WO2023008546A1 - Method for separating amines by liquid chromatography - Google Patents

Method for separating amines by liquid chromatography Download PDF

Info

Publication number
WO2023008546A1
WO2023008546A1 PCT/JP2022/029231 JP2022029231W WO2023008546A1 WO 2023008546 A1 WO2023008546 A1 WO 2023008546A1 JP 2022029231 W JP2022029231 W JP 2022029231W WO 2023008546 A1 WO2023008546 A1 WO 2023008546A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
amines
separation
solvent
mobile phase
Prior art date
Application number
PCT/JP2022/029231
Other languages
French (fr)
Japanese (ja)
Inventor
徹 柴田
聡 新蔵
Original Assignee
株式会社ダイセル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ダイセル filed Critical 株式会社ダイセル
Publication of WO2023008546A1 publication Critical patent/WO2023008546A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/281Sorbents specially adapted for preparative, analytical or investigative chromatography
    • B01J20/29Chiral phases
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • G01N30/72Mass spectrometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86

Definitions

  • the present disclosure relates to a method for separating amines by liquid chromatography.
  • a separating agent having a crown ether-like cyclic structure is widely used as a stationary phase for liquid chromatography to separate compounds having a primary amino group and similar substances.
  • a separating agent having a crown ether-like cyclic structure bonded to a chiral structure is known to be useful for separating enantiomers.
  • Patent Literature 1 and Patent Literature 2 disclose, as an excellent separating agent for optical isomers, a separating agent in which a crown ether-like cyclic structure is bonded to an S- or R-binaphthyl structure. It is believed that these separating agents exert their separating ability in the following manner. That is, a primary ammonium group (—NH 3 + ) produced by protonation of a primary amine forms a crown ether-like cyclic structure through a hydrogen bond between a hydrogen atom of the primary ammonium group and an oxygen atom of the crown ether-like cyclic structure. It is thought that separation becomes possible as a result of being subsumed in and retained by the separating agent.
  • a primary ammonium group —NH 3 +
  • Patent Document 2 discloses a mobile phase obtained by mixing an aqueous perchloric acid solution or an aqueous trifluoroacetic acid solution with an organic solvent such as methanol or acetonitrile.
  • the strongly acidic mobile phase contains a strong acid, and among the strong acids, perchloric acid is known to retain amines best and improve separation performance.
  • perchloric acid is not only a strong acid, but also a strong oxidizing agent. Therefore, if mishandled, it may lead to an explosion or corrode metal parts of a liquid chromatography device. Further, when another strong acid is added to the mobile phase instead of perchloric acid, there is a problem that the retention of the amine by the stationary phase is insufficient and the amine cannot be separated satisfactorily. On the other hand, in Patent Document 3, by adding a salt of a chaotropic anion and a salt of a hydrophobic organic acid to the mobile phase, it is possible to strengthen the retention of amines in the column, thereby It is disclosed that the use of strong acids and strong oxidizing acids can be avoided.
  • Non-Patent Document 1 discloses that a mobile phase containing trifluoroacetic acid as an acid additive can be applied to LC-MS.
  • Non-Patent Document 1 trifluoroacetic acid contained in the mobile phase described in Non-Patent Document 1 generally has a weak ability to retain amines on the stationary phase, and in many cases satisfactory separation cannot be obtained.
  • known separation methods including the method described in Patent Document 3 cannot be applied to LC-MS.
  • the present disclosure is a method for separating amines by liquid chromatography using, as a stationary phase, a separating agent in which a ligand having a crown ether-like cyclic structure is supported on a carrier, which enables good retention and separation of amines. It is an object of the present invention to provide a method that is present and does not adversely affect detection by MS.
  • the present inventors have found that in liquid chromatography using a separating agent having a crown ether-like cyclic structure, a specific highly volatile acid is added to the mobile phase as an acid additive. It was found that the above problem can be solved by adding That is, the gist of the present disclosure is as follows.
  • the acid additive is the perfluoroalkanoic acid having 3 to 8 carbon atoms
  • the solvent contained in the mobile phase is a mixed solvent of water and an organic solvent
  • the acid additive is the perfluoroalkanesulfonic acid having 1 to 3 carbon atoms
  • the solvent contained in the mobile phase is a mixed solvent of water and an organic solvent
  • the separation method according to [1] wherein in the mixed solvent, the ratio of the volume of water before mixing to the sum of the volume of water before mixing and the volume of the organic solvent before mixing is 50% or more.
  • the acid additive is the hydrogen halide
  • the solvent contained in the mobile phase is a mixed solvent of water and an organic solvent
  • a method for the analysis of amines by liquid chromatography-mass spectrometry comprising: A method for analyzing amines, comprising a separation step of separating amines by the separation method according to any one of [1] to [4], and a mass spectrometry step of analyzing the amines separated in the separation step by mass spectrometry.
  • a method for separating amines by liquid chromatography using, as a stationary phase, a separating agent in which a ligand having a crown ether-like cyclic structure is supported on a carrier which enables good retention and separation of amines. It is possible to provide a method that is present and does not adversely affect detection by MS.
  • FIG. 4 is a liquid chromatogram of dl-tryptophan in Comparative Example 1.
  • FIG. 1 is a liquid chromatogram of dl-tryptophan in Example 1.
  • FIG. 2 is a liquid chromatogram of dl-tryptophan in Example 2.
  • FIG. 2 is a liquid chromatogram of dl-tryptophan in Example 3.
  • FIG. 4 is a liquid chromatogram of dl-tryptophan in Example 4.
  • FIG. 2 is a liquid chromatogram of dl-tryptophan in Example 5.
  • FIG. 4 is a liquid chromatogram of dl-1-phenylethylamine in Comparative Example 2.
  • FIG. 2 is a liquid chromatogram of dl-1-phenylethylamine in Example 6.
  • FIG. 2 is a liquid chromatogram of dl-1-phenylethylamine in Example 7.
  • FIG. 2 is a liquid chromatogram of dl-1-phenylethylamine in Example 8.
  • FIG. 4 is a liquid chromatogram of dl-tyrosine in Comparative Example 3.
  • FIG. 10 is a liquid chromatogram of dl-tyrosine in Example 9.
  • One embodiment of the present disclosure is a method for separating amines by liquid chromatography, comprising a separating agent in which a ligand having a crown ether-like cyclic structure is supported on a carrier as a stationary phase (hereinafter referred to as "having a crown ether-like cyclic structure A solution containing a highly volatile specific acid is used as the mobile phase.
  • the amine separation means may be liquid chromatography using the above-described stationary phase and mobile phase, and may appropriately include other configurations such as identification and quantification of the separated amine. good too.
  • Liquid chromatography can be performed using a commercially available liquid chromatography device. Column equilibration, flow rate and the like can be appropriately selected depending on the column size, sample capacity and the like.
  • a separating agent in which a ligand having a crown ether-like ring structure is supported on a carrier is used as a stationary phase to separate amines.
  • a mixture of a plurality of amines can be separated into individual amines, or amines can be separated from a mixture containing amines and non-amines.
  • the separation method according to the present embodiment is particularly effective in separating a mixture of amines having similar structures to each amine.
  • the amine is not particularly limited, and may be appropriately selected from primary amines, secondary amines, and tertiary amines.
  • Specific amines include amino acids such as alanine, cysteine, glutamic acid, methionine, leucine, tyrosine and tryptophan; derivatives such as esters of the above amino acids; amino alcohols such as dimethylaminoethanol, propanolamine, methioninol and norephedrine; phenylethylamine. , aniline, methylaniline, chloroaniline, amino group-containing hydrocarbons such as aminobenzoic acid;
  • the separation method according to this embodiment is particularly suitable for separating a desired primary amine from a mixture containing primary amines. This is because the primary amine can be well retained and separated by the crown ether-like cyclic structure of the stationary phase. Moreover, according to the separation method according to the present embodiment, since high separation performance is exhibited, a mixture of amines, which are difficult to separate due to their similar structures, can be separated into individual amines. Mixtures of amines having similar structures include mixtures of chain isomers, mixtures of positional isomers, mixtures of geometric isomers, mixtures of analogues, and the like.
  • the crown ether-like cyclic structure is an optically active substance, it is effective for separating a mixture of enantiomers into individual enantiomers.
  • the separation method according to this embodiment is particularly useful in that a mixture of enantiomers of a compound containing an amino group can be separated by using a ligand having an optically active crown ether-like cyclic structure.
  • the mobile phase used for liquid chromatography contains a highly volatile specific acid as an acid additive.
  • Specific acids with high volatility include perfluoroalkanoic acids having 3 to 8 carbon atoms (hereinafter sometimes simply referred to as “perfluoroalkanoic acid”), perfluoroalkanesulfonic acids having 1 to 3 carbon atoms (hereinafter sometimes simply referred to as “perfluoroalkanesulfonic acid”), and hydrogen halide.
  • perfluoroalkanoic acid perfluoroalkanoic acids having 3 to 8 carbon atoms
  • perfluoroalkanesulfonic acid perfluoroalkanesulfonic acids having 1 to 3 carbon atoms
  • hydrogen halide hydrogen halide
  • These acid additives can promote the retention of amines on the stationary phase in LC, and have high volatility that does not interfere with the detection of amines in MS, so they are suitable for LC-MS.
  • One type of acid additive may be used alone, or
  • the perfluoroalkanoic acid in the present embodiment is an acid represented by the following formula (A) (in formula (A), m is an integer of 2 or more and 7 or less), specifically pentafluoropropion acid, heptafluorobutyric acid, nonafluoropentanoic acid, undecafluorohexanoic acid, tridecafluoroheptanoic acid, and pentadecafluorooctanoic acid.
  • A Perfluoroalkanoic acid
  • Trifluoroacetic acid in which m in formula (A) is replaced by 1 is often used in liquid chromatography using a stationary phase having a crown ether-like cyclic structure, and is also applied to LC-MS (for example, See Patent Document 1).
  • trifluoroacetic acid has a weak ability to retain a sample, so there were cases where sufficient separation was not achieved depending on the type of amine.
  • the perfluoroalkanoic acid in this embodiment is a compound represented by formula (A), where m is 2 or more and 7 or less.
  • perfluoroalkanoic acids in this embodiment are strong acids.
  • the present inventors have found that as the number of carbon atoms in perfluoroalkanoic acid, that is, the number of fluorine atoms, increases, the ability to retain amines on a stationary phase having a crown ether-like cyclic structure increases. Surprisingly, such an effect is completely different from the effect expected from the mere fact that perfluoroalkanoic acid is a strong acid, and is dramatically improved as the number of fluorine atoms in the molecule increases.
  • the product of the molar concentration of the acid additive in the mobile phase and the number of fluorine atoms in one molecule thereof, that is, the number of carbon atoms is 3 or more and 8 or less so that the molar concentration of fluorine atoms in the mobile phase is the same.
  • perfluoroalkanoic acid and trifluoroacetic acid a conventional acid additive, compared relative retention, which is an indicator of the ability of the stationary phase to retain amines. phase is significantly higher.
  • the lower limit of m in formula (A) is usually 2 or more, preferably 3 or more, more preferably 4 or more, from the viewpoint of improving retention performance.
  • the upper limit of m in formula (A) is usually 7 or less, preferably 6 or less, from the viewpoint of ensuring volatility.
  • Preferred ranges of m in formula (A) include, for example, 2 to 6, 3 to 7, and 4 to 6.
  • perfluoroalkanoic acid a commercially available product may be used, or one manufactured according to a known method may be used.
  • the perfluoroalkanoic acid is preferably selected from pentafluoropropionic acid, nonafluoropentanoic acid, and tridecafluoroheptanoic acid in comprehensive consideration of volatility, retention performance, and separation performance.
  • the hydrophobicity of perfluoroalkyl groups is involved in the mechanism by which perfluoroalkanoic acid helps retain amines. More specifically, since the liquid chromatography in this embodiment is ion pair chromatography, in order for the amine to be retained on the stationary phase, the amine is protonated to an ammonium group, which forms an ion pair with the anion. It is presumed that the charge needs to be neutralized by Since the perfluoroalkanoic acid ion generated from perfluoroalkanesulfonic acid is essentially hydrophobic, it is likely to form an ion pair with an ammonium group through hydrophobic interaction in a solvent containing a large amount of water. Conceivable. Therefore, when perfluoroalkanoic acid is used as the acid additive, the solvent contained in the mobile phase is preferably a solvent mainly composed of water from the viewpoint of exhibiting high retention performance.
  • Perfluoroalkanesulfonic acid in the present embodiment is an acid represented by the following formula (B) (in formula (B), p is an integer of 1 or more and 3 or less), specifically trifluoromethane It is selected from sulfonic acid, pentafluoroethanesulfonic acid, and heptafluoropropanesulfonic acid.
  • formula (B) in formula (B), p is an integer of 1 or more and 3 or less
  • p is an integer of 1 or more and 3 or less
  • trifluoromethane It is selected from sulfonic acid, pentafluoroethanesulfonic acid, and heptafluoropropanesulfonic acid.
  • sulfonic acid group has significantly higher retention performance than the carboxyl group.
  • perfluoroalkanesulfonic acids have a lower vapor pressure, ie lower volatility, than perfluoroalkanoic acids having the same perfluoroalkyl group. Therefore, p in formula (B) is desirably not as large as m in formula (A), and is usually 3 or less, preferably 2 or less (that is, 1 or 2), more preferably 1.
  • perfluoroalkanesulfonic acid a commercially available product may be used, or one manufactured according to a known method may be used.
  • Perfluoroalkanesulfonic acid is preferably trifluoromethanesulfonic acid from the viewpoint of availability.
  • the solvent contained in the mobile phase is preferably a solvent mainly composed of water from the viewpoint of exhibiting high retention performance.
  • Hydrogen halides have strong acidity and high volatility and are effective for good retention and separation of amines.
  • the hydrogen halide is not particularly limited, and examples thereof include hydrogen fluoride, hydrogen chloride, hydrogen bromide, hydrogen iodide and the like.
  • the hydrogen halide is preferably hydrogen chloride because of its low metal corrosiveness and/or toxicity.
  • Hydrogen halides exhibit higher retention performance in mobile phases containing more organic solvents, such as acetonitrile, than in mobile phases mainly composed of water.
  • the solvent contained in the mobile phase is preferably a solvent mainly composed of an organic solvent.
  • the concentration of the acid additive in the mobile phase (the total concentration of each acid additive when two or more acid additives are used) is not particularly limited depending on the type of amine, and is usually 1 mM or more, preferably 2 mM or more. , more preferably 3 mM or more, and usually 200 mM or less, preferably 100 mM or less, more preferably 30 mM or less, and still more preferably 25 mM or less. Accordingly, preferred ranges for the concentration of the acid additive include, for example, 1 mM to 100 mM, 2 mM to 200 mM, 3 mM to 30 mM, and 3 mM to 25 mM.
  • the relative retention of amines generally increases with the acid concentration, but there are cases where the effect does not appear at concentrations above a certain level.
  • contamination may occur due to the acid additive remaining in the stationary phase when chromatography is performed later by changing the mobile phase, and volatilization of the acid additive in the MS detector It is also preferable to select a lower acid additive concentration from the viewpoint of avoiding or reducing problems such as imperfections.
  • the mobile phase in this embodiment is one in which an acid additive is dissolved in a solvent.
  • the solvent is not particularly limited, and examples thereof include organic solvents, water, and mixed solvents thereof.
  • Organic solvents include, but are not limited to, methanol, ethanol, n-propanol, 2-propanol, tetrahydrofuran, or acetonitrile, which have high chemical stability, low viscosity, and allow detection of amines by ultraviolet absorption. is preferred, methanol or acetonitrile is more preferred, and acetonitrile is even more preferred.
  • the mixing ratio of water and the organic solvent is not particularly limited.
  • the ratio of the volume of water before mixing to the sum of the volume of water before mixing and the volume of the organic solvent before mixing is preferably 95% or less.
  • the ratio of the volume of water before mixing to the sum of the volume of water before mixing and the volume of the organic solvent before mixing is usually more than 0%, preferably 5%.
  • the ratio includes, for example, 0% to 50%, 5% to 40%, 0% to 30%, and 5% to 20%.
  • the mobile phase in this embodiment contains an acid additive and a solvent, preferably a mixture of the acid additive and solvent, but may contain other components as long as they do not interfere with the separation of the amine and detection by MS. you can stay Other ingredients include substances that can promote ionization, such as volatile pH adjusting reagents.
  • a mobile phase can be prepared by mixing an acid additive, a solvent, and other components as necessary, and the order of mixing is not particularly limited.
  • a mixed solvent of water and an organic solvent it is preferable to prepare a mobile phase by mixing an aqueous solution of an acid additive, an organic solvent, and, if necessary, water.
  • the stationary phase in this embodiment is a separating agent in which a ligand having a crown ether-like cyclic structure is supported on a carrier.
  • the term "ligand” means a compound that is carried on a carrier and that exhibits physical affinity and, if necessary, asymmetric recognition ability for a separation target.
  • the ligand in this embodiment has a crown ether-like cyclic structure. That is, the ligand is a compound in which a crown ether skeleton represented by formula (I) is chemically bonded to an aliphatic, alicyclic or aromatic hydrocarbon to form a macrocyclic polyether structure. be.
  • n can be appropriately selected from an integer of 4 to 6 depending on the hydrocarbon to which the amino group of the amine and the crown ether skeleton are bonded.
  • the hydrogen atoms of the ethylene groups in the repeating units may be substituted with various functional groups, but are preferably unsubstituted.
  • a compound in which a crown ether-like ring structure is bound to a homochiral structure is used as the ligand.
  • ligands include, for example, ligands represented by formula (II) described in JP-A-2-69472 and WO 2012/050124, and formula (III) described in JP-A-2014-169259. ) and the like.
  • the phenyl groups at the 3-position and 3'-position of the 1,1'-binaphthyl structure in formula (II) are halogen atoms such as bromine atoms; alkyl groups such as methyl groups; substituted aromatic groups; heterocyclic groups; etc. (Peng Wu, et.al., Chin. J. Chem., 2017, 35, 1037-1042) can also be employed.
  • the ligand is used as a separating agent while being carried on a carrier.
  • a known mode of carrying can be adopted, and for example, a mode in which the ligand is carried on the carrier by chemical bonding such as covalent bonding can be preferably adopted.
  • a specific supporting method includes a method of introducing a reactive group into a ligand, a starting material of the ligand, or an intermediate of the ligand, and reacting this substituent with a reactive group present on the surface of the carrier.
  • the reactive group present on the surface of the carrier may be a group present on the surface of an untreated carrier. It may be a group introduced onto the carrier surface by surface treatment with a silane coupling agent such as methoxysilane.
  • an insolubilized layer can also be formed on the carrier surface by forming a so-called cross-linked bond between atomic groups containing a ligand.
  • the carrier is not particularly limited as long as the ligand can be immobilized by chemical bonding such as covalent bonding.
  • a carrier may be an inorganic carrier or an organic carrier, but is preferably an inorganic carrier.
  • inorganic carriers include silica gel, alumina, magnesia, glass, kaolin, titanium oxide, silicates, and hydroxyapatite.
  • organic carriers include polystyrene, polyacrylamide, polyacrylate, polysaccharide and the like. These organic carriers are preferably insolubilized by cross-linking with a cross-linking agent.
  • the shape of the carrier is not particularly limited, and examples thereof include particles and porous cylindrical bodies (monoliths) liquid-tightly accommodated in column tubes.
  • the carrier can also include the inner wall of a capillary.
  • the carrier is preferably a porous body, more preferably a porous body having a BET specific surface area of 100 to 600 m 2 /g, from the viewpoint of improving separation performance.
  • the porous body preferably has a pore diameter of 60 to 300 ⁇ as measured by a mercury porosimetry method from the viewpoint of improving separation performance.
  • the carrier is preferably silica gel. This is because silica gel has the above-mentioned characteristics, that is, excellent separation ability, and is also hard and durable.
  • silica gel in addition to fully porous silica gel, so-called core-shell type silica gel may be used.
  • the method for analyzing amines by LC-MS includes a separation step of separating amines by the method for separating amines according to this embodiment, and a mass spectrometry step of analyzing the amines separated in the separation step by mass spectrometry.
  • a known mass spectrometry method used in LC-MS can be adopted as the mass spectrometry of amines in the mass spectrometry step.
  • ionization in mass spectrometry includes atmospheric pressure chemical ionization (APCI), atmospheric pressure photoionization (APPI), electrospray method (ESI), fast atom bombardment method (FAB), thermospray method (TSP), amine can be appropriately selected according to the type of analysis, the purpose of analysis, and the like.
  • APCI atmospheric pressure chemical ionization
  • APPI atmospheric pressure photoionization
  • EI electrospray method
  • FAB fast atom bombardment method
  • TTP thermospray method
  • amine can be appropriately selected according to the type of analysis, the purpose of analysis, and the like.
  • Q-MS quadrupole mass spectrometer
  • I-MS ion trap mass spectrometer
  • TOF-MS time-of-flight mass spectrometer
  • the mobile phases of each example and comparative example were prepared in the same manner.
  • trifluoromethanesulfonic acid or tridecafluoroheptanoic acid is used as an acid additive, these are not in a form containing a solvent such as an aqueous solution, and are commercially available by themselves.
  • a mobile phase was prepared by adding to the flask and making up with the mixed solvent.
  • a photodiode array detector manufactured by Shimadzu Corporation "SPD-M20A", detection wavelength 254 nm
  • SPD-M20A detection wavelength 254 nm
  • the mobile phase was as described in each comparative example and example, and was sent to the column adjusted to 30°C at 0.43 mL/min.
  • Each of the amines to be separated was dissolved in a mixed solvent of water/acetonitrile (1:1 (v/v)) to a concentration of about 0.1% w/v, and 2 ⁇ L of the resulting solution was sampled by an autosampler. injected onto the column.
  • ⁇ Comparative Example 1 Chiral separation of dl-tryptophan> Chiral separation of dl-tryptophan was performed using a mobile phase containing trifluoroacetic acid (TFA) at a concentration of 20 mM and a mixed solvent of water/acetonitrile (70/30 (v/v)) as solvent. The chromatogram obtained is shown in FIG. In FIG. 1, two peaks attributed to enantiomers were observed, but the separation was insufficient.
  • TFA trifluoroacetic acid
  • Example 1 Chiral separation of dl-tryptophan> Chiral separation of dl-tryptophan was performed using a mobile phase containing pentafluoropropionic acid at a concentration of 20 mM and a mixed solvent of water/acetonitrile (70/30 (v/v)) as solvent. The chromatogram obtained is shown in FIG. From FIG. 2, it can be seen that in Example 1, retention performance and separation performance are significantly higher than in Comparative Example 1 using TFA as an acid additive.
  • Example 2 Chiral separation of dl-tryptophan> Chiral separation of dl-tryptophan was performed using a mobile phase containing nonafluoropentanoic acid at a concentration of 20 mM and a mixed solvent of water/acetonitrile (70/30 (v/v)) as solvent. The chromatogram obtained is shown in FIG. From FIG. 3, it can be seen that in Example 2, the retention and separation performance are much higher than in Comparative Example 1 using TFA as an acid additive, and even higher than in Example 1.
  • Example 3 Chiral separation of dl-tryptophan> Chiral separation of dl-tryptophan was performed using a mobile phase containing tridecafluoroheptanoic acid at a concentration of 5 mM and a mixed solvent of water/acetonitrile (70/30 (v/v)) as solvent. The chromatogram obtained is shown in FIG. From FIG. 4, it can be seen that in Example 3, retention performance and separation performance are significantly higher than in Comparative Example 1 using TFA as an acid additive.
  • Example 4 Chiral separation of dl-tryptophan> Chiral separation of dl-tryptophan was performed using a mobile phase containing tridecafluoroheptanoic acid at a concentration of 20 mM and a mixed solvent of water/acetonitrile (70/30 (v/v)) as solvent. The chromatogram obtained is shown in FIG. From FIG. 5, it can be seen that in Example 4, retention performance and separation performance are significantly higher than in Comparative Example 1 using TFA as an acid additive.
  • Example 5 Chiral separation of dl-tryptophan> Chiral separation of dl-tryptophan was performed using a mobile phase containing trifluoromethanesulfonic acid at a concentration of 20 mM and a mixed solvent of water/acetonitrile (70/30 (v/v)) as solvent. The chromatogram obtained is shown in FIG. From FIG. 6, it can be seen that in Example 5, although the peaks of impurities overlap, the retention performance and resolution are slightly higher than those in Example 1.
  • ⁇ Comparative Example 2 Chiral separation of dl-1-phenylethylamine> Chiral separation of dl-1-phenylethylamine was performed using a mobile phase containing trifluoroacetic acid at a concentration of 21 mM and water/acetonitrile (20/80 (v/v)) mixed solvent as solvent. The chromatogram obtained is shown in FIG. From FIG. 7, in Comparative Example 2, the amines were seemingly separated completely due to the negative peak, but the separation was actually insufficient.
  • Example 6 Chiral separation of dl-1-phenylethylamine> Chiral separation of dl-1-phenylethylamine was performed using a mobile phase containing hydrogen chloride at a concentration of 20 mM and a mixed solvent of water/acetonitrile (20/80 (v/v)) as solvent. The chromatogram obtained is shown in FIG. From FIG. 8, it can be seen that in Example 6, retention performance and separation performance are significantly higher than in Comparative Example 2 using TFA as an acid additive.
  • Example 7 Chiral separation of dl-1-phenylethylamine> Chiral separation of dl-1-phenylethylamine was performed using a mobile phase containing nonafluoropentanoic acid at a concentration of 5 mM and a mixed solvent of water/acetonitrile (90/10 (v/v)) as solvent. The chromatogram obtained is shown in FIG. From FIG. 9, it can be seen that Example 7 exhibits high resolution even at an acid additive concentration of 5 mM. It should be noted that this acid additive concentration (5 mM) is a general value as the ion-pairing reagent concentration in the mobile phase containing the ion-pairing reagent.
  • Example 8 Chiral separation of dl-1-phenylethylamine> Chiral separation of dl-1-phenylethylamine was performed using a mobile phase containing hydrogen chloride at a concentration of 5 mM and a mixed solvent of water/acetonitrile (10/90 (v/v)) as solvent. The chromatogram obtained is shown in FIG. From FIG. 10, it can be seen that in Example 8, the separation ability is extremely high.
  • Example 9 Chiral separation of dl-tyrosine> Chiral separation of dl-tyrosine was performed using a mobile phase containing hydrogen chloride at a concentration of 5 mM and a mixed solvent of water/acetonitrile (10/90 (v/v)) as solvent. The chromatogram obtained is shown in FIG. 12 and 11, it can be seen that Example 9 exhibits much higher resolution than Comparative Example 3, which uses a mobile phase prepared similarly except that trifluoroacetic acid is used as the acid additive.
  • amines can be separated by liquid chromatography and can also be detected by MS. Therefore, such a separation method can be widely used in the fields of organic chemistry, medicine, pharmacy, etc. where analysis, purification, etc. are performed by various liquid chromatography.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

This method for separating amines by liquid chromatography employs, as a stationary phase, a separating agent in which a ligand having a crown ether-like ring structure is supported on a carrier, and uses a mobile phase containing at least one acid additive selected from among perfluoroalkanoic acids having a carbon number of 3 to 8 inclusive, perfluoroalkanesulfonic acids having a carbon number of 1 to 3 inclusive, and hydrogen halide.

Description

液体クロマトグラフィーによるアミンの分離方法Method for separating amines by liquid chromatography
 本開示は、液体クロマトグラフィーによるアミンの分離方法に関する。 The present disclosure relates to a method for separating amines by liquid chromatography.
 クラウンエーテル様環状構造を有する分離剤は、液体クロマトグラフィーの固定相として、1級アミノ基を有する化合物及びその類似物質の分離に広く用いられている。特に、クラウンエーテル様環状構造がキラル構造に結合した分離剤は、エナンチオマーの分離に有用であることが知られている。 A separating agent having a crown ether-like cyclic structure is widely used as a stationary phase for liquid chromatography to separate compounds having a primary amino group and similar substances. In particular, a separating agent having a crown ether-like cyclic structure bonded to a chiral structure is known to be useful for separating enantiomers.
 特許文献1及び特許文献2には、優れた光学異性体用分離剤として、クラウンエーテル様環状構造がS体又はR体のビナフチル構造に結合した分離剤が開示されている。これらの分離剤は、以下のようにして分離能を発揮するものと考えられている。即ち、1級アミンがプロトン化して生じた1級アンモニウム基(-NH )が、該1級アンモニウム基の水素原子とクラウンエーテル様環状構造の酸素原子との水素結合によりクラウンエーテル様環状構造に包摂され、分離剤に保持される結果、分離が可能となると考えられる。そのため、このような固定相を用いる場合、高い分離能を得るために、強酸性の移動相が好適に用いられることが知られている。例えば、特許文献2には、過塩素酸水溶液又はトリフルオロ酢酸水溶液とメタノール、アセトニトリル等の有機溶媒とを混合してなる移動相が開示されている。このように、強酸性の移動相は強酸を含有するものであり、強酸の中でも、過塩素酸が最も良好にアミンを保持し、分離能を向上させる酸であることが知られている。 Patent Literature 1 and Patent Literature 2 disclose, as an excellent separating agent for optical isomers, a separating agent in which a crown ether-like cyclic structure is bonded to an S- or R-binaphthyl structure. It is believed that these separating agents exert their separating ability in the following manner. That is, a primary ammonium group (—NH 3 + ) produced by protonation of a primary amine forms a crown ether-like cyclic structure through a hydrogen bond between a hydrogen atom of the primary ammonium group and an oxygen atom of the crown ether-like cyclic structure. It is thought that separation becomes possible as a result of being subsumed in and retained by the separating agent. Therefore, when using such a stationary phase, it is known that a strongly acidic mobile phase is suitably used in order to obtain high separation performance. For example, Patent Document 2 discloses a mobile phase obtained by mixing an aqueous perchloric acid solution or an aqueous trifluoroacetic acid solution with an organic solvent such as methanol or acetonitrile. Thus, the strongly acidic mobile phase contains a strong acid, and among the strong acids, perchloric acid is known to retain amines best and improve separation performance.
 しかしながら、過塩素酸は単に強酸であるだけではなく、強い酸化剤でもあり、そのため取り扱いを誤れば爆発事故につながったり、液体クロマトグラフィー装置の金属部分を腐食させたりするなどの問題があった。また、過塩素酸に代えて他の強酸を移動相に添加した場合、アミンに対する固定相の保持力が不十分であり、アミンを良好に分離できないという問題があった。
 これに対し、特許文献3には、カオトロピック陰イオンの塩及び疎水性有機酸の塩を移動相に加えることにより、カラム内でのアミンの保持を強くすることができ、それによって過塩素酸などの強酸や酸化性の強い酸の使用を避け得ることが開示されている。
However, perchloric acid is not only a strong acid, but also a strong oxidizing agent. Therefore, if mishandled, it may lead to an explosion or corrode metal parts of a liquid chromatography device. Further, when another strong acid is added to the mobile phase instead of perchloric acid, there is a problem that the retention of the amine by the stationary phase is insufficient and the amine cannot be separated satisfactorily.
On the other hand, in Patent Document 3, by adding a salt of a chaotropic anion and a salt of a hydrophobic organic acid to the mobile phase, it is possible to strengthen the retention of amines in the column, thereby It is disclosed that the use of strong acids and strong oxidizing acids can be avoided.
 近年、HPLC(高速液体クロマトグラフィー)において、高感度かつ分子構造に関わる情報を得るためにLC-MS(液体クロマトグラフィー-質量分析法)が急速に普及しており、LC-MS用の移動相の開発が盛んに行われている。例えば、非特許文献1には、トリフルオロ酢酸を酸添加物として含む移動相をLC-MSに適応できることが開示されている。 In recent years, in HPLC (high performance liquid chromatography), LC-MS (liquid chromatography-mass spectrometry) has rapidly spread in order to obtain information on molecular structure with high sensitivity, and the mobile phase for LC-MS is being actively developed. For example, Non-Patent Document 1 discloses that a mobile phase containing trifluoroacetic acid as an acid additive can be applied to LC-MS.
特開平2-69472号公報JP-A-2-69472 国際公開第2012/050124号WO2012/050124 国際公開第2020/251003号WO2020/251003
 しかしながら、非特許文献1に記載の移動相に含まれるトリフルオロ酢酸は、一般にアミンを固定相に保持させる力が弱く、満足な分離が得られない場合が多い。また、特許文献3に記載の方法を含めた公知の分離方法も、LC-MSへの適用ができないという問題がある。 However, trifluoroacetic acid contained in the mobile phase described in Non-Patent Document 1 generally has a weak ability to retain amines on the stationary phase, and in many cases satisfactory separation cannot be obtained. In addition, there is a problem that known separation methods including the method described in Patent Document 3 cannot be applied to LC-MS.
 液体クロマトグラフィーによるアミンの分離方法においては、高いアミンの保持力及び高い分離能が求められるのは勿論のこと、当該方法をLC-MSに適用するためには、少なくともMSにおいて検出を阻害するといった悪影響を及ぼさないことが要求される。そこで、本開示は、クラウンエーテル様環状構造を有するリガンドが担体に担持された分離剤を固定相として用いた液体クロマトグラフィーによるアミンの分離方法であって、アミンの良好な保持及び分離が可能であり、かつ、MSによる検出に悪影響を及ぼさない方法を提供することを課題とする。 In the method for separating amines by liquid chromatography, high amine retention and high separation ability are required, and in order to apply the method to LC-MS, it is necessary to inhibit detection at least in MS. No adverse effects are required. Therefore, the present disclosure is a method for separating amines by liquid chromatography using, as a stationary phase, a separating agent in which a ligand having a crown ether-like cyclic structure is supported on a carrier, which enables good retention and separation of amines. It is an object of the present invention to provide a method that is present and does not adversely affect detection by MS.
 本発明者らは、上記課題を解決するために鋭意検討した結果、クラウンエーテル様環状構造を有する分離剤を用いた液体クロマトグラフィーにおいて、揮発性の高い特定の酸を酸添加物として移動相に加えることで、上記課題を解決できることを見出した。すなわち、本開示の要旨は、以下の通りである。 As a result of intensive studies to solve the above problems, the present inventors have found that in liquid chromatography using a separating agent having a crown ether-like cyclic structure, a specific highly volatile acid is added to the mobile phase as an acid additive. It was found that the above problem can be solved by adding That is, the gist of the present disclosure is as follows.
[1]
 クラウンエーテル様環状構造を有するリガンドが担体に担持された分離剤を固定相として用い、
 炭素数3以上8以下のパーフルオロアルカン酸、炭素数1以上3以下のパーフルオロアルカンスルホン酸、及びハロゲン化水素から選択される1種以上の酸添加物を含有する移動相を用いる、液体クロマトグラフィーによるアミンの分離方法。
[2]
 前記酸添加物が、前記炭素数3以上8以下のパーフルオロアルカン酸であり、
 前記移動相に含まれる溶媒が、水と有機溶媒との混合溶媒であり、
 前記混合溶媒は、混合前の水の体積と混合前の前記有機溶媒の体積との合計に対する混合前の水の体積の比率が50%以上である、[1]に記載の分離方法。
[3]
 前記酸添加物が、前記炭素数1以上3以下のパーフルオロアルカンスルホン酸であり、
 前記移動相に含まれる溶媒が、水と有機溶媒との混合溶媒であり、
 前記混合溶媒は、混合前の水の体積と混合前の前記有機溶媒の体積との合計に対する混合前の水の体積の比率が50%以上である、[1]に記載の分離方法。
[4]
 前記酸添加物が、前記ハロゲン化水素であり、
 前記移動相に含まれる溶媒が、水と有機溶媒との混合溶媒であり、
 前記混合溶媒は、混合前の水の体積と混合前の前記有機溶媒の体積との合計に対する混合前の水の体積の比率が50%以下である、[1]に記載の分離方法。
[5]
 液体クロマトグラフィー-質量分析法によるアミンの分析方法であって、
 [1]~[4]のいずれかに記載の分離方法によりアミンを分離する分離工程、及び
 前記分離工程で分離されたアミンを質量分析により分析する質量分析工程を含む、アミンの分析方法。
[1]
Using as a stationary phase a separating agent in which a ligand having a crown ether-like cyclic structure is supported on a carrier,
Liquid chromatography using a mobile phase containing one or more acid additives selected from perfluoroalkanoic acids having 3 to 8 carbon atoms, perfluoroalkanesulfonic acids having 1 to 3 carbon atoms, and hydrogen halides Graphical separation of amines.
[2]
the acid additive is the perfluoroalkanoic acid having 3 to 8 carbon atoms,
The solvent contained in the mobile phase is a mixed solvent of water and an organic solvent,
The separation method according to [1], wherein in the mixed solvent, the ratio of the volume of water before mixing to the sum of the volume of water before mixing and the volume of the organic solvent before mixing is 50% or more.
[3]
The acid additive is the perfluoroalkanesulfonic acid having 1 to 3 carbon atoms,
The solvent contained in the mobile phase is a mixed solvent of water and an organic solvent,
The separation method according to [1], wherein in the mixed solvent, the ratio of the volume of water before mixing to the sum of the volume of water before mixing and the volume of the organic solvent before mixing is 50% or more.
[4]
the acid additive is the hydrogen halide,
The solvent contained in the mobile phase is a mixed solvent of water and an organic solvent,
The separation method according to [1], wherein the mixed solvent has a ratio of the volume of water before mixing to the sum of the volume of water before mixing and the volume of the organic solvent before mixing is 50% or less.
[5]
A method for the analysis of amines by liquid chromatography-mass spectrometry, comprising:
A method for analyzing amines, comprising a separation step of separating amines by the separation method according to any one of [1] to [4], and a mass spectrometry step of analyzing the amines separated in the separation step by mass spectrometry.
 本開示によれば、クラウンエーテル様環状構造を有するリガンドが担体に担持された分離剤を固定相として用いた液体クロマトグラフィーによるアミンの分離方法であって、アミンの良好な保持及び分離が可能であり、かつ、MSによる検出に悪影響を及ぼさない方法を提供することができる。 According to the present disclosure, a method for separating amines by liquid chromatography using, as a stationary phase, a separating agent in which a ligand having a crown ether-like cyclic structure is supported on a carrier, which enables good retention and separation of amines. It is possible to provide a method that is present and does not adversely affect detection by MS.
比較例1におけるdl-トリプトファンの液体クロマトグラムである。4 is a liquid chromatogram of dl-tryptophan in Comparative Example 1. FIG. 実施例1におけるdl-トリプトファンの液体クロマトグラムである。1 is a liquid chromatogram of dl-tryptophan in Example 1. FIG. 実施例2におけるdl-トリプトファンの液体クロマトグラムである。2 is a liquid chromatogram of dl-tryptophan in Example 2. FIG. 実施例3におけるdl-トリプトファンの液体クロマトグラムである。2 is a liquid chromatogram of dl-tryptophan in Example 3. FIG. 実施例4におけるdl-トリプトファンの液体クロマトグラムである。4 is a liquid chromatogram of dl-tryptophan in Example 4. FIG. 実施例5におけるdl-トリプトファンの液体クロマトグラムである。2 is a liquid chromatogram of dl-tryptophan in Example 5. FIG. 比較例2におけるdl-1-フェニルエチルアミンの液体クロマトグラムである。4 is a liquid chromatogram of dl-1-phenylethylamine in Comparative Example 2. FIG. 実施例6におけるdl-1-フェニルエチルアミンの液体クロマトグラムである。2 is a liquid chromatogram of dl-1-phenylethylamine in Example 6. FIG. 実施例7におけるdl-1-フェニルエチルアミンの液体クロマトグラムである。2 is a liquid chromatogram of dl-1-phenylethylamine in Example 7. FIG. 実施例8におけるdl-1-フェニルエチルアミンの液体クロマトグラムである。2 is a liquid chromatogram of dl-1-phenylethylamine in Example 8. FIG. 比較例3におけるdl-チロシンの液体クロマトグラムである。4 is a liquid chromatogram of dl-tyrosine in Comparative Example 3. FIG. 実施例9におけるdl-チロシンの液体クロマトグラムである。FIG. 10 is a liquid chromatogram of dl-tyrosine in Example 9. FIG.
 以下に、本開示について具体的な実施態様を挙げて説明するが、各実施態様における各構成及びそれらの組み合わせ等は、一例であって、本開示の主旨から逸脱しない範囲内で、適宜、構成の付加、省略、置換、及びその他の変更が可能である。本開示は、実施態様によって限定されることはなく、クレームの範囲によってのみ限定される。
 また、本明細書に開示される各々の態様は、本明細書に開示される他のいかなる特徴とも組み合わせることができる。
Specific embodiments of the present disclosure will be described below, but each configuration and combination thereof in each embodiment are examples, and can be configured as appropriate within the scope of the present disclosure. can be added, omitted, substituted, and otherwise modified. This disclosure is not limited by the embodiments, but only by the scope of the claims.
Also, each aspect disclosed in this specification may be combined with any other feature disclosed in this specification.
<1.アミンの分離方法>
 本開示の一実施態様は、液体クロマトグラフィーによるアミンの分離方法であって、固定相としてクラウンエーテル様環状構造を有するリガンドが担体に担持された分離剤(以下、「クラウンエーテル様環状構造を有する固定相」と称することがある。)を用い、移動相として揮発性の高い特定の酸を含有する溶液を用いる。本実施態様に係る分離方法は、アミンの分離手段が上述した固定相及び移動相を用いた液体クロマトグラフィーであればよく、分離されたアミンの同定、定量等のその他の構成を適宜有してもよい。
 液体クロマトグラフィーは市販の液体クロマトグラフィー装置を用いて行うことができる。カラムの平衡化、流速等は、カラムサイズ、試料容量等によって適宜選択することができる。
<1. Amine Separation Method>
One embodiment of the present disclosure is a method for separating amines by liquid chromatography, comprising a separating agent in which a ligand having a crown ether-like cyclic structure is supported on a carrier as a stationary phase (hereinafter referred to as "having a crown ether-like cyclic structure A solution containing a highly volatile specific acid is used as the mobile phase. In the separation method according to the present embodiment, the amine separation means may be liquid chromatography using the above-described stationary phase and mobile phase, and may appropriately include other configurations such as identification and quantification of the separated amine. good too.
Liquid chromatography can be performed using a commercially available liquid chromatography device. Column equilibration, flow rate and the like can be appropriately selected depending on the column size, sample capacity and the like.
<2.アミン>
 本実施態様に係る分離方法では、固定相としてクラウンエーテル様環状構造を有するリガンドが担体に担持された分離剤を使用し、アミンを分離する。本実施態様に係る分離方法によれば、複数のアミンの混合物を各アミンに分離したり、アミンと非アミンとを含む混合物からアミンを分離したりすることができる。本実施態様に係る分離方法は、前者の中でも、構造が互いに類似するアミンの混合物を各アミンに分離することに特に有効である。
<2. Amine>
In the separation method according to this embodiment, a separating agent in which a ligand having a crown ether-like ring structure is supported on a carrier is used as a stationary phase to separate amines. According to the separation method according to this embodiment, a mixture of a plurality of amines can be separated into individual amines, or amines can be separated from a mixture containing amines and non-amines. Among the former, the separation method according to the present embodiment is particularly effective in separating a mixture of amines having similar structures to each amine.
 アミンは、特に限定されず、1級アミン、2級アミン、及び3級アミンから適宜選択すればよい。具体的なアミンとしては、アラニン、システイン、グルタミン酸、メチオニン、ロイシン、チロシン、トリプトファン等のアミノ酸;前記アミノ酸のエステル等の誘導体;ジメチルアミノエタノール、プロパノールアミン、メチオニノール、ノルエフェドリン等のアミノアルコール;フェニルエチルアミン、アニリン、メチルアニリン、クロロアニリン、アミノ安息香酸等のアミノ基含有炭化水素;等が挙げられる。 The amine is not particularly limited, and may be appropriately selected from primary amines, secondary amines, and tertiary amines. Specific amines include amino acids such as alanine, cysteine, glutamic acid, methionine, leucine, tyrosine and tryptophan; derivatives such as esters of the above amino acids; amino alcohols such as dimethylaminoethanol, propanolamine, methioninol and norephedrine; phenylethylamine. , aniline, methylaniline, chloroaniline, amino group-containing hydrocarbons such as aminobenzoic acid;
 本実施態様に係る分離方法は、特に1級アミンを含む混合物から所望の1級アミンを分離することに適している。1級アミンは、固定相が有するクラウンエーテル様環状構造により、良好に保持及び分離し得るからである。
 また、本実施態様に係る分離方法によれば、高い分離能を示すことから、構造が互いに類似するために分離が難しいアミンの混合物を各アミンに分離することもできる。構造が互いに類似するアミンの混合物としては、連鎖異性体の混合物、位置異性体の混合物、幾何異性体の混合物、類縁体の混合物等が挙げられる。さらに、クラウンエーテル様環状構造が光学活性体である場合には、エナンチオマーの混合物を各エナンチオマーに分離するのに有効である。本実施態様に係る分離方法は、光学活性なクラウンエーテル様環状構造を有するリガンドを用いることにより、アミノ基を含む化合物のエナンチオマーの混合物を分離できる点で、とりわけ有用性が高い。
The separation method according to this embodiment is particularly suitable for separating a desired primary amine from a mixture containing primary amines. This is because the primary amine can be well retained and separated by the crown ether-like cyclic structure of the stationary phase.
Moreover, according to the separation method according to the present embodiment, since high separation performance is exhibited, a mixture of amines, which are difficult to separate due to their similar structures, can be separated into individual amines. Mixtures of amines having similar structures include mixtures of chain isomers, mixtures of positional isomers, mixtures of geometric isomers, mixtures of analogues, and the like. Furthermore, when the crown ether-like cyclic structure is an optically active substance, it is effective for separating a mixture of enantiomers into individual enantiomers. The separation method according to this embodiment is particularly useful in that a mixture of enantiomers of a compound containing an amino group can be separated by using a ligand having an optically active crown ether-like cyclic structure.
<3.移動相>
 本実施態様において、液体クロマトグラフィーに用いる移動相は、酸添加物として揮発性の高い特定の酸を含有する。揮発性の高い特定の酸は、炭素数3以上8以下のパーフルオロアルカン酸(以下、単に「パーフルオロアルカン酸」と称することがある。)、炭素数1以上3以下のパーフルオロアルカンスルホン酸(以下、単に「パーフルオロアルカンスルホン酸」と称することがある。)、及びハロゲン化水素から選択される。これらの酸添加物は、LCにおいてアミンの固定相への保持を促進することができ、かつ、MSにおいてアミンの検出を阻害しない高い揮発性を有するため、LC-MSに好適に適用し得る。酸添加物は、1種単独で用いてもよく、2種以上を任意の組み合わせ及び比率で用いてもよい。
<3. Mobile Phase>
In this embodiment, the mobile phase used for liquid chromatography contains a highly volatile specific acid as an acid additive. Specific acids with high volatility include perfluoroalkanoic acids having 3 to 8 carbon atoms (hereinafter sometimes simply referred to as "perfluoroalkanoic acid"), perfluoroalkanesulfonic acids having 1 to 3 carbon atoms (hereinafter sometimes simply referred to as "perfluoroalkanesulfonic acid"), and hydrogen halide. These acid additives can promote the retention of amines on the stationary phase in LC, and have high volatility that does not interfere with the detection of amines in MS, so they are suitable for LC-MS. One type of acid additive may be used alone, or two or more types may be used in any combination and ratio.
(3-1.パーフルオロアルカン酸)
 本実施態様におけるパーフルオロアルカン酸は、下記式(A)で表される酸であり(式(A)中、mは、2以上7以下の整数である。)、具体的にはペンタフルオロプロピオン酸、ヘプタフルオロ酪酸、ノナフルオロペンタン酸、ウンデカフルオロヘキサン酸、トリデカフルオロへプタン酸、及びペンタデカフルオロオクタン酸から選択される。
  C2m+1COH    (A)
(3-1. Perfluoroalkanoic acid)
The perfluoroalkanoic acid in the present embodiment is an acid represented by the following formula (A) (in formula (A), m is an integer of 2 or more and 7 or less), specifically pentafluoropropion acid, heptafluorobutyric acid, nonafluoropentanoic acid, undecafluorohexanoic acid, tridecafluoroheptanoic acid, and pentadecafluorooctanoic acid.
CmF2m + 1CO2H (A)
 式(A)中のmを1に代えたトリフルオロ酢酸は、クラウンエーテル様環状構造を有する固定相として用いた液体クロマトグラフィーにおいてしばしば利用され、LC-MSにも適用されている(例えば、非特許文献1参照)。しかしながら、上述したように、トリフルオロ酢酸は試料を保持させる力が弱いため、アミンの種類によっては分離が十分に達成されない場合があった。 Trifluoroacetic acid in which m in formula (A) is replaced by 1 is often used in liquid chromatography using a stationary phase having a crown ether-like cyclic structure, and is also applied to LC-MS (for example, See Patent Document 1). However, as described above, trifluoroacetic acid has a weak ability to retain a sample, so there were cases where sufficient separation was not achieved depending on the type of amine.
 これに対して、本実施態様におけるパーフルオロアルカン酸は、式(A)で表される化合物であり、式(A)中のmが2以上7以下である。このようなパーフルオロアルカン酸を移動相に含有させることにより、クラウンエーテル様環状構造を有する固定相を用いた液体クロマトグラフィーによるアミンの分離において、高い保持性能及び高い揮発性を示す。その理由を、以下に説明する。 On the other hand, the perfluoroalkanoic acid in this embodiment is a compound represented by formula (A), where m is 2 or more and 7 or less. By including such a perfluoroalkanoic acid in the mobile phase, high retention performance and high volatility are exhibited in amine separation by liquid chromatography using a stationary phase having a crown ether-like cyclic structure. The reason is explained below.
 本実施態様におけるパーフルオロアルカン酸は、いずれも強酸である。しかし、本発明者らは、パーフルオロアルカン酸の炭素数、即ちフッ素数が大きくなるにつれ、クラウンエーテル様環状構造を有する固定相にアミンを保持させる能力が高まるという効果を見出した。驚くべきことに、かかる効果は、パーフルオロアルカン酸が単に強酸であるということから期待される効果とは全く異なり、分子中のフッ素数が増すとともに飛躍的に向上するものである。より具体的には、移動相中の酸添加物のモル濃度とその一分子中のフッ素数の積、即ち、移動相中のフッ素原子のモル濃度が同じになるよう、炭素数3以上8以下のパーフルオロアルカン酸及び従来の酸添加物であるトリフルオロ酢酸をそれぞれ添加した移動相について、固定相にアミンを保持させる能力の指標である相対保持を比較すると、パーフルオロアルカン酸を添加した移動相の方が大幅に高い値となる。例えば、dl-トリプトファンのように、より強く保持されるエナンチオマーの相対保持をカラム空容積1.6mLから計算すると、後述する比較例1(20mMトリフルオロ酢酸)では0.59であるが、実施例3(5mMトリデカフルオロヘプタン酸)では1.76である。即ち、両移動相におけるフッ素原子のモル濃度はほとんど同じであるにもかかわらず、後者の移動相におけるトリプトファンエナンチオマーの相対保持は、前者の約3倍であった。 All of the perfluoroalkanoic acids in this embodiment are strong acids. However, the present inventors have found that as the number of carbon atoms in perfluoroalkanoic acid, that is, the number of fluorine atoms, increases, the ability to retain amines on a stationary phase having a crown ether-like cyclic structure increases. Surprisingly, such an effect is completely different from the effect expected from the mere fact that perfluoroalkanoic acid is a strong acid, and is dramatically improved as the number of fluorine atoms in the molecule increases. More specifically, the product of the molar concentration of the acid additive in the mobile phase and the number of fluorine atoms in one molecule thereof, that is, the number of carbon atoms is 3 or more and 8 or less so that the molar concentration of fluorine atoms in the mobile phase is the same. of perfluoroalkanoic acid and trifluoroacetic acid, a conventional acid additive, compared relative retention, which is an indicator of the ability of the stationary phase to retain amines. phase is significantly higher. For example, when the relative retention of the more strongly retained enantiomer such as dl-tryptophan is calculated from the column empty volume of 1.6 mL, it is 0.59 in Comparative Example 1 (20 mM trifluoroacetic acid) described later, but 3 (5 mM tridecafluoroheptanoic acid) is 1.76. Thus, the relative retention of the tryptophan enantiomer in the latter mobile phase was about three times higher than in the former, even though the molar concentration of fluorine atoms in both mobile phases was almost the same.
 なお、相対保持は、下記式により算出される。
  k=(V/V)-1
   k:相対保持
   V:アミンの溶出体積
   V:カラム空容量(保持されない物質の溶出体積)
Incidentally, the relative retention is calculated by the following formula.
k=(V/V 0 )−1
k: relative retention V: elution volume of amine V 0 : column empty volume (elution volume of substances not retained)
 したがって、式(A)中のmの下限は、保持性能向上の観点から、通常2以上、好ましくは3以上、より好ましくは4以上である。また、式(A)中のmの上限は、揮発性確保の観点から、通常7以下、好ましくは6以下である。また、式(A)中のmの好ましい範囲としては、例えば2以上6以下、3以上7以下、及び4以上6以下の範囲が挙げられる。 Therefore, the lower limit of m in formula (A) is usually 2 or more, preferably 3 or more, more preferably 4 or more, from the viewpoint of improving retention performance. The upper limit of m in formula (A) is usually 7 or less, preferably 6 or less, from the viewpoint of ensuring volatility. Preferred ranges of m in formula (A) include, for example, 2 to 6, 3 to 7, and 4 to 6.
 パーフルオロアルカン酸としては、市販品を使用してもよく、公知の方法に準じて製造されたものを用いてもよい。パーフルオロアルカン酸は、揮発性、保持性能、及び分離能を総合的に考慮すると、ペンタフルオロプロピオン酸、ノナフルオロペンタン酸、及びトリデカフルオロへプタン酸から選択されるものであることが好ましい。 As the perfluoroalkanoic acid, a commercially available product may be used, or one manufactured according to a known method may be used. The perfluoroalkanoic acid is preferably selected from pentafluoropropionic acid, nonafluoropentanoic acid, and tridecafluoroheptanoic acid in comprehensive consideration of volatility, retention performance, and separation performance.
 なお、本実施態様におけるパーフルオロアルカン酸は、イオン対試薬として市販されており、クラウンエーテル様環状構造を有しない固定相を用いたLC-MSに適用できることが知られている(例えば、東京化成工業株式会社、“イオン対試薬 for HPLC”、[online]、2019年9月13日、インターネット<URL: https://www.tcichemicals.com/medias/Brochure-A1084-J.pdf?context=bWFzdGVyfGJyb2NodXJlLXBkZnN8NTIxNTc1fGFwcGxpY2F0aW9uL3BkZnxoZjMvaDM4LzkxMjY2OTE5OTU2NzgvQnJvY2h1cmVfQTEwODRfSi5wZGZ8Zjg3MDFmMzM4MGQwMDVkZWE3NWY4MDVjNGNiYzliZWI1M2YxYTJkYjVhNmYyZmQyMmQ2ODExYzNkNmJhNDA0OQ>)。一方、本実施態様におけるパーフルオロアルカン酸がクラウンエーテル様環状構造を有する固定相を用いたLC-MSに適用可能であるか否かについては検討されていない。 In addition, the perfluoroalkanoic acid in this embodiment is commercially available as an ion-pair reagent, and is known to be applicable to LC-MS using a stationary phase that does not have a crown ether-like cyclic structure (for example, Tokyo Chemical Industry Co., Ltd.工業株式会社、“イオン対試薬 for HPLC”、[online]、2019年9月13日、インターネット<URL: https://www.tcichemicals.com/medias/Brochure-A1084-J.pdf?context=bWFzdGVyfGJyb2NodXJlLXBkZnN8NTIxNTc1fGFwcGxpY2F0aW9uL3BkZnxoZjMvaDM4LzkxMjY2OTE5OTU2NzgvQnJvY2h1cmVfQTEwODRfSi5wZGZ8Zjg3MDFmMzM4MGQwMDVkZWE3NWY4MDVjNGNiYzliZWI1M2YxYTJkYjVhNmYyZmQyMmQ2ODExYzNkNmJhNDA0OQ >). On the other hand, it has not been investigated whether the perfluoroalkanoic acid in this embodiment is applicable to LC-MS using a stationary phase having a crown ether-like ring structure.
 パーフルオロアルカン酸がアミンの保持を助けるメカニズムにおいて、パーフルオロアルキル基の疎水性が関与しているものと推定される。より詳細には、本実施態様における液体クロマトグラフィーは、イオンペアクロマトグラフィーであるため、アミンが固定相に保持されるためには、アミンがプロトン化されてアンモニウム基となり、これがアニオンとイオン対を形成して電荷が中和される必要があると推測される。そして、パーフルオロアルカンスルホン酸から生じるパーフルオロアルカン酸イオンは、本質的に疎水性であるため、水の含有量が多い溶媒の中で疎水的相互作用によりアンモニウム基とイオン対を形成し易いと考えられる。したがって、酸添加物としてパーフルオロアルカン酸を用いる場合、移動相に含まれる溶媒は、高い保持性能を発揮する観点から、水を主とする溶媒であることが好ましい。 It is presumed that the hydrophobicity of perfluoroalkyl groups is involved in the mechanism by which perfluoroalkanoic acid helps retain amines. More specifically, since the liquid chromatography in this embodiment is ion pair chromatography, in order for the amine to be retained on the stationary phase, the amine is protonated to an ammonium group, which forms an ion pair with the anion. It is presumed that the charge needs to be neutralized by Since the perfluoroalkanoic acid ion generated from perfluoroalkanesulfonic acid is essentially hydrophobic, it is likely to form an ion pair with an ammonium group through hydrophobic interaction in a solvent containing a large amount of water. Conceivable. Therefore, when perfluoroalkanoic acid is used as the acid additive, the solvent contained in the mobile phase is preferably a solvent mainly composed of water from the viewpoint of exhibiting high retention performance.
(3-2.パーフルオロアルカンスルホン酸)
 本実施態様におけるパーフルオロアルカンスルホン酸は、下記式(B)で表される酸であり(式(B)中、pは、1以上3以下の整数である。)、具体的にはトリフルオロメタンスルホン酸、ペンタフルオロエタンスルホン酸、及びヘプタフルオロプロパンスルホン酸から選択される。
  C2p+1SOH    (B)
(3-2. Perfluoroalkanesulfonic acid)
Perfluoroalkanesulfonic acid in the present embodiment is an acid represented by the following formula (B) (in formula (B), p is an integer of 1 or more and 3 or less), specifically trifluoromethane It is selected from sulfonic acid, pentafluoroethanesulfonic acid, and heptafluoropropanesulfonic acid.
CpF2p +1SO3H ( B)
 スルホン酸基はカルボキシ基よりも保持性能が顕著に高い。しかしながら、パーフルオロアルカンスルホン酸は、同じパーフルオロアルキル基を有するパーフルオロアルカン酸と比べて蒸気圧が低く、即ち、揮発性が低い。そのため、式(B)中のpは、式(A)中のmほど大きくないことが望ましく、通常3以下、好ましくは2以下(すなわち、1又は2)、より好ましくは1である。 The sulfonic acid group has significantly higher retention performance than the carboxyl group. However, perfluoroalkanesulfonic acids have a lower vapor pressure, ie lower volatility, than perfluoroalkanoic acids having the same perfluoroalkyl group. Therefore, p in formula (B) is desirably not as large as m in formula (A), and is usually 3 or less, preferably 2 or less (that is, 1 or 2), more preferably 1.
 パーフルオロアルカンスルホン酸としては、市販品を使用してもよく、公知の方法に準じて製造されたものを用いてもよい。パーフルオロアルカンスルホン酸は、入手容易性の観点から、トリフルオロメタンスルホン酸であることが好ましい。 As the perfluoroalkanesulfonic acid, a commercially available product may be used, or one manufactured according to a known method may be used. Perfluoroalkanesulfonic acid is preferably trifluoromethanesulfonic acid from the viewpoint of availability.
 パーフルオロアルカンスルホン酸がアミンの保持を助けるメカニズムにおいては、パーフルオロアルカン酸がアミンの保持を助けるメカニズムと同様、パーフルオロアルキル基の疎水性が関与しているものと推定される。したがって、酸添加物としてパーフルオロアルカンスルホン酸を用いる場合、移動相に含まれる溶媒は、高い保持性能を発揮する観点から、水を主とする溶媒であることが好ましい。 The mechanism by which perfluoroalkanesulfonic acid helps amine retention is presumed to involve the hydrophobicity of perfluoroalkyl groups, similar to the mechanism by which perfluoroalkanoic acid helps amine retention. Therefore, when perfluoroalkanesulfonic acid is used as the acid additive, the solvent contained in the mobile phase is preferably a solvent mainly composed of water from the viewpoint of exhibiting high retention performance.
(3-3.ハロゲン化水素)
 ハロゲン化水素は、強い酸性度及び高い揮発性を有し、アミンの良好な保持及び分離に有効である。ハロゲン化水素としては、特に限定されず、例えばフッ化水素、塩化水素、臭化水素、ヨウ化水素等が挙げられる。これらのうち、ハロゲン化水素は、金属腐食性及び/又は毒性が低い点で塩化水素であることが好ましい。
 ハロゲン化水素は、水を主とする移動相よりも、有機溶媒、例えばアセトニトリルを多く含む移動相において高い保持性能を示す。これは、ハロゲン化水素が、パーフルオロアルカン酸及びパーフルオロアルカンスルホン酸と異なり、移動相中で強い水和を受けるハロゲン化物イオンを生じるためであると推測される。ハロゲン化物イオンは、水の含有量の多い溶媒の中では強く水和されてアンモニウム基とのイオン対を形成しにくいが、一方で、有機溶媒の含有量の多い溶媒の中では水和が弱くなり、アンモニウム基とのイオン対が形成され易くなると考えられる。したがって、酸添加物としてハロゲン化水素を用いる場合、移動相に含まれる溶媒は、有機溶媒を主とする溶媒であることが好ましい。
(3-3. Hydrogen halide)
Hydrogen halides have strong acidity and high volatility and are effective for good retention and separation of amines. The hydrogen halide is not particularly limited, and examples thereof include hydrogen fluoride, hydrogen chloride, hydrogen bromide, hydrogen iodide and the like. Among these, the hydrogen halide is preferably hydrogen chloride because of its low metal corrosiveness and/or toxicity.
Hydrogen halides exhibit higher retention performance in mobile phases containing more organic solvents, such as acetonitrile, than in mobile phases mainly composed of water. It is speculated that this is because hydrogen halides, unlike perfluoroalkanoic acids and perfluoroalkanesulfonic acids, produce halide ions that undergo strong hydration in the mobile phase. Halide ions are strongly hydrated in solvents with a high water content and are less likely to form ion pairs with ammonium groups, whereas they are weakly hydrated in solvents with a high organic solvent content. Therefore, it is thought that ion pairs with ammonium groups are likely to be formed. Therefore, when hydrogen halide is used as the acid additive, the solvent contained in the mobile phase is preferably a solvent mainly composed of an organic solvent.
 移動相における酸添加物の濃度(酸添加物を2種以上用いる場合は、各酸添加物の総濃度)は、アミンの種類にもよるが特に限定されず、通常1mM以上、好ましくは2mM以上、より好ましくは3mM以上、また、通常200mM以下、好ましくは100mM以下、より好ましくは30mM以下、さらに好ましくは25mM以下である。したがって、酸添加物の濃度の好ましい範囲としては、例えば1mM以上100mM以下、2mM以上200mM以下、3mM以上30mM以下、及び3mM以上25mM以下の範囲が挙げられる。アミンの相対保持は、一般に酸濃度と共に大きくなるが、ある程度以上の濃度においては効果が現れない場合もあるところ、酸添加物の濃度が上記範囲であれば、十分大きい相対保持を実現できる。また、酸添加物の上記濃度範囲の中でも、後に移動相を変えてクロマトグラフィーを行う際に固定相に酸添加物が残留してコンタミネーションが起きたり、MS検出器での酸添加物の揮発が不完全になったりする等の問題を回避又は軽減する観点から、より低い酸添加物濃度を選択することも好ましい。 The concentration of the acid additive in the mobile phase (the total concentration of each acid additive when two or more acid additives are used) is not particularly limited depending on the type of amine, and is usually 1 mM or more, preferably 2 mM or more. , more preferably 3 mM or more, and usually 200 mM or less, preferably 100 mM or less, more preferably 30 mM or less, and still more preferably 25 mM or less. Accordingly, preferred ranges for the concentration of the acid additive include, for example, 1 mM to 100 mM, 2 mM to 200 mM, 3 mM to 30 mM, and 3 mM to 25 mM. The relative retention of amines generally increases with the acid concentration, but there are cases where the effect does not appear at concentrations above a certain level. In addition, even within the above concentration range of the acid additive, contamination may occur due to the acid additive remaining in the stationary phase when chromatography is performed later by changing the mobile phase, and volatilization of the acid additive in the MS detector It is also preferable to select a lower acid additive concentration from the viewpoint of avoiding or reducing problems such as imperfections.
 これらの酸添加物を含有する移動相を実際にLC-MSに適用する場合、イオン化の方法、液体クロマトグラフィー装置の素材と構造、酸添加物の固定相への吸着残留による以降の分離への影響、個々の装置の特性、使用目的(例えば、分離精度の決定、予備的分離、プロトコル構築等)等を考慮して酸添加剤の種類、酸添加剤の濃度等を選択することが望ましい。 When the mobile phase containing these acid additives is actually applied to LC-MS, the method of ionization, the material and structure of the liquid chromatography device, and the subsequent separation due to the adsorption residue of the acid additive on the stationary phase It is desirable to select the type of acid additive, the concentration of the acid additive, etc. in consideration of the effects, the characteristics of each device, the purpose of use (for example, determination of separation accuracy, preliminary separation, protocol construction, etc.).
(3-4.溶媒)
 本実施態様における移動相は、酸添加物が溶媒に溶解したものである。溶媒としては、特に限定されず、例えば有機溶媒、水、及びこれらの混合溶媒が挙げられる。
(3-4. Solvent)
The mobile phase in this embodiment is one in which an acid additive is dissolved in a solvent. The solvent is not particularly limited, and examples thereof include organic solvents, water, and mixed solvents thereof.
 有機溶媒としては、特に限定されないが、化学的安定性が高く、粘度が低く、紫外線吸収によるアミンの検出が可能となる点で、メタノール、エタノール、n-プロパノール、2-プロパノール、テトラヒドロフラン、又はアセトニトリルであることが好ましく、メタノール又はアセトニトリルであることがより好ましく、アセトニトリルであることがさらに好ましい。 Organic solvents include, but are not limited to, methanol, ethanol, n-propanol, 2-propanol, tetrahydrofuran, or acetonitrile, which have high chemical stability, low viscosity, and allow detection of amines by ultraviolet absorption. is preferred, methanol or acetonitrile is more preferred, and acetonitrile is even more preferred.
 溶媒として水と有機溶媒との混合溶媒を用いる場合、水と有機溶媒の混合割合は特に限定されない。ただし、上述したように酸添加物の種類によっては、水の含有率の高い混合溶媒を用いることで高い保持性能を発揮したり、逆に水の含有率の低い混合溶媒を用いることで高い保持性能を発揮したりする場合がある。また、水の含有率の高い混合溶媒を用いる場合であっても、水の含有率が高すぎると、保持性能が高くなったとしても、ピーク幅が広がるなどのようにピーク形状に問題が生じる場合がある。そのため、水の含有率の高い混合溶媒においては、混合前の水の体積と混合前の有機溶媒の体積との合計に対する混合前の水の体積の比率が95%以下であることが好ましい。 When using a mixed solvent of water and an organic solvent as the solvent, the mixing ratio of water and the organic solvent is not particularly limited. However, as mentioned above, depending on the type of acid additive, using a mixed solvent with a high water content will exhibit high retention performance, or conversely, using a mixed solvent with a low water content will result in high retention. It may exhibit performance. In addition, even when a mixed solvent with a high water content is used, if the water content is too high, peak shape problems such as broadening of the peak width occur even if the retention performance is high. Sometimes. Therefore, in a mixed solvent with a high water content, the ratio of the volume of water before mixing to the sum of the volume of water before mixing and the volume of the organic solvent before mixing is preferably 95% or less.
 具体的には、酸添加物としてパーフルオロアルカン酸及びパーフルオロアルカンスルホン酸から選択される1種以上を用いる場合、混合前の水の体積と混合前の有機溶媒の体積との合計に対する混合前の水の体積の比率は、好ましくは50%以上、より好ましくは60%以上、さらに好ましくは70%以上、特に好ましくは80%以上であり、また、好ましくは95%以下である。また、上記比率の好ましい範囲としては、例えば50%以上95%以下、60%以上95%以下、70%以上95%以下、及び80%以上95%以下の範囲が挙げられる。
 また、酸添加物としてハロゲン化水素を用いる場合、混合前の水の体積と混合前の有機溶媒の体積との合計に対する混合前の水の体積の比率は、通常0%超、好ましくは5%以上、また、好ましくは50%以下、より好ましくは40%以下、さらに好ましくは30%以下、特に好ましくは20%以下である。また、上記比率の好ましい範囲としては、例えば0%超50%以下、5%以上40%以下、0%超30%以下、及び5%以上20%以下の範囲が挙げられる。
 上述した酸添加物の種類の他にも、酸添加物の濃度等を適切に選択し、目的の分離に応じて移動相の組成を調整することが望ましい。
Specifically, when using one or more selected from perfluoroalkanoic acid and perfluoroalkanesulfonic acid as an acid additive, before mixing with respect to the total volume of water before mixing and volume of organic solvent before mixing is preferably 50% or more, more preferably 60% or more, still more preferably 70% or more, particularly preferably 80% or more, and preferably 95% or less. Preferred ranges of the ratio include, for example, 50% to 95%, 60% to 95%, 70% to 95%, and 80% to 95%.
Further, when hydrogen halide is used as the acid additive, the ratio of the volume of water before mixing to the sum of the volume of water before mixing and the volume of the organic solvent before mixing is usually more than 0%, preferably 5%. In addition, it is preferably 50% or less, more preferably 40% or less, still more preferably 30% or less, and particularly preferably 20% or less. Moreover, preferable ranges of the ratio include, for example, 0% to 50%, 5% to 40%, 0% to 30%, and 5% to 20%.
In addition to the type of acid additive described above, it is desirable to appropriately select the concentration of the acid additive and adjust the composition of the mobile phase according to the intended separation.
(3-2.その他の成分)
 本実施態様における移動相は、酸添加物及び溶媒を含み、好適には酸添加物と溶媒との混合物であるが、アミンの分離及びMSによる検出を阻害しない範囲で、その他の成分を含んでいてよい。その他の成分としては、例えば揮発性pH調整試薬等のイオン化を促進し得る物質が挙げられる。
(3-2. Other components)
The mobile phase in this embodiment contains an acid additive and a solvent, preferably a mixture of the acid additive and solvent, but may contain other components as long as they do not interfere with the separation of the amine and detection by MS. you can stay Other ingredients include substances that can promote ionization, such as volatile pH adjusting reagents.
(3-5.移動相の調製)
 移動相は、酸添加物、溶媒、及び必要に応じてその他の成分を混合することで調製することができ、その混合の順番は特に限定されない。溶媒として水と有機溶媒との混合溶媒を用いる場合、酸添加物の水溶液、有機溶媒、及び必要に応じて水を混合して移動相を調製することが好ましい。
(3-5. Preparation of mobile phase)
A mobile phase can be prepared by mixing an acid additive, a solvent, and other components as necessary, and the order of mixing is not particularly limited. When a mixed solvent of water and an organic solvent is used as a solvent, it is preferable to prepare a mobile phase by mixing an aqueous solution of an acid additive, an organic solvent, and, if necessary, water.
<4.固定相>
 本実施態様における固定相は、クラウンエーテル様環状構造を有するリガンドが担体に担持された分離剤である。
<4. Stationary phase>
The stationary phase in this embodiment is a separating agent in which a ligand having a crown ether-like cyclic structure is supported on a carrier.
(4-1.リガンド)
 本明細書において、リガンドとは、担体に担持され、かつ、分離対象に対して物理的な親和性、及び必要に応じて不斉認識能を示す化合物を意味する。本実施態様におけるリガンドは、クラウンエーテル様環状構造を有する。即ち、該リガンドは、式(I)で表されるクラウンエーテル骨格が、脂肪族、脂環式、又は芳香族炭化水素に化学的に結合されることで大環状ポリエーテル構造を形成した化合物である。
(4-1. Ligands)
As used herein, the term "ligand" means a compound that is carried on a carrier and that exhibits physical affinity and, if necessary, asymmetric recognition ability for a separation target. The ligand in this embodiment has a crown ether-like cyclic structure. That is, the ligand is a compound in which a crown ether skeleton represented by formula (I) is chemically bonded to an aliphatic, alicyclic or aromatic hydrocarbon to form a macrocyclic polyether structure. be.
   -O(CHCHO)-    (I)
 式中、nは、アミンのアミノ基及びクラウンエーテル骨格が結合する炭化水素に応じて、4~6の整数から適宜選択することができる。例えば、後述する式(II)又は(III)で表されるリガンドは、nが5であり、1級アンモニウム基を包摂するのに適したサイズのクラウンエーテル様環状構造を有するため、1級アミンの分離に好適に用いられる。
 また、繰り返し単位中のエチレン基の水素原子は、各種官能基により置換されていてもよいが、置換されていないことが好ましい。
—O(CH 2 CH 2 O) n — (I)
In the formula, n can be appropriately selected from an integer of 4 to 6 depending on the hydrocarbon to which the amino group of the amine and the crown ether skeleton are bonded. For example, the ligand represented by formula (II) or (III), which will be described later, has n=5 and has a crown ether-like cyclic structure with a size suitable for encapsulating a primary ammonium group. is suitably used for the separation of
Further, the hydrogen atoms of the ethylene groups in the repeating units may be substituted with various functional groups, but are preferably unsubstituted.
 本実施態様においてエナンチオマーの分離を行う場合、リガンドとしては、クラウンエーテル様環状構造がホモキラルな構造に結合した化合物を用いる。このようなリガンドとしては、例えば、特開平2-69472号公報及び国際公開第2012/050124号に記載の式(II)で表されるリガンド、特開2014-169259号公報に記載の式(III)で表されるリガンド等が挙げられる。また、式(II)中の1,1’-ビナフチル構造の3位及び3’位のフェニル基が、臭素原子等のハロゲン原子;メチル基等のアルキル基;置換芳香族基;複素環基;等に置き換わったリガンド(Peng Wu, et.al., Chin. J. Chem., 2017, 35, 1037-1042)も採用することができる。 When enantiomers are separated in this embodiment, a compound in which a crown ether-like ring structure is bound to a homochiral structure is used as the ligand. Examples of such ligands include, for example, ligands represented by formula (II) described in JP-A-2-69472 and WO 2012/050124, and formula (III) described in JP-A-2014-169259. ) and the like. Further, the phenyl groups at the 3-position and 3'-position of the 1,1'-binaphthyl structure in formula (II) are halogen atoms such as bromine atoms; alkyl groups such as methyl groups; substituted aromatic groups; heterocyclic groups; etc. (Peng Wu, et.al., Chin. J. Chem., 2017, 35, 1037-1042) can also be employed.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 リガンドは、担体に担持した状態で分離剤として使用される。担持の態様は、公知の態様を採用することができ、例えば共有結合等の化学結合によりリガンドが担体に担持される態様を好適に採用することができる。具体的な担持方法としては、リガンド、リガンドの原料又はリガンドの中間体に反応性基を導入し、この置換基と担体表面に存在する反応性基とを反応させる方法が挙げられる。なお、担体表面に存在する反応性基とは、未処理の担体の表面に存在する基であってもよく、担体を表面処理剤、例えば3-アミノプロピルトリエトキシシラン、3-グリシジルオキシプロピルトリメトキシシラン等のシランカップリング剤で表面処理することにより担体表面に導入された基であってもよい。また、リガンドと担体の間に結合を形成する方法だけではなく、リガンドを含む原子団の間でいわゆる架橋結合を形成することによって、担体表面に不溶化された層を形成することもできる。 The ligand is used as a separating agent while being carried on a carrier. A known mode of carrying can be adopted, and for example, a mode in which the ligand is carried on the carrier by chemical bonding such as covalent bonding can be preferably adopted. A specific supporting method includes a method of introducing a reactive group into a ligand, a starting material of the ligand, or an intermediate of the ligand, and reacting this substituent with a reactive group present on the surface of the carrier. The reactive group present on the surface of the carrier may be a group present on the surface of an untreated carrier. It may be a group introduced onto the carrier surface by surface treatment with a silane coupling agent such as methoxysilane. In addition to the method of forming a bond between a ligand and a carrier, an insolubilized layer can also be formed on the carrier surface by forming a so-called cross-linked bond between atomic groups containing a ligand.
(4-2.担体)
 担体としては、リガンドを共有結合等の化学結合によって固定することができる限り、特に制限されない。このような担体は、無機担体であってもよく、有機担体であってもよいが、無機担体であることが好ましい。無機担体としては、例えばシリカゲル、アルミナ、マグネシア、ガラス、カオリン、酸化チタン、ケイ酸塩、ヒドロキシアパタイト等が挙げられる。有機担体としては、例えばポリスチレン、ポリアクリルアミド、ポリアクリレート、ポリサッカライド等が挙げられる。これらの有機担体は、架橋剤によって架橋されることで不溶化していることが好ましい。
(4-2. Carrier)
The carrier is not particularly limited as long as the ligand can be immobilized by chemical bonding such as covalent bonding. Such a carrier may be an inorganic carrier or an organic carrier, but is preferably an inorganic carrier. Examples of inorganic carriers include silica gel, alumina, magnesia, glass, kaolin, titanium oxide, silicates, and hydroxyapatite. Examples of organic carriers include polystyrene, polyacrylamide, polyacrylate, polysaccharide and the like. These organic carriers are preferably insolubilized by cross-linking with a cross-linking agent.
 担体の形状は、特に制限されず、例えば粒子、及びカラム管に液密に収容される多孔性の円柱体(モノリス)等が挙げられる。また、担体としてキャピラリーの内壁を挙げることもできる。 The shape of the carrier is not particularly limited, and examples thereof include particles and porous cylindrical bodies (monoliths) liquid-tightly accommodated in column tubes. The carrier can also include the inner wall of a capillary.
 本実施態様において、担体は、分離能向上の観点から、多孔体であることが好ましく、BET比表面積が100~600m/gの多孔体であるであることがより好ましい。また、該多孔体は、分離能向上の観点から、水銀圧入法によって測定される細孔径が60~300Åであることが好ましい。
 また、本実施態様において、担体は、シリカゲルであることが好ましい。シリカゲルは、前述した特性、即ち分離能に優れ、また硬くて丈夫だからである。シリカゲルとして、全多孔性のものに加え、いわゆるコア-シェル型のものを用いてもよい。
In this embodiment, the carrier is preferably a porous body, more preferably a porous body having a BET specific surface area of 100 to 600 m 2 /g, from the viewpoint of improving separation performance. Moreover, the porous body preferably has a pore diameter of 60 to 300 Å as measured by a mercury porosimetry method from the viewpoint of improving separation performance.
Moreover, in this embodiment, the carrier is preferably silica gel. This is because silica gel has the above-mentioned characteristics, that is, excellent separation ability, and is also hard and durable. As silica gel, in addition to fully porous silica gel, so-called core-shell type silica gel may be used.
<5.アミンの分析方法>
 本実施態様に係るアミンの分離方法をLC-MSに適用することにより、アミンの定量分析、定性分析等の各種分析を行うことができる。LC-MSによるアミンの分析方法は、本実施態様に係るアミンの分離方法によりアミンを分離する分離工程、及び分離工程で分離されたアミンを質量分析により分析する質量分析工程を含む。
<5. Amine Analysis Method>
Various analyzes such as quantitative analysis and qualitative analysis of amines can be performed by applying the method for separating amines according to this embodiment to LC-MS. The method for analyzing amines by LC-MS includes a separation step of separating amines by the method for separating amines according to this embodiment, and a mass spectrometry step of analyzing the amines separated in the separation step by mass spectrometry.
 質量分析工程におけるアミンの質量分析としては、LC-MSで使用される公知の質量分析法を採用することができる。例えば、質量分析におけるイオン化としては、大気圧化学イオン化(APCI)、大気圧光イオン化(APPI)、エレクトロスプレー法(ESI)、高速原子衝撃法(FAB)、サーモスプレー法(TSP)等から、アミンの種類、分析目的等に応じて適宜選択することができる。また、質量分析計としても、四重極型質量分析計(Q-MS)、イオントラップ型質量分析計(IT-MS)、飛行時間型質量分析計(TOF-MS)等から、要求される感度、分解能等に応じて適宜選択して用いることができる。 A known mass spectrometry method used in LC-MS can be adopted as the mass spectrometry of amines in the mass spectrometry step. For example, ionization in mass spectrometry includes atmospheric pressure chemical ionization (APCI), atmospheric pressure photoionization (APPI), electrospray method (ESI), fast atom bombardment method (FAB), thermospray method (TSP), amine can be appropriately selected according to the type of analysis, the purpose of analysis, and the like. Also, as a mass spectrometer, quadrupole mass spectrometer (Q-MS), ion trap mass spectrometer (IT-MS), time-of-flight mass spectrometer (TOF-MS), etc. It can be appropriately selected and used according to sensitivity, resolution, and the like.
 以下、本開示を実施例によりさらに具体的に説明するが、本開示はその要旨を逸脱しない限り、下記の実施例に限定されるものではない。 Hereinafter, the present disclosure will be described more specifically by way of examples, but the present disclosure is not limited to the following examples as long as it does not deviate from the gist thereof.
[移動相の調製]
 塩化水素を20mMの濃度で含有し、溶媒として水/アセトニトリル(70/30(v/v))混合溶媒を含有する移動相の調製を例にとり、移動相調製の手順を示す。
 まず、水700.0g、アセトニトリル383.1gを秤量し、混合することで、水/アセトニトリル=70/30(v/v)混合溶媒を得た。次に市販の1.00N塩化水素水溶液5.00mLをホールピペットにより秤り取り、250mLのメスフラスコに加えた。ここにアセトニトリル1.65g(塩化水素水溶液中の水に対し、3/7体積に相当する)を加えた後、予め調製した水/アセトニトリル=70/30(v/v)混合溶媒を用いてメスアップすることで、移動相を調製した。
[Preparation of mobile phase]
Taking as an example the preparation of a mobile phase containing hydrogen chloride at a concentration of 20 mM and a mixed solvent of water/acetonitrile (70/30 (v/v)) as a solvent, the procedure for mobile phase preparation is shown.
First, 700.0 g of water and 383.1 g of acetonitrile were weighed and mixed to obtain a mixed solvent of water/acetonitrile=70/30 (v/v). Next, 5.00 mL of a commercially available 1.00 N hydrogen chloride aqueous solution was weighed out with a whole pipette and added to a 250 mL volumetric flask. After adding 1.65 g of acetonitrile (equivalent to 3/7 volume of water in the aqueous hydrogen chloride solution), a previously prepared water/acetonitrile = 70/30 (v/v) mixed solvent was used to The mobile phase was prepared by adding up.
 以下、同様にして各実施例及び比較例の移動相を調製した。ただし、酸添加物としてトリフルオロメタンスルホン酸又はトリデカフルオロへプタン酸を使用する場合、これらは水溶液のような溶媒を含む態様でなく、それ自体が単独で市販されているため、所定量をメスフラスコに加え、混合溶媒でメスアップすることで移動相を調製した。 Hereinafter, the mobile phases of each example and comparative example were prepared in the same manner. However, when trifluoromethanesulfonic acid or tridecafluoroheptanoic acid is used as an acid additive, these are not in a form containing a solvent such as an aqueous solution, and are commercially available by themselves. A mobile phase was prepared by adding to the flask and making up with the mixed solvent.
[液体クロマトグラフィーによるアミンの分離]
 以下の比較例、実施例は、各種アミンの液体クロマトグラフィーによる分離に関するものである。分離分析の操作は、下記の通りである。
 カラムとして式(IV)で表されるクラウンエーテル様環状構造を有するリガンドがシリカゲルに担持された分離剤の充填されたカラム(株式会社ダイセル製「CROWNPAK CR-I(-)」、内径3mm、長さ150mm)を用い、液体クロマトグラフィー装置として高速液体クロマトグラフィー装置(島津製作所「LC-20AD」)を用いた。また、検出器としてフォトダイオードアレイ検出器(島津製作所製「SPD-M20A」、検出波長254nm)を用い、検出器で取得したデータをデータ解析用ソフトウェア(島津製作所製「LCsolution」)により解析した。移動相は、各比較例、実施例に記載する通りであり、0.43mL/分で30℃に調温したカラムに送液した。分離対象であるアミンは、各々、水/アセトニトリル(1:1(v/v))混合溶媒に約0.1%w/v濃度になるように溶解し、得られた溶液2μLをオートサンプラによってカラムに注入した。
[Separation of amines by liquid chromatography]
The following comparative examples and examples relate to separation of various amines by liquid chromatography. The operation of separation analysis is as follows.
A column packed with a separating agent in which a ligand having a crown ether-like cyclic structure represented by formula (IV) is supported on silica gel ("CROWNPAK CR-I (-)" manufactured by Daicel Corporation, inner diameter 3 mm, length 150 mm), and a high-performance liquid chromatography device ("LC-20AD" manufactured by Shimadzu Corporation) was used as the liquid chromatography device. In addition, a photodiode array detector (manufactured by Shimadzu Corporation "SPD-M20A", detection wavelength 254 nm) was used as a detector, and the data obtained by the detector was analyzed by data analysis software (manufactured by Shimadzu Corporation "LCsolution"). The mobile phase was as described in each comparative example and example, and was sent to the column adjusted to 30°C at 0.43 mL/min. Each of the amines to be separated was dissolved in a mixed solvent of water/acetonitrile (1:1 (v/v)) to a concentration of about 0.1% w/v, and 2 μL of the resulting solution was sampled by an autosampler. injected onto the column.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
<比較例1:dl-トリプトファンのキラル分離>
 トリフルオロ酢酸(TFA)を20mMの濃度で含有し、溶媒として水/アセトニトリル(70/30(v/v))混合溶媒を含有する移動相を用いてdl-トリプトファンのキラル分離を行った。得られたクロマトグラムを図1に示す。図1中、エナンチオマーに帰属される二つのピークが認められるが、分離は不十分であった。
<Comparative Example 1: Chiral separation of dl-tryptophan>
Chiral separation of dl-tryptophan was performed using a mobile phase containing trifluoroacetic acid (TFA) at a concentration of 20 mM and a mixed solvent of water/acetonitrile (70/30 (v/v)) as solvent. The chromatogram obtained is shown in FIG. In FIG. 1, two peaks attributed to enantiomers were observed, but the separation was insufficient.
<実施例1:dl-トリプトファンのキラル分離>
 ペンタフルオロプロピオン酸を20mMの濃度で含有し、溶媒として水/アセトニトリル(70/30(v/v))混合溶媒を含有する移動相を用いてdl-トリプトファンのキラル分離を行った。得られたクロマトグラムを図2に示す。図2より、実施例1では、保持性能及び分離能が酸添加物としてTFAを用いた比較例1と比べて格段に高いことがわかる。
<Example 1: Chiral separation of dl-tryptophan>
Chiral separation of dl-tryptophan was performed using a mobile phase containing pentafluoropropionic acid at a concentration of 20 mM and a mixed solvent of water/acetonitrile (70/30 (v/v)) as solvent. The chromatogram obtained is shown in FIG. From FIG. 2, it can be seen that in Example 1, retention performance and separation performance are significantly higher than in Comparative Example 1 using TFA as an acid additive.
<実施例2:dl-トリプトファンのキラル分離>
 ノナフルオロペンタン酸を20mMの濃度で含有し、溶媒として水/アセトニトリル(70/30(v/v))混合溶媒を含有する移動相を用いてdl-トリプトファンのキラル分離を行った。得られたクロマトグラムを図3に示す。図3より、実施例2では、保持性能及び分離能が酸添加物としてTFAを用いた比較例1と比べてはるかに高く、実施例1よりもさら高いことがわかる。
<Example 2: Chiral separation of dl-tryptophan>
Chiral separation of dl-tryptophan was performed using a mobile phase containing nonafluoropentanoic acid at a concentration of 20 mM and a mixed solvent of water/acetonitrile (70/30 (v/v)) as solvent. The chromatogram obtained is shown in FIG. From FIG. 3, it can be seen that in Example 2, the retention and separation performance are much higher than in Comparative Example 1 using TFA as an acid additive, and even higher than in Example 1.
<実施例3:dl-トリプトファンのキラル分離>
 トリデカフルオロヘプタン酸を5mMの濃度で含有し、溶媒として水/アセトニトリル(70/30(v/v))混合溶媒を含有する移動相を用いてdl-トリプトファンのキラル分離を行った。得られたクロマトグラムを図4に示す。図4より、実施例3では、保持性能及び分離能が酸添加物としてTFAを用いた比較例1と比べて格段に高いことがわかる。
<Example 3: Chiral separation of dl-tryptophan>
Chiral separation of dl-tryptophan was performed using a mobile phase containing tridecafluoroheptanoic acid at a concentration of 5 mM and a mixed solvent of water/acetonitrile (70/30 (v/v)) as solvent. The chromatogram obtained is shown in FIG. From FIG. 4, it can be seen that in Example 3, retention performance and separation performance are significantly higher than in Comparative Example 1 using TFA as an acid additive.
<実施例4:dl-トリプトファンのキラル分離>
 トリデカフルオロヘプタン酸を20mMの濃度で含有し、溶媒として水/アセトニトリル(70/30(v/v))混合溶媒を含有するウ移動相を用いてdl-トリプトファンのキラル分離を行った。得られたクロマトグラムを図5に示す。図5より、実施例4では、保持性能及び分離能が酸添加物としてTFAを用いた比較例1と比べて格段に高いことがわかる。
<Example 4: Chiral separation of dl-tryptophan>
Chiral separation of dl-tryptophan was performed using a mobile phase containing tridecafluoroheptanoic acid at a concentration of 20 mM and a mixed solvent of water/acetonitrile (70/30 (v/v)) as solvent. The chromatogram obtained is shown in FIG. From FIG. 5, it can be seen that in Example 4, retention performance and separation performance are significantly higher than in Comparative Example 1 using TFA as an acid additive.
<実施例5:dl-トリプトファンのキラル分離>
 トリフルオロメタンスルホン酸を20mMの濃度で含有し、溶媒として水/アセトニトリル(70/30(v/v))混合溶媒を含有する移動相を用いてdl-トリプトファンのキラル分離を行った。得られたクロマトグラムを図6に示す。図6より、実施例5では、不純物のピークが重なっているが、保持性能及び分離能は実施例1よりやや高いことがわかる。
<Example 5: Chiral separation of dl-tryptophan>
Chiral separation of dl-tryptophan was performed using a mobile phase containing trifluoromethanesulfonic acid at a concentration of 20 mM and a mixed solvent of water/acetonitrile (70/30 (v/v)) as solvent. The chromatogram obtained is shown in FIG. From FIG. 6, it can be seen that in Example 5, although the peaks of impurities overlap, the retention performance and resolution are slightly higher than those in Example 1.
<比較例2:dl-1-フェニルエチルアミンのキラル分離>
 トリフルオロ酢酸を21mMの濃度で含有し、溶媒として水/アセトニトリル(20/80(v/v))混合溶媒を含有する移動相を用いてdl-1-フェニルエチルアミンのキラル分離を行った。得られたクロマトグラムを図7に示す。図7より、比較例2では、ネガティブピークにより一見アミンが完全に分離されたように見えるが、実際には分離は不十分であった。
<Comparative Example 2: Chiral separation of dl-1-phenylethylamine>
Chiral separation of dl-1-phenylethylamine was performed using a mobile phase containing trifluoroacetic acid at a concentration of 21 mM and water/acetonitrile (20/80 (v/v)) mixed solvent as solvent. The chromatogram obtained is shown in FIG. From FIG. 7, in Comparative Example 2, the amines were seemingly separated completely due to the negative peak, but the separation was actually insufficient.
<実施例6:dl-1-フェニルエチルアミンのキラル分離>
 塩化水素を20mMの濃度で含有し、溶媒として水/アセトニトリル(20/80(v/v))混合溶媒を含有する移動相を用いてdl-1-フェニルエチルアミンのキラル分離を行った。得られたクロマトグラムを図8に示す。図8より、実施例6では、保持性能及び分離能が酸添加物としてTFAを用いた比較例2と比べて格段に高いことがわかる。
<Example 6: Chiral separation of dl-1-phenylethylamine>
Chiral separation of dl-1-phenylethylamine was performed using a mobile phase containing hydrogen chloride at a concentration of 20 mM and a mixed solvent of water/acetonitrile (20/80 (v/v)) as solvent. The chromatogram obtained is shown in FIG. From FIG. 8, it can be seen that in Example 6, retention performance and separation performance are significantly higher than in Comparative Example 2 using TFA as an acid additive.
<実施例7:dl-1-フェニルエチルアミンのキラル分離>
 ノナフルオロペンタン酸を5mMの濃度で含有し、溶媒として水/アセトニトリル(90/10(v/v))混合溶媒を含有する移動相を用いてdl-1-フェニルエチルアミンのキラル分離を行った。得られたクロマトグラムを図9に示す。図9より、実施例7では、酸添加物濃度が5mMでも高い分離能を示すことがわかる。なお、この酸添加物濃度(5mM)は、イオン対試薬を含有する移動相におけるイオン対試薬濃度として一般的な値である。
<Example 7: Chiral separation of dl-1-phenylethylamine>
Chiral separation of dl-1-phenylethylamine was performed using a mobile phase containing nonafluoropentanoic acid at a concentration of 5 mM and a mixed solvent of water/acetonitrile (90/10 (v/v)) as solvent. The chromatogram obtained is shown in FIG. From FIG. 9, it can be seen that Example 7 exhibits high resolution even at an acid additive concentration of 5 mM. It should be noted that this acid additive concentration (5 mM) is a general value as the ion-pairing reagent concentration in the mobile phase containing the ion-pairing reagent.
<実施例8:dl-1-フェニルエチルアミンのキラル分離>
 塩化水素を5mMの濃度で含有し、溶媒として水/アセトニトリル(10/90(v/v))混合溶媒を含有する移動相を用いてdl-1-フェニルエチルアミンのキラル分離を行った。得られたクロマトグラムを図10に示す。図10より、実施例8では、分離能が極めて高いことがわかる。
<Example 8: Chiral separation of dl-1-phenylethylamine>
Chiral separation of dl-1-phenylethylamine was performed using a mobile phase containing hydrogen chloride at a concentration of 5 mM and a mixed solvent of water/acetonitrile (10/90 (v/v)) as solvent. The chromatogram obtained is shown in FIG. From FIG. 10, it can be seen that in Example 8, the separation ability is extremely high.
<比較例3:dl-チロシンのキラル分離>
 トリフルオロ酢酸を5mMの濃度で含有し、溶媒として水/アセトニトリル(10/90(v/v))混合溶媒を含有する移動相を用いてdl-チロシンのキラル分離を行った。得られたクロマトグラムを図11に示す。図11より、比較例3では、保持性能が低く、ピークが極めて近接していることがわかる。
<Comparative Example 3: Chiral separation of dl-tyrosine>
Chiral separation of dl-tyrosine was performed using a mobile phase containing trifluoroacetic acid at a concentration of 5 mM and a mixed solvent of water/acetonitrile (10/90 (v/v)) as solvent. The chromatogram obtained is shown in FIG. As can be seen from FIG. 11, in Comparative Example 3, the retention performance is low and the peaks are very close to each other.
<実施例9:dl-チロシンのキラル分離>
 塩化水素を5mMの濃度で含有し、溶媒として水/アセトニトリル(10/90(v/v))混合溶媒を含有する移動相を用いてdl-チロシンのキラル分離を行った。得られたクロマトグラムを図12に示す。図12及び図11より、実施例9では、酸添加物としてトリフルオロ酢酸を用いた以外は同様に調製された移動相を用いた比較例3よりもはるかに高い分離能を示すことがわかる。
<Example 9: Chiral separation of dl-tyrosine>
Chiral separation of dl-tyrosine was performed using a mobile phase containing hydrogen chloride at a concentration of 5 mM and a mixed solvent of water/acetonitrile (10/90 (v/v)) as solvent. The chromatogram obtained is shown in FIG. 12 and 11, it can be seen that Example 9 exhibits much higher resolution than Comparative Example 3, which uses a mobile phase prepared similarly except that trifluoroacetic acid is used as the acid additive.
 本開示の少なくとも幾つかの実施態様に係る分離方法によれば、液体クロマトグラフィーによりアミンを分離することができ、MSによる検出も可能になる。従って、かかる分離方法は、各種液体クロマトグラフィーによる分析、精製等を行う有機化学、医学、薬学等の分野において広く利用することができる。 According to the separation method according to at least some embodiments of the present disclosure, amines can be separated by liquid chromatography and can also be detected by MS. Therefore, such a separation method can be widely used in the fields of organic chemistry, medicine, pharmacy, etc. where analysis, purification, etc. are performed by various liquid chromatography.

Claims (5)

  1.  クラウンエーテル様環状構造を有するリガンドが担体に担持された分離剤を固定相として用い、
     炭素数3以上8以下のパーフルオロアルカン酸、炭素数1以上3以下のパーフルオロアルカンスルホン酸、及びハロゲン化水素から選択される1種以上の酸添加物を含有する移動相を用いる、液体クロマトグラフィーによるアミンの分離方法。
    Using as a stationary phase a separating agent in which a ligand having a crown ether-like cyclic structure is supported on a carrier,
    Liquid chromatography using a mobile phase containing one or more acid additives selected from perfluoroalkanoic acids having 3 to 8 carbon atoms, perfluoroalkanesulfonic acids having 1 to 3 carbon atoms, and hydrogen halides Graphical separation of amines.
  2.  前記酸添加物が、前記炭素数3以上8以下のパーフルオロアルカン酸であり、
     前記移動相に含まれる溶媒が、水と有機溶媒との混合溶媒であり、
     前記混合溶媒は、混合前の水の体積と混合前の前記有機溶媒の体積との合計に対する混合前の水の体積の比率が50%以上である、請求項1に記載の分離方法。
    the acid additive is the perfluoroalkanoic acid having 3 to 8 carbon atoms,
    The solvent contained in the mobile phase is a mixed solvent of water and an organic solvent,
    2. The separation method according to claim 1, wherein the mixed solvent has a ratio of the volume of water before mixing to the sum of the volume of water before mixing and the volume of the organic solvent before mixing is 50% or more.
  3.  前記酸添加物が、前記炭素数1以上3以下のパーフルオロアルカンスルホン酸であり、
     前記移動相に含まれる溶媒が、水と有機溶媒との混合溶媒であり、
     前記混合溶媒は、混合前の水の体積と混合前の前記有機溶媒の体積との合計に対する混合前の水の体積の比率が50%以上である、請求項1に記載の分離方法。
    The acid additive is the perfluoroalkanesulfonic acid having 1 to 3 carbon atoms,
    The solvent contained in the mobile phase is a mixed solvent of water and an organic solvent,
    2. The separation method according to claim 1, wherein the mixed solvent has a ratio of the volume of water before mixing to the sum of the volume of water before mixing and the volume of the organic solvent before mixing is 50% or more.
  4.  前記酸添加物が、前記ハロゲン化水素であり、
     前記移動相に含まれる溶媒が、水と有機溶媒との混合溶媒であり、
     前記混合溶媒は、混合前の水の体積と混合前の前記有機溶媒の体積との合計に対する混合前の水の体積の比率が50%以下である、請求項1に記載の分離方法。
    the acid additive is the hydrogen halide,
    The solvent contained in the mobile phase is a mixed solvent of water and an organic solvent,
    2. The separation method according to claim 1, wherein the mixed solvent has a ratio of the volume of water before mixing to the sum of the volume of water before mixing and the volume of the organic solvent before mixing is 50% or less.
  5.  液体クロマトグラフィー-質量分析法によるアミンの分析方法であって、
     請求項1~4のいずれか1項に記載の分離方法によりアミンを分離する分離工程、及び
     前記分離工程で分離されたアミンを質量分析により分析する質量分析工程を含む、アミンの分析方法。
    A method for the analysis of amines by liquid chromatography-mass spectrometry, comprising:
    A method for analyzing amines, comprising a separation step of separating amines by the separation method according to any one of claims 1 to 4, and a mass spectrometry step of analyzing the amines separated in the separation step by mass spectrometry.
PCT/JP2022/029231 2021-07-29 2022-07-29 Method for separating amines by liquid chromatography WO2023008546A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021124238 2021-07-29
JP2021-124238 2021-07-29

Publications (1)

Publication Number Publication Date
WO2023008546A1 true WO2023008546A1 (en) 2023-02-02

Family

ID=85086956

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/029231 WO2023008546A1 (en) 2021-07-29 2022-07-29 Method for separating amines by liquid chromatography

Country Status (1)

Country Link
WO (1) WO2023008546A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62210053A (en) * 1986-03-07 1987-09-16 Agency Of Ind Science & Technol Packing material for separating optical isomer
JP2017106801A (en) * 2015-12-09 2017-06-15 住友金属鉱山株式会社 Method for analyzing amines
WO2020251003A1 (en) * 2019-06-14 2020-12-17 株式会社ダイセル Amine separation method using liquid chromatography

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62210053A (en) * 1986-03-07 1987-09-16 Agency Of Ind Science & Technol Packing material for separating optical isomer
JP2017106801A (en) * 2015-12-09 2017-06-15 住友金属鉱山株式会社 Method for analyzing amines
WO2020251003A1 (en) * 2019-06-14 2020-12-17 株式会社ダイセル Amine separation method using liquid chromatography

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
BERKECZ, R. SZTOJKOV-IVANOV, A. ILISZ, I. FORRO, E. FULOP, F. HYUN, M.H. PETER, A.: "High-performance liquid chromatographic enantioseparation of @b-amino acid stereoisomers on a (+)-(18-crown-6)-2,3,11,12-tetracarboxylic acid-based chiral stationary phase", JOURNAL OF CHROMATOGRAPHY A, ELSEVIER, AMSTERDAM, NL, vol. 1125, no. 1, 25 August 2006 (2006-08-25), AMSTERDAM, NL, pages 138 - 143, XP005588656, ISSN: 0021-9673, DOI: 10.1016/j.chroma.2006.06.064 *
HEE JUNG CHOI, HYUN MYUNG HO: "Liquid Chromatographic Chiral Separations by Crown Ether‐Based Chiral Stationary Phases", JOURNAL OF LIQUID CHROMATOGRAPHY AND RELATED TECHNOLOGIES, MONTICELLO, NY, US, vol. 30, 7 March 2007 (2007-03-07), US , pages 853 - 875, XP055771087, ISSN: 1082-6076, DOI: 10.1080/10826070701191136 *
KONYA YUTAKA; TANIGUCHI MOYU; FURUNO MASAHIRO; NAKANO YOSUKE; TANAKA NOBUO; FUKUSAKI EIICHIRO: "Mechanistic study on the high-selectivity enantioseparation of amino acids using a chiral crown ether-bonded stationary phase and acidic, highly organic mobile phase by liquid chromatography/time-of-flight mass spectrometry", JOURNAL OF CHROMATOGRAPHY A, ELSEVIER, AMSTERDAM, NL, vol. 1578, 9 October 2018 (2018-10-09), AMSTERDAM, NL, pages 35 - 44, XP085529465, ISSN: 0021-9673, DOI: 10.1016/j.chroma.2018.10.004 *
LEE, W. YONG HONG, C.: "Direct liquid chromatographic enantiomer separation of new fluoroquinolones including gemifloxacin", JOURNAL OF CHROMATOGRAPHY A, ELSEVIER, AMSTERDAM, NL, vol. 879, no. 2, 1 May 2000 (2000-05-01), AMSTERDAM, NL, pages 113 - 120, XP004199146, ISSN: 0021-9673, DOI: 10.1016/S0021-9673(00)00322-8 *

Similar Documents

Publication Publication Date Title
Lämmerhofer Chiral separations by capillary electromigration techniques in nonaqueous media: I. Enantioselective nonaqueous capillary electrophoresis
Simó et al. Chiral CE‐MS
Wernisch et al. Increments to chiral recognition facilitating enantiomer separations of chiral acids, bases, and ampholytes using C inchona‐based zwitterion exchanger chiral stationary phases
Preinerstorfer et al. Monolithic silica-based capillary column with strong chiral cation-exchange type surface modification for enantioselective non-aqueous capillary electrochromatography
JP4887286B2 (en) Composition and method for separation of enantiomers
JPS62210053A (en) Packing material for separating optical isomer
Zheng et al. Simultaneous enantioseparation and sensitive detection of eight β‐blockers using capillary electrochromatography‐electrospray ionization‐mass spectrometry
WO2023008546A1 (en) Method for separating amines by liquid chromatography
McCalley Understanding and managing peak shape for basic solutes in reversed-phase high performance liquid chromatography
Vashistha et al. Different approaches in thin-layer chromatography for enantioresolution of acebutolol using colistin sulfate as chiral selector
Hellinghausen et al. Cyclofructans as chiral selectors: an overview
EP3984615B1 (en) Amine separation method using liquid chromatography
US11173418B2 (en) Materials and methods for trap-elute mixed mode chromatography
Bragg et al. High throughput analysis of chiral compounds using capillary electrochromatography (CEC) and CEC-mass spectrometry with cellulose based stationary phases
Lajin et al. Fluoroalkylamines: Novel, Highly Volatile, Fast-Equilibrating, and Electrospray Ionization–Mass Spectrometry Signal-Enhancing Cationic Ion-Interaction Reagents
He et al. Application of polymeric surfactants in chiral micellar electrokinetic chromatography (CMEKC) and CMEKC coupled to mass spectrometry
Cârje et al. Enantioseparation of indapamide by high performance liquid chromatography using ovomucoid glycoprotein as chiral selector
WO2024043296A1 (en) Amine separation method
Han et al. Application of ionic liquids as mobile phase additives and surface-bonded stationary phase in liquid chromatography
JP2023161874A (en) Mobile phase and method for separating ionizable organic compound
Daria et al. Highly fluorinated polymers with sulfonate, sulfamide and N, N‐diethylamino groups for the capillary electromigration separation of proteins and steroid hormones
Flieger Application of ionic liquids in liquid chromatography
US20210322896A1 (en) Sec performance enhancing conditioning and storage solvents containing low levels of buffer and salt
Shibata et al. Ion-pair chromatographic attribute in the retention of ammonium ion on a crown ether-based and a polysaccharide-based chiral stationary phases. Some mobile phase additives compatible with liquid chromatography-electrospray ionization-mass spectrometry
Kaur et al. Ionic liquids in chiral separations

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22849606

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE