WO2023008576A1 - Combiner, head-up display, mobile body, and automobile - Google Patents

Combiner, head-up display, mobile body, and automobile Download PDF

Info

Publication number
WO2023008576A1
WO2023008576A1 PCT/JP2022/029373 JP2022029373W WO2023008576A1 WO 2023008576 A1 WO2023008576 A1 WO 2023008576A1 JP 2022029373 W JP2022029373 W JP 2022029373W WO 2023008576 A1 WO2023008576 A1 WO 2023008576A1
Authority
WO
WIPO (PCT)
Prior art keywords
combiner
image light
substrate
light
image
Prior art date
Application number
PCT/JP2022/029373
Other languages
French (fr)
Japanese (ja)
Inventor
豪 山内
悟 吉田
啓介 三浦
陽祐 青木
寛行 國安
Original Assignee
大日本印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2022084799A external-priority patent/JP2023020886A/en
Application filed by 大日本印刷株式会社 filed Critical 大日本印刷株式会社
Publication of WO2023008576A1 publication Critical patent/WO2023008576A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/32Holograms used as optical elements

Definitions

  • the present disclosure relates to combiners, head-up displays, moving bodies, and automobiles.
  • the head-up display displays within the user's field of view.
  • the head-up display has a transparent combiner. Image light is projected onto the combiner.
  • the combiner includes a hologram element. The hologram element diffracts the image light and directs it to the user. A user can observe the images in the combiner. Also, the user can secure a field of view through the transparent combiner.
  • noise images such as the sun and outdoor lights can be observed brightly inside the combiner.
  • the noise image is observed at a position different from the actual position, and the user feels uncomfortable with the noise image.
  • part of the image light is specularly reflected on the surface of the combiner to form a ghost image. Noise images and ghost images can degrade the display quality of the head-up display.
  • the present disclosure aims at improving the display quality of the head-up display.
  • An embodiment of the present disclosure relates to the following [1] to [30].
  • a combiner for a head-up display that projects image light, a first substrate including a first surface serving as an incident surface of the image light; a second substrate including a second surface facing the first surface; a bonding layer that bonds the first substrate and the second substrate; a hologram element positioned between the first substrate and the second substrate; the hologram element diffracts the image light in a direction of specular reflection with respect to the direction of incidence of the image light on the combiner or in a direction inclined at an angle of 25° or less to the direction of specular reflection;
  • the distance between the display position of the image by the image light diffracted by the hologram element and the hologram element is the distance between the display position of the image by the image light reflected by the first surface or the second surface and the hologram element.
  • a combiner that is more than four times.
  • a combiner for a head-up display that projects image light, a first substrate including a first surface serving as an incident surface of the image light; a second substrate including a second surface facing the first surface; a bonding layer that bonds the first substrate and the second substrate; a hologram element positioned between the first substrate and the second substrate; An image of an external light source reproduced by light emitted from an external light source, incident on the combiner from the second surface, reflected by the first surface and then diffracted by the hologram element is observed through the combiner.
  • the distance between the display position of the image by the image light diffracted by the hologram element and the hologram element is the distance between the display position of the image by the image light reflected by the first surface or the second surface and the hologram element.
  • a combiner for a head-up display that projects image light, a first substrate including a first surface serving as an incident surface of the image light; a second substrate including a second surface facing the first surface; a bonding layer that bonds the first substrate and the second substrate; a hologram element positioned between the first substrate and the second substrate; the hologram element diffracts the image light in a direction of specular reflection with respect to the direction of incidence of the image light on the combiner or in a direction inclined at an angle of 25° or less to the direction of specular reflection;
  • the first substrate includes an antireflection layer forming the first surface.
  • [6] a projection device that emits image light;
  • a head-up display comprising a combiner according to any one of [1] to [5].
  • a light shielding member is provided so as to be offset from the optical path of the image light emitted from the projection device and diffracted by the hologram element of the combiner,
  • the head-up display according to any one of [6] to [8], wherein the light blocking plate blocks part of the image light emitted from the projection device and directed toward the combiner.
  • the projection device includes an image forming device that emits the image light, and an optical path adjusting member that is arranged between the image forming device and the combiner and adjusts an optical path of the image light,
  • the head-up display according to any one of [6] to [9], wherein the optical path adjusting member has an anisotropic diffusion function.
  • the optical path adjustment member is perpendicular to the first evaluation surface and the The head-up display of [10], which has a strong diffusion function in the second evaluation plane parallel to the optical axis.
  • a head-up display according to any one of [6] to [11],
  • the formula "Lz ⁇ sin ⁇ 4" using the optical path length Lz (mm) and the angle ⁇ 4 (°) is 10 mm or more
  • the optical path length Lz (mm) is the optical path length of the image light from the combiner to the projection device,
  • a head-up display according to any one of [6] to [11], A motor vehicle, wherein part of the image light is reflected by the first surface or the second surface in a direction inclined upward with respect to a horizontal direction.
  • the magnitude of the incident angle of the image light to the combiner is greater than the magnitude of the tilt angle of the combiner;
  • the vehicle of [17] or [18], wherein the tilt angle of the combiner is the angle between the normal direction of the combiner and the vertical direction.
  • a head-up display according to any one of [6] to [11],
  • the tilt angle of the combiner is 25° or more and 55° or less, the magnitude of the incident angle of the image light to the combiner is greater than the magnitude of the tilt angle of the combiner by an angle greater than 0° and less than or equal to 60°;
  • the motor vehicle, wherein the tilt angle of the combiner is the angle between the normal direction and the vertical direction of the combiner.
  • a head-up display comprising a projection device that emits image light and a combiner that projects the image light,
  • the combiner is a first substrate including a first surface serving as an incident surface of the image light; a second substrate including a second surface facing the first surface; a bonding layer that bonds the first substrate and the second substrate; a hologram element positioned between the first substrate and the second substrate;
  • the head-up display wherein a diffraction angle of the image light at the combiner is larger than an incident angle of the image light to the combiner.
  • a motor vehicle with a head-up display includes a projection device that emits image light and a combiner that projects the image light,
  • the combiner is a first substrate including a first surface serving as an incident surface of the image light; a second substrate including a second surface facing the first surface; a bonding layer that bonds the first substrate and the second substrate; a hologram element positioned between the first substrate and the second substrate;
  • the automobile wherein the optical path length of the image light from the projection device to the combiner is 200 mm or more.
  • a motor vehicle with a head-up display includes a projection device that emits image light and a combiner that projects the image light,
  • the combiner is a first substrate including a first surface serving as an incident surface of the image light; a second substrate including a second surface facing the first surface; a bonding layer that bonds the first substrate and the second substrate; a hologram element positioned between the first substrate and the second substrate;
  • the formula "Lz ⁇ sin ⁇ 4" using the optical path length Lz (mm) and the angle ⁇ 4 (°) is 10 mm or more,
  • the optical path length Lz (mm) is the optical path length of the image light from the projection device to the combiner,
  • the motor vehicle wherein the angle ⁇ 4 (°) is a difference between an incident angle of the image light to the combiner and a diffraction angle of the image light at the combiner.
  • a motor vehicle with a head-up display includes a projection device that emits image light and a combiner that projects the image light,
  • the combiner is a first substrate including a first surface serving as an incident surface of the image light; a second substrate including a second surface facing the first surface; a bonding layer that bonds the first substrate and the second substrate; a hologram element positioned between the first substrate and the second substrate;
  • the motor vehicle wherein the diffraction angle of the image light at the combiner is 30° or more.
  • a motor vehicle comprising a head-up display
  • the head-up display includes a projection device that emits image light and a combiner that projects the image light
  • the combiner is a first substrate including a first surface serving as an incident surface of the image light; a second substrate including a second surface facing the first surface; a bonding layer that bonds the first substrate and the second substrate; a hologram element positioned between the first substrate and the second substrate;
  • the sum of the inclination angle of the combiner and the incident angle of the image light to the combiner is 70° or more,
  • the motor vehicle, wherein the tilt angle of the combiner is the angle between the normal direction and the vertical direction of the combiner.
  • a motor vehicle with a head-up display includes a projection device that emits image light and a combiner that projects the image light,
  • the combiner is a first substrate including a first surface serving as an incident surface of the image light; a second substrate including a second surface facing the first surface; a bonding layer that bonds the first substrate and the second substrate; a hologram element positioned between the first substrate and the second substrate;
  • a motor vehicle wherein a magnitude of an angle of diffraction of said image light at said combiner is smaller than a magnitude of an angle of incidence of said image light on said combiner.
  • a motor vehicle with a head-up display includes a projection device that emits image light and a combiner that projects the image light,
  • the combiner is a first substrate including a first surface serving as an incident surface of the image light; a second substrate including a second surface facing the first surface; a bonding layer that bonds the first substrate and the second substrate; a hologram element positioned between the first substrate and the second substrate;
  • a motor vehicle wherein part of the image light is reflected by the first surface or the second surface in a direction inclined upward with respect to a horizontal direction.
  • a motor vehicle comprising a head-up display
  • the head-up display includes a projection device that emits image light and a combiner that projects the image light
  • the combiner is a first substrate including a first surface serving as an incident surface of the image light; a second substrate including a second surface facing the first surface; a bonding layer that bonds the first substrate and the second substrate; a hologram element positioned between the first substrate and the second substrate;
  • the tilt angle of the combiner is 25° or more and 55° or less, the magnitude of the incident angle of the image light to the combiner is greater than the magnitude of the tilt angle of the combiner by an angle greater than 0° and less than or equal to 60°;
  • the motor vehicle wherein the tilt angle of the combiner is the angle between the normal direction and the vertical direction of the combiner.
  • An image forming device that emits image light; a combiner projected with the image light; an optical path adjustment member disposed between the image forming apparatus and the combiner and adjusting an optical path of the image light;
  • the combiner is a first substrate including a first surface serving as an incident surface of the image light; a second substrate including a second surface facing the first surface; a bonding layer that bonds the first substrate and the second substrate; a hologram element positioned between the first substrate and the second substrate;
  • the magnitude of the diffraction angle of the image light at the combiner is different from the magnitude of the incident angle of the image light to the combiner, the hologram element diffracts the image light in a direction inclined with respect to a specular reflection direction with respect to an incident direction of the image light to the combiner;
  • the optical path adjustment member is perpendicular to the first evaluation surface and the optical path of the combiner rather than in the first evaluation surface parallel to both the normal direction of the combiner and the optical axis of the image light incident on the combine
  • a head-up display comprising a projection device that emits image light and a combiner that projects the image light,
  • the combiner is a first substrate including a first surface serving as an incident surface of the image light; a second substrate including a second surface facing the first surface; a bonding layer that bonds the first substrate and the second substrate; a hologram element positioned between the first substrate and the second substrate;
  • the display quality of the head-up display can be improved.
  • FIG. 1 is a diagram for explaining an embodiment, and is a side view showing a specific example of a moving body and a head-up display.
  • 2 is a side sectional view showing the combiner of the head-up display shown in FIG. 1;
  • FIG. 3A is a cross-sectional view showing an example of a first substrate that may be included in the combiner shown in FIG. 2.
  • FIG. 3B is a cross-sectional view showing another example of a first substrate that can be included in the combiner shown in FIG. 2.
  • FIG. 3C is a cross-sectional view showing yet another example of a first substrate that can be included in the combiner shown in FIG. 2.
  • FIG. 4 is a diagram illustrating a method of manufacturing a hologram recording layer that can be included in the combiner shown in FIG. 2; 5 is a graph showing an example of spectral transmittance of a hologram element that can be included in the combiner shown in FIG. 2.
  • FIG. FIG. 6 is a diagram illustrating the operation of the combiner shown in FIG. 2;
  • FIG. 7 is a diagram illustrating the operation of the combiner shown in FIG. 2;
  • FIG. 8 is a cross-sectional view showing the configuration of samples 1 to 5.
  • FIG. FIG. 9 is a diagram explaining the action of the combiner.
  • FIG. 10 is a diagram explaining the operation of the combiner.
  • FIG. 11 is a diagram corresponding to FIG. 7 and for explaining the operation of the combiner.
  • FIG. 12 is a diagram corresponding to FIG. 7 and for explaining the action of the combiner.
  • FIG. 13 is a diagram for explaining the action of the combiner.
  • FIG. 14 is a graph showing an example of the angular distribution of luminance on the most light-emitting surface of the optical path adjusting member.
  • FIG. 15 is a perspective view showing an example of an optical path adjustment member.
  • FIG. 16 is a perspective view showing another example of the optical path adjusting member.
  • FIG. 17 is a perspective view showing still another example of the optical path adjustment member.
  • the normal direction of the sheet-like (film-like, plate-like) member refers to the normal direction to the sheet surface of the target sheet-like (film-like, plate-like) member.
  • the "sheet surface (film surface, plate surface)” refers to the sheet-like member (film-like) that is the target when the target sheet-like (film-like, plate-like) member is viewed as a whole and from a broad perspective. member, plate-shaped member).
  • first direction D1 the second direction D2
  • third direction D3 the normal direction ND
  • first direction D1 and the second direction D2 are parallel to the horizontal direction
  • third direction D3 is parallel to the vertical direction.
  • An arrow pointing forward from the plane of the drawing along a direction perpendicular to the plane of the drawing is indicated by a dot in a circle, as shown in FIG. 2, for example.
  • FIGS. 1 and 2 are diagrams for explaining one embodiment.
  • the head-up display 20 has a projection device 25 and a combiner 40.
  • FIG. The head-up display 20 uses the combiner 40 to display the image formed by the projection device 25 toward the user 5 .
  • a user 5 of the head-up display 20 can observe behind the combiner 40 through the combiner 40 .
  • An imaging device may image the user 5 observing the combiner 40 via the combiner 40 .
  • This embodiment is designed to make the noise image 91, which has been a problem in the conventional head-up display, inconspicuous. An embodiment will now be described with reference to specific examples shown in the drawings.
  • the head-up display 20 is applicable to various fields. Head-up display 20 may be applied to a head-mounted display. A heads-up display 20 may be applied to the prompter. The prompter may be used for lectures, imaging, and the like.
  • the head-up display 20 is applied to the moving body 10.
  • the moving body 10 is a movable device.
  • the mobile object 10 may be movable with a person on it. Examples of mobile objects 10 include ships, airplanes, drones, railway vehicles, and illustrated automobiles 12 .
  • the combiner 40 constitutes the windshield 14 of the motor vehicle 12 .
  • the projection device 25 emits image light that forms an image. A user 5 observes the image by receiving the image light.
  • the projection device 25 is not particularly limited, and various devices capable of forming an image can be used. In the example shown in FIG. 1, the projection device 25 is arranged in the dashboard. The projection device 25 is hidden by the dashboard.
  • the projection device 25 includes an image forming device 30 .
  • Projection device 25 may include a glare trap.
  • Image forming apparatus 30 may employ a dot matrix method.
  • the dot matrix image forming apparatus 30 includes a plurality of pixels forming each dot. This image forming apparatus 30 forms a desired image by controlling the light emission state of each pixel. Examples of the image forming device 30 include a transmissive liquid crystal display device, a reflective liquid crystal display device, a laser display device, an electroluminescence display device also called an EL display device, a digital mirror device, and the like.
  • the glare trap may be the tip of the image forming device 30 that emits image light.
  • the glare trap may constitute the image emitting surface of the imaging device 30 .
  • the glare trap may include a low reflection film, an antiglare sheet, or the like.
  • the image light from the image forming device 30 is projected onto the combiner 40 .
  • the projection device 25 may include an optical path adjustment member 34 indicated by a two-dot chain line in FIG.
  • the optical path adjusting member 34 adjusts the optical path of image light from the image forming apparatus 30 to the combiner 40 .
  • the optical path adjustment member 34 may be the projection optical system 35 .
  • Projection optics 35 guide image light from image forming device 30 to combiner 40 .
  • Projection optics 35 may include mirrors, lenses, prisms, diffractive optical elements, and combinations thereof.
  • the optical path adjustment member 34 may include an optical sheet and a light source that illuminates the optical sheet from behind.
  • the optical sheet may include a transparent film and a printed layer having visible light transmittance printed on the transparent film.
  • the optical sheet may be a light shielding plate provided with openings and transmissive portions.
  • the light source may be a surface light source device that emits light in a planar manner. According to these display devices, display corresponding to the optical sheet, such as pictograms and marks, can be displayed.
  • the combiner 40 directs the image light from the projection device 25 to the user 5, as shown in FIG.
  • the combiner 40 may include a first substrate 51 , a second substrate 52 , a bonding layer 45 and a hologram element 60 .
  • Combiner 40 may have a high visible light transmission.
  • Combiner 40 may be transparent.
  • Combiner 40 may be transparent if the incident light does not satisfy the Bragg condition of hologram element 60 .
  • Components of combiner 40 may also be transparent to provide combiner 40 with high visible light transmission.
  • Transparent as used herein means that the visible light transmittance is 50% or more, preferably 80% or more.
  • the visible light transmittance is measured using a spectrophotometer ("UV-3100PC" manufactured by Shimadzu Corporation, compliant with JISK0115) at an incident angle of 0° for every 1 nm within a measurement wavelength range of 380 nm or more and 780 nm or less. , is specified as the average value of the total light transmittance at each wavelength.
  • the incident angle is the angle (°) formed by the traveling direction of the incident light with respect to the normal direction to the plane of incidence, and is less than 90°.
  • the combiner 40 has a first surface 41 and a second surface 42 .
  • the combiner 40 is plate-shaped.
  • the combiner 40 has a normal direction ND.
  • the first surface 41 and the second surface 42 form a pair of main surfaces of the combiner 40 .
  • the first surface 41 and the second surface 42 face each other in the normal direction ND.
  • the first surface 41 and the second surface 42 spread in a direction perpendicular to the normal direction ND.
  • the first substrate 51 constitutes the first surface 41 and the second substrate 52 constitutes the second surface 42 .
  • the first surface 41 serves as an incident surface for image light from the projection device 25 .
  • the first substrate 51 and the second substrate 52 are stacked in the normal direction ND.
  • the bonding layer 45 is located between the first substrate 51 and the second substrate 52 in the normal direction ND.
  • the bonding layer 45 is in direct or indirect contact with the first substrate 51 and the second substrate 52 .
  • the bonding layer 45 is bonded to the first substrate 51 and the second substrate 52 . As a result, the bonding layer 45 bonds the first substrate 51 and the second substrate 52 together.
  • the hologram element 60 is positioned between the first substrate 51 and the second substrate 52 in the normal direction ND.
  • the hologram element 60 is in direct or indirect contact with the bonding layer 45 at least partially.
  • the hologram element 60 is separated from both the first substrate 51 and the second substrate 52 in the normal direction ND.
  • a bonding layer 45 is positioned between the hologram element 60 and the first substrate 51 .
  • a bonding layer 45 is positioned between the hologram element 60 and the second substrate 52 .
  • the hologram element 60 is in contact with the bonding layer 45 on all its outer surfaces.
  • the normal direction ND of the combiner 40 is the normal direction of the first surface 41, the normal direction of the second surface 42, the normal direction of the first substrate 51, and the normal direction of the second substrate 52. , the normal direction of the bonding layer 45 , and the normal direction of the hologram element 60 .
  • the combiner 40 is shown in a flat plate shape in FIG. 2 and the like. As shown in FIG. 1, combiner 40 may be curved. For example, combiner 40 may be curved to follow the shape of windshield 14 .
  • the first substrate 51 and the second substrate 52 are transparent plates.
  • the first substrate 51 and the second substrate 52 function as substrates that support the hologram element 60 .
  • the first substrate 51 and the second substrate 52 function as windshield members.
  • a glass such as soda lime glass or soda lime glass may be used.
  • a resin such as acrylic resin or polycarbonate may be used.
  • the thickness along the normal direction ND of the first substrate 51 and the second substrate 52 may be 1 mm or more and 5 mm or less.
  • the first substrate 51 and the second substrate 52 may be identically configured with the same material, may be configured with different materials, or may have different configurations.
  • the first substrate 51 and the second substrate 52 may include multiple layers, as indicated by the two-dot chain lines in FIG. At least one of first substrate 51 and second substrate 52 may include transparent plate 56 and antireflection layer 57 .
  • the antireflection layer 57 may constitute the first surface 41 , which is the outermost surface of the combiner 40 .
  • the antireflection layer 57 may constitute the second surface 42 , which is the outermost surface of the combiner 40 .
  • the transparent plate 56 may be a glass plate such as soda lime glass or blue plate glass.
  • the transparent plate 56 may be a resin plate such as acrylic resin or polycarbonate.
  • the antireflection layer 57 suppresses reflection of light.
  • the antireflection layer 57 may employ various configurations capable of suppressing reflection.
  • Antireflection layer 57 may have the configuration shown in FIGS. 3A-3C.
  • FIG. 3A shows a single layer antireflection layer 57 .
  • the antireflection layer 57 shown in FIG. 3A has a low refractive index lower than the refractive index of the layer (the transparent plate 56 in the illustrated example) adjacent to this antireflection layer 57 in the normal direction ND.
  • Layer 57a The antireflection layer 57 shown in FIG. 3B includes a low refractive index layer 57a and a high refractive index layer 57b in order from the outermost surface in the normal direction ND.
  • the antireflection layer 57 shown in FIG. 3C includes multiple low refractive index layers 57a and multiple high refractive index layers 57b.
  • the low refractive index layers 57a and the high refractive index layers 57b are repeatedly arranged in order from the first surface 41 side in the normal direction ND.
  • antireflection layer 57 suppresses reflections by causing light reflected at different optical interfaces to cancel.
  • the thickness and refractive index of the layers included in the antireflection layer 57 can be appropriately selected according to the wavelength of light whose reflection is to be suppressed.
  • the thickness of the low refractive index layer 57a and the high refractive index layer 57b included in the antireflection layer 57 is less than 780 nm.
  • the low refractive index layer 57a and the high refractive index layer 57b can be produced by applying a liquid ultraviolet curable resin composition to form a layer and irradiating the layer with ultraviolet rays.
  • the liquid ultraviolet curable resin composition for making the low refractive index layer 57a contains (a) particles for adjusting the refractive index, such as hollow silica, (b) an initiator, and (c) a fluorine additive. It may include the above.
  • the liquid ultraviolet curable resin composition for producing the high refractive index layer 57b may contain one or more of (d) particles for adjusting the refractive index, such as a high refractive index filler, and (e) an initiator.
  • the low refractive index layer 57a and the high refractive index layer 57b can also be produced by physical vapor deposition such as vacuum deposition and sputtering.
  • the reflectance on the surface of the combiner 40 constituted by the antireflection layer 57 may be 1% or less, or 0.5% or less.
  • the reflectance is measured using a spectrophotometer ("UV-3100PC" manufactured by Shimadzu Corporation, compliant with JISK0115) at intervals of 1 nm within a range of measurement wavelengths of 400 nm or more and 700 nm or less. specified as the maximum value.
  • the angle of incidence for measuring the reflectance is the angle of incidence on the combiner 40 at which the diffraction efficiency of the hologram element 60 takes the maximum value.
  • the incident angle to the combiner 40 at which the diffraction efficiency of the hologram element 60 takes the maximum value is less than 5°, it becomes difficult to measure the reflectance. 5°.
  • the incident angle is the angle (°) formed by the traveling direction of the incident light with respect to the normal direction to the plane of incidence, and is less than 90°.
  • the reflectance of the combiner 40 is measured with a black sheet attached to the surface of the combiner 40 opposite to the incident surface.
  • a black sheet having a lightness L * value of 30 in the L * a * b * color system specified using a spectrophotometer (“CM-700d” manufactured by Konica Minolta) is used.
  • the first substrate 51 and the second substrate 52 are not limited to the illustrated example, and may include other functional layers expected to exhibit specific functions.
  • One functional layer may exhibit two or more functions. Examples of functions that can be imparted to the first substrate 51 and the second substrate 52 include a scratch-resistant hard coat (HC) function, an infrared shielding (reflecting) function, an ultraviolet shielding (reflecting) function, an antifouling function, and the like. be.
  • HC scratch-resistant hard coat
  • reflecting infrared shielding
  • ultraviolet shielding ultraviolet shielding
  • antifouling function an antifouling function
  • the bonding layer 45 bonds the first substrate 51 and the second substrate 52 together.
  • the bonding layer 45 is a transparent layer.
  • a layer made of various materials having adhesiveness or cohesiveness may be used.
  • the material of the bonding layer 45 may be a thermoplastic resin.
  • the bonding layer 45 made of thermoplastic resin bonds to the first substrate 51 and the second substrate 52 by being heated and pressurized between the first substrate 51 and the second substrate 52 .
  • Polyvinyl butyral (PVB) may be used as the thermoplastic resin forming the bonding layer 45 .
  • the thickness of the bonding layer 45 in the normal direction ND is, for example, 20 ⁇ m or more and 1000 ⁇ m or less.
  • the bonding layer 45 may be given various functions. Examples of various functions include an antistatic function and an ultraviolet absorption function.
  • the hologram element 60 diffracts the image light and directs it to the user 5 .
  • Hologram element 60 may be transparent to provide transparency to combiner 40 .
  • Hologram element 60 may have a high visible light transmittance.
  • the hologram element 60 is sheet-like.
  • the hologram element 60 diffracts the image light incident on the combiner 40 in the specular reflection direction or in a direction inclined at an angle of 25° or less to the specular reflection direction. That is, as shown in FIG. 2, the magnitude of the difference between the incident angle ⁇ 1 to the hologram element 60 and the diffraction angle ⁇ 2 at the hologram element 60 is 25° or less.
  • the difference between the incident angle ⁇ 1 and the diffraction angle ⁇ 2 may be 20° or less, 15° or less, 10° or less, 5° or less, or 3° or less.
  • the noise image 91 By setting an upper limit on the magnitude of the difference between the incident angle ⁇ 1 to the hologram element 60 and the diffraction angle ⁇ 2 at the hologram element 60, the noise image 91, which will be described later, is made inconspicuous, and discomfort when observing the noise image 91. can be suppressed.
  • the incident angle is the angle (°) formed by the traveling direction of the incident light before entering the incident target, that is, the incident direction, with respect to the normal direction to the incident target, and is less than 90°.
  • the incident angle ⁇ 1 of the light L31 is the angle (°) between the incident direction to the combiner 40 and the normal direction ND.
  • the diffraction angle is the angle (°) formed by the traveling direction of the diffracted light after being emitted from the diffraction target, that is, the diffraction direction, with respect to the normal direction to the diffraction target, and is less than 90°.
  • the diffraction angle ⁇ 2 is the angle (°) between the output direction of the light L32 from the combiner 40 and the normal direction ND.
  • Incident angle ⁇ 1 and diffraction angle ⁇ 2 are specified on a plane including incident light L 31 , diffracted light L 32 , and normal direction ND to hologram element 60 .
  • the incident angle and the reflection angle may change depending on the incident position on the combiner 40 and the like.
  • the incident direction when measuring the incident angle is determined by the optical path having the highest intensity among the optical paths toward the center (center of gravity) of the area of the hologram element 60 where the image light from the projection device 25 can enter. , is specified.
  • the emission direction for measuring the diffracted light and the reflected light is the highest of the optical paths emitted from the center (center of gravity) of the region of the hologram element 60 where the image light from the image forming apparatus 30 can enter. It is specified by the optical path of intensity.
  • the hologram element 60 includes a hologram recording layer 62 .
  • the hologram recording layer 62 is a reflective hologram.
  • the hologram recording layer 62 diffracts light of a specific wavelength incident from a specific incident direction with high diffraction efficiency and directs it in a specific direction.
  • the hologram recording layer 62 records interference fringes for realizing a diffraction function.
  • the hologram recording layer 62 diffracts incident light that satisfies the Bragg condition with high diffraction efficiency and directs it in a specific direction.
  • the hologram recording layer 62 diffracts the image light from the image forming device 30 with high efficiency.
  • the image forming device 30 is arranged at a predetermined position with respect to the combiner 40 so that the image light satisfies the Bragg condition of the hologram recording layer 62 .
  • the hologram recording layer 62 diffracts the image light toward a predetermined direction with respect to the combiner 40 .
  • the hologram recording layer 62 highly efficiently diffracts the image light that travels in the direction orthogonal to the first direction D1 and enters the hologram element 60 at the incident angle ⁇ 1 (°).
  • the hologram recording layer 62 diffracts the image light with high efficiency in a direction orthogonal to the first direction D1 and having a diffraction angle of ⁇ 2 (°).
  • the hologram recording layer 62 may be a phase-type hologram or an amplitude-type hologram.
  • the hologram recording layer 62 may be a surface relief hologram, or may be a surface relief hologram as a computer generated hologram (CGH).
  • the hologram recording layer 62 may be a volume hologram in that it is easy to increase the area.
  • the hologram recording layer 62 may be a reflective volume hologram with sharp wavelength selectivity and angle selectivity.
  • FIG. 4 shows a method of exposing the photosensitive material layer 63 when creating a reflective volume hologram.
  • the photosensitive material layer 63 which is the raw material of the hologram recording layer 62, include layers such as silver salt sensitive material, gelatin dichromate, crosslinkable polymer, and photopolymer.
  • the thickness of the photosensitive material layer 63 and the obtained hologram recording layer 62 along the normal direction ND may be 1 ⁇ m or more and 100 ⁇ m or less, or may be 5 ⁇ m or more and 40 ⁇ m or less.
  • Coherent light emitted from a single light source is split into reference light L4A and object light L4B.
  • the reference light L4A is shaped into divergent light by the lens 71 for reference light.
  • the photosensitive material layer 63 is irradiated with the shaped reference light L4A.
  • the incident direction of the reference light L4A to the photosensitive material layer 63 matches the incident direction of the image light to the hologram element 60 shown in FIG.
  • the object light L4B is shaped into divergent light by the lens 72 for object light.
  • the photosensitive material layer 63 is irradiated with the shaped object light L4B. Different surfaces of the photosensitive material layer 63 are irradiated with the object light L4B and the reference light L4A.
  • An interference pattern is generated on the photosensitive material layer 63 by the object light L4B and the reference light L4A interfering with each other.
  • the interference pattern is recorded as interference fringes in the photosensitive material layer 63 .
  • interference fringes are recorded as a pattern of refractive index change.
  • the hologram recording layer 62 is obtained by desensitizing the photosensitive material layer 63 in which the interference fringes are recorded by exposing the entire surface.
  • the produced hologram recording layer 62 diffracts the illumination light L3A incident from the same direction as the reference light L4A with high diffraction efficiency. That is, the illumination light L3A incident from the same direction as the reference light L4A can satisfy the Bragg condition for the hologram recording layer 62.
  • FIG. By matching or corresponding the optical path of the reference light L4A with the optical path of the image light, the hologram recording layer 62 can be given the desired angle dependency.
  • the reproduction light L3B diffracted by the fabricated hologram recording layer 62 travels along the optical path of the object light L4B that has passed through the photosensitive material layer 63.
  • FIG. By matching or corresponding the optical path of the object light L4B from the combiner 40 to the user 5, the hologram recording layer 62 can be given a desired angle dependency.
  • the produced hologram recording layer 62 diffracts light of the same wavelength as the reference light L4A and the object light L4B with high efficiency. That is, light having the same wavelength as the reference light L4A and the object light L4B can satisfy the Bragg condition of the hologram recording layer 62.
  • FIG. Desired wavelength dependence can be imparted to the hologram recording layer 62 by matching or corresponding the wavelengths of the reference light L4A and the object light L4B to the center wavelength of the image light.
  • the image light is blue light
  • a laser beam with a wavelength of 430 nm or more and 490 nm or less may be used for exposure of the photosensitive material layer 63 .
  • a laser beam with a wavelength of 490 nm or more and 550 nm or less may be used for exposure of the photosensitive material layer 63 .
  • a laser beam with a wavelength of 600 nm or more and 660 nm or less may be used for exposure of the photosensitive material layer 63 .
  • the hologram element 60 may include multiple hologram recording layers 62 .
  • the plurality of hologram recording layers 62 can diffract light of different wavelengths with high efficiency.
  • image light from projection device 25 may include blue light, green light, and red light.
  • the hologram element 60 includes a hologram recording layer 62 that diffracts blue light with high efficiency, a hologram recording layer 62 that diffracts green light with high efficiency, and a hologram recording layer that diffracts red light with high efficiency. 62 may be included.
  • the hologram recording layer 62 is a volume hologram, the single hologram recording layer 62 may efficiently diffract light in a plurality of wavelength bands by multiple recording.
  • the hologram element 60 includes a hologram recording layer 62 and a first sheet 64 and a second sheet 66 stacked in the normal direction ND.
  • Hologram recording layer 62 is located between first sheet 64 and second sheet 66 .
  • hologram recording layer 62 is bonded to first sheet 64 and second sheet 66 .
  • the first sheet 64 and the second sheet 66 function as base materials that support the hologram recording layer 62 .
  • the first sheet 64 and the second sheet 66 function as protective layers that protect the hologram recording layer 62 .
  • the first sheet 64 and the second sheet 66 are transparent sheets. Examples of materials for the first sheet 64 and the second sheet 66 include polyethylene terephthalate, polyethylene naphthalate, polycarbonate, polystyrene, cyclic polyolefin, and the like.
  • the thickness along the normal direction ND of the first sheet 64 and the second sheet 66 may be 10 ⁇ m or more and 100 ⁇ m or less.
  • the first sheet 64 and the second sheet 66 may be identically constructed of the same material, may be constructed of different materials, or may have different constructions.
  • Hologram element 60 may include one of first sheet 64 and second sheet 66 . Hologram element 60 may not include both first sheet 64 and second sheet 66 .
  • FIG. 5 shows an example of the spectral transmittance of the hologram element 60.
  • FIG. 5 shows the transmittance of the hologram element 60 for each wavelength.
  • the transmittance is lowered at wavelengths ⁇ 1, ⁇ 2, and ⁇ 3.
  • Light corresponding to the drop in transmittance is diffracted by the hologram element 60 . That is, wavelength ⁇ 1 , wavelength ⁇ 2 and wavelength ⁇ 3 are the centers of the selected wavelengths of hologram element 60 .
  • a hologram element 60 having the optical properties shown in FIG. 5 may include three hologram recording layers 62 fabricated using the exposure method of FIG. The three hologram recording layers 62 use, as reference light L4A and object light L4B, light of three different wavelengths ⁇ 1, ⁇ 2, and ⁇ 3 corresponding to the minimum values of the spectral transmittance shown in FIG. can be made.
  • the diffraction efficiency of the hologram element 60 may be 60% or less, 40% or less, or 20% or less.
  • the hologram element 60 has a peak value of diffraction efficiency for the light of the plurality of wavelengths. For example, light with a wavelength of 460 nm, light with a wavelength of 532 nm, and light with a wavelength of 640 nm can be used to expose the photosensitive material layer 63 .
  • the "diffraction efficiency of the hologram element 60" means the maximum value of diffraction efficiency for light of each wavelength.
  • the diffraction efficiency of the hologram element 60 is measured by any one appropriate measurement method conforming to JISZ8791:2011.
  • the diffraction efficiency (%) of the hologram element 60 means the maximum ratio of the radiant flux (watts) of the first-order diffracted light to the radiant flux (watts; W) of the illumination light to the hologram element 60 . Therefore, the radiant flux (watts) of the first-order diffracted light is measured while the hologram element 60 is irradiated with the illumination light satisfying the Bragg condition. Specifically, the optical axis of the illumination light L3A with respect to the hologram element 60 is aligned with the optical axis of the reference light L4A with respect to the photosensitive material layer 63 during exposure.
  • the radiant flux (watts) of the first-order diffracted light can be specified by measuring the radiant flux of the diffracted light emitted from the hologram element 60 in a direction parallel to the optical path of the object light L4B during exposure.
  • the optical axis is identified as the optical path of highest intensity.
  • the hologram recording layer 62 may be a phase-type hologram or an amplitude-type hologram.
  • the hologram recording layer 62 may be a surface relief hologram, or may be a surface relief hologram as a computer generated hologram (CGH).
  • the hologram recording layer 62 may be a volume hologram in that it is easy to increase the area.
  • the hologram recording layer 62 may be a reflective volume hologram with sharp wavelength selectivity and angle selectivity.
  • the full width at half maximum (nm) in the wavelength distribution of the diffraction efficiency of the hologram element 60 may be 20 nm or less, 10 nm or less, or 5 nm or less.
  • the full width at half maximum means an interval (nm) between two wavelengths located on both sides of a wavelength at which a peak value of diffraction efficiency is obtained and at which half of the peak value of diffraction efficiency is ensured.
  • the “full width at half maximum (nm) in the wavelength distribution of the diffraction efficiency of the hologram element 60” is the maximum value of the full width at half maximum for light of each wavelength.
  • image light L61 is emitted from the projection device 25.
  • Image light L ⁇ b>61 is formed by image forming device 30 and directed to combiner 40 by projection optics 35 .
  • the image light L61 enters the combiner 40 from the first surface 41 .
  • the image light L61 enters the hologram element 60 of the combiner 40 as illumination light L62.
  • the hologram recording layer 62 of the hologram element 60 diffracts the image light L61 as the illumination light L62 with high efficiency.
  • the image light L61 diffracted by the hologram element 60 is reflected by the hologram element 60 toward the user 5 as reproduction light L63.
  • the user 5 can observe the image formed by the image light L61.
  • the user 5 observes the image not at the position of the image forming apparatus 30 but at a position behind the combiner 40 along the direction parallel to the optical path of the reproduction light L63. That is, according to the head-up display 20, the virtual image 80 observed by the user 5 can be displayed behind the combiner 40 with the user 5 as a reference.
  • the position where the virtual image 80 is displayed can be adjusted by the hologram element 60.
  • the virtual image 80 can be displayed farther from the user 5 and the combiner 40 by increasing the ratio of the distance DY to the distance DX (DY/DX).
  • the size of the virtual image 80 can be increased by increasing the ratio of the distance DY to the distance DX (DY/DX).
  • the external light source 90 may be reflected in the combiner 140 as an unintended noise image 91 .
  • the external light source is a light source provided in the installation environment of the head-up display, such as the sun or an outdoor lamp.
  • An external light source is a light source that emits light that is not intended to enter the combiner.
  • a light source that emits environmental light such as the sun or an outdoor light is exemplified.
  • the noise image 91 of the sun, an outdoor lamp, etc. is observed at a position different from the actual position of the external light source 90, such as the sun or an outdoor lamp. The appearance of such a noise image 91 degrades the display quality of the head-up display 120 and reduces visibility through the combiner 140 .
  • the appearance of the noise image 91 is considered to be due to the following reasons.
  • the noise light L112 from the external light source 90 enters the combiner 140 via the second surface 142 unlike the image light L111.
  • the noise light L112 reaches the first surface 141 and is reflected by the first surface 141 .
  • noise light L112 enters hologram element 160 .
  • the noise light L112 is diffracted by the hologram recording layer 162 with high efficiency and travels toward the user 5.
  • User 5 observes noise image 91 located behind combiner 140 .
  • the hologram element 60 diffracts the image light in the specular reflection direction with respect to the incident direction of the image light to the combiner 40 or in a direction inclined at an angle of 25° or less to the specular reflection direction. That is, the hologram element 60 diffracts the image light L61 in a direction that is not greatly inclined with respect to the regular reflection direction with respect to the incident direction of the image light L61 to the combiner 40 .
  • the hologram element 60 diffracts incident light that satisfies the Bragg condition in the specular direction.
  • the noise light L71 emitted from the external light source 90 passes through the second surface 42 and enters the combiner 40 .
  • the noise light L71 then travels through the combiner 40 toward the first surface 41 .
  • the noise light L71 is specularly reflected by the first surface 41 . That is, the incident angle ⁇ a of the noise light L71 to the first surface 41 is the same as the reflection angle ⁇ b of the reflected light L72 reflected by the first surface 41 .
  • the angle of reflection is the angle (°) formed by the traveling direction of the reflected light with respect to the normal direction to the object to be reflected, and is less than 90°.
  • the noise light L72 reflected by the first surface 41 then travels toward the hologram element 60.
  • the noise light L72 travels in a direction parallel to the image light L74 and enters the hologram element 60.
  • the noise light L72 satisfies the Bragg condition of the hologram recording layer 62 of the hologram element 60 and is diffracted by the hologram recording layer 62 with high efficiency. Due to the diffraction at the hologram recording layer 62, the noise light L72 is diffracted at the hologram recording layer 62 in the regular reflection direction.
  • the diffracted light L73 reflected by the hologram element 60 is emitted from the combiner 40 toward the user 5.
  • the incident angle ⁇ c of the noise light L72 to the hologram element 60 is the same as the reflection angle ⁇ b of the reflected light L72 reflected by the first surface 41 . Also, the incident angle ⁇ c of the noise light L72 to the hologram element 60 is the same as the diffraction angle ⁇ d of the diffracted light L73 reflected and diffracted by the hologram element 60 . As a result, the noise light L73 directed toward the user 5 travels in a direction parallel to the noise light L71 emitted from the external light source 90 .
  • the thickness of the combiner 40 in the normal direction ND is sufficiently thin with respect to the distance from the combiner 40 to the external light source 90 and the size of the external light source 90 .
  • the user 5 observes a noise image 91 of the external light source 90 at a position overlapping the external light source 90 . That is, the real image of the external light source 90 that can be observed through the combiner 40 and the noise image 91 of the external light source 90 are at least partially overlapped and observed. Therefore, it is possible to greatly reduce the sense of incongruity when the user 5 observes the noise image 91 . Furthermore, it is assumed that the user 5 does not notice the noise image 91 . Thereby, the display quality of the head-up display 20 is improved, and the visibility through the combiner 40 is improved.
  • the hologram element 60 may diffract the image light in a direction inclined at an angle of 25° or less in the regular reflection direction with respect to the incident direction of the image light to the combiner 40 .
  • the traveling direction of the noise light L73 toward the user 5 can be inclined by an angle of 25° or less with respect to the traveling direction of the noise light L71 emitted from the external light source 90 .
  • This example also allows the user 5 to observe the noise image 91 of the external light source 90 at a position at least partially overlapping the external light source 90 . That is, the real image of the external light source 90 that can be observed through the combiner 40 and the noise image 91 of the external light source 90 overlap each other, making it difficult to distinguish them from each other.
  • the noise image 91 is observed when the noise image 91 is observed. Discomfort can be suppressed.
  • the difference between the incident angle ⁇ 1 and the diffraction angle ⁇ 2 may be 25° or less, 20° or less, 15° or less, 10° or less, 5° or less, or 3° or less.
  • the hologram element 60 diffracts the image light in the specular reflection direction with respect to the incident direction of the image light to the combiner 40 or in a direction inclined at an angle of 25° or less to the specular reflection direction.
  • noise The image 91 can be made inconspicuous.
  • the hologram element 60 having this diffraction characteristic is used, a new problem described below may occur.
  • part of the image light L61 can be specularly reflected by the first surface 41. Also, part of the image light L61 may be specularly reflected by the second surface 42 . These reflected lights L64 travel in a direction parallel or substantially parallel to the light diffracted by the hologram element 60. FIG. That is, the reflected light L64 is also reflected toward the user 5. FIG. Therefore, the user 5 observes the ghost image 81 of the image by the reflected light L64 reflected by the surfaces 41 and 42 of the combiner 40.
  • FIG. As shown in FIGS. 2 and 6, the ghost image 81 not intended for display is viewed in the same direction as the virtual image 80 of the image intended for display. Overlapping of the ghost image 81 with the virtual image 80 may cause a problem that the visibility of the virtual image 80 intended to be displayed is reduced.
  • the distance LY between the image by the image light L64 reflected by the first surface 41 or the second surface 42, that is, the display position PX of the ghost image 81 and the hologram element 60 is four times or more.
  • the distance LX may be 6 times or more the distance LY, the distance LX may be 8 times or more the distance LY, the distance LX may be 12 times or more the distance LY, or the distance LX may be 16 times or more the distance LY. good.
  • the difference between the distance LX and the distance LY may be 1 m or more, 2 m or more, 4 m or more, or 8 m or more.
  • the display position PX of the virtual image 80 is sufficiently separated from the display position PY of the ghost image 81 . Therefore, when changing the observation target from the ghost image 81 to the virtual image 80, the user 5 needs to change the focus position of the eye. That is, it is possible to prevent the ghost image 81 from being clearly observed together with the virtual image 80 . Accordingly, it is possible to prevent the visibility of the virtual image 80 from being impaired by the ghost image 81 .
  • the reflectance of the antireflection layer 57 forming the first surface 41 it is effective to reduce the reflectance of the antireflection layer 57 forming the first surface 41 .
  • the radiant flux (W) of the noise light L72 incident on the hologram element 60 can be reduced.
  • the antireflection layer 57 can also suppress reflection of the image light L61 on the surface of the combiner 40 . Thereby, the ghost image 81 can be made inconspicuous.
  • the reflectance of the antireflection layer 57 may be 1% or less, or 0.5% or less.
  • the reflectance (%) of the antireflection layer 57 can be adjusted by the thickness of the antireflection layer 57, the number of layers included in the antireflection layer 57, the refractive index of the material forming the antireflection layer 57, and the like.
  • reducing the diffraction efficiency of the hologram element 60 is effective in making the noise image 91 inconspicuous.
  • the noise image 91 can be darkened.
  • the diffraction efficiency of the hologram element 60 may be 60% or less, 40% or less, or 20% or less.
  • the noise image 91 inconspicuous, it is effective to reduce the full width at half maximum W (nm) in the wavelength distribution of the diffraction efficiency of the hologram element 60 .
  • the noise image 91 can be darkened by reducing the full width at half maximum W (nm) in the wavelength distribution of the diffraction efficiency of the hologram element 60 .
  • the full width at half maximum W (nm) in the wavelength distribution of the diffraction efficiency of the hologram element 60 may be 20 nm or less, 10 nm or less, or 5 nm or less.
  • the diffraction efficiency (%) of the hologram element 60 and the full width at half maximum (nm) in the wavelength distribution of the diffraction efficiency of the hologram element 60 can be adjusted by changing the manufacturing conditions of the hologram element 60 .
  • the diffraction efficiency (%) and The full width at half maximum (nm) is adjustable.
  • the diffraction efficiency (%) and the full width at half maximum (nm) can be adjusted also by the intensity of the exposure light and the exposure time when the photosensitive material layer 63 is exposed.
  • Samples 1 to 5 of the combiner 40 shown in FIG. 8 were produced.
  • Combiners 40 of samples 1-5 included first substrate 51 , second substrate 52 , bonding layer 45 , and hologram element 60 .
  • Hologram element 60 included first sheet 64 , hologram recording layer 62 and second sheet 66 .
  • the combiner 40 according to Samples 1 to 5 was laminated glass in which the hologram element 60 was arranged in the bonding layer 45 .
  • the first substrate 51 and the second substrate 52 had a square shape of 150 mm ⁇ 150 mm when observed from the normal direction ND.
  • the hologram element 60 had a square shape of 100 mm ⁇ 100 mm when observed from the normal direction ND.
  • the hologram element 60 was arranged with respect to the first substrate 51 and the second substrate 52 so that the periphery of the hologram element 60 was located 25 mm inside from the periphery of the first substrate 51 and the second substrate 52 .
  • sample 1 In sample 1, the thickness T1 along the normal direction ND of the first substrate 51 was set to 2 mm. The thickness T2 along the normal direction ND of the second substrate 52 was set to 2 mm. Soda plate glass was used as the second substrate 52 . Polyvinyl butyral (PVB) was used as the bonding layer 45 . A thickness T3 of the bonding layer 45 between the hologram element 60 and the first substrate 51 was set to 380 ⁇ m. A thickness T3 of the bonding layer 45 between the hologram element 60 and the second substrate 52 was set to 380 ⁇ m.
  • the hologram element 60 included a single hologram recording layer 62 .
  • the hologram recording layer 62 is a reflective volume hologram.
  • This single hologram recording layer 62 had wavelength selectivity with respect to blue wavelength (460 nm) light, green wavelength (532 nm) light, and red wavelength (640 nm) light by multiple exposure. . That is, the blue wavelength light, the green wavelength light, and the red wavelength light each satisfied the Bragg condition for the single hologram recording layer 62 .
  • the hologram recording layer 62 was produced under the exposure conditions shown in FIG. 4 using blue wavelength light, green wavelength light, and red wavelength light.
  • the hologram element 60 was made to satisfy the Bragg condition with light incident at an incident angle of 56°.
  • the hologram element 60 was made to have a diffraction characteristic of reflecting light incident at an incident angle of 56° in the regular reflection direction.
  • the hologram recording layer 62 was produced using a crosslinkable polymer.
  • the thickness T6 of the hologram recording layer 62 was 15 ⁇ m.
  • the first sheet 64 and the second sheet 66 were polyethylene terephthalate sheets.
  • the thickness T7 of the first sheet 64 was 50 ⁇ m.
  • the thickness T8 of the second sheet 66 was 38 ⁇ m.
  • Sample 2 differed from Sample 1 in the diffraction characteristics of the hologram element. Sample 2 was otherwise similar to Sample 1.
  • the manufacturing method of the hologram recording layer 62 was the same as the manufacturing method of the hologram recording layer 62 in Sample 1, except for the incident direction of the object light.
  • the hologram element 60 was made so that the Bragg condition was satisfied by light incident at an incident angle of 54°.
  • the hologram element 60 was made to have a diffraction characteristic of reflecting light incident at an incident angle of 54° in a direction inclined by 10° with respect to the regular reflection direction.
  • Sample 3 differed from samples 1 and 2 in the diffraction properties of the hologram element. Sample 3 was otherwise similar to Samples 1 and 2.
  • the method of manufacturing the hologram recording layer 62 was the same as the method of manufacturing the hologram recording layer 62 in sample 1, except for the incident direction of the object light.
  • the hologram element 60 was made to satisfy the Bragg condition with light incident at an incident angle of 52°.
  • the hologram element 60 was made to have a diffraction characteristic of reflecting light incident at an incident angle of 52° in a direction inclined by 20° with respect to the regular reflection direction.
  • Sample 4 differed from Samples 1 to 3 in the diffraction characteristics of the hologram element. Sample 4 was otherwise similar to Samples 1-3.
  • the method of manufacturing the hologram recording layer 62 was the same as the method of manufacturing the hologram recording layer 62 in sample 1, except for the incident direction of the object light.
  • the hologram element 60 was made to satisfy the Bragg condition with light incident at an incident angle of 56°.
  • the hologram element 60 was made to have a diffraction characteristic of reflecting light incident at an incident angle of 56° in a direction inclined by 25° with respect to the regular reflection direction.
  • Sample 5 differed from Samples 1 to 4 in the diffraction characteristics of the hologram element. Sample 5 was otherwise similar to Samples 1-4.
  • the method of manufacturing the hologram recording layer 62 was the same as the method of manufacturing the hologram recording layer 62 in sample 1, except for the incident direction of the object light.
  • the hologram element 60 was made to satisfy the Bragg condition with light incident at an incident angle of 56°.
  • the hologram element 60 was made to have a diffraction characteristic of reflecting light incident at an incident angle of 56° in a direction inclined by 30° with respect to the specular reflection direction.
  • Samples 1-5 were placed on the windshield of an actual automobile.
  • a noise image 91 of an external light source 90 was observed in the combiner 40 of samples 1-5 by adjusting the position and orientation of the automobile.
  • the external light source 90 was an outdoor lamp.
  • the noise image 91 was mostly observed overlapping the real image of the external light source 90, and was not noticeable.
  • samples 2 to 4 the noise image 91 was not large and conspicuous, and the noise image 91 did not distract attention.
  • the noise image 91 was observed at a position greatly deviated from the real image of the external light source 90, and felt uncomfortable.
  • the size of the noise image 91 observed was the largest in sample 5 and the smallest in sample 1.
  • FIG. The color of the noise image 91 of sample 5 was significantly different from the color of the external light source 90, and was partially rainbow colored.
  • a head-up display 20 was produced by combining Samples 1 to 5 with a projection device 25 .
  • the projection device 25 a commercially available projection device for the head-up display 20 was used.
  • the projection device 25 was common among the samples 1-5.
  • a virtual image 80 of an image displayed by the head-up display 20 and a ghost image 81 were observed.
  • the display position PX of virtual image 80 was 2 m away from combiner 40 .
  • the display position PY of the ghost image 81 was 50 cm away from the combiner 40 .
  • the virtual image 80 could be observed without the ghost image 81 being conscious. That is, the ghost image 81 did not deteriorate the visibility of the virtual image 80 .
  • the combiner 40 projects image light used for the head-up display 20 .
  • the combiner 40 includes a first substrate 51 including a first surface 41 that serves as an incident surface for image light, a second substrate 52 including a second surface 42, and a bonding layer 45 that bonds the first substrate 51 and the second substrate 52 together. and a hologram element 60 positioned between the first substrate 51 and the second substrate 52 .
  • the hologram element 60 may diffract the image light in a specular reflection direction with respect to the incident direction of the image light to the combiner 40 or in a direction inclined at an angle of 25° or less to the specular reflection direction.
  • the external light source 90 is observed by the light emitted from the external light source 90 , incident on the combiner 40 from the second surface 42 , reflected by the first surface 41 , diffracted by the hologram element 60 , and emitted from the first surface 41 . may at least partially overlap the real image of the external light source 90 viewed through the combiner 40 .
  • the real image of the external light source 90 and the noise image 91 are hardly distinguished from each other, and the noise image 91 can be made inconspicuous. Therefore, the display quality of the head-up display 20 can be improved, and the visibility through the combiner 40 can be improved.
  • the noise image 91 can be made inconspicuous, but new problems may arise. That is, a ghost image 81 not intended for display can be observed in the same direction as the virtual image 80 of the image intended for display. At this time, ghost image 81 overlaps virtual image 80, which may reduce the visibility of virtual image 80 intended to be displayed.
  • the distance LX between the display position PX of the image (virtual image) 80 by the image light diffracted by the hologram element 60 and the hologram element 60 is adjusted to the first surface 41 or the second surface. It may be four times or more the distance LB between the display position PB of the image 81 by the image light reflected by 42 and the hologram element 60 .
  • the display position PX of the virtual image 80 is greatly separated from the display position PY of the ghost image 81 . Therefore, when changing the observation target from the ghost image 81 to the virtual image 80, the user 5 needs to change the focus position of the eye. That is, it is possible to prevent the ghost image 81 from being clearly observed together with the virtual image 80 . Also, the ghost image 81 is sufficiently small compared to the virtual image 80 that is enlarged and projected. These can prevent the ghost image 81 from impairing the visibility of the virtual image 80 . The display quality of the head-up display 20 is improved.
  • the first substrate 51 may include an antireflection layer 57 forming the first surface 41 .
  • the antireflection layer 57 can make unintended noise images 91 and ghost images 81 inconspicuous.
  • the second substrate 52 may include an antireflection layer forming the second surface 42 .
  • the hologram element 60 may diffract the image light in a direction inclined with respect to the specular reflection direction with respect to the incident direction of the image light to the combiner 40 .
  • FIG. 9 shows the incident angle ⁇ 1 of the image light L91 to the combiner 40 and the hologram element 60, the diffraction angle ⁇ 2 of the image light L91 at the hologram element 60, and the reflection angle ⁇ 3 of the image light L91 at the combiner 40.
  • Light L92 shown in FIG. 9 is the optical path of reflected light specularly reflected by the first surface 41 or the second surface 42 of the combiner 40 .
  • the angle of incidence ⁇ 1 and the angle of reflection ⁇ 3 are equal.
  • the diffraction angle ⁇ 2 is different from the incident angle ⁇ 1 and the reflection angle ⁇ 3. Therefore, the direction in which the user 5 observes the virtual image 80 is non-parallel to the direction in which the user 5 observes the ghost image 81 .
  • the virtual image 80 can be displayed by being shifted from the ghost image 81 . Therefore, it becomes easier for the user 5 to distinguish between the virtual image 80 and the ghost image 81 . That is, the visibility of the virtual image 80 can be improved.
  • the virtual image 80 can be easily distinguished from the ghost image 81 and visually recognized. Therefore, by increasing the difference between the incident angle ⁇ 1 of the combiner 40 to the hologram element 60 and the diffraction angle ⁇ 2 of the combiner 40 at the hologram element 60, that is, by increasing the angle ⁇ 4 in FIG. 9, the visibility of the virtual image 80 is further improved. can.
  • the difference ⁇ 4 between the incident angle ⁇ 1 to the combiner 40 and the diffraction angle ⁇ 2 at the combiner 40 may be 3° or more, 5° or more, or 10° or more. This setting can sufficiently improve the visibility of the virtual image 80 .
  • the incident direction and the diffraction direction of the image light are inclined to different sides with respect to the normal direction ND.
  • the magnitude of the diffraction angle ⁇ 2 may be smaller than the magnitude of the incident angle ⁇ 1. That is, the diffraction angle ⁇ 2 may be smaller than the reflection angle ⁇ 3.
  • the user 5 observes the ghost image 81 due to the reflected light L92 below the virtual image 80 due to the diffracted light in the vertical direction.
  • the ghost image 81 is observed at a position closer to the dashboard than the virtual image 80 is.
  • the ghost image 81 becomes less likely to enter the field of view of the user 5 . That is, by making the magnitude of the diffracted light ⁇ 2 smaller than the magnitude of the incident angle ⁇ 1, the ghost image 81 can be made inconspicuous and the virtual image 80 can be easily observed.
  • the image light L92 reflected by the first surface 41 or the second surface 42 of the combiner 40 and directed toward the user 5 is horizontally (in the illustrated example, the second direction D2) It may proceed in an upwardly sloping direction.
  • the user 5 observes the ghost image 81 in a direction tilted downward from the horizontal direction.
  • a ghost image 81 is observed overlapping the hood or at a position close to the hood. Therefore, it becomes easy to distinguish the virtual image 80 from the ghost image 81 and observe it.
  • the magnitude of the incident angle .theta.1 of the image light is larger than the magnitude of the tilt angle .theta.5 of the combiner 40.
  • the magnitude of the diffracted light ⁇ 2 tends to be smaller than the magnitude of the incident angle ⁇ 1.
  • the reflected light L92 of the image light reflected by the first surface 41 or the second surface 42 of the combiner 40 tends to travel in a direction inclined upward with respect to the horizontal direction.
  • the tilt angle ⁇ 5 (°) of the combiner 40 is the magnitude of the angle formed by the normal direction ND of the combiner 40 with respect to the vertical direction (the third direction D3 in the illustrated example), and is less than 90°. is the value of The tilt angle ⁇ 5 (°) of the combiner 40 is specified as the tilt angle at the central position (gravity center position) of the region of the hologram element 60 where the image light can enter.
  • the incident angle ⁇ 1 (°), the diffraction angle ⁇ 2 (°), and the reflection angle ⁇ 3 (°) of the image light are, as already explained, at the center position (center of gravity) of the region of the hologram element 60 where the image light can enter. It is specified by the optical path of the incident image light.
  • the optical path length Lz of the image light L91 from the projection device 25 to the combiner 40 may be lengthened.
  • the optical path length Lz is the optical path length of image light from the projection device 25 to the combiner 40 . More precisely, Lz is the output end 25a of the projection device 25 for the image light traveling to the center position (center of gravity) of the region on which the image light is incident on the hologram element 60, that is, from the most light-emitting surface of the projection device 25 to the combiner 40. is the optical path length to In the example shown in FIG. 9, the optical path length Lz is lengthened from the position of the first projection device 25A to the position of the second projection device 25B.
  • the position where the ghost image 81 is observed moves from the first ghost image position PY1 to the second ghost image position PY2. and approaches the position where the virtual image 80 is observed.
  • the direction in which the user 5 observes the ghost image 81 is inclined to the direction in which the user 5 observes the virtual image 80 . Therefore, overlapping of the ghost image 81 and the virtual image 80 is suppressed, and it becomes easy to distinguish the virtual image 80 from the ghost image 81 and visually recognize it.
  • the optical path length Lz of the image light L91 from the combiner 40 to the image forming apparatus 30 may be 200 mm or longer, 250 mm or longer, 300 mm or longer, 350 mm or longer, or 400 mm or longer.
  • the value of the formula "Lz ⁇ sin ⁇ 4" using the optical path length Lz (mm) and the angle difference ⁇ 4 (°) may be 10 mm or more, 20 mm or more, 30 mm or more, or 40 mm or more. Well, it may be 50 mm or more.
  • “Lz ⁇ sin ⁇ 4” is an index indicating how far the ghost image 81 is observed from the direction in which the virtual image 80 is observed. By adjusting the magnitude of the formula “Lz ⁇ sin ⁇ 4”, the visibility of the virtual image 80 can be effectively improved in the head-up display 20 using the front window 14 of the automobile 12 shown in FIG.
  • the optical path length Lz of the image light L91 from the combiner 40 to the projection device 25 is linear.
  • an optical element that changes the optical path of the image light L91 such as a reflecting mirror, may be installed between the combiner 40 and the projection device 25.
  • FIG. By providing one or more optical elements for folding back the optical path of the image light L91, the optical path length Lz can be increased.
  • the ghost image 81 due to specularly reflected light at the combiner 40 is observed in a different direction from the virtual image 80.
  • the image light L131 displaying the virtual image 80 and the image light L132 displaying the ghost image 81 enter different regions of the combiner 40 .
  • the image light L131 displaying the virtual image 80 enters the area of the combiner 40 where the hologram element 60 is located. At least a portion of the image light L132 displaying the virtual image 80 may enter a region of the combiner 40 where the hologram element 60 is not located.
  • the head-up display 20 may include a light blocking member 32 that blocks part of the image light emitted from the image forming device 30 .
  • the light shielding member 32 may be arranged so as to be shifted from the optical path of the image light L131 emitted from the image forming apparatus 30 and diffracted by the hologram element 60 of the combiner 40 .
  • the light shielding member 32 is arranged outside the optical path of the image light L131. Therefore, the light blocking member 32 does not block the image light L131. Thereby, the virtual image 80 can be observed brightly.
  • the light shielding member 32 is positioned outside the optical path of the image light L131 and absorbs the image light L132 that does not enter the hologram element 60 .
  • the light shielding member 32 has a visible light shielding property.
  • the visible light shielding property means that the visible light transmittance is (numerical value) % or less, preferably (numerical value) % or less. As described above, the visible light transmittance is measured using a spectrophotometer ("UV-3100PC" manufactured by Shimadzu Corporation, compliant with JIS K0115) at a wavelength of 380 nm or more and 780 nm or less. It is specified as the average total light transmittance at each wavelength, measured in degrees.
  • the visible light blocking property of the light blocking member 32 may be light absorption or light reflection.
  • the configuration of the light shielding member 32 is not particularly limited.
  • the material of the light shielding member 32 may be metal with high reflectance.
  • the material of the light shielding member 32 may contain absorptive pigments such as carbon black and titanium black.
  • the shape of the light shielding member 32 is not particularly limited.
  • the light shielding member 32 may be plate-shaped or box-shaped.
  • the difference between the diffraction angle ⁇ 2 and the incident angle ⁇ 1 may be increased.
  • the difference ⁇ 4 between the diffraction angle ⁇ 2 and the incident angle ⁇ 1 may be 3° or more, 5° or more, or 10° or more.
  • the optical path length Lz of the image light from the projection device 25 to the combiner 40 may be lengthened.
  • the size of the projection image projected from the image forming apparatus 30 onto the combiner 40 may be reduced. At this time, by adjusting the diffraction characteristics of the hologram recording layer 62, the magnification of the virtual image 80 with respect to the projected image can be increased, and a large virtual image 80 can be displayed.
  • the image light incident on the combiner 40 is diffused to some extent. Due to the diffusion of the image light, the virtual image 80 can be observed even if the observer's viewpoint position is shifted. On the other hand, when the image light becomes divergent light and enters the combiner 40, the ghost image 81 can be observed in a direction different from the virtual image 80 as described above. By controlling the divergence of the image light, the ghost image 81 is less likely to be observed.
  • the head-up display 20 and the projection device 25 may include an optical path adjusting member 34 arranged between the image forming device 30 and the combiner 40 .
  • the optical path adjusting member 34 may adjust the optical path of the image light.
  • the optical path adjusting member 34 may have an anisotropic diffusion function.
  • the optical path adjusting member 34 having an anisotropic diffusion function can suppress the generation of the ghost image 81 .
  • the optical path adjustment member 34 may suppress diffusion in each direction in the first evaluation plane P1 parallel to both the normal direction ND of the combiner 40 and the optical axis 95 of the image light directed toward the hologram element 60.
  • the optical path adjusting member 34 has a stronger diffusing function in the second evaluation plane P2, which is perpendicular to the first evaluation plane P1 and parallel to the optical axis 95 of the image light directed to the hologram element 60, than in the first evaluation plane P1. may have.
  • the optical axis 95 of the image light directed to the hologram element 60 is the optical path having the highest intensity among the optical paths of the image light directed to the center (center of gravity) of the area of the hologram element 60 where the image light can enter. match.
  • the paper plane of FIG. 13 is parallel to the first evaluation plane P1.
  • the second evaluation plane P2 is a plane that passes through the optical axis 95 and is orthogonal to the plane of FIG.
  • the second evaluation plane P2 is a plane parallel to both the optical axis 95 and the first direction D1.
  • the diffusion function of the optical path adjusting member 34 within the first evaluation plane P1 is evaluated based on the luminance distribution on the optical path adjusting member 34 in various directions along the first evaluation plane P1.
  • the diffusion function of the optical path adjusting member 34 within the second evaluation plane P2 is evaluated based on the luminance distribution on the optical path adjusting member 34 in various directions along the second evaluation plane P2.
  • the diffusion function is strong, and when the full width at half maximum FWHM in the angular distribution of luminance is small, the diffusion function is weak.
  • the angular distribution of luminance is measured using parallel light traveling in the normal direction to the light exit surface of the optical path adjusting member 34 as incident light.
  • the full width at half maximum FWHM is an angular range (°) in which luminance equal to or greater than half the maximum luminance is obtained in the angular distribution of luminance.
  • the full width at half maximum FWHM2 at the second evaluation plane P2 is significantly larger than the full width at half maximum FWHM1 at the first evaluation plane P1.
  • the optical path adjustment member 34 has a stronger diffusion function within the second evaluation plane P2 than within the first evaluation plane P1.
  • the optical path adjusting member 34 having the anisotropic diffusion function is not particularly limited. 15 to 17 show specific examples of the optical path adjustment member 34. FIG.
  • the optical path adjusting member 34 may include a lens sheet 36.
  • the lens sheet 36 may be a lenticular lens.
  • the lens sheet 36 includes a sheet-like body portion 36a and a plurality of unit lenses 36b supported by the body portion 36a.
  • a plurality of unit lenses may constitute a linear array lens.
  • a plurality of unit lenses 36b are arranged in the X direction DX. Each unit lens 36b may extend in a direction non-parallel to the X direction DX.
  • the illustrated unit lens 36b extends linearly in the Y direction orthogonal to the X direction DX.
  • the body portion 36 a may face the image forming apparatus 30 and the plurality of unit lenses 36 b may face the combiner 40 .
  • the body portion 36 a may face the combiner 40 and the plurality of unit lenses 36 b may face the image forming apparatus 30 .
  • the illustrated lens sheet 36 has a strong diffusion function in the X direction DX and a weak diffusion function in the Y direction DY. Therefore, the lens sheet 36 may be incorporated into the head-up display 20 so that the X direction DX crosses the first evaluation plane P1.
  • the lens sheet 36 may be incorporated into the head-up display 20 so that the X direction DX is orthogonal to the first evaluation plane P1.
  • At least one of the body portion 36a and the unit lens 36b may contain a diffusion component.
  • diffusion components include metal compounds, gas-containing porous substances, resin beads around which metal compounds are retained, white fine particles, and simple air bubbles.
  • the lens sheet 36 shown in FIG. 15 may be used in combination with other optical sheets.
  • As an optical sheet a light diffusion sheet having an isotropic diffusion function is exemplified.
  • the optical path adjustment member 34 may include a light control sheet 37.
  • the light control sheet 37 is a so-called louver sheet in which a louver-shaped structure is formed inside the sheet.
  • the light control sheet 37 includes absorption portions 37a and transmission portions 37b alternately arranged in the X direction DX.
  • the absorbing portion 37a has visible light absorbing properties.
  • the absorption part 37a may contain a pigment having visible light absorption properties.
  • the transmissive portion 37b may be transparent.
  • the absorbing portion 37a and the transmitting portion 37b may extend in a direction non-parallel to the X direction DX.
  • the illustrated absorbing portion 37a and transmitting portion 37b linearly extend in the Y direction orthogonal to the X direction DX.
  • the illustrated light control sheet 37 includes a sheet-like base portion 37c.
  • the base portion 37c supports the absorbing portion 37a and the transmitting portion 37b from the Z direction DZ.
  • the Z-direction DZ is orthogonal to the X-direction DX and orthogonal to the Y-direction DY.
  • the base portion 37c is transparent.
  • the base portion 37c may be made of the same material as the transmissive portion 37b.
  • the base portion 37c may be seamless with the transparent portion 37b.
  • the base portion 37c may be integrally molded with the transmission portion 37b.
  • the width of each transmissive portion 37b in the X direction DX is wide at positions close to the base portion 37c and narrows away from the base portion 37c.
  • the light control sheet 37 may be arranged such that the base portion 37 c faces the combiner 40 .
  • the light control sheet 37 may be arranged such that the base portion 37 c faces the image forming apparatus 30 .
  • the light control sheet 37 regulates the traveling direction of transmitted light within a plane parallel to both the X-direction DX and the Z-direction DZ within a certain angular range.
  • the light control sheet 37 does not restrict the traveling direction of transmitted light within a plane parallel to both the Y direction DY and the Z direction DZ.
  • the light control sheet 37 has the function of strongly restricting the output angle in the X direction DX, but does not have the function of strongly restricting the output angle in the Y direction DY.
  • the light control sheet 37 strongly controls the traveling direction in the X direction DX and does not strongly control the traveling direction in the Y direction DY.
  • the optical path adjustment member 34 including the light control sheet 37 has a strong diffusion function in the Y direction DY and a weak diffusion function in the X direction DX.
  • the optical path adjustment member 34 including the light control sheet 37 may be incorporated into the head-up display 20 so that the Y direction DY crosses the first evaluation plane P1.
  • the optical path adjustment member 34 including the light control sheet 37 may be incorporated into the head-up display 20 so that the Y direction DY is orthogonal to the first evaluation plane P1.
  • the optical path adjustment member 34 may include a light diffusion sheet 38 together with the light control sheet 37 .
  • the light diffusion sheet 38 may have an isotropic diffusion function.
  • the light diffusion sheet 38 may include a sheet-like transparent portion and a diffusion component dispersed within the transparent portion.
  • the base portion 37c of the light control sheet 37 may contain a diffusion component. Examples of diffusion components include metal compounds, gas-containing porous substances, resin beads around which metal compounds are retained, white fine particles, and simple air bubbles.
  • the optical path adjustment member 34 may include an anisotropic light diffusion sheet 39.
  • the anisotropic light diffusion sheet 39 is not particularly limited.
  • the anisotropic light diffusion sheet 39 shown in FIG. 17 is subjected to hairline processing.
  • the anisotropic light diffusion sheet 39 shown in FIG. 17 mainly diffuses in the X direction DX.
  • the illustrated anisotropic light diffusion sheet 39 has a strong diffusion function in the X direction DX and a weak diffusion function in the Y direction DY. Therefore, the anisotropic light diffusion sheet 39 may be incorporated into the head-up display 20 so that the X direction DX crosses the first evaluation surface P1.
  • the anisotropic light diffusion sheet 39 may be incorporated into the head-up display 20 such that the X direction DX is orthogonal to the first evaluation surface P1.
  • the anisotropic light diffusion sheet 39 is not limited to hairline processing.
  • the anisotropic light diffusion sheet 39 may include a base material and a diffusion component having a refractive index different from that of the base material.
  • the anisotropic light diffusion sheet 39 can exhibit an anisotropic diffusion function by arranging the diffusion components in one direction having the longitudinal direction.
  • the noise light L122 from the external light source 90 is incident on the combiner 140 via the second surface 142 unlike the image light L121 from the image forming apparatus 130 .
  • This noise light L122 travels in the opposite direction parallel to the image light L121.
  • the noise light L122 satisfies the Bragg condition of the hologram recording layer 162, like the image light L121.
  • Noise light L122 is diffracted by hologram element 160 with high diffraction efficiency.
  • the diffracted noise light L122 reaches the second surface 142 and is reflected by the second surface 142 . Reflection on the second surface 142 is regular reflection. After that, noise light L122 passes through hologram element 160 without being diffracted by hologram element 160 .
  • Noise light L122 is emitted from combiner 140 toward user 5 .
  • the noise light L122 forms a second noise image 92, and the user 5 observes the second noise image 92 of the external light source 90 behind the combiner 140.
  • FIG. Like the noise image 91, the second noise image 92 can be observed at a position greatly deviated from the position of the external light source 90 that should be there. Therefore, the user 5 feels uncomfortable.
  • the appearance of the second noise image 92 reduces the display quality of the head-up display 120 and reduces visibility through the combiner 140 .
  • the dotted line indicates the optical path along which the hologram recording layer 62 diffracts the image light L101 in the specular direction.
  • Noise light L102A which travels in the opposite direction along the incident optical path of image light L101 to combiner 40 and enters second surface 42 of combiner 40, is diffracted by hologram recording layer 62 in the specular direction.
  • the noise light L102A is further specularly reflected by the second surface 42 .
  • the direction of emission from the combiner 40 of the noise light L102A forming the second noise image 92 is parallel to the direction of incidence on the combiner 40 .
  • the thickness of the combiner 40 is sufficiently thin, and the second noise image 92 is observed overlapping the external light source 90 .
  • the hologram element 60 diffracts the image light L101 in the regular reflection direction with respect to the incident direction of the image light L101 to the combiner 40, thereby making the second noise image 92 inconspicuous. Therefore, it is possible to suppress discomfort caused by the second noise image 92, thereby improving the visibility.
  • the hologram element 60 diffracts the image light L101 in a direction inclined at an angle of 25° or less in the specular direction with respect to the incident direction of the image light L101 to the combiner 40, resulting in the second noise The sense of discomfort caused by the image 92 can be sufficiently suppressed.
  • the difference between the incident angle ⁇ 1 to the hologram element 60 and the diffraction angle ⁇ 2 at the hologram element 60 is determined.
  • the height may be 20° or less, 15° or less, 10°, 5°, or 3°.
  • the diffraction angle ⁇ 2 may be different from the incident angle ⁇ 1 in terms of making it easier to distinguish the virtual image 80 from the ghost image 81 of the image light.
  • the diffraction angle ⁇ 2 of the image light L101 may be larger than the incident angle ⁇ 1 of the image light L101. According to this setting, the traveling direction of the noise light L102 that has passed through the combiner 40 is greatly inclined from the traveling direction of the image light L101 that forms the virtual image 80 .
  • the image light L101 indicated by the solid line is diffracted by the hologram element 60 so that the diffraction angle ⁇ 2 is larger than the incident angle ⁇ 1.
  • a solid line in FIG. 10 shows the optical path of the noise light L102 when the hologram element 60 having this diffraction characteristic is used.
  • the image light L101A indicated by the dotted line in FIG. 10 is diffracted by the hologram element 60 so that the diffraction angle ⁇ 2 becomes equal to the incident angle ⁇ 1.
  • the optical path of the noise light L102 when the hologram element 60 having this diffraction characteristic is used is indicated by a dotted line in FIG.
  • the image light L101B indicated by the two-dot chain line in FIG. 10 is diffracted by the hologram element 60 so that the diffraction angle ⁇ 2 is smaller than the incident angle ⁇ 1.
  • the optical path of the noise light L102B when the hologram element 60 having this diffraction characteristic is used is indicated by a chain double-dashed line in FIG.
  • the optical path of the noise light forming the second noise image 92 is symmetrical with the optical path of the image light forming the virtual image 80 with respect to the normal direction ND.
  • the incident light and the diffracted light of the image light L101 are normally normal It inclines to the opposite side with respect to the direction ND. Therefore, when the diffraction angle ⁇ 3 of the image light L101 becomes larger than the incident angle ⁇ 1 of the image light L101, the traveling direction of the noise light is greatly inclined with respect to the traveling direction of the image light.
  • the noise light travels to a position different from the position to which the image light travels. That is, the noise light stops advancing toward the user 5 .
  • the hologram element 60 diffracts the image light so that the diffraction angle ⁇ 2 is larger than the incident angle ⁇ 1, thereby effectively suppressing the discomfort caused by the second noise image 92 of the external light source 90 .
  • the diffraction angle ⁇ 2 may be increased. Since the image light L101 and the noise light L102 travel in symmetrical directions with respect to the normal direction ND, the second noise image 92 can also be made difficult for the user 5 to observe by increasing the diffracted light ⁇ 2.
  • the magnitude of the diffraction angle ⁇ 2 can be appropriately set according to the application.
  • a head-up display 20 applied to a front window 14 of an automobile 12 Then, the diffraction angle ⁇ 2 of the image light by the hologram element 60 of the combiner 40 may be 30° or more, 35° or more, 40° or more, or 45° or more. This setting makes it difficult for the noise light to travel toward the user 5 .
  • the discomfort of the noise image 91 can also be suppressed by adjusting the tilt angle ⁇ 5 of the combiner 40 and the incident angle ⁇ 1 of the image light L74.
  • the tilt angle ⁇ 5 (°) of the combiner 40 is the magnitude of the angle formed by the normal direction ND of the combiner 40 with respect to the vertical direction (the third direction D3 in the illustrated example). , is less than 90°.
  • the tilt angle ⁇ 5 (°) of the combiner 40 is specified as the tilt angle at the central position (center of gravity position) of the region of the combiner 40 where the image light can enter.
  • the incident angle ⁇ 1 (°) of the image light is specified as the incident angle of the image light incident on the central position of the region of the combiner 40 where the image light can be incident, as described above.
  • the image light L74 from the image forming device 30 normally enters the combiner 40 from below in the vertical direction. Then, in a cross section including the image light L74 and the normal direction ND of the combiner 40, the incident light and the diffracted light of the image light L74 are generally inclined opposite to the normal direction ND. At this time, by increasing the angle ⁇ 6 (°), which is the sum of the tilt angle ⁇ 5 (°) of the combiner 40 and the incident angle ⁇ 1 (°) of the image light to the combiner 40, the discomfort due to the noise image 91 can be suppressed.
  • the noise light L71 forming the noise image 91 enters the combiner 40 from a direction greatly inclined with respect to the vertical direction.
  • An external light source 90 such as an outdoor light or the sun is normally positioned vertically above the vehicle 12 . Therefore, by increasing the angle ⁇ 6 (°), it becomes difficult for the noise light L71 forming the noise image 91 to enter the combiner 40 . As a result, by increasing the angle ⁇ 6 (°), the noise image 91 can be made inconspicuous, and discomfort caused by the noise image 91 can be suppressed.
  • the angle ⁇ 6 (°) which is the sum of the tilt angle ⁇ 5 (°) of the combiner 40 and the incident angle ⁇ 1 (°) of the image light to the combiner 40, may be 70° or more. , may be 80° or more, may be 90° or more, may be greater than 90°, or may be 100° or more.
  • the tilt angle ⁇ 5 of the combiner 40 and the incident angle ⁇ 1 of the image light to the combiner 40 may be set as follows.
  • the inclination angle ⁇ 5 of the combiner 40 is set to 25° or more and 55° or less, and the magnitude of the incident angle ⁇ 1 of the image light to the combiner 40 is set to an angle larger than 0° and 60° or less than the magnitude of the inclination angle ⁇ 5 of the combiner 40. You can make it bigger.
  • the tilt angle ⁇ 5 of the combiner 40 is set to 25° or more and 50° or less, and the magnitude of the incident angle ⁇ 1 of the image light to the combiner 40 is set to be 10° or more and 60° or less than the magnitude of the tilt angle ⁇ 5 of the combiner 40. You can make it bigger.
  • the inclination angle ⁇ 5 of the combiner 40 is set to 25° or more and 45° or less, and the magnitude of the incident angle ⁇ 1 of the image light to the combiner 40 is increased by an angle larger than 20° and 60° or less than the magnitude of the inclination angle ⁇ 5 of the combiner 40. You can make it bigger.
  • the tilt angle ⁇ 5 of the combiner 40 is set to 25° or more and 40° or less, and the magnitude of the incident angle ⁇ 1 of the image light to the combiner 40 is set to be more than 30° and 60° or less than the magnitude of the tilt angle ⁇ 5 of the combiner 40. You can make it bigger. According to the above settings, the size of the diffracted light ⁇ 2 is likely to be smaller than the size of the incident angle ⁇ 1, thereby facilitating observation of the virtual image 80 while distinguishing it from the ghost image 81 . Further, according to the above setting, the diffraction angle ⁇ 2 of the image light at the combiner 40 tends to be large, and the second noise image 92 can be made difficult to observe.
  • the angle ⁇ 6 (°) which is the sum of the tilt angle ⁇ 5 of the combiner 40 and the incident angle ⁇ 1 (°) of the image light to the combiner 40, tends to increase, and the noise image 91 is formed.
  • the image can be made difficult to enter the combiner 40 .
  • the means for suppressing the discomfort due to the noise image 91, the means for suppressing the discomfort due to the second noise image 92, and the means for suppressing the decrease in visibility due to the ghost image 81 have been described. may be used.
  • D1 first direction, D2: second direction, D3: third direction, ND: normal direction, L4A: reference light, L4B: object light, L3A: illumination light, L3B: reproduced light, 5: user, 10 : moving body 12: automobile 14: front window 20: head-up display 25: projection device 25a: emission end 30: image forming device 31: image forming unit 32: light shielding member 34: optical path adjustment Member 35: Projection optical system 36: Lens sheet 36a: Body portion 36b: Unit lens 37: Light control sheet 37a: Absorption portion 37b: Transmission portion 37c: Base portion 38: Light diffusion sheet 39: anisotropic light diffusion sheet, 40: combiner, 41: first surface, 42: second surface, 45: bonding layer, 51: first substrate, 52: second substrate, 56: transparent plate, 57: antireflection layer , 57a: low refractive index layer, 57b: high refractive index layer, 60: hologram element, 62: hologram recording layer, 63: photosensitive material layer

Abstract

A combiner 40 is used for a head-up display 20 and receives image light projected thereto. The combiner 40 has: a first substrate 51 that includes a first surface 41 serving as an incident surface for image light; a second substrate 52 that includes a second surface 42; a bonding layer 45 that bonds the first substrate 51 and the second substrate 52; and a holographic element 60 located between the first substrate 51 and the second substrate 52. The holographic element 60 diffracts image light: in a direction of positive reflection relative to the direction of incidence of the image light upon the combiner 40; or in a direction inclined at an angle of 5° or less to the direction of positive reflection. A distance LX between the holographic element 60 and a display position PX of an imaginary image 80 that is caused by the image light diffracted by the holographic element 60 is four or more times greater than a distance LY between the holographic element 60 and a display position PY of a ghost image 81 that is caused by the image light reflected by the first surface 41 or the second surface 42.

Description

コンバイナ、ヘッドアップディスプレイ、移動体、及び自動車Combiners, head-up displays, mobiles, and automobiles
 本開示は、コンバイナ、ヘッドアップディスプレイ、移動体、及び自動車に関する。 The present disclosure relates to combiners, head-up displays, moving bodies, and automobiles.
 ヘッドアップディスプレイは、使用者の視野内に表示を行う。ヘッドアップディスプレイは、透明なコンバイナを有している。コンバイナに画像光が投射される。特許文献1(JP2000-35513A)に開示されたヘッドアップディスプレイにおいて、コンバイナはホログラム素子を含んでいる。ホログラム素子は、画像光を回折して使用者に向ける。使用者は、コンバイナ内に画像を観察できる。また、使用者は、透明なコンバイナを介して視野を確保できる。 The head-up display displays within the user's field of view. The head-up display has a transparent combiner. Image light is projected onto the combiner. In the head-up display disclosed in Patent Document 1 (JP2000-35513A), the combiner includes a hologram element. The hologram element diffracts the image light and directs it to the user. A user can observe the images in the combiner. Also, the user can secure a field of view through the transparent combiner.
 特許文献1に開示されたコンバイナを用いた場合、太陽や外灯等のノイズ像がコンバイナ内に明るく観察され得る。ノイズ像は実際の位置とは異なる位置に観察され、使用者はノイズ像に違和感を覚える。また、画像光の一部は、コンバイナの表面で正反射してゴースト像を形成する。ノイズ像やゴースト像によって、ヘッドアップディスプレイの表示品質が劣化し得る。 When the combiner disclosed in Patent Document 1 is used, noise images such as the sun and outdoor lights can be observed brightly inside the combiner. The noise image is observed at a position different from the actual position, and the user feels uncomfortable with the noise image. Also, part of the image light is specularly reflected on the surface of the combiner to form a ghost image. Noise images and ghost images can degrade the display quality of the head-up display.
 本開示は、ヘッドアップディスプレイの表示品質の改善を目的とする。 The present disclosure aims at improving the display quality of the head-up display.
 本開示の一実施の形態は、次の[1]~[30]に関連する。 An embodiment of the present disclosure relates to the following [1] to [30].
[1] 画像光を投射されるヘッドアップディスプレイ用のコンバイナであって、
 前記画像光の入射面となる第1面を含む第1基板と、
 前記第1面と対向する第2面を含む第2基板と、
 前記第1基板および前記第2基板を接合する接合層と、
 前記第1基板および前記第2基板の間に位置するホログラム素子と、を備え、
 前記ホログラム素子は、前記コンバイナへの前記画像光の入射方向に対する正反射方向または前記正反射方向に25°以下の角度傾斜した方向に、前記画像光を回折し、
 前記ホログラム素子によって回折された画像光による画像の表示位置と前記ホログラム素子との距離は、前記第1面または前記第2面で反射した画像光による画像の表示位置と前記ホログラム素子との距離の4倍以上である、コンバイナ。
[1] A combiner for a head-up display that projects image light,
a first substrate including a first surface serving as an incident surface of the image light;
a second substrate including a second surface facing the first surface;
a bonding layer that bonds the first substrate and the second substrate;
a hologram element positioned between the first substrate and the second substrate;
the hologram element diffracts the image light in a direction of specular reflection with respect to the direction of incidence of the image light on the combiner or in a direction inclined at an angle of 25° or less to the direction of specular reflection;
The distance between the display position of the image by the image light diffracted by the hologram element and the hologram element is the distance between the display position of the image by the image light reflected by the first surface or the second surface and the hologram element. A combiner that is more than four times.
[2] 画像光を投射されるヘッドアップディスプレイ用のコンバイナであって、
 前記画像光の入射面となる第1面を含む第1基板と、
 前記第1面と対向する第2面を含む第2基板と、
 前記第1基板および前記第2基板を接合する接合層と、
 前記第1基板および前記第2基板の間に位置するホログラム素子と、を備え、
 外部光源から放出されて前記第2面から前記コンバイナに入射し、前記第1面で反射した後に前記ホログラム素子で回折される光により再生される外部光源の像が、前記コンバイナを透過して観察される外部光源の実像と少なくとも部分的に重なって観察される、コンバイナ。
[2] A combiner for a head-up display that projects image light,
a first substrate including a first surface serving as an incident surface of the image light;
a second substrate including a second surface facing the first surface;
a bonding layer that bonds the first substrate and the second substrate;
a hologram element positioned between the first substrate and the second substrate;
An image of an external light source reproduced by light emitted from an external light source, incident on the combiner from the second surface, reflected by the first surface and then diffracted by the hologram element is observed through the combiner. A combiner that is viewed at least partially overlapping a real image of an external light source that is viewed.
[3] 前記ホログラム素子によって回折された画像光による画像の表示位置と前記ホログラム素子との距離は、前記第1面または前記第2面で反射した画像光による画像の表示位置と前記ホログラム素子との距離の4倍以上である、[2]のヘッドアップディスプレイ用のコンバイナ。 [3] The distance between the display position of the image by the image light diffracted by the hologram element and the hologram element is the distance between the display position of the image by the image light reflected by the first surface or the second surface and the hologram element. The combiner for the head-up display of [2], which is more than four times the distance of .
[4] 前記第1基板は、前記第1面を構成する反射防止層を含む、[1]~[3]のいずれかのヘッドアップディスプレイ用のコンバイナ。 [4] The combiner for a head-up display according to any one of [1] to [3], wherein the first substrate includes an antireflection layer forming the first surface.
[5] 画像光を投射されるヘッドアップディスプレイ用のコンバイナであって、
 前記画像光の入射面となる第1面を含む第1基板と、
 前記第1面と対向する第2面を含む第2基板と、
 前記第1基板および前記第2基板を接合する接合層と、
 前記第1基板および前記第2基板の間に位置するホログラム素子と、を備え、
 前記ホログラム素子は、前記コンバイナへの前記画像光の入射方向に対する正反射方向または前記正反射方向に25°以下の角度傾斜した方向に、前記画像光を回折し、
 前記第1基板は、前記第1面を構成する反射防止層を含む、ヘッドアップディスプレイ用のコンバイナ。
[5] A combiner for a head-up display that projects image light,
a first substrate including a first surface serving as an incident surface of the image light;
a second substrate including a second surface facing the first surface;
a bonding layer that bonds the first substrate and the second substrate;
a hologram element positioned between the first substrate and the second substrate;
the hologram element diffracts the image light in a direction of specular reflection with respect to the direction of incidence of the image light on the combiner or in a direction inclined at an angle of 25° or less to the direction of specular reflection;
A combiner for a head-up display, wherein the first substrate includes an antireflection layer forming the first surface.
[6] 画像光を放出する投射装置と、
 [1]~[5]のいずれかのコンバイナと、を備える、ヘッドアップディスプレイ。
[6] a projection device that emits image light;
A head-up display comprising a combiner according to any one of [1] to [5].
[7] 前記コンバイナへの前記画像光の入射角の大きさと前記コンバイナでの前記画像光の回折角の大きさとの差は、3°以上である、[6]のヘッドアップディスプレイ。 [7] The head-up display of [6], wherein the difference between the angle of incidence of the image light on the combiner and the angle of diffraction of the image light at the combiner is 3° or more.
[8] 前記コンバイナでの前記画像光の回折角の大きさは、前記コンバイナへの前記画像光の入射角の大きさより大きい、[6]又は[7]のヘッドアップディスプレイ。 [8] The head-up display of [6] or [7], wherein the angle of diffraction of the image light at the combiner is greater than the angle of incidence of the image light on the combiner.
[9] 前記投射装置から放出されて前記コンバイナの前記ホログラム素子で回折される画像光の光路からずらして配置された遮光部材を備え、
 前記遮光板は、前記投射装置から放出されて前記コンバイナに向かう画像光の一部を遮光する、[6]~[8]のいずれかのヘッドアップディスプレイ。
[9] A light shielding member is provided so as to be offset from the optical path of the image light emitted from the projection device and diffracted by the hologram element of the combiner,
The head-up display according to any one of [6] to [8], wherein the light blocking plate blocks part of the image light emitted from the projection device and directed toward the combiner.
[10] 前記投射装置は、前記画像光を放出する画像形成装置と、前記画像形成装置と前記コンバイナとの間に配置され前記画像光の光路を調整する光路調整部材を備え、
 前記光路調整部材は異方性拡散機能を有する、[6]~[9]のいずれかのヘッドアップディスプレイ。
[10] The projection device includes an image forming device that emits the image light, and an optical path adjusting member that is arranged between the image forming device and the combiner and adjusts an optical path of the image light,
The head-up display according to any one of [6] to [9], wherein the optical path adjusting member has an anisotropic diffusion function.
[11] 前記光路調整部材は、前記コンバイナの法線方向と前記コンバイナに入射する画像光の光軸との両方と平行な第1評価面内よりも、前記第1評価面と直交し且つ前記光軸と平行な第2評価面内において、強い拡散機能を有する、[10]のヘッドアップディスプレイ。 [11] The optical path adjustment member is perpendicular to the first evaluation surface and the The head-up display of [10], which has a strong diffusion function in the second evaluation plane parallel to the optical axis.
[12] [6]~[11]のいずれかのヘッドアップディスプレイを備える、移動体。 [12] A moving body equipped with a head-up display according to any one of [6] to [11].
[13] [6]~[11]のいずれかのヘッドアップディスプレイを備え、
 前記投射装置から前記コンバイナまでの前記画像光の光路長は、200mm以上である、自動車。
[13] A head-up display according to any one of [6] to [11],
The automobile, wherein the optical path length of the image light from the projection device to the combiner is 200 mm or more.
[14] [6]~[11]のいずれかのヘッドアップディスプレイを備え、
 光路長Lz(mm)および角度θ4(°)を用いた式「Lz×sinθ4」が10mm以上であり、
 前記光路長Lz(mm)は、前記コンバイナから前記投射装置までの前記画像光の光路長であり、
 前記角度θ4は、前記コンバイナへの前記画像光の入射角の大きさと前記コンバイナでの前記画像光の回折角の大きさとの差である、自動車。
[14] A head-up display according to any one of [6] to [11],
The formula "Lz × sin θ4" using the optical path length Lz (mm) and the angle θ4 (°) is 10 mm or more,
The optical path length Lz (mm) is the optical path length of the image light from the combiner to the projection device,
The motor vehicle, wherein the angle θ4 is the difference between the magnitude of the incident angle of the image light to the combiner and the magnitude of the diffraction angle of the image light at the combiner.
[15] [6]~[11]のいずれかのヘッドアップディスプレイを備え、
 前記コンバイナでの前記画像光の回折角は、30°以上である、自動車。
[15] Equipped with a head-up display according to any one of [6] to [11],
The motor vehicle, wherein the diffraction angle of the image light at the combiner is 30° or more.
[16] [6]~[11]のいずれかのヘッドアップディスプレイを備え、
 前記コンバイナの傾斜角と前記コンバイナへの画像光の入射角との合計は、70°以上であり、
 前記コンバイナの前記傾斜角は、前記コンバイナの法線方向と鉛直方向との間の角度である、自動車。
[16] Equipped with a head-up display of any one of [6] to [11],
The sum of the tilt angle of the combiner and the incident angle of the image light to the combiner is 70° or more,
The motor vehicle, wherein the tilt angle of the combiner is the angle between the normal direction and the vertical direction of the combiner.
[17] [6]、[7]、[9]~[11]のいずれかのヘッドアップディスプレイを備え、
 前記コンバイナでの前記画像光の回折角の大きさは、前記コンバイナへの前記画像光の入射角の大きさより小さい、自動車。
[17] A head-up display according to any one of [6], [7], [9] to [11],
A motor vehicle, wherein a magnitude of an angle of diffraction of said image light at said combiner is smaller than a magnitude of an angle of incidence of said image light on said combiner.
[18] [6]~[11]のいずれかのヘッドアップディスプレイを備え、
 前記画像光の一部は、前記第1面または前記第2面で、水平方向に対して上方に傾斜した方向に反射する、自動車。
[18] A head-up display according to any one of [6] to [11],
A motor vehicle, wherein part of the image light is reflected by the first surface or the second surface in a direction inclined upward with respect to a horizontal direction.
[19] 前記コンバイナへの前記画像光の入射角の大きさは、前記コンバイナの傾斜角の大きさよりも大きく、
 前記コンバイナの前記傾斜角は、前記コンバイナの法線方向と鉛直方向との間の角度である、[17]又は[18]の自動車。
[19] the magnitude of the incident angle of the image light to the combiner is greater than the magnitude of the tilt angle of the combiner;
The vehicle of [17] or [18], wherein the tilt angle of the combiner is the angle between the normal direction of the combiner and the vertical direction.
[20] [6]~[11]のいずれかのヘッドアップディスプレイを備え、
 前記コンバイナの傾斜角の大きさは、25°以上55°以下であり、
 前記コンバイナへの前記画像光の入射角の大きさは、前記コンバイナの傾斜角の大きさより、0°より大きく60°以下の角度だけ大きく、
 前記コンバイナの前記傾斜角は、前記コンバイナの法線方向と鉛直方向との間の角度である、自動車。
[20] A head-up display according to any one of [6] to [11],
The tilt angle of the combiner is 25° or more and 55° or less,
the magnitude of the incident angle of the image light to the combiner is greater than the magnitude of the tilt angle of the combiner by an angle greater than 0° and less than or equal to 60°;
The motor vehicle, wherein the tilt angle of the combiner is the angle between the normal direction and the vertical direction of the combiner.
[21] 画像光を放出する投射装置と、前記画像光を投射されるコンバイナと、を備えるヘッドアップディスプレイであって、
 前記コンバイナは、
 前記画像光の入射面となる第1面を含む第1基板と、
 前記第1面と対向する第2面を含む第2基板と、
 前記第1基板および前記第2基板を接合する接合層と、
 前記第1基板および前記第2基板の間に位置するホログラム素子と、を含み、
 前記コンバイナでの前記画像光の回折角の大きさは、前記コンバイナへの前記画像光の入射角の大きさより大きい、ヘッドアップディスプレイ。
[21] A head-up display comprising a projection device that emits image light and a combiner that projects the image light,
The combiner is
a first substrate including a first surface serving as an incident surface of the image light;
a second substrate including a second surface facing the first surface;
a bonding layer that bonds the first substrate and the second substrate;
a hologram element positioned between the first substrate and the second substrate;
The head-up display, wherein a diffraction angle of the image light at the combiner is larger than an incident angle of the image light to the combiner.
[22] ヘッドアップディスプレイを備える自動車であって、
 前記ヘッドアップディスプレイは、画像光を放出する投射装置と、前記画像光を投射されるコンバイナと、を含み、
 前記コンバイナは、
 前記画像光の入射面となる第1面を含む第1基板と、
 前記第1面と対向する第2面を含む第2基板と、
 前記第1基板および前記第2基板を接合する接合層と、
 前記第1基板および前記第2基板の間に位置するホログラム素子と、を含み、
 前記投射装置から前記コンバイナまでの前記画像光の光路長は、200mm以上である、自動車。
[22] A motor vehicle with a head-up display,
The head-up display includes a projection device that emits image light and a combiner that projects the image light,
The combiner is
a first substrate including a first surface serving as an incident surface of the image light;
a second substrate including a second surface facing the first surface;
a bonding layer that bonds the first substrate and the second substrate;
a hologram element positioned between the first substrate and the second substrate;
The automobile, wherein the optical path length of the image light from the projection device to the combiner is 200 mm or more.
[23] ヘッドアップディスプレイを備える自動車であって、
 前記ヘッドアップディスプレイは、画像光を放出する投射装置と、前記画像光を投射されるコンバイナと、を含み、
 前記コンバイナは、
 前記画像光の入射面となる第1面を含む第1基板と、
 前記第1面と対向する第2面を含む第2基板と、
 前記第1基板および前記第2基板を接合する接合層と、
 前記第1基板および前記第2基板の間に位置するホログラム素子と、を含み、
 光路長Lz(mm)および角度θ4(°)を用いた式「Lz×sinθ4」が10mm以上であり、
 前記光路長Lz(mm)は、前記投射装置から前記コンバイナまでの前記画像光の光路長であり、
 前記角度θ4(°)は、前記コンバイナへの前記画像光の入射角の大きさと前記コンバイナでの前記画像光の回折角の大きさとの差である、自動車。
[23] A motor vehicle with a head-up display,
The head-up display includes a projection device that emits image light and a combiner that projects the image light,
The combiner is
a first substrate including a first surface serving as an incident surface of the image light;
a second substrate including a second surface facing the first surface;
a bonding layer that bonds the first substrate and the second substrate;
a hologram element positioned between the first substrate and the second substrate;
The formula "Lz × sin θ4" using the optical path length Lz (mm) and the angle θ4 (°) is 10 mm or more,
The optical path length Lz (mm) is the optical path length of the image light from the projection device to the combiner,
The motor vehicle, wherein the angle θ4 (°) is a difference between an incident angle of the image light to the combiner and a diffraction angle of the image light at the combiner.
[24] ヘッドアップディスプレイを備える自動車であって、
 前記ヘッドアップディスプレイは、画像光を放出する投射装置と、前記画像光を投射されるコンバイナと、を含み、
 前記コンバイナは、
 前記画像光の入射面となる第1面を含む第1基板と、
 前記第1面と対向する第2面を含む第2基板と、
 前記第1基板および前記第2基板を接合する接合層と、
 前記第1基板および前記第2基板の間に位置するホログラム素子と、を含み、
 前記コンバイナでの前記画像光の回折角は、30°以上である、自動車。
[24] A motor vehicle with a head-up display,
The head-up display includes a projection device that emits image light and a combiner that projects the image light,
The combiner is
a first substrate including a first surface serving as an incident surface of the image light;
a second substrate including a second surface facing the first surface;
a bonding layer that bonds the first substrate and the second substrate;
a hologram element positioned between the first substrate and the second substrate;
The motor vehicle, wherein the diffraction angle of the image light at the combiner is 30° or more.
[25] ヘッドアップディスプレイを備える自動車であって、
 前記ヘッドアップディスプレイは、画像光を放出する投射装置と、前記画像光を投射されるコンバイナと、を含み、
 前記コンバイナは、
 前記画像光の入射面となる第1面を含む第1基板と、
 前記第1面と対向する第2面を含む第2基板と、
 前記第1基板および前記第2基板を接合する接合層と、
 前記第1基板および前記第2基板の間に位置するホログラム素子と、を含み、
 前記コンバイナの傾斜角および前記コンバイナへの画像光の入射角の合計は、70°以上であり、
 前記コンバイナの前記傾斜角は、前記コンバイナの法線方向と鉛直方向との間の角度である、自動車。
[25] A motor vehicle comprising a head-up display,
The head-up display includes a projection device that emits image light and a combiner that projects the image light,
The combiner is
a first substrate including a first surface serving as an incident surface of the image light;
a second substrate including a second surface facing the first surface;
a bonding layer that bonds the first substrate and the second substrate;
a hologram element positioned between the first substrate and the second substrate;
The sum of the inclination angle of the combiner and the incident angle of the image light to the combiner is 70° or more,
The motor vehicle, wherein the tilt angle of the combiner is the angle between the normal direction and the vertical direction of the combiner.
[26] ヘッドアップディスプレイを備える自動車であって、
 前記ヘッドアップディスプレイは、画像光を放出する投射装置と、前記画像光を投射されるコンバイナと、を含み、
 前記コンバイナは、
 前記画像光の入射面となる第1面を含む第1基板と、
 前記第1面と対向する第2面を含む第2基板と、
 前記第1基板および前記第2基板を接合する接合層と、
 前記第1基板および前記第2基板の間に位置するホログラム素子と、を含み、
 前記コンバイナでの前記画像光の回折角の大きさは、前記コンバイナへの前記画像光の入射角の大きさより小さい、自動車。
[26] A motor vehicle with a head-up display,
The head-up display includes a projection device that emits image light and a combiner that projects the image light,
The combiner is
a first substrate including a first surface serving as an incident surface of the image light;
a second substrate including a second surface facing the first surface;
a bonding layer that bonds the first substrate and the second substrate;
a hologram element positioned between the first substrate and the second substrate;
A motor vehicle, wherein a magnitude of an angle of diffraction of said image light at said combiner is smaller than a magnitude of an angle of incidence of said image light on said combiner.
[27] ヘッドアップディスプレイを備える自動車であって、
 前記ヘッドアップディスプレイは、画像光を放出する投射装置と、前記画像光を投射されるコンバイナと、を含み、
 前記コンバイナは、
 前記画像光の入射面となる第1面を含む第1基板と、
 前記第1面と対向する第2面を含む第2基板と、
 前記第1基板および前記第2基板を接合する接合層と、
 前記第1基板および前記第2基板の間に位置するホログラム素子と、を含み、
 前記画像光の一部は、前記第1面または前記第2面で、水平方向に対して上方に傾斜した方向に反射する、自動車。
[27] A motor vehicle with a head-up display,
The head-up display includes a projection device that emits image light and a combiner that projects the image light,
The combiner is
a first substrate including a first surface serving as an incident surface of the image light;
a second substrate including a second surface facing the first surface;
a bonding layer that bonds the first substrate and the second substrate;
a hologram element positioned between the first substrate and the second substrate;
A motor vehicle, wherein part of the image light is reflected by the first surface or the second surface in a direction inclined upward with respect to a horizontal direction.
[28] ヘッドアップディスプレイを備える自動車であって、
 前記ヘッドアップディスプレイは、画像光を放出する投射装置と、前記画像光を投射されるコンバイナと、を含み、
 前記コンバイナは、
 前記画像光の入射面となる第1面を含む第1基板と、
 前記第1面と対向する第2面を含む第2基板と、
 前記第1基板および前記第2基板を接合する接合層と、
 前記第1基板および前記第2基板の間に位置するホログラム素子と、を含み、
 前記コンバイナの傾斜角の大きさは、25°以上55°以下であり、
 前記コンバイナへの前記画像光の入射角の大きさは、前記コンバイナの傾斜角の大きさより、0°より大きく60°以下の角度だけ大きく、
 前記コンバイナの前記傾斜角は、前記コンバイナの法線方向と鉛直方向との間の角度である、自動車。
[28] A motor vehicle comprising a head-up display,
The head-up display includes a projection device that emits image light and a combiner that projects the image light,
The combiner is
a first substrate including a first surface serving as an incident surface of the image light;
a second substrate including a second surface facing the first surface;
a bonding layer that bonds the first substrate and the second substrate;
a hologram element positioned between the first substrate and the second substrate;
The tilt angle of the combiner is 25° or more and 55° or less,
the magnitude of the incident angle of the image light to the combiner is greater than the magnitude of the tilt angle of the combiner by an angle greater than 0° and less than or equal to 60°;
The motor vehicle, wherein the tilt angle of the combiner is the angle between the normal direction and the vertical direction of the combiner.
[29] 画像光を放出する画像形成装置と、
 前記画像光を投射されるコンバイナと、
 前記画像形成装置と前記コンバイナとの間に配置され、前記画像光の光路を調整する光路調整部材と、を備え、
 前記コンバイナは、
 前記画像光の入射面となる第1面を含む第1基板と、
 前記第1面と対向する第2面を含む第2基板と、
 前記第1基板および前記第2基板を接合する接合層と、
 前記第1基板および前記第2基板の間に位置するホログラム素子と、を含み、
 前記コンバイナでの前記画像光の回折角の大きさは、前記コンバイナへの前記画像光の入射角の大きさと異なり、
 前記ホログラム素子は、前記コンバイナへの前記画像光の入射方向に対する正反射方向に対して傾斜した方向に、前記画像光を回折し、
 前記光路調整部材は、前記コンバイナの法線方向と前記コンバイナに入射する画像光の光軸との両方と平行な第1評価面内よりも、前記第1評価面と直交し且つ前記コンバイナの前記法線方向と平行な第2評価面内において、強い拡散機能を有する、ヘッドアップディスプレイ。
[29] An image forming device that emits image light;
a combiner projected with the image light;
an optical path adjustment member disposed between the image forming apparatus and the combiner and adjusting an optical path of the image light;
The combiner is
a first substrate including a first surface serving as an incident surface of the image light;
a second substrate including a second surface facing the first surface;
a bonding layer that bonds the first substrate and the second substrate;
a hologram element positioned between the first substrate and the second substrate;
The magnitude of the diffraction angle of the image light at the combiner is different from the magnitude of the incident angle of the image light to the combiner,
the hologram element diffracts the image light in a direction inclined with respect to a specular reflection direction with respect to an incident direction of the image light to the combiner;
The optical path adjustment member is perpendicular to the first evaluation surface and the optical path of the combiner rather than in the first evaluation surface parallel to both the normal direction of the combiner and the optical axis of the image light incident on the combiner. A head-up display having a strong diffusion function in a second evaluation plane parallel to the normal direction.
[30] 画像光を放出する投射装置と、前記画像光を投射されるコンバイナと、を備えるヘッドアップディスプレイであって、
 前記コンバイナは、
 前記画像光の入射面となる第1面を含む第1基板と、
 前記第1面と対向する第2面を含む第2基板と、
 前記第1基板および前記第2基板を接合する接合層と、
 前記第1基板および前記第2基板の間に位置するホログラム素子と、を含み、
 前記コンバイナへの前記画像光の入射角の大きさと前記コンバイナでの前記画像光の回折角の大きさとの差は、3°以上である、ヘッドアップディスプレイ。
[30] A head-up display comprising a projection device that emits image light and a combiner that projects the image light,
The combiner is
a first substrate including a first surface serving as an incident surface of the image light;
a second substrate including a second surface facing the first surface;
a bonding layer that bonds the first substrate and the second substrate;
a hologram element positioned between the first substrate and the second substrate;
The head-up display according to claim 1, wherein a difference between an incident angle of the image light to the combiner and a diffraction angle of the image light at the combiner is 3° or more.
 本開示によれば、ヘッドアップディスプレイの表示品質を改善できる。 According to the present disclosure, the display quality of the head-up display can be improved.
図1は、一実施の形態を説明する図であって、移動体およびヘッドアップディスプレイの一具体例を示す側面図である。FIG. 1 is a diagram for explaining an embodiment, and is a side view showing a specific example of a moving body and a head-up display. 図2は、図1に示されたヘッドアップディスプレイのコンバイナを示す側断面図である。2 is a side sectional view showing the combiner of the head-up display shown in FIG. 1; FIG. 図3Aは、図2に示されたコンバイナに含まれ得る第1基板の一例を示す断面図である。3A is a cross-sectional view showing an example of a first substrate that may be included in the combiner shown in FIG. 2. FIG. 図3Bは、図2に示されたコンバイナに含まれ得る第1基板の他の例を示す断面図である。3B is a cross-sectional view showing another example of a first substrate that can be included in the combiner shown in FIG. 2. FIG. 図3Cは、図2に示されたコンバイナに含まれ得る第1基板の更に他の例を示す断面図である。3C is a cross-sectional view showing yet another example of a first substrate that can be included in the combiner shown in FIG. 2. FIG. 図4は、図2に示されたコンバイナに含まれ得るホログラム記録層の製造方法を説明する図である。FIG. 4 is a diagram illustrating a method of manufacturing a hologram recording layer that can be included in the combiner shown in FIG. 2; 図5は、図2に示されたコンバイナに含まれ得るホログラム素子の分光透過率の一例を示すグラフである。5 is a graph showing an example of spectral transmittance of a hologram element that can be included in the combiner shown in FIG. 2. FIG. 図6は、図2に示されたコンバイナの作用を説明する図である。FIG. 6 is a diagram illustrating the operation of the combiner shown in FIG. 2; 図7は、図2に示されたコンバイナの作用を説明する図である。FIG. 7 is a diagram illustrating the operation of the combiner shown in FIG. 2; 図8は、サンプル1~5の構成を示す断面図である。FIG. 8 is a cross-sectional view showing the configuration of samples 1 to 5. FIG. 図9は、コンバイナの作用を説明する図である。FIG. 9 is a diagram explaining the action of the combiner. 図10は、コンバイナの作用を説明する図である。FIG. 10 is a diagram explaining the operation of the combiner. 図11は、図7に対応する図であって、コンバイナの作用を説明する図である。FIG. 11 is a diagram corresponding to FIG. 7 and for explaining the operation of the combiner. 図12は、図7に対応する図であって、コンバイナの作用を説明する図である。FIG. 12 is a diagram corresponding to FIG. 7 and for explaining the action of the combiner. 図13は、コンバイナの作用を説明する図である。FIG. 13 is a diagram for explaining the action of the combiner. 図14は、光路調整部材の最出光面上での輝度角度分布の一例を示すグラフである。FIG. 14 is a graph showing an example of the angular distribution of luminance on the most light-emitting surface of the optical path adjusting member. 図15は、光路調整部材の一例を示す斜視図である。FIG. 15 is a perspective view showing an example of an optical path adjustment member. 図16は、光路調整部材の他の例を示す斜視図である。FIG. 16 is a perspective view showing another example of the optical path adjusting member. 図17は、光路調整部材の更に他の例を示す斜視図である。FIG. 17 is a perspective view showing still another example of the optical path adjustment member.
 以下、図面を参照して本開示の一実施の形態について説明する。なお、本件明細書に添付する図面においては、図示と理解のしやすさの便宜上、適宜縮尺および縦横の寸法比等を、実物のそれらから変更し誇張してある。また、一部の図において示された構成等が、他の図において省略されていることもある。 An embodiment of the present disclosure will be described below with reference to the drawings. In the drawings attached to this specification, for the convenience of illustration and ease of understanding, the scale and the ratio of vertical and horizontal dimensions are changed and exaggerated from those of the real thing. In addition, configurations and the like shown in some drawings may be omitted in other drawings.
 本明細書において、形状や幾何学的条件ならびにそれらの程度を特定する、例えば、「平行」、「直交」、「同一」等の用語や長さや角度の値等については、厳密な意味に限定されることなく、同様の機能を期待し得る程度の範囲を含めて解釈する。 In this specification, terms that specify shapes and geometric conditions and their degrees, such as "parallel", "perpendicular", "identical", length and angle values, etc., are limited to strict meanings. It is interpreted to include the extent to which similar functions can be expected without being
 本明細書において、「シート」、「フィルム」及び「板」等の用語は、呼称の違いのみに基づいて互いから区別されない。例えば「透明板」は、透明フィルム又は透明シートと呼ばれる部材等と呼称の違いのみにおいて区別され得ない。 In this specification, terms such as "sheet", "film" and "plate" are not distinguished from each other based only on the difference in designation. For example, a "transparent plate" cannot be distinguished from a member called a transparent film or a transparent sheet only by the difference in name.
 本明細書において、シート状(フィルム状、板状)の部材の法線方向とは、対象となるシート状(フィルム状、板状)の部材のシート面への法線方向のことを指す。また、「シート面(フィルム面、板面)」とは、対象となるシート状(フィルム状、板状)の部材を全体的且つ大局的に見た場合において対象となるシート状部材(フィルム状部材、板状部材)と一致する面のことを指す。 In this specification, the normal direction of the sheet-like (film-like, plate-like) member refers to the normal direction to the sheet surface of the target sheet-like (film-like, plate-like) member. In addition, the "sheet surface (film surface, plate surface)" refers to the sheet-like member (film-like) that is the target when the target sheet-like (film-like, plate-like) member is viewed as a whole and from a broad perspective. member, plate-shaped member).
 方向の関係を図面間で明確にするため、いくつかの図面には、共通する符号を付した矢印により第1方向D1、第2方向D2、第3方向D3及び法線方向NDを共通する方向として示している。以下の例において、第1方向D1及び第2方向D2は水平方向と平行であり、第3方向D3は鉛直方向と平行である。図面の紙面に垂直な方向に沿って紙面から手前に向かう矢印を、例えば図2に示すように、円の中に点を設けた記号により示す。 In order to clarify the directional relationships among the figures, some of the figures show the first direction D1, the second direction D2, the third direction D3 and the normal direction ND as common directions by means of commonly labeled arrows. is shown as In the following examples, the first direction D1 and the second direction D2 are parallel to the horizontal direction, and the third direction D3 is parallel to the vertical direction. An arrow pointing forward from the plane of the drawing along a direction perpendicular to the plane of the drawing is indicated by a dot in a circle, as shown in FIG. 2, for example.
 図1~図17は、一実施の形態を説明するための図である。図1及び図2に示すように、ヘッドアップディスプレイ20は、投射装置25及びコンバイナ40を有している。ヘッドアップディスプレイ20は、コンバイナ40を用いて、投射装置25によって形成された画像を使用者5に向けて表示する。ヘッドアップディスプレイ20の使用者5は、コンバイナ40を介して、コンバイナ40の背後を観察できる。撮像装置が、コンバイナ40を介して、コンバイナ40を観察する使用者5を撮像してもよい。本実施の形態では、従来のヘッドアップディスプレイで問題となっていたノイズ像91を目立たなくするための工夫がなされている。以下、図面に示された具体例を参照して、一実施の形態を説明する。 1 to 17 are diagrams for explaining one embodiment. As shown in FIGS. 1 and 2, the head-up display 20 has a projection device 25 and a combiner 40. FIG. The head-up display 20 uses the combiner 40 to display the image formed by the projection device 25 toward the user 5 . A user 5 of the head-up display 20 can observe behind the combiner 40 through the combiner 40 . An imaging device may image the user 5 observing the combiner 40 via the combiner 40 . This embodiment is designed to make the noise image 91, which has been a problem in the conventional head-up display, inconspicuous. An embodiment will now be described with reference to specific examples shown in the drawings.
 本実施の形態によるヘッドアップディスプレイ20は、種々の分野に適用可能である。ヘッドアップディスプレイ20は、ヘッドマウントディスプレイに適用されてもよい。ヘッドアップディスプレイ20が、プロンプターに適用されてもよい。プロンプターは講演や撮像等に使用されてもよい。 The head-up display 20 according to this embodiment is applicable to various fields. Head-up display 20 may be applied to a head-mounted display. A heads-up display 20 may be applied to the prompter. The prompter may be used for lectures, imaging, and the like.
 図示された例において、ヘッドアップディスプレイ20は移動体10に適用されている。移動体10は、移動可能な装置である。移動体10は、人間が乗った状態で移動可能としてもよい。移動体10として、船、飛行機、ドローン、鉄道車両、図示された自動車12等が例示される。図1に示された例において、コンバイナ40は、自動車12のフロントウインドウ14を構成している。 In the illustrated example, the head-up display 20 is applied to the moving body 10. The moving body 10 is a movable device. The mobile object 10 may be movable with a person on it. Examples of mobile objects 10 include ships, airplanes, drones, railway vehicles, and illustrated automobiles 12 . In the example shown in FIG. 1 , the combiner 40 constitutes the windshield 14 of the motor vehicle 12 .
 投射装置25は、画像を形成する画像光を放出する。使用者5は、画像光を受光することによって画像を観察する。投射装置25として、特に限定されず、画像を形成可能な種々の装置が使用可能である。図1に示された例において、投射装置25はダッシュボード内に配置されている。投射装置25は、ダッシュボードによって隠蔽されている。 The projection device 25 emits image light that forms an image. A user 5 observes the image by receiving the image light. The projection device 25 is not particularly limited, and various devices capable of forming an image can be used. In the example shown in FIG. 1, the projection device 25 is arranged in the dashboard. The projection device 25 is hidden by the dashboard.
 投射装置25は、画像形成装置30を含む。投射装置25は、グレアトラップを含んでもよい。画像形成装置30は、ドットマトリックス方式を採用してもよい。ドットマトリックス方式の画像形成装置30は、各ドットを形成する複数の画素を含んでいる。この画像形成装置30は、画素毎に発光状態を制御することによって、所望の画像を形成する。画像形成装置30として、透過型の液晶表示装置、反射型の液晶表示装置、レーザー表示装置、EL表示装置とも呼ばれるエレクトロルミネッセンス表示装置、デジタルミラーデバイス等が例示される。グレアトラップは、画像形成装置30の画像光を放出する先端となってもよい。グレアトラップは、画像形成装置30の画像放出面を構成してもよい。グレアトラップは、低反射フィルムや防眩シート等を含んでもよい。 The projection device 25 includes an image forming device 30 . Projection device 25 may include a glare trap. Image forming apparatus 30 may employ a dot matrix method. The dot matrix image forming apparatus 30 includes a plurality of pixels forming each dot. This image forming apparatus 30 forms a desired image by controlling the light emission state of each pixel. Examples of the image forming device 30 include a transmissive liquid crystal display device, a reflective liquid crystal display device, a laser display device, an electroluminescence display device also called an EL display device, a digital mirror device, and the like. The glare trap may be the tip of the image forming device 30 that emits image light. The glare trap may constitute the image emitting surface of the imaging device 30 . The glare trap may include a low reflection film, an antiglare sheet, or the like.
 画像形成装置30からの画像光はコンバイナ40に投射される。投射装置25は、図2に二点鎖線で示す光路調整部材34を含んでもよい。光路調整部材34は、画像形成装置30からコンバイナ40への画像光の光路を調整する。光路調整部材34は投射光学系35でもよい。投射光学系35は、画像形成装置30からコンバイナ40へ画像光を誘導する。投射光学系35は、ミラー、レンズ、プリズム、回折光学素子、および、これらの組合せを含んでもよい。 The image light from the image forming device 30 is projected onto the combiner 40 . The projection device 25 may include an optical path adjustment member 34 indicated by a two-dot chain line in FIG. The optical path adjusting member 34 adjusts the optical path of image light from the image forming apparatus 30 to the combiner 40 . The optical path adjustment member 34 may be the projection optical system 35 . Projection optics 35 guide image light from image forming device 30 to combiner 40 . Projection optics 35 may include mirrors, lenses, prisms, diffractive optical elements, and combinations thereof.
 光路調整部材34は、光学シートと、光学シートを背面から照明する光源と、を含んでもよい。光学シートは、透明なフィルムと、透明なフィルムに印刷された可視光透過性を有した印刷層と、を含んでよい。別の例として、光学シートは、開口部や透過部が設けられた遮光板であってもよい。光源は、面状に光を発光する面光源装置であってもよい。これらの表示装置によれば、光学シートに対応した表示、例えばピクトグラムやマーク等を、表示できる。 The optical path adjustment member 34 may include an optical sheet and a light source that illuminates the optical sheet from behind. The optical sheet may include a transparent film and a printed layer having visible light transmittance printed on the transparent film. As another example, the optical sheet may be a light shielding plate provided with openings and transmissive portions. The light source may be a surface light source device that emits light in a planar manner. According to these display devices, display corresponding to the optical sheet, such as pictograms and marks, can be displayed.
 コンバイナ40は、図2に示すように、投射装置25からの画像光を使用者5に向ける。図2に示すように、コンバイナ40は、第1基板51、第2基板52、接合層45及びホログラム素子60を含んでもよい。コンバイナ40は、高い可視光透過率を有してもよい。コンバイナ40は透明でもよい。コンバイナ40は、入射光がホログラム素子60のブラッグ条件を満たさない場合に、透明でもよい。コンバイナ40に高い可視光透過率を付与するため、コンバイナ40の構成要素も透明でもよい。 The combiner 40 directs the image light from the projection device 25 to the user 5, as shown in FIG. As shown in FIG. 2 , the combiner 40 may include a first substrate 51 , a second substrate 52 , a bonding layer 45 and a hologram element 60 . Combiner 40 may have a high visible light transmission. Combiner 40 may be transparent. Combiner 40 may be transparent if the incident light does not satisfy the Bragg condition of hologram element 60 . Components of combiner 40 may also be transparent to provide combiner 40 with high visible light transmission.
 本明細書で用いる「透明」とは、可視光透過率が、50%以上であることを意味し、好ましくは80%以上である。可視光透過率は、分光光度計((株)島津製作所製「UV-3100PC」、JISK0115準拠品)を用いて測定波長380nm以上780nm以下の範囲内で1nm毎に入射角0°で測定したときの、各波長における全光線透過率の平均値として特定される。入射角は、入射面への法線方向に対して入射光の進行方向がなす角度(°)であり、90°未満の値となる。 "Transparent" as used herein means that the visible light transmittance is 50% or more, preferably 80% or more. The visible light transmittance is measured using a spectrophotometer ("UV-3100PC" manufactured by Shimadzu Corporation, compliant with JISK0115) at an incident angle of 0° for every 1 nm within a measurement wavelength range of 380 nm or more and 780 nm or less. , is specified as the average value of the total light transmittance at each wavelength. The incident angle is the angle (°) formed by the traveling direction of the incident light with respect to the normal direction to the plane of incidence, and is less than 90°.
 コンバイナ40は、第1面41及び第2面42を有している。図2に示された例において、コンバイナ40は板状である。コンバイナ40は法線方向NDを有している。第1面41及び第2面42は、コンバイナ40の一対の主面を構成している。第1面41及び第2面42は法線方向NDに対面している。第1面41及び第2面42は、法線方向NDに直交する方向に広がっている。図2に示された例において、第1基板51が第1面41を構成し、第2基板52が第2面42を構成している。第1面41は、投射装置25からの画像光の入射面となる。 The combiner 40 has a first surface 41 and a second surface 42 . In the example shown in FIG. 2, the combiner 40 is plate-shaped. The combiner 40 has a normal direction ND. The first surface 41 and the second surface 42 form a pair of main surfaces of the combiner 40 . The first surface 41 and the second surface 42 face each other in the normal direction ND. The first surface 41 and the second surface 42 spread in a direction perpendicular to the normal direction ND. In the example shown in FIG. 2 , the first substrate 51 constitutes the first surface 41 and the second substrate 52 constitutes the second surface 42 . The first surface 41 serves as an incident surface for image light from the projection device 25 .
 第1基板51及び第2基板52は、法線方向NDに重ねられている。接合層45は、法線方向NDにおいて第1基板51及び第2基板52の間に位置している。接合層45は、第1基板51及び第2基板52に直接的又は間接的に接触している。接合層45は、第1基板51及び第2基板52に接合している。結果として、接合層45は、第1基板51及び第2基板52を互いに接合している。 The first substrate 51 and the second substrate 52 are stacked in the normal direction ND. The bonding layer 45 is located between the first substrate 51 and the second substrate 52 in the normal direction ND. The bonding layer 45 is in direct or indirect contact with the first substrate 51 and the second substrate 52 . The bonding layer 45 is bonded to the first substrate 51 and the second substrate 52 . As a result, the bonding layer 45 bonds the first substrate 51 and the second substrate 52 together.
 ホログラム素子60は、法線方向NDにおいて第1基板51及び第2基板52の間に位置している。ホログラム素子60は、少なくとも部分的に接合層45と直接的又は間接的に接触している。図示された例において、ホログラム素子60は、法線方向NDにおいて第1基板51及び第2基板52の両方から離れている。ホログラム素子60と第1基板51との間に、接合層45が位置している。ホログラム素子60と第2基板52との間に、接合層45が位置している。ホログラム素子60は、その全ての外表面において接合層45と接触している。 The hologram element 60 is positioned between the first substrate 51 and the second substrate 52 in the normal direction ND. The hologram element 60 is in direct or indirect contact with the bonding layer 45 at least partially. In the illustrated example, the hologram element 60 is separated from both the first substrate 51 and the second substrate 52 in the normal direction ND. A bonding layer 45 is positioned between the hologram element 60 and the first substrate 51 . A bonding layer 45 is positioned between the hologram element 60 and the second substrate 52 . The hologram element 60 is in contact with the bonding layer 45 on all its outer surfaces.
 図示された例において、コンバイナ40の法線方向NDは、第1面41の法線方向、第2面42の法線方向、第1基板51の法線方向、第2基板52の法線方向、接合層45の法線方向、ホログラム素子60の法線方向と平行である。理解のしやすさの便宜上、図2等において、コンバイナ40を平板状に示している。図1に示すように、コンバイナ40は曲がっていてもよい。例えば、コンバイナ40はフロントウインドウ14の形状に沿うように曲がっていてもよい。 In the illustrated example, the normal direction ND of the combiner 40 is the normal direction of the first surface 41, the normal direction of the second surface 42, the normal direction of the first substrate 51, and the normal direction of the second substrate 52. , the normal direction of the bonding layer 45 , and the normal direction of the hologram element 60 . For convenience of understanding, the combiner 40 is shown in a flat plate shape in FIG. 2 and the like. As shown in FIG. 1, combiner 40 may be curved. For example, combiner 40 may be curved to follow the shape of windshield 14 .
 第1基板51および第2基板52は、透明な板である。第1基板51および第2基板52は、ホログラム素子60を支持する基板として機能する。図示された例において、第1基板51および第2基板52は、風防用の部材として機能する。第1基板51および第2基板52の材料として、ソーダライムガラスや青板ガラス等のガラスを用いてもよい。第1基板51および第2基板52の材料として、アクリル樹脂やポリカーボネート等の樹脂を用いてもよい。第1基板51および第2基板52の法線方向NDに沿った厚みを、1mm以上5mm以下としてもよい。第1基板51及び第2基板52は、同一の材料で同一に構成されてもよいし、異なる材料で構成されてもよいし、異なる構成を有してもよい。 The first substrate 51 and the second substrate 52 are transparent plates. The first substrate 51 and the second substrate 52 function as substrates that support the hologram element 60 . In the illustrated example, the first substrate 51 and the second substrate 52 function as windshield members. As a material for the first substrate 51 and the second substrate 52, a glass such as soda lime glass or soda lime glass may be used. As a material for the first substrate 51 and the second substrate 52, a resin such as acrylic resin or polycarbonate may be used. The thickness along the normal direction ND of the first substrate 51 and the second substrate 52 may be 1 mm or more and 5 mm or less. The first substrate 51 and the second substrate 52 may be identically configured with the same material, may be configured with different materials, or may have different configurations.
 図2に二点鎖線で示すように、第1基板51及び第2基板52は、複数の層を含んでもよい。第1基板51および第2基板52の少なくとも一方が、透明板56および反射防止層57を含んでもよい。反射防止層57が、コンバイナ40の最表面である第1面41を構成してもよい。反射防止層57が、コンバイナ40の最表面である第2面42を構成してもよい。 The first substrate 51 and the second substrate 52 may include multiple layers, as indicated by the two-dot chain lines in FIG. At least one of first substrate 51 and second substrate 52 may include transparent plate 56 and antireflection layer 57 . The antireflection layer 57 may constitute the first surface 41 , which is the outermost surface of the combiner 40 . The antireflection layer 57 may constitute the second surface 42 , which is the outermost surface of the combiner 40 .
 透明板56は、ソーダライムガラスや青板ガラス等のガラス板でもよい。透明板56は、アクリル樹脂やポリカーボネート等の樹脂板でもよい。 The transparent plate 56 may be a glass plate such as soda lime glass or blue plate glass. The transparent plate 56 may be a resin plate such as acrylic resin or polycarbonate.
 反射防止層57は、光の反射を抑制する。反射防止層57は、反射を抑制し得る種々の構成を採用してもよい。反射防止層57は、図3A~図3Cに示された構成を有してもよい。図3Aは、単層の反射防止層57を示している。図3Aに示された反射防止層57は、この反射防止層57と法線方向NDに隣接する層(図示された例では透明板56)の屈折率よりも低い屈折率を有した低屈折率層57aである。図3Bに示された反射防止層57は、法線方向NDにおける最表面からの順番で、低屈折率層57aおよび高屈折率層57bを含んでいる。図3Cに示された反射防止層57は、複数の低屈折率層57aおよび複数の高屈折率層57bを含んでいる。図3Cに示された例において、法線方向NDにおける第1面41側から、低屈折率層57aおよび高屈折率層57bが繰り返して順に配置されている。図3A~図3Cに示された例において、反射防止層57は、異なる光学界面で反射された光が打ち消し合うようにして、反射を抑制する。反射防止層57に含まれる層の厚み及び当該層の屈折率は、反射を抑制すべき光の波長に応じて適宜選択され得る。反射防止層57に含まれる低屈折率層57aおよび高屈折率層57bの厚みは、780nmよりも薄い。 The antireflection layer 57 suppresses reflection of light. The antireflection layer 57 may employ various configurations capable of suppressing reflection. Antireflection layer 57 may have the configuration shown in FIGS. 3A-3C. FIG. 3A shows a single layer antireflection layer 57 . The antireflection layer 57 shown in FIG. 3A has a low refractive index lower than the refractive index of the layer (the transparent plate 56 in the illustrated example) adjacent to this antireflection layer 57 in the normal direction ND. Layer 57a. The antireflection layer 57 shown in FIG. 3B includes a low refractive index layer 57a and a high refractive index layer 57b in order from the outermost surface in the normal direction ND. The antireflection layer 57 shown in FIG. 3C includes multiple low refractive index layers 57a and multiple high refractive index layers 57b. In the example shown in FIG. 3C, the low refractive index layers 57a and the high refractive index layers 57b are repeatedly arranged in order from the first surface 41 side in the normal direction ND. In the example shown in FIGS. 3A-3C, antireflection layer 57 suppresses reflections by causing light reflected at different optical interfaces to cancel. The thickness and refractive index of the layers included in the antireflection layer 57 can be appropriately selected according to the wavelength of light whose reflection is to be suppressed. The thickness of the low refractive index layer 57a and the high refractive index layer 57b included in the antireflection layer 57 is less than 780 nm.
 低屈折率層57aおよび高屈折率層57bは、液状の紫外線硬化樹脂組成物を塗布して層を形成し、その層に紫外線を照射することによって、作製され得る。低屈折率層57aを作製するための液状の紫外線硬化樹脂組成物は、(a)屈折率を調整するための粒子、例えば中空シリカ、(b)開始剤、及び(c)フッ素添加剤の一以上を含んでもよい。高屈折率層57bを作製するための液状の紫外線硬化樹脂組成物は、(d)屈折率を調整するための粒子、例えば高屈折フィラー、及び(e)開始剤の一以上を含んでもよい。低屈折率層57aおよび高屈折率層57bは、真空蒸着やスパッタリング等の物理蒸着によっても、作製され得る。 The low refractive index layer 57a and the high refractive index layer 57b can be produced by applying a liquid ultraviolet curable resin composition to form a layer and irradiating the layer with ultraviolet rays. The liquid ultraviolet curable resin composition for making the low refractive index layer 57a contains (a) particles for adjusting the refractive index, such as hollow silica, (b) an initiator, and (c) a fluorine additive. It may include the above. The liquid ultraviolet curable resin composition for producing the high refractive index layer 57b may contain one or more of (d) particles for adjusting the refractive index, such as a high refractive index filler, and (e) an initiator. The low refractive index layer 57a and the high refractive index layer 57b can also be produced by physical vapor deposition such as vacuum deposition and sputtering.
 後述するノイズ像91やゴースト像81を目立たなくする観点から、反射防止層57によって構成されるコンバイナ40の表面での反射率を、1%以下としてもよく、0.5%以下としてもよい。反射率は、分光光度計((株)島津製作所製「UV-3100PC」、JISK0115準拠品)を用いて、測定波長400nm以上700nm以下の範囲内で1nm毎に測定したときの、正反射率の最大値として特定される。反射率を測定する際の入射角は、ホログラム素子60での回折効率が最大値をとるようになるコンバイナ40への入射角とする。ただし、ホログラム素子60での回折効率が最大値をとるようになるコンバイナ40への入射角が5°未満の場合、反射率の測定が困難となるので、反射率を測定する際の入射角は5°とする。入射角は、入射面への法線方向に対して入射光の進行方向がなす角度(°)であり、90°未満の値となる。コンバイナ40の反射率は、コンバイナ40の入射面とは反対側の表面に黒色シートを貼り合わせた状態で、測定する。黒色シートは、分光測色計(コニカミノルタ製「CM-700d」)を用いて特定されたL表色系における明度Lの値が30であるシートを用いる。 From the viewpoint of making a noise image 91 and a ghost image 81 (to be described later) inconspicuous, the reflectance on the surface of the combiner 40 constituted by the antireflection layer 57 may be 1% or less, or 0.5% or less. The reflectance is measured using a spectrophotometer ("UV-3100PC" manufactured by Shimadzu Corporation, compliant with JISK0115) at intervals of 1 nm within a range of measurement wavelengths of 400 nm or more and 700 nm or less. specified as the maximum value. The angle of incidence for measuring the reflectance is the angle of incidence on the combiner 40 at which the diffraction efficiency of the hologram element 60 takes the maximum value. However, if the incident angle to the combiner 40 at which the diffraction efficiency of the hologram element 60 takes the maximum value is less than 5°, it becomes difficult to measure the reflectance. 5°. The incident angle is the angle (°) formed by the traveling direction of the incident light with respect to the normal direction to the plane of incidence, and is less than 90°. The reflectance of the combiner 40 is measured with a black sheet attached to the surface of the combiner 40 opposite to the incident surface. As the black sheet, a sheet having a lightness L * value of 30 in the L * a * b * color system specified using a spectrophotometer (“CM-700d” manufactured by Konica Minolta) is used.
 第1基板51および第2基板52は、図示された例に限られず、特定の機能を発揮することを期待されたその他の機能層を含んでもよい。1つの機能層が2つ以上の機能を発揮してもよい。第1基板51および第2基板52に付与され得る機能として、耐擦傷性を有したハードコート(HC)機能、赤外線遮蔽(反射)機能、紫外線遮蔽(反射)機能、防汚機能等が例示される。 The first substrate 51 and the second substrate 52 are not limited to the illustrated example, and may include other functional layers expected to exhibit specific functions. One functional layer may exhibit two or more functions. Examples of functions that can be imparted to the first substrate 51 and the second substrate 52 include a scratch-resistant hard coat (HC) function, an infrared shielding (reflecting) function, an ultraviolet shielding (reflecting) function, an antifouling function, and the like. be.
 接合層45は、第1基板51および第2基板52を接合する。接合層45は透明な層である。接合層45として、種々の接着性または粘着性を有した材料からなる層を用いてもよい。一例として、接合層45の材料は熱可塑性樹脂でもよい。熱可塑性樹脂によって構成された接合層45は、第1基板51および第2基板52の間で加熱および加圧されることによって、第1基板51および第2基板52に接合する。接合層45を構成する熱可塑性樹脂として、ポリビニルブチラール(PVB)を用いてもよい。接合層45の法線方向NDへの厚さは、例えば20μm以上1000μm以下である。接合層45は、種々の機能を付与されてもよい。種々の機能としては、帯電防止機能、紫外線吸収機能等が例示される。 The bonding layer 45 bonds the first substrate 51 and the second substrate 52 together. The bonding layer 45 is a transparent layer. As the bonding layer 45, a layer made of various materials having adhesiveness or cohesiveness may be used. As an example, the material of the bonding layer 45 may be a thermoplastic resin. The bonding layer 45 made of thermoplastic resin bonds to the first substrate 51 and the second substrate 52 by being heated and pressurized between the first substrate 51 and the second substrate 52 . Polyvinyl butyral (PVB) may be used as the thermoplastic resin forming the bonding layer 45 . The thickness of the bonding layer 45 in the normal direction ND is, for example, 20 μm or more and 1000 μm or less. The bonding layer 45 may be given various functions. Examples of various functions include an antistatic function and an ultraviolet absorption function.
 ホログラム素子60は、画像光を回折して使用者5に向ける。コンバイナ40に透明性を付与するため、ホログラム素子60は透明でもよい。ホログラム素子60は、高い可視光透過率を有してもよい。ホログラム素子60はシート状である。 The hologram element 60 diffracts the image light and directs it to the user 5 . Hologram element 60 may be transparent to provide transparency to combiner 40 . Hologram element 60 may have a high visible light transmittance. The hologram element 60 is sheet-like.
 本実施の形態において、ホログラム素子60は、コンバイナ40へ入射した画像光を正反射方向または正反射方向に25°以下の角度傾斜した方向に回折する。すなわち、図2に示すように、ホログラム素子60への入射角θ1と、ホログラム素子60での回折角θ2と、の差の大きさが25°以下となる。入射角θ1と回折角θ2との差の大きさは、20°以下でもよく、15°以下でもよく、10°以下でもよく、5°以下でもよく、3°以下でもよい。ホログラム素子60への入射角θ1と、ホログラム素子60での回折角θ2と、の差の大きさに上限を設けることによって、後述するノイズ像91を目立たなくしてノイズ像91を観察した際の違和感を抑制できる。 In the present embodiment, the hologram element 60 diffracts the image light incident on the combiner 40 in the specular reflection direction or in a direction inclined at an angle of 25° or less to the specular reflection direction. That is, as shown in FIG. 2, the magnitude of the difference between the incident angle θ1 to the hologram element 60 and the diffraction angle θ2 at the hologram element 60 is 25° or less. The difference between the incident angle θ1 and the diffraction angle θ2 may be 20° or less, 15° or less, 10° or less, 5° or less, or 3° or less. By setting an upper limit on the magnitude of the difference between the incident angle θ1 to the hologram element 60 and the diffraction angle θ2 at the hologram element 60, the noise image 91, which will be described later, is made inconspicuous, and discomfort when observing the noise image 91. can be suppressed.
 入射角は、入射対象への法線方向に対して、入射対象への入射前における入射光の進行方向、すなわち入射方向がなす角度(°)であり、90°未満の値となる。図示された例において、光L31の入射角θ1は、コンバイナ40への入射方向と法線方向NDとの間の角度(°)となる。回折角は、回折対象への法線方向に対して回折光の回折対象からの出射後における進行方向、すなわち回折方向がなす角度(°)であり、90°未満の値となる。図示された例において、回折角θ2は、光L32のコンバイナ40からの出射方向と法線方向NDとの間の角度(°)となる。入射角θ1および回折角θ2は、入射光L31、回折光L32、およびホログラム素子60への法線方向NDを含む面上で特定される。 The incident angle is the angle (°) formed by the traveling direction of the incident light before entering the incident target, that is, the incident direction, with respect to the normal direction to the incident target, and is less than 90°. In the illustrated example, the incident angle θ1 of the light L31 is the angle (°) between the incident direction to the combiner 40 and the normal direction ND. The diffraction angle is the angle (°) formed by the traveling direction of the diffracted light after being emitted from the diffraction target, that is, the diffraction direction, with respect to the normal direction to the diffraction target, and is less than 90°. In the illustrated example, the diffraction angle θ2 is the angle (°) between the output direction of the light L32 from the combiner 40 and the normal direction ND. Incident angle θ 1 and diffraction angle θ 2 are specified on a plane including incident light L 31 , diffracted light L 32 , and normal direction ND to hologram element 60 .
 なお、コンバイナ40への入射位置等に応じて入射角や反射角は変化し得る。入射角を測定する際の入射方向は、ホログラム素子60のうちの投射装置25からの画像光が入射し得る領域の中心(重心)となる位置に向かう光路のうちの最も高強度となる光路によって、特定される。回折光や反射光を測定する際の出射方向は、ホログラム素子60のうちの画像形成装置30からの画像光が入射し得る領域の中心(重心)となる位置から出射する光路のうちの最も高強度となる光路によって、特定される。 It should be noted that the incident angle and the reflection angle may change depending on the incident position on the combiner 40 and the like. The incident direction when measuring the incident angle is determined by the optical path having the highest intensity among the optical paths toward the center (center of gravity) of the area of the hologram element 60 where the image light from the projection device 25 can enter. , is specified. The emission direction for measuring the diffracted light and the reflected light is the highest of the optical paths emitted from the center (center of gravity) of the region of the hologram element 60 where the image light from the image forming apparatus 30 can enter. It is specified by the optical path of intensity.
 ホログラム素子60は、ホログラム記録層62を含んでいる。ホログラム記録層62は、反射型のホログラムである。ホログラム記録層62は、特定の入射方向から入射する特定波長の光を、高い回折効率で回折して、特定の方向に向ける。ホログラム記録層62には、回折機能を実現するための干渉縞が記録されている。ホログラム記録層62は、ブラッグ条件を満たす入射光を高い回折効率で回折して、特定の方向に向ける。ホログラム記録層62は、画像形成装置30からの画像光を、高効率で回折する。画像形成装置30は、画像光がホログラム記録層62のブラッグ条件を満たすように、コンバイナ40に対して所定の位置に配置される。ホログラム記録層62は、コンバイナ40に対する所定の方向に向けて、画像光を回折する。 The hologram element 60 includes a hologram recording layer 62 . The hologram recording layer 62 is a reflective hologram. The hologram recording layer 62 diffracts light of a specific wavelength incident from a specific incident direction with high diffraction efficiency and directs it in a specific direction. The hologram recording layer 62 records interference fringes for realizing a diffraction function. The hologram recording layer 62 diffracts incident light that satisfies the Bragg condition with high diffraction efficiency and directs it in a specific direction. The hologram recording layer 62 diffracts the image light from the image forming device 30 with high efficiency. The image forming device 30 is arranged at a predetermined position with respect to the combiner 40 so that the image light satisfies the Bragg condition of the hologram recording layer 62 . The hologram recording layer 62 diffracts the image light toward a predetermined direction with respect to the combiner 40 .
 図2に示された例において、ホログラム記録層62は、第1方向D1に直交する方向に進み且つ入射角θ1(°)でホログラム素子60に入射する画像光を、高効率で回折する。ホログラム記録層62は、第1方向D1に直交し回折角θ2(°)となる方向に、画像光を高効率で回折する。 In the example shown in FIG. 2, the hologram recording layer 62 highly efficiently diffracts the image light that travels in the direction orthogonal to the first direction D1 and enters the hologram element 60 at the incident angle θ1 (°). The hologram recording layer 62 diffracts the image light with high efficiency in a direction orthogonal to the first direction D1 and having a diffraction angle of θ2 (°).
 干渉縞に関する情報は、種々の形態として、ホログラム記録層62に記録され得る。ホログラム記録層62は、位相型のホログラムであってもよいし、振幅型のホログラムであってもよい。ホログラム記録層62は、表面レリーフ型ホログラムであってもよいし、計算機合成ホログラム(CGH:Computer Generated Hologram)としての表面レリーフ型ホログラムであってもよい。ホログラム記録層62は、大面積化が容易である点において、体積ホログラムでもよい。ホログラム記録層62は、波長選択性や角度選択性の鋭い反射型体積ホログラムでもよい。 Information about the interference fringes can be recorded in the hologram recording layer 62 in various forms. The hologram recording layer 62 may be a phase-type hologram or an amplitude-type hologram. The hologram recording layer 62 may be a surface relief hologram, or may be a surface relief hologram as a computer generated hologram (CGH). The hologram recording layer 62 may be a volume hologram in that it is easy to increase the area. The hologram recording layer 62 may be a reflective volume hologram with sharp wavelength selectivity and angle selectivity.
 図4は、反射型体積ホログラムの作成時における感光性材料層63の露光方法を示している。ホログラム記録層62の原材料となる感光性材料層63として、銀塩感材、重クロム酸ゼラチン、架橋性ポリマー、フォトポリマー等の層が例示される。感光性材料層63及び得られるホログラム記録層62の法線方向NDに沿った厚みを、1μm以上100μm以下としてもよく、5μm以上40μm以下としてもよい。 FIG. 4 shows a method of exposing the photosensitive material layer 63 when creating a reflective volume hologram. Examples of the photosensitive material layer 63, which is the raw material of the hologram recording layer 62, include layers such as silver salt sensitive material, gelatin dichromate, crosslinkable polymer, and photopolymer. The thickness of the photosensitive material layer 63 and the obtained hologram recording layer 62 along the normal direction ND may be 1 μm or more and 100 μm or less, or may be 5 μm or more and 40 μm or less.
 単一の光源から放出されたコヒーレント光を、参照光L4Aおよび物体光L4Bに分割する。参照光L4Aは、参照光用レンズ71によって発散光に整形される。整形された参照光L4Aが、感光性材料層63に照射される。感光性材料層63に対する参照光L4Aの入射方向は、図2に示されたホログラム素子60への画像光の入射方向と一致している。物体光L4Bは、物体光用レンズ72によって発散光に整形される。整形された物体光L4Bが感光性材料層63に照射される。物体光L4Bおよび参照光L4Aは、感光性材料層63の異なる面に照射される。物体光L4Bおよび参照光L4Aが、干渉することによって、感光性材料層63上に干渉パターンが生成される。干渉パターンが感光性材料層63に干渉縞として記録される。架橋性ポリマーを用いた感光性材料層63では、屈折率変化のパターンとして干渉縞が記録される。干渉縞を記録した感光性材料層63を、全面露光によって不感化することによって、ホログラム記録層62が得られる。 Coherent light emitted from a single light source is split into reference light L4A and object light L4B. The reference light L4A is shaped into divergent light by the lens 71 for reference light. The photosensitive material layer 63 is irradiated with the shaped reference light L4A. The incident direction of the reference light L4A to the photosensitive material layer 63 matches the incident direction of the image light to the hologram element 60 shown in FIG. The object light L4B is shaped into divergent light by the lens 72 for object light. The photosensitive material layer 63 is irradiated with the shaped object light L4B. Different surfaces of the photosensitive material layer 63 are irradiated with the object light L4B and the reference light L4A. An interference pattern is generated on the photosensitive material layer 63 by the object light L4B and the reference light L4A interfering with each other. The interference pattern is recorded as interference fringes in the photosensitive material layer 63 . In the photosensitive material layer 63 using a crosslinkable polymer, interference fringes are recorded as a pattern of refractive index change. The hologram recording layer 62 is obtained by desensitizing the photosensitive material layer 63 in which the interference fringes are recorded by exposing the entire surface.
 作製されたホログラム記録層62は、参照光L4Aと同一の方向から入射する照明光L3Aを高回折効率で回折する。すなわち、参照光L4Aと同一の方向から入射する照明光L3Aが、ホログラム記録層62のブラッグ条件を満たし得る。参照光L4Aの光路を、画像光の光路と一致又は対応させておくことによって、ホログラム記録層62に所望の角度依存性を付与できる。作製されたホログラム記録層62で回折された再生光L3Bは、感光性材料層63を透過した物体光L4Bの光路に沿って進む。物体光L4Bの光路を、コンバイナ40から使用者5に進む光路と一致又は対応させておくことによって、ホログラム記録層62に所望の角度依存性を付与できる。 The produced hologram recording layer 62 diffracts the illumination light L3A incident from the same direction as the reference light L4A with high diffraction efficiency. That is, the illumination light L3A incident from the same direction as the reference light L4A can satisfy the Bragg condition for the hologram recording layer 62. FIG. By matching or corresponding the optical path of the reference light L4A with the optical path of the image light, the hologram recording layer 62 can be given the desired angle dependency. The reproduction light L3B diffracted by the fabricated hologram recording layer 62 travels along the optical path of the object light L4B that has passed through the photosensitive material layer 63. FIG. By matching or corresponding the optical path of the object light L4B from the combiner 40 to the user 5, the hologram recording layer 62 can be given a desired angle dependency.
 作製されたホログラム記録層62は、参照光L4Aおよび物体光L4Bと同一の波長の光を高効率で回折する。すなわち、参照光L4A及び物体光L4Bと同一の波長の光が、ホログラム記録層62のブラッグ条件を満たし得る。参照光L4A及び物体光L4Bの波長を、画像光の中心波長に一致又は対応させておくことによって、ホログラム記録層62に所望の波長依存性を付与できる。画像光が青色光である場合、430nm以上490nm以下の波長のレーザー光を感光性材料層63の露光に用いてもよい。画像光が緑色光である場合、490nm以上550nm以下の波長のレーザー光を感光性材料層63の露光に用いてもよい。画像光が赤色光である場合、600nm以上660nm以下の波長のレーザー光を感光性材料層63の露光に用いてもよい。 The produced hologram recording layer 62 diffracts light of the same wavelength as the reference light L4A and the object light L4B with high efficiency. That is, light having the same wavelength as the reference light L4A and the object light L4B can satisfy the Bragg condition of the hologram recording layer 62. FIG. Desired wavelength dependence can be imparted to the hologram recording layer 62 by matching or corresponding the wavelengths of the reference light L4A and the object light L4B to the center wavelength of the image light. When the image light is blue light, a laser beam with a wavelength of 430 nm or more and 490 nm or less may be used for exposure of the photosensitive material layer 63 . When the image light is green light, a laser beam with a wavelength of 490 nm or more and 550 nm or less may be used for exposure of the photosensitive material layer 63 . When the image light is red light, a laser beam with a wavelength of 600 nm or more and 660 nm or less may be used for exposure of the photosensitive material layer 63 .
 ホログラム素子60は、複数のホログラム記録層62を含んでもよい。複数のホログラム記録層62は、互いに異なる波長の光を高効率で回折できる。例えば、投射装置25からの画像光は、青色の光、緑色の光、および赤色の光を含み得る。この例において、ホログラム素子60は、青色の光を高効率で回折するホログラム記録層62、緑色の光を高効率で回折するホログラム記録層62、および赤色の光を高効率で回折するホログラム記録層62を含んでもよい。ホログラム記録層62が体積ホログラムである場合には、多重記録によって、単一のホログラム記録層62が複数の波長域の光を高効率で回折してもよい。 The hologram element 60 may include multiple hologram recording layers 62 . The plurality of hologram recording layers 62 can diffract light of different wavelengths with high efficiency. For example, image light from projection device 25 may include blue light, green light, and red light. In this example, the hologram element 60 includes a hologram recording layer 62 that diffracts blue light with high efficiency, a hologram recording layer 62 that diffracts green light with high efficiency, and a hologram recording layer that diffracts red light with high efficiency. 62 may be included. When the hologram recording layer 62 is a volume hologram, the single hologram recording layer 62 may efficiently diffract light in a plurality of wavelength bands by multiple recording.
 図2に示された例において、ホログラム素子60は、ホログラム記録層62と法線方向NDに重ねられた第1シート64および第2シート66を含んでいる。ホログラム記録層62は、第1シート64および第2シート66の間に位置している。図示された例において、ホログラム記録層62は、第1シート64および第2シート66に接合している。 In the example shown in FIG. 2, the hologram element 60 includes a hologram recording layer 62 and a first sheet 64 and a second sheet 66 stacked in the normal direction ND. Hologram recording layer 62 is located between first sheet 64 and second sheet 66 . In the illustrated example, hologram recording layer 62 is bonded to first sheet 64 and second sheet 66 .
 第1シート64および第2シート66は、ホログラム記録層62を支持する基材として機能する。第1シート64および第2シート66は、ホログラム記録層62を保護する保護層として機能する。第1シート64および第2シート66は透明なシートである。第1シート64および第2シート66の材料として、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリカーボネート、ポリスチレン、環状ポリオレフィン等が例示される。第1シート64および第2シート66の法線方向NDに沿った厚みを10μm以上100μm以下としてもよい。第1シート64および第2シート66は、同一の材料で同一に構成されてもよいし、異なる材料で構成されてもよいし、異なる構成を有してもよい。ホログラム素子60は、第1シート64及び第2シート66の一方を含んでいてもよい。ホログラム素子60は、第1シート64及び第2シート66の両方を含んでいなくてもよい。 The first sheet 64 and the second sheet 66 function as base materials that support the hologram recording layer 62 . The first sheet 64 and the second sheet 66 function as protective layers that protect the hologram recording layer 62 . The first sheet 64 and the second sheet 66 are transparent sheets. Examples of materials for the first sheet 64 and the second sheet 66 include polyethylene terephthalate, polyethylene naphthalate, polycarbonate, polystyrene, cyclic polyolefin, and the like. The thickness along the normal direction ND of the first sheet 64 and the second sheet 66 may be 10 μm or more and 100 μm or less. The first sheet 64 and the second sheet 66 may be identically constructed of the same material, may be constructed of different materials, or may have different constructions. Hologram element 60 may include one of first sheet 64 and second sheet 66 . Hologram element 60 may not include both first sheet 64 and second sheet 66 .
 図5は、ホログラム素子60の分光透過率の一例を示している。すなわち、図5は、ホログラム素子60の波長毎の透過率を示している。図5の分光透過率において、波長λ1、波長λ2及び波長λ3において透過率が低下している。透過率の低下に相当する光が、ホログラム素子60で回折されている。すなわち、波長λ1、波長λ2及び波長λ3は、ホログラム素子60の選択波長の中心である。図5に示された光学特性を有するホログラム素子60は、図4の露光方法を用いて作製された三つのホログラム記録層62を含んでもよい。三つのホログラム記録層62は、図5に示された分光透過率の極小値に対応する三つの異なる波長λ1、波長λ2及び波長λ3の光を、参照光L4A及び物体光L4Bとして、それぞれ用いて作製され得る。 FIG. 5 shows an example of the spectral transmittance of the hologram element 60. FIG. That is, FIG. 5 shows the transmittance of the hologram element 60 for each wavelength. In the spectral transmittance of FIG. 5, the transmittance is lowered at wavelengths λ1, λ2, and λ3. Light corresponding to the drop in transmittance is diffracted by the hologram element 60 . That is, wavelength λ 1 , wavelength λ 2 and wavelength λ 3 are the centers of the selected wavelengths of hologram element 60 . A hologram element 60 having the optical properties shown in FIG. 5 may include three hologram recording layers 62 fabricated using the exposure method of FIG. The three hologram recording layers 62 use, as reference light L4A and object light L4B, light of three different wavelengths λ1, λ2, and λ3 corresponding to the minimum values of the spectral transmittance shown in FIG. can be made.
 後述するノイズ像91を目立たなくする観点から、ホログラム素子60の回折効率に上限を設けることが好ましい。ホログラム素子60の回折効率を、60%以下にしてもよく、40%以下にしてもよく、20%以下にしてもよい。ホログラム記録層62の露光時に複数の波長の光を用いた場合、ホログラム素子60は当該複数の波長の光に対して回折効率のピーク値を有する。例えば、波長460nmの光、波長532nmの光、及び波長640nmの光を用いて、感光性材料層63の露光が行われ得る。複数の波長の光に対して回折効率のピーク値を有する場合、「ホログラム素子60の回折効率」は、各波長の光に対する回折効率の最大値を意味する。 From the viewpoint of making the noise image 91 described later inconspicuous, it is preferable to set an upper limit on the diffraction efficiency of the hologram element 60 . The diffraction efficiency of the hologram element 60 may be 60% or less, 40% or less, or 20% or less. When light of a plurality of wavelengths is used when exposing the hologram recording layer 62, the hologram element 60 has a peak value of diffraction efficiency for the light of the plurality of wavelengths. For example, light with a wavelength of 460 nm, light with a wavelength of 532 nm, and light with a wavelength of 640 nm can be used to expose the photosensitive material layer 63 . When the hologram element 60 has diffraction efficiency peak values for light of a plurality of wavelengths, the "diffraction efficiency of the hologram element 60" means the maximum value of diffraction efficiency for light of each wavelength.
 ホログラム素子60の回折効率は、JISZ8791:2011に準拠したいずれか一つの適切な測定方法にて測定される。ホログラム素子60の回折効率(%)は、ホログラム素子60への照明光の放射束(ワット;W)に対する一次回折光の放射束(ワット)の割合の最大値を意味している。したがって、一次回折光の放射束(ワット)は、ブラッグ条件を満たすようにして照明光をホログラム素子60へ照射した状態で、測定される。具体的には、ホログラム素子60に対する照明光L3Aの光軸を、露光時における感光性材料層63に対する参照光L4Aの光軸と一致させる。一次回折光の放射束(ワット)は、露光時における物体光L4Bの光路と平行な方向に、ホログラム素子60から出射する回折光の放射束を測定することによって、特定できる。光軸は、最も強度が高くなる光路として特定される。 The diffraction efficiency of the hologram element 60 is measured by any one appropriate measurement method conforming to JISZ8791:2011. The diffraction efficiency (%) of the hologram element 60 means the maximum ratio of the radiant flux (watts) of the first-order diffracted light to the radiant flux (watts; W) of the illumination light to the hologram element 60 . Therefore, the radiant flux (watts) of the first-order diffracted light is measured while the hologram element 60 is irradiated with the illumination light satisfying the Bragg condition. Specifically, the optical axis of the illumination light L3A with respect to the hologram element 60 is aligned with the optical axis of the reference light L4A with respect to the photosensitive material layer 63 during exposure. The radiant flux (watts) of the first-order diffracted light can be specified by measuring the radiant flux of the diffracted light emitted from the hologram element 60 in a direction parallel to the optical path of the object light L4B during exposure. The optical axis is identified as the optical path of highest intensity.
 干渉縞に関する情報は、種々の形態として、ホログラム記録層62に記録され得る。ホログラム記録層62は、位相型のホログラムであってもよいし、振幅型のホログラムであってもよい。ホログラム記録層62は、表面レリーフ型ホログラムであってもよいし、計算機合成ホログラム(CGH:Computer Generated Hologram)としての表面レリーフ型ホログラムであってもよい。ホログラム記録層62は、大面積化が容易である点において、体積ホログラムでもよい。ホログラム記録層62は、波長選択性や角度選択性の鋭い反射型体積ホログラムでもよい。 Information about the interference fringes can be recorded in the hologram recording layer 62 in various forms. The hologram recording layer 62 may be a phase-type hologram or an amplitude-type hologram. The hologram recording layer 62 may be a surface relief hologram, or may be a surface relief hologram as a computer generated hologram (CGH). The hologram recording layer 62 may be a volume hologram in that it is easy to increase the area. The hologram recording layer 62 may be a reflective volume hologram with sharp wavelength selectivity and angle selectivity.
 後述するノイズ像91を目立たなくする観点から、ホログラム素子60の回折効率の波長分布における半値全幅(nm)に上限を設けることが好ましい。ホログラム素子60の回折効率の波長分布における半値全幅(nm)を、20nm以下としてもよく、10nm以下としてもよく、5nm以下としてもよい。半値全幅とは、回折効率のピーク値が得られる波長の両側に位置し当該ピーク値の半分の回折効率が確保される二つの波長の間隔(nm)を意味する。ホログラム素子60が複数の波長の光に対して回折効率のピーク値を有する場合、「ホログラム素子60の回折効率の波長分布における半値全幅(nm)」は、各波長の光に関する半値全幅の最大値を意味する。 From the viewpoint of making the noise image 91 described later inconspicuous, it is preferable to set an upper limit to the full width at half maximum (nm) in the wavelength distribution of the diffraction efficiency of the hologram element 60 . The full width at half maximum (nm) in the wavelength distribution of the diffraction efficiency of the hologram element 60 may be 20 nm or less, 10 nm or less, or 5 nm or less. The full width at half maximum means an interval (nm) between two wavelengths located on both sides of a wavelength at which a peak value of diffraction efficiency is obtained and at which half of the peak value of diffraction efficiency is ensured. When the hologram element 60 has diffraction efficiency peak values for light of a plurality of wavelengths, the “full width at half maximum (nm) in the wavelength distribution of the diffraction efficiency of the hologram element 60” is the maximum value of the full width at half maximum for light of each wavelength. means
 次に、図示されたヘッドアップディスプレイ20の作用について説明する。 Next, the action of the illustrated head-up display 20 will be described.
 図6に示すように、投射装置25から画像光L61が射出する。画像光L61は、画像形成装置30によって形成され、投射光学系35によってコンバイナ40に向けられる。画像光L61は、コンバイナ40に第1面41から入射する。画像光L61は、照明光L62として、コンバイナ40のホログラム素子60に入射する。ホログラム素子60のホログラム記録層62は、照明光L62としての画像光L61を高効率で回折する。ホログラム素子60で回折された画像光L61は、再生光L63として、ホログラム素子60で反射して使用者5に向かう。使用者5は、画像光L61によって形成される画像を観察できる。使用者5は、画像を画像形成装置30の位置ではなく、再生光L63の光路と平行な方向に沿ったコンバイナ40の背後となる位置に観察する。すなわち、ヘッドアップディスプレイ20によれば、使用者5を基準としたコンバイナ40の背後に、使用者5によって観察される虚像80を表示できる。 As shown in FIG. 6, image light L61 is emitted from the projection device 25. Image light L<b>61 is formed by image forming device 30 and directed to combiner 40 by projection optics 35 . The image light L61 enters the combiner 40 from the first surface 41 . The image light L61 enters the hologram element 60 of the combiner 40 as illumination light L62. The hologram recording layer 62 of the hologram element 60 diffracts the image light L61 as the illumination light L62 with high efficiency. The image light L61 diffracted by the hologram element 60 is reflected by the hologram element 60 toward the user 5 as reproduction light L63. The user 5 can observe the image formed by the image light L61. The user 5 observes the image not at the position of the image forming apparatus 30 but at a position behind the combiner 40 along the direction parallel to the optical path of the reproduction light L63. That is, according to the head-up display 20, the virtual image 80 observed by the user 5 can be displayed behind the combiner 40 with the user 5 as a reference.
 図示されたヘッドアップディスプレイ20において、虚像80が表示される位置は、ホログラム素子60によって調節できる。図4に示された、参照光用レンズ71から感光性材料層63までの距離DXに対して、物体光用レンズ72から感光性材料層63までの距離DYを調節することによって、虚像80の位置および大きさを調節できる。具体的には、距離DXに対する距離DYの比(DY/DX)を大きくすることによって、使用者5及びコンバイナ40からより遠くに、虚像80を表示できる。距離DXに対する距離DYの比(DY/DX)を大きくすることによって、虚像80の大きさを拡大できる。 In the illustrated head-up display 20, the position where the virtual image 80 is displayed can be adjusted by the hologram element 60. By adjusting the distance DY from the object light lens 72 to the photosensitive material layer 63 with respect to the distance DX from the reference light lens 71 to the photosensitive material layer 63 shown in FIG. You can adjust the position and size. Specifically, the virtual image 80 can be displayed farther from the user 5 and the combiner 40 by increasing the ratio of the distance DY to the distance DX (DY/DX). The size of the virtual image 80 can be increased by increasing the ratio of the distance DY to the distance DX (DY/DX).
 ところで、太陽や外灯等が設置された場所で、従来のヘッドアップディスプレイを用いた場合、外部光源90が、意図しないノイズ像91として、コンバイナ140に映り込むことがあった。ここで外部光源とは、太陽や外灯等のヘッドアップディスプレイの設置環境に設けられた光源である。外部光源は、コンバイナへの入射を意図されていない光を放出する光源である。外部光源としては、太陽や外灯等の環境光を放出光源が例示される。しかも、太陽や外灯等のノイズ像91は、太陽や外灯等の外部光源90の実際の位置とは異なる位置に観察される。このようなノイズ像91の出現は、ヘッドアップディスプレイ120の表示品質を低下させ、且つコンバイナ140を介した視認性を低下させる。 By the way, when a conventional head-up display is used in a place where the sun, outdoor lights, etc. are installed, the external light source 90 may be reflected in the combiner 140 as an unintended noise image 91 . Here, the external light source is a light source provided in the installation environment of the head-up display, such as the sun or an outdoor lamp. An external light source is a light source that emits light that is not intended to enter the combiner. As an external light source, a light source that emits environmental light such as the sun or an outdoor light is exemplified. Moreover, the noise image 91 of the sun, an outdoor lamp, etc. is observed at a position different from the actual position of the external light source 90, such as the sun or an outdoor lamp. The appearance of such a noise image 91 degrades the display quality of the head-up display 120 and reduces visibility through the combiner 140 .
 ノイズ像91の出現は次の理由と考えられる。図11に示すように、外部光源90からのノイズ光L112は、画像光L111とは異なり、第2面142を介してコンバイナ140に入射する。ノイズ光L112は、第1面141に到達して第1面141で反射する。その後、ノイズ光L112は、ホログラム素子160に入射する。ノイズ光L112の光路がホログラム記録層162のブラッグ回折条件を満たす場合、ノイズ光L112は、ホログラム記録層162にて高効率で回折されて、使用者5に向かう。使用者5は、コンバイナ140の背後に位置するノイズ像91を観察する。 The appearance of the noise image 91 is considered to be due to the following reasons. As shown in FIG. 11, the noise light L112 from the external light source 90 enters the combiner 140 via the second surface 142 unlike the image light L111. The noise light L112 reaches the first surface 141 and is reflected by the first surface 141 . After that, noise light L112 enters hologram element 160 . When the optical path of the noise light L112 satisfies the Bragg diffraction condition of the hologram recording layer 162, the noise light L112 is diffracted by the hologram recording layer 162 with high efficiency and travels toward the user 5. User 5 observes noise image 91 located behind combiner 140 .
 一方、本実施の形態において、ホログラム素子60は、コンバイナ40への画像光の入射方向に対する正反射方向または正反射方向に25°以下の角度傾斜した方向に、画像光を回折する。すなわち、ホログラム素子60は、コンバイナ40への画像光L61の入射方向に対する正反射方向に対して大きく傾斜しない方向に、画像光L61を回折する。 On the other hand, in the present embodiment, the hologram element 60 diffracts the image light in the specular reflection direction with respect to the incident direction of the image light to the combiner 40 or in a direction inclined at an angle of 25° or less to the specular reflection direction. That is, the hologram element 60 diffracts the image light L61 in a direction that is not greatly inclined with respect to the regular reflection direction with respect to the incident direction of the image light L61 to the combiner 40 .
 図7に示された例において、ホログラム素子60は、ブラッグ条件を満たす入射光を正反射方向に回折している。この例において、外部光源90から放出されたノイズ光L71は、第2面42を通過してコンバイナ40に入射する。ノイズ光L71は、その後、コンバイナ40内を第1面41に向けて進む。ノイズ光L71は、第1面41で正反射する。すなわち、ノイズ光L71の第1面41への入射角θaは、第1面41で反射した反射光L72の反射角θbと同一である。反射角は、反射対象への法線方向に対して反射光の進行方向がなす角度(°)であり、90°未満の値となる。 In the example shown in FIG. 7, the hologram element 60 diffracts incident light that satisfies the Bragg condition in the specular direction. In this example, the noise light L71 emitted from the external light source 90 passes through the second surface 42 and enters the combiner 40 . The noise light L71 then travels through the combiner 40 toward the first surface 41 . The noise light L71 is specularly reflected by the first surface 41 . That is, the incident angle θa of the noise light L71 to the first surface 41 is the same as the reflection angle θb of the reflected light L72 reflected by the first surface 41 . The angle of reflection is the angle (°) formed by the traveling direction of the reflected light with respect to the normal direction to the object to be reflected, and is less than 90°.
 第1面41で反射したノイズ光L72は、その後、ホログラム素子60に向かう。図7に示された例において、ノイズ光L72は、画像光L74と平行な方向に進んで、ホログラム素子60に入射する。したがって、ノイズ光L72は、ホログラム素子60のホログラム記録層62のブラッグ条件を満たし、ホログラム記録層62にて高効率で回折される。ホログラム記録層62での回折により、ノイズ光L72は、ホログラム記録層62にて正反射方向に回折する。ホログラム素子60で反射した回折光L73は、コンバイナ40から出射して使用者5に向かう。 The noise light L72 reflected by the first surface 41 then travels toward the hologram element 60. In the example shown in FIG. 7, the noise light L72 travels in a direction parallel to the image light L74 and enters the hologram element 60. In the example shown in FIG. Therefore, the noise light L72 satisfies the Bragg condition of the hologram recording layer 62 of the hologram element 60 and is diffracted by the hologram recording layer 62 with high efficiency. Due to the diffraction at the hologram recording layer 62, the noise light L72 is diffracted at the hologram recording layer 62 in the regular reflection direction. The diffracted light L73 reflected by the hologram element 60 is emitted from the combiner 40 toward the user 5. FIG.
 ノイズ光L72のホログラム素子60への入射角θcは、第1面41で反射した反射光L72の反射角θbと同一である。また、ノイズ光L72のホログラム素子60への入射角θcは、ホログラム素子60で反射回折した回折光L73の回折角θdと同一である。結果として、使用者5に向かうノイズ光L73は、外部光源90から放出されたノイズ光L71と、平行な方向に進む。そして、コンバイナ40から外部光源90までの距離や、外部光源90の大きさに対し、コンバイナ40の法線方向NDへの厚みは十分に薄い。したがって、使用者5は、外部光源90と重なる位置に外部光源90のノイズ像91を観察する。すなわち、コンバイナ40を介して観察され得る外部光源90の実像と、外部光源90のノイズ像91とが、少なくとも部分的に重なって観察される。このため、使用者5がノイズ像91を観察した際の違和感を大幅に低減できる。さらには、使用者5はノイズ像91に気付かないことも想定される。これにより、ヘッドアップディスプレイ20の表示品質が向上し、且つコンバイナ40を介した視認性が向上する。 The incident angle θc of the noise light L72 to the hologram element 60 is the same as the reflection angle θb of the reflected light L72 reflected by the first surface 41 . Also, the incident angle θc of the noise light L72 to the hologram element 60 is the same as the diffraction angle θd of the diffracted light L73 reflected and diffracted by the hologram element 60 . As a result, the noise light L73 directed toward the user 5 travels in a direction parallel to the noise light L71 emitted from the external light source 90 . The thickness of the combiner 40 in the normal direction ND is sufficiently thin with respect to the distance from the combiner 40 to the external light source 90 and the size of the external light source 90 . Therefore, the user 5 observes a noise image 91 of the external light source 90 at a position overlapping the external light source 90 . That is, the real image of the external light source 90 that can be observed through the combiner 40 and the noise image 91 of the external light source 90 are at least partially overlapped and observed. Therefore, it is possible to greatly reduce the sense of incongruity when the user 5 observes the noise image 91 . Furthermore, it is assumed that the user 5 does not notice the noise image 91 . Thereby, the display quality of the head-up display 20 is improved, and the visibility through the combiner 40 is improved.
 図示された例と異なり、ホログラム素子60は、コンバイナ40への画像光の入射方向に対する正反射方向に25°以下の角度傾斜した方向に、画像光を回折してもよい。使用者5に向かうノイズ光L73の進行方向は、外部光源90から放出されたノイズ光L71の進行方向に対して25°以下の角度だけ傾斜し得る。このような例によっても、使用者5は、外部光源90と少なくとも部分的に重なる位置に外部光源90のノイズ像91を観察することが可能となる。すなわち、コンバイナ40を介して観察され得る外部光源90の実像と、外部光源90のノイズ像91とが、重なって、互いに区別されにくくなる。このため、使用者5がノイズ像91を観察した際の違和感を大幅に抑制できる。さらには、使用者5はノイズ像91に気付かないことも想定される。これにより、ヘッドアップディスプレイ20の表示品質が向上し、且つコンバイナ40を介した視認性が向上する。 Unlike the illustrated example, the hologram element 60 may diffract the image light in a direction inclined at an angle of 25° or less in the regular reflection direction with respect to the incident direction of the image light to the combiner 40 . The traveling direction of the noise light L73 toward the user 5 can be inclined by an angle of 25° or less with respect to the traveling direction of the noise light L71 emitted from the external light source 90 . This example also allows the user 5 to observe the noise image 91 of the external light source 90 at a position at least partially overlapping the external light source 90 . That is, the real image of the external light source 90 that can be observed through the combiner 40 and the noise image 91 of the external light source 90 overlap each other, making it difficult to distinguish them from each other. For this reason, it is possible to greatly suppress discomfort when the user 5 observes the noise image 91 . Furthermore, it is assumed that the user 5 does not notice the noise image 91 . Thereby, the display quality of the head-up display 20 is improved, and the visibility through the combiner 40 is improved.
 このように、コンバイナ40のホログラム素子60への入射角θ1と、コンバイナ40のホログラム素子60での回折角θ2と、の差の大きさに上限を設けることによって、ノイズ像91を観察した際の違和感を抑制できる。この入射角θ1および回折角θ2との差は、25°以下でもよく、20°以下でもよく、15°以下でもよく、10°以下でもよく、5°以下でもよく、3°以下でもよい。 Thus, by setting an upper limit on the difference between the angle of incidence θ1 of the combiner 40 on the hologram element 60 and the angle of diffraction θ2 of the combiner 40 at the hologram element 60, the noise image 91 is observed when the noise image 91 is observed. Discomfort can be suppressed. The difference between the incident angle θ1 and the diffraction angle θ2 may be 25° or less, 20° or less, 15° or less, 10° or less, 5° or less, or 3° or less.
 以上のように、ホログラム素子60が、コンバイナ40への画像光の入射方向に対する正反射方向または正反射方向に25°以下の角度傾斜した方向に、画像光を回折する実施形態によれば、ノイズ像91を目立たなくさせることができる。しかしながら、この回折特性を有したホログラム素子60を用いた場合、次に説明する新たな不具合が生じ得る。 As described above, according to the embodiment in which the hologram element 60 diffracts the image light in the specular reflection direction with respect to the incident direction of the image light to the combiner 40 or in a direction inclined at an angle of 25° or less to the specular reflection direction, noise The image 91 can be made inconspicuous. However, when the hologram element 60 having this diffraction characteristic is used, a new problem described below may occur.
 図6に示すように、画像光L61の一部は第1面41で正反射し得る。また、画像光L61の一部は第2面42で正反射し得る。これらの反射光L64は、ホログラム素子60での回折光と平行または概ね平行な方向に進む。すなわち、反射光L64も、使用者5に向けて反射される。したがって、使用者5は、コンバイナ40の表面41,42で反射した反射光L64により、画像のゴースト像81を観察する。図2及び図6に示すように、表示を意図されていないゴースト像81は、表示を意図された画像の虚像80と、同じ方向に観察される。ゴースト像81が虚像80と重なることにより、表示されることを意図された虚像80の視認性が低下するといった不具合が生じ得る。 As shown in FIG. 6, part of the image light L61 can be specularly reflected by the first surface 41. Also, part of the image light L61 may be specularly reflected by the second surface 42 . These reflected lights L64 travel in a direction parallel or substantially parallel to the light diffracted by the hologram element 60. FIG. That is, the reflected light L64 is also reflected toward the user 5. FIG. Therefore, the user 5 observes the ghost image 81 of the image by the reflected light L64 reflected by the surfaces 41 and 42 of the combiner 40. FIG. As shown in FIGS. 2 and 6, the ghost image 81 not intended for display is viewed in the same direction as the virtual image 80 of the image intended for display. Overlapping of the ghost image 81 with the virtual image 80 may cause a problem that the visibility of the virtual image 80 intended to be displayed is reduced.
 この新たな不具合に対し本実施の形態では、図6に示すように、ホログラム素子60によって回折された画像光L63による画像、すなわち虚像80の表示位置PXとホログラム素子60との距離LXを、第1面41または第2面42で反射した画像光L64による画像、すなわちゴースト像81の表示位置PXとホログラム素子60との距離LYの4倍以上としている。距離LXを距離LYの6倍以上としてもよく、距離LXを距離LYの8倍以上としてもよく、距離LXを距離LYの12倍以上としてもよく、距離LXを距離LYの16倍以上としてもよい。また、距離LXと距離LYとの差は、1m以上でもよく、2m以上でもよく、4m以上でもよく、8m以上でもよい。このように距離LXおよび距離LYを調整した場合、虚像80の表示位置PXがゴースト像81の表示位置PYから十分に離れる。したがって、観察対象をゴースト像81から虚像80に変更する場合、使用者5は眼の焦点位置を変更する必要が生じる。すなわち、虚像80とともにゴースト像81が明瞭に観察されることを抑制できる。これにより、ゴースト像81によって虚像80の視認性が損なわれることを抑制できる。 To deal with this new problem, in the present embodiment, as shown in FIG. The distance LY between the image by the image light L64 reflected by the first surface 41 or the second surface 42, that is, the display position PX of the ghost image 81 and the hologram element 60 is four times or more. The distance LX may be 6 times or more the distance LY, the distance LX may be 8 times or more the distance LY, the distance LX may be 12 times or more the distance LY, or the distance LX may be 16 times or more the distance LY. good. Also, the difference between the distance LX and the distance LY may be 1 m or more, 2 m or more, 4 m or more, or 8 m or more. When the distance LX and the distance LY are adjusted in this way, the display position PX of the virtual image 80 is sufficiently separated from the display position PY of the ghost image 81 . Therefore, when changing the observation target from the ghost image 81 to the virtual image 80, the user 5 needs to change the focus position of the eye. That is, it is possible to prevent the ghost image 81 from being clearly observed together with the virtual image 80 . Accordingly, it is possible to prevent the visibility of the virtual image 80 from being impaired by the ghost image 81 .
 上述したように、ノイズ像91を目立たなくするには、第1面41をなす反射防止層57での反射率を低減することが有効である。反射防止層57での反射率を低減することによって、ホログラム素子60に入射するノイズ光L72の放射束(W)を低減できる。加えて、反射防止層57によれば、画像光L61がコンバイナ40の表面で反射することも抑制できる。これにより、ゴースト像81を目立たなくできる。具体的には、反射防止層57での反射率を、1%以下としてもよく、0.5%以下としてもよい。反射防止層57での反射率(%)は、反射防止層57の厚み、反射防止層57に含まれる層の数、反射防止層57をなす材料の屈折率等によって、調節可能である。 As described above, in order to make the noise image 91 inconspicuous, it is effective to reduce the reflectance of the antireflection layer 57 forming the first surface 41 . By reducing the reflectance of the antireflection layer 57, the radiant flux (W) of the noise light L72 incident on the hologram element 60 can be reduced. In addition, the antireflection layer 57 can also suppress reflection of the image light L61 on the surface of the combiner 40 . Thereby, the ghost image 81 can be made inconspicuous. Specifically, the reflectance of the antireflection layer 57 may be 1% or less, or 0.5% or less. The reflectance (%) of the antireflection layer 57 can be adjusted by the thickness of the antireflection layer 57, the number of layers included in the antireflection layer 57, the refractive index of the material forming the antireflection layer 57, and the like.
 さらに、ノイズ像91を目立たなくするには、ホログラム素子60の回折効率を低減することが有効である。ホログラム素子60での回折効率を低減することによって、ノイズ像91を暗くできる。具体的には、ホログラム素子60の回折効率を、60%以下としてもよく、40%以下にしてもよく、20%以下にしてもよい。 Furthermore, reducing the diffraction efficiency of the hologram element 60 is effective in making the noise image 91 inconspicuous. By reducing the diffraction efficiency of the hologram element 60, the noise image 91 can be darkened. Specifically, the diffraction efficiency of the hologram element 60 may be 60% or less, 40% or less, or 20% or less.
 さらに、ノイズ像91を目立たなくするには、ホログラム素子60の回折効率の波長分布における半値全幅W(nm)を低減することが有効である。ホログラム素子60の回折効率の波長分布における半値全幅W(nm)を低減することによって、ノイズ像91を暗くできる。具体的には、ホログラム素子60の回折効率の波長分布における半値全幅W(nm)を、20nm以下としてもよく、10nm以下としてもよく、5nm以下としてもよい。 Furthermore, in order to make the noise image 91 inconspicuous, it is effective to reduce the full width at half maximum W (nm) in the wavelength distribution of the diffraction efficiency of the hologram element 60 . The noise image 91 can be darkened by reducing the full width at half maximum W (nm) in the wavelength distribution of the diffraction efficiency of the hologram element 60 . Specifically, the full width at half maximum W (nm) in the wavelength distribution of the diffraction efficiency of the hologram element 60 may be 20 nm or less, 10 nm or less, or 5 nm or less.
 ホログラム素子60の回折効率(%)およびホログラム素子60の回折効率の波長分布における半値全幅(nm)は、ホログラム素子60の製造条件を変更することによって、調節可能である。例えば、ホログラム記録層62の作製に用いられる感光性材料層63の種類や厚み、干渉縞の記録後におけるラミネートフィルムの種類、干渉縞の記録後の後処理方法等によって、回折効率(%)及び半値全幅(nm)を調節可能である。感光性材料層63の露光時における露光光の強度や露光時間によっても、回折効率(%)及び半値全幅(nm)を調節可能である。 The diffraction efficiency (%) of the hologram element 60 and the full width at half maximum (nm) in the wavelength distribution of the diffraction efficiency of the hologram element 60 can be adjusted by changing the manufacturing conditions of the hologram element 60 . For example, the diffraction efficiency (%) and The full width at half maximum (nm) is adjustable. The diffraction efficiency (%) and the full width at half maximum (nm) can be adjusted also by the intensity of the exposure light and the exposure time when the photosensitive material layer 63 is exposed.
 ここで、本件発明者等が実施した実験の一例について説明する。 Here, an example of an experiment conducted by the inventors will be explained.
 図8に示されたコンバイナ40のサンプル1~5を作製した。サンプル1~5のコンバイナ40は、第1基板51、第2基板52、接合層45、およびホログラム素子60を含んでいた。ホログラム素子60は、第1シート64、ホログラム記録層62および第2シート66を含んでいた。サンプル1~5に係るコンバイナ40は、ホログラム素子60を接合層45内に配置した合わせガラスとした。 Samples 1 to 5 of the combiner 40 shown in FIG. 8 were produced. Combiners 40 of samples 1-5 included first substrate 51 , second substrate 52 , bonding layer 45 , and hologram element 60 . Hologram element 60 included first sheet 64 , hologram recording layer 62 and second sheet 66 . The combiner 40 according to Samples 1 to 5 was laminated glass in which the hologram element 60 was arranged in the bonding layer 45 .
 第1基板51および第2基板52は、法線方向NDからの観察において、150mm×150mmの正方形形状とした。ホログラム素子60は、法線方向NDからの観察において、100mm×100mmの正方形形状とした。ホログラム素子60の周縁が、第1基板51および第2基板52の周縁から25mm内側に位置するように、ホログラム素子60を第1基板51および第2基板52に対して配置した。 The first substrate 51 and the second substrate 52 had a square shape of 150 mm×150 mm when observed from the normal direction ND. The hologram element 60 had a square shape of 100 mm×100 mm when observed from the normal direction ND. The hologram element 60 was arranged with respect to the first substrate 51 and the second substrate 52 so that the periphery of the hologram element 60 was located 25 mm inside from the periphery of the first substrate 51 and the second substrate 52 .
<サンプル1>
 サンプル1において、第1基板51の法線方向NDに沿った厚みT1を2mmとした。第2基板52の法線方向NDに沿った厚みT2を2mmとした。第2基板52として青板ガラスを用いた。接合層45として、ポリビニルブチラール(PVB)を用いた。ホログラム素子60と第1基板51との間における接合層45の厚みT3を380μmとした。ホログラム素子60と第2基板52との間における接合層45の厚みT3を380μmとした。
<Sample 1>
In sample 1, the thickness T1 along the normal direction ND of the first substrate 51 was set to 2 mm. The thickness T2 along the normal direction ND of the second substrate 52 was set to 2 mm. Soda plate glass was used as the second substrate 52 . Polyvinyl butyral (PVB) was used as the bonding layer 45 . A thickness T3 of the bonding layer 45 between the hologram element 60 and the first substrate 51 was set to 380 μm. A thickness T3 of the bonding layer 45 between the hologram element 60 and the second substrate 52 was set to 380 μm.
 ホログラム素子60は、単一のホログラム記録層62を含んでいた。ホログラム記録層62は、反射型の体積ホログラムとした。この単一のホログラム記録層62は、多重露光により、青色波長(460nm)の光、緑色波長(532nm)の光、および赤色波長(640nm)の光に対して、波長選択性を有していた。すなわち、青色波長の光、緑色波長の光、および赤色波長の光が、それぞれ、単一のホログラム記録層62のブラッグ条件を満たしていた。ホログラム記録層62は、青色波長の光、緑色波長の光、および赤色波長の光を用いて、図4に示された露光条件で作製された。ホログラム素子60は、56°の入射角で入射する光によってブラッグ条件が満たされるようにした。ホログラム素子60は、56°の入射角で入射する光を正反射方向に反射する回折特性を有するようにした。 The hologram element 60 included a single hologram recording layer 62 . The hologram recording layer 62 is a reflective volume hologram. This single hologram recording layer 62 had wavelength selectivity with respect to blue wavelength (460 nm) light, green wavelength (532 nm) light, and red wavelength (640 nm) light by multiple exposure. . That is, the blue wavelength light, the green wavelength light, and the red wavelength light each satisfied the Bragg condition for the single hologram recording layer 62 . The hologram recording layer 62 was produced under the exposure conditions shown in FIG. 4 using blue wavelength light, green wavelength light, and red wavelength light. The hologram element 60 was made to satisfy the Bragg condition with light incident at an incident angle of 56°. The hologram element 60 was made to have a diffraction characteristic of reflecting light incident at an incident angle of 56° in the regular reflection direction.
 ホログラム記録層62は、架橋性ポリマーを用いて作製された。ホログラム記録層62の厚みT6は、15μmであった。第1シート64及び第2シート66は、ポリエチレンテレフタレート製シートとした。第1シート64の厚みT7は、50μmであった。第2シート66の厚みT8は、38μmであった。 The hologram recording layer 62 was produced using a crosslinkable polymer. The thickness T6 of the hologram recording layer 62 was 15 μm. The first sheet 64 and the second sheet 66 were polyethylene terephthalate sheets. The thickness T7 of the first sheet 64 was 50 μm. The thickness T8 of the second sheet 66 was 38 μm.
<サンプル2>
 サンプル2は、ホログラム素子の回折特性において、サンプル1と異なった。サンプル2は、その他において、サンプル1と同様とした。
<Sample 2>
Sample 2 differed from Sample 1 in the diffraction characteristics of the hologram element. Sample 2 was otherwise similar to Sample 1.
 サンプル2において、ホログラム記録層62の製造方法は、物体光の入射方向を除き、サンプル1におけるホログラム記録層62の製造方法と同一とした。ホログラム素子60は、54°の入射角で入射する光によってブラッグ条件が満たされるようにした。ホログラム素子60は、54°の入射角で入射する光を、正反射方向に対して10°傾斜した方向に反射する回折特性を有するようにした。 In Sample 2, the manufacturing method of the hologram recording layer 62 was the same as the manufacturing method of the hologram recording layer 62 in Sample 1, except for the incident direction of the object light. The hologram element 60 was made so that the Bragg condition was satisfied by light incident at an incident angle of 54°. The hologram element 60 was made to have a diffraction characteristic of reflecting light incident at an incident angle of 54° in a direction inclined by 10° with respect to the regular reflection direction.
<サンプル3>
 サンプル3は、ホログラム素子の回折特性において、サンプル1及び2と異なった。サンプル3は、その他において、サンプル1及び2と同様とした。
<Sample 3>
Sample 3 differed from samples 1 and 2 in the diffraction properties of the hologram element. Sample 3 was otherwise similar to Samples 1 and 2.
 サンプル3において、ホログラム記録層62の製造方法は、物体光の入射方向を除き、サンプル1におけるホログラム記録層62の製造方法と同一とした。ホログラム素子60は、52°の入射角で入射する光によってブラッグ条件が満たされるようにした。ホログラム素子60は、52°の入射角で入射する光を、正反射方向に対して20°傾斜した方向に反射する回折特性を有するようにした。 In sample 3, the method of manufacturing the hologram recording layer 62 was the same as the method of manufacturing the hologram recording layer 62 in sample 1, except for the incident direction of the object light. The hologram element 60 was made to satisfy the Bragg condition with light incident at an incident angle of 52°. The hologram element 60 was made to have a diffraction characteristic of reflecting light incident at an incident angle of 52° in a direction inclined by 20° with respect to the regular reflection direction.
<サンプル4>
 サンプル4は、ホログラム素子の回折特性において、サンプル1~3と異なった。サンプル4は、その他において、サンプル1~3と同様とした。
<Sample 4>
Sample 4 differed from Samples 1 to 3 in the diffraction characteristics of the hologram element. Sample 4 was otherwise similar to Samples 1-3.
 サンプル4において、ホログラム記録層62の製造方法は、物体光の入射方向を除き、サンプル1におけるホログラム記録層62の製造方法と同一とした。ホログラム素子60は、56°の入射角で入射する光によってブラッグ条件が満たされるようにした。ホログラム素子60は、56°の入射角で入射する光を、正反射方向に対して25°傾斜した方向に反射する回折特性を有するようにした。 In sample 4, the method of manufacturing the hologram recording layer 62 was the same as the method of manufacturing the hologram recording layer 62 in sample 1, except for the incident direction of the object light. The hologram element 60 was made to satisfy the Bragg condition with light incident at an incident angle of 56°. The hologram element 60 was made to have a diffraction characteristic of reflecting light incident at an incident angle of 56° in a direction inclined by 25° with respect to the regular reflection direction.
<サンプル5>
 サンプル5は、ホログラム素子の回折特性において、サンプル1~4と異なった。サンプル5は、その他において、サンプル1~4と同様とした。
<Sample 5>
Sample 5 differed from Samples 1 to 4 in the diffraction characteristics of the hologram element. Sample 5 was otherwise similar to Samples 1-4.
 サンプル5において、ホログラム記録層62の製造方法は、物体光の入射方向を除き、サンプル1におけるホログラム記録層62の製造方法と同一とした。ホログラム素子60は、56°の入射角で入射する光によってブラッグ条件が満たされるようにした。ホログラム素子60は、56°の入射角で入射する光を、正反射方向に対して30°傾斜した方向に反射する回折特性を有するようにした。 In sample 5, the method of manufacturing the hologram recording layer 62 was the same as the method of manufacturing the hologram recording layer 62 in sample 1, except for the incident direction of the object light. The hologram element 60 was made to satisfy the Bragg condition with light incident at an incident angle of 56°. The hologram element 60 was made to have a diffraction characteristic of reflecting light incident at an incident angle of 56° in a direction inclined by 30° with respect to the specular reflection direction.
<評価1>
 サンプル1~5を実際の自動車のフロントガラス上に配置した。自動車の位置や向きを調節して、サンプル1~5のコンバイナ40内に外部光源90のノイズ像91を観察した。外部光源90は外灯とした。サンプル1において、ノイズ像91は、大部分において外部光源90の実像と重なって観察され、気にならなかった。サンプル2~4において、ノイズ像91が大きく目立つことはなく、ノイズ像91によって注意が削がれることもなかった。サンプル5において、ノイズ像91は、外部光源90の実像から大きくずれた位置に観察され、違和感を覚えた。また、観察されるノイズ像91の大きさは、サンプル5で最も大きく、サンプル1で最も小さくなった。サンプル5のノイズ像91の色は、外部光源90の色と大きく異なり、部分的に虹色となっていた。
<Evaluation 1>
Samples 1-5 were placed on the windshield of an actual automobile. A noise image 91 of an external light source 90 was observed in the combiner 40 of samples 1-5 by adjusting the position and orientation of the automobile. The external light source 90 was an outdoor lamp. In sample 1, the noise image 91 was mostly observed overlapping the real image of the external light source 90, and was not noticeable. In samples 2 to 4, the noise image 91 was not large and conspicuous, and the noise image 91 did not distract attention. In sample 5, the noise image 91 was observed at a position greatly deviated from the real image of the external light source 90, and felt uncomfortable. In addition, the size of the noise image 91 observed was the largest in sample 5 and the smallest in sample 1. FIG. The color of the noise image 91 of sample 5 was significantly different from the color of the external light source 90, and was partially rainbow colored.
<評価2>
 サンプル1~5を投射装置25と組み合わせることによって、ヘッドアップディスプレイ20を作製した。投射装置25として、市販されているヘッドアップディスプレイ20の投射装置を用いた。サンプル1~5の間で、投射装置25は共通とした。ヘッドアップディスプレイ20によって表示される画像の虚像80と、ゴースト像81とを観察した。サンプル1~5のいずれにおいても、虚像80の表示位置PXは、コンバイナ40から2m離れていた。サンプル1~5のいずれにおいても、ゴースト像81の表示位置PYは、コンバイナ40から50cm離れていた。サンプル1~5のいずれを用いたヘッドアップディスプレイ20においても、ゴースト像81を意識することなく、虚像80を観察できた。すなわち、ゴースト像81によって虚像80の視認性は劣化しなかった。ゴースト像81を注意深く観察するには、虚像80の観察を中止して、焦点位置を調節する必要が生じた。
<Evaluation 2>
A head-up display 20 was produced by combining Samples 1 to 5 with a projection device 25 . As the projection device 25, a commercially available projection device for the head-up display 20 was used. The projection device 25 was common among the samples 1-5. A virtual image 80 of an image displayed by the head-up display 20 and a ghost image 81 were observed. In any of Samples 1 to 5, the display position PX of virtual image 80 was 2 m away from combiner 40 . In all samples 1 to 5, the display position PY of the ghost image 81 was 50 cm away from the combiner 40 . In the head-up display 20 using any of Samples 1 to 5, the virtual image 80 could be observed without the ghost image 81 being conscious. That is, the ghost image 81 did not deteriorate the visibility of the virtual image 80 . In order to carefully observe the ghost image 81, it was necessary to stop observing the virtual image 80 and adjust the focus position.
 以上に説明してきた一実施の形態において、コンバイナ40は、ヘッドアップディスプレイ20に用いられる、画像光を投射される。コンバイナ40は、画像光の入射面となる第1面41を含む第1基板51と、第2面42を含む第2基板52と、第1基板51および第2基板52を接合する接合層45と、第1基板51および第2基板52の間に位置するホログラム素子60と、を含む。 In the embodiment described above, the combiner 40 projects image light used for the head-up display 20 . The combiner 40 includes a first substrate 51 including a first surface 41 that serves as an incident surface for image light, a second substrate 52 including a second surface 42, and a bonding layer 45 that bonds the first substrate 51 and the second substrate 52 together. and a hologram element 60 positioned between the first substrate 51 and the second substrate 52 .
 一実施の形態において、ホログラム素子60は、コンバイナ40への画像光の入射方向に対する正反射方向または正反射方向に25°以下の角度傾斜した方向に、画像光を回折してもよい。また、外部光源90から放出されて第2面42からコンバイナ40に入射し、第1面41で反射してホログラム素子60で回折されて第1面41から出射する光により観察される外部光源90のノイズ像91が、コンバイナ40を透過して観察される外部光源90の実像と少なくとも部分的に重なってもよい。このコンバイナ40によれば、外部光源90の実像とノイズ像91とが互いから区別されにくくなり、ノイズ像91を目立たなくできる。したがって、ヘッドアップディスプレイ20の表示品質を向上でき、且つコンバイナ40を介した視認性を向上できる。 In one embodiment, the hologram element 60 may diffract the image light in a specular reflection direction with respect to the incident direction of the image light to the combiner 40 or in a direction inclined at an angle of 25° or less to the specular reflection direction. Also, the external light source 90 is observed by the light emitted from the external light source 90 , incident on the combiner 40 from the second surface 42 , reflected by the first surface 41 , diffracted by the hologram element 60 , and emitted from the first surface 41 . may at least partially overlap the real image of the external light source 90 viewed through the combiner 40 . According to this combiner 40, the real image of the external light source 90 and the noise image 91 are hardly distinguished from each other, and the noise image 91 can be made inconspicuous. Therefore, the display quality of the head-up display 20 can be improved, and the visibility through the combiner 40 can be improved.
 一実施の形態によればノイズ像91を目立たなくできるが、新たな不具合が生じ得る。すなわち、表示を意図されていないゴースト像81が、表示を意図された画像の虚像80と、同じ方向に観察され得る。このとき、ゴースト像81が虚像80と重なることにより、表示されることを意図された虚像80の視認性が低下し得る。この不具合に対処するため、一実施の形態において、ホログラム素子60によって回折された画像光による画像(虚像)80の表示位置PXとホログラム素子60との距離LXを、第1面41または第2面42で反射した画像光による画像81の表示位置PBとホログラム素子60との距離LBの4倍以上としてもよい。このように距離LXおよび距離LYを調整した場合、虚像80の表示位置PXがゴースト像81の表示位置PYから大きく離れる。したがって、観察対象をゴースト像81から虚像80に変更する場合、使用者5は眼の焦点位置を変更する必要が生じる。すなわち、虚像80とともにゴースト像81が明瞭に観察されることを抑制できる。また、拡大投影される虚像80と比較して、ゴースト像81は十分に小さい。これらにより、ゴースト像81によって虚像80の視認性が損なわれることを抑制できる。ヘッドアップディスプレイ20の表示品質が向上する。 According to one embodiment, the noise image 91 can be made inconspicuous, but new problems may arise. That is, a ghost image 81 not intended for display can be observed in the same direction as the virtual image 80 of the image intended for display. At this time, ghost image 81 overlaps virtual image 80, which may reduce the visibility of virtual image 80 intended to be displayed. In order to deal with this problem, in one embodiment, the distance LX between the display position PX of the image (virtual image) 80 by the image light diffracted by the hologram element 60 and the hologram element 60 is adjusted to the first surface 41 or the second surface. It may be four times or more the distance LB between the display position PB of the image 81 by the image light reflected by 42 and the hologram element 60 . When the distance LX and the distance LY are adjusted in this way, the display position PX of the virtual image 80 is greatly separated from the display position PY of the ghost image 81 . Therefore, when changing the observation target from the ghost image 81 to the virtual image 80, the user 5 needs to change the focus position of the eye. That is, it is possible to prevent the ghost image 81 from being clearly observed together with the virtual image 80 . Also, the ghost image 81 is sufficiently small compared to the virtual image 80 that is enlarged and projected. These can prevent the ghost image 81 from impairing the visibility of the virtual image 80 . The display quality of the head-up display 20 is improved.
 一実施の形態の具体例において、第1基板51は、第1面41を構成する反射防止層57を含んでもよい。反射防止層57によれば意図しないノイズ像91およびゴースト像81を目立たなくできる。 In a specific example of one embodiment, the first substrate 51 may include an antireflection layer 57 forming the first surface 41 . The antireflection layer 57 can make unintended noise images 91 and ghost images 81 inconspicuous.
 具体例を参照しながら一実施の形態を説明してきたが、上述の具体例が一実施の形態を限定しない。上述した一実施の形態は、その他の様々な具体例で実施でき、その要旨を逸脱しない範囲で、種々の省略、置き換え、変更、追加等を行うことができる。例えば、第2基板52が、第2面42を構成する反射防止層を含んでもよい。 Although one embodiment has been described with reference to specific examples, the above specific examples do not limit one embodiment. The embodiment described above can be implemented in various other specific examples, and various omissions, replacements, changes, additions, etc. can be made without departing from the scope of the invention. For example, the second substrate 52 may include an antireflection layer forming the second surface 42 .
 以下、図面を参照しながら、変形の更なる例について説明する。以下の説明および以下の説明で用いる図面では、上述した具体例と同様に構成され得る部分について、上述の具体例における対応する部分に対して用いた符号と同一の符号を用い、重複する説明を省略する。 Further examples of deformation will be described below with reference to the drawings. In the following description and the drawings used in the following description, the same reference numerals as those used for the corresponding portions in the above-described specific example are used for portions that can be configured in the same manner as in the above-described specific example, and redundant description is omitted. omitted.
 図9に示すように、ホログラム素子60は、コンバイナ40への画像光の入射方向に対する正反射方向に対して傾斜した方向に、画像光を回折してもよい。図9には、画像光L91のコンバイナ40及びホログラム素子60への入射角θ1、画像光L91のホログラム素子60での回折角θ2及び画像光L91のコンバイナ40での反射角θ3が示されている。図9に示された光L92は、コンバイナ40の第1面41または第2面42で正反射した反射光の光路である。入射角θ1および反射角θ3は等しい。回折角θ2は、入射角θ1および反射角θ3と異なる。したがって、使用者5が虚像80を観察する方向は、使用者5がゴースト像81を観察する方向と非平行となる。この例によれば、虚像80をゴースト像81からずらして表示できる。したがって、使用者5は、虚像80とゴースト像81とを区別し易くなる。すなわち、虚像80の視認性を改善できる。 As shown in FIG. 9, the hologram element 60 may diffract the image light in a direction inclined with respect to the specular reflection direction with respect to the incident direction of the image light to the combiner 40 . FIG. 9 shows the incident angle θ1 of the image light L91 to the combiner 40 and the hologram element 60, the diffraction angle θ2 of the image light L91 at the hologram element 60, and the reflection angle θ3 of the image light L91 at the combiner 40. . Light L92 shown in FIG. 9 is the optical path of reflected light specularly reflected by the first surface 41 or the second surface 42 of the combiner 40 . The angle of incidence θ1 and the angle of reflection θ3 are equal. The diffraction angle θ2 is different from the incident angle θ1 and the reflection angle θ3. Therefore, the direction in which the user 5 observes the virtual image 80 is non-parallel to the direction in which the user 5 observes the ghost image 81 . According to this example, the virtual image 80 can be displayed by being shifted from the ghost image 81 . Therefore, it becomes easier for the user 5 to distinguish between the virtual image 80 and the ghost image 81 . That is, the visibility of the virtual image 80 can be improved.
 ホログラム素子60への画像光L111の入射角θ1と、ホログラム素子60での画像光L111の回折角θ2と、の差が大きいと、虚像80をゴースト像81から区別して視認し易くなる。したがって、コンバイナ40のホログラム素子60への入射角θ1とコンバイナ40のホログラム素子60での回折角θ2との差、すなわち、図9における角度θ4を大きくすることによって、虚像80の視認性をより改善できる。コンバイナ40への入射角θ1とコンバイナ40での回折角θ2との差の大きさθ4は、3°以上でもよく、5°以上でもよく、10°以上でもよい。この設定により、虚像80の視認性を十分に改善できる。 When the difference between the incident angle θ1 of the image light L111 on the hologram element 60 and the diffraction angle θ2 of the image light L111 on the hologram element 60 is large, the virtual image 80 can be easily distinguished from the ghost image 81 and visually recognized. Therefore, by increasing the difference between the incident angle θ1 of the combiner 40 to the hologram element 60 and the diffraction angle θ2 of the combiner 40 at the hologram element 60, that is, by increasing the angle θ4 in FIG. 9, the visibility of the virtual image 80 is further improved. can. The difference θ4 between the incident angle θ1 to the combiner 40 and the diffraction angle θ2 at the combiner 40 may be 3° or more, 5° or more, or 10° or more. This setting can sufficiently improve the visibility of the virtual image 80 .
 なお、図9に示された例において、法線方向NDを基準として、画像光の入射方向および回折方向は異なる側に傾斜している。この例において、回折角θ2の大きさを、入射角θ1の大きさよりも小さくしてもよい。すなわち、回折角θ2の大きさを、反射角θ3の大きさよりも小さくしてもよい。この例によれば、使用者5は、反射光L92によるゴースト像81を、回折光による虚像80よりも鉛直方向における下側に観察する。自動車12のフロントウインドウ14を利用したヘッドアップディスプレイ20において、ゴースト像81は、虚像80よりもダッシュボードに接近した位置に観察される。ゴースト像81は、使用者5の視界に入りにくくなる。すなわち、回折光θ2の大きさを入射角θ1の大きさよりも小さくすることにより、ゴースト像81を目立たなくして、虚像80を観察し易くすることができる。 Note that in the example shown in FIG. 9, the incident direction and the diffraction direction of the image light are inclined to different sides with respect to the normal direction ND. In this example, the magnitude of the diffraction angle θ2 may be smaller than the magnitude of the incident angle θ1. That is, the diffraction angle θ2 may be smaller than the reflection angle θ3. According to this example, the user 5 observes the ghost image 81 due to the reflected light L92 below the virtual image 80 due to the diffracted light in the vertical direction. In the head-up display 20 using the front window 14 of the automobile 12, the ghost image 81 is observed at a position closer to the dashboard than the virtual image 80 is. The ghost image 81 becomes less likely to enter the field of view of the user 5 . That is, by making the magnitude of the diffracted light θ2 smaller than the magnitude of the incident angle θ1, the ghost image 81 can be made inconspicuous and the virtual image 80 can be easily observed.
 図9に示すように、コンバイナ40の第1面41または第2面42で反射して使用者5に向かう画像光L92は、水平方向(図示された例において、第2方向D2)に対して上方に傾斜した方向に進んでもよい。この例によれば、図13に示すように、使用者5は、ゴースト像81を水平方向より下方に傾斜した方向に観察する。自動車12のフロントウインドウ14を利用したヘッドアップディスプレイ20では、ボンネットと重なるようにして又はボンネットに近接した位置に、ゴースト像81が観察される。したがって、虚像80をゴースト像81と区別して観察することが容易となる。 As shown in FIG. 9, the image light L92 reflected by the first surface 41 or the second surface 42 of the combiner 40 and directed toward the user 5 is horizontally (in the illustrated example, the second direction D2) It may proceed in an upwardly sloping direction. According to this example, as shown in FIG. 13, the user 5 observes the ghost image 81 in a direction tilted downward from the horizontal direction. In the head-up display 20 using the front window 14 of the automobile 12, a ghost image 81 is observed overlapping the hood or at a position close to the hood. Therefore, it becomes easy to distinguish the virtual image 80 from the ghost image 81 and observe it.
 図7に示された例において、画像光の入射角θ1の大きさがコンバイナ40の傾斜角θ5の大きさよりも大きくなっている。このような構成によれば、回折光θ2の大きさが入射角θ1の大きさよりも小さくなり易い。このような構成によれば、コンバイナ40の第1面41または第2面42で反射した画像光の反射光L92は水平方向に対して上方に傾斜した方向に進み易くなる。ここで、コンバイナ40の傾斜角θ5(°)は、コンバイナ
40の法線方向NDが鉛直方向(図示された例において、第3方向D3)に対してなす角度の大きさであり、90°未満の値となる。コンバイナ40の傾斜角θ5(°)は、画像光が入射し得るホログラム素子60の領域の中心位置(重心位置)における傾斜角として特定される。画像光の入射角θ1(°)、回折角θ2(°)及び反射角θ3(°)は、既に説明したように、画像光が入射し得るホログラム素子60の領域の中心位置(重心位置)に入射する画像光の光路により特定される。
In the example shown in FIG. 7, the magnitude of the incident angle .theta.1 of the image light is larger than the magnitude of the tilt angle .theta.5 of the combiner 40. In the example shown in FIG. According to such a configuration, the magnitude of the diffracted light θ2 tends to be smaller than the magnitude of the incident angle θ1. According to such a configuration, the reflected light L92 of the image light reflected by the first surface 41 or the second surface 42 of the combiner 40 tends to travel in a direction inclined upward with respect to the horizontal direction. Here, the tilt angle θ5 (°) of the combiner 40 is the magnitude of the angle formed by the normal direction ND of the combiner 40 with respect to the vertical direction (the third direction D3 in the illustrated example), and is less than 90°. is the value of The tilt angle θ5 (°) of the combiner 40 is specified as the tilt angle at the central position (gravity center position) of the region of the hologram element 60 where the image light can enter. The incident angle θ1 (°), the diffraction angle θ2 (°), and the reflection angle θ3 (°) of the image light are, as already explained, at the center position (center of gravity) of the region of the hologram element 60 where the image light can enter. It is specified by the optical path of the incident image light.
 さらに、投射装置25からコンバイナ40までの画像光L91の光路長Lzを長くしてもよい。図9に示すように、光路長Lzは、投射装置25からコンバイナ40への画像光の光路長である。より厳密には、Lzは、ホログラム素子60の画像光が入射する領域の中心位置(重心位置)に進む画像光についての投射装置25の出射端25a、すなわち投射装置25の最出光面からコンバイナ40までの光路長である。図9に示された例において、第1投射装置25Aの位置から第2投射装置25Bの位置まで光路長Lzを長くする。このように投射装置25からコンバイナ40までの画像光L91の光路長Lzを長くすると、ゴースト像81が観察される位置は、第1のゴースト像位置PY1から第2のゴースト像位置PY2へと移動し、虚像80が観察される位置に接近する。しかしながら、使用者5がゴースト像81を観察する方向は、使用者5が虚像80を観察する方向に傾斜している。したがって、ゴースト像81と虚像80の重なりが抑制され、虚像80をゴースト像81から区別して視認することが容易となる。 Furthermore, the optical path length Lz of the image light L91 from the projection device 25 to the combiner 40 may be lengthened. As shown in FIG. 9 , the optical path length Lz is the optical path length of image light from the projection device 25 to the combiner 40 . More precisely, Lz is the output end 25a of the projection device 25 for the image light traveling to the center position (center of gravity) of the region on which the image light is incident on the hologram element 60, that is, from the most light-emitting surface of the projection device 25 to the combiner 40. is the optical path length to In the example shown in FIG. 9, the optical path length Lz is lengthened from the position of the first projection device 25A to the position of the second projection device 25B. When the optical path length Lz of the image light L91 from the projection device 25 to the combiner 40 is lengthened in this way, the position where the ghost image 81 is observed moves from the first ghost image position PY1 to the second ghost image position PY2. and approaches the position where the virtual image 80 is observed. However, the direction in which the user 5 observes the ghost image 81 is inclined to the direction in which the user 5 observes the virtual image 80 . Therefore, overlapping of the ghost image 81 and the virtual image 80 is suppressed, and it becomes easy to distinguish the virtual image 80 from the ghost image 81 and visually recognize it.
 コンバイナ40から画像形成装置30までの画像光L91の光路長Lzを長さは、200mm以上でもよく、250mm以上でもよく、300mm以上でもよく、350mm以上でもよく、400mm以上でもよい。このように設定することで、図1に示された自動車12のフロントウインドウ14を利用したヘッドアップディスプレイ20において、虚像80の視認性を効果的に改善できる。 The optical path length Lz of the image light L91 from the combiner 40 to the image forming apparatus 30 may be 200 mm or longer, 250 mm or longer, 300 mm or longer, 350 mm or longer, or 400 mm or longer. By setting in this way, the visibility of the virtual image 80 can be effectively improved in the head-up display 20 using the front window 14 of the automobile 12 shown in FIG.
 また、光路長Lz(mm)および角度差θ4(°)を用いた式「Lz×sinθ4」の値を、10mm以上としてもよく、20mm以上としてもよく、30mm以上としてもよく、40mm以上としてもよく、50mm以上としてもよい。「Lz×sinθ4」は、虚像80が観察される方向からのどの程度ずれてゴースト像81が観察されるかを示す指標となる。式「Lz×sinθ4」の大きさを調節することによって、図1に示された自動車12のフロントウインドウ14を利用したヘッドアップディスプレイ20において、虚像80の視認性を効果的に改善できる。 Further, the value of the formula "Lz × sin θ4" using the optical path length Lz (mm) and the angle difference θ4 (°) may be 10 mm or more, 20 mm or more, 30 mm or more, or 40 mm or more. Well, it may be 50 mm or more. “Lz×sin θ4” is an index indicating how far the ghost image 81 is observed from the direction in which the virtual image 80 is observed. By adjusting the magnitude of the formula “Lz×sin θ4”, the visibility of the virtual image 80 can be effectively improved in the head-up display 20 using the front window 14 of the automobile 12 shown in FIG.
 図9に示された例において、コンバイナ40から投射装置25までの画像光L91の光路長Lzは、一直線状となっている。図9に示された例とは異なり、コンバイナ40と投射装置25との間に、画像光L91の光路を変化させる光学素子、例えば反射ミラー等が設置されてもよい。このような画像光L91の光路の折り返しのための光学素子を1つ以上設けることによって、光路長Lzを長くできる。 In the example shown in FIG. 9, the optical path length Lz of the image light L91 from the combiner 40 to the projection device 25 is linear. Unlike the example shown in FIG. 9, an optical element that changes the optical path of the image light L91, such as a reflecting mirror, may be installed between the combiner 40 and the projection device 25. FIG. By providing one or more optical elements for folding back the optical path of the image light L91, the optical path length Lz can be increased.
 図13に示すように、回折角θ2が入射角θ1と異なる場合、コンバイナ40での正反射光によるゴースト像81は、虚像80と異なる方向に観察される。虚像80を表示する画像光L131及びゴースト像81を表示する画像光L132は、コンバイナ40の異なる領域に入射する。虚像80を表示する画像光L131は、ホログラム素子60が位置するコンバイナ40の領域に入射する。虚像80を表示する画像光L132は、少なくとも一部において、ホログラム素子60が位置しないコンバイナ40の領域に入射し得る。画像光L132のコンバイナ40への入射を規制することにより、ゴースト像81を目立たなくさせることができる。 As shown in FIG. 13, when the diffraction angle θ2 is different from the incident angle θ1, the ghost image 81 due to specularly reflected light at the combiner 40 is observed in a different direction from the virtual image 80. The image light L131 displaying the virtual image 80 and the image light L132 displaying the ghost image 81 enter different regions of the combiner 40 . The image light L131 displaying the virtual image 80 enters the area of the combiner 40 where the hologram element 60 is located. At least a portion of the image light L132 displaying the virtual image 80 may enter a region of the combiner 40 where the hologram element 60 is not located. By restricting the incidence of the image light L132 to the combiner 40, the ghost image 81 can be made inconspicuous.
 図13に示すように、ヘッドアップディスプレイ20は、画像形成装置30から放出から放出される画像光の一部を遮光する遮光部材32を含んでいてもよい。遮光部材32は、画像形成装置30から放出されてコンバイナ40のホログラム素子60で回折される画像光L131の光路からずらして配置されていてもよい。遮光部材32は、画像光L131の光路外に配置されている。したがって、遮光部材32は、画像光L131を遮光しない。これにより、虚像80が明るく観察され得る。遮光部材32は、画像光L131の光路外に位置して、ホログラム素子60に入射しない画像光L132を吸収する。 As shown in FIG. 13 , the head-up display 20 may include a light blocking member 32 that blocks part of the image light emitted from the image forming device 30 . The light shielding member 32 may be arranged so as to be shifted from the optical path of the image light L131 emitted from the image forming apparatus 30 and diffracted by the hologram element 60 of the combiner 40 . The light shielding member 32 is arranged outside the optical path of the image light L131. Therefore, the light blocking member 32 does not block the image light L131. Thereby, the virtual image 80 can be observed brightly. The light shielding member 32 is positioned outside the optical path of the image light L131 and absorbs the image light L132 that does not enter the hologram element 60 .
 遮光部材32は、可視光遮光性を有している。可視光遮光性とは、可視光透過率が、(数値)%以下であることを意味し、好ましくは(数値)%以下である。可視光透過率は、上述したように、分光光度計((株)島津製作所製「UV-3100PC」、JISK0115準拠品)を用いて測定波長380nm以上780nm以下の範囲内で1nm毎に入射角0°で測定したときの、各波長における全光線透過率の平均値として特定される。遮光部材32の可視光遮光性は、光吸収性であってもよいし、光反射性でもよい。 The light shielding member 32 has a visible light shielding property. The visible light shielding property means that the visible light transmittance is (numerical value) % or less, preferably (numerical value) % or less. As described above, the visible light transmittance is measured using a spectrophotometer ("UV-3100PC" manufactured by Shimadzu Corporation, compliant with JIS K0115) at a wavelength of 380 nm or more and 780 nm or less. It is specified as the average total light transmittance at each wavelength, measured in degrees. The visible light blocking property of the light blocking member 32 may be light absorption or light reflection.
 遮光部材32の構成は特に限定されない。遮光部材32の材料は、高反射率の金属でもよい。遮光部材32の材料は、吸収性を有した顔料、例えばカーボンブラックやチタンブラックを含んでもよい。遮光部材32の形状は特に限定されない。遮光部材32は、板状でもよいし、箱状でもよい。 The configuration of the light shielding member 32 is not particularly limited. The material of the light shielding member 32 may be metal with high reflectance. The material of the light shielding member 32 may contain absorptive pigments such as carbon black and titanium black. The shape of the light shielding member 32 is not particularly limited. The light shielding member 32 may be plate-shaped or box-shaped.
 虚像80を表示する画像光L131を遮光することなく、ゴースト像81を表示する画像光L132を遮光する観点から、回折角θ2と入射角θ1の差を大きくしてもよい。回折角θ2と入射角θ1との差の大きさθ4は、3°以上でもよく、5°以上でもよく、10°以上でもよい。ゴースト像81を表示する画像光L132のみを遮光する観点から、上述した投射装置25からコンバイナ40までの画像光の光路長Lzを、長くしてもよい。ゴースト像81を表示する画像光L132のみを遮光する観点から、画像形成装置30からコンバイナ40に投影する投影画像の大きさを小さくしてもよい。このとき、ホログラム記録層62の回折特性を調節することにより、投影画像に対する虚像80の倍率を増大でき、大きな虚像80を表示できる。 From the viewpoint of shielding the image light L132 that displays the ghost image 81 without shielding the image light L131 that displays the virtual image 80, the difference between the diffraction angle θ2 and the incident angle θ1 may be increased. The difference θ4 between the diffraction angle θ2 and the incident angle θ1 may be 3° or more, 5° or more, or 10° or more. From the viewpoint of shielding only the image light L132 that displays the ghost image 81, the optical path length Lz of the image light from the projection device 25 to the combiner 40 may be lengthened. From the viewpoint of shielding only the image light L132 that displays the ghost image 81, the size of the projection image projected from the image forming apparatus 30 onto the combiner 40 may be reduced. At this time, by adjusting the diffraction characteristics of the hologram recording layer 62, the magnification of the virtual image 80 with respect to the projected image can be increased, and a large virtual image 80 can be displayed.
 コンバイナ40に入射する画像光は、或る程度拡散している。画像光が拡散していることによって、観察者の視点位置がずれたとしても、虚像80の観察が可能となる。その一方で、画像光が発散光となってコンバイナ40に入射することにより、上述したように虚像80と異なる方向にゴースト像81が観察され得る。画像光の発散を制御することによって、ゴースト像81が観察されにくくなる。ヘッドアップディスプレイ20及び投射装置25は、画像形成装置30とコンバイナ40との間に配置された光路調整部材34を含んでもよい。光路調整部材34が、画像光の光路を調整してもよい。光路調整部材34は、異方性拡散機能を有してもよい。異方性拡散機能を有する光路調整部材34によれば、ゴースト像81の発生を抑制できる。 The image light incident on the combiner 40 is diffused to some extent. Due to the diffusion of the image light, the virtual image 80 can be observed even if the observer's viewpoint position is shifted. On the other hand, when the image light becomes divergent light and enters the combiner 40, the ghost image 81 can be observed in a direction different from the virtual image 80 as described above. By controlling the divergence of the image light, the ghost image 81 is less likely to be observed. The head-up display 20 and the projection device 25 may include an optical path adjusting member 34 arranged between the image forming device 30 and the combiner 40 . The optical path adjusting member 34 may adjust the optical path of the image light. The optical path adjusting member 34 may have an anisotropic diffusion function. The optical path adjusting member 34 having an anisotropic diffusion function can suppress the generation of the ghost image 81 .
 光路調整部材34は、コンバイナ40の法線方向NDとホログラム素子60へ向かう画像光の光軸95との両方と平行な第1評価面P1内の各方向への拡散を抑制してもよい。光路調整部材34は、第1評価面P1内よりも、第1評価面P1と直交し且つホログラム素子60へ向かう画像光の光軸95と平行な第2評価面P2内において、強い拡散機能を有してもよい。 The optical path adjustment member 34 may suppress diffusion in each direction in the first evaluation plane P1 parallel to both the normal direction ND of the combiner 40 and the optical axis 95 of the image light directed toward the hologram element 60. The optical path adjusting member 34 has a stronger diffusing function in the second evaluation plane P2, which is perpendicular to the first evaluation plane P1 and parallel to the optical axis 95 of the image light directed to the hologram element 60, than in the first evaluation plane P1. may have.
 ホログラム素子60へ向かう画像光の光軸95は、ホログラム素子60のうちの画像光が入射し得る領域の中心(重心)となる位置に向かう画像光の光路のうちの最も高強度となる光路と一致する。図13の紙面は、第1評価面P1と平行である。図13に示された例において、第2評価面P2は、光軸95を通過して図13の紙面に直交する面となる。図13に示された例において、第2評価面P2は、光軸95及び第1方向D1の両方に平行な面となる。 The optical axis 95 of the image light directed to the hologram element 60 is the optical path having the highest intensity among the optical paths of the image light directed to the center (center of gravity) of the area of the hologram element 60 where the image light can enter. match. The paper plane of FIG. 13 is parallel to the first evaluation plane P1. In the example shown in FIG. 13, the second evaluation plane P2 is a plane that passes through the optical axis 95 and is orthogonal to the plane of FIG. In the example shown in FIG. 13, the second evaluation plane P2 is a plane parallel to both the optical axis 95 and the first direction D1.
 光路調整部材34の第1評価面P1内での拡散機能は、第1評価面P1に沿った種々の方向への光路調整部材34上での輝度の分布に基づき、評価される。光路調整部材34の第2評価面P2内での拡散機能は、第2評価面P2に沿った種々の方向への光路調整部材34上での輝度の分布に基づき、評価される。輝度の角度分布における半値全幅が大きい場合に拡散機能が強く、輝度の角度分布における半値全幅FWHMが小さい場合に拡散機能が弱い。輝度の角度分布は、光路調整部材34の出光面への法線方向に進む平行光を入射光として使用して、測定される。半値全幅FWHMは、輝度の角度分布における最大輝度の半分以上の輝度が得られる角度範囲(°)のことである。図14に示された例において、第2評価面P2における半値全幅FWHM2は、第1評価面P1における半値全幅FWHM1よりも大幅に大きい。図14に示された例において、光路調整部材34は、第1評価面P1内よりも、第2評価面P2内において、強い拡散機能を有している。 The diffusion function of the optical path adjusting member 34 within the first evaluation plane P1 is evaluated based on the luminance distribution on the optical path adjusting member 34 in various directions along the first evaluation plane P1. The diffusion function of the optical path adjusting member 34 within the second evaluation plane P2 is evaluated based on the luminance distribution on the optical path adjusting member 34 in various directions along the second evaluation plane P2. When the full width at half maximum in the angular distribution of luminance is large, the diffusion function is strong, and when the full width at half maximum FWHM in the angular distribution of luminance is small, the diffusion function is weak. The angular distribution of luminance is measured using parallel light traveling in the normal direction to the light exit surface of the optical path adjusting member 34 as incident light. The full width at half maximum FWHM is an angular range (°) in which luminance equal to or greater than half the maximum luminance is obtained in the angular distribution of luminance. In the example shown in FIG. 14, the full width at half maximum FWHM2 at the second evaluation plane P2 is significantly larger than the full width at half maximum FWHM1 at the first evaluation plane P1. In the example shown in FIG. 14, the optical path adjustment member 34 has a stronger diffusion function within the second evaluation plane P2 than within the first evaluation plane P1.
 上述の異方性拡散機能を有した光路調整部材34は、特に限定されない。図15~図17は、光路調整部材34の具体例を示している。 The optical path adjusting member 34 having the anisotropic diffusion function is not particularly limited. 15 to 17 show specific examples of the optical path adjustment member 34. FIG.
 図15示すように、光路調整部材34は、レンズシート36を含んでもよい。レンズシート36は、レンチキュラーレンズでもよい。レンズシート36は、シート状の本体部36aと、本体部36aに支持された複数の単位レンズ36bと、を含んでいる。複数の単位レンズは、リニアアレイレンズを構成してもよい。複数の単位レンズ36bは、X方向DXに配列されている。各単位レンズ36bは、X方向DXと非平行な方向に延びてもよい。図示された単位レンズ36bは、X方向DXに直交するY方向に直線状に延びている。本体部36aが画像形成装置30に対面し、複数の単位レンズ36bがコンバイナ40に対面してもよい。本体部36aがコンバイナ40に対面し、複数の単位レンズ36bが画像形成装置30に対面してもよい。図示されたレンズシート36は、X方向DXに強い拡散機能を有し、Y方向DYに弱い拡散機能を有する。したがって、X方向DXが第1評価面P1を横切るように、レンズシート36がヘッドアップディスプレイ20に組み込まれてもよい。X方向DXが第1評価面P1に直交するように、レンズシート36がヘッドアップディスプレイ20に組み込まれてもよい。 As shown in FIG. 15, the optical path adjusting member 34 may include a lens sheet 36. The lens sheet 36 may be a lenticular lens. The lens sheet 36 includes a sheet-like body portion 36a and a plurality of unit lenses 36b supported by the body portion 36a. A plurality of unit lenses may constitute a linear array lens. A plurality of unit lenses 36b are arranged in the X direction DX. Each unit lens 36b may extend in a direction non-parallel to the X direction DX. The illustrated unit lens 36b extends linearly in the Y direction orthogonal to the X direction DX. The body portion 36 a may face the image forming apparatus 30 and the plurality of unit lenses 36 b may face the combiner 40 . The body portion 36 a may face the combiner 40 and the plurality of unit lenses 36 b may face the image forming apparatus 30 . The illustrated lens sheet 36 has a strong diffusion function in the X direction DX and a weak diffusion function in the Y direction DY. Therefore, the lens sheet 36 may be incorporated into the head-up display 20 so that the X direction DX crosses the first evaluation plane P1. The lens sheet 36 may be incorporated into the head-up display 20 so that the X direction DX is orthogonal to the first evaluation plane P1.
 本体部36a及び単位レンズ36bの少なくとも一方が、拡散成分を含んでもよい。拡散成分として、金属化合物、気体を含有した多孔質物質、金属化合物を周囲に保持した樹脂ビーズ、白色微粒子、単なる気泡が例示される。図15に示されたレンズシート36は、他の光学シートと組合せて使用されてもよい。光学シートとして、等方拡散機能を有した光拡散シートが例示される。 At least one of the body portion 36a and the unit lens 36b may contain a diffusion component. Examples of diffusion components include metal compounds, gas-containing porous substances, resin beads around which metal compounds are retained, white fine particles, and simple air bubbles. The lens sheet 36 shown in FIG. 15 may be used in combination with other optical sheets. As an optical sheet, a light diffusion sheet having an isotropic diffusion function is exemplified.
 図16に示すように、光路調整部材34は、光制御シート37を含んでもよい。光制御シート37は、ルーバー状の構造体がシート内に形成された、いわゆるルーバーシートである。光制御シート37は、X方向DXに交互に配置された吸収部37a及び透過部37bを含んでいる。吸収部37aは、可視光吸収性を有している。吸収部37aは、可視光吸収性を有した顔料を含んでもよい。透過部37bは、透明でもよい。吸収部37a及び透過部37bは、X方向DXと非平行な方向に延びてもよい。図示された吸収部37a及び透過部37bは、X方向DXと直交するY方向に直線状に延びている。図示された光制御シート37は、シート状のベース部37cを含んでいる。ベース部37cは、Z方向DZから吸収部37a及び透過部37bを支持する。Z方向DZは、X方向DXと直交し、Y方向DYと直交する。ベース部37cは、透明である。ベース部37cは、透過部37bと同一の材料で形成されてもよい。ベース部37cは、透過部37bと継ぎ目無しでもよい。ベース部37cは、透過部37bと一体的に成型されてもよい。各透過部37bのX方向DXへの幅は、ベース部37cに近接する位置において太く、ベース部37cから離れると狭くなる。ベース部37cがコンバイナ40に対面するようにして、光制御シート37が配置されてもよい。ベース部37cが画像形成装置30に対面するようにして、光制御シート37が配置されてもよい。 As shown in FIG. 16, the optical path adjustment member 34 may include a light control sheet 37. The light control sheet 37 is a so-called louver sheet in which a louver-shaped structure is formed inside the sheet. The light control sheet 37 includes absorption portions 37a and transmission portions 37b alternately arranged in the X direction DX. The absorbing portion 37a has visible light absorbing properties. The absorption part 37a may contain a pigment having visible light absorption properties. The transmissive portion 37b may be transparent. The absorbing portion 37a and the transmitting portion 37b may extend in a direction non-parallel to the X direction DX. The illustrated absorbing portion 37a and transmitting portion 37b linearly extend in the Y direction orthogonal to the X direction DX. The illustrated light control sheet 37 includes a sheet-like base portion 37c. The base portion 37c supports the absorbing portion 37a and the transmitting portion 37b from the Z direction DZ. The Z-direction DZ is orthogonal to the X-direction DX and orthogonal to the Y-direction DY. The base portion 37c is transparent. The base portion 37c may be made of the same material as the transmissive portion 37b. The base portion 37c may be seamless with the transparent portion 37b. The base portion 37c may be integrally molded with the transmission portion 37b. The width of each transmissive portion 37b in the X direction DX is wide at positions close to the base portion 37c and narrows away from the base portion 37c. The light control sheet 37 may be arranged such that the base portion 37 c faces the combiner 40 . The light control sheet 37 may be arranged such that the base portion 37 c faces the image forming apparatus 30 .
 光制御シート37は、X方向DX及びZ方向DZの両方と平行な面内での透過光の進行方向を一定の角度範囲に規制する。光制御シート37は、Y方向DY及びZ方向DZの両方と平行な面内での透過光の進行方向を規制しない。光制御シート37は、X方向DXにおいて強く出射角を制限する機能を有し、Y方向DYにおいて強く出射角を制限する機能を有さない。光制御シート37は、X方向DXにおいて進行方向を強く制御し、Y方向DYにおいて進行方向を強く制御しない。したがって、光制御シート37を含む光路調整部材34は、Y方向DYに強い拡散機能を有し、X方向DXに弱い拡散機能を有する。Y方向DYが第1評価面P1を横切るように、光制御シート37を含む光路調整部材34がヘッドアップディスプレイ20に組み込まれてもよい。Y方向DYが第1評価面P1に直交するように、光制御シート37を含む光路調整部材34がヘッドアップディスプレイ20に組み込まれてもよい。 The light control sheet 37 regulates the traveling direction of transmitted light within a plane parallel to both the X-direction DX and the Z-direction DZ within a certain angular range. The light control sheet 37 does not restrict the traveling direction of transmitted light within a plane parallel to both the Y direction DY and the Z direction DZ. The light control sheet 37 has the function of strongly restricting the output angle in the X direction DX, but does not have the function of strongly restricting the output angle in the Y direction DY. The light control sheet 37 strongly controls the traveling direction in the X direction DX and does not strongly control the traveling direction in the Y direction DY. Therefore, the optical path adjustment member 34 including the light control sheet 37 has a strong diffusion function in the Y direction DY and a weak diffusion function in the X direction DX. The optical path adjustment member 34 including the light control sheet 37 may be incorporated into the head-up display 20 so that the Y direction DY crosses the first evaluation plane P1. The optical path adjustment member 34 including the light control sheet 37 may be incorporated into the head-up display 20 so that the Y direction DY is orthogonal to the first evaluation plane P1.
 図16に示すように、光路調整部材34は、光制御シート37とともに光拡散シート38を含んでもよい。光拡散シート38は、等方性拡散機能を有してもよい。光拡散シート38は、シート状の透明部と、透明部内に分散した拡散成分と、を含んでもよい。また、光制御シート37のベース部37cは、拡散成分を含んでもよい。拡散成分として、金属化合物、気体を含有した多孔質物質、金属化合物を周囲に保持した樹脂ビーズ、白色微粒子、単なる気泡が例示される。 As shown in FIG. 16 , the optical path adjustment member 34 may include a light diffusion sheet 38 together with the light control sheet 37 . The light diffusion sheet 38 may have an isotropic diffusion function. The light diffusion sheet 38 may include a sheet-like transparent portion and a diffusion component dispersed within the transparent portion. Also, the base portion 37c of the light control sheet 37 may contain a diffusion component. Examples of diffusion components include metal compounds, gas-containing porous substances, resin beads around which metal compounds are retained, white fine particles, and simple air bubbles.
 図17に示すように、光路調整部材34は、異方性光拡散シート39を含んでもよい。異方性光拡散シート39は、特に限定されない。図17に示された異方性光拡散シート39は、ヘアライン加工を施されている。図17に示された異方性光拡散シート39は、主としてX方向DXに拡散する。図示された異方性光拡散シート39は、X方向DXに強い拡散機能を有し、Y方向DYに弱い拡散機能を有する。したがって、X方向DXが第1評価面P1を横切るように、異方性光拡散シート39がヘッドアップディスプレイ20に組み込まれてもよい。X方向DXが第1評価面P1に直交するように、異方性光拡散シート39がヘッドアップディスプレイ20に組み込まれてもよい。 As shown in FIG. 17, the optical path adjustment member 34 may include an anisotropic light diffusion sheet 39. The anisotropic light diffusion sheet 39 is not particularly limited. The anisotropic light diffusion sheet 39 shown in FIG. 17 is subjected to hairline processing. The anisotropic light diffusion sheet 39 shown in FIG. 17 mainly diffuses in the X direction DX. The illustrated anisotropic light diffusion sheet 39 has a strong diffusion function in the X direction DX and a weak diffusion function in the Y direction DY. Therefore, the anisotropic light diffusion sheet 39 may be incorporated into the head-up display 20 so that the X direction DX crosses the first evaluation surface P1. The anisotropic light diffusion sheet 39 may be incorporated into the head-up display 20 such that the X direction DX is orthogonal to the first evaluation surface P1.
 異方性光拡散シート39は、ヘアライン加工に限定されない。例えば、異方性光拡散シート39は、母材と、母材と異なる屈折率を有した拡散成分と、を含んでもよい。拡散成分が長手方向を有し、長手方向を有した一方向に配列されることによって、異方性光拡散シート39は異方性拡散機能を発揮し得る。 The anisotropic light diffusion sheet 39 is not limited to hairline processing. For example, the anisotropic light diffusion sheet 39 may include a base material and a diffusion component having a refractive index different from that of the base material. The anisotropic light diffusion sheet 39 can exhibit an anisotropic diffusion function by arranging the diffusion components in one direction having the longitudinal direction.
 加えて、本件発明者らが鋭意検討を重ねたところ、上述の図11を参照して説明したノイズ像91とは異なる光路にて、図12に示すように、外部光源90の第2ノイズ像92が観察された。第2ノイズ像92の出現は次の理由と考えられる。図12に示すように、外部光源90からのノイズ光L122は、画像形成装置130からの画像光L121とは異なり、第2面142を介してコンバイナ140に入射する。このノイズ光L122は、画像光L121と平行な方向を逆向きに進む。ノイズ光L122は、画像光L121と同様に、ホログラム記録層162のブラッグ条件を満たす。ノイズ光L122は、高い回折効率でホログラム素子160にて回折される。回折されたノイズ光L122は、第2面142に到達して第2面142で反射する。第2面142での反射は正反射となる。その後、ノイズ光L122は、ホログラム素子160で回折されることなくホログラム素子160を透過する。ノイズ光L122は、コンバイナ140から出射し、使用者5に向かう。ノイズ光L122は第2ノイズ像92を形成し、使用者5は、コンバイナ140の背後に外部光源90の第2ノイズ像92を観察する。第2ノイズ像92は、ノイズ像91と同様に本来あるべき外部光源90の位置から大きくずれた位置に観察され得る。このため、使用者5は違和感を覚える。第2ノイズ像92の出現は、ヘッドアップディスプレイ120の表示品質を低下させ、且つコンバイナ140を介した視認性を低下させる。 In addition, as a result of extensive studies by the inventors of the present invention, a second noise image of the external light source 90 as shown in FIG. 92 were observed. The reason for the appearance of the second noise image 92 is as follows. As shown in FIG. 12, the noise light L122 from the external light source 90 is incident on the combiner 140 via the second surface 142 unlike the image light L121 from the image forming apparatus 130 . This noise light L122 travels in the opposite direction parallel to the image light L121. The noise light L122 satisfies the Bragg condition of the hologram recording layer 162, like the image light L121. Noise light L122 is diffracted by hologram element 160 with high diffraction efficiency. The diffracted noise light L122 reaches the second surface 142 and is reflected by the second surface 142 . Reflection on the second surface 142 is regular reflection. After that, noise light L122 passes through hologram element 160 without being diffracted by hologram element 160 . Noise light L122 is emitted from combiner 140 toward user 5 . The noise light L122 forms a second noise image 92, and the user 5 observes the second noise image 92 of the external light source 90 behind the combiner 140. FIG. Like the noise image 91, the second noise image 92 can be observed at a position greatly deviated from the position of the external light source 90 that should be there. Therefore, the user 5 feels uncomfortable. The appearance of the second noise image 92 reduces the display quality of the head-up display 120 and reduces visibility through the combiner 140 .
 図10において、ホログラム記録層62が画像光L101を正反射方向に回折する際の光路を点線で示している。画像光L101のコンバイナ40への入射光路を逆向きに進んでコンバイナ40の第2面42に入射したノイズ光L102Aは、ホログラム記録層62によって正反射方向に回折される。ノイズ光L102Aは、更に、第2面42で正反射する。第2ノイズ像92を形成するノイズ光L102Aのコンバイナ40からの出射方向は、コンバイナ40への入射方向と平行になる。コンバイナ40の厚みが十分に薄く、第2ノイズ像92は、外部光源90と重なって観察される。 In FIG. 10, the dotted line indicates the optical path along which the hologram recording layer 62 diffracts the image light L101 in the specular direction. Noise light L102A, which travels in the opposite direction along the incident optical path of image light L101 to combiner 40 and enters second surface 42 of combiner 40, is diffracted by hologram recording layer 62 in the specular direction. The noise light L102A is further specularly reflected by the second surface 42 . The direction of emission from the combiner 40 of the noise light L102A forming the second noise image 92 is parallel to the direction of incidence on the combiner 40 . The thickness of the combiner 40 is sufficiently thin, and the second noise image 92 is observed overlapping the external light source 90 .
 すなわち、コンバイナ40への画像光L101の入射方向に対する正反射方向に、ホログラム素子60が画像光L101を回折することにより、第2ノイズ像92を目立たなくできる。したがって、第2ノイズ像92による違和感を抑制でき、これにより、視認性を改善できる。本件発明者らが確認したところ、コンバイナ40への画像光L101の入射方向に対する正反射方向に25°以下の角度傾斜した方向に、ホログラム素子60が画像光L101を回折することにより、第2ノイズ像92による違和感を十分に抑制できた。ノイズ像91による違和感を抑制する際と同様に、第2ノイズ像92による違和感を抑制する観点から、ホログラム素子60への入射角θ1と、ホログラム素子60での回折角θ2と、の差の大きさは、20°以下でもよく、15°以下でもよく、10°でもよく、5°でもよく、3°でもよい。 That is, the hologram element 60 diffracts the image light L101 in the regular reflection direction with respect to the incident direction of the image light L101 to the combiner 40, thereby making the second noise image 92 inconspicuous. Therefore, it is possible to suppress discomfort caused by the second noise image 92, thereby improving the visibility. As confirmed by the inventors of the present invention, the hologram element 60 diffracts the image light L101 in a direction inclined at an angle of 25° or less in the specular direction with respect to the incident direction of the image light L101 to the combiner 40, resulting in the second noise The sense of discomfort caused by the image 92 can be sufficiently suppressed. As in the case of suppressing the discomfort due to the noise image 91, from the viewpoint of suppressing the discomfort due to the second noise image 92, the difference between the incident angle θ1 to the hologram element 60 and the diffraction angle θ2 at the hologram element 60 is determined. The height may be 20° or less, 15° or less, 10°, 5°, or 3°.
 上述したように、画像光によるゴースト像81から虚像80を識別し易くする観点において、回折角θ2は入射角θ1と異なってもよい。この場合、画像光L101の回折角θ2は、画像光L101の入射角θ1より大きくなってもよい。この設定によれば、コンバイナ40を透過したノイズ光L102の進行方向が、虚像80を形成する画像光L101の進行方向から大きく傾斜するようになる。 As described above, the diffraction angle θ2 may be different from the incident angle θ1 in terms of making it easier to distinguish the virtual image 80 from the ghost image 81 of the image light. In this case, the diffraction angle θ2 of the image light L101 may be larger than the incident angle θ1 of the image light L101. According to this setting, the traveling direction of the noise light L102 that has passed through the combiner 40 is greatly inclined from the traveling direction of the image light L101 that forms the virtual image 80 .
 ここで、図10に示された例において、実線で示す画像光L101は、回折角θ2が入射角θ1より大きくなるようにホログラム素子60で回折されている。この回折特性を有したホログラム素子60を用いた場合におけるノイズ光L102の光路が、図10に実線で示されている。 Here, in the example shown in FIG. 10, the image light L101 indicated by the solid line is diffracted by the hologram element 60 so that the diffraction angle θ2 is larger than the incident angle θ1. A solid line in FIG. 10 shows the optical path of the noise light L102 when the hologram element 60 having this diffraction characteristic is used.
 図10に点線で示す画像光L101Aは、回折角θ2が入射角θ1と等しくなるようにホログラム素子60で回折されている。この回折特性を有したホログラム素子60を用いた場合におけるノイズ光L102の光路が、図10に点線で示されている。 The image light L101A indicated by the dotted line in FIG. 10 is diffracted by the hologram element 60 so that the diffraction angle θ2 becomes equal to the incident angle θ1. The optical path of the noise light L102 when the hologram element 60 having this diffraction characteristic is used is indicated by a dotted line in FIG.
 図10に二点鎖線で示す画像光L101Bは、回折角θ2が入射角θ1より小さくなるようにホログラム素子60で回折されている。この回折特性を有したホログラム素子60を用いた場合におけるノイズ光L102Bの光路が、図10に二点鎖線で示されている。 The image light L101B indicated by the two-dot chain line in FIG. 10 is diffracted by the hologram element 60 so that the diffraction angle θ2 is smaller than the incident angle θ1. The optical path of the noise light L102B when the hologram element 60 having this diffraction characteristic is used is indicated by a chain double-dashed line in FIG.
 図10に示すように、第2ノイズ像92を形成するノイズ光の光路は、虚像80を形成する画像光の光路と、法線方向NDを中心として対称となる。そして、自動車12のフロントウインドウ14に適用されるヘッドアップディスプレイ20では、画像光L101とコンバイナ40の法線方向NDとを含む断面において、画像光L101の入射光および回折光は、通常、法線方向NDに対して逆側に傾斜する。したがって、画像光L101の回折角θ3が画像光L101の入射角θ1より大きくなることにより、ノイズ光の進行方向は、画像光の進行方向に対して大きく傾斜する。これにより、ホログラム素子60が或る程度大型化したとしても、ノイズ光が、画像光の進む位置とは異なる位置に向かう。すなわち、ノイズ光は、使用者5に向けて進まなくなる。結果として、外部光源90の第2ノイズ像92が表示されたとしても、使用者5によって観察されない。すなわち、ホログラム素子60が、入射角θ1よりも回折角θ2が大きくなるように画像光を回折することにより、外部光源90の第2ノイズ像92による違和感を効果的に抑制できる。 As shown in FIG. 10, the optical path of the noise light forming the second noise image 92 is symmetrical with the optical path of the image light forming the virtual image 80 with respect to the normal direction ND. In the head-up display 20 applied to the front window 14 of the automobile 12, in a cross section including the image light L101 and the normal direction ND of the combiner 40, the incident light and the diffracted light of the image light L101 are normally normal It inclines to the opposite side with respect to the direction ND. Therefore, when the diffraction angle θ3 of the image light L101 becomes larger than the incident angle θ1 of the image light L101, the traveling direction of the noise light is greatly inclined with respect to the traveling direction of the image light. As a result, even if the hologram element 60 is enlarged to some extent, the noise light travels to a position different from the position to which the image light travels. That is, the noise light stops advancing toward the user 5 . As a result, even if the second noise image 92 of the external light source 90 is displayed, it is not observed by the user 5 . That is, the hologram element 60 diffracts the image light so that the diffraction angle θ2 is larger than the incident angle θ1, thereby effectively suppressing the discomfort caused by the second noise image 92 of the external light source 90 .
 外部光源90の第2ノイズ像92による違和感を抑制する観点から、回折角θ2を大きくしてもよい。画像光L101およびノイズ光L102が法線方向NDを中心として対称な方向に進むことから、回折光θ2を大きくすることによっても、第2ノイズ像92が使用者5によって観察しにくくできる。回折角θ2の大きさは、用途に応じて適宜設定され得る。自動車12のフロントウインドウ14に適用されるヘッドアップディスプレイ20
では、コンバイナ40のホログラム素子60による画像光の回折角θ2を、30°以上としてもよく、35°以上としてもよく、40°以上としてもよく、45°以上としてもよい。この設定によれば、ノイズ光が使用者5に向けて進みにくくなる。
From the viewpoint of suppressing the discomfort caused by the second noise image 92 of the external light source 90, the diffraction angle θ2 may be increased. Since the image light L101 and the noise light L102 travel in symmetrical directions with respect to the normal direction ND, the second noise image 92 can also be made difficult for the user 5 to observe by increasing the diffracted light θ2. The magnitude of the diffraction angle θ2 can be appropriately set according to the application. A head-up display 20 applied to a front window 14 of an automobile 12
Then, the diffraction angle θ2 of the image light by the hologram element 60 of the combiner 40 may be 30° or more, 35° or more, 40° or more, or 45° or more. This setting makes it difficult for the noise light to travel toward the user 5 .
 上述したように、ホログラム素子60によって画像光を回折する方向を調節することにより、ノイズ像91の違和感を抑制できる。自動車12のフロントウインドウ14に適用されるヘッドアップディスプレイ20では、コンバイナ40の傾斜角θ5及び画像光L74の入射角θ1を調節することによっても、ノイズ像91の違和感を抑制できる。図7に示すように、コンバイナ40の傾斜角θ5(°)は、コンバイナ40の法線方向NDが鉛直方向(図示された例において、第3方向D3)に対してなす角度の大きさであり、90°未満の値となる。コンバイナ40の傾斜角θ5(°)は、画像光が入射し得るコンバイナ40の領域の中心位置(重心位置)における傾斜角として特定される。画像光の入射角θ1(°)は、既に説明したように、画像光が入射し得るコンバイナ40の領域の中心位置に入射する画像光の入射角として特定される。 As described above, by adjusting the direction in which the image light is diffracted by the hologram element 60, it is possible to suppress the discomfort of the noise image 91. In the head-up display 20 applied to the front window 14 of the automobile 12, the discomfort of the noise image 91 can also be suppressed by adjusting the tilt angle θ5 of the combiner 40 and the incident angle θ1 of the image light L74. As shown in FIG. 7, the tilt angle θ5 (°) of the combiner 40 is the magnitude of the angle formed by the normal direction ND of the combiner 40 with respect to the vertical direction (the third direction D3 in the illustrated example). , is less than 90°. The tilt angle θ5 (°) of the combiner 40 is specified as the tilt angle at the central position (center of gravity position) of the region of the combiner 40 where the image light can enter. The incident angle θ1 (°) of the image light is specified as the incident angle of the image light incident on the central position of the region of the combiner 40 where the image light can be incident, as described above.
 自動車12のフロントウインドウ14に適用されるヘッドアップディスプレイ20では、通常、画像形成装置30からの画像光L74は、コンバイナ40へ鉛直方向における下方から入射する。そして、画像光L74とコンバイナ40の法線方向NDとを含む断面において、画像光L74の入射光および回折光は、通常、法線方向NDに対して逆側に傾斜する。このとき、コンバイナ40の傾斜角度θ5(°)および画像光のコンバイナ40への入射角θ1(°)の合計である角度θ6(°)を大きくすることによって、ノイズ像91による違和感を抑制できる。角度θ6(°)が大きくなると、ノイズ像91を形成するノイズ光L71は、鉛直方向に対して大きく傾斜した方向からコンバイナ40へ入射する。外灯や太陽等の外部光源90は、通常、自動車12の鉛直方向における上方に位置する。したがって、角度θ6(°)を大きくすることによって、ノイズ像91を形成するノイズ光L71がコンバイナ40に入射しにくくなる。これにより、角度θ6(°)を大きくすることによって、ノイズ像91を目立たなくして、ノイズ像91による違和感を抑制できる。ノイズ像91による違和感を抑制する観点から、コンバイナ40の傾斜角度θ5(°)および画像光のコンバイナ40への入射角θ1(°)の合計である角度θ6(°)は、70°以上でもよく、80°以上でもよく、90°以上でもよく、90°より大きくてもよく、100°以上でもよい。 In the head-up display 20 applied to the front window 14 of the automobile 12, the image light L74 from the image forming device 30 normally enters the combiner 40 from below in the vertical direction. Then, in a cross section including the image light L74 and the normal direction ND of the combiner 40, the incident light and the diffracted light of the image light L74 are generally inclined opposite to the normal direction ND. At this time, by increasing the angle θ6 (°), which is the sum of the tilt angle θ5 (°) of the combiner 40 and the incident angle θ1 (°) of the image light to the combiner 40, the discomfort due to the noise image 91 can be suppressed. As the angle θ6 (°) increases, the noise light L71 forming the noise image 91 enters the combiner 40 from a direction greatly inclined with respect to the vertical direction. An external light source 90 such as an outdoor light or the sun is normally positioned vertically above the vehicle 12 . Therefore, by increasing the angle θ6 (°), it becomes difficult for the noise light L71 forming the noise image 91 to enter the combiner 40 . As a result, by increasing the angle θ6 (°), the noise image 91 can be made inconspicuous, and discomfort caused by the noise image 91 can be suppressed. From the viewpoint of suppressing discomfort caused by the noise image 91, the angle θ6 (°), which is the sum of the tilt angle θ5 (°) of the combiner 40 and the incident angle θ1 (°) of the image light to the combiner 40, may be 70° or more. , may be 80° or more, may be 90° or more, may be greater than 90°, or may be 100° or more.
 自動車12のフロントウインドウ14を利用したヘッドアップディスプレイ20では、コンバイナ40の傾斜角度θ5およびコンバイナ40への画像光の入射角θ1の大きさを次のように設定してもよい。コンバイナ40の傾斜角度θ5を25°以上55°以下として、コンバイナ40への画像光の入射角θ1の大きさを、コンバイナ40の傾斜角θ5の大きさより、0°より大きく60°以下の角度だけ大きくしてもよい。コンバイナ40の傾斜角度θ5を25°以上50°以下として、コンバイナ40への画像光の入射角θ1の大きさを、コンバイナ40の傾斜角θ5の大きさより、10°より大きく60°以下の角度だけ大きくしてもよい。コンバイナ40の傾斜角度θ5を25°以上45°以下として、コンバイナ40への画像光の入射角θ1の大きさを、コンバイナ40の傾斜角θ5の大きさより、20°より大きく60°以下の角度だけ大きくしてもよい。コンバイナ40の傾斜角度θ5を25°以上40°以下として、コンバイナ40への画像光の入射角θ1の大きさを、コンバイナ40の傾斜角θ5の大きさより、30°より大きく60°以下の角度だけ大きくしてもよい。以上の設定によれば、回折光θ2の大きさが入射角θ1の大きさよりも小さくなり易く、これにより、虚像80をゴースト像81と区別して観察することが容易となる。また、以上の設定によれば、コンバイナ40での画像光の回折角θ2の大きさが大きくなり易く、第2ノイズ像92を観察されにくくできる。さらに、以上の設定によれば、コンバイナ40の傾斜角度θ5および画像光のコンバイナ40への入射角θ1(°)の合計である角度θ6(°)が大きくなり易く、ノイズ像91を形成するノイズ像がコンバイナ40に入射しにくくできる。 In the head-up display 20 using the front window 14 of the automobile 12, the tilt angle θ5 of the combiner 40 and the incident angle θ1 of the image light to the combiner 40 may be set as follows. The inclination angle θ5 of the combiner 40 is set to 25° or more and 55° or less, and the magnitude of the incident angle θ1 of the image light to the combiner 40 is set to an angle larger than 0° and 60° or less than the magnitude of the inclination angle θ5 of the combiner 40. You can make it bigger. The tilt angle θ5 of the combiner 40 is set to 25° or more and 50° or less, and the magnitude of the incident angle θ1 of the image light to the combiner 40 is set to be 10° or more and 60° or less than the magnitude of the tilt angle θ5 of the combiner 40. You can make it bigger. The inclination angle θ5 of the combiner 40 is set to 25° or more and 45° or less, and the magnitude of the incident angle θ1 of the image light to the combiner 40 is increased by an angle larger than 20° and 60° or less than the magnitude of the inclination angle θ5 of the combiner 40. You can make it bigger. The tilt angle θ5 of the combiner 40 is set to 25° or more and 40° or less, and the magnitude of the incident angle θ1 of the image light to the combiner 40 is set to be more than 30° and 60° or less than the magnitude of the tilt angle θ5 of the combiner 40. You can make it bigger. According to the above settings, the size of the diffracted light θ2 is likely to be smaller than the size of the incident angle θ1, thereby facilitating observation of the virtual image 80 while distinguishing it from the ghost image 81 . Further, according to the above setting, the diffraction angle θ2 of the image light at the combiner 40 tends to be large, and the second noise image 92 can be made difficult to observe. Furthermore, according to the above settings, the angle θ6 (°), which is the sum of the tilt angle θ5 of the combiner 40 and the incident angle θ1 (°) of the image light to the combiner 40, tends to increase, and the noise image 91 is formed. The image can be made difficult to enter the combiner 40 .
 以上において、ノイズ像91による違和感を抑制する手段、第2ノイズ像92による違和感を抑制する手段、及び、ゴースト像81による視認性低下を抑制する手段を説明したが、これらの手段を適宜組合せて使用してもよい。 In the above, the means for suppressing the discomfort due to the noise image 91, the means for suppressing the discomfort due to the second noise image 92, and the means for suppressing the decrease in visibility due to the ghost image 81 have been described. may be used.
D1:第1方向、D2:第2方向、D3:第3方向、ND:法線方向、L4A:参照光、L4B:物体光、L3A:照明光、L3B:再生光、5:使用者、10:移動体、12:自動車、14:フロントウインドウ、20:ヘッドアップディスプレイ、25:投射装置、25a:出射端、30:画像形成装置、31:画像形成部、32:遮光部材、34:光路調整部材、35:投射光学系、36:レンズシート、36a:本体部、36b:単位レンズ、37:光制御シート、37a:吸収部、37b:透過部、37c:ベース部、38:光拡散シート、39:異方性光拡散シート、40:コンバイナ、41:第1面、42:第2面、45:接合層、51:第1基板、52:第2基板、56:透明板、57:反射防止層、57a:低屈折率層、57b:高屈折率層、60:ホログラム素子、62:ホログラム記録層、63:感光性材料層、64:第1シート、66:第2シート、71:参照光用レンズ、72:物体光用レンズ、80:虚像、81:ゴースト像、90:外部光源、91:ノイズ像、95:光軸 D1: first direction, D2: second direction, D3: third direction, ND: normal direction, L4A: reference light, L4B: object light, L3A: illumination light, L3B: reproduced light, 5: user, 10 : moving body 12: automobile 14: front window 20: head-up display 25: projection device 25a: emission end 30: image forming device 31: image forming unit 32: light shielding member 34: optical path adjustment Member 35: Projection optical system 36: Lens sheet 36a: Body portion 36b: Unit lens 37: Light control sheet 37a: Absorption portion 37b: Transmission portion 37c: Base portion 38: Light diffusion sheet 39: anisotropic light diffusion sheet, 40: combiner, 41: first surface, 42: second surface, 45: bonding layer, 51: first substrate, 52: second substrate, 56: transparent plate, 57: antireflection layer , 57a: low refractive index layer, 57b: high refractive index layer, 60: hologram element, 62: hologram recording layer, 63: photosensitive material layer, 64: first sheet, 66: second sheet, 71: for reference light Lens 72: Object light lens 80: Virtual image 81: Ghost image 90: External light source 91: Noise image 95: Optical axis

Claims (29)

  1.  画像光を投射されるヘッドアップディスプレイ用のコンバイナであって、
     前記画像光の入射面となる第1面を含む第1基板と、
     前記第1面と対向する第2面を含む第2基板と、
     前記第1基板および前記第2基板を接合する接合層と、
     前記第1基板および前記第2基板の間に位置するホログラム素子と、を備え、
     前記ホログラム素子は、前記コンバイナへの前記画像光の入射方向に対する正反射方向または前記正反射方向に25°以下の角度傾斜した方向に、前記画像光を回折し、
     前記ホログラム素子によって回折された画像光による画像の表示位置と前記ホログラム素子との距離は、前記第1面または前記第2面で反射した画像光による画像の表示位置と前記ホログラム素子との距離の4倍以上である、ヘッドアップディスプレイ用のコンバイナ。
    A combiner for a head-up display that projects image light,
    a first substrate including a first surface serving as an incident surface of the image light;
    a second substrate including a second surface facing the first surface;
    a bonding layer that bonds the first substrate and the second substrate;
    a hologram element positioned between the first substrate and the second substrate;
    the hologram element diffracts the image light in a direction of specular reflection with respect to the direction of incidence of the image light on the combiner or in a direction inclined at an angle of 25° or less to the direction of specular reflection;
    The distance between the display position of the image by the image light diffracted by the hologram element and the hologram element is the distance between the display position of the image by the image light reflected by the first surface or the second surface and the hologram element. A combiner for a head-up display that is 4x or more.
  2.  画像光を投射されるヘッドアップディスプレイ用のコンバイナであって、
     前記画像光の入射面となる第1面を含む第1基板と、
     前記第1面と対向する第2面を含む第2基板と、
     前記第1基板および前記第2基板を接合する接合層と、
     前記第1基板および前記第2基板の間に位置するホログラム素子と、を備え、
     外部光源から放出されて前記第2面から前記コンバイナに入射し、前記第1面で反射した後に前記ホログラム素子で回折される光により再生される外部光源の像が、前記コンバイナを透過して観察される外部光源の実像と少なくとも部分的に重なって観察される、ヘッドアップディスプレイ用のコンバイナ。
    A combiner for a head-up display that projects image light,
    a first substrate including a first surface serving as an incident surface of the image light;
    a second substrate including a second surface facing the first surface;
    a bonding layer that bonds the first substrate and the second substrate;
    a hologram element positioned between the first substrate and the second substrate;
    An image of an external light source reproduced by light emitted from an external light source, incident on the combiner from the second surface, reflected by the first surface and then diffracted by the hologram element is observed through the combiner. A combiner for a head-up display that is viewed at least partially overlapping a real image of an external light source.
  3.  前記ホログラム素子によって回折された画像光による画像の表示位置と前記ホログラム素子との距離は、前記第1面または前記第2面で反射した画像光による画像の表示位置と前記ホログラム素子との距離の4倍以上である、請求項2に記載のヘッドアップディスプレイ用のコンバイナ。 The distance between the display position of the image by the image light diffracted by the hologram element and the hologram element is the distance between the display position of the image by the image light reflected by the first surface or the second surface and the hologram element. 3. The combiner for head-up display according to claim 2, which is 4 times or more.
  4.  前記第1基板は、前記第1面を構成する反射防止層を含む、請求項1~3のいずれか一項に記載のヘッドアップディスプレイ用のコンバイナ。 The combiner for a head-up display according to any one of claims 1 to 3, wherein said first substrate includes an antireflection layer forming said first surface.
  5.  画像光を投射されるヘッドアップディスプレイ用のコンバイナであって、
     前記画像光の入射面となる第1面を含む第1基板と、
     前記第1面と対向する第2面を含む第2基板と、
     前記第1基板および前記第2基板を接合する接合層と、
     前記第1基板および前記第2基板の間に位置するホログラム素子と、を備え、
     前記ホログラム素子は、前記コンバイナへの前記画像光の入射方向に対する正反射方向または前記正反射方向に25°以下の角度傾斜した方向に、前記画像光を回折し、
     前記第1基板は、前記第1面を構成する反射防止層を含む、ヘッドアップディスプレイ用のコンバイナ。
    A combiner for a head-up display that projects image light,
    a first substrate including a first surface serving as an incident surface of the image light;
    a second substrate including a second surface facing the first surface;
    a bonding layer that bonds the first substrate and the second substrate;
    a hologram element positioned between the first substrate and the second substrate;
    the hologram element diffracts the image light in a direction of specular reflection with respect to the direction of incidence of the image light on the combiner or in a direction inclined at an angle of 25° or less to the direction of specular reflection;
    A combiner for a head-up display, wherein the first substrate includes an antireflection layer forming the first surface.
  6.  画像光を放出する投射装置と、
     前記画像光を投射される請求項1、2、又は5に記載のコンバイナと、を備える、ヘッドアップディスプレイ。
    a projection device that emits image light;
    and the combiner according to claim 1, 2 or 5 for projecting the image light.
  7.  前記コンバイナへの前記画像光の入射角の大きさと前記コンバイナでの前記画像光の回折角の大きさとの差は、3°以上である、請求項6に記載のヘッドアップディスプレイ。 7. The head-up display according to claim 6, wherein a difference between an incident angle of said image light to said combiner and a diffraction angle of said image light at said combiner is 3° or more.
  8.  前記コンバイナでの前記画像光の回折角の大きさは、前記コンバイナへの前記画像光の入射角の大きさより大きい、請求項6に記載のヘッドアップディスプレイ。 7. The head-up display according to claim 6, wherein the diffraction angle of said image light at said combiner is greater than the angle of incidence of said image light on said combiner.
  9.  前記投射装置から放出されて前記コンバイナの前記ホログラム素子で回折される画像光の光路からずらして配置された遮光部材を備え、
     前記遮光部材は、前記投射装置から放出されて前記コンバイナに向かう画像光の一部を遮光する、請求項6に記載のヘッドアップディスプレイ。
    a light shielding member arranged to be shifted from the optical path of the image light emitted from the projection device and diffracted by the hologram element of the combiner;
    7. The head-up display according to claim 6, wherein said light shielding member shields part of image light emitted from said projection device and directed toward said combiner.
  10.  前記投射装置は、前記画像光を放出する画像形成装置と、前記画像形成装置と前記コンバイナとの間に配置され前記画像光の光路を調整する光路調整部材を備え、
     前記光路調整部材は異方性拡散機能を有する、請求項6に記載のヘッドアップディスプレイ。
    The projection device includes an image forming device that emits the image light, and an optical path adjusting member that is arranged between the image forming device and the combiner and adjusts an optical path of the image light,
    7. The head-up display according to claim 6, wherein said optical path adjustment member has an anisotropic diffusion function.
  11.  前記光路調整部材は、前記コンバイナの法線方向と前記コンバイナに入射する画像光の光軸との両方と平行な第1評価面内よりも、前記第1評価面と直交し且つ前記光軸と平行な第2評価面内において、強い拡散機能を有する、請求項10に記載のヘッドアップディスプレイ。 The optical path adjusting member is perpendicular to the first evaluation surface and the optical axis rather than the first evaluation surface parallel to both the normal direction of the combiner and the optical axis of the image light incident on the combiner. 11. The head-up display according to claim 10, having a strong diffusion function in the parallel second evaluation plane.
  12.  請求項6に記載のヘッドアップディスプレイを備える、移動体。 A moving body comprising the head-up display according to claim 6.
  13.  請求項6に記載のヘッドアップディスプレイを備え、
     前記投射装置から前記コンバイナまでの前記画像光の光路長は、200mm以上である、自動車。
    A head-up display according to claim 6,
    The automobile, wherein the optical path length of the image light from the projection device to the combiner is 200 mm or more.
  14.  請求項6に記載のヘッドアップディスプレイを備え、
     光路長Lz(mm)および角度θ4(°)を用いた式「Lz×sinθ4」が10mm以上であり、
     前記光路長Lz(mm)は、前記投射装置から前記コンバイナまでの前記画像光の光路長であり、
     前記角度θ4は、前記コンバイナへの前記画像光の入射角の大きさと前記コンバイナでの前記画像光の回折角の大きさとの差である、自動車。
    A head-up display according to claim 6,
    The formula "Lz × sin θ4" using the optical path length Lz (mm) and the angle θ4 (°) is 10 mm or more,
    The optical path length Lz (mm) is the optical path length of the image light from the projection device to the combiner,
    The motor vehicle, wherein the angle θ4 is the difference between the magnitude of the incident angle of the image light to the combiner and the magnitude of the diffraction angle of the image light at the combiner.
  15.  請求項6に記載のヘッドアップディスプレイを備え、
     前記コンバイナでの前記画像光の回折角は、30°以上である、自動車。
    A head-up display according to claim 6,
    The motor vehicle, wherein the diffraction angle of the image light at the combiner is 30° or more.
  16.  請求項6に記載のヘッドアップディスプレイを備え、
     前記コンバイナの傾斜角と前記コンバイナへの画像光の入射角との合計は、70°以上であり、
     前記コンバイナの前記傾斜角は、前記コンバイナの法線方向と鉛直方向との間の角度である、自動車。
    A head-up display according to claim 6,
    The sum of the tilt angle of the combiner and the incident angle of the image light to the combiner is 70° or more,
    The motor vehicle, wherein the tilt angle of the combiner is the angle between the normal direction and the vertical direction of the combiner.
  17.  請求項6に記載のヘッドアップディスプレイを備え、
     前記コンバイナでの前記画像光の回折角の大きさは、前記コンバイナへの前記画像光の入射角の大きさより小さい、自動車。
    A head-up display according to claim 6,
    A motor vehicle, wherein a magnitude of an angle of diffraction of said image light at said combiner is smaller than a magnitude of an angle of incidence of said image light on said combiner.
  18.  請求項6に記載のヘッドアップディスプレイを備え、
     前記画像光の一部は、前記第1面または前記第2面で、水平方向に対して上方に傾斜した方向に反射する、自動車。
    A head-up display according to claim 6,
    A motor vehicle, wherein part of the image light is reflected by the first surface or the second surface in a direction inclined upward with respect to a horizontal direction.
  19.  前記コンバイナへの前記画像光の入射角の大きさは、前記コンバイナの傾斜角の大きさよりも大きく、
     前記コンバイナの前記傾斜角は、前記コンバイナの法線方向と鉛直方向との間の角度である、請求項17に記載の自動車。
    the magnitude of the incident angle of the image light to the combiner is greater than the magnitude of the tilt angle of the combiner;
    18. Vehicle according to claim 17, wherein the tilt angle of the combiner is the angle between the normal direction of the combiner and the vertical direction.
  20.  請求項6に記載のヘッドアップディスプレイを備え、
     前記コンバイナの傾斜角の大きさは、25°以上55°以下であり、
     前記コンバイナへの前記画像光の入射角の大きさは、前記コンバイナの傾斜角の大きさより、0°より大きく60°以下の角度だけ大きく、
     前記コンバイナの前記傾斜角は、前記コンバイナの法線方向と鉛直方向との間の角度である、自動車。
    A head-up display according to claim 6,
    The tilt angle of the combiner is 25° or more and 55° or less,
    the magnitude of the incident angle of the image light to the combiner is greater than the magnitude of the tilt angle of the combiner by an angle greater than 0° and less than or equal to 60°;
    The motor vehicle, wherein the tilt angle of the combiner is the angle between the normal direction and the vertical direction of the combiner.
  21.  画像光を放出する投射装置と、前記画像光を投射されるコンバイナと、を備えるヘッドアップディスプレイであって、
     前記コンバイナは、
     前記画像光の入射面となる第1面を含む第1基板と、
     前記第1面と対向する第2面を含む第2基板と、
     前記第1基板および前記第2基板を接合する接合層と、
     前記第1基板および前記第2基板の間に位置するホログラム素子と、を含み、
     前記コンバイナでの前記画像光の回折角の大きさは、前記コンバイナへの前記画像光の入射角の大きさより大きい、ヘッドアップディスプレイ。
    A head-up display comprising a projection device that emits image light and a combiner that projects the image light,
    The combiner is
    a first substrate including a first surface serving as an incident surface of the image light;
    a second substrate including a second surface facing the first surface;
    a bonding layer that bonds the first substrate and the second substrate;
    a hologram element positioned between the first substrate and the second substrate;
    The head-up display, wherein a diffraction angle of the image light at the combiner is larger than an incident angle of the image light to the combiner.
  22.  ヘッドアップディスプレイを備える自動車であって、
     前記ヘッドアップディスプレイは、画像光を放出する投射装置と、前記画像光を投射されるコンバイナと、を含み、
     前記コンバイナは、
     前記画像光の入射面となる第1面を含む第1基板と、
     前記第1面と対向する第2面を含む第2基板と、
     前記第1基板および前記第2基板を接合する接合層と、
     前記第1基板および前記第2基板の間に位置するホログラム素子と、を含み、
     前記投射装置から前記コンバイナまでの前記画像光の光路長は、200mm以上である、自動車。
    A vehicle equipped with a head-up display,
    The head-up display includes a projection device that emits image light and a combiner that projects the image light,
    The combiner is
    a first substrate including a first surface serving as an incident surface of the image light;
    a second substrate including a second surface facing the first surface;
    a bonding layer that bonds the first substrate and the second substrate;
    a hologram element positioned between the first substrate and the second substrate;
    The automobile, wherein the optical path length of the image light from the projection device to the combiner is 200 mm or more.
  23.  ヘッドアップディスプレイを備える自動車であって、
     前記ヘッドアップディスプレイは、画像光を放出する投射装置と、前記画像光を投射されるコンバイナと、を含み、
     前記コンバイナは、
     前記画像光の入射面となる第1面を含む第1基板と、
     前記第1面と対向する第2面を含む第2基板と、
     前記第1基板および前記第2基板を接合する接合層と、
     前記第1基板および前記第2基板の間に位置するホログラム素子と、を含み、
     光路長Lz(mm)および角度θ4(°)を用いた式「Lz×sinθ4」が10mm以上であり、
     前記光路長Lz(mm)は、前記投射装置から前記コンバイナまでの前記画像光の光路長であり、
     前記角度θ4(°)は、前記コンバイナへの前記画像光の入射角の大きさと前記コンバイナでの前記画像光の回折角の大きさとの差である、自動車。
    A vehicle equipped with a head-up display,
    The head-up display includes a projection device that emits image light and a combiner that projects the image light,
    The combiner is
    a first substrate including a first surface serving as an incident surface of the image light;
    a second substrate including a second surface facing the first surface;
    a bonding layer that bonds the first substrate and the second substrate;
    a hologram element positioned between the first substrate and the second substrate;
    The formula "Lz × sin θ4" using the optical path length Lz (mm) and the angle θ4 (°) is 10 mm or more,
    The optical path length Lz (mm) is the optical path length of the image light from the projection device to the combiner,
    The motor vehicle, wherein the angle θ4 (°) is a difference between an incident angle of the image light to the combiner and a diffraction angle of the image light at the combiner.
  24.  ヘッドアップディスプレイを備える自動車であって、
     前記ヘッドアップディスプレイは、画像光を放出する投射装置と、前記画像光を投射されるコンバイナと、を含み、
     前記コンバイナは、
     前記画像光の入射面となる第1面を含む第1基板と、
     前記第1面と対向する第2面を含む第2基板と、
     前記第1基板および前記第2基板を接合する接合層と、
     前記第1基板および前記第2基板の間に位置するホログラム素子と、を含み、
     前記コンバイナでの前記画像光の回折角は、30°以上である、自動車。
    A vehicle equipped with a head-up display,
    The head-up display includes a projection device that emits image light and a combiner that projects the image light,
    The combiner is
    a first substrate including a first surface serving as an incident surface of the image light;
    a second substrate including a second surface facing the first surface;
    a bonding layer that bonds the first substrate and the second substrate;
    a hologram element positioned between the first substrate and the second substrate;
    The motor vehicle, wherein the diffraction angle of the image light at the combiner is 30° or more.
  25.  ヘッドアップディスプレイを備える自動車であって、
     前記ヘッドアップディスプレイは、画像光を放出する投射装置と、前記画像光を投射されるコンバイナと、を含み、
     前記コンバイナは、
     前記画像光の入射面となる第1面を含む第1基板と、
     前記第1面と対向する第2面を含む第2基板と、
     前記第1基板および前記第2基板を接合する接合層と、
     前記第1基板および前記第2基板の間に位置するホログラム素子と、を含み、
     前記コンバイナの傾斜角および前記コンバイナへの画像光の入射角の合計は、70°以上であり、
     前記コンバイナの前記傾斜角は、前記コンバイナの法線方向と鉛直方向との間の角度である、自動車。
    A vehicle equipped with a head-up display,
    The head-up display includes a projection device that emits image light and a combiner that projects the image light,
    The combiner is
    a first substrate including a first surface serving as an incident surface of the image light;
    a second substrate including a second surface facing the first surface;
    a bonding layer that bonds the first substrate and the second substrate;
    a hologram element positioned between the first substrate and the second substrate;
    The sum of the inclination angle of the combiner and the incident angle of the image light to the combiner is 70° or more,
    The motor vehicle, wherein the tilt angle of the combiner is the angle between the normal direction and the vertical direction of the combiner.
  26.  ヘッドアップディスプレイを備える自動車であって、
     前記ヘッドアップディスプレイは、画像光を放出する投射装置と、前記画像光を投射されるコンバイナと、を含み、
     前記コンバイナは、
     前記画像光の入射面となる第1面を含む第1基板と、
     前記第1面と対向する第2面を含む第2基板と、
     前記第1基板および前記第2基板を接合する接合層と、
     前記第1基板および前記第2基板の間に位置するホログラム素子と、を含み、
     前記コンバイナでの前記画像光の回折角の大きさは、前記コンバイナへの前記画像光の入射角の大きさより小さい、自動車。
    A vehicle equipped with a head-up display,
    The head-up display includes a projection device that emits image light and a combiner that projects the image light,
    The combiner is
    a first substrate including a first surface serving as an incident surface of the image light;
    a second substrate including a second surface facing the first surface;
    a bonding layer that bonds the first substrate and the second substrate;
    a hologram element positioned between the first substrate and the second substrate;
    A motor vehicle, wherein a magnitude of an angle of diffraction of said image light at said combiner is smaller than a magnitude of an angle of incidence of said image light on said combiner.
  27.  ヘッドアップディスプレイを備える自動車であって、
     前記ヘッドアップディスプレイは、画像光を放出する投射装置と、前記画像光を投射されるコンバイナと、を含み、
     前記コンバイナは、
     前記画像光の入射面となる第1面を含む第1基板と、
     前記第1面と対向する第2面を含む第2基板と、
     前記第1基板および前記第2基板を接合する接合層と、
     前記第1基板および前記第2基板の間に位置するホログラム素子と、を含み、
     前記画像光の一部は、前記第1面または前記第2面で、水平方向に対して上方に傾斜した方向に反射する、自動車。
    A vehicle equipped with a head-up display,
    The head-up display includes a projection device that emits image light and a combiner that projects the image light,
    The combiner is
    a first substrate including a first surface serving as an incident surface of the image light;
    a second substrate including a second surface facing the first surface;
    a bonding layer that bonds the first substrate and the second substrate;
    a hologram element positioned between the first substrate and the second substrate;
    A motor vehicle, wherein part of the image light is reflected by the first surface or the second surface in a direction inclined upward with respect to a horizontal direction.
  28.  ヘッドアップディスプレイを備える自動車であって、
     前記ヘッドアップディスプレイは、画像光を放出する投射装置と、前記画像光を投射されるコンバイナと、を含み、
     前記コンバイナは、
     前記画像光の入射面となる第1面を含む第1基板と、
     前記第1面と対向する第2面を含む第2基板と、
     前記第1基板および前記第2基板を接合する接合層と、
     前記第1基板および前記第2基板の間に位置するホログラム素子と、を含み、
     前記コンバイナの傾斜角の大きさは、25°以上55°以下であり、
     前記コンバイナへの前記画像光の入射角の大きさは、前記コンバイナの傾斜角の大きさより、0°より大きく60°以下の角度だけ大きく、
     前記コンバイナの前記傾斜角は、前記コンバイナの法線方向と鉛直方向との間の角度である、自動車。
    A vehicle equipped with a head-up display,
    The head-up display includes a projection device that emits image light and a combiner that projects the image light,
    The combiner is
    a first substrate including a first surface serving as an incident surface of the image light;
    a second substrate including a second surface facing the first surface;
    a bonding layer that bonds the first substrate and the second substrate;
    a hologram element positioned between the first substrate and the second substrate;
    The tilt angle of the combiner is 25° or more and 55° or less,
    the magnitude of the incident angle of the image light to the combiner is greater than the magnitude of the tilt angle of the combiner by an angle greater than 0° and less than or equal to 60°;
    The motor vehicle, wherein the tilt angle of the combiner is the angle between the normal direction and the vertical direction of the combiner.
  29.  画像光を放出する画像形成装置と、
     前記画像光を投射されるコンバイナと、
     前記画像形成装置と前記コンバイナとの間に配置され、前記画像光の光路を調整する光路調整部材と、を備え、
     前記コンバイナは、
     前記画像光の入射面となる第1面を含む第1基板と、
     前記第1面と対向する第2面を含む第2基板と、
     前記第1基板および前記第2基板を接合する接合層と、
     前記第1基板および前記第2基板の間に位置するホログラム素子と、を含み、
     前記コンバイナでの前記画像光の回折角の大きさは、前記コンバイナへの前記画像光の入射角の大きさと異なり、
     前記ホログラム素子は、前記コンバイナへの前記画像光の入射方向に対する正反射方向に対して傾斜した方向に、前記画像光を回折し、
     前記光路調整部材は、前記コンバイナの法線方向と前記コンバイナに入射する画像光の光軸との両方と平行な第1評価面内よりも、前記第1評価面と直交し且つ前記コンバイナの前記法線方向と平行な第2評価面内において、強い拡散機能を有する、ヘッドアップディスプレイ。
    an image forming device that emits image light;
    a combiner projected with the image light;
    an optical path adjustment member disposed between the image forming apparatus and the combiner and adjusting an optical path of the image light;
    The combiner is
    a first substrate including a first surface serving as an incident surface of the image light;
    a second substrate including a second surface facing the first surface;
    a bonding layer that bonds the first substrate and the second substrate;
    a hologram element positioned between the first substrate and the second substrate;
    The magnitude of the diffraction angle of the image light at the combiner is different from the magnitude of the incident angle of the image light to the combiner,
    the hologram element diffracts the image light in a direction inclined with respect to a specular reflection direction with respect to an incident direction of the image light to the combiner;
    The optical path adjustment member is perpendicular to the first evaluation surface and the optical path of the combiner rather than in the first evaluation surface parallel to both the normal direction of the combiner and the optical axis of the image light incident on the combiner. A head-up display having a strong diffusion function in a second evaluation plane parallel to the normal direction.
PCT/JP2022/029373 2021-07-30 2022-07-29 Combiner, head-up display, mobile body, and automobile WO2023008576A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2021126278 2021-07-30
JP2021-126278 2021-07-30
JP2022010478 2022-01-26
JP2022-010478 2022-05-17
JP2022-084799 2022-05-24
JP2022084799A JP2023020886A (en) 2021-07-30 2022-05-24 Combiner, head-up display, mobile body and automobile

Publications (1)

Publication Number Publication Date
WO2023008576A1 true WO2023008576A1 (en) 2023-02-02

Family

ID=85086942

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/029373 WO2023008576A1 (en) 2021-07-30 2022-07-29 Combiner, head-up display, mobile body, and automobile

Country Status (1)

Country Link
WO (1) WO2023008576A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07205680A (en) * 1994-01-25 1995-08-08 Asahi Glass Co Ltd Head-up display
JPH0950227A (en) * 1995-08-08 1997-02-18 Denso Corp Hologram display device
JPH09101478A (en) * 1995-08-03 1997-04-15 Denso Corp Head-up display device
US6359737B1 (en) * 2000-07-28 2002-03-19 Generals Motors Corporation Combined head-up display
WO2011074209A1 (en) * 2009-12-14 2011-06-23 パナソニック株式会社 Transmissive display device
WO2019031443A1 (en) * 2017-08-09 2019-02-14 株式会社デンソー Stereoscopic display device
JP2021021829A (en) * 2019-07-26 2021-02-18 パナソニックIpマネジメント株式会社 Head-up display device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07205680A (en) * 1994-01-25 1995-08-08 Asahi Glass Co Ltd Head-up display
JPH09101478A (en) * 1995-08-03 1997-04-15 Denso Corp Head-up display device
JPH0950227A (en) * 1995-08-08 1997-02-18 Denso Corp Hologram display device
US6359737B1 (en) * 2000-07-28 2002-03-19 Generals Motors Corporation Combined head-up display
WO2011074209A1 (en) * 2009-12-14 2011-06-23 パナソニック株式会社 Transmissive display device
WO2019031443A1 (en) * 2017-08-09 2019-02-14 株式会社デンソー Stereoscopic display device
JP2021021829A (en) * 2019-07-26 2021-02-18 パナソニックIpマネジメント株式会社 Head-up display device

Similar Documents

Publication Publication Date Title
JP7233493B2 (en) Information display device
WO1994015239A1 (en) Waveguide holographic telltale display
JP7202191B2 (en) Vehicle information display system
JP2018059965A (en) Display device
EP3998501A2 (en) Eliminating glare in head-up displays
WO2021200515A1 (en) Information display device
WO2023008576A1 (en) Combiner, head-up display, mobile body, and automobile
JP2023020886A (en) Combiner, head-up display, mobile body and automobile
TWI645220B (en) Vehicular head-up display using holographic element
WO2022130823A1 (en) Virtual image display device
JP2022183889A (en) Combiner, head-up display and moving object
JPH06167671A (en) Display system using hologram
JP2021103198A (en) Optical member, display device, head-mounted display device, and manufacturing method of optical member
JP2024008790A (en) Holographic screen for head-up display, head-up display, movable body, and automobile
JP7342790B2 (en) virtual image display device
JP2020166072A (en) Head-up display device
TWI786758B (en) Parts for display device and display device using the same
JPH09113840A (en) Head-up display
JP7336072B2 (en) Decorative laminate, display device with decorative laminate, and decorative laminate with acoustic function
WO2024090552A1 (en) Image projection device and image display device
JPH07101267A (en) Head up display device
CN115598841A (en) Display device
JPH10307529A (en) Hologram laminated body, manufacture thereof and holographic display device
JP2023020411A (en) Combiner, head-up display and mobile body
JPH08123301A (en) Holographic display system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22849636

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE