target for a measurement point of a workpiece.
  4. 제1 항에 있어서,According to claim 1,
    상기 보정값을 출력하는 출력부를 더 포함하는 선반 제어 장치.The shelf control device further comprising an output unit outputting the correction value.
  5. 제4 항에 있어서,According to claim 4,
    상기 보정값이 출력된 것에 대한 응답으로 상기 보정값의 송신 여부에 대한 사용자 확인을 입력받는 입력부를 더 포함하는 선반 제어 장치.The shelf control device further includes an input unit for receiving a user confirmation of whether or not the correction value is transmitted in response to the correction value being output.
  6. 제1 항에 있어서,According to claim 1,
    상기 선반에 대하여 산출된 보정값의 이력이 포함된 보정 데이터에 상기 보정값 산출부에 의해 산출된 보정값을 반영하는 데이터 관리부를 더 포함하는 선반 제어 장치.The shelf control device further includes a data management unit configured to reflect the correction values calculated by the correction value calculation unit to correction data including a history of correction values calculated for the shelf.
  7. 제6 항에 있어서,According to claim 6,
    상기 보정 데이터는 측정 시간, 선반 식별 정보, 가공 프로그램 식별 정보, 보정값, 생산 수량 및 가공 조건 중 적어도 하나를 포함하는 선반 제어 장치.The correction data includes at least one of a measurement time, shelf identification information, machining program identification information, a correction value, production quantity, and processing conditions.
  8. 제6 항에 있어서,According to claim 6,
    상기 보정 데이터를 참조하여 가공물의 생산 수량에 대한 보정값의 변화 패턴을 산출하고, 상기 변화 패턴을 참조하여 보정값의 산출 여부를 판단하는 제어부를 더 포함하는 선반 제어 장치.The lathe control device further includes a controller that calculates a change pattern of a correction value for the production quantity of the workpiece with reference to the correction data, and determines whether or not the correction value is calculated by referring to the change pattern.
  9. 제6 항에 있어서,According to claim 6,
    상기 보정값 산출부는 상기 보정 데이터를 학습하고, 학습 결과를 참조하여 보정값을 산출하는 선반 제어 장치.The shelf control device of claim 1, wherein the correction value calculation unit learns the correction data and calculates a correction value by referring to the learning result.
  10. 가공물을 생산하는 선반으로부터 가공물에 대한 측정값을 수신하는 단계;Receiving a measurement value for a workpiece from a lathe producing the workpiece;
    상기 측정값을 참조하여 상기 선반에 구비된 공구의 위치에 대한 보정값을 산출하는 단계; 및calculating a correction value for a position of a tool provided on the lathe with reference to the measured value; and
    상기 보정값을 상기 선반으로 송신하는 단계를 포함하되,Sending the correction value to the shelf,
    상기 선반은 복수의 공구를 포함하고,The lathe includes a plurality of tools,
    상기 보정값을 산출하는 단계는 상기 복수의 공구별로 보정값을 산출하는 단계를 포함하는 선반 제어 방법.The step of calculating the correction value includes calculating the correction value for each of the plurality of tools.
  11. 제10 항에 있어서,According to claim 10,
    상기 측정값을 가공 기준값과 비교하여 보정값의 산출 여부를 판단하는 단계를 더 포함하는 선반 제어 방법.The lathe control method further comprising determining whether a correction value is calculated by comparing the measured value with a processing reference value.
  12. 제11 항에 있어서,According to claim 11,
    상기 가공 기준값은 가공물의 측정 포인트에 대한 목적이 되는 가공값을 포함하는 선반 제어 방법.The lathe control method of claim 1 , wherein the processing reference value includes a target processing value for a measurement point of a workpiece.
  13. 제10 항에 있어서,According to claim 10,
    상기 보정값을 출력하는 단계를 더 포함하는 선반 제어 방법.The shelf control method further comprising outputting the correction value.
  14. 제13 항에 있어서,According to claim 13,
    상기 보정값이 출력된 것에 대한 응답으로 상기 보정값의 송신 여부에 대한 사용자 확인을 입력받는 단계를 더 포함하는 선반 제어 방법.The shelf control method further comprising receiving a user confirmation as to whether or not to transmit the correction value in response to the output of the correction value.
  15. 제10 항에 있어서,According to claim 10,
    상기 선반에 대하여 산출된 보정값의 이력이 포함된 보정 데이터에 상기 보정값 산출부에 의해 산출된 보정값을 반영하는 단계를 더 포함하는 선반 제어 방법.The shelf control method further comprises reflecting the correction values calculated by the correction value calculator in correction data including a history of correction values calculated for the shelf.
  16. 제15 항에 있어서,According to claim 15,
    상기 보정 데이터는 측정 시간, 선반 식별 정보, 가공 프로그램 식별 정보, 보정값, 생산 수량 및 가공 조건 중 적어도 하나를 포함하는 선반 제어 방법.The correction data includes at least one of a measurement time, shelf identification information, processing program identification information, a correction value, production quantity, and processing conditions.
  17. 제15 항에 있어서,According to claim 15,
    상기 보정 데이터를 참조하여 가공물의 생산 수량에 대한 보정값의 변화 패턴을 산출하고, 상기 변화 패턴을 참조하여 보정값의 산출 여부를 판단하는 단계를 더 포함하는 선반 제어 방법.The lathe control method further comprises calculating a change pattern of a correction value for the production quantity of the workpiece by referring to the correction data, and determining whether to calculate a correction value by referring to the change pattern.
  18. 제15 항에 있어서,According to claim 15,
    상기 보정값을 산출하는 단계는 상기 보정 데이터를 학습하고, 학습 결과를 참조하여 보정값을 산출하는 단계를 포함하는 선반 제어 방법.The calculating of the correction value includes learning the correction data and calculating the correction value by referring to the learning result.
PCT/KR2021/010723 2021-07-29 2021-08-12 Lathe control apparatus and method WO2023008631A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0099780 2021-07-29
KR1020210099780A KR20230018067A (en) 2021-07-29 2021-07-29 Apparatus and method for controlling lathe

Publications (1)

Publication Number Publication Date
WO2023008631A1 true WO2023008631A1 (en) 2023-02-02

Family

ID=85087019

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/010723 WO2023008631A1 (en) 2021-07-29 2021-08-12 Lathe control apparatus and method

Country Status (2)

Country Link
KR (1) KR20230018067A (en)
WO (1) WO2023008631A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003191101A (en) * 2001-12-25 2003-07-08 Murata Mach Ltd Machine tool system
KR101368048B1 (en) * 2012-01-12 2014-02-27 현대위아 주식회사 Tool die position compensation device of machine tools and method thereof
JP2017068566A (en) * 2015-09-30 2017-04-06 ファナック株式会社 Machine learning device and machine learning method for optimizing frequency of tool correction for machine tool and machine tool provided with machine learning device
JP2019028785A (en) * 2017-07-31 2019-02-21 株式会社ジェイテクト Processing system and processing method
US20210078126A1 (en) * 2019-09-12 2021-03-18 Hexagon Technology Center Gmbh Method for correcting tool parameters of a machine tool for machining of workpieces

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101896291B1 (en) 2016-05-03 2018-09-11 화천기공 주식회사 Tool path correction method of machining tools

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003191101A (en) * 2001-12-25 2003-07-08 Murata Mach Ltd Machine tool system
KR101368048B1 (en) * 2012-01-12 2014-02-27 현대위아 주식회사 Tool die position compensation device of machine tools and method thereof
JP2017068566A (en) * 2015-09-30 2017-04-06 ファナック株式会社 Machine learning device and machine learning method for optimizing frequency of tool correction for machine tool and machine tool provided with machine learning device
JP2019028785A (en) * 2017-07-31 2019-02-21 株式会社ジェイテクト Processing system and processing method
US20210078126A1 (en) * 2019-09-12 2021-03-18 Hexagon Technology Center Gmbh Method for correcting tool parameters of a machine tool for machining of workpieces

Also Published As

Publication number Publication date
KR20230018067A (en) 2023-02-07

Similar Documents

Publication Publication Date Title
US5513113A (en) Method of and device for correcting position of cutting-edge of tool in numerically controlled machine tool
CN102017121B (en) Dynamic alignment of wafers using compensation values obtained through a series of wafer movements
WO2016060420A1 (en) Orbital cutting apparatus capable of freely and selectively controlling plurality of cutting tools within rotating body by using rotational speed ratio
US20090057286A1 (en) Welding device
WO2023008631A1 (en) Lathe control apparatus and method
WO2014200199A1 (en) Method for setting feed rate of rotating cutting tool in real time and control device
KR100447382B1 (en) Process control system and method for transferring process data therefor
WO2019135596A1 (en) Detection apparatus and detection method for machine tool abnormality
WO2013058481A1 (en) Method and device for real time position correction by deformation of ball screw of machine tool
WO2015102324A1 (en) Remote control apparatus and control method therefor
WO2023163247A1 (en) Ict fusion-type tension pulley manufacturing system
WO2021177520A1 (en) Atc-mounted broaching machine using fog computing
WO2023096128A1 (en) Active vibration reduction device and method of machine tool
US10279502B2 (en) Cutting tool holder with a control module
JPH0724765A (en) Correction data communication system among robots
WO2023054749A1 (en) Processing apparatus for implementing robot stiffness-maintaining posture and processing method for implementing robot stiffness-maintaining posture using same
WO2020105983A1 (en) Precision processing apparatus using robot arm, and operation method therefor
JP7401551B2 (en) Robot arm equipment and adjustment method
EP3800007A1 (en) Eyeglass lens peripheral edge processing system and eyeglass lens peripheral edge processing program
JPH10325776A (en) Automatic pressure-adjusting device
CN117914223B (en) Control system of servo motor
WO2023249260A1 (en) Substrate transfer apparatus and operation method thereof
JP2007272367A (en) Multiple-shaft synchronization system and control method
WO2021107229A1 (en) Impeller machining apparatus and machining method using same
JP2023517015A (en) Method and Core Drilling Apparatus for Determining Engaged Gear Recommendations for Core Drilling Apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21952001

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE