WO2023008503A1 - 重症化予測装置、重症化予測方法、及びプログラム - Google Patents

重症化予測装置、重症化予測方法、及びプログラム Download PDF

Info

Publication number
WO2023008503A1
WO2023008503A1 PCT/JP2022/029037 JP2022029037W WO2023008503A1 WO 2023008503 A1 WO2023008503 A1 WO 2023008503A1 JP 2022029037 W JP2022029037 W JP 2022029037W WO 2023008503 A1 WO2023008503 A1 WO 2023008503A1
Authority
WO
WIPO (PCT)
Prior art keywords
prediction
blood
infected
infected person
aggravation
Prior art date
Application number
PCT/JP2022/029037
Other languages
English (en)
French (fr)
Inventor
靖恵 満倉
興壱 福永
誠 石井
秀樹 寺井
Original Assignee
慶應義塾
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 慶應義塾 filed Critical 慶應義塾
Publication of WO2023008503A1 publication Critical patent/WO2023008503A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/487Physical analysis of biological material of liquid biological material
    • G01N33/49Blood
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/70ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for mining of medical data, e.g. analysing previous cases of other patients
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/80ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for detecting, monitoring or modelling epidemics or pandemics, e.g. flu

Definitions

  • the present invention relates to a severity prediction device, a severity prediction method, and a program.
  • Patent Document 1 An example of such technology is disclosed in Patent Document 1.
  • the technique disclosed in Patent Document 1 further improves the accuracy of negative determination by avoiding situations in which false negatives occur in so-called PCR tests based on the polymerase chain reaction (PCR).
  • An object of the present invention is to predict the aggravation of a virus-infected person by a simpler method.
  • an aggravation prediction system includes: a feature quantity extraction means for extracting test values for each of a plurality of components contained in the blood of a virus-infected person as a feature quantity; Logistics regression analysis is performed using the feature amount extracted from the blood of the infected subject as a factor and whether or not the infected subject as the subject has become severe due to infection with the virus as an objective variable.
  • FIG. 1 is a block diagram showing the overall configuration of a severity prediction system S;
  • FIG. FIG. 2 is a schematic diagram showing an overview of processing for realizing prediction of aggravation of a virus-infected person, which is performed by the aggravation prediction device 20.
  • FIG. 2 is a block diagram showing an example of the configuration of an examination data management device 10;
  • FIG. 4 is a table schematically showing the structure of inspection data stored in an inspection data storage unit 151.
  • FIG. 2 is a block diagram showing an example of the configuration of a severity prediction device 20.
  • FIG. 4 is a flowchart for explaining the flow of examination data update processing executed by the examination data management device 10 and the severity prediction device 20.
  • FIG. 4 is a flowchart for explaining the flow of prediction model construction processing executed by the severity prediction device 20.
  • FIG. 4 is a flowchart for explaining the flow of prediction execution processing executed by the severity prediction device 20.
  • FIG. 10 is a graph showing changes in the degree of influence of each factor according to training group size.
  • FIG. 1 is a block diagram showing the overall configuration of a severity prediction system S according to this embodiment.
  • the severity prediction system S includes n (n is an arbitrary integer value of 1 or more) test data management devices 10 (here, test data management devices 10-1, . . . , It includes an examination data management device 10-n), a severity prediction device 20, and a network 30.
  • test data management apparatuses 10 when the n test data management apparatuses 10 are not distinguished, they are simply referred to as "test data management apparatuses 10" with the suffixes of the reference numerals omitted.
  • Each of the test data management devices 10 and the severity prediction device 20 are communicatively connected in accordance with any communication method. This communication may be performed directly between the devices, or via a network 30 including relay devices. When communication is performed via the network 30, this network 30 is implemented by a network such as the Internet or a LAN (Local Area Network), for example.
  • a network such as the Internet or a LAN (Local Area Network), for example.
  • the aggravation prediction system S is an example of an embodiment of the present invention, and is a simpler method for predicting the aggravation of virus-infected persons.
  • the inventor of the present invention as a result of repeated testing and research on prediction of the aggravation of virus-infected people, found that the test values of multiple components contained in the blood of virus-infected people and the severity of virus-infected people It was found that there is a correlation between Then, the inventor of the present invention conceived that it is possible to predict the aggravation of the virus-infected person based on the test values of predetermined components contained in the blood of the virus-infected person. came to form
  • the aggravation prediction system S which is an example of such an embodiment of the present invention, will be described in detail below.
  • the "virus” is SARS-CoV-2, also referred to as the novel coronavirus, and the virus "infected” is infected with the novel coronavirus by this novel coronavirus.
  • the aggravation prediction system S may target another virus and predict the aggravation of the infected person of the other virus.
  • the inspection data management device 10 manages inspection data.
  • the examination data management apparatus 10 is realized by, for example, a server or a personal computer installed in a medical facility such as a hospital or an examination institution, or a cloud server.
  • This test data includes, for example, test values for each of a plurality of components contained in the blood of a virus-infected person, and information indicating whether the virus-infected person has become severely ill.
  • the test data management device 10 performs a test according to the results of these tests and diagnoses. Update the data accordingly.
  • the test data management device 10 provides the latest updated test data to the severity prediction device 20 .
  • the aggravation prediction device 20 predicts the aggravation of the virus-infected person based on the test data provided from the test data management device 10.
  • the aggravation prediction device 20 is implemented by, for example, a server or personal computer installed in a medical facility such as a hospital or an inspection institution, or a cloud server.
  • FIG. 2 is a schematic diagram showing an overview of the process for predicting the severity of a virus-infected person, which is performed by the severity prediction device 20. As shown in FIG.
  • virus infected persons are classified into three.
  • an infected person who is a virus-infected person and who is a target of prediction regarding aggravation is classified as a "prediction target" (corresponding to (C) in the figure).
  • the severity prediction device 20 extracts the test values of each of the plurality of components contained in the blood of the virus-infected person who is the test subject as feature amounts (corresponding to (1) and (2) in the figure). Next, the severity prediction device 20 uses the feature amount extracted from the blood of the infected subject as a factor (that is, explanatory variable), and the infected subject from which the feature amount is acquired is a virus. Construct a prediction model that predicts aggravation by performing logistic regression analysis using whether or not the infection aggravated as an objective variable (corresponding to (3) in the figure). This prediction model is a binary classifier that classifies the prediction target as either "severe" or "not severe".
  • the aggravation prediction device 20 extracts test values for each of a plurality of components contained in the blood of the virus-infected person to be predicted as a feature quantity (corresponding to (4) in the figure). Furthermore, the severity prediction device 20 predicts the severity of the infected person to be predicted based on the feature amount extracted from the blood of the infected person to be predicted and the prediction model. Specifically, the severity prediction device 20 inputs the feature amount extracted from the infected person who is the prediction target to the prediction model (corresponding to (5) in the figure).
  • the aggravation prediction device 20 presents the output from the prediction model corresponding to this input to the user of the aggravation prediction device 20 (for example, a medical worker) as a prediction result regarding the aggravation of the prediction subject. (corresponding to (6) in the figure).
  • the severity prediction device 20 is based on the prediction model constructed from the feature amount extracted from the blood of the infected person who is the subject and the feature amount extracted from the blood of the infected person who is the prediction target. , to predict the severity of the infected person who is the subject of prediction.
  • the feature amount for realizing such processing can be extracted from test values for each of the plurality of components contained in the infected person's blood. That is, the medical staff can make a prediction using the severity prediction device 20 only by collecting the blood of the infected person. This is a very simple method compared to the conventional method of predicting aggravation, which involves appropriate observation and examination of many items. Therefore, according to the aggravation prediction device 20, it is possible to predict the aggravation of the virus-infected person by a simpler method.
  • test data management device 10 and the severity prediction device 20 for realizing prediction of the severity of virus-infected persons will be described.
  • FIG. 3 is a block diagram showing an example of the configuration of the examination data management device 10.
  • the examination data management device 10 includes a CPU (Central Processing Unit) 11, a ROM (Read Only Memory) 12, a RAM (Random Access Memory) 13, a communication section 14, and a storage section 15. , an input section 16 , an output section 17 and a drive 18 . These units are connected by signal lines and send and receive signals to each other.
  • CPU Central Processing Unit
  • ROM Read Only Memory
  • RAM Random Access Memory
  • the CPU 11 executes various processes according to programs recorded in the ROM 12 or programs loaded from the storage unit 15 to the RAM 13 .
  • the RAM 13 also stores data necessary for the CPU 11 to execute various processes.
  • the communication unit 14 performs communication control for the CPU 11 to communicate with other devices.
  • the storage unit 15 is composed of a semiconductor memory such as a DRAM (Dynamic Random Access Memory) and stores various data.
  • the input unit 16 is composed of external input devices such as various buttons and a touch panel, or a mouse and keyboard, and inputs various information according to user's instruction operations.
  • the output unit 17 includes a display, a speaker, and the like, and outputs images and sounds.
  • a removable medium 51 consisting of a magnetic disk, an optical disk, a magneto-optical disk, a semiconductor memory, or the like is appropriately mounted in the drive 18 .
  • a program read from the removable medium 51 by the drive 18 is installed in the storage unit 15 as required.
  • the inspection data management process is a series of processes in which the inspection data management device 10 appropriately updates the management data and provides the latest updated inspection data to the severity prediction device 20 .
  • an examination data management section 111 and an examination data providing section 112 function.
  • An inspection data storage unit 151 is provided in one area of the storage unit 15 . Data necessary for realizing processing is appropriately transmitted and received between these functional blocks at appropriate timings, including cases not specifically mentioned below.
  • the test data management unit 111 receives an input operation by the user of the test data management apparatus 10 received by the input unit 16, or from another device (for example, a blood test device used in a medical facility) received via the communication unit 14. acquires the latest test data (for example, the latest test value or the latest diagnosis result) based on the test results of . Then, the inspection data management unit 111 updates the existing inspection data stored in the inspection data storage unit 151 to the latest content based on the acquired latest inspection data. That is, the inspection data storage unit 151 functions as a storage unit that stores inspection data.
  • FIG. 4 is a table schematically showing the structure of inspection data stored in the inspection data storage unit 151.
  • this test data table includes columns of infected person information "infected person ID” and “infected person attribute”, and test values "platelets”, "LDH”, . . . , “ferritin” and “severity diagnosis result” are included. Also, this test data table has a row (record) for each infected person. Corresponding data is stored in each input item (field) by the examination data management unit 111 .
  • the infected person ID is an identifier for identifying each infected person, and information such as a unique number or text is assigned to each infected person and stored.
  • the infected person's attributes are information that indicates the attributes of the infected person. For example, information such as the infected person's age, gender, and the presence or absence of underlying diseases is stored.
  • Platelets, LDH, are well known to those skilled in the art, and detailed descriptions thereof will be omitted here. Also, in the drawing, the values of inspection values are shown as "***".
  • Aggravation diagnosis results store the diagnosis results regarding aggravation by medical staff. Specifically, it stores information such as “severe” if diagnosed as severe, “non-severe” if diagnosed as not severe, and “unconfirmed” if the diagnosis has not yet been made. be done.
  • test data management unit 111 update the inspection data accordingly.
  • This test data may be test data dedicated to this embodiment collected for this embodiment, but general test data collected for information sharing and research between medical facilities may be That is, in the present embodiment, it is possible to construct a prediction model, etc., by using general inspection data that already exist in large numbers in the world.
  • the test data providing unit 112 provides the updated latest test data stored in the test data storage unit 151 by transmitting it to the severity prediction device 20 via the communication unit 14 .
  • the timing of provision may be each time the test data is updated, may be in response to a request from the severity prediction device 20, or may be provided at a predetermined cycle.
  • the test data may be transmitted to the severity prediction device 20 via the communication unit 14, or may be provided via a storage medium such as the removable media 51 or the like.
  • FIG. 5 is a block diagram showing an example of the configuration of the severity prediction device 20.
  • the severity prediction device 20 includes a CPU 21, a ROM 22, a RAM 23, a communication unit 24, a storage unit 25, an input unit 26, an output unit 27, and a drive 28. there is These units are connected by signal lines and send and receive signals to each other.
  • Each of these units is realized by hardware equivalent to each unit of the same name provided in the examination data management apparatus 10 described above with reference to FIG. 3 .
  • the CPU 21 is implemented by hardware equivalent to the CPU 11 . Therefore, redundant description of these units is omitted here.
  • test data management process is a series of processes in which the test data management device 10 appropriately updates the management data and provides the updated latest test data to the severity prediction device 20. be.
  • the predictive model construction process is a series of processes for constructing a predictive model for predicting aggravation based on the feature values extracted from the subject's test data.
  • the prediction execution process is a series of processes for executing predictions regarding aggravation based on the feature values extracted from the test data of the person to be predicted and the prediction model.
  • an inspection data acquisition unit 211 When these processes are executed, as shown in FIG. 5, in the CPU 21, an inspection data acquisition unit 211, a feature amount extraction unit 212, a prediction model construction unit 213, and a prediction execution unit 214 function.
  • an inspection data storage unit 251, a feature amount storage unit 252, and a prediction model storage unit 253 are provided. Data necessary for realizing processing is appropriately transmitted and received between these functional blocks at appropriate timings, including cases not specifically mentioned below.
  • the inspection data acquisition unit 211 acquires the latest inspection data provided from the inspection data management device 10. For example, when test data is provided by transmission from the test data management device 10 , the test data acquisition unit 211 acquires the test data by receiving the test data via the communication unit 24 . Also, when the inspection data is provided via a storage medium such as the removable medium 51 , the inspection data acquisition unit 211 acquires the inspection data by reading it through the drive 28 .
  • the inspection data acquisition unit 211 causes the inspection data storage unit 251 to store the acquired inspection data. That is, the inspection data storage unit 251 functions as a storage unit that stores inspection data. As a result, the inspection data stored in the inspection data storage unit 251 is updated to the latest content, like the inspection data stored in the inspection data storage unit 151 .
  • the inspection data may be acquired from any of the inspection data management apparatuses 10 among the plurality of inspection data management apparatuses 10 .
  • the feature amount extraction unit 212 extracts feature amounts from the inspection data stored in the inspection data storage unit 251 . Specifically, the feature quantity extraction unit 212 extracts the information obtained by combining the test values of the blood components of the virus-infected person and the result of diagnosing aggravation of the infected person as a feature quantity for each infected person. Extract as Here, the test data includes test values for various components in the blood. Low (or uncorrelated) components are present. Therefore, the feature quantity extraction unit 212 extracts the test values of components that are highly correlated with the aggravation of the virus-infected person, instead of extracting the test values of all components as the feature quantity. do. As a result, it is possible to construct a prediction model capable of predicting aggravation with higher accuracy and execute prediction. Specifically, which component's test value should be extracted as a feature amount will be described in a verification example described later.
  • the feature amount extraction unit 212 stores the extracted feature amount in the feature amount storage unit 252 . That is, the feature amount storage unit 252 functions as a storage unit that stores feature amounts.
  • the prediction model building unit 213 builds a prediction model based on the feature amount of the subject's test data stored in the feature amount storage unit 252 .
  • the construction of this prediction model requires the feature amount of test data of an infected person who is a subject and has become severe (i.e., an infected person whose diagnosis result of aggravation is "severe"), A feature amount of test data of an infected person who is a test subject and has not become severe (that is, an infected person whose severity diagnosis result is "non-severe”) is used.
  • the prediction model construction unit 213 first performs predetermined preprocessing on these feature amounts in order to properly construct the prediction model. For example, as preprocessing, the prediction model construction unit 213 uses the average and standard deviation of the test values for each of the test values of the blood components extracted as the feature amount so that the average is 0 and the standard deviation is 1. Standardize data. This allows each blood component to be treated on the same scale to build a predictive model.
  • test values for each of the multiple components extracted as feature quantities for an infected person may be missing.
  • the prediction model construction unit 213 interpolates the deficit with a representative value based on the test value of this certain component of other infected persons.
  • a representative value is, for example, an average value, a median value, or a mode value.
  • the predictive model building unit 213 builds a predictive model based on the feature quantity that has undergone such preprocessing.
  • the prediction model constructed by the prediction model construction unit 213 may be a binary classifier that classifies the prediction target as either "severe” or "not aggravated", and the construction method is
  • the prediction model construction unit 213 uses the feature amount extracted from the blood of the infected person who is the subject as a factor (that is, the explanatory variable), and the subject from whom the feature amount was acquired.
  • We construct a prediction model that predicts aggravation by performing logistic regression analysis using whether or not each infected person has become severe due to virus infection as an objective variable.
  • the predictive model construction unit 213 optimizes the explanatory variables by the variable increase/decrease method in the logistic regression formula shown in formula (1) below.
  • the explanatory variable is the test value of each blood component in the feature quantity extracted by the feature quantity extraction unit 212, and optimization is performed to increase or decrease the partial regression coefficient of the test value of which blood component as the explanatory variable.
  • Equation (1) p is the positive probability, ⁇ i is the partial regression coefficient, and x i is the explanatory variable.
  • the predictive model construction unit 213 may further apply other existing methods in constructing the predictive model. For example, the predictive model construction unit 213 adjusts the class weights based on the ratio of the infected subjects, who are the subjects, who have become severely ill and those who have not become severely ill.
  • the prediction model construction unit 213 performs verification by k-fold cross-validation in order to achieve generalization performance.
  • the value of K is set to 5, for example.
  • the predictive model construction unit 213 creates an ROC (Receiver operating characteristic) curve as an index of the predictive ability of the classifier, and obtains an AUC (Area Under the Curve).
  • ROC Receiveiver operating characteristic
  • AUC Area Under the Curve
  • the prediction model building unit 213 builds a prediction model by repeating machine learning while performing such verifications as appropriate. Then, the predictive model construction unit 213 stores the constructed predictive model in the predictive model storage unit 253 . That is, the prediction model storage unit 253 functions as a storage unit that stores prediction models.
  • the prediction execution unit 214 uses the feature amount of the test data of the infected person who is the prediction target stored in the feature amount storage unit 252 and the prediction model stored in the prediction model storage unit 253 to determine the severity of the disease. make predictions about For example, the prediction execution unit 214 selects an infected person to be predicted from the user received by the input unit 26 (or selects an infected person to be predicted from the user received via the communication unit 24). Based on, the feature value of the infected person to be predicted is acquired. In this case, the infected person to be predicted is selected from the infected persons whose severity diagnosis result is "undetermined".
  • the prediction execution unit 214 performs preprocessing such as data normalization on the feature amount of the prediction target person in the same manner as the preprocessing by the prediction model construction unit 213 in order to perform prediction appropriately. Then, the prediction execution unit 214 executes prediction regarding aggravation by inputting the feature amount of the person to be predicted after preprocessing into the prediction model stored in the prediction model storage unit 253 . In addition, the prediction executing unit 214 uses the output from the prediction model corresponding to this input as the prediction result regarding the aggravation of the prediction target person.
  • this prediction model is a binary classifier that classifies the prediction target as either "severe” or "not severe”. Therefore, the output of the prediction model indicates whether the target person for prediction corresponds to "severe disease" or "not serious disease”.
  • the prediction execution unit 214 presents this prediction result to the user of the severity prediction device 20 (for example, a medical worker).
  • This presentation is, for example, a display on a display included in the output unit 27, an audio output from a speaker included in the output unit 27, or a paper medium from a printing device (not shown) via the communication unit 24. , or transmission to another device (not shown) used by the user via the communication unit 24 .
  • the infected person who is the subject of prediction It is possible to predict the aggravation of the disease and present the prediction result to the user. Therefore, the user can take measures in advance for infected people who are predicted to become severe (for example, securing hospital beds and special medical equipment), and can start appropriate treatment as soon as possible. .
  • FIG. 6 is a flowchart for explaining the flow of examination data update processing executed by the examination data management device 10 and the severity prediction device 20. As shown in FIG. The examination data update process is periodically and repeatedly executed as the examination data management device 10 and the severity prediction device 20 are activated.
  • step S11 the test data management unit 111 determines whether or not the latest test data has been acquired by the user's input operation or by receiving test results from another device (for example, a blood test device used in medical facilities). determine whether If the latest inspection data has been acquired, it is determined as Yes in step S11, and the process proceeds to step S12. On the other hand, if the latest inspection data has not been obtained, it is determined No in step S11, and the process proceeds to step S13.
  • another device for example, a blood test device used in medical facilities.
  • step S12 the inspection data management unit 111 updates the inspection data by storing the acquired latest inspection data in the inspection data storage unit 151.
  • step S13 the test data providing unit 112 provides the updated latest test data stored in the test data storage unit 151 to the severity prediction device 20 via the communication unit 14, and Determine whether or not.
  • the timing of provision may be each time the test data is updated, may be in response to a request from the severity prediction device 20, or may be provided at a predetermined cycle. . If it is time to provide the inspection data, the determination in step S13 is YES, and the process proceeds to step S14. On the other hand, if it is not the timing to provide the inspection data, it is determined as No in step S13, and this process ends. Then, the process is repeated from step S11 at a predetermined cycle.
  • step S ⁇ b>14 the test data providing unit 112 provides the updated latest test data stored in the test data storage unit 151 to the severity prediction device 20 via the communication unit 14 . This completes the processing. Then, the process is repeated from step S11 at a predetermined cycle.
  • step S21 the examination data acquisition unit 211 determines whether or not the latest examination data has been received. If the latest inspection data has been received, a determination of Yes is made in step S21, and the process proceeds to step S22. On the other hand, if the latest inspection data has not been received, it is determined as No in step S21, and this process ends. Then, the process is repeated from step S21 at a predetermined cycle.
  • step S22 the latest received inspection data is stored in the inspection data storage unit 251, thereby updating the inspection data. This completes the processing. Then, the process is repeated from step S21 at a predetermined cycle.
  • the inspection data stored in the inspection data storage unit 151 and the inspection data storage unit 251 are appropriately updated to the latest content.
  • FIG. 7 is a flow chart for explaining the flow of prediction model building processing executed by the severity prediction device 20 .
  • the predictive model building process is executed based on a start instruction operation of the predictive model building process by the user of the aggravation prediction device 20 received by the input unit 26 .
  • step S31 the feature quantity extraction unit 212 extracts the subject's feature quantity from the test data stored in the test data storage unit 251.
  • step S32 the feature quantity extraction unit 212 causes the feature quantity storage unit 252 to store the extracted feature quantity of the subject.
  • step S33 the prediction model construction unit 213 performs predetermined preprocessing on the subject's feature amount in order to appropriately construct the prediction model.
  • step S34 the predictive model building unit 213 builds a predictive model based on the subject's preprocessed feature amount.
  • step S35 the prediction model building unit 213 determines whether or not to finish building the prediction model.
  • step S36 the prediction model construction unit 213 stores the constructed prediction model in the prediction model storage unit 253. This completes the processing.
  • a prediction model for predicting aggravation is constructed by the prediction model construction process described above.
  • FIG. 8 is a flowchart for explaining the flow of prediction execution processing executed by the severity prediction device 20. As shown in FIG. The prediction execution process is executed based on a start instruction operation of the prediction execution process by the user of the severity prediction device 20 received by the input unit 26 .
  • step S41 the feature amount of the person to be predicted is extracted from the test data stored in the test data storage unit 251.
  • step S42 the feature amount extraction unit 212 causes the feature amount storage unit 252 to store the extracted feature amount of the person to be predicted.
  • step S43 the prediction execution unit 214 performs preprocessing such as normalization of data on the feature amount of the prediction target person in the same manner as the preprocessing by the prediction model construction unit 213 in order to perform prediction appropriately.
  • step S44 the prediction execution unit 214 executes prediction regarding aggravation by inputting the feature amount of the prediction subject after preprocessing into the prediction model stored in the prediction model storage unit 253.
  • step S45 the prediction execution unit 214 outputs the output from the prediction model corresponding to this input to the user (for example, a medical worker) of the severity prediction device 20 as a prediction result regarding the severity of the prediction subject. Present. This completes the processing.
  • the severity prediction device 20 uses the prediction model constructed by the feature amount extracted from the blood of the infected person who is the subject and the feature amount extracted from the blood of the infected person who is the prediction target. Based on this, predictions are made regarding the aggravation of the infected person, who is the subject of prediction.
  • the feature amount for realizing such processing can be extracted from test values for each of the plurality of components contained in the infected person's blood. That is, the medical staff can make a prediction using the severity prediction device 20 only by collecting the blood of the infected person. This is a very simple method compared to the conventional method of predicting aggravation, which involves appropriate observation and examination of many items. Therefore, according to the aggravation prediction device 20, it is possible to predict the aggravation of the virus-infected person by a simpler method.
  • the size of the training group used for building the prediction model (i.e., out of the feature values for 300 people, how many feature values are used for machine learning for building the prediction model)
  • We created multiple training groups by changing the Specifically, of the feature values for 300 people, 10% of the feature values for 30 people are used to construct a prediction model, and a first training group is created. is used to build a prediction model, and by increasing this at 10% intervals, 90% or 270 people's feature values are used to build a prediction model. Ninth training Created a group.
  • FIG. 9 is a graph showing changes in the degree of influence of each factor according to the size of the training group.
  • the vertical axis indicates the average coefficient (ie, Z-score) for each factor
  • the horizontal axis indicates the size of the training group.
  • test values of components that are highly correlated with the aggravation of the virus-infected person are extracted.
  • lymphocytes, ferritin, hemoglobin, C-reactive protein, and lactate dehydrogenase in that order, have a correlation with aggravation of the virus-infected person. It has a high content. Therefore, when constructing a predictive model, the test values of some or all of these components are used as factors (that is, objective variables) as feature values, so that the importance is higher than that of other components contained in blood. It is desirable to construct a prediction model as a factor.
  • the prediction model for any training group had a prediction accuracy of over 80% regarding aggravation. That is, it was possible to predict whether or not the person to be predicted will become severe (or not become severe) with a high probability of over 80%.
  • test data management device 10 and the severity prediction device 20 are implemented as separate devices. Not limited to this, for example, the test data management device 10 and the severity prediction device 20 may be implemented as an integrated device.
  • test data management device 10 and the severity prediction device 20 are each realized by a single computer.
  • each of the examination data management device 10 and the aggravation prediction device 20 may be realized by a plurality of computers by using technology such as cloud computing.
  • one prediction model would be constructed.
  • a plurality of prediction models may be constructed. For example, based on each attribute of the infected person included in the test data, the test data is classified by sex or by age group. Then, a prediction model may be constructed for each sex or each age group. Then, a prediction model suitable for the sex and age group of the prediction subject may be used to predict aggravation. This makes it possible to make predictions that are more suited to characteristics such as gender and age group.
  • a classifier was created using a logistic regression formula.
  • the classifier may be created by other methods such as simple perceptron or linear support vector machine.
  • the severity prediction device 20 includes the feature quantity extraction unit 212 , the prediction model construction unit 213 , and the prediction execution unit 214 .
  • the feature quantity extraction unit 212 extracts test values for each of a plurality of components contained in the blood of a virus-infected person as feature quantities.
  • the prediction model construction unit 213 uses the feature amount extracted from the blood of the infected subject as a factor and whether the infected subject as a subject has become severe due to virus infection as an objective variable. Logistics regression is performed. Through analysis, a predictive model is constructed to make predictions about aggravation.
  • the prediction executing unit 214 predicts aggravation of the infected person to be predicted based on the feature amount extracted from the blood of the infected person to be predicted and the prediction model.
  • the severity prediction device 20 is based on the prediction model constructed from the feature amount extracted from the blood of the infected person who is the subject and the feature amount extracted from the blood of the infected person who is the prediction target. , to predict the severity of the infected person who is the subject of prediction.
  • the feature amount for realizing such processing can be extracted from test values for each of the plurality of components contained in the infected person's blood. That is, the medical staff can make a prediction using the severity prediction device 20 only by collecting the blood of the infected person. This is a very simple method compared to the conventional method of predicting aggravation, which involves appropriate observation and examination of many items. Therefore, according to the aggravation prediction device 20, it is possible to predict the aggravation of the virus-infected person by a simpler method.
  • the prediction model construction unit 213 converts some or all of the plurality of components contained in blood, including lymphocytes, ferritin, hemoglobin, C-reactive protein, and lactate dehydrogenase, into blood. Construct a prediction model as a factor with higher importance than other components included in . As a result, it is possible to highly accurately predict the aggravation of the virus-infected person by using the test values of the components that are highly correlated with aggravation as factors of high importance.
  • the feature quantity acquisition means when part of the test values of each of the plurality of components extracted as the feature quantity for an infected person is missing, corrects the missing by a representative value based on the test values of other infected people. Interpolate. As a result, for example, even if the test value for any one of the plurality of blood components is missing for an infected person to be predicted, it can be interpolated. Then, along with the test values of other non-deficient components, it is possible to predict the aggravation of the virus-infected person.
  • a function for executing a series of processes according to the above-described embodiment can be realized by hardware, software, or a combination thereof. In other words, it suffices if the function of executing the series of processes described above is implemented in any one of the severity prediction systems S, and there is no particular limitation as to how this function is implemented.
  • the processor that executes this arithmetic processing is composed of various single processing units such as a single processor, a multiprocessor, and a multicore processor. In addition to these, it also includes a combination of these various processing devices and a processing circuit such as ASIC (Application Specific Integrated Circuit) or FPGA (Field-Programmable Gate Array).
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable Gate Array
  • the programs that make up the software are installed in the computer via a network or a recording medium.
  • the computer may be a computer in which dedicated hardware is installed, or a general-purpose computer capable of executing a predetermined function by installing a program (for example, a general-purpose personal computer, etc.). general electronic equipment).
  • the steps of writing the program may include only processes performed in chronological order, but may also include processes performed in parallel or individually. Also, the steps of writing the program may be executed in any order without departing from the gist of the present invention.
  • a recording medium recording such a program may be provided to the user by being distributed separately from the computer main body, or may be provided to the user in a state pre-installed in the computer main body.
  • the storage medium distributed separately from the computer main body is composed of a magnetic disk (including a floppy disk), an optical disk, a magneto-optical disk, or the like.
  • the optical disc is composed of, for example, a CD-ROM (Compact Disc-Read Only Memory), a DVD (Digital Versatile Disc), or a Blu-ray (registered trademark) Disc (Blu-ray Disc).
  • the magneto-optical disc is composed of, for example, an MD (Mini Disc) or the like.
  • These storage media are implemented as, for example, removable media 51 and 52, which are loaded into the drives 18 and 28 and incorporated into the computer main body.
  • the recording medium provided to the user in a state pre-installed in the computer main body is, for example, the ROM 12 or ROM 22 in which the program is recorded, or the SSD (Solid State Drive) included in the storage unit 15 or storage unit 25, It is composed of a hard disk or the like.
  • test data management device 10 test data management device, 20 severity prediction device, 11, 21 CPU, 12, 22 ROM, 13, 23 RAM, 14, 24 communication unit, 15, 25 storage unit, 16, 26 input unit, 17, 27 output unit , 18, 28 drive, 51, 52 removable media, 111 inspection data management unit, 112 inspection data provision unit, 151, 251 inspection data storage unit, 211 inspection data acquisition unit, 212 feature value extraction unit, 213 prediction model construction unit, 214 prediction execution unit, 252 feature amount storage unit, 253 prediction model storage unit, S severity prediction system

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Public Health (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • Business, Economics & Management (AREA)
  • Data Mining & Analysis (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Primary Health Care (AREA)
  • Chemical & Material Sciences (AREA)
  • Economics (AREA)
  • Hematology (AREA)
  • Human Resources & Organizations (AREA)
  • Strategic Management (AREA)
  • Epidemiology (AREA)
  • Databases & Information Systems (AREA)
  • General Physics & Mathematics (AREA)
  • Marketing (AREA)
  • Tourism & Hospitality (AREA)
  • Quality & Reliability (AREA)
  • General Business, Economics & Management (AREA)
  • Operations Research (AREA)
  • Theoretical Computer Science (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Ecology (AREA)
  • Game Theory and Decision Science (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Urology & Nephrology (AREA)
  • Development Economics (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Medical Treatment And Welfare Office Work (AREA)

Abstract

より簡便な方法で、ウイルスの感染者の重症化に関する予測を行う。 重症化予測装置20は、特徴量抽出部212と、予測モデル構築部213と、予測実行部214と、を備える。特徴量抽出部212は、ウイルスの感染者の血液に含まれる複数の成分それぞれの検査値を特徴量として抽出する。予測モデル構築部213は、被験者となる感染者の血液から抽出された特徴量を因子とすると共に、被験者となる感染者がウイルスへの感染により重症化したか否かを目的変数として、ロジスティックス回 帰分析を行うことにより、重症化に関する予測をする予測モデルを構築する。予測実行部214は、予測対象者となる感染者の血液から抽出された特徴量と、予測モデルとに基づいて、予測対象者となる感染者の重症化に関する予測をする。

Description

重症化予測装置、重症化予測方法、及びプログラム
 本発明は、重症化予測装置、重症化予測方法、及びプログラムに関する。
 近年、新型コロナウイルスに代表される様々なウイルスの感染症への対策が、より重要となっている。また、これに伴い、ウイルスの感染に関する技術の開発が、広く行われている。
 このような技術の一例が特許文献1に開示されている。特許文献1に開示の技術では、ポリメラーゼ連鎖反応(PCR:Polymerase Chain Reaction)に基づいた、いわゆるPCR検査において、偽陰性が生まれる状況を回避することによって、陰性の判定精度をより向上させている。
特開2019-092505号公報
 ところで、ウイルスの感染者が重症化した場合、その治療のためには、専門の医療スタッフや特殊な医療機器や薬剤等が必要となり、治療はより困難となる。従って、このような重症化に対して備えるため、医療現場では、患者が重症化するか否かを予測する必要がある。
 この点、上述した特許文献1に開示の技術等の一般的な技術では、ウイルスに感染しているか否か(すなわち、陽性であるか陰性であるか)について判定を行うことができるに過ぎず、ウイルスの感染者が、その後重症化するか否かについては判定をすることができない。
 そのため、医療従事者は、ウイルスの感染者を適宜観察すると共に、多数の項目について検査を行い、様々な指標(例えば、意識レベル、発熱、咳、味覚障害、倦怠感、吐き気や嘔吐、心不全、及び肝機能障害等)に基づいて、重症化に関する予測をしている。しかしながら、このような適宜の観察や多数の項目に関する検査を伴う重症化に関する予測は、医療従事者に負担を生じさせるものであった。
 本発明は、このような状況に鑑みてなされたものである。そして、本発明の課題は、より簡便な方法で、ウイルスの感染者の重症化に関する予測を行うことである。
 上記課題を解決するため、本発明の一実施形態に係る重症化予測システムは、
 ウイルスの感染者の血液に含まれる複数の成分それぞれの検査値を特徴量として抽出する特徴量抽出手段と、
 被験者となる前記感染者の血液から抽出された前記特徴量を因子とすると共に、前記被験者となる前記感染者が前記ウイルスへの感染により重症化したか否かを目的変数として、ロジスティックス回帰分析を行うことにより、重症化に関する予測をする予測モデルを構築するモデル構築手段と、
 予測対象者となる前記感染者の血液から抽出された前記特徴量と、前記予測モデルとに基づいて、前記予測対象者となる前記感染者の重症化に関する予測をする予測手段と、
 を備えることを特徴とする。
 本発明によれば、より簡便な方法で、ウイルスの感染者の重症化に関する予測を行うことができる。
重症化予測システムSの全体構成を示すブロック図である。 重症化予測装置20により行われる、ウイルスの感染者の重症化に関する予測を実現するための処理の概要について示す模式図である。 検査データ管理装置10の構成の一例を示すブロック図である。 検査データ記憶部151が記憶する検査データの構造を模式的に示すテーブルである。 重症化予測装置20の構成の一例を示すブロック図である。 検査データ管理装置10及び重症化予測装置20が実行する検査データ更新処理の流れを説明するフローチャートである。 重症化予測装置20が実行する予測モデル構築処理の流れを説明するフローチャートである。 重症化予測装置20が実行する予測実行処理の流れを説明するフローチャートである。 トレーニンググループのサイズに応じた各因子の影響度の変化について示すグラフである。
 以下、添付の図面を参照して本発明の実施形態の一例について説明する。
 [システム構成]
 図1は、本実施形態に係る重症化予測システムSの全体構成を示すブロック図である。図1に示すように、重症化予測システムSは、n台(nは、1以上の任意の整数値)の検査データ管理装置10(ここでは、検査データ管理装置10-1、・・・、検査データ管理装置10-n)と、重症化予測装置20と、ネットワーク30と、を含む。なお、以下の説明において、n台の検査データ管理装置10を区別することなく説明する場合には、符号の末尾を省略して、単に「検査データ管理装置10」と呼ぶ。
 検査データ管理装置10のそれぞれと、重症化予測装置20とは、任意の通信方式に準拠して、通信可能に接続される。この通信は、装置間で直接行われてもよいし、中継装置を含んだネットワーク30を介して行われてもよい。ネットワーク30を介して通信が行われる場合、このネットワーク30は、例えば、インターネットや、LAN(Local Area Network)といったネットワークにより実現される。
 重症化予測システムSは、本発明の実施形態の一例であり、より簡便な方法で、ウイルスの感染者の重症化に関する予測を行うものである。ここで、本発明の発明者は、ウイルスの感染者の重症化に関する予測について試験研究を重ねた結果、ウイルスの感染者の血液に含まれる複数の成分の検査値と、ウイルスの感染者の重症化との間に相関性があることを見出した。そして、本発明の発明者は、ウイルスの感染者の血液に含まれる所定の成分の検査値に基づいて、ウイルスの感染者の重症化に関する予測をすることが可能であると着想し、本発明を成すに至った。
 以下、このような本発明の実施形態の一例である重症化予測システムSについて、以下詳細に説明する。この説明のための一例として、「ウイルス」は、新型コロナウイルスと称されるSARSコロナウイルス2(SARS-CoV-2)であり、ウイルスの「感染者」はこの新型コロナウイルスにより新型コロナウイルス感染症(COVID-19)に感染した者であることを想定する。
 ただし、これは説明のための一例に過ぎず、本発明の適用範囲を限定する趣旨ではない。例えば、重症化予測システムSが、他のウイルスを対象として、この他のウイルスの感染者の重症化に関する予測を行うようにしてもよい。
 検査データ管理装置10は、検査データを管理する。検査データ管理装置10は、例えば、病院や検査機関等の医療施設に設置されたサーバやパーソナルコンピュータ、あるいはクラウドサーバ等により実現される。この検査データには、例えば、ウイルスの感染者の血液に含まれる複数の成分それぞれの検査値や、ウイルスの感染者が重症化したか否かを示す情報が含まれる。
 検査データ管理装置10は、医療施設で血液検査が行われたり、医療従事者によりウイルスの感染者が重症化したとの診断がなされたりした場合に、これらの検査や診断結果に応じて、検査データを適宜更新する。また、検査データ管理装置10は、更新後の最新の検査データを重症化予測装置20に対して提供する。
 重症化予測装置20は、検査データ管理装置10から提供された検査データに基づいて、ウイルスの感染者の重症化に関する予測をする。重症化予測装置20は、例えば、病院や検査機関等の医療施設に設置されたサーバやパーソナルコンピュータ、あるいはクラウドサーバ等により実現される。
 重症化予測装置20により行われる処理の概要について、図2を参照して説明をする。図2は、重症化予測装置20により行われる、ウイルスの感染者の重症化に関する予測を実現するための処理の概要について示す模式図である。
 前提として、本実施形態では、ウイルスの感染者を3つに分類する。
 まず、ウイルスの感染者であって、自身の検査データが予測モデルの構築のために用いられる感染者を「被験者」に分類する。この被験者は、さらに、重症と診断された(すなわち、重症化した)被験者(図中の(A)に相当)と、非重症と診断された(すなわち、重症化しなかった)被験者(図中の(B)に相当)に分類される。一方で、ウイルスの感染者であって、重症化に関する予測の対象者となる感染者を「予測対象者」に分類する(図中の(C)に相当)。
 そして、重症化予測装置20は、被験者となるウイルスの感染者の血液に含まれる複数の成分それぞれの検査値を特徴量として抽出する(図中の(1)及び(2)に相当)。
 次に、重症化予測装置20は、被験者となる感染者の血液から抽出された特徴量を因子(すなわち、説明変数)とすると共に、特徴量の取得元となった被験者となる感染者がウイルスへの感染により重症化したか否かを目的変数として、ロジスティックス回帰分析を行うことにより、重症化に関する予測をする予測モデルを構築する(図中の(3)に相当)。この予測モデルは、予測対象者を「重症化する」又は「重症化しない」の何れかに分類する二項分類器である。
 次に、重症化予測装置20は、予測対象者となるウイルスの感染者の血液に含まれる複数の成分それぞれの検査値を特徴量として抽出する(図中の(4)に相当)。
 さらに、重症化予測装置20は、予測対象者となる感染者の血液から抽出された特徴量と、予測モデルとに基づいて、予測対象者となる感染者の重症化に関する予測をする。具体的には、重症化予測装置20は、予測対象者となる感染者から抽出された特徴量を予測モデルに入力(図中の(5)に相当)する。そして、重症化予測装置20は、この入力に対応する予測モデルからの出力を、予測対象者の重症化に関する予測結果として、重症化予測装置20のユーザ(例えば、医療従事者)に対して提示する(図中の(6)に相当)。
 このように、重症化予測装置20は、被験者となる感染者の血液から抽出された特徴量により構築した予測モデルと、予測対象者となる感染者の血液から抽出された特徴量とに基づいて、予測対象者となる感染者の重症化に関する予測をする。ここで、このような処理を実現するための特徴量は、感染者の血液に含まれる複数の成分それぞれの検査値から抽出できる。
 すなわち、医療従事者は、感染者の血液を採取するのみで、重症化予測装置20により予測を行うことができる。これは、従来行われている、適宜の観察や多数の項目に関する検査を伴う重症化に関する予測に比べて、非常に簡便な方法である。
 従って、重症化予測装置20によれば、より簡便な方法で、ウイルスの感染者の重症化に関する予測を行うことができる。
 次に、このようなウイルスの感染者の重症化に関する予測を実現するための、検査データ管理装置10及び重症化予測装置20のハードウェア及び機能の構成について説明をする。
 [検査データ管理装置の構成]
 検査データ管理装置10の構成について、図3を参照して説明をする。図3は、検査データ管理装置10の構成の一例を示すブロック図である。
 図3に示すように、検査データ管理装置10は、CPU(Central Processing Unit)11と、ROM(Read Only Memory)12と、RAM(Random Access Memory)13と、通信部14と、記憶部15と、入力部16と、出力部17と、ドライブ18と、を備えている。これら各部は、信号線により接続されており、相互に信号を送受する。
 CPU11は、ROM12に記録されているプログラム、又は、記憶部15からRAM13にロードされたプログラムに従って各種の処理を実行する。
 RAM13には、CPU11が各種の処理を実行する上において必要なデータ等も適宜記憶される。
 通信部14は、CPU11が、他の装置との間で通信を行うための通信制御を行う。
 記憶部15は、DRAM(Dynamic Random Access Memory)等の半導体メモリで構成され、各種データを記憶する。
 入力部16は、各種ボタン及びタッチパネル、又はマウス及びキーボード等の外部入力装置で構成され、ユーザの指示操作に応じて各種情報を入力する。
 出力部17は、ディスプレイやスピーカ等で構成され、画像や音声を出力する。
 ドライブ18には、磁気ディスク、光ディスク、光磁気ディスク、あるいは半導体メモリ等よりなる、リムーバブルメディア51が適宜装着される。ドライブ18よってリムーバブルメディア51から読み出されたプログラムは、必要に応じて記憶部15にインストールされる。
 検査データ管理装置10では、これら各部が協働することにより、「検査データ管理処理」を行なう。
 ここで、検査データ管理処理は、検査データ管理装置10が管理データを適宜更新すると共に、更新後の最新の検査データを重症化予測装置20に対して提供する一連の処理である。
 検査データ管理処理が実行される場合、図3に示すように、CPU11において、検査データ管理部111と、検査データ提供部112と、が機能する。
 また、記憶部15の一領域には、検査データ記憶部151が設けられる。
 以下で特に言及しない場合も含め、これら機能ブロック間では、処理を実現するために必要なデータを、適切なタイミングで適宜送受信する。
 検査データ管理部111は、入力部16が受け付けた検査データ管理装置10のユーザによる入力操作や、通信部14を介して受信した他の装置(例えば、医療施設で利用される血液検査装置)からの検査結果に基づいて、最新の検査データ(例えば、最新の検査値や最新の診断結果)を取得する。
 そして、検査データ管理部111は、取得した最新の検査データに基づいて、検査データ記憶部151が記憶している既存の検査データを最新の内容に更新する。すなわち、検査データ記憶部151は、検査データを記憶する記憶部として機能する。
 検査データ記憶部151が記憶する検査データについて、図4を参照して説明する。図4は、検査データ記憶部151が記憶する検査データの構造を模式的に示すテーブルである。
 図4に示すように、この検査データテーブルは、列(カラム)として、感染者情報である「感染者ID」及び「感染者属性」と、検査値である「血小板」、「LDH」、・・・、「フェリチン」と、「重症化診断結果」と、を含んでいる。また、この検査データテーブルは、感染者それぞれについて、行(レコード)を設けている。そして各入力項目(フィールド)には、検査データ管理部111により対応するデータが格納される。
 ここで、感染者IDは、各感染者を識別するための識別子であり、各感染者に対してユニークな番号やテキスト等の情報が割り当てられ、格納される。
 感染者属性は、感染者の属性を示す情報であり、例えば、感染者の年齢や性別や基礎疾患の有無等の情報が格納される。
 血小板、LDH、・・・、フェリチンは、感染者の血液の成分それぞれに対応するものであり、これら血液の成分それぞれの検査値が格納される。ただし、図中に示したこれらの成分(すなわち、血小板、LDH、・・・、フェリチン)は例示に過ぎず、これら以外の成分の検査値が格納されるようにしてもよい。なお、検査値を取得する前提となる、血液の採取や血液検査の手法については、当業者によく知られているので、ここでの詳細な説明は省略する。また、図中では、検査値の値を「***」として示す。
 重症化診断結果は、医療従事者による重症化に関する診断結果が格納される。具体的には、重症化したと診断された場合に「重症化」、重症化しなかったと診断された場合に「非重症化」、未だ診断がなされていない場合に「未確定」といった情報が格納される。
 上述したように、検査データ管理部111は、医療施設で血液検査が行われたり、医療従事者によりウイルスの感染者が重症化したとの診断がなされたりした場合に、これらの検査や診断結果に応じて、検査データを適宜更新する。
 なお、この検査データは、本実施形態のために収集された本実施形態専用の検査データであってもよいが、医療施設間での情報共有や研究のために収集された一般的な検査データであってもよい。すなわち、本実施形態は、すでに世の中に多数存在する、一般的な検査データを流用して、予測モデルの構築等を行うことが可能である。
 図3に戻り、検査データ提供部112は、検査データ記憶部151が記憶する更新後の最新の検査データを、通信部14を介して重症化予測装置20に対して送信することにより提供する。提供のタイミングは、検査データが更新される都度であってもよいし、重症化予測装置20からの要求に応じてであってもよいし、所定の周期であってもよい。また、提供の方法としては、検査データを、通信部14を介して重症化予測装置20に送信する方法でもよいが、リムーバブルメディア51等の記憶媒体を介する方法でもよい。
 [重症化予測装置の構成]
 次に、重症化予測装置20の構成について、図5を参照して説明をする。図5は、重症化予測装置20の構成の一例を示すブロック図である。図5に示すように、重症化予測装置20は、CPU21と、ROM22と、RAM23と、通信部24と、記憶部25と、入力部26と、出力部27と、ドライブ28と、を備えている。これら各部は、信号線により接続されており、相互に信号を送受する。これら各部は、図3を参照して上述した、検査データ管理装置10が備える同名の各部と同等のハードウェアにより実現される。例えば、CPU21は、CPU11と同等のハードウェアにより実現される。従って、ここでは、これら各部についての、重複する説明を省略する。
 重症化予測装置20では、これら各部が協働することにより、「検査データ更新処理」、「予測モデル構築処理」及び「予測実行処理」を行なう。
 ここで、上述したように、検査データ管理処理は、検査データ管理装置10が管理データを適宜更新すると共に、更新後の最新の検査データを重症化予測装置20に対して提供する一連の処理である。
 また、予測モデル構築処理は、被験者の検査データから抽出した特徴量に基づいて、重症化に関する予測を行うための予測モデルを構築する一連の処理である。
 さらに、予測実行処理は、予測対象者の検査データから抽出した特徴量と、予測モデルとに基づいて、重症化に関する予測を実行する一連の処理である。
 これらの処理が実行される場合、図5に示すように、CPU21において、検査データ取得部211と、特徴量抽出部212と、予測モデル構築部213と、予測実行部214と、が機能する。
 また、記憶部25の一領域には、検査データ記憶部251と、特徴量記憶部252と、予測モデル記憶部253と、が設けられる。
 以下で特に言及しない場合も含め、これら機能ブロック間では、処理を実現するために必要なデータを、適切なタイミングで適宜送受信する。
 検査データ取得部211は、検査データ管理装置10から提供された最新の検査データを取得する。例えば、検査データの提供が、検査データ管理装置10からの送信により行われる場合、検査データ取得部211は、この検査データを、通信部24を介して受信することにより取得する。また、検査データの提供が、リムーバブルメディア51等の記憶媒体を介して行われる場合、検査データ取得部211は、この検査データを、ドライブ28を介して読み取ることにより取得する。
 そして、検査データ取得部211は、取得した検査データを検査データ記憶部251に記憶させる。すなわち、検査データ記憶部251は、検査データを記憶する記憶部として機能する。これにより、検査データ記憶部251の記憶する検査データは、検査データ記憶部151の記憶する検査データと同様に、最新の内容に更新される。なお、検査データは、複数存在する検査データ管理装置10の内の、何れの検査データ管理装置10から取得されてもよい。
 特徴量抽出部212は、検査データ記憶部251が記憶する検査データから特徴量を抽出する。具体的には、特徴量抽出部212は、ウイルスの感染者の血液の成分の検査値の値と、その感染者の重症化診断結果とを組にした情報を、各感染者それぞれについて特徴量として抽出する。
 ここで、検査データには、血液中の様々な成分の検査値が含まれているが、その中には、ウイルスの感染者の重症化との間に相関性が高い成分と、相関性が低い(あるいは相関性が無い)成分が存在する。そこで、特徴量抽出部212は、特徴量として、全ての成分の検査値を抽出するのではなく、ウイルスの感染者の重症化との間に相関性が高い成分の検査値を抽出するようにする。これにより、より精度高く、重症化に関する予測を行うことが可能な予測モデルを構築したり、予測を実行したりすることができる。具体的に、何れの成分の検査値を特徴量として抽出することが望ましいかについては、後述の検証例において説明する。
 そして、特徴量抽出部212は、抽出した特徴量を特徴量記憶部252に記憶させる。すなわち、特徴量記憶部252は、特徴量を記憶する記憶部として機能する。
 予測モデル構築部213は、特徴量記憶部252が記憶する被験者の検査データの特徴量に基づいて、予測モデルを構築する。この予測モデルの構築には、上述したように、被験者となる感染者であって重症化した感染者(すなわち、重症化診断結果が「重症化」の感染者)の検査データの特徴量と、被験者となる感染者であって重症化しなかった感染者(すなわち、重症化診断結果が「非重症化」の感染者)の検査データの特徴量とが用いられる。
 予測モデル構築部213は、まず、予測モデルの構築を適切に行うべく、これらの特徴量に対して、所定の前処理を行う。予測モデル構築部213は、例えば、前処理として、特徴量として抽出された血液の成分の検査値のそれぞれについて、検査値の平均と標準偏差を用いて、平均0で標準偏差1となるようにデータの標準化を行う。これにより、各血液の成分を同じスケールで扱って、予測モデルを構築することができる。
 また、例えば、或る感染者について特徴量として抽出された複数の成分それぞれの検査値の一部が欠損している場合がある。例えば、そもそも検査データにおいて、或る成分についての検査値が存在しない場合である。この場合に、予測モデル構築部213は、前処理として、他の感染者の、この或る成分の検査値に基づいた代表値により、前記欠損を補間する。代表値は、例えば、平均値や、中央値や、最頻値である。これにより、血液の一部の成分について検査値が欠損していないが、血液の他の成分について検査値が存在するような被験者の特徴量も、予測モデルの構築に用いることが可能となる。
 そして、予測モデル構築部213は、このような前処理を行った特徴量に基づいて、予測モデルを構築する。ここで、予測モデル構築部213により構築される予測モデルは、予測対象者を「重症化する」又は「重症化しない」の何れかに分類する二項分類器であればよく、その構築手法は、特に限定されないが、例えば、予測モデル構築部213は、被験者となる感染者の血液から抽出された特徴量を因子(すなわち、説明変数)とすると共に、特徴量の取得元となった被験者となる感染者がウイルスへの感染により重症化したか否かを目的変数として、ロジスティックス回帰分析を行うことにより、重症化に関する予測をする予測モデルを構築する。
 この場合、予測モデル構築部213は、下記の式(1)に示すロジスティック回帰式において、変数増減法による説明変数の最適化を行う。ここで、説明変数は、特徴量抽出部212が抽出した特徴量における血液の成分それぞれの検査値であり、説明変数として何れの血液の成分の検査値の偏回帰係数を増減するかを最適化する機械学習を行うことにより、予測モデルを構築する。
Figure JPOXMLDOC01-appb-M000001
 ただし、式(1)において、pは陽性確率であり、βは偏回帰係数であり、xは説明変数である。
 この場合に、予測モデル構築部213は、予測モデルの構築において、その他の既存の手法をさらに適用してもよい。例えば、予測モデル構築部213は、被験者となる感染者であって、重症化した感染者と、重症化しなかった感染者との比に基づいたクラス重みの調整を行う。
 あるいは、予測モデル構築部213は、汎化性能を実現するため、k-分割交差検証(k-fold cross-validation)による検証を行うようにする。この場合、Kの値は、例えば、5とする。
 他にも、予測モデル構築部213は、例えば、分類器の予測能の指標として、ROC(Receiver operating characteristic)曲線を作成し、AUC(Area Under the Curve)を求める。この際、カットオフ値p>pの場合非重症化(すなわち、陰性)とし、カットオフ値p≦pの場合重症化(すなわち、陽性)とし、これらの結果に基づいて、感度(すなわち、正常な人を正常と判定できる確率)と、特異度(すなわち、異常な人を以上と判定できる確率)を特定し、検証を行う。
 予測モデル構築部213は、適宜このような検証等を行いつつ、機械学習を繰り返し、予測モデルを構築する。そして、予測モデル構築部213は、構築した予測モデルを予測モデル記憶部253に記憶させる。すなわち、予測モデル記憶部253は、予測モデルを記憶する記憶部として機能する。
 予測実行部214は、特徴量記憶部252が記憶している予測対象者となる感染者の検査データの特徴量と、予測モデル記憶部253が記憶している予測モデルとに基づいて、重症化に関する予測をする。例えば、予測実行部214は、入力部26が受け付けたユーザからの予測対象となる感染者の選択操作(又は、通信部24を介して受信したユーザからの予測対象となる感染者の選択操作)に基づいて、予測対象となる感染者の特徴量を取得する。この場合、この予測対象となる感染者は、重症化診断結果が「未確定」の感染者から選択される。
 また、予測実行部214は、予測を適切に行うべく、この予測対象者の特徴量に対して、予測モデル構築部213による前処理と同様にデータの正規化等の前処理を行う。そして、予測実行部214は、この前処理後の予測対象者の特徴量を、予測モデル記憶部253が記憶する予測モデルに入力することにより、重症化に関する予測を実行する。また、予測実行部214は、この入力に対応する予測モデルからの出力を、予測対象者の重症化に関する予測結果とする。ここで、この予測モデルは、予測対象者を「重症化する」又は「重症化しない」の何れかに分類する二項分類器である。そのため、予測モデルの出力は、予測対象者が「重症化する」又は「重症化しない」の何れに該当するのかを示すものである。
 そして、予測実行部214は、この予測結果を、重症化予測装置20のユーザ(例えば、医療従事者)に対して提示する。この提示は、例えば、出力部27に含まれるディスプレイへの表示や、出力部27に含まれるスピーカからの音声出力や、通信部24を介した印刷装置(図示を省略する。)からの紙媒体への印刷や、通信部24を介したユーザが利用する他の装置(図示を省略する。)への送信であってよい。
 これにより、被験者となる感染者の血液から抽出された特徴量により構築した予測モデルと、予測対象者となる感染者の血液から抽出された特徴量とに基づいて、予測対象者となる感染者の重症化に関する予測を行い、その予測結果をユーザに対して提示することができる。そのため、ユーザは、重症化すると予測された感染者への対策(例えば、病床や特殊な医療機器の確保等)を予め講じることができ、いち早く適切な治療を開始するようなことが可能となる。
[動作]
 次に、重症化予測システムSの動作について説明する。
 [検査データ更新処理]
 図6は、検査データ管理装置10及び重症化予測装置20が実行する検査データ更新処理の流れを説明するフローチャートである。検査データ更新処理は、検査データ管理装置10及び重症化予測装置20の起動に伴い、周期的に繰り返し実行される。
 まず、検査データ管理装置10側の処理の流れから説明する。
 ステップS11において、検査データ管理部111は、ユーザによる入力操作や、他の装置(例えば、医療施設で利用される血液検査装置)からの検査結果の受信により、最新の検査データを取得したか否かを判定する。最新の検査データを取得した場合は、ステップS11においてYesと判定され、処理はステップS12に進む。一方で、最新の検査データを取得していない場合は、ステップS11においてNoと判定され、処理はステップS13に進む。
 ステップS12において、検査データ管理部111は、取得した最新の検査データを検査データ記憶部151に記憶させることにより、検査データを更新する。
 ステップS13において、検査データ提供部112は、検査データ記憶部151が記憶する更新後の最新の検査データを、通信部14を介して重症化予測装置20に対して送信することにより提供するタイミングとなったか否かを判定する。上述したように、提供のタイミングは、検査データが更新される都度であってもよいし、重症化予測装置20からの要求に応じてであってもよいし、所定の周期であってもよい。検査データを提供するタイミングとなった場合は、ステップS13においてYesと判定され、処理はステップS14に進む。一方で、検査データを提供するタイミングとなっていない場合は、ステップS13においてNoと判定され、本処理は終了する。そして、所定の周期でまたステップS11から処理が繰り返される。
 ステップS14において、検査データ提供部112は、検査データ記憶部151が記憶する更新後の最新の検査データを、通信部14を介して重症化予測装置20に対して送信することにより提供する。これにより、本処理は終了する。そして、所定の周期でまたステップS11から処理が繰り返される。
 次に、重症化予測装置20側の処理の流れについて説明する。
 ステップS21において、検査データ取得部211は、最新の検査データを受信したか否かを判定する。最新の検査データを受信した場合は、ステップS21においてYesと判定され、処理はステップS22に進む。一方で、最新の検査データを受信していない場合は、ステップS21においてNoと判定され、本処理は終了する。そして、所定の周期でまたステップS21から処理が繰り返される。
 ステップS22において、受信した最新の検査データを検査データ記憶部251に記憶させることにより、検査データを更新する。これにより、本処理は終了する。そして、所定の周期でまたステップS21から処理が繰り返される。
 以上説明した検査データ更新処理により、検査データ記憶部151及び検査データ記憶部251の記憶する検査データは、適宜最新の内容に更新される。
 [予測モデル構築処理]
 図7は、重症化予測装置20が実行する予測モデル構築処理の流れを説明するフローチャートである。予測モデル構築処理は、入力部26が受け付けた重症化予測装置20のユーザによる、予測モデル構築処理の開始指示操作に基づいて実行される。
 ステップS31において、特徴量抽出部212は、検査データ記憶部251が記憶する検査データから被験者の特徴量を抽出する。
 ステップS32において、特徴量抽出部212は、抽出した被験者の特徴量を特徴量記憶部252に記憶させる。
 ステップS33において、予測モデル構築部213は、予測モデルの構築を適切に行うべく、被験者の特徴量に対して、所定の前処理を行う。
 ステップS34において、予測モデル構築部213は、前処理を行った被験者の特徴量に基づいて、予測モデルを構築する。
 ステップS35において、予測モデル構築部213は、予測モデルの構築を終了するか否かを判定する。予測モデル構築部213は、例えば、所定回数ないし所定時間予測モデルの構築のための機械学習を継続した場合や、予測モデルの予測精度が所定の精度となった場合に予測モデルの構築を終了する。予測モデルの構築を終了する場合は、ステップS35においてYesと判定され、処理はステップS36に進む。一方で、予測モデルの構築を終了しない場合は、ステップS35においてNoと判定され、処理はステップS34に戻り、予測モデルの構築が継続される。
 ステップS36において、予測モデル構築部213は、構築した予測モデルを予測モデル記憶部253に記憶させる。これにより、本処理は終了する。
 以上説明した、予測モデル構築処理により、重症化に関する予測をするための予測モデルが構築される。
 [予測実行処理]
 図8は、重症化予測装置20が実行する予測実行処理の流れを説明するフローチャートである。予測実行処理は、入力部26が受け付けた重症化予測装置20のユーザによる、予測実行処理の開始指示操作に基づいて実行される。
 ステップS41において、検査データ記憶部251が記憶する検査データから予測対象者の特徴量を抽出する。
 ステップS42において、特徴量抽出部212は、抽出した予測対象者の特徴量を特徴量記憶部252に記憶させる。
 ステップS43において、予測実行部214は、予測を適切に行うべく、予測対象者の特徴量に対して、予測モデル構築部213による前処理と同様にデータの正規化等の前処理を行う。
 ステップS44において、予測実行部214は、前処理後の予測対象者の特徴量を、予測モデル記憶部253が記憶する予測モデルに入力することにより、重症化に関する予測を実行する。
 ステップS45において、予測実行部214は、この入力に対応する予測モデルからの出力を、予測対象者の重症化に関する予測結果として、重症化予測装置20のユーザ(例えば、医療従事者)に対して提示する。これにより、本処理は終了する。
 以上説明した予測実行処理により、重症化予測装置20は、被験者となる感染者の血液から抽出された特徴量により構築した予測モデルと、予測対象者となる感染者の血液から抽出された特徴量とに基づいて、予測対象者となる感染者の重症化に関する予測をする。ここで、このような処理を実現するための特徴量は、感染者の血液に含まれる複数の成分それぞれの検査値から抽出できる。
 すなわち、医療従事者は、感染者の血液を採取するのみで、重症化予測装置20により予測を行うことができる。これは、従来行われている、適宜の観察や多数の項目に関する検査を伴う重症化に関する予測に比べて、非常に簡便な方法である。
 従って、重症化予測装置20によれば、より簡便な方法で、ウイルスの感染者の重症化に関する予測を行うことができる。
 [検証例]
 以上、本発明の実施形態について説明した。次に、本発明の実施形態における、検証例について説明をする。
 本検証例では、複数の病院から収集した300人分のウイルスの感染者の検査データに対して、本発明の実施形態における上述の各処理を実行した。なお、これら300人の年齢層は多岐にわたっている。また、これら300人の性別についても男女がほぼ同数含まれている。さらに、これら300人の内、重症患者はおおむね100人である。
 そして、構築される予測モデルの精度を高めるために、予測モデルの構築に用いるトレーニンググループのサイズ(すなわち、300人分の特徴量の内、何人分の特徴量を予測モデルの構築の機械学習のために用いるのか)を変更することにより、トレーニンググループを複数作成した。具体的には、300人分の特徴量の内、10%である30人分の特徴量を予測モデルの構築に用いる第1のトレーニンググループを作成し、20%である60人分の特徴量を予測モデルの構築に用いる第2のトレーニンググループを作成し、これを10%間隔で増加させていくことにより、90%である270人分の特徴量を予測モデルの構築に用いる第9のトレーニンググループまで作成した。
 そして、各サイズグループの特徴量を用いて予測モデルを構築することを、20回行った。
 さらに、各予測モデルの構築において得られた、各因子(すなわち、説明変数とされた各血液の成分の検査値)の係数(すなわち、Zスコア)を正規化した。そして、20回行った結果の平均値を算出した。その平均値を図9に示す。
 図9は、トレーニンググループのサイズに応じた各因子の影響度の変化について示すグラフである。このグラフでは、縦軸が各因子の係数(すなわち、Zスコア)の平均値を示し、横軸がトレーニンググループのサイズを示す。
 なお、上述したように、特徴量として、全ての成分の検査値を抽出するのではなく、ウイルスの感染者の重症化との間に相関性が高い成分の検査値を抽出するようにしている。ここでは、30を超える血液の成分の中から、リンパ球(Lymphocytes)、ヘモグロビン(Hemoglobin)、クレアチン(Cre:Creatine)、乳酸脱水素酵素(LDH:Lactate Dehydrogenase)、フェリチン(Ferritin)、Dダイマー(D-dimer)、及びC反応性蛋白質(CRP:C-reactive protein)の7つの成分の検査値を抽出している。これらは、医師による医学的見地や、予測モデルの構築の試行から、ウイルスの感染者の重症化との間に相関性が高い成分として選択された検査値である。
 そして、図9に示すように、本検証例では、特に、リンパ球、フェリチン、ヘモグロビン、C反応性蛋白質、及び乳酸脱水素酵素の順に、ウイルスの感染者の重症化との間に相関性が高い成分となった。従って、予測モデルを構築する場合は、これらの成分の一部又は全部の検査値を特徴量として因子(すなわち、目的変数)とすることにより、血液に含まれる他の成分よりも重要度の高い因子として予測モデルを構築することが望ましい。
 そして、本検証例では、何れのトレーニンググループの予測モデルも、重症化に関する予測の精度は、80%を超えていた。すなわち、80%を超える高い確率で、予測対象者が、重症化するか(あるいは、重症化しないか)を予測することが可能であった。このように、本発明の実施形態によれば、より簡便な方法で、ウイルスの感染者の重症化に関する予測を行うことができるのみならず、精度高い予測を行うこともできる。
 [変形例]
 以上、本発明の実施形態について説明したが、この実施形態は例示に過ぎず、本発明の技術的範囲を限定するものではない。本発明は、本発明の要旨を逸脱しない範囲で、その他の様々な実施形態を取ることが可能である共に、省略及び置換等種々の変形を行うことができる。この場合に、これら実施形態及びその変形は、本明細書等に記載された発明の範囲及び要旨に含まれると共に、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
 一例として、以上説明した本発明の実施形態を、以下に例示するようにして変形してもよい。
 上述した実施形態における重症化予測システムSの装置構成は一例に過ぎず、適宜変更することが可能である。例えば、上述した実施形態では、検査データ管理装置10と、重症化予測装置20とが別体の装置として実現されていた。これに限らず、例えば、検査データ管理装置10と、重症化予測装置20とが一体の装置として実現されてもよい。
 また、上述した実施形態では、検査データ管理装置10や重症化予測装置20のそれぞれを単一のコンピュータで実現していた。これに限らず、検査データ管理装置10や重症化予測装置20のそれぞれを、クラウドコンピューティング等の技術を利用することにより複数のコンピュータで実現するようにしてもよい。
 他にも、上述した実施形態では、1つの予測モデルを構築することを想定していた。これに限らず、複数の予測モデルを構築するようにしてもよい。例えば、検査データに含まれる感染者の属性毎に基づいて、性別毎や年齢層毎に検査データを分類する。そして、性別毎や年齢層毎にそれぞれ予測モデルを構築するようにしてもよい。そして、予測対象者の性別や年齢層に適合する予測モデルを用いて、重症化に関する予測を行うようにしてもよい。これにより、性別や年齢層といった特性により適合した、予測を行うことが可能となる。
 他にも、上述した実施形態では、ロジスティック回帰式により分類器を作成した。これに限らず、例えば、単純パーセプトロンや、線形サポートベクトルマシンといった他の手法により分類器を作成するようにしてもよい。
 [構成例]
 以上のように、本実施形態に係る重症化予測装置20は、特徴量抽出部212と、予測モデル構築部213と、予測実行部214と、を備える。
 特徴量抽出部212は、ウイルスの感染者の血液に含まれる複数の成分それぞれの検査値を特徴量として抽出する。
 予測モデル構築部213は、被験者となる感染者の血液から抽出された特徴量を因子とすると共に、被験者となる感染者がウイルスへの感染により重症化したか否かを目的変数として、ロジスティックス回帰分析を行うことにより、重症化に関する予測をする予測モデルを構築する。
 予測実行部214は、予測対象者となる感染者の血液から抽出された特徴量と、予測モデルとに基づいて、予測対象者となる感染者の重症化に関する予測をする。
 このように、重症化予測装置20は、被験者となる感染者の血液から抽出された特徴量により構築した予測モデルと、予測対象者となる感染者の血液から抽出された特徴量とに基づいて、予測対象者となる感染者の重症化に関する予測をする。ここで、このような処理を実現するための特徴量は、感染者の血液に含まれる複数の成分それぞれの検査値から抽出できる。
 すなわち、医療従事者は、感染者の血液を採取するのみで、重症化予測装置20により予測を行うことができる。これは、従来行われている、適宜の観察や多数の項目に関する検査を伴う重症化に関する予測に比べて、非常に簡便な方法である。
 従って、重症化予測装置20によれば、より簡便な方法で、ウイルスの感染者の重症化に関する予測を行うことができる。
 予測モデル構築部213は、特徴量を因子とする場合に、血液に含まれる複数の成分における、リンパ球、フェリチン、ヘモグロビン、C反応性蛋白質、及び乳酸脱水素酵素の一部又は全部を、血液に含まれる他の成分よりも重要度の高い因子として予測モデルを構築する。
 これにより、重症化と相関性の高い成分の検査値を重要度の高い因子として、精度高く、ウイルスの感染者の重症化に関する予測を行うことができる。
 特徴量取得手段は、或る感染者について特徴量として抽出した複数の成分それぞれの検査値の一部が欠損している場合に、他の感染者の検査値に基づいた代表値により、欠損を補間する。
 これにより、例えば、予測対象者となる感染者について、血液の複数の成分のうちの何れかの成分についての検査値が欠損していたとしても、これを補間できる。そして、他の欠損していない成分の検査値と共に、ウイルスの感染者の重症化に関する予測を行うことができる。
 [ハードウェアやソフトウェアによる機能の実現]
 上述した実施形態による一連の処理を実行させる機能は、ハードウェアにより実現することもできるし、ソフトウェアにより実現することもできるし、これらの組み合わせにより実現することもできる。換言すると、上述した一連の処理を実行する機能が、重症化予測システムSの何れかにおいて実現されていれば足り、この機能をどのような態様で実現するのかについては、特に限定されない。
 例えば、上述した一連の処理を実行する機能を、演算処理を実行するプロセッサによって実現する場合、この演算処理を実行するプロセッサは、シングルプロセッサ、マルチプロセッサ及びマルチコアプロセッサ等の各種処理装置単体によって構成されるものの他、これら各種処理装置と、ASIC(Application Specific Integrated Circuit)又はFPGA(Field-Programmable Gate Array)等の処理回路とが組み合わせられたものを含む。
 また、例えば、上述した一連の処理を実行する機能を、ソフトウェアにより実現する場合、そのソフトウェアを構成するプログラムは、ネットワーク又は記録媒体を介してコンピュータにインストールされる。この場合、コンピュータは、専用のハードウェアが組み込まれているコンピュータであってもよいし、プログラムをインストールすることで所定の機能を実行することが可能な汎用のコンピュータ(例えば、汎用のパーソナルコンピュータ等の電子機器一般)であってもよい。また、プログラムを記述するステップは、その順序に沿って時系列的に行われる処理のみを含んでいてもよいが、並列的あるいは個別に実行される処理を含んでいてもよい。また、プログラムを記述するステップは、本発明の要旨を逸脱しない範囲内において、任意の順番に実行されてよい。
 このようなプログラムを記録した記録媒体は、コンピュータ本体とは別に配布されることによりユーザに提供されてもよく、コンピュータ本体に予め組み込まれた状態でユーザに提供されてもよい。この場合、コンピュータ本体とは別に配布される記憶媒体は、磁気ディスク(フロッピディスクを含む)、光ディスク、又は光磁気ディスク等により構成される。光ディスクは、例えば、CD-ROM(Compact Disc-Read Only Memory)、DVD(Digital Versatile Disc)、あるいはBlu-ray(登録商標) Disc(ブルーレイディスク)等により構成される。光磁気ディスクは、例えば、MD(Mini Disc)等により構成される。これら記憶媒体は、例えば、リムーバブルメディア51やリムーバブルメディア52として実現され、ドライブ18やドライブ28に装着されて、コンピュータ本体に組み込まれる。また、コンピュータ本体に予め組み込まれた状態でユーザに提供される記録媒体は、例えば、プログラムが記録されているROM12やROM22、あるいは記憶部15や記憶部25に含まれるSSD(Solid State Drive)やハードディスク等により構成される。
10 検査データ管理装置、20 重症化予測装置、11,21 CPU、12,22 ROM、13,23 RAM、14,24 通信部、15,25 記憶部、16,26 入力部、17,27 出力部、18,28 ドライブ、51,52 リムーバブルメディア、111 検査データ管理部、112 検査データ提供部、151,251 検査データ記憶部、211 検査データ取得部、212 特徴量抽出部、213 予測モデル構築部、214 予測実行部、252 特徴量記憶部、253 予測モデル記憶部、S 重症化予測システム

Claims (5)

  1.  ウイルスの感染者の血液に含まれる複数の成分それぞれの検査値を特徴量として抽出する特徴量抽出手段と、
     被験者となる前記感染者の血液から抽出された前記特徴量を因子とすると共に、前記被験者となる前記感染者が前記ウイルスへの感染により重症化したか否かを目的変数として、ロジスティックス回帰分析を行うことにより、重症化に関する予測をする予測モデルを構築するモデル構築手段と、
     予測対象者となる前記感染者の血液から抽出された前記特徴量と、前記予測モデルとに基づいて、前記予測対象者となる前記感染者の重症化に関する予測をする予測手段と、
     を備えることを特徴とする重症化予測装置。
  2.  前記モデル構築手段は、前記特徴量を因子とする場合に、前記血液に含まれる複数の成分における、リンパ球、フェリチン、ヘモグロビン、C反応性蛋白質、及び乳酸脱水素酵素の一部又は全部を、前記血液に含まれる他の成分よりも重要度の高い因子として予測モデルを構築する、
     ことを特徴とする請求項1に記載の重症化予測装置。
  3.  前記特徴量抽出手段は、或る感染者について前記特徴量として抽出した複数の成分それぞれの検査値の一部が欠損している場合に、他の感染者の検査値に基づいた代表値により、前記欠損を補間する、
     ことを特徴とする請求項1又は2に記載の重症化予測装置。
  4.  ウイルスの感染者の血液に含まれる複数の成分それぞれの検査値を特徴量として抽出する特徴量抽出ステップと、
     被験者となる前記感染者の血液から抽出された前記特徴量を因子とすると共に、前記被験者となる前記感染者が前記ウイルスへの感染により重症化したか否かを目的変数として、ロジスティックス回帰分析を行うことにより、重症化に関する予測をする予測モデルを構築するモデル構築ステップと、
     予測対象者となる前記感染者の血液から抽出された前記特徴量と、前記予測モデルとに基づいて、前記予測対象者となる前記感染者の重症化に関する予測をする予測ステップと、
     を含むことを特徴とする重症化予測方法。
  5.  ウイルスの感染者の血液に含まれる複数の成分それぞれの検査値を特徴量として抽出する特徴量抽出機能と、
     被験者となる前記感染者の血液から抽出された前記特徴量を因子とすると共に、前記被験者となる前記感染者が前記ウイルスへの感染により重症化したか否かを目的変数として、ロジスティックス回帰分析を行うことにより、重症化に関する予測をする予測モデルを構築するモデル構築機能と、
     予測対象者となる前記感染者の血液から抽出された前記特徴量と、前記予測モデルとに基づいて、前記予測対象者となる前記感染者の重症化に関する予測をする予測機能と、
     をコンピュータに実現させることを特徴とするプログラム。
PCT/JP2022/029037 2021-07-28 2022-07-27 重症化予測装置、重症化予測方法、及びプログラム WO2023008503A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-123710 2021-07-28
JP2021123710 2021-07-28

Publications (1)

Publication Number Publication Date
WO2023008503A1 true WO2023008503A1 (ja) 2023-02-02

Family

ID=85087009

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/029037 WO2023008503A1 (ja) 2021-07-28 2022-07-27 重症化予測装置、重症化予測方法、及びプログラム

Country Status (1)

Country Link
WO (1) WO2023008503A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150376723A1 (en) * 2014-06-27 2015-12-31 University Health Network Prognostic biomarkers for influenza
JP2019528426A (ja) * 2016-06-05 2019-10-10 バーグ エルエルシー 患者層別化及び潜在的バイオマーカー同定のためのシステム及び方法
US20190376969A1 (en) * 2017-02-03 2019-12-12 Duke University Nasopharyngeal protein biomarkers of acute respiratory virus infection and methods of using same
WO2020200186A1 (zh) * 2019-04-01 2020-10-08 中山大学 慢性炎症和病毒感染的诊断和治疗
CN111796098A (zh) * 2020-05-29 2020-10-20 中国科学院武汉病毒研究所 诊断新冠肺炎由重症转危重症的血浆蛋白标志物、检测试剂或检测工具
WO2022004730A1 (ja) * 2020-06-30 2022-01-06 株式会社堀場製作所 体液分析装置、体液検体を判定するための方法、および、コンピュータープログラム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150376723A1 (en) * 2014-06-27 2015-12-31 University Health Network Prognostic biomarkers for influenza
JP2019528426A (ja) * 2016-06-05 2019-10-10 バーグ エルエルシー 患者層別化及び潜在的バイオマーカー同定のためのシステム及び方法
US20190376969A1 (en) * 2017-02-03 2019-12-12 Duke University Nasopharyngeal protein biomarkers of acute respiratory virus infection and methods of using same
WO2020200186A1 (zh) * 2019-04-01 2020-10-08 中山大学 慢性炎症和病毒感染的诊断和治疗
CN111796098A (zh) * 2020-05-29 2020-10-20 中国科学院武汉病毒研究所 诊断新冠肺炎由重症转危重症的血浆蛋白标志物、检测试剂或检测工具
WO2022004730A1 (ja) * 2020-06-30 2022-01-06 株式会社堀場製作所 体液分析装置、体液検体を判定するための方法、および、コンピュータープログラム

Similar Documents

Publication Publication Date Title
Pyrkov et al. Extracting biological age from biomedical data via deep learning: too much of a good thing?
Kim Measuring frailty in health care databases for clinical care and research
Himes et al. Prediction of chronic obstructive pulmonary disease (COPD) in asthma patients using electronic medical records
Lauritsen et al. The Framing of machine learning risk prediction models illustrated by evaluation of sepsis in general wards
Rajliwall et al. Cardiovascular risk prediction based on XGBoost
Amaratunga et al. Uses and opportunities for machine learning in hypertension research
Shaw et al. Timing of onset, burden, and postdischarge mortality of persistent critical illness in Scotland, 2005–2014: a retrospective, population-based, observational study
JP6164678B2 (ja) ネットワークエントロピーに基づく生体の状態遷移の予兆の検出を支援する検出装置、検出方法及び検出プログラム
US20210158899A1 (en) Biomarker detection method, disease assessment method, biomarker detection device, and computer readable medium
Jing et al. Comparing machine learning to regression methods for mortality prediction using veterans affairs electronic health record clinical data
Mustafa A. Mohammad et al. Classifying the mortality of people with underlying health conditions affected by COVID‐19 using machine learning techniques
Mehrdad et al. Deep learning for deterioration prediction of COVID-19 patients based on time-series of three vital signs
WO2023008503A1 (ja) 重症化予測装置、重症化予測方法、及びプログラム
Svenson et al. Sepsis deterioration prediction using channelled long short-term memory networks
Nazyrova et al. Machine Learning models for predicting 30-day readmission of elderly patients using custom target encoding approach
Ma Predicting MMSE score from finger-tapping measurement
Nega Tarekegn et al. Towards Detecting Freezing of Gait Events Using Wearable Sensors and Genetic Programming
Placido et al. Development of a dynamic prediction model for unplanned ICU admission and mortality in hospitalized patients
Darabi et al. Optimizing cardiovascular disease mortality prediction: a super learner approach in the tehran lipid and glucose study
Karajeh Developing a comparative framework for machine-learning classifying models based on the Emergency Severity Index triage system
Neto et al. Prediction models for coronary heart disease
Muthulakshmi et al. Big Data Analytics for Heart Disease Prediction using Regularized Principal and Quadratic Entropy Boosting
Saleena Analysis of machine learning and deep learning prediction models for sepsis and neonatal sepsis: A systematic review
Parente et al. High inter-patient variability in sepsis evolution: A hidden Markov model analysis
Liu et al. AI model development and validation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22849564

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22849564

Country of ref document: EP

Kind code of ref document: A1