WO2023008496A1 - Polymer composition, substance adsorption film, and method for manufacturing sensor element - Google Patents

Polymer composition, substance adsorption film, and method for manufacturing sensor element Download PDF

Info

Publication number
WO2023008496A1
WO2023008496A1 PCT/JP2022/029010 JP2022029010W WO2023008496A1 WO 2023008496 A1 WO2023008496 A1 WO 2023008496A1 JP 2022029010 W JP2022029010 W JP 2022029010W WO 2023008496 A1 WO2023008496 A1 WO 2023008496A1
Authority
WO
WIPO (PCT)
Prior art keywords
substance adsorption
adsorption film
polymer composition
substance
cross
Prior art date
Application number
PCT/JP2022/029010
Other languages
French (fr)
Japanese (ja)
Inventor
洋 海塩
裕一 影山
祥司 品村
貴文 松尾
Original Assignee
味の素株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 味の素株式会社 filed Critical 味の素株式会社
Priority to JP2023538606A priority Critical patent/JPWO2023008496A1/ja
Publication of WO2023008496A1 publication Critical patent/WO2023008496A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N5/00Analysing materials by weighing, e.g. weighing small particles separated from a gas or liquid
    • G01N5/02Analysing materials by weighing, e.g. weighing small particles separated from a gas or liquid by absorbing or adsorbing components of a material and determining change of weight of the adsorbent, e.g. determining moisture content

Definitions

  • the present invention relates to a method for manufacturing a sensor element capable of detecting changes in physical parameters due to substance adsorption; a substance adsorption film provided on the sensor device; and a polymer composition for use in forming the substance adsorption film. .
  • Gas sensors such as odor sensors are used for various purposes.
  • an odor sensor is known for detecting odors generated by rotting food and controlling the quality of food in a refrigerator.
  • Odor sensors are also known, for example, for use in quality control and sensory evaluation of foods and fragrances.
  • a piezoelectric sensor having a piezoelectric element such as a crystal oscillator or a surface acoustic wave element is known as a gas sensor such as an odor sensor.
  • These piezoelectric sensors have a substance-adsorbing film, and detect the odorant by detecting the mass change due to the odorant being adsorbed on the substance-adsorbing film (Patent Document 1).
  • a sensor element provided in a sensor device such as a gas sensor may have many types of substance adsorption films in order to detect many types of substances.
  • Each of these substance adsorption films can contain polymer compounds having different properties such as chemical properties and physical properties. Since the polymer compounds adsorb substances according to their properties, the substance adsorption films can adsorb different types of substances, so that the sensor element can detect a wide variety of substances.
  • the sensor devices such as the gas sensors described above are sometimes used in environments that can reach high temperatures.
  • sensor devices may be exposed to high temperatures in environments such as vehicles, factories, and kitchens.
  • the substance adsorption film of the sensor element included in the sensor device may be inferior in heat resistance.
  • These substance adsorption films may be inferior in heat resistance.
  • the substance adsorption film may easily fluidize in a high temperature environment.
  • a fluidized substance-adsorbing film can be easily deformed by gravity and its area can change. Such changes can cause increased detection errors.
  • a conventional sensor device is exposed to high temperatures, it can be difficult to accurately detect when the temperature subsequently returns to room temperature.
  • the present invention has been invented in view of the above problems, and provides a polymer composition capable of producing a substance adsorption film having improved heat resistance while maintaining substance adsorption properties;
  • An object of the present invention is to provide an improved substance-adsorbing film; and a method for manufacturing a sensor element having the substance-adsorbing film.
  • the present inventors have made extensive studies to solve the above problems. As a result, the present inventors have found that the above problems can be solved by introducing a crosslinked structure with an appropriate crosslink density represented by the gel fraction into the material adsorption layer, and completed the present invention. That is, the present invention includes the following.
  • a polymeric composition for the polymer composition comprises a polymer compound, a cross-linking agent, and a solvent;
  • the cross-linking agent can react with the polymer compound or react with each other to form a cross-linked structure;
  • a polymer composition, wherein a proportion of a portion that becomes insoluble when an evaluation sample obtained by standing the polymer composition at 150° C. for 60 minutes is immersed in the solvent is 0.10% or more.
  • a substance adsorption film for a sensor element comprising: a substance adsorption film; and a transducer unit having the substance adsorption film on its surface and capable of detecting changes in physical parameters caused by adsorption of substances to the substance adsorption film.
  • the substance adsorption film contains a polymer compound that may be crosslinked;
  • the proportion of the portion that becomes insoluble when the substance adsorption film is immersed in at least one solvent selected from the group consisting of 1,3-dimethyl-2-imidazolidinone, tetralin and methyl benzoate is 0.10% or more.
  • a polymer composition capable of producing a substance adsorption film having improved heat resistance while maintaining substance adsorption properties; a substance adsorption film having improved heat resistance while maintaining substance adsorption properties; can provide a method for manufacturing a sensor element comprising a substance adsorption film of
  • FIG. 1 is a side view schematically showing a sensor element according to one embodiment of the invention.
  • FIG. 2 is a schematic diagram schematically showing a sensor device as an example.
  • FIG. 3 is a photograph of the substance adsorption films of Example I-1 and Comparative Example I-1.
  • FIG. 4 is a photograph of the substance adsorption films of Example I-2 and Comparative Example I-2.
  • FIG. 5 is a photograph of the substance adsorption films of Example I-3 and Comparative Example I-3.
  • FIG. 6 is a photograph of the substance adsorption films of Example I-4 and Comparative Example I-4.
  • FIG. 7 is a graph showing the amount of response when water was detected as an odorant sample using the odor sensor element before heating in Examples II-1 to II-4 and Comparative Examples II-1 to II-4. be.
  • FIG. 8 is a graph showing the amount of response when water was detected as an odorant sample using the odor sensor element after heating in Examples II-1 to II-4 and Comparative Examples II-1 to II-4. be.
  • FIG. 9 is a graph showing the results of principal component analysis of the response amounts measured in Examples II-1 to II-4 and Comparative Examples II-1 to II-7.
  • FIG. 10 is a photograph showing an image of a polymer composition layer before drying and an image of a substance adsorption film obtained by drying the polymer composition layer in Example III-1.
  • FIG. 11 is a photograph showing an image of a polymer composition layer before drying and an image of a substance adsorption film obtained by drying the polymer composition layer in Example III-2.
  • FIG. 12 is a photograph showing an image of a polymer composition layer before drying and an image of a substance adsorption film obtained by drying the polymer composition layer in Example III-3.
  • a polymer composition according to one embodiment of the present invention includes a combination of a polymer compound, a cross-linking agent other than the polymer compound, and a solvent.
  • the cross-linking agent can react with the polymer compound or react with each other to form a cross-linked structure.
  • the percentage of the portion that becomes insoluble when an evaluation sample obtained by standing the polymer composition at a specific temperature for a specific time is immersed in a solvent is within a specific range.
  • the ratio of the portion that becomes insoluble when an evaluation sample is immersed in a solvent is sometimes referred to as "gel fraction".
  • the polymer composition is a sensor element comprising a substance-adsorbing film and a transducer unit having the substance-adsorbing film on its surface and capable of detecting a change in a physical parameter caused by adsorption of a substance to the substance-adsorbing film. It is used to form a substance adsorption film.
  • adsorption includes not only physical adsorption but also adsorption by chemical bonding or biochemical action, unless otherwise specified.
  • polymer compounds have the ability to form a film, so a polymer composition can form a substance adsorption film.
  • a substance adsorption film manufactured from the polymer composition according to the present embodiment can have high heat resistance.
  • the substance adsorption film can suppress fluidization in a high temperature environment. Therefore, since deformation due to external forces such as gravity and inertial force can be suppressed, change in the area of the substance adsorption film can be suppressed. Therefore, the substance-adsorbing film can detect substances (such as odorants or gas molecules) even after exposure to high temperatures, as well as before exposure to high temperatures.
  • the improvement in heat resistance as described above can be achieved by forming an appropriate crosslinked structure in the substance adsorption film.
  • the substance adsorption film usually contains a polymer compound contained in the polymer composition. may be formed to form a crosslinked structure.
  • the substance adsorption film obtained from the polymer composition according to the present embodiment may contain a polymer having a crosslinked structure as a polymer other than the polymer compound.
  • a polymer having a crosslinked structure different from that of a polymer compound is hereinafter sometimes referred to as a "crosslinked polymer".
  • the crosslink density of the crosslinked structure formed by these crosslinked polymer compounds, crosslinked polymers, or combinations thereof can be represented by the gel fraction.
  • the substance adsorption film obtained from the polymer composition according to the present embodiment can exhibit substance adsorption properties comparable to those of conventional substance adsorption films that do not contain a crosslinked structure. Therefore, it is possible to reduce the change in the substance adsorption properties due to the introduction of the crosslinked structure for improving the heat resistance. Therefore, according to the polymer composition, it is possible to obtain a substance adsorption film having improved heat resistance while maintaining substance adsorption properties.
  • the conventional substance adsorption film specifically refers to a conventional substance adsorption film that contains the same polymer compound as that contained in the polymer composition according to the present embodiment, but does not contain a crosslinked structure.
  • the polymer composition according to the present embodiment preferably has excellent dimensional retention in the process of manufacturing the substance adsorption film.
  • polymer compound an inorganic compound may be used, but an organic compound is preferably used.
  • a highly regular polymer compound having appropriate repeating units is preferable. When such a polymer compound is used, it is easy to obtain a substance-adsorbing film capable of appropriately detecting a substance to be detected by a sensor element.
  • a substance to be detected by the sensor element is hereinafter sometimes referred to as a "target substance”.
  • polymer compounds include phenoxy resin, phenol resin, acrylic resin, polyvinyl acetate, polyvinyl alcohol, polystyrene, imide resin, urethane resin, cellulose polymer, modified cellulose, vinylpyridine polymer, polyacrylonitrile, polyvinyl acetate, Examples include polysulfone, cycloolefin polymer, polyvinylpyrrolidone, polyphenylene ether, polyphenylene sulfide, silicone resin, polybutadiene, and copolymers thereof.
  • Preferred copolymers include, for example, polyallylamine-polycaprolactone copolymers.
  • the polymer compound may have an appropriate functional group from the viewpoint of adjusting the ease of adsorption of the target substance and from the viewpoint of advancing the cross-linking reaction by the cross-linking agent.
  • the functional group that the polymer compound preferably has include a hydroxyl group.
  • a polymer compound having a hydroxyl group can adjust the ease with which a specific type of target substance is adsorbed, or can undergo a cross-linking reaction with an appropriate type of cross-linking agent.
  • the amount of functional groups in a polymer compound having functional groups such as hydroxyl groups can be represented by an acid value.
  • the acid value of the polymer compound is preferably 1 mgKOH/g or more, more preferably 5 mgKOH/g or more, particularly preferably 10 mgKOH/g or more, preferably 50 mgKOH/g or less, more preferably 30 mgKOH/g or less. , particularly preferably 25 mgKOH/g or less.
  • the polymer compound when the polymer compound has hydroxyl groups, it is preferable that the polymer compound contains the number of hydroxyl groups within a specific range per unit mass.
  • the specific range of the number of hydroxyl groups per unit mass of the polymer compound is preferably 1.0 ⁇ 10 ⁇ 5 mol/g or more, more preferably 2.0 ⁇ 10 ⁇ 5 mol/g or more, and particularly preferably 3.0 ⁇ 10 -5 mol/g or more, preferably 1.0 ⁇ 10 -1 mol/g or less, more preferably 3.0 ⁇ 10 -2 mol/g or less, particularly preferably 2.0 ⁇ 10 ⁇ 2 mol/g or less.
  • the number of hydroxyl groups per unit mass of the polymer compound is preferably within the above range.
  • the weighted average of the number of hydroxyl groups per unit mass of those polymer compounds is preferably within the above range.
  • the aforementioned weighted average represents a weighted average based on mass. Therefore, for example, W1 parts by mass of the first polymer compound having A1 number of hydroxyl groups per unit mass and W2 parts by mass of the second polymer compound having A2 number of hydroxyl groups per unit mass are combined.
  • the weighted average of the number of hydroxyl groups "A1 ⁇ W1/(W1+W2) ⁇ +A2 ⁇ W2/(W1+W2) ⁇ " is preferably within the above range.
  • the number of hydroxyl groups per unit mass of the polymer compound can be calculated as the reciprocal of the hydroxyl equivalent of the polymer compound. Moreover, the hydroxyl group equivalent of the polymer compound represents the mass of the polymer compound having one equivalent of hydroxyl group.
  • Another functional group that the polymer compound preferably has is, for example, an amino group.
  • a polymer compound having an amino group can adjust the ease with which a specific type of target substance is adsorbed, or can undergo a cross-linking reaction with an appropriate type of cross-linking agent.
  • the amount of the functional group in a polymer compound having a functional group such as an amino group can be represented by an amine value.
  • the amine value of the polymer compound is preferably 0.1 mgKOH/g or more, more preferably 1 mgKOH/g or more, particularly preferably 5 mgKOH/g or more, preferably 100 mgKOH/g or less, more preferably 50 mgKOH/g. g or less, particularly preferably 20 mgKOH/g or less.
  • the polymer compound is also preferably solid at room temperature.
  • the weight average molecular weight of the polymer compound is preferably 1,000 or more, more preferably 2,000 or more, particularly preferably 3,000 or more, and preferably 1,000,000 or less, more preferably 500,000 or less, and particularly preferably 300,000 or less.
  • the weight-average molecular weight of the polymer compound can be measured as a polystyrene-equivalent value by a gel permeation chromatography (GPC) method.
  • the polymer compound may be dispersed in the solvent, but from the viewpoint of prolonging the pot life of the polymer composition, it is preferably dissolved in the solvent.
  • the amount of the polymer compound relative to 100% by mass of the polymer composition is preferably 0.1% by mass or more, more preferably 0.5% by mass or more, still more preferably 0.7% by mass or more, and particularly preferably 1% by mass. It is preferably 50% by mass or less, more preferably 45% by mass or less, still more preferably 40% by mass or less, and particularly preferably 30% by mass or less.
  • the viscosity of the polymer composition can be kept within an appropriate range, so that the handleability of the polymer composition can be improved.
  • the amount of the polymer compound relative to 100% by mass of the solid content of the polymer composition is preferably 60% by mass or more, more preferably 70% by mass or more, more preferably 80% by mass or more, and preferably 99% by mass or less. More preferably 98% by mass or less, particularly preferably 97% by mass or less.
  • the solid content of the polymer composition represents components other than the solvent contained in the polymer composition.
  • crosslinking agent a compound capable of forming a cross-linked structure in the substance adsorption film can be used. Generally, a compound that can form a crosslinked structure by causing a crosslinking reaction when the polymer composition is allowed to stand under appropriate reaction conditions (for example, 150° C. for 60 minutes) is used as the crosslinking agent.
  • the cross-linking agent a compound capable of forming a cross-linked structure by causing a cross-linking reaction with a polymer compound may be used, or a compound capable of forming a cross-linked structure by causing a cross-linking reaction between cross-linking agents may be used. They may be used in combination.
  • cross-linking agent capable of forming a cross-linked structure by causing a cross-linking reaction with a polymer compound
  • a compound having a cross-linkable group capable of forming a bond by reacting with a functional group possessed by the polymer compound can be used.
  • this cross-linking agent has a plurality of cross-linkable groups in one molecule, and these cross-linkable groups react with the functional groups of the polymer compound, thereby cross-linking the molecules of the polymer compound. can be formed.
  • crosslinkable group that can react with the functional group of the polymer compound is preferably selected according to the type of the functional group.
  • these crosslinkable groups may be blocked.
  • isocyanate groups may be blocked. The blocked isocyanate groups are inactivated at room temperature, but when exposed to heat, the blocking agent dissociates and the isocyanate groups are regenerated, which can cause cross-linking reactions with the functional groups of the polymer compound. can.
  • Examples of preferred cross-linking agents include blocked isocyanates.
  • a blocked isocyanate as a cross-linking agent usually has a plurality of blocked isocyanate groups in one molecule.
  • a blocked isocyanate can be produced, for example, by reacting an isocyanate compound having multiple isocyanate groups in one molecule with a blocking agent.
  • isocyanate compounds include aliphatic isocyanates such as 1,6-hexane diisocyanate, 1,3,6-hexamethylene triisocyanate, hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, and lysine diisocyanate; 1,4-cyclohexane diisocyanate, 4 , 4′-dicyclohexylmethane diisocyanate, 1,3-bis(isocyanatomethyl)cyclohexane, isophorone diisocyanate, hydrogenated xylylene diisocyanate, hydrogenated tolylene diisocyanate and other alicyclic isocyanates; 4,4′-diphenylmethane diisocyanate, 2, 4'-diphenylmethane diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, xylylene diisocyanate, 1,4-phenylene di
  • blocking agents include alcohol compounds, phenol compounds, ⁇ -caprolactam, oxime compounds, active methylene compounds, mercaptan compounds, amine compounds, imide compounds, acid amide compounds, imidazole compounds, urea compounds, carbamate compounds, and imine compounds. , and sulfite compounds.
  • a thermally dissociable blocking agent that can be dissociated by heat is preferable as the blocking agent.
  • thermally dissociable blocking agents include lactam compounds such as ⁇ -butyrolactam, ⁇ -caprolactam, ⁇ -valerolactam, propiolactam; Oxime compounds such as acetoxime, diacetyl monoxime, benzophenone oxime, cyclohexanone oxime; monocyclic phenol compounds such as phenol, cresol, catechol and nitrophenol; polycyclic phenol compounds such as 1-naphthol; methyl alcohol, ethyl alcohol, isopropyl alcohol , tert-butyl alcohol, trimethylolpropane, 2-ethylhexyl alcohol and other alcohol compounds; ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether and other ether compounds; malonic acid alkyl esters, malonic acid dialkyl esters, aceto active methylene compounds such as acetic acid alkyl esters and acetylace
  • a commercially available product may be used as the blocked isocyanate.
  • Examples of commercially available blocked isocyanates include hexamethylene diisocyanate-based blocked isocyanates (e.g., Asahi Kasei Duranate SBN-70D, SBB-70P, SBF-70E, TPA-B80E, 17B-60P, MF-B60B, E402-B80B , MF-K60B, and WM44-L70G; Takenate B-882N manufactured by Mitsui Chemicals; 7960, 7961, 7982, 7991, and 7992 manufactured by Baxenden, etc.), tolylene diisocyanate-based blocked isocyanate (for example, manufactured by Mitsui Chemicals) Takenate B-830, etc.), 4,4′-diphenylmethane diisocyanate-based blocked isocyanate (for example, Takenate B-815N manufactured by Mitsui Chemicals; Bronate PMD-
  • An epoxy resin as a cross-linking agent usually has a plurality of epoxy groups in one molecule.
  • Examples of epoxy resins include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, bisphenol AF type epoxy resin, phenol novolac type epoxy resin, tert-butyl-catechol type epoxy resin, and naphthol type epoxy resin.
  • naphthalene type epoxy resin naphthylene ether type epoxy resin, glycidylamine type epoxy resin, glycidyl ester type epoxy resin, cresol novolak type epoxy resin, biphenyl type epoxy resin, phenol aralkyl type epoxy resin, biphenyl aralkyl type epoxy resin, fluorene skeleton type epoxy resin, dicyclopentadiene type epoxy resin, anthracene type epoxy resin, linear aliphatic epoxy resin, epoxy resin having a butadiene structure, alicyclic epoxy resin, heterocyclic epoxy resin, spiro ring-containing epoxy resin, cyclohexanediene Examples include methanol-type epoxy resins, trimethylol-type epoxy resins, and halogenated epoxy resins.
  • a commercially available product may be used as the epoxy resin.
  • examples of commercially available epoxy resins include "ZX-1059” (a mixture of bisphenol A type epoxy resin and bisphenol F type epoxy resin) manufactured by Nippon Steel Chemical & Materials Co., Ltd., and the like.
  • ZX-1059 a mixture of bisphenol A type epoxy resin and bisphenol F type epoxy resin manufactured by Nippon Steel Chemical & Materials Co., Ltd., and the like.
  • One type of epoxy resin may be used alone, or two or more types may be used in combination.
  • An acid anhydride compound as a cross-linking agent usually has one or more carboxylic acid anhydride groups (--CO--O--CO--) in one molecule.
  • acid anhydride compounds include phthalic anhydride, pyromellitic dianhydride, 1,4,5,8-naphthalenetetracarboxylic dianhydride, and 2,3,6,7-naphthalenetetracarboxylic dianhydride.
  • a commercially available product may be used as the acid anhydride compound.
  • Examples of commercially available acid anhydride compounds include styrene-maleic anhydride copolymer "EF80" manufactured by Cray Valley.
  • the acid anhydride compound may be used singly or in combination of two or more.
  • cross-linking agent capable of forming a cross-linked structure by causing a cross-linking reaction with a polymer compound
  • the number N B of crosslinkable groups of the cross-linking agent contained in the polymer composition is preferably 0.001 ⁇ the number N F of functional groups possessed by the polymer compound contained in the polymer composition.
  • N F or more more preferably 0.01 x N F or more, still more preferably 0.02 x N F or more, particularly preferably 0.05 x N F or more, preferably 100 x N F or less, more preferably It is 50 ⁇ N F or less, more preferably 20 ⁇ N F or less.
  • the number NB of crosslinkable groups of the crosslinker is preferably within the above range.
  • the number N F of functional groups possessed by the polymer compound contained in the polymer composition is the sum of all the values obtained by dividing the mass of the polymer compound contained in the polymer composition by the functional group equivalent of the polymer compound.
  • the number NB of crosslinkable groups possessed by the crosslinker contained in the polymer composition is obtained by dividing the mass of the crosslinker contained in the polymer composition by the crosslinkable group equivalent of the crosslinker, and totaling all the values. represents a value.
  • the number of epoxy groups in a cross-linking agent can be obtained by dividing the mass of the cross-linking agent by the epoxy group equivalent weight of the cross-linking agent.
  • the cross-linkable group equivalent is not disclosed by the manufacturer, but the isocyanate group content (NCO rate) may be disclosed.
  • the isocyanate group equivalent is usually obtained by dividing the isocyanate group formula weight (that is, 42) by the isocyanate group content, and that isocyanate group equivalent can be used as the crosslinkable group equivalent of the blocked isocyanate.
  • cross-linking agent capable of forming a cross-linked structure by causing a cross-linking reaction between cross-linking agents
  • a compound having a cross-linking group capable of forming a bond by reacting the cross-linking groups possessed by the cross-linking agent can be used.
  • this cross-linking agent has a plurality of cross-linking groups in one molecule, and the cross-linking groups can react with each other to form a cross-linking structure that bridges the molecules of the cross-linking agent.
  • a crosslinked polymer having a structure can be obtained.
  • the crosslinked polymer thus obtained preferably does not have the same kind of functional groups as those of the polymer compound.
  • a radically polymerizable unsaturated group typically contains a carbon-carbon unsaturated bond and is capable of undergoing a radical polymerization reaction.
  • the carbon-carbon unsaturated bond that the radically polymerizable unsaturated group may contain is usually a non-aromatic unsaturated bond, such as a carbon-carbon double bond and a carbon-carbon triple bond.
  • examples of radically polymerizable unsaturated groups include maleimide groups, vinyl groups, allyl groups, styryl groups, vinylphenyl groups, (meth)acryloyl groups, fumaroyl groups, and maleoyl groups.
  • the term "(meth)acryloyl group” includes acryloyl groups, methacryloyl groups, and combinations thereof, unless otherwise specified. Among them, a (meth)acryloyl group is preferred.
  • cross-linking agents containing (meth)acryloyl groups include (meth)acrylic resins.
  • a (meth)acrylic resin as a cross-linking agent usually has a plurality of (meth)acryloyl groups in one molecule.
  • a commercially available product may be used as the (meth)acrylic resin.
  • (meth)acrylic resins include, for example, “A-DOG” and “A-DCP” (manufactured by Shin-Nakamura Chemical Co., Ltd.); “NPDGA”, “FM-400”, “R-687”, “THE -330”, “PET-30”, “DPHA” (all manufactured by Nippon Kayaku Co., Ltd.); The (meth)acrylic resins may be used singly or in combination of two or more.
  • cross-linking agent may be used alone, or two or more types may be used in combination.
  • the cross-linking agent preferably has a molecular weight smaller than the weight average molecular weight of the polymer compound.
  • Specific molecular weight of the cross-linking agent is preferably 200 or more, more preferably 250 or more, particularly preferably 300 or more, preferably less than 5000, more preferably less than 3000, still more preferably less than 1000, particularly preferably less than 500 is.
  • the molecular weight of the cross-linking agent is at least the above lower limit, a stable cross-linked structure can be formed between the polymer compound and the cross-linking agent.
  • the molecular weight of the cross-linking agent is less than the above upper limit, the influence of the cross-linking agent on the substance adsorption properties of the polymer compound can be effectively reduced, so that a substance adsorption film capable of appropriately detecting the target substance can be obtained.
  • Cheap the influence of the cross-linking agent on the substance adsorption properties of the polymer compound.
  • the cross-linking agent may be dispersed in the solvent, but from the viewpoint of prolonging the pot life of the polymer composition, it is preferably dissolved in the solvent.
  • the amount of the cross-linking agent relative to 100% by mass of the polymer composition is preferably 0.1% by mass or more, more preferably 0.2% by mass or more, particularly preferably 0.4% by mass or more, and preferably 20% by mass. Below, more preferably 10% by mass or less, particularly preferably 5% by mass or less.
  • the viscosity of the polymer composition can be kept within an appropriate range, so that the handleability of the polymer composition can be improved.
  • the amount of the cross-linking agent relative to 100% by mass of the solid content of the polymer composition is preferably 1% by mass or more, more preferably 2% by mass or more, more preferably 3% by mass or more, and preferably 50% by mass or less. It is preferably 30% by mass or less, particularly preferably 20% by mass or less. When the amount of the cross-linking agent within the above range is used, the effect of the present invention can be obtained remarkably.
  • the amount of the cross-linking agent with respect to 100% by mass of the polymer compound is preferably 2% by mass or more, more preferably 4% by mass or more, particularly preferably 5% by mass or more, preferably 100% by mass or less, more preferably 50% by mass. % or less, particularly preferably 30 mass % or less.
  • the amount of the cross-linking agent within the above range is used, the effect of the present invention can be obtained remarkably.
  • solvent a compound that is liquid at normal temperature and does not react with the polymer compound and the cross-linking agent can be used.
  • an inorganic solvent such as water may be used, or an organic solvent may be used.
  • organic solvent it is preferable to use an organic solvent as the solvent.
  • Preferred organic solvents include, for example, n-heptanol, dimethylsulfoxide, decahydronaphthalene, methyl benzoate, N-methylpyrrolidone, ⁇ -butyrolactone, 1,2,3,4-tetrahydronaphthalene (also known as tetralin), carbitol acetate.
  • One type of solvent may be used alone, or two or more types may be used in combination.
  • the amount of solvent is preferably set so that the concentration of solids in the polymer composition falls within a specific range.
  • the solid content concentration of the polymer composition is preferably 0.1% by mass or more, more preferably 1% by mass or more, still more preferably 2% by mass or more, and particularly preferably 100% by mass of the polymer composition. It is 4% by mass or more, preferably 90% by mass or less, more preferably 50% by mass or less, still more preferably 45% by mass or less, and particularly preferably 30% by mass or less.
  • the polymer composition may further contain optional components in combination with the polymer compound, cross-linking agent and solvent described above.
  • One type of optional component may be used alone, or two or more types may be used in combination at any ratio.
  • Optional components include, for example, catalysts that can promote the cross-linking reaction of the cross-linking agent.
  • a specific example of the catalyst is an epoxy curing catalyst capable of promoting the cross-linking reaction of the epoxy resin used as the cross-linking agent.
  • Epoxy curing catalysts include, for example, imidazole catalysts.
  • a commercially available product may be used as the catalyst.
  • Commercially available catalysts include, for example, imidazole-based catalysts such as "2E4MZ" manufactured by Shikoku Kasei Co., Ltd. One type of catalyst may be used alone, or two or more types may be used in combination.
  • Another optional component includes, for example, a polymerization initiator.
  • a polymerization initiator When using a polymerization initiator, the reaction of the cross-linking agent having a radically polymerizable unsaturated group can be promoted.
  • the polymerization initiator include radical polymerization initiators such as peroxide-based radical polymerization initiators and azo-based radical polymerization initiators.
  • a commercially available product may be used as the polymerization initiator.
  • commercially available polymerization initiators include peroxide-based radical polymerization initiators such as “Perhexa HC” manufactured by NOF Corporation.
  • One polymerization initiator may be used alone, or two or more may be used in combination.
  • the evaluation sample has a gel fraction in a specific range.
  • the specific range of the gel fraction is usually 0.10% or more, preferably 0.20% or more, and particularly preferably 0.25% or more.
  • the gel fraction is equal to or higher than the lower limit, it is possible to obtain a substance adsorption film having improved heat resistance while maintaining substance adsorption properties.
  • the upper limit of the gel fraction is preferably 10.0% or less, more preferably 5.0% or less, and particularly preferably 3.0% or less, from the viewpoint of further stably maintaining the substance adsorption properties of the substance adsorption film. be.
  • the gel fraction of the evaluation sample represents the proportion of the portion that becomes insoluble when the evaluation sample is immersed in the solvent contained in the polymer composition.
  • the gel fraction of the evaluation sample can be measured by the following method.
  • the polymer composition is allowed to stand at 150° C. for 60 minutes to prepare an evaluation sample, and the weight W (A) of the evaluation sample is measured.
  • the evaluation sample is then immersed in the same type of solvent that the polymer composition contained at room temperature (23° C.) for 24 hours. The immersion usually dissolves or swells the evaluation sample.
  • the immersed evaluation sample is subjected to suction filtration, washed with a solvent, and then washed with acetone to obtain an insoluble matter (gel component).
  • the gel fraction of the evaluation sample can correspond to the gel fraction of the substance adsorption film obtained from the polymer composition. Moreover, the gel fraction has a correlation with the crosslink density of the crosslinked structure formed by the crosslink reaction of the crosslinker. Therefore, the gel fraction of the evaluation sample can represent the crosslink density of the crosslinked structure formed in the substance adsorption film obtained from the polymer composition. In general, the higher the gel fraction of the evaluation sample, the higher the crosslink density, which means that the fluidization of the substance adsorption film due to heat can be effectively suppressed by the crosslink structure.
  • the crosslinked structure is formed as described above, the change in the substance adsorption characteristics of the substance adsorption film due to the crosslinked structure is small. Therefore, according to the polymer composition from which an evaluation sample having a gel fraction within the specific range can be obtained, it is possible to realize a substance adsorption film with improved heat resistance while maintaining substance adsorption properties.
  • the gel fraction can be adjusted by appropriately adjusting factors such as the type and concentration of the polymer compound, the type and concentration of the cross-linking agent, and the amount of the cross-linking agent relative to the polymer compound.
  • the polymer composition may contain a catalyst within a range that does not affect the substance adsorption properties of the polymer compound, thereby promoting the cross-linking reaction to a desired degree and adjusting the gel fraction.
  • the viscosity of the polymer composition at 25° C. is preferably 1 mPa ⁇ sec or more, more preferably 2 mPa ⁇ sec or more, preferably 8000 mPa ⁇ sec or less, more preferably 3000 mPa ⁇ sec or less, and particularly preferably 1000 mPa ⁇ sec or less. is.
  • the viscosity of the polymer composition can be measured using an E-type viscometer ("RE-85U” manufactured by Toki Sangyo Co., Ltd., 1 ° 24 ⁇ R24 cone) at 0 mPa ⁇ sec or more and less than 500 mPa ⁇ sec, and 500 mPa ⁇ sec or more. At 8000 mPa ⁇ sec or less, it can be measured with an E-type viscometer (“RE-80U” 3° ⁇ R9.7 cone manufactured by Toki Sangyo Co., Ltd.).
  • a polymer composition can be produced by mixing, for example, a polymer compound, a cross-linking agent, a solvent, and optionally optional components.
  • the order of mixing each component is arbitrary.
  • arbitrary treatments such as stirring and heat treatment may be applied.
  • a substance adsorption film according to an embodiment of the present invention comprises a substance adsorption film, and a transducer unit having the substance adsorption film on its surface and capable of detecting changes in physical parameters caused by adsorption of a substance to the substance adsorption film. It is a substance adsorption film for sensor elements. This substance adsorption film contains a polymer compound that may be crosslinked.
  • the substance-adsorbing membrane comprises a cross-linked polymeric compound.
  • a crosslinked structure is formed in the substance adsorption film by this crosslinked polymer compound.
  • the substance adsorption film further contains a crosslinked polymer (that is, a polymer having a crosslinked structure) in combination with the polymer compound.
  • the polymeric compound may or may not be crosslinked.
  • the substance adsorption film can have a specific range of gel fraction depending on the crosslink density of the crosslink structure.
  • the gel fraction of the substance adsorption film according to this embodiment is within a specific range.
  • the specific range of the gel fraction of the substance adsorption film can be the same as the specific range of the gel fraction of the polymer composition evaluation sample described in the section on the polymer composition.
  • the gel fraction of the substance adsorption film is the portion that becomes insoluble when the substance adsorption film is immersed in at least one solvent selected from the group consisting of 1,3-dimethyl-2-imidazolidinone, tetralin and methyl benzoate. represents the ratio of That is, when the substance adsorption film is immersed in at least one solvent selected from the group consisting of 1,3-dimethyl-2-imidazolidinone, tetralin and methyl benzoate, the specific A range of gel fractions can be obtained.
  • the gel fraction of the substance adsorption film can be measured by the following method. A weight w (A) of the substance adsorption film is measured.
  • the substance adsorption film is immersed in a solvent (at least one solvent selected from the group consisting of 1,3-dimethyl-2-imidazolidinone, tetralin and methyl benzoate) at room temperature (23° C.) for 24 hours. Immersion usually dissolves or swells the substance adsorption film.
  • the immersed substance-adsorbing membrane is subjected to suction filtration, washed with a solvent, and then washed with acetone to obtain an insoluble matter (gel component).
  • the gel fraction has a correlation with the crosslink density of the crosslinked structure contained in the substance adsorption film.
  • the higher the gel fraction the higher the crosslink density, which means that the fluidization of the substance adsorption film due to heat can be effectively suppressed by the crosslink structure.
  • the change in the substance adsorption characteristics of the substance adsorption film due to the crosslinked structure is small. Therefore, according to the substance adsorption film having the gel fraction within the specific range, it is possible to improve the heat resistance of the substance adsorption film while suppressing the change in the substance adsorption characteristics due to the formation of the crosslinked structure.
  • the gel fraction of the substance adsorption film can be adjusted by appropriately adjusting factors such as the type and concentration of the polymer compound, the type and concentration of the cross-linking agent, and the amount of the cross-linking agent relative to the polymer compound.
  • the polymer composition may contain a catalyst within a range that does not affect the substance adsorption properties of the polymer compound, thereby promoting the cross-linking reaction to a desired degree and adjusting the gel fraction.
  • the substance adsorption film can be formed by a cured polymer composition obtained by drying or curing the above polymer composition by reaction. Therefore, the substance adsorption film can contain at least one component selected from the group consisting of the solid content of the polymer composition and the reaction product of the solid content of the polymer composition. Therefore, as the polymer compound, the same one as explained in the section of the polymer composition can be used.
  • the polymer compound which may be crosslinked a polymer compound which may be crosslinked by the crosslinking agent described in the section of the polymer composition can be used.
  • a polymer of the crosslinkers described in the section of the polymer composition can be used.
  • the substance adsorption film can be formed as a circular film when viewed from the thickness direction.
  • the diameter of the substance adsorption film is preferably 0.1 ⁇ m to 1000 ⁇ m, more preferably 0.1 ⁇ m to 800 ⁇ m, particularly preferably 0.1 ⁇ m to 500 ⁇ m.
  • the diameter of the substance adsorption film is small in this way, it is possible to achieve miniaturization of the sensor element.
  • the thickness of the substance adsorption film can be set appropriately according to the characteristics of the target substance.
  • a specific thickness of the substance adsorption film is preferably 1 nm to 10 ⁇ m, more preferably 50 nm to 800 nm.
  • the detection sensitivity of the target substance can generally be increased.
  • the mass per unit area of the substance adsorption film can be appropriately set according to the properties of the target substance.
  • the mass per unit area of the substance adsorption film is preferably 5 ⁇ g/cm 2 to 50000 ⁇ g/cm 2 , more preferably 10 ⁇ g/cm 2 to 10000 ⁇ g/cm 2 .
  • the detection sensitivity of the target substance can generally be increased.
  • the substance adsorption film according to this embodiment can be produced using the polymer composition described above.
  • a substance adsorption film is manufactured including a step (I) of forming a polymer composition layer on a support surface and a step (II) of causing a cross-linking reaction with a cross-linking agent contained in the polymer composition layer. can be manufactured by the method.
  • the support surface on which the polymer composition layer is formed in step (I) is the surface on which the substance adsorption film is formed. Usually, the surface of the transducer portion is used as this support surface.
  • the support surface is typically coated with a polymeric composition to form a layer of the polymeric composition.
  • the method of applying the polymer composition is not particularly limited, but it is preferable to use a dispenser.
  • the polymer composition contained in a syringe is usually discharged through a needle, and the discharged polymer composition is adhered to a support surface.
  • the coating method using a dispenser can suppress the waste of the polymer composition and does not require a mask, so it is excellent in cost and productivity.
  • the application of the polymer composition is usually carried out in an environment of normal temperature and normal pressure, but the application environment may be adjusted within the range in which the desired substance adsorption film can be obtained.
  • the temperature of the coating environment is preferably 0° C. to 30° C.
  • the pressure of the coating environment is preferably 950 hPa to 1080 hPa
  • the relative humidity of the coating environment is 10% to 10%. 99% is preferred.
  • step (II) is performed in which the cross-linking agent contained in the layer of the polymer composition undergoes a cross-linking reaction.
  • the cross-linking reaction by the cross-linking agent proceeds to form a cross-linked structure, thereby forming a substance adsorption film.
  • volatile components such as solvent contained in the polymer composition are usually removed by drying.
  • step (II) the layer of the polymer composition is generally heated to cause the cross-linking agent to undergo a cross-linking reaction.
  • the heating temperature is usually set to a temperature at which the cross-linking reaction of the cross-linking agent can proceed.
  • a specific heating temperature is preferably 60° C. or higher, more preferably 80° C. or higher, particularly preferably 100° C. or higher, preferably 250° C. or lower, more preferably 200° C. or lower, and particularly preferably 180° C. or lower. .
  • the heating time is preferably set so that the cross-linking reaction of the cross-linking agent can proceed sufficiently.
  • a specific heating time is preferably 1 minute to 5 hours, more preferably 10 minutes to 3 hours, still more preferably 20 minutes to 2 hours.
  • the substance adsorption film described above can have high heat resistance. Specifically, since the flow of the substance adsorption film can be suppressed in a high temperature environment, the planar shape of the substance adsorption film can be maintained in a planar shape in a room temperature environment.
  • the planar shape of the substance adsorption film represents the shape of the substance adsorption film viewed from the thickness direction.
  • the dimensions of the substance adsorption film in a high temperature environment can usually be maintained to the dimensions in a room temperature environment.
  • the above heat resistance can be evaluated by a fluidity evaluation test.
  • a fluidity evaluation test is performed by attaching a substance adsorption film to a certain surface (for example, an aluminum surface), placing the surface parallel to the vertical direction, and heating the substance adsorption film at 100° C. for 30 minutes.
  • the substance adsorption film after the fluidity evaluation test can usually maintain the same planar shape as before the fluidity evaluation test.
  • the substance adsorption film after the fluidity evaluation test can preferably maintain the same dimensions as before the fluidity evaluation test.
  • the above-described substance adsorption film can suppress changes in substance adsorption characteristics due to the formation of a crosslinked structure, it can have substance adsorption characteristics comparable to those of conventional substance adsorption films that do not have a crosslinked structure.
  • the substance adsorption film described above can preferably have the same level of substance adsorption properties as before heating even after heating (for example, at 80° C. for 60 minutes).
  • the above substance adsorption characteristics can be evaluated by detecting odorants or gas molecules with a sensor element equipped with a substance adsorption film.
  • a sensor element having a substance adsorption film is used to detect odorants or gas molecules. Specifically, changes in physical parameters due to adsorption of substances (odor substances or gas molecules) to the substance adsorption film are detected. Further, this detection is performed for the substance adsorption film according to the present embodiment and the conventional substance adsorption film formed in the same manner as the substance adsorption film according to the present embodiment except that it does not have a crosslinked structure.
  • the aforementioned conventional substance adsorption film includes the same polymer compound as that contained in the polymer composition used to form the substance adsorption film according to the present embodiment, but does not contain a crosslinked structure. represents the membrane.
  • the amount of change in the parameter detected by the sensor element equipped with the substance adsorption film according to the present embodiment and the amount of change in the parameter detected by the sensor element equipped with the conventional substance adsorption film are usually different. can be close and preferably the same.
  • the above-mentioned substance adsorption film usually has excellent dimensional retention during the manufacturing process.
  • the polymer composition layer and the size of the substance-adsorbing membrane are preferably close, and particularly preferably the same.
  • the above-mentioned dimensional retention is determined by the longest length LA seen from the thickness direction of the layer of the polymer composition and the thickness of the substance adsorption film obtained by cross-linking with the cross-linking agent contained in the layer of the polymer composition. It can be evaluated by the dimensional retention rate obtained by the following formula (M3) from the longest length LB as viewed from the direction.
  • the above-described substance adsorption film can have a dimensional retention rate of preferably 60% or more, more preferably 70% or more, even more preferably 80% or more, and particularly preferably 90% or more. The upper limit is usually 100%.
  • Dimension retention rate LB/LA x 100 (%) (M3)
  • FIG. 1 is a side view schematically showing a sensor element 100 according to one embodiment of the invention.
  • the sensor element 100 according to one embodiment of the present invention includes the above-described substance adsorption film 120 and the substance adsorption film 120 on the surface 110U. a transducer portion 110 capable of detecting changes in parameters;
  • an element capable of detecting a physical parameter change caused by the substance adsorption film 120 formed on the surface 110U of the transducer section 110 by adsorption of a substance to the substance adsorption film 120 is usually used.
  • the physical parameters are not particularly limited, for example, surface stress, stress, surface tension, pressure, mass, elasticity, Young's modulus, Poisson's ratio, resonance frequency, frequency, volume, thickness, viscosity, density, magnetic force, magnetic quantity , magnetic field, magnetic flux, magnetic flux density, electrical resistance, electrical quantity, permittivity, power, electric field, charge, current, voltage, potential, mobility, electrostatic energy, capacitance, inductance, reactance, susceptance, admittance, impedance, conductance, Plasmon, refractive index, absorption wavelength, absorbance, luminous intensity, temperature and the like.
  • the transducer section 110 can be any element capable of detecting changes in the physical parameters described above.
  • the structure and operation of transducer portion 110 is arbitrary.
  • Preferred transducers 110 include, for example, piezoelectric elements, surface plasmon resonance elements (SPR elements), field effect transistor elements (FET elements), surface acoustic wave elements, charge-coupled elements, metal oxide semiconductor elements, and organic conductive polymer elements. , electrochemical devices, and the like.
  • the piezoelectric element may include a crystal oscillator (QCM).
  • a piezoelectric element usually includes a piezoelectric body made of a piezoelectric material and electrodes provided on the piezoelectric body.
  • Piezoelectric materials include, for example, quartz crystals, piezoelectric single crystals such as lithium niobate; piezoelectric ceramics such as lead zirconate titanate, barium titanate, and lead titanate; vinylidene fluoride, ethylene trifluoride copolymers, and the like. , a piezoelectric polymer film; and the like.
  • the substance adsorption film 120 may be provided on the surface of the piezoelectric body of the piezoelectric element, or may be provided on the surface of the electrode.
  • a surface plasmon resonance element usually includes a prism and a metal layer formed on the prism.
  • materials for the metal layer include gold and silver.
  • the substance adsorption film 120 is usually provided on the surface of the metal layer of the surface plasmon resonance element.
  • Only one substance adsorption film 120 may be formed for each transducer unit 110, or a plurality of films may be formed.
  • the sensor element 100 can normally detect, with high sensitivity, changes in substance parameters of the substance adsorption film 120 caused by adsorption of the target substance onto the substance adsorption film 120 . Therefore, the sensor element 100 can have high responsiveness to the target substance. Therefore, by using this sensor element 100, a sensor device having high detection sensitivity can be realized.
  • the substance adsorption film 120 according to the present embodiment has improved heat resistance while maintaining substance adsorption characteristics, the sensor element 100 can be used not only in an environment maintained at a low temperature but also in an environment that can reach a high temperature. Also, the target substance can be detected appropriately. Therefore, the sensor element 100 can be provided and used in sensor devices that are assumed to be used in environments that can reach high temperatures, such as for vehicles and factories.
  • the sensor element 100 includes a step of forming a layer of the polymer composition described above on the surface 110U of the transducer section 110; It can be manufactured by a manufacturing method including: As a method for forming the polymer composition layer on the surface 110U of the transducer section 110, the method described in the section on the method for manufacturing the substance adsorption film can be adopted. Further, the cross-linking reaction of the cross-linking agent contained in the layer of the polymer composition proceeds by heating the layer of the polymer composition as described in the section on the method for producing the substance adsorption film.
  • layers of the polymer composition are usually formed a plurality of times. Then, the cross-linking agents contained in the multiple layers of the polymer composition are subjected to a cross-linking reaction to obtain a plurality of substance adsorption films. At this time, the cross-linking reaction may be performed collectively after forming a plurality of layers of the polymer composition. Moreover, the cross-linking reaction may be performed each time one layer of the polymer composition is formed.
  • the sensor element having the substance-adsorbing film described above can be used as a sensor element for detecting a target substance that can be adsorbed to the substance-adsorbing film. Specifically, it can be used as a sensor element for detecting the target substance by detecting changes in physical parameters caused by the adsorption of the target substance to the physisorption film. Therefore, it is preferable to utilize such advantages and use the sensor element as a sensor element for detecting odorants or gas molecules.
  • melt includes a specific single molecule or a collection of molecules consisting of different molecules with different concentrations that can be acquired as olfactory information by humans or living organisms including them.
  • odorant in a broad sense includes substances that can be adsorbed by substance adsorption membranes. Therefore, substances that are not generally regarded as odor-causing substances can also be included in the term "odorant”. "Odor” often includes multiple odorants, and may also include unrecognized odorants or unknown odorants. Hereinafter, even when the term “odorant” is simply described, it may mean not an individual odorant but an “aggregate of odorants” that may contain a plurality of odorants.
  • gas molecule includes any gaseous molecule. Therefore, the sensor element described above may be used to detect molecules unrelated to odor as target substances.
  • FIG. 2 is a schematic diagram schematically showing a sensor device 200 as an example.
  • the sensor device 200 includes an element mounting section 210 having the sensor element 100 and an output section 220 capable of outputting information on changes in physical parameters detected by the sensor element 100 .
  • the element mounting section 210 may be provided with a device for extracting information on changes in physical parameters of the substance adsorption film (not shown in FIG. 2) detected by the sensor element 100 .
  • the transducer section (not shown in FIG. 2) is a piezoelectric element
  • the piezoelectric element can usually detect changes in physical parameters of the substance adsorption film as changes in vibration frequency of the piezoelectric element. Therefore, in order to extract this change in frequency, the element mounting section 210 includes wiring for applying an AC voltage to vibrate the piezoelectric element, a frequency meter for measuring the vibration frequency of the piezoelectric element, and the like.
  • the transducer section is a surface plasmon resonance element
  • the surface plasmon resonance element can usually detect changes in physical parameters of the substance adsorption film as changes in the resonance angle. Therefore, in order to extract this change in resonance angle, the element mounting section 210 includes a light source for irradiating the surface plasmon resonance element with light, a photodetector for detecting reflected light from the surface plasmon resonance element, and the like. may be provided.
  • the output section 220 is provided so as to output information sent from the sensor element 100 provided in the element mounting section 210 .
  • Examples of the output unit 220 include a display device capable of displaying information on a screen, an interface capable of outputting information to a computer device, and a printer device capable of printing information.
  • the sample gas 10 containing the odorant is introduced into the element mounting portion 210 .
  • the odorant is adsorbed on the substance adsorption film of the sensor element 100 .
  • This adsorption causes changes in the physical parameters of the substance-adsorbed membrane. Changes in this physical parameter are detected by the transducer portion of the sensor element 100 .
  • the transducer section is a piezoelectric element
  • changes in physical parameters of the substance adsorption film can be detected as changes in vibration frequency by the piezoelectric element.
  • the transducer section is a surface plasmon resonance element
  • a change in physical parameter of the substance adsorption film can be detected as a change in resonance angle by the surface plasmon resonance element.
  • the information thus detected is typically converted into an electrical signal and sent to the output section 220 .
  • the output unit 220 outputs the sent information.
  • the output information includes information on changes in physical parameters of the substance-adsorbing film caused by the adsorption of the odorant. Therefore, when the physical parameter changes, it is known that the sample gas 10 contains an odorant, and the odorant can be detected. Further, when the information output from the output device includes information on the amount of change in physical parameters, the amount of odorants in the sample gas 10 may be measured based on the information on the amount of change.
  • the substance adsorption film provided in the sensor element 100 has improved heat resistance while maintaining the substance adsorption properties. In addition, odorants can be appropriately detected even in environments that can reach high temperatures.
  • gas contains multiple types of odorants that are the source of odors.
  • the odors perceived by humans may vary depending on the combination pattern of the odorants including the aggregation of these odorants. Therefore, in order to detect these multiple types of odorants, the element mounting portion 210 may be provided with a plurality of sensor elements 100 having substance adsorption films capable of adsorbing the same or different types of target substances.
  • the sensor element 100 provided in the element mounting portion 210 may include a plurality of substance adsorption films capable of adsorbing the same or different types of target substances. With such a configuration, a combination of a plurality of odorants can be detected, so it is possible to appropriately analyze the odor of the sample gas.
  • the sensor device 200 may further include optional components.
  • the sensor device 200 may include an analysis section (not shown) capable of analyzing information detected by the sensor element 100 .
  • an analysis unit may use, for example, a computer device in which an analysis application for analyzing information sent from the sensor element 100 is installed. By utilizing such an analysis unit, it becomes easy to quantitatively and qualitatively analyze the odor of the sample gas.
  • kits The polymeric compositions described above are generally stored and transported in suitable containers. In order to easily supply the polymer composition to the dispenser, it is preferable to employ a syringe attachable to the dispenser as the container.
  • a kit can be provided that includes a syringe and the polymer composition housed in the syringe.
  • the polymer composition is preferably enclosed inside a sealed syringe from the viewpoint of quality maintenance and the like.
  • the syringe contains the type and amount of the polymer compound, the type and amount of the solvent, the appropriate diameter and thickness of the substance adsorption film formed by the polymer composition, and the target substance that the substance adsorption film can adsorb.
  • a label on which information such as type, etc. is described may be provided.
  • the weight W(B) of this insoluble matter was weighed, and the gel fraction was determined by the following formula (M1).
  • Example I-1 Manufacture of polymer composition
  • Polyallylamine-polycaprolactone copolymer (amine value 9 mgKOH/g, acid value 17 mgKOH/g; hydroxyl group equivalent 1450 g/eq.) as a polymer compound having a hydroxyl group and an amino group, and blocked isocyanate (Asahi Kasei Co., Ltd.) as a cross-linking agent "SBN-70D" manufactured by Ajinomoto Co.; solid content ratio 0.7; NCO rate 10.1%) at a mass ratio of 6: 0.36, and dissolved in 1,3-dimethyl-2-imidazolidinone as a solvent. to obtain a liquid polymer composition having a solid content concentration shown in Table 1. A portion of this polymer composition was taken and the gel fraction was measured by the method described above.
  • the substance adsorption by heating at 150 ° C in the fluidity evaluation test It was checked whether the membrane had flowed. As a result, no flow was confirmed, and the planar shape and dimensions of the substance adsorption film could be maintained.
  • Comparative Example I-1 A polymer composition and a substance adsorption film were produced and evaluated in the same manner as in Example I-1, except that no blocked isocyanate was used. A photograph of the substance adsorption film of Comparative Example I-1 is shown in FIG. 3 together with a photograph of the substance adsorption film of Example I-1. As can be seen from FIG. 3, in Comparative Example I-1, fluidity of the substance adsorption film was confirmed by the fluidity evaluation test, and the planar shape and dimensions of the substance adsorption film could not be maintained.
  • Example I-2 Polyallylamine-polycaprolactone copolymer (amine value 17 mgKOH/g, acid value 14 mgKOH/g; hydroxyl group equivalent 1550 g/eq.) as a polymer compound having a hydroxyl group and an amino group, and blocked isocyanate (Asahi Kasei Co., Ltd.) as a cross-linking agent "SBN-70D" manufactured by the company; solid content ratio 0.7) at a mass ratio of 6:0.55, dissolved in 1,3-dimethyl-2-imidazolidinone as a solvent, and shown in Table 1. A liquid polymer composition having a solid concentration was obtained.
  • Example I-1 Using the polymer composition thus obtained, a substance adsorption film was produced and evaluated in the same manner as in Example I-1. As a result, no flow of the substance adsorption film was confirmed, and the planar shape and dimensions of the substance adsorption film could be maintained.
  • Comparative Example I-2 A polymer composition and a substance adsorption film were produced and evaluated in the same manner as in Example I-2, except that no blocked isocyanate was used. A photograph of the substance adsorption film of Comparative Example I-2 is shown in FIG. 4 together with a photograph of the substance adsorption film of Example I-2. As can be seen from FIG. 4, in Comparative Example I-2, flow of the substance adsorption film was confirmed, and the planar shape and dimensions of the substance adsorption film could not be maintained.
  • Example I-3 Polyallylamine-polycaprolactone copolymer (amine value 17 mgKOH/g, acid value 20 mgKOH/g; hydroxyl group equivalent 1550 g/eq.) as a polymer compound having a hydroxyl group and an amino group, and blocked isocyanate (Asahi Kasei Co., Ltd.) as a cross-linking agent "SBN-70D" manufactured by Ajinomoto Co.; solid content ratio 0.7) at a mass ratio of 6:0.54, dissolved in 1,3-dimethyl-2-imidazolidinone as a solvent, and shown in Table 1. A liquid polymer composition having a solid concentration was obtained.
  • Example I-1 Using the polymer composition thus obtained, a substance adsorption film was produced and evaluated in the same manner as in Example I-1. As a result, no flow of the substance adsorption film was confirmed, and the planar shape and dimensions of the substance adsorption film could be maintained.
  • Comparative Example I-3 A polymer composition and a substance adsorption film were produced and evaluated in the same manner as in Example I-3, except that no blocked isocyanate was used. A photograph of the substance adsorption film of Comparative Example I-3 is shown in FIG. 5 together with a photograph of the substance adsorption film of Example I-3. As can be seen from FIG. 5, in Comparative Example I-3, flow of the substance adsorption film was confirmed, and the planar shape and dimensions of the substance adsorption film could not be maintained.
  • Example I-4 Polyallylamine-polycaprolactone copolymer (amine value 17 mg KOH/g, acid value 16 mg KOH/g; hydroxyl equivalent 770 g/eq.) as a polymer compound having a hydroxyl group and an amino group, and blocked isocyanate (Asahi Kasei Co., Ltd.) as a cross-linking agent "SBN-70D" manufactured by the company; solid content ratio 0.7) at a mass ratio of 6:0.36, dissolved in 1,3-dimethyl-2-imidazolidinone as a solvent, and shown in Table 1. A liquid polymer composition having a solid concentration was obtained.
  • Example I-1 Using the polymer composition thus obtained, a substance adsorption film was produced and evaluated in the same manner as in Example I-1. As a result, no flow of the substance adsorption film was confirmed, and the planar shape and dimensions of the substance adsorption film could be maintained.
  • Comparative Example I-4 A polymer composition and a substance adsorption film were produced and evaluated in the same manner as in Example I-4, except that no blocked isocyanate was used. A photograph of the substance adsorption film of Comparative Example I-4 is shown in FIG. 6 together with a photograph of the substance adsorption film of Example I-4. As can be seen from FIG. 6, in Comparative Example I-4, flow of the substance adsorption film was confirmed, and the planar shape and dimensions of the substance adsorption film could not be maintained.
  • Example I-5 Polyallylamine-polycaprolactone copolymer (amine value 9 mgKOH/g, acid value 17 mgKOH/g; hydroxyl group equivalent 1450 g/eq.) as a polymer compound having a hydroxyl group and an amino group, and blocked isocyanate (Asahi Kasei Co., Ltd.) as a cross-linking agent "SBN-70D" manufactured by the company; solid content ratio 0.7) at a mass ratio of 40: 3, dissolved in 1,3-dimethyl-2-imidazolidinone as a solvent, and the solid content shown in Table 2 A liquid polymer composition having a concentration was obtained.
  • Example I-1 Using the polymer composition thus obtained, a substance adsorption film was produced and evaluated in the same manner as in Example I-1. As a result, no flow of the substance adsorption film was confirmed, and the planar shape and dimensions of the substance adsorption film could be maintained.
  • Example I-6 Polyallylamine-polycaprolactone copolymer (amine value 9 mgKOH/g, acid value 17 mgKOH/g; hydroxyl group equivalent 1450 g/eq.) as a polymer compound having a hydroxyl group and an amino group, and blocked isocyanate (Asahi Kasei Co., Ltd.) as a cross-linking agent manufactured by "SBN-70D"; solid content ratio 0.7) at a mass ratio of 40: 1.45, dissolved in 1,3-dimethyl-2-imidazolidinone as a solvent, and shown in Table 2. A liquid polymer composition having a solid concentration was obtained.
  • Example I-1 Using the polymer composition thus obtained, a substance adsorption film was produced and evaluated in the same manner as in Example I-1. As a result, no flow of the substance adsorption film was confirmed, and the planar shape and dimensions of the substance adsorption film could be maintained.
  • Example I-7 Polyallylamine-polycaprolactone copolymer (amine value 17 mg KOH/g, acid value 16 mg KOH/g; hydroxyl equivalent 770 g/eq.) as a polymer compound having a hydroxyl group and an amino group, and blocked isocyanate (Asahi Kasei Co., Ltd.) as a cross-linking agent manufactured by "SBN-70D"; solid content ratio 0.7) at a mass ratio of 40: 6.5, dissolved in 1,3-dimethyl-2-imidazolidinone as a solvent, and shown in Table 2. A liquid polymer composition having a solid concentration was obtained.
  • Example I-1 Using the polymer composition thus obtained, a substance adsorption film was produced and evaluated in the same manner as in Example I-1. As a result, no flow of the substance adsorption film was confirmed, and the planar shape and dimensions of the substance adsorption film could be maintained.
  • Example I-8 Polyallylamine-polycaprolactone copolymer (amine value 17 mg KOH/g, acid value 16 mg KOH/g; hydroxyl equivalent 770 g/eq.) as a polymer compound having a hydroxyl group and an amino group, and blocked isocyanate (Asahi Kasei Co., Ltd.) as a cross-linking agent "SBN-70D" manufactured by the company; solid content ratio 0.7) at a mass ratio of 20: 0.9, dissolved in 1,3-dimethyl-2-imidazolidinone as a solvent, and shown in Table 2. A liquid polymer composition having a solid concentration was obtained.
  • Example I-1 Using the polymer composition thus obtained, a substance adsorption film was produced and evaluated in the same manner as in Example I-1. As a result, no flow of the substance adsorption film was confirmed, and the planar shape and dimensions of the substance adsorption film could be maintained.
  • Example I-9 Manufacture of polymer composition
  • Polyurethane (“PU-1020” manufactured by Taisei Fine Chemical Co., Ltd.; hydroxyl equivalent weight 23000 g/eq.) as a polymer compound having a hydroxyl group
  • blocked isocyanate (“TPA-B80E” manufactured by Asahi Kasei Corporation; solid content ratio 0) as a cross-linking agent .8; NCO rate 12.5%) were mixed at a mass ratio of 1.06:0.228 and dissolved in tetralin as a solvent to obtain a liquid polymer composition having a solid content concentration shown in Table 3. rice field. A portion of this polymer composition was taken and the gel fraction was measured by the method described above.
  • Fluidity evaluation test A fluidity evaluation test was performed by tilting the bottom surface of the aluminum pan by 90° to make it parallel to the vertical direction and placing it in an oven at 100°C for 30 minutes. After that, the aluminum pan was taken out of the oven and allowed to stand at room temperature for 30 minutes. A photograph of the substance adsorption film on the bottom of the aluminum pan was taken.
  • the substance adsorption by heating at 100 ° C. in the fluidity evaluation test It was checked whether the membrane had flowed. As a result, no flow was confirmed, and the planar shape and dimensions of the substance adsorption film could be maintained.
  • Example I-10 Polyurethane ("PU-1020” manufactured by Taisei Fine Chemical Co., Ltd.) as a polymer compound having a hydroxyl group, and blocked isocyanate ("SBN-70D” manufactured by Asahi Kasei Co., Ltd.; solid content ratio 0.7) as a cross-linking agent, at a mass ratio of 1 .06:0.152 and dissolved in tetralin as a solvent to obtain a liquid polymer composition having a solid concentration shown in Table 3.
  • PU-1020 manufactured by Taisei Fine Chemical Co., Ltd.
  • SBN-70D blocked isocyanate
  • tetralin solid content ratio
  • Example I-11 Polyurethane (“PU-1020” manufactured by Taisei Fine Chemical Co., Ltd.) as a polymer compound having a hydroxyl group, and blocked isocyanate (“SBB-70P” manufactured by Asahi Kasei Co., Ltd.; NCO rate 10.1%) as a cross-linking agent, at a mass ratio of 1
  • SBB-70P blocked isocyanate
  • the mixture was mixed at a ratio of 0.06:0.134 and dissolved in tetralin as a solvent to obtain a liquid polymer composition having a solid content concentration shown in Table 3.
  • a substance adsorption film was produced and evaluated in the same manner as in Example I-9. As a result, no flow of the substance adsorption film was confirmed, and the planar shape and dimensions of the substance adsorption film could be maintained.
  • Example I-5 A polymer composition and a substance adsorption film were produced and evaluated in the same manner as in Example I-9, except that no blocked isocyanate was used. As a result, flow of the substance adsorption film was confirmed, and the planar shape and dimensions of the substance adsorption film could not be maintained.
  • Example I-12 Polyallylamine-polycaprolactone copolymer (amine value 9 mg KOH / g, acid value 17 mg KOH / g; hydroxyl equivalent 1450 g / eq.) as a polymer compound having a hydroxyl group and an amino group, epoxy resin (Nippon Steel Chemical & Materials Co., Ltd. "ZX-1059"; epoxy group equivalent 165 g / eq.; weight average molecular weight 330), styrene maleic anhydride copolymer as a cross-linking agent (EF80, Cray Valley; anhydride group equivalent 105-135 g / eq.
  • epoxy resin Nippon Steel Chemical & Materials Co., Ltd. "ZX-1059”
  • epoxy group equivalent 165 g / eq. weight average molecular weight 330
  • styrene maleic anhydride copolymer as a cross-linking agent (EF80, Cray Valley; anhydride group equivalent 105
  • Example I-13 Polyallylamine-polycaprolactone copolymer (amine value 9 mg KOH / g, acid value 17 mg KOH / g; hydroxyl equivalent 1450 g / eq.) as a polymer compound having a hydroxyl group and an amino group, acrylic resin as a cross-linking agent (Shin Nakamura Chemical "A-DCP” manufactured by Kogyo Co., Ltd.; molecular weight 304) and a peroxide (“Perhexa HC" manufactured by NOF Corporation) as a polymerization initiator were mixed at a mass ratio of 2.0: 0.48: 0.64.
  • a substance adsorption film was produced and evaluated in the same manner as in Example I-9. As a result, no flow of the substance adsorption film was confirmed, and the planar shape and dimensions of the substance adsorption film could be maintained.
  • Example I-14 Polyurethane (“PU-1020” manufactured by Taisei Fine Chemical Co., Ltd.) as a polymer compound having a hydroxyl group, epoxy resin (“ZX-1059” manufactured by Nippon Steel Chemical & Materials Co., Ltd.) as a cross-linking agent, styrene maleic anhydride as a cross-linking agent A copolymer (EF80, Cray Valley) and imidazole (manufactured by Shikoku Kasei Co., Ltd. "2E4MZ”) as a catalyst were mixed at a mass ratio of 1.3: 0.15: 0.4: 0.11, and By dissolving in tetralin, a liquid polymer composition having a solid concentration shown in Table 4 was obtained.
  • PU-1020 manufactured by Taisei Fine Chemical Co., Ltd.
  • epoxy resin ZX-1059” manufactured by Nippon Steel Chemical & Materials Co., Ltd.
  • styrene maleic anhydride as a cross-linking agent
  • Example I-9 Using the polymer composition thus obtained, a substance adsorption film was produced and evaluated in the same manner as in Example I-9. As a result, no flow of the substance adsorption film was confirmed, and the planar shape and dimensions of the substance adsorption film could be maintained.
  • Example II-1 Polyallylamine-polycaprolactone copolymer (amine value 9 mgKOH/g, acid value 17 mgKOH/g; hydroxyl group equivalent 1450 g/eq.) as a polymer compound having a hydroxyl group and an amino group, and blocked isocyanate (Asahi Kasei Co., Ltd.) as a cross-linking agent ("Duranate SBN-70D" manufactured by Sanken Co., Ltd.) at a solid content mass ratio of 25:1 and dissolved in 1,3-dimethyl-2-imidazolidinone to produce a polymer composition. A portion of this polymer composition was sampled and the gel fraction was measured by the method described above and found to be 1.31% by mass.
  • Example II-1 A polymer composition was produced in the same manner as in Example II-1, except that no blocked isocyanate was used. A portion of this polymer composition was sampled and the gel fraction was measured by the method described above and found to be 0.00% by mass.
  • Example II-2 Polyallylamine-polycaprolactone copolymer (amine value 17 mgKOH/g, acid value 14 mgKOH/g; hydroxyl group equivalent 1550 g/eq.) as a polymer compound having a hydroxyl group and an amino group, and blocked isocyanate (Asahi Kasei Co., Ltd.) as a cross-linking agent ("Duranate SBN-70D" manufactured by Sanken Co., Ltd.) at a solid content mass ratio of 25:1 and dissolved in 1,3-dimethyl-2-imidazolidinone to produce a polymer composition. A portion of this polymer composition was sampled and the gel fraction was measured by the method described above and found to be 0.73% by mass.
  • Example II-2 A polymer composition was produced in the same manner as in Example II-2, except that no blocked isocyanate was used. A portion of this polymer composition was sampled and the gel fraction was measured by the method described above and found to be 0.00% by mass.
  • Example II-3 Polyallylamine-polycaprolactone copolymer (amine value 17 mgKOH/g, acid value 20 mgKOH/g; hydroxyl group equivalent 1550 g/eq.) as a polymer compound having a hydroxyl group and an amino group, and blocked isocyanate (Asahi Kasei Co., Ltd.) as a cross-linking agent ("Duranate SBN-70D" manufactured by Sanken Co., Ltd.) at a solid content mass ratio of 25:1 and dissolved in 1,3-dimethyl-2-imidazolidinone to produce a polymer composition. A portion of this polymer composition was taken and the gel fraction was measured by the method described above, and found to be 0.13% by mass.
  • Example II-3 A polymer composition was produced in the same manner as in Example II-3, except that no blocked isocyanate was used. A portion of this polymer composition was sampled and the gel fraction was measured by the method described above and found to be 0.00% by mass.
  • Example II-4 Polyallylamine-polycaprolactone copolymer (amine value 17 mg KOH/g, acid value 16 mg KOH/g; hydroxyl equivalent 770 g/eq.) as a polymer compound having a hydroxyl group and an amino group, and blocked isocyanate (Asahi Kasei Co., Ltd.) as a cross-linking agent ("Duranate SBN-70D" manufactured by Sanken Co., Ltd.) at a solid content mass ratio of 25:1 and dissolved in 1,3-dimethyl-2-imidazolidinone to produce a polymer composition. A portion of this polymer composition was sampled and the gel fraction was measured by the method described above and found to be 2.65% by mass.
  • Example II-4 A polymer composition was produced in the same manner as in Example II-4, except that no blocked isocyanate was used. A portion of this polymer composition was sampled and the gel fraction was measured by the method described above and found to be 0.00% by mass.
  • a polymer composition was prepared by dissolving polyacrylic acid (manufactured by Sigma-Aldrich Japan, product number: 181285) as a polymer compound in 1,3-dimethyl-2-imidazolidinone as a solvent. A portion of this polymer composition was sampled and the gel fraction was measured by the method described above and found to be 0.00% by mass.
  • the polymer composition was applied by discharging the polymer composition onto the piezoelectric element as the odor sensor chip. Then, it was dried in a drying oven at 150° C. for 30 minutes to obtain an odor sensor element having a substance adsorption film formed thereon.
  • the odor sensor element was attached to an odor sensor (manufactured by I-PEX), and the odor was measured according to the following procedure.
  • a glass petri dish into which an odorant sample (water: ultrapure water, ethanol: manufactured by Junsei Chemical Co., Ltd., 1-propanol: manufactured by Junsei Chemical Co., Ltd., 1-hexanol: manufactured by Junsei Chemical Co., Ltd., toluene: manufactured by Junsei Chemical Co., Ltd.) was attached to the sensor system.
  • the glass petri dish was attached to the exchange position.
  • the glass petri dish was moved to the lower part of the odor sensor, the head space gas in the glass petri dish was released to the odor sensor, and the odor measurement by the odor sensor element was started. Specifically, the amount of response (the amount of change in frequency of the piezoelectric element) caused by the adsorption of the odorant sample to the substance adsorption film was measured. When the amount of response changed over time, the maximum value of the amount of response was obtained as the measured value. After the odor measurement was performed for a certain period of time, the glass petri dish was returned to the replacement position to complete the odor measurement.
  • FIG. 7 shows the amount of response when water was detected as an odorant sample using the odor sensor element.
  • Example II-1 and Comparative Example II-1 comparison between Example II-2 and Comparative Example II-2
  • Comparative Example II-3 comparison between Example II-3 and Comparative Example II-3
  • Example II-4 and Comparative Example II-4 the response amounts of Examples II-1 to II-4 with improved heat resistance are lower than those of Comparative Examples without improved heat resistance. It is comparable to the response amount of II-1 to II-4. Therefore, it can be seen that even if the heat resistance is improved by the crosslinked structure, the change in the response amount is small, and therefore the substance adsorption properties can be maintained at the same level.
  • the odor sensor element was taken out from the odor sensor, and the sensor element was heated at 80°C for 60 minutes. After that, the odor sensor element was allowed to cool and returned to normal temperature. The odor sensor element was attached to the odor sensor again, and the odor was measured in the same manner as before heating, and the amount of response of each odorant sample detected using each substance adsorption film was measured.
  • FIG. 8 shows the amount of response when water was detected as an odorant sample using the heated odor sensor element.
  • Example II-1 and Comparative Example II-1 comparison between Example II-2 and Comparative Example II-2
  • Comparative Example II-3 comparison between Example II-3 and Comparative Example II-3
  • Example II-4 and Comparative Example II-4 the response amounts of Examples II-1 to II-4 with improved heat resistance are lower than those of Comparative Examples without improved heat resistance. It is comparable to the response amount of II-1 to II-4.
  • the first component (component 1: contribution rate 59.7%) and the second component (component 2: contribution rate 15%) obtained by principal component analysis are shown in the graph in FIG. Table 5 shows specific values of the first component and the second component obtained in each example and comparative example. From the results of this principal component analysis, it was confirmed that the coordinates of the corresponding examples and the coordinates of the comparative examples are located close to each other, and that the response patterns of the substance adsorption films are similar. Therefore, this result also confirms that even if the heat resistance is improved by the crosslinked structure, the change in the response amount is small, and therefore the substance adsorption property can be maintained at the same level.
  • Example III-1 Manufacture of polymer composition
  • Urethane resin (“PU-1020” manufactured by Taisei Fine Chemical Co., Ltd.) as a polymer compound having a hydroxyl group
  • polyvinyl acetate (“JMR-8LO” manufactured by Nippon Acetate Vipoval Co., Ltd.; saponification degree 9.9 mol) as a polymer compound having a hydroxyl group %; weight average molecular weight 17000 to 25500)
  • blocked isocyanate (“Duranate SBN-70D” manufactured by Asahi Kasei Co., Ltd.) as a cross-linking agent are mixed at a solid content mass ratio of 47.5: 47.5: 5, and benzoin is used as a solvent. It was dissolved in methyl acid to obtain a liquid polymer composition. A portion of this polymer composition was taken and the gel fraction was measured by the method described above.
  • the polymer composition was applied to the odor sensor chip using a dispenser (Musashi Engineering) to form a layer of the polymer composition.
  • the longest length LA of the layer of this polymeric composition was measured.
  • Example III-2 Urethane resin ("PU-1020” manufactured by Taisei Fine Chemical Co., Ltd.) as a polymer compound having a hydroxyl group, polyvinyl acetate (“JMR-8LO” manufactured by Nippon Acetate Vipoval Co., Ltd.) as a polymer compound having a hydroxyl group, and a cross-linking agent Block isocyanate (“Duranate SBN-70D” manufactured by Asahi Kasei Co., Ltd.) and 2-ethyl-4-imidazole as a catalyst were mixed at a solid content mass ratio of 47:47:5:1, and dissolved in methyl benzoate as a solvent. to obtain a liquid polymer composition. Using the polymer composition thus obtained, a substance adsorption film was produced and evaluated in the same manner as in Example III-1.
  • PU-1020 manufactured by Taisei Fine Chemical Co., Ltd.
  • JMR-8LO manufactured by Nippon Acetate Vipoval Co., Ltd.
  • Block isocyanate
  • Example III-1 Production of a polymer composition and production and evaluation of a substance adsorption film were carried out in the same manner as in Example III-1, except that no blocked isocyanate was used.
  • FIG. 10 shows an image of the polymer composition layer taken before drying and an image of the substance adsorption film obtained by drying the polymer composition layer in Example III-1.
  • FIG. 11 shows an image of the polymer composition layer taken before drying and an image of the substance adsorption film obtained by drying the polymer composition layer in Example III-2.
  • FIG. 12 shows an image of the polymer composition layer taken before drying and an image of the substance adsorption film obtained by drying the polymer composition layer in Comparative Example III-1.
  • Table 6 The results of Examples III-1 to III-2 and Comparative Example III-1 are shown in Table 6 below.

Abstract

Provided is a polymer composition for forming a substance adsorption film for a sensor element, the sensor element comprising a substance adsorption film and a transducer part on the surface of which the substance adsorption film is provided and whereby a change in a physical parameter that occurs as a result of adsorption of a substance to the substance adsorption film can be detected, wherein: the polymer composition includes a polymer compound, a crosslinking agent, and a solvent; the crosslinking agent can react with the polymer compound or react with itself to form a crosslinked structure; and the gel fraction when an evaluation sample obtained by leaving the polymer composition for 60 minutes at 150°C is immersed in the solvent is 0.1% or greater.

Description

高分子組成物、物質吸着膜、及びセンサー素子の製造方法Polymer composition, substance adsorption film, and method for producing sensor element
 本発明は、物質の吸着による物理パラメータの変化を検出できるセンサー素子の製造方法;当該センサー素子に設けられる物質吸着膜;並びに、前記物質吸着膜の形成に使用するための高分子組成物;に関する。 TECHNICAL FIELD The present invention relates to a method for manufacturing a sensor element capable of detecting changes in physical parameters due to substance adsorption; a substance adsorption film provided on the sensor device; and a polymer composition for use in forming the substance adsorption film. .
 匂いセンサー等のガスセンサーが、様々な用途に利用されている。例えば、食品の腐敗によって発生する匂いを検知し、冷蔵庫内で食品の品質を管理するための匂いセンサーが知られている。また、例えば、食品及び香料の品質管理及び官能評価に利用するための匂いセンサーが知られている。 Gas sensors such as odor sensors are used for various purposes. For example, an odor sensor is known for detecting odors generated by rotting food and controlling the quality of food in a refrigerator. Odor sensors are also known, for example, for use in quality control and sensory evaluation of foods and fragrances.
 このような匂いセンサー等のガスセンサーとして、水晶振動子、表面弾性波素子等の圧電素子を有する圧電センサーが知られている。これら圧電センサーは、物質吸着膜を有し、その物質吸着膜に匂い物質が吸着することによる質量変化を感知して、匂い物質を検出する(特許文献1)。 A piezoelectric sensor having a piezoelectric element such as a crystal oscillator or a surface acoustic wave element is known as a gas sensor such as an odor sensor. These piezoelectric sensors have a substance-adsorbing film, and detect the odorant by detecting the mass change due to the odorant being adsorbed on the substance-adsorbing film (Patent Document 1).
国際公開第2017/085939号WO2017/085939
 ガスセンサー等のセンサー装置が備えるセンサー素子は、多種類の物質を検出するために、多くの種類の物質吸着膜を備えることがある。これらの物質吸着膜は、それぞれ、化学的特性、物理的特性等の特性が異なる高分子化合物を含みうる。そして、それら高分子化合物が特性に応じた物質を吸着することにより、物質吸着膜がそれぞれ異なる種類の物質を吸着できるので、センサー素子による多種類の物質の検出が可能となる。 A sensor element provided in a sensor device such as a gas sensor may have many types of substance adsorption films in order to detect many types of substances. Each of these substance adsorption films can contain polymer compounds having different properties such as chemical properties and physical properties. Since the polymer compounds adsorb substances according to their properties, the substance adsorption films can adsorb different types of substances, so that the sensor element can detect a wide variety of substances.
 上述したガスセンサー等のセンサー装置は、高温となりうる環境において使用されることがある。例えば、車両、工場、厨房等の環境においては、センサー装置が高温に曝されることがありうる。しかし、センサー装置が備えるセンサー素子の物質吸着膜は、耐熱性に劣ることがある。例えば、多種類の物質の検出のために多くの種類の物質吸着膜がセンサー素子に設けられ場合、一部又は全部の物質吸着膜において耐熱性に劣る高分子化合物の使用が求められた結果、それらの物質吸着膜が耐熱性に劣ることがありうる。 The sensor devices such as the gas sensors described above are sometimes used in environments that can reach high temperatures. For example, sensor devices may be exposed to high temperatures in environments such as vehicles, factories, and kitchens. However, the substance adsorption film of the sensor element included in the sensor device may be inferior in heat resistance. For example, when many kinds of substance adsorption films are provided on a sensor element for detecting many kinds of substances, it is required to use polymer compounds with poor heat resistance in some or all of the substance adsorption films. These substance adsorption films may be inferior in heat resistance.
 物質吸着膜が耐熱性に劣ると、高温環境において物質吸着膜が容易に流動化することがある。流動化した物質吸着膜は、重力によって容易に変形し、面積が変化することがありうる。このような変化は、検出誤差の増大の原因となりうる。よって、従来のセンサー装置が高温に曝されると、その後で温度が常温に戻った場合に、正確な検出が困難となることがありえた。 If the substance adsorption film has poor heat resistance, the substance adsorption film may easily fluidize in a high temperature environment. A fluidized substance-adsorbing film can be easily deformed by gravity and its area can change. Such changes can cause increased detection errors. Thus, when a conventional sensor device is exposed to high temperatures, it can be difficult to accurately detect when the temperature subsequently returns to room temperature.
 本発明は、前記の課題に鑑みて創案されたもので、物質吸着特性を維持しながら耐熱性が改善された物質吸着膜を製造できる高分子組成物;物質吸着特性を維持しながら耐熱性が改善された物質吸着膜;並びに、前記の物質吸着膜を備えるセンサー素子の製造方法;を提供することを目的とする。 The present invention has been invented in view of the above problems, and provides a polymer composition capable of producing a substance adsorption film having improved heat resistance while maintaining substance adsorption properties; An object of the present invention is to provide an improved substance-adsorbing film; and a method for manufacturing a sensor element having the substance-adsorbing film.
 本発明者は、前記の課題を解決するべく鋭意検討した。その結果、本発明者は、ゲル分率で表される適切な架橋密度の架橋構造を物資吸着層に導入した場合に、前記の課題を解決できることを見い出し、本発明を完成させた。
 すなわち、本発明は、下記のものを含む。
The inventors have made extensive studies to solve the above problems. As a result, the present inventors have found that the above problems can be solved by introducing a crosslinked structure with an appropriate crosslink density represented by the gel fraction into the material adsorption layer, and completed the present invention.
That is, the present invention includes the following.
 〔1〕 物質吸着膜と、前記物質吸着膜を表面に備え前記物質吸着膜への物質の吸着によって生じる物理パラメータの変化を検出できるトランスデューサ部と、を備えるセンサー素子の、前記物質吸着膜の形成用の高分子組成物であって;
 前記高分子組成物が、高分子化合物と、架橋剤と、溶媒と、を含み;
 前記架橋剤は、前記高分子化合物と反応するか、又は、前記架橋剤同士で反応して、架橋構造を形成でき;
 前記高分子組成物を150℃で60分静置して得られる評価試料を、前記溶媒に浸漬して不溶となる部分の割合が、0.10%以上である、高分子組成物。
 〔2〕 前記架橋剤が、ブロックされていてもよいイソシアネート基を有する、〔1〕に記載の高分子組成物。
 〔3〕 前記高分子化合物が、水酸基を有する、〔1〕又は〔2〕に記載の高分子組成物。
 〔4〕 前記高分子化合物が、アミノ基を有する、〔1〕~〔3〕のいずれか一項に記載の高分子組成物。
 〔5〕 物質吸着膜と、前記物質吸着膜を表面に備え前記物質吸着膜への物質の吸着によって生じる物理パラメータの変化を検出できるトランスデューサ部と、を備えるセンサー素子用の、物質吸着膜であって;
 前記物質吸着膜が、架橋されていてもよい高分子化合物を含み;
 前記物質吸着膜を1,3-ジメチル-2-イミダゾリジノン、テトラリン及び安息香酸メチルからなる群より選ばれる少なくとも1種の溶媒に浸漬して不溶となる部分の割合が、0.10%以上である、物質吸着膜。
 〔6〕 前記物質吸着膜が、架橋された前記高分子化合物を含む、〔5〕に記載の物質吸着膜。
 〔7〕 前記物質吸着膜が、架橋構造を有する重合体を更に含む、〔5〕又は〔6〕に記載の物質吸着膜。
 〔8〕 アルミニウム面に前記物質吸着膜を付着させ、前記アルミニウム面を鉛直方向に平行にして100℃で30分静置した場合に、前記物質吸着膜が平面形状を維持する、〔5〕~〔7〕のいずれか一項に記載の物質吸着膜。
 〔9〕 物理パラメータの変化を検出できるトランスデューサ部の表面に、〔1〕~〔4〕のいずれか一項に記載の高分子組成物の層を形成する工程と、
 前記高分子組成物の層に含まれる架橋剤に架橋反応をさせる工程と、を含む、センサー素子の製造方法。
[1] Formation of the substance adsorption film of a sensor element comprising a substance adsorption film, and a transducer unit having the substance adsorption film on its surface and capable of detecting a change in physical parameter caused by adsorption of a substance to the substance adsorption film. A polymeric composition for
the polymer composition comprises a polymer compound, a cross-linking agent, and a solvent;
The cross-linking agent can react with the polymer compound or react with each other to form a cross-linked structure;
A polymer composition, wherein a proportion of a portion that becomes insoluble when an evaluation sample obtained by standing the polymer composition at 150° C. for 60 minutes is immersed in the solvent is 0.10% or more.
[2] The polymer composition of [1], wherein the cross-linking agent has an isocyanate group that may be blocked.
[3] The polymer composition according to [1] or [2], wherein the polymer compound has a hydroxyl group.
[4] The polymer composition according to any one of [1] to [3], wherein the polymer compound has an amino group.
[5] A substance adsorption film for a sensor element comprising: a substance adsorption film; and a transducer unit having the substance adsorption film on its surface and capable of detecting changes in physical parameters caused by adsorption of substances to the substance adsorption film. hand;
the substance adsorption film contains a polymer compound that may be crosslinked;
The proportion of the portion that becomes insoluble when the substance adsorption film is immersed in at least one solvent selected from the group consisting of 1,3-dimethyl-2-imidazolidinone, tetralin and methyl benzoate is 0.10% or more. is a substance adsorption film.
[6] The substance adsorption film according to [5], wherein the substance adsorption film contains the crosslinked polymer compound.
[7] The substance adsorption film according to [5] or [6], further comprising a polymer having a crosslinked structure.
[8] When the substance adsorption film is adhered to an aluminum surface and left to stand at 100° C. for 30 minutes with the aluminum surface parallel to the vertical direction, the substance adsorption film maintains a planar shape; The substance adsorption film according to any one of [7].
[9] A step of forming a layer of the polymer composition according to any one of [1] to [4] on the surface of a transducer section capable of detecting changes in physical parameters;
and a step of causing a cross-linking reaction with a cross-linking agent contained in the polymer composition layer.
 本発明によれば、物質吸着特性を維持しながら耐熱性が改善された物質吸着膜を製造できる高分子組成物;物質吸着特性を維持しながら耐熱性が改善された物質吸着膜;並びに、前記の物質吸着膜を備えるセンサー素子の製造方法;を提供できる。 According to the present invention, a polymer composition capable of producing a substance adsorption film having improved heat resistance while maintaining substance adsorption properties; a substance adsorption film having improved heat resistance while maintaining substance adsorption properties; can provide a method for manufacturing a sensor element comprising a substance adsorption film of
図1は、本発明の一実施形態に係るセンサー素子を模式的に示す側面図である。FIG. 1 is a side view schematically showing a sensor element according to one embodiment of the invention. 図2は、一例としてのセンサー装置を模式的に示す概略図である。FIG. 2 is a schematic diagram schematically showing a sensor device as an example. 図3は、実施例I-1及び比較例I-1の物質吸着膜を撮影した写真である。FIG. 3 is a photograph of the substance adsorption films of Example I-1 and Comparative Example I-1. 図4は、実施例I-2及び比較例I-2の物質吸着膜を撮影した写真である。FIG. 4 is a photograph of the substance adsorption films of Example I-2 and Comparative Example I-2. 図5は、実施例I-3及び比較例I-3の物質吸着膜を撮影した写真である。FIG. 5 is a photograph of the substance adsorption films of Example I-3 and Comparative Example I-3. 図6は、実施例I-4及び比較例I-4の物質吸着膜を撮影した写真である。FIG. 6 is a photograph of the substance adsorption films of Example I-4 and Comparative Example I-4. 図7は、実施例II-1からII-4及び比較例II-1からII-4において、加熱前の匂いセンサー素子を用いて匂い物質サンプルとして水を検出したときの応答量を示すグラフである。FIG. 7 is a graph showing the amount of response when water was detected as an odorant sample using the odor sensor element before heating in Examples II-1 to II-4 and Comparative Examples II-1 to II-4. be. 図8は、実施例II-1からII-4及び比較例II-1からII-4において、加熱後の匂いセンサー素子を用いて匂い物質サンプルとして水を検出したときの応答量を示すグラフである。FIG. 8 is a graph showing the amount of response when water was detected as an odorant sample using the odor sensor element after heating in Examples II-1 to II-4 and Comparative Examples II-1 to II-4. be. 図9は、実施例II-1からII-4及び比較例II-1からII-7で測定された応答量の主成分分析を行った結果を示すグラフである。FIG. 9 is a graph showing the results of principal component analysis of the response amounts measured in Examples II-1 to II-4 and Comparative Examples II-1 to II-7. 図10は、実施例III-1における、乾燥前の高分子組成物の層の像と、その高分子組成物の層を乾燥して得られた物質吸着膜の像とを示す写真である。FIG. 10 is a photograph showing an image of a polymer composition layer before drying and an image of a substance adsorption film obtained by drying the polymer composition layer in Example III-1. 図11は、実施例III-2における、乾燥前の高分子組成物の層の像と、その高分子組成物の層を乾燥して得られた物質吸着膜の像とを示す写真である。FIG. 11 is a photograph showing an image of a polymer composition layer before drying and an image of a substance adsorption film obtained by drying the polymer composition layer in Example III-2. 図12は、実施例III-3における、乾燥前の高分子組成物の層の像と、その高分子組成物の層を乾燥して得られた物質吸着膜の像とを示す写真である。FIG. 12 is a photograph showing an image of a polymer composition layer before drying and an image of a substance adsorption film obtained by drying the polymer composition layer in Example III-3.
 以下、実施形態及び例示物を示して、本発明について詳細に説明する。ただし、本発明は、以下に示す実施形態及び例示物に限定されるものではなく、本発明の請求の範囲を逸脱しない範囲において任意に変更して実施しうる。 Hereinafter, the present invention will be described in detail by showing embodiments and examples. However, the present invention is not limited to the embodiments and examples shown below, and can be arbitrarily modified without departing from the scope of the claims of the present invention.
[1.高分子組成物の概要]
 本発明の一実施形態に係る高分子組成物は、高分子化合物と、この高分子化合物以外の架橋剤と、溶媒とを組み合わせて含む。前記の架橋剤は、高分子化合物と反応するか、又は、架橋剤同士で反応して、架橋構造を形成できる。さらに、高分子組成物を特定の温度で特定の時間静置して得られる評価試料を、溶媒に浸漬して不溶となる部分の割合が、特定の範囲にある。以下、評価試料を溶媒に浸漬して不溶となる部分の割合を「ゲル分率」ということがある。
[1. Overview of polymer composition]
A polymer composition according to one embodiment of the present invention includes a combination of a polymer compound, a cross-linking agent other than the polymer compound, and a solvent. The cross-linking agent can react with the polymer compound or react with each other to form a cross-linked structure. Furthermore, the percentage of the portion that becomes insoluble when an evaluation sample obtained by standing the polymer composition at a specific temperature for a specific time is immersed in a solvent is within a specific range. Hereinafter, the ratio of the portion that becomes insoluble when an evaluation sample is immersed in a solvent is sometimes referred to as "gel fraction".
 前記の高分子組成物は、物質吸着膜と、前記物質吸着膜を表面に備え前記物質吸着膜への物質の吸着によって生じる物理パラメータの変化を検出できるトランスデューサ部と、を備えるセンサー素子の、前記物質吸着膜を形成するために用いられる。用語「吸着」は、別に断らない限り、物理吸着だけではなく、化学結合又は生化学的な作用による吸着も含む。 The polymer composition is a sensor element comprising a substance-adsorbing film and a transducer unit having the substance-adsorbing film on its surface and capable of detecting a change in a physical parameter caused by adsorption of a substance to the substance-adsorbing film. It is used to form a substance adsorption film. The term "adsorption" includes not only physical adsorption but also adsorption by chemical bonding or biochemical action, unless otherwise specified.
 通常、高分子化合物が膜形成能を有するので、高分子組成物によって物質吸着膜を形成できる。本実施形態に係る高分子組成物から製造される物質吸着膜は、高い耐熱性を有することができる。具体的には、物質吸着膜は、高温環境における流動化を抑制できる。よって、重力、慣性力等の外力による変形を抑制できるので、物質吸着膜の面積の変化を抑制することができる。したがって、その物質吸着膜は、高温に曝された後であっても、高温に曝される前と同じく、物質(匂い物質又はガス分子等)の検出が可能である。 Generally, polymer compounds have the ability to form a film, so a polymer composition can form a substance adsorption film. A substance adsorption film manufactured from the polymer composition according to the present embodiment can have high heat resistance. Specifically, the substance adsorption film can suppress fluidization in a high temperature environment. Therefore, since deformation due to external forces such as gravity and inertial force can be suppressed, change in the area of the substance adsorption film can be suppressed. Therefore, the substance-adsorbing film can detect substances (such as odorants or gas molecules) even after exposure to high temperatures, as well as before exposure to high temperatures.
 前記のような耐熱性の改善は、物質吸着膜中に適切な架橋構造が形成されることによって、達成できる。例えば、物質吸着膜は通常は高分子組成物に含まれていた高分子化合物を含むが、本実施形態に係る高分子組成物から得られる物質吸着膜中では、高分子化合物が架橋剤によって架橋されて、架橋構造を形成していてもよい。また、例えば、本実施形態に係る高分子組成物から得られる物質吸着膜は、高分子化合物とは別の重合体として、架橋構造を有する重合体を含んでいてもよい。高分子化合物とは別の架橋構造を有する重合体を、以下、適宜「架橋重合体」ということがある。この際、これらの架橋された高分子化合物、架橋重合体、又はそれらの組み合わせによって形成される架橋構造の架橋密度は、ゲル分率によって表すことができる。特定の範囲のゲル分率で示される程度の架橋密度を有する架橋構造が物質吸着膜に含まれることで、熱による物質吸着膜の流動化が抑制され、その結果、高い耐熱性を達成することができる。 The improvement in heat resistance as described above can be achieved by forming an appropriate crosslinked structure in the substance adsorption film. For example, the substance adsorption film usually contains a polymer compound contained in the polymer composition. may be formed to form a crosslinked structure. Further, for example, the substance adsorption film obtained from the polymer composition according to the present embodiment may contain a polymer having a crosslinked structure as a polymer other than the polymer compound. A polymer having a crosslinked structure different from that of a polymer compound is hereinafter sometimes referred to as a "crosslinked polymer". At this time, the crosslink density of the crosslinked structure formed by these crosslinked polymer compounds, crosslinked polymers, or combinations thereof can be represented by the gel fraction. By including a cross-linked structure having a cross-linking density within a specific range of the gel fraction in the substance adsorption film, fluidization of the substance adsorption film due to heat is suppressed, and as a result, high heat resistance is achieved. can be done.
 また、本実施形態に係る前記の高分子組成物から得られる物質吸着膜は、架橋構造を含まない従来の物質吸着膜と同程度の物質吸着特性を発揮できる。したがって、耐熱性の向上のために架橋構造を導入したことによる物質吸着特性の変化を小さくできる。よって、前記の高分子組成物によれば、物質吸着特性を維持しながら耐熱性が改善された物質吸着膜を得ることができる。前記の従来の物質吸着膜とは、具体的には、本実施形態に係る高分子組成物が含むものと同じ高分子化合物を含むが、架橋構造を含まない従来の物質吸着膜を表す。 In addition, the substance adsorption film obtained from the polymer composition according to the present embodiment can exhibit substance adsorption properties comparable to those of conventional substance adsorption films that do not contain a crosslinked structure. Therefore, it is possible to reduce the change in the substance adsorption properties due to the introduction of the crosslinked structure for improving the heat resistance. Therefore, according to the polymer composition, it is possible to obtain a substance adsorption film having improved heat resistance while maintaining substance adsorption properties. The conventional substance adsorption film specifically refers to a conventional substance adsorption film that contains the same polymer compound as that contained in the polymer composition according to the present embodiment, but does not contain a crosslinked structure.
 さらに、本実施形態に係る高分子組成物は、好ましくは、物質吸着膜を製造する過程における寸法保持性に優れる。 Furthermore, the polymer composition according to the present embodiment preferably has excellent dimensional retention in the process of manufacturing the substance adsorption film.
[2.高分子化合物]
 高分子化合物としては、無機化合物を用いてもよいが、有機化合物を用いることが好ましい。高分子化合物としては、適切な繰り返し単位を有する規則性の高い高分子化合物が好ましい。このような高分子化合物を用いた場合、センサー素子によって検出したい物質の適切な検出が可能な物質吸着膜を得やすい。前記のセンサー素子によって検出したい物質を、以下、適宜「目的物質」ということがある。
[2. Polymer compound]
As the polymer compound, an inorganic compound may be used, but an organic compound is preferably used. As the polymer compound, a highly regular polymer compound having appropriate repeating units is preferable. When such a polymer compound is used, it is easy to obtain a substance-adsorbing film capable of appropriately detecting a substance to be detected by a sensor element. A substance to be detected by the sensor element is hereinafter sometimes referred to as a "target substance".
 通常、物質吸着膜を備えるセンサー素子を用いた検出では、物質吸着膜に吸着した物質の検出が行われる。よって、高分子化合物の具体的な種類は、目的物質に応じて選択することが好ましい。好ましい高分子化合物の具体例としては、フェノキシ樹脂、フェノール樹脂、アクリル樹脂、ポリビニルアセテート、ポリビニルアルコール、ポリスチレン、イミド樹脂、ウレタン樹脂、セルロースポリマー、変性セルロース、ビニルピリジンポリマー、ポリアクリロニトリル、ポリ酢酸ビニル、ポリスルホン、シクロオレフィンポリマー、ポリビニルピロリドン、ポリフェニレンエーテル、ポリフェニレンサルファイド、シリコーン樹脂、ポリブタジエン、及びこれらの共重合体などが挙げられる。好ましい共重合体としては、例えば、ポリアリルアミン-ポリカプロラクトン共重合体が挙げられる。 Normally, in detection using a sensor element equipped with a substance adsorption film, the substance adsorbed to the substance adsorption film is detected. Therefore, it is preferable to select the specific type of polymer compound according to the target substance. Specific examples of preferred polymer compounds include phenoxy resin, phenol resin, acrylic resin, polyvinyl acetate, polyvinyl alcohol, polystyrene, imide resin, urethane resin, cellulose polymer, modified cellulose, vinylpyridine polymer, polyacrylonitrile, polyvinyl acetate, Examples include polysulfone, cycloolefin polymer, polyvinylpyrrolidone, polyphenylene ether, polyphenylene sulfide, silicone resin, polybutadiene, and copolymers thereof. Preferred copolymers include, for example, polyallylamine-polycaprolactone copolymers.
 高分子化合物は、目的物質の吸着し易さを調整する観点、及び、架橋剤による架橋反応を進行させる観点から、適切な官能基を有していてもよい。高分子化合物が有することが好ましい官能基としては、例えば、水酸基が挙げられる。水酸基を有する高分子化合物は、特定の種類の目的物質の吸着し易さを調整したり、適切な種類の架橋剤と架橋反応を生じたりできる。 The polymer compound may have an appropriate functional group from the viewpoint of adjusting the ease of adsorption of the target substance and from the viewpoint of advancing the cross-linking reaction by the cross-linking agent. Examples of the functional group that the polymer compound preferably has include a hydroxyl group. A polymer compound having a hydroxyl group can adjust the ease with which a specific type of target substance is adsorbed, or can undergo a cross-linking reaction with an appropriate type of cross-linking agent.
 水酸基等の官能基を有する高分子化合物における前記官能基の量は、酸価によって表しうる。一例において、高分子化合物の酸価は、好ましくは1mgKOH/g以上、より好ましくは5mgKOH/g以上、特に好ましくは10mgKOH/g以上であり、好ましくは50mgKOH/g以下、より好ましくは30mgKOH/g以下、特に好ましくは25mgKOH/g以下である。 The amount of functional groups in a polymer compound having functional groups such as hydroxyl groups can be represented by an acid value. In one example, the acid value of the polymer compound is preferably 1 mgKOH/g or more, more preferably 5 mgKOH/g or more, particularly preferably 10 mgKOH/g or more, preferably 50 mgKOH/g or less, more preferably 30 mgKOH/g or less. , particularly preferably 25 mgKOH/g or less.
 特に、高分子化合物が水酸基を有する場合、高分子化合物は、単位質量当たり特定の範囲の個数の水酸基を含むことが好ましい。高分子化合物の具体的な単位質量当たりの水酸基の個数の範囲は、好ましくは1.0×10-5mol/g以上、より好ましくは2.0×10-5mol/g以上、特に好ましくは3.0×10-5mol/g以上であり、好ましくは1.0×10-1mol/g以下、より好ましくは3.0×10-2mol/g以下、特に好ましくは2.0×10-2mol/g以下である。高分子組成物が1種類のみの高分子化合物を含む場合、その高分子化合物の単位質量当たりの水酸基の個数が前記範囲にあることが好ましい。また、高分子組成物が2種類以上の高分子化合物を含む場合、それらの高分子化合物の単位質量当たりの水酸基の個数の加重平均が前記範囲にあることが好ましい。前記の加重平均は、質量に基づく加重平均を表す。よって、例えば、単位質量当たりの水酸基の個数がA1の第一の高分子化合物をW1質量部、及び、単位質量当たりの水酸基の個数がA2の第二の高分子化合物をW2質量部を組み合わせて用いる場合、その水酸基の個数の加重平均「A1×{W1/(W1+W2)}+A2×{W2/(W1+W2)}」が前記範囲にあることが好ましい。 In particular, when the polymer compound has hydroxyl groups, it is preferable that the polymer compound contains the number of hydroxyl groups within a specific range per unit mass. The specific range of the number of hydroxyl groups per unit mass of the polymer compound is preferably 1.0×10 −5 mol/g or more, more preferably 2.0×10 −5 mol/g or more, and particularly preferably 3.0 × 10 -5 mol/g or more, preferably 1.0 × 10 -1 mol/g or less, more preferably 3.0 × 10 -2 mol/g or less, particularly preferably 2.0 × 10 −2 mol/g or less. When the polymer composition contains only one type of polymer compound, the number of hydroxyl groups per unit mass of the polymer compound is preferably within the above range. Moreover, when the polymer composition contains two or more types of polymer compounds, the weighted average of the number of hydroxyl groups per unit mass of those polymer compounds is preferably within the above range. The aforementioned weighted average represents a weighted average based on mass. Therefore, for example, W1 parts by mass of the first polymer compound having A1 number of hydroxyl groups per unit mass and W2 parts by mass of the second polymer compound having A2 number of hydroxyl groups per unit mass are combined. When used, the weighted average of the number of hydroxyl groups "A1×{W1/(W1+W2)}+A2×{W2/(W1+W2)}" is preferably within the above range.
 高分子化合物の単位質量当たりの水酸基の個数は、高分子化合物の水酸基当量の逆数として計算できる。また、高分子化合物の水酸基当量は、1当量の水酸基を有する高分子化合物の質量を表す。高分子化合物の水酸基当量は、「水酸基当量=56100÷水酸基価(mgKOH/g)」で求めることができる。 The number of hydroxyl groups per unit mass of the polymer compound can be calculated as the reciprocal of the hydroxyl equivalent of the polymer compound. Moreover, the hydroxyl group equivalent of the polymer compound represents the mass of the polymer compound having one equivalent of hydroxyl group. The hydroxyl group equivalent of a polymer compound can be determined by "hydroxyl group equivalent=56100/hydroxyl group value (mgKOH/g)".
 高分子化合物が有することが好ましい別の官能基としては、例えば、アミノ基が挙げられる。アミノ基を有する高分子化合物は、特定の種類の目的物質の吸着し易さを調整したり、適切な種類の架橋剤と架橋反応を生じたりできる。 Another functional group that the polymer compound preferably has is, for example, an amino group. A polymer compound having an amino group can adjust the ease with which a specific type of target substance is adsorbed, or can undergo a cross-linking reaction with an appropriate type of cross-linking agent.
 アミノ基等の官能基を有する高分子化合物における前記官能基の量は、アミン価によって表しうる。一例において、高分子化合物のアミン価は、好ましくは0.1mgKOH/g以上、より好ましくは1mgKOH/g以上、特に好ましくは5mgKOH/g以上であり、好ましくは100mgKOH/g以下、より好ましくは50mgKOH/g以下、特に好ましくは20mgKOH/g以下である。 The amount of the functional group in a polymer compound having a functional group such as an amino group can be represented by an amine value. In one example, the amine value of the polymer compound is preferably 0.1 mgKOH/g or more, more preferably 1 mgKOH/g or more, particularly preferably 5 mgKOH/g or more, preferably 100 mgKOH/g or less, more preferably 50 mgKOH/g. g or less, particularly preferably 20 mgKOH/g or less.
 通常、形成される物質吸着膜が常温で固体であることから、高分子化合物も、常温では固体であることが好ましい。 Since the substance adsorption film that is formed is usually solid at room temperature, the polymer compound is also preferably solid at room temperature.
 高分子化合物の重量平均分子量は、好ましくは1000以上、より好ましくは2000以上、特に好ましくは3000以上であり、好ましくは100万以下、より好ましくは50万以下、特に好ましくは30万以下である。このような範囲の重量平均分子量を有する高分子化合物を用いた場合、目的物質の適切な検出が可能な物質吸着膜を得やすい。
 高分子化合物の重量平均分子量は、ゲル浸透クロマトグラフィー(GPC)法により、ポリスチレン換算の値として測定できる。
The weight average molecular weight of the polymer compound is preferably 1,000 or more, more preferably 2,000 or more, particularly preferably 3,000 or more, and preferably 1,000,000 or less, more preferably 500,000 or less, and particularly preferably 300,000 or less. When a polymer compound having a weight-average molecular weight within such a range is used, it is easy to obtain a substance-adsorbing film capable of appropriately detecting the target substance.
The weight-average molecular weight of the polymer compound can be measured as a polystyrene-equivalent value by a gel permeation chromatography (GPC) method.
 高分子組成物において、高分子化合物は、溶媒に分散していてもよいが、高分子組成物のポットライフを長くする観点から、溶媒に溶解していることが好ましい。 In the polymer composition, the polymer compound may be dispersed in the solvent, but from the viewpoint of prolonging the pot life of the polymer composition, it is preferably dissolved in the solvent.
 高分子組成物100質量%に対する高分子化合物の量は、好ましくは0.1質量%以上、より好ましくは0.5質量%以上、更に好ましくは0.7質量%以上、特に好ましくは1質量%以上であり、好ましくは50質量%以下、より好ましくは45質量%以下、更に好ましくは40質量%以下、特に好ましくは30質量%以下である。前記範囲の量の高分子化合物を用いた場合、高分子組成物の粘度を適切な範囲に収めることができるので、高分子組成物の取り扱い性を良好にできる。 The amount of the polymer compound relative to 100% by mass of the polymer composition is preferably 0.1% by mass or more, more preferably 0.5% by mass or more, still more preferably 0.7% by mass or more, and particularly preferably 1% by mass. It is preferably 50% by mass or less, more preferably 45% by mass or less, still more preferably 40% by mass or less, and particularly preferably 30% by mass or less. When the polymer compound is used in an amount within the above range, the viscosity of the polymer composition can be kept within an appropriate range, so that the handleability of the polymer composition can be improved.
 高分子組成物の固形分100質量%に対する高分子化合物の量は、好ましくは60質量%以上、より好ましくは70質量%以上、より好ましくは80質量%以上であり、好ましくは99質量%以下、より好ましくは98質量%以下、特に好ましくは97質量%以下である。高分子組成物の固形分とは、高分子組成物に含まれる溶媒を除く成分を表す。前記範囲の量の高分子化合物を用いた場合、本発明の効果を顕著に得ることができる。 The amount of the polymer compound relative to 100% by mass of the solid content of the polymer composition is preferably 60% by mass or more, more preferably 70% by mass or more, more preferably 80% by mass or more, and preferably 99% by mass or less. More preferably 98% by mass or less, particularly preferably 97% by mass or less. The solid content of the polymer composition represents components other than the solvent contained in the polymer composition. When the polymer compound is used in an amount within the above range, the effect of the present invention can be obtained remarkably.
[3.架橋剤]
 架橋剤としては、物質吸着膜において架橋構造を形成できる化合物を用いうる。通常は、高分子組成物を適切な反応条件(例えば、150℃で60分)に静置した場合に架橋反応を生じて架橋構造を形成できる化合物を、架橋剤として用いる。この架橋剤としては、高分子化合物と架橋反応を生じて架橋構造を形成できる化合物を用いてもよく、架橋剤同士で架橋反応を生じて架橋構造を形成できる化合物を用いてもよく、それらを組み合わせて用いてもよい。
[3. Crosslinking agent]
As the cross-linking agent, a compound capable of forming a cross-linked structure in the substance adsorption film can be used. Generally, a compound that can form a crosslinked structure by causing a crosslinking reaction when the polymer composition is allowed to stand under appropriate reaction conditions (for example, 150° C. for 60 minutes) is used as the crosslinking agent. As the cross-linking agent, a compound capable of forming a cross-linked structure by causing a cross-linking reaction with a polymer compound may be used, or a compound capable of forming a cross-linked structure by causing a cross-linking reaction between cross-linking agents may be used. They may be used in combination.
 高分子化合物と架橋反応を生じて架橋構造を形成できる架橋剤としては、高分子化合物が有する官能基と反応して結合を形成できる架橋性基を有する化合物を用いることができる。通常、この架橋剤は、1分子中に複数個の架橋性基を有し、それらの架橋性基が高分子化合物の官能基と反応することで、高分子化合物の分子同士を架橋する架橋構造を形成できる。 As a cross-linking agent capable of forming a cross-linked structure by causing a cross-linking reaction with a polymer compound, a compound having a cross-linkable group capable of forming a bond by reacting with a functional group possessed by the polymer compound can be used. Usually, this cross-linking agent has a plurality of cross-linkable groups in one molecule, and these cross-linkable groups react with the functional groups of the polymer compound, thereby cross-linking the molecules of the polymer compound. can be formed.
 高分子化合物が有する官能基と反応しうる架橋性基の具体的な種類は、官能基の種類に応じて選択することが好ましい。好ましい架橋性基の具体例としては、イソシアネート基(-N=C=O)、エポキシ基、酸無水物基、水酸基、アミノ基、アルデヒド基、カルボニル基、カルボキシ基、アゾ基、ニトロ基、チオール基、スルホン基、ハロゲン基、エステル基、アミド基等が挙げられる。また、これらの架橋性基は、ブロックされていてもよい。例えば、イソシアネート基はブロックされていてもよい。ブロックされたイソシアネート基は、常温では不活性化されているが、熱を受けた場合にブロック剤が解離してイソシアネート基が再生されるので、高分子化合物の官能基と架橋反応を生じることができる。 The specific type of crosslinkable group that can react with the functional group of the polymer compound is preferably selected according to the type of the functional group. Specific examples of preferred crosslinkable groups include isocyanate groups (-N=C=O), epoxy groups, acid anhydride groups, hydroxyl groups, amino groups, aldehyde groups, carbonyl groups, carboxy groups, azo groups, nitro groups, and thiols. group, sulfone group, halogen group, ester group, amide group and the like. Moreover, these crosslinkable groups may be blocked. For example, isocyanate groups may be blocked. The blocked isocyanate groups are inactivated at room temperature, but when exposed to heat, the blocking agent dissociates and the isocyanate groups are regenerated, which can cause cross-linking reactions with the functional groups of the polymer compound. can.
 好ましい架橋剤の例としては、ブロックイソシアネートが挙げられる。架橋剤としてのブロックイソシアネートは、通常、1分子中に複数個のブロックされたイソシアネート基を有する。ブロックイソシアネートは、例えば、1分子中に複数個のイソシアネート基を有するイソシアネート化合物と、ブロック剤とを反応させて製造できる。 Examples of preferred cross-linking agents include blocked isocyanates. A blocked isocyanate as a cross-linking agent usually has a plurality of blocked isocyanate groups in one molecule. A blocked isocyanate can be produced, for example, by reacting an isocyanate compound having multiple isocyanate groups in one molecule with a blocking agent.
 イソシアネート化合物としては、例えば、1,6-ヘキサンジイソシアネート、1,3,6-ヘキサメチレントリイソシアネート、ヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、リジンジイソシアネート等の脂肪族イソシアネート;1,4-シクロヘキサンジイソシアネート、4,4’-ジシクロヘキシルメタンジイソシアネート、1,3-ビス(イソシアネートメチル)シクロヘキサン、イソホロンジイソシアネート、水添キシリレンジイソシアネート、水添トリレンジイソシアネート等の脂環式イソシアネート;4,4’-ジフェニルメタンジイソシアネート、2,4’-ジフェニルメタンジイソシアネート、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、キシリレンジイソシアネート、1,4-フェニレンジイソシアネート、2,6-フェニレンジイソシアネート、1,5-ナフタレンジイソシアネート、4,4-ジフェニルジイソシアネート等の芳香族イソシアネート;などが挙げられる。イソシアネート化合物は、1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。 Examples of isocyanate compounds include aliphatic isocyanates such as 1,6-hexane diisocyanate, 1,3,6-hexamethylene triisocyanate, hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, and lysine diisocyanate; 1,4-cyclohexane diisocyanate, 4 , 4′-dicyclohexylmethane diisocyanate, 1,3-bis(isocyanatomethyl)cyclohexane, isophorone diisocyanate, hydrogenated xylylene diisocyanate, hydrogenated tolylene diisocyanate and other alicyclic isocyanates; 4,4′-diphenylmethane diisocyanate, 2, 4'-diphenylmethane diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, xylylene diisocyanate, 1,4-phenylene diisocyanate, 2,6-phenylene diisocyanate, 1,5-naphthalene diisocyanate, 4,4 - aromatic isocyanates such as diphenyl diisocyanate; An isocyanate compound may be used individually by 1 type, and may be used in combination of 2 or more types.
 ブロック剤としては、例えば、アルコール化合物、フェノール化合物、ε-カプロラクタム、オキシム化合物、活性メチレン化合物、メルカプタン化合物、アミン化合物、イミド化合物、酸アミド化合物、イミダゾール化合物、尿素化合物、カルバミン酸塩化合物、イミン化合物、及び亜硫酸塩化合物が挙げられる。中でも、ブロック剤としては、熱によって解離できる熱解離性ブロック剤が好ましい。熱解離性ブロック剤の例としては、γ-ブチロラクタム、ε-カプロラクタム、γ-バレロラクタム、プロピオラクタムなどのラクタム化合物;メチルエチルケトオキシム、メチルイソアミルケトオキシム、メチルイソブチルケトオキシム、ホルムアミドオキシム、アセトアミドオキシム、アセトオキシム、ジアセチルモノオキシム、ベンゾフェノンオキシム、シクロヘキサノンオキシムなどのオキシム化合物;フェノール、クレゾール、カテコール、ニトロフェノールなどの単環フェノール化合物;1-ナフトールなどの多環フェノール化合物;メチルアルコール、エチルアルコール、イソプロピルアルコール、tert-ブチルアルコール、トリメチロールプロパン、2-エチルヘキシルアルコールなどのアルコール化合物;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテルなどのエーテル化合物;マロン酸アルキルエステル、マロン酸ジアルキルエステル、アセト酢酸アルキルエステル、アセチルアセトンなどの活性メチレン化合物;等が挙げられる。ブロック剤は、1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。 Examples of blocking agents include alcohol compounds, phenol compounds, ε-caprolactam, oxime compounds, active methylene compounds, mercaptan compounds, amine compounds, imide compounds, acid amide compounds, imidazole compounds, urea compounds, carbamate compounds, and imine compounds. , and sulfite compounds. Among them, a thermally dissociable blocking agent that can be dissociated by heat is preferable as the blocking agent. Examples of thermally dissociable blocking agents include lactam compounds such as γ-butyrolactam, ε-caprolactam, γ-valerolactam, propiolactam; Oxime compounds such as acetoxime, diacetyl monoxime, benzophenone oxime, cyclohexanone oxime; monocyclic phenol compounds such as phenol, cresol, catechol and nitrophenol; polycyclic phenol compounds such as 1-naphthol; methyl alcohol, ethyl alcohol, isopropyl alcohol , tert-butyl alcohol, trimethylolpropane, 2-ethylhexyl alcohol and other alcohol compounds; ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether and other ether compounds; malonic acid alkyl esters, malonic acid dialkyl esters, aceto active methylene compounds such as acetic acid alkyl esters and acetylacetone; One type of blocking agent may be used alone, or two or more types may be used in combination.
 ブロックイソシアネートとしては、市販品を用いてもよい。市販のブロックイソシアネートとしては、例えば、ヘキサメチレンジイソシアネート系ブロックイソシアネート(例えば、旭化成社製のデュラネートSBN-70D、SBB-70P、SBF-70E、TPA-B80E、17B-60P、MF-B60B、E402-B80B、MF-K60B、及びWM44-L70G;三井化学社製のタケネートB-882N;Baxenden社製の7960、7961、7982、7991、及び7992など)、トリレンジイソシアネート系ブロックイソシアネート(例えば、三井化学社製のタケネートB-830など)、4,4’-ジフェニルメタンジイソシアネート系ブロックイソシアネート(例えば、三井化学社製のタケネートB-815N;大榮産業社製のブロネートPMD-OA01、及びPMD-MA01など)、1,3-ビス(イソシアネートメチル)シクロヘキサン系ブロックイソシアネート(例えば、三井化学社製のタケネートB-846N;東ソー社製のコロネートBI-301、2507、及び2554など)、イソホロンジイソシアネート系ブロックイソシアネート(例えば、Baxenden社製の7950、7951、及び7990など)が挙げられる。ブロックイソシアネートは、1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。 A commercially available product may be used as the blocked isocyanate. Examples of commercially available blocked isocyanates include hexamethylene diisocyanate-based blocked isocyanates (e.g., Asahi Kasei Duranate SBN-70D, SBB-70P, SBF-70E, TPA-B80E, 17B-60P, MF-B60B, E402-B80B , MF-K60B, and WM44-L70G; Takenate B-882N manufactured by Mitsui Chemicals; 7960, 7961, 7982, 7991, and 7992 manufactured by Baxenden, etc.), tolylene diisocyanate-based blocked isocyanate (for example, manufactured by Mitsui Chemicals) Takenate B-830, etc.), 4,4′-diphenylmethane diisocyanate-based blocked isocyanate (for example, Takenate B-815N manufactured by Mitsui Chemicals; Bronate PMD-OA01 and PMD-MA01 manufactured by Taiei Sangyo Co., Ltd.), 1 ,3-bis(isocyanatomethyl)cyclohexane-based blocked isocyanate (e.g., Takenate B-846N manufactured by Mitsui Chemicals; Coronate BI-301, 2507, and 2554 manufactured by Tosoh Corporation), isophorone diisocyanate-based blocked isocyanate (e.g., Baxenden 7950, 7951, and 7990 manufactured by the company). Block isocyanate may be used individually by 1 type, and may be used in combination of 2 or more types.
 好ましい架橋剤の別の例としては、エポキシ樹脂が挙げられる。架橋剤としてのエポキシ樹脂は、通常、1分子中に複数個のエポキシ基を有する。エポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビスフェノールAF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、tert-ブチル-カテコール型エポキシ樹脂、ナフトール型エポキシ樹脂、ナフタレン型エポキシ樹脂、ナフチレンエーテル型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂、フルオレン骨格型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、アントラセン型エポキシ樹脂、線状脂肪族エポキシ樹脂、ブタジエン構造を有するエポキシ樹脂、脂環式エポキシ樹脂、複素環式エポキシ樹脂、スピロ環含有エポキシ樹脂、シクロヘキサンジメタノール型エポキシ樹脂、トリメチロール型エポキシ樹脂、ハロゲン化エポキシ樹脂等が挙げられる。 Another example of a preferable cross-linking agent is an epoxy resin. An epoxy resin as a cross-linking agent usually has a plurality of epoxy groups in one molecule. Examples of epoxy resins include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, bisphenol AF type epoxy resin, phenol novolac type epoxy resin, tert-butyl-catechol type epoxy resin, and naphthol type epoxy resin. , naphthalene type epoxy resin, naphthylene ether type epoxy resin, glycidylamine type epoxy resin, glycidyl ester type epoxy resin, cresol novolak type epoxy resin, biphenyl type epoxy resin, phenol aralkyl type epoxy resin, biphenyl aralkyl type epoxy resin, fluorene skeleton type epoxy resin, dicyclopentadiene type epoxy resin, anthracene type epoxy resin, linear aliphatic epoxy resin, epoxy resin having a butadiene structure, alicyclic epoxy resin, heterocyclic epoxy resin, spiro ring-containing epoxy resin, cyclohexanediene Examples include methanol-type epoxy resins, trimethylol-type epoxy resins, and halogenated epoxy resins.
 エポキシ樹脂としては、市販品を用いてもよい。市販のエポキシ樹脂としては、例えば、日鉄ケミカル&マテリアル社製「ZX-1059」(ビスフェノールA型エポキシ樹脂とビスフェノールF型エポキシ樹脂の混合品)などが挙げられる。エポキシ樹脂は、1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。 A commercially available product may be used as the epoxy resin. Examples of commercially available epoxy resins include "ZX-1059" (a mixture of bisphenol A type epoxy resin and bisphenol F type epoxy resin) manufactured by Nippon Steel Chemical & Materials Co., Ltd., and the like. One type of epoxy resin may be used alone, or two or more types may be used in combination.
 好ましい架橋剤の更に別の例としては、酸無水物化合物が挙げられる。架橋剤としての酸無水物化合物は、通常、1分子中に1個又は複数個のカルボン酸無水物基(-CO-O-CO-)を有する。酸無水物化合物としては、例えば、無水フタル酸、ピロメリット酸二無水物、1,4,5,8-ナフタレンテトラカルボン酸二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物、3,3’,4,4’-ベンソフェノンテトラカルボン酸二無水物、オキシジフタル酸二無水物、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物、3,3’,4,4’-ジフェニルエーテルテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、メチレン-4,4’-ジフタル酸二無水物等の芳香族酸無水物系化合物;テトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、メチルナジック酸無水物、水素化メチルナジック酸無水物、トリアルキルテトラヒドロ無水フタル酸、ドデセニル無水コハク酸、シクロペンタンテトラカルボン酸二無水物、シクロヘキサン-1,2,4,5-テトラカルボン酸二無水物等の脂肪族酸無水物系化合物;スチレン-無水マレイン酸共重合体、(メタ)アクリル酸アルキル-スチレン-無水マレイン酸共重合体等の無水マレイン酸重合体系化合物;などが挙げられる。 Another example of a preferable cross-linking agent is an acid anhydride compound. An acid anhydride compound as a cross-linking agent usually has one or more carboxylic acid anhydride groups (--CO--O--CO--) in one molecule. Examples of acid anhydride compounds include phthalic anhydride, pyromellitic dianhydride, 1,4,5,8-naphthalenetetracarboxylic dianhydride, and 2,3,6,7-naphthalenetetracarboxylic dianhydride. 3,3′,4,4′-benzophenonetetracarboxylic dianhydride, oxydiphthalic dianhydride, 3,3′,4,4′-diphenylsulfonetetracarboxylic dianhydride, 3,3 Aromatic acids such as ',4,4'-diphenyl ether tetracarboxylic dianhydride, 3,3',4,4'-biphenyl tetracarboxylic dianhydride, and methylene-4,4'-diphthalic dianhydride Anhydride compounds; tetrahydrophthalic anhydride, hexahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methylhexahydrophthalic anhydride, methylnadic anhydride, hydrogenated methylnadic anhydride, trialkyltetrahydrophthalic anhydride, dodecenyl Aliphatic acid anhydride compounds such as succinic anhydride, cyclopentanetetracarboxylic dianhydride, cyclohexane-1,2,4,5-tetracarboxylic dianhydride; styrene-maleic anhydride copolymer, (meth ) maleic anhydride polymer compounds such as alkyl acrylate-styrene-maleic anhydride copolymer;
 酸無水物化合物としては、市販品を用いてもよい。市販の酸無水物化合物としては、例えば、Cray Valley社製のスチレン-無水マレイン酸共重合体「EF80」などが挙げられる。酸無水物化合物は、1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。 A commercially available product may be used as the acid anhydride compound. Examples of commercially available acid anhydride compounds include styrene-maleic anhydride copolymer "EF80" manufactured by Cray Valley. The acid anhydride compound may be used singly or in combination of two or more.
 高分子化合物と架橋反応を生じて架橋構造を形成できる架橋剤を用いる場合、その架橋剤と高分子化合物との量比は、特定の範囲のゲル分率が得られるように設定することが好ましい。通常は、高分子化合物が有する官能基の大部分と反応できる量の架橋性基を含む量の架橋剤を用いることが好ましく、高分子化合物が有する官能基の全てと反応できる量の架橋性基を含む量の架橋剤を用いることがより好ましい。 When using a cross-linking agent capable of forming a cross-linked structure by causing a cross-linking reaction with a polymer compound, it is preferable to set the amount ratio between the cross-linking agent and the polymer compound so as to obtain a gel fraction within a specific range. . Usually, it is preferable to use an amount of cross-linking agent containing cross-linkable groups that can react with most of the functional groups of the polymer compound, and an amount of cross-linkable groups that can react with all the functional groups of the polymer compound. It is more preferable to use an amount of cross-linking agent containing
 よって、高分子組成物に含まれる高分子化合物が有する官能基の個数Nに対して、その高分子組成物に含まれる架橋剤の架橋性基の個数Nは、好ましくは0.001×N以上、より好ましくは0.01×N以上、更に好ましくは0.02×N以上、特に好ましくは0.05×N以上であり、好ましくは100×N以下、より好ましくは50×N以下、更に好ましくは20×N以下である。例えば、高分子化合物が有する官能基1個に対して架橋剤が有する架橋性基1個が反応する場合に、架橋剤の架橋性基の個数Nが前記範囲にあることが好ましい。 Therefore, the number N B of crosslinkable groups of the cross-linking agent contained in the polymer composition is preferably 0.001× the number N F of functional groups possessed by the polymer compound contained in the polymer composition. N F or more, more preferably 0.01 x N F or more, still more preferably 0.02 x N F or more, particularly preferably 0.05 x N F or more, preferably 100 x N F or less, more preferably It is 50×N F or less, more preferably 20×N F or less. For example, when one crosslinkable group of the crosslinker reacts with one functional group of the polymer compound, the number NB of crosslinkable groups of the crosslinker is preferably within the above range.
 高分子組成物に含まれる高分子化合物が有する官能基の個数Nは、高分子組成物に含まれる高分子化合物の質量を当該高分子化合物の官能基当量で割り算した値を全て合計した値を表す。例えば、高分子化合物の水酸基の個数は、高分子化合物の質量をその高分子化合物の水酸基当量で割り算して求めることができる。 The number N F of functional groups possessed by the polymer compound contained in the polymer composition is the sum of all the values obtained by dividing the mass of the polymer compound contained in the polymer composition by the functional group equivalent of the polymer compound. represents For example, the number of hydroxyl groups in a polymer compound can be determined by dividing the mass of the polymer compound by the hydroxyl equivalent weight of the polymer compound.
 また、高分子組成物に含まれる架橋剤が有する架橋性基の個数Nは、高分子組成物に含まれる架橋剤の質量を当該架橋剤の架橋性基当量で割り算した値を全て合計した値を表す。例えば、架橋剤のエポキシ基の個数は、架橋剤の質量をその架橋剤のエポキシ基当量で割り算して求めることができる。また、特に架橋剤のうちブロックイソシアネートについては、架橋性基当量はメーカーから開示されず、イソシアネート基含有率(NCO率)が開示されていることがありうる。この場合、通常は、イソシアネート基の式量(即ち、42)をイソシアネート基含有率で割り算することでイソシアネート基当量を求め、そのイソシアネート基当量をブロックイソシアネートの架橋性基当量として用いうる。 Further, the number NB of crosslinkable groups possessed by the crosslinker contained in the polymer composition is obtained by dividing the mass of the crosslinker contained in the polymer composition by the crosslinkable group equivalent of the crosslinker, and totaling all the values. represents a value. For example, the number of epoxy groups in a cross-linking agent can be obtained by dividing the mass of the cross-linking agent by the epoxy group equivalent weight of the cross-linking agent. In particular, for blocked isocyanate among cross-linking agents, the cross-linkable group equivalent is not disclosed by the manufacturer, but the isocyanate group content (NCO rate) may be disclosed. In this case, the isocyanate group equivalent is usually obtained by dividing the isocyanate group formula weight (that is, 42) by the isocyanate group content, and that isocyanate group equivalent can be used as the crosslinkable group equivalent of the blocked isocyanate.
 架橋剤同士で架橋反応を生じて架橋構造を形成できる架橋剤としては、架橋剤が有する架橋性基同士が反応して結合を形成できる架橋性基を有する化合物を用いることができる。通常、この架橋剤は、1分子中に複数個の架橋性基を有し、それらの架橋性基同士が反応することで、架橋剤の分子同士を橋架けする架橋構造を形成できるので、ネットワーク構造を有する架橋重合体を得ることができる。こうして得られる架橋重合体は、高分子化合物が有する官能基と同じ種類の官能基を有さないことが好ましい。 As a cross-linking agent capable of forming a cross-linked structure by causing a cross-linking reaction between cross-linking agents, a compound having a cross-linking group capable of forming a bond by reacting the cross-linking groups possessed by the cross-linking agent can be used. Usually, this cross-linking agent has a plurality of cross-linking groups in one molecule, and the cross-linking groups can react with each other to form a cross-linking structure that bridges the molecules of the cross-linking agent. A crosslinked polymer having a structure can be obtained. The crosslinked polymer thus obtained preferably does not have the same kind of functional groups as those of the polymer compound.
 架橋性基同士が反応して架橋構造を形成できる架橋性基としては、例えば、ラジカル重合性不飽和基が挙げられる。ラジカル重合性不飽和基は、通常、炭素-炭素不飽和結合を含み、ラジカル重合反応を生じることができる。ラジカル重合性不飽和基が含みうる炭素-炭素不飽和結合は、通常は非芳香族性の不飽和結合であり、例えば、炭素-炭素二重結合、炭素-炭素三重結合等が挙げられる。ラジカル重合性不飽和基としては、例えば、マレイミド基、ビニル基、アリル基、スチリル基、ビニルフェニル基、(メタ)アクリロイル基、フマロイル基、及びマレオイル基などが挙げられる。用語「(メタ)アクリロイル基」は、別に断らない限り、アクリロイル基、メタクリロイル基、及び、その組み合わせを包含する。中でも、(メタ)アクリロイル基が好ましい。 Examples of crosslinkable groups that can form a crosslinked structure by reacting with each other include radically polymerizable unsaturated groups. A radically polymerizable unsaturated group typically contains a carbon-carbon unsaturated bond and is capable of undergoing a radical polymerization reaction. The carbon-carbon unsaturated bond that the radically polymerizable unsaturated group may contain is usually a non-aromatic unsaturated bond, such as a carbon-carbon double bond and a carbon-carbon triple bond. Examples of radically polymerizable unsaturated groups include maleimide groups, vinyl groups, allyl groups, styryl groups, vinylphenyl groups, (meth)acryloyl groups, fumaroyl groups, and maleoyl groups. The term "(meth)acryloyl group" includes acryloyl groups, methacryloyl groups, and combinations thereof, unless otherwise specified. Among them, a (meth)acryloyl group is preferred.
 (メタ)アクリロイル基を含む架橋剤としては、(メタ)アクリル樹脂が挙げられる。架橋剤としての(メタ)アクリル樹脂は、通常、1分子中に複数個の(メタ)アクリロイル基を有する。この(メタ)アクリル樹脂としては、市販品を用いてもよい。市販の(メタ)アクリル樹脂としては、例えば、「A-DOG」及び「A-DCP」(新中村化学工業社製);「NPDGA」、「FM-400」、「R-687」、「THE-330」、「PET-30」、「DPHA」(何れも日本化薬社製);などが挙げられる。(メタ)アクリル樹脂は、1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。 Examples of cross-linking agents containing (meth)acryloyl groups include (meth)acrylic resins. A (meth)acrylic resin as a cross-linking agent usually has a plurality of (meth)acryloyl groups in one molecule. A commercially available product may be used as the (meth)acrylic resin. Commercially available (meth)acrylic resins include, for example, “A-DOG” and “A-DCP” (manufactured by Shin-Nakamura Chemical Co., Ltd.); “NPDGA”, “FM-400”, “R-687”, “THE -330”, “PET-30”, “DPHA” (all manufactured by Nippon Kayaku Co., Ltd.); The (meth)acrylic resins may be used singly or in combination of two or more.
 架橋剤は、1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。 One type of cross-linking agent may be used alone, or two or more types may be used in combination.
 架橋剤は、好ましくは、高分子化合物の重量平均分子量よりも小さい分子量を有する。架橋剤の具体的な分子量は、好ましくは200以上、より好ましくは250以上、特に好ましくは300以上であり、好ましくは5000未満、より好ましくは3000未満、更に好ましくは1000未満、特に好ましくは500未満である。架橋剤の分子量が前記下限値以上である場合、高分子化合物と架橋剤とが安定した架橋構造を形成できる。また、架橋剤の分子量が前記上限値未満である場合、架橋剤による高分子化合物の物質吸着特性への影響を効果的に小さくできるので、目的物質の適切な検出が可能な物質吸着膜を得やすい。 The cross-linking agent preferably has a molecular weight smaller than the weight average molecular weight of the polymer compound. Specific molecular weight of the cross-linking agent is preferably 200 or more, more preferably 250 or more, particularly preferably 300 or more, preferably less than 5000, more preferably less than 3000, still more preferably less than 1000, particularly preferably less than 500 is. When the molecular weight of the cross-linking agent is at least the above lower limit, a stable cross-linked structure can be formed between the polymer compound and the cross-linking agent. Further, when the molecular weight of the cross-linking agent is less than the above upper limit, the influence of the cross-linking agent on the substance adsorption properties of the polymer compound can be effectively reduced, so that a substance adsorption film capable of appropriately detecting the target substance can be obtained. Cheap.
 高分子組成物において、架橋剤は、溶媒に分散していてもよいが、高分子組成物のポットライフを長くする観点から、溶媒に溶解していることが好ましい。 In the polymer composition, the cross-linking agent may be dispersed in the solvent, but from the viewpoint of prolonging the pot life of the polymer composition, it is preferably dissolved in the solvent.
 高分子組成物100質量%に対する架橋剤の量は、好ましくは0.1質量%以上、より好ましくは0.2質量%以上、特に好ましくは0.4質量%以上であり、好ましくは20質量%以下、より好ましくは10質量%以下、特に好ましくは5質量%以下である。前記のような量の高分子化合物を用いた場合、高分子組成物の粘度を適切な範囲に収めることができるので、高分子組成物の取り扱い性を良好にできる。 The amount of the cross-linking agent relative to 100% by mass of the polymer composition is preferably 0.1% by mass or more, more preferably 0.2% by mass or more, particularly preferably 0.4% by mass or more, and preferably 20% by mass. Below, more preferably 10% by mass or less, particularly preferably 5% by mass or less. When the amount of the polymer compound is used as described above, the viscosity of the polymer composition can be kept within an appropriate range, so that the handleability of the polymer composition can be improved.
 高分子組成物の固形分100質量%に対する架橋剤の量は、好ましくは1質量%以上、より好ましくは2質量%以上、より好ましくは3質量%以上であり、好ましくは50質量%以下、より好ましくは30質量%以下、特に好ましくは20質量%以下である。前記範囲の量の架橋剤を用いた場合、本発明の効果を顕著に得ることができる。 The amount of the cross-linking agent relative to 100% by mass of the solid content of the polymer composition is preferably 1% by mass or more, more preferably 2% by mass or more, more preferably 3% by mass or more, and preferably 50% by mass or less. It is preferably 30% by mass or less, particularly preferably 20% by mass or less. When the amount of the cross-linking agent within the above range is used, the effect of the present invention can be obtained remarkably.
 高分子化合物100質量%に対する架橋剤の量は、好ましくは2質量%以上、より好ましくは4質量%以上、特に好ましくは5質量%以上であり、好ましくは100質量%以下、より好ましくは50質量%以下、特に好ましくは30質量%以下である。前記範囲の量の架橋剤を用いた場合、本発明の効果を顕著に得ることができる。 The amount of the cross-linking agent with respect to 100% by mass of the polymer compound is preferably 2% by mass or more, more preferably 4% by mass or more, particularly preferably 5% by mass or more, preferably 100% by mass or less, more preferably 50% by mass. % or less, particularly preferably 30 mass % or less. When the amount of the cross-linking agent within the above range is used, the effect of the present invention can be obtained remarkably.
[4.溶媒]
 溶媒としては、通常、高分子化合物及び架橋剤と反応しない常温で液体の化合物を用いうる。この溶媒としては、水等の無機溶媒を用いてもよく、有機溶媒を用いてもよい。中でも、溶媒としては、有機溶媒を用いることが好ましい。好ましい有機溶媒としては、例えば、n-ヘプタノール、ジメチルスルホキシド、デカヒドロナフタレン、安息香酸メチル、N-メチルピロリドン、γ-ブチロラクトン、1,2,3,4-テトラヒドロナフタレン(別称テトラリン)、カルビトールアセテート、1,3-ジメチル-2-イミダゾリジノン、ブチルカルビトール、安息香酸プロピル、ジエチレングリコール、4-tert-ブチル安息香酸メチル、ブチルカルビトールアセテート、1-ブタノール、2-ペンタノール、メチルセロソルブ、プロピレングリコール-1-モノメチルエーテル-2-アセテート、乳酸エチル、メチルアミルケトン、シクロヘキサノン、ジメチルアセトアミド、メシチレン、などが挙げられる。溶媒は、1種類を単独で用いてもよい、2種類以上を組み合わせて用いてもよい。
[4. solvent]
As the solvent, a compound that is liquid at normal temperature and does not react with the polymer compound and the cross-linking agent can be used. As this solvent, an inorganic solvent such as water may be used, or an organic solvent may be used. Among them, it is preferable to use an organic solvent as the solvent. Preferred organic solvents include, for example, n-heptanol, dimethylsulfoxide, decahydronaphthalene, methyl benzoate, N-methylpyrrolidone, γ-butyrolactone, 1,2,3,4-tetrahydronaphthalene (also known as tetralin), carbitol acetate. , 1,3-dimethyl-2-imidazolidinone, butyl carbitol, propyl benzoate, diethylene glycol, methyl 4-tert-butylbenzoate, butyl carbitol acetate, 1-butanol, 2-pentanol, methyl cellosolve, propylene Glycol-1-monomethyl ether-2-acetate, ethyl lactate, methyl amyl ketone, cyclohexanone, dimethylacetamide, mesitylene, and the like. One type of solvent may be used alone, or two or more types may be used in combination.
 溶媒の量は、高分子組成物の固形分の濃度が特定の範囲に収まるように設定することが好ましい。高分子組成物の固形分の濃度は、高分子組成物100質量%に対して、好ましくは0.1質量%以上、より好ましくは1質量%以上、更に好ましくは2質量%以上、特に好ましくは4質量%以上であり、好ましくは90質量%以下、より好ましくは50質量%以下、更に好ましくは45質量%以下、特に好ましくは30質量%以下である。 The amount of solvent is preferably set so that the concentration of solids in the polymer composition falls within a specific range. The solid content concentration of the polymer composition is preferably 0.1% by mass or more, more preferably 1% by mass or more, still more preferably 2% by mass or more, and particularly preferably 100% by mass of the polymer composition. It is 4% by mass or more, preferably 90% by mass or less, more preferably 50% by mass or less, still more preferably 45% by mass or less, and particularly preferably 30% by mass or less.
[5.任意の成分]
 高分子組成物は、上述した高分子化合物、架橋剤及び溶媒に組み合わせて、更に任意の成分を含んでいてもよい。任意の成分は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
[5. optional component]
The polymer composition may further contain optional components in combination with the polymer compound, cross-linking agent and solvent described above. One type of optional component may be used alone, or two or more types may be used in combination at any ratio.
 任意の成分としては、例えば、架橋剤の架橋反応を促進できる触媒が挙げられる。触媒の具体例を挙げると、架橋剤としてのエポキシ樹脂の架橋反応を促進できるエポキシ硬化触媒が挙げられる。エポキシ硬化触媒としては、例えば、イミダゾール系触媒が挙げられる。触媒としては、市販品を用いてもよい。市販の触媒としては、例えば、四国化成工業社製の「2E4MZ」等のイミダゾール系触媒が挙げられる。触媒は、1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。 Optional components include, for example, catalysts that can promote the cross-linking reaction of the cross-linking agent. A specific example of the catalyst is an epoxy curing catalyst capable of promoting the cross-linking reaction of the epoxy resin used as the cross-linking agent. Epoxy curing catalysts include, for example, imidazole catalysts. A commercially available product may be used as the catalyst. Commercially available catalysts include, for example, imidazole-based catalysts such as "2E4MZ" manufactured by Shikoku Kasei Co., Ltd. One type of catalyst may be used alone, or two or more types may be used in combination.
 別の任意の成分としては、例えば、重合開始剤が挙げられる。重合開始剤を用いる場合、ラジカル重合性不飽和基を有する架橋剤の反応を促進できる。重合開始剤としては、例えば、過酸化物系ラジカル重合開始剤、アゾ系ラジカル重合開始剤等のラジカル重合開始剤が挙げられる。重合開始剤としては、市販品を用いてもよい。市販の重合開始剤としては、例えば、日油社製「パーヘキサHC」等の過酸化物系ラジカル重合開始剤が挙げられる。重合開始剤は、1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。 Another optional component includes, for example, a polymerization initiator. When using a polymerization initiator, the reaction of the cross-linking agent having a radically polymerizable unsaturated group can be promoted. Examples of the polymerization initiator include radical polymerization initiators such as peroxide-based radical polymerization initiators and azo-based radical polymerization initiators. A commercially available product may be used as the polymerization initiator. Examples of commercially available polymerization initiators include peroxide-based radical polymerization initiators such as “Perhexa HC” manufactured by NOF Corporation. One polymerization initiator may be used alone, or two or more may be used in combination.
[6.高分子組成物の特性]
 本発明の一実施形態に係る高分子組成物は、当該高分子組成物を150℃で60分静置して評価試料を得た場合に、その評価試料が、特定の範囲のゲル分率を有する。前記のゲル分率の特定の範囲は、具体的には、通常0.10%以上、好ましくは0.20%以上、特に好ましくは0.25%以上である。ゲル分率が前記下限値以上である場合に、物質吸着特性を維持しながら耐熱性が改善された物質吸着膜を得ることができる。ゲル分率の上限は、物質吸着膜の物質吸着特性を更に安定して維持する観点から、好ましくは10.0%以下、より好ましくは5.0%以下、特に好ましくは3.0%以下である。
[6. Properties of polymer composition]
When the polymer composition according to one embodiment of the present invention is left to stand at 150 ° C. for 60 minutes to obtain an evaluation sample, the evaluation sample has a gel fraction in a specific range. have. Specifically, the specific range of the gel fraction is usually 0.10% or more, preferably 0.20% or more, and particularly preferably 0.25% or more. When the gel fraction is equal to or higher than the lower limit, it is possible to obtain a substance adsorption film having improved heat resistance while maintaining substance adsorption properties. The upper limit of the gel fraction is preferably 10.0% or less, more preferably 5.0% or less, and particularly preferably 3.0% or less, from the viewpoint of further stably maintaining the substance adsorption properties of the substance adsorption film. be.
 評価試料のゲル分率は、高分子組成物が含んでいた溶媒に評価試料を浸漬して不溶となる部分の割合を表す。評価試料のゲル分率は、詳細には、下記の方法によって測定できる。
 高分子組成物を150℃で60分間静置して評価試料を作製し、その評価試料の重量W(A)を測定する。その後、その評価試料を、高分子組成物が含んでいたのと同じ種類の溶媒に常温(23℃)で24時間浸漬する。浸漬により、評価試料は、通常、溶解又は膨潤する。浸漬した評価試料を吸引ろ過し、更に溶媒で洗浄し、その後、アセトンで洗浄して、不溶物(ゲル成分)を得る。この不溶物の重量W(B)を秤量し、下記式(M1)によってゲル分率を計算する。
  [ゲル分率](%) = W(B)/W(A) × 100   (M1)
The gel fraction of the evaluation sample represents the proportion of the portion that becomes insoluble when the evaluation sample is immersed in the solvent contained in the polymer composition. Specifically, the gel fraction of the evaluation sample can be measured by the following method.
The polymer composition is allowed to stand at 150° C. for 60 minutes to prepare an evaluation sample, and the weight W (A) of the evaluation sample is measured. The evaluation sample is then immersed in the same type of solvent that the polymer composition contained at room temperature (23° C.) for 24 hours. The immersion usually dissolves or swells the evaluation sample. The immersed evaluation sample is subjected to suction filtration, washed with a solvent, and then washed with acetone to obtain an insoluble matter (gel component). The weight W(B) of this insoluble matter is weighed, and the gel fraction is calculated by the following formula (M1).
[Gel fraction] (%) = W (B) / W (A) x 100 (M1)
 前記の評価試料のゲル分率は、高分子組成物から得られる物質吸着膜のゲル分率に相当しうる。また、ゲル分率は、架橋剤の架橋反応によって形成された架橋構造の架橋密度と相関を有する。よって、評価試料のゲル分率によれば、高分子組成物から得られる物質吸着膜に形成される架橋構造の架橋密度を表すことができる。一般に、評価試料のゲル分率が大きいほど、架橋密度が大きく、よって、熱による物質吸着膜の流動化を架橋構造によって効果的に抑制できることを表す。また、本発明者が発見したところによれば、前記のように架橋構造を形成させた場合でも、当該架橋構造による物質吸着膜の物質吸着特性の変化は、小さい。したがって、前記の特定の範囲のゲル分率を有する評価試料を得られる高分子組成物によれば、物質吸着特性を維持しながら耐熱性が改善された物質吸着膜を実現できる。 The gel fraction of the evaluation sample can correspond to the gel fraction of the substance adsorption film obtained from the polymer composition. Moreover, the gel fraction has a correlation with the crosslink density of the crosslinked structure formed by the crosslink reaction of the crosslinker. Therefore, the gel fraction of the evaluation sample can represent the crosslink density of the crosslinked structure formed in the substance adsorption film obtained from the polymer composition. In general, the higher the gel fraction of the evaluation sample, the higher the crosslink density, which means that the fluidization of the substance adsorption film due to heat can be effectively suppressed by the crosslink structure. Further, according to the findings of the present inventors, even when the crosslinked structure is formed as described above, the change in the substance adsorption characteristics of the substance adsorption film due to the crosslinked structure is small. Therefore, according to the polymer composition from which an evaluation sample having a gel fraction within the specific range can be obtained, it is possible to realize a substance adsorption film with improved heat resistance while maintaining substance adsorption properties.
 前記のゲル分率は、高分子化合物の種類及び濃度、架橋剤の種類及び濃度、高分子化合物に対する架橋剤の量、などの要素を適切に調整することによって、調整できる。また、高分子化合物の物質吸着特性に影響のない範囲で高分子組成物が触媒を含むことにより、架橋反応を所望の程度促進して、ゲル分率を調整してもよい。 The gel fraction can be adjusted by appropriately adjusting factors such as the type and concentration of the polymer compound, the type and concentration of the cross-linking agent, and the amount of the cross-linking agent relative to the polymer compound. Further, the polymer composition may contain a catalyst within a range that does not affect the substance adsorption properties of the polymer compound, thereby promoting the cross-linking reaction to a desired degree and adjusting the gel fraction.
 高分子組成物の25℃における粘度は、好ましくは1mPa・sec以上、より好ましくは2mPa・sec以上であり、好ましくは8000mPa・sec以下、より好ましくは3000mPa・sec以下、特に好ましくは1000mPa・sec以下である。高分子組成物の粘度は、0mPa・sec以上500mPa・sec未満ではE型粘度計(東機産業社製「RE-85U」、1°24×R24コーン)を用いて測定でき、500mPa・sec以上8000mPa・sec以下ではE型粘度計(東機産業社製「RE-80U」3°×R9.7コーン)にて測定できる。 The viscosity of the polymer composition at 25° C. is preferably 1 mPa·sec or more, more preferably 2 mPa·sec or more, preferably 8000 mPa·sec or less, more preferably 3000 mPa·sec or less, and particularly preferably 1000 mPa·sec or less. is. The viscosity of the polymer composition can be measured using an E-type viscometer ("RE-85U" manufactured by Toki Sangyo Co., Ltd., 1 ° 24 × R24 cone) at 0 mPa · sec or more and less than 500 mPa · sec, and 500 mPa · sec or more. At 8000 mPa·sec or less, it can be measured with an E-type viscometer (“RE-80U” 3°×R9.7 cone manufactured by Toki Sangyo Co., Ltd.).
[7.高分子組成物の製造方法]
 高分子組成物は、例えば、高分子化合物、架橋剤及び溶媒、並びに、必要に応じて任意の成分を混合して製造できる。各成分の混合の順番は、任意である。また、高分子化合物、架橋剤及び任意の成分の溶媒への溶解又は分散を促進するため、撹拌処理、熱処理等の任意の処理を施してもよい。
[7. Method for producing polymer composition]
A polymer composition can be produced by mixing, for example, a polymer compound, a cross-linking agent, a solvent, and optionally optional components. The order of mixing each component is arbitrary. Moreover, in order to promote the dissolution or dispersion of the polymer compound, the cross-linking agent and optional components in the solvent, arbitrary treatments such as stirring and heat treatment may be applied.
[8.物質吸着膜]
 本発明の一実施形態に係る物質吸着膜は、物質吸着膜と、前記物質吸着膜を表面に備え前記物質吸着膜への物質の吸着によって生じる物理パラメータの変化を検出できるトランスデューサ部と、を備えるセンサー素子用の物質吸着膜である。この物質吸着膜は、架橋されていてもよい高分子化合物を含む。
[8. Substance adsorption film]
A substance adsorption film according to an embodiment of the present invention comprises a substance adsorption film, and a transducer unit having the substance adsorption film on its surface and capable of detecting changes in physical parameters caused by adsorption of a substance to the substance adsorption film. It is a substance adsorption film for sensor elements. This substance adsorption film contains a polymer compound that may be crosslinked.
 第一の例として、物質吸着膜は、架橋された高分子化合物を含む。そして、この架橋された高分子化合物によって、物質吸着膜中に架橋構造が形成される。
 第二の例として、物質吸着膜は、高分子化合物に組み合わせて、更に架橋重合体(すなわち、架橋構造を有する重合体)を含む。この第二の例において、高分子化合物は、架橋されていてもよく、架橋されていなくてもよい。
As a first example, the substance-adsorbing membrane comprises a cross-linked polymeric compound. A crosslinked structure is formed in the substance adsorption film by this crosslinked polymer compound.
As a second example, the substance adsorption film further contains a crosslinked polymer (that is, a polymer having a crosslinked structure) in combination with the polymer compound. In this second example, the polymeric compound may or may not be crosslinked.
 これら第一の例及び第二の例のいずれにおいても、物質吸着膜中には、架橋構造が形成される。よって、物質吸着膜は、架橋構造の架橋密度に応じた特定の範囲のゲル分率を有することができる。本実施形態に係る物質吸着膜は、このゲル分率が、特定の範囲にある。物質吸着膜のゲル分率の特定の範囲は、具体的には、高分子組成物の項で説明した高分子組成物の評価試料のゲル分率の特定の範囲と同じでありうる。 In both of these first and second examples, a crosslinked structure is formed in the substance adsorption film. Therefore, the substance adsorption film can have a specific range of gel fraction depending on the crosslink density of the crosslink structure. The gel fraction of the substance adsorption film according to this embodiment is within a specific range. Specifically, the specific range of the gel fraction of the substance adsorption film can be the same as the specific range of the gel fraction of the polymer composition evaluation sample described in the section on the polymer composition.
 物質吸着膜のゲル分率は、当該物質吸着膜を1,3-ジメチル-2-イミダゾリジノン、テトラリン及び安息香酸メチルからなる群より選ばれる少なくとも1種の溶媒に浸漬して不溶となる部分の割合を表す。すなわち、物質吸着膜を1,3-ジメチル-2-イミダゾリジノン、テトラリン及び安息香酸メチルからなる群より選ばれる少なくとも1種の溶媒に浸漬した場合、溶媒に不要である部分の割合として、特定の範囲のゲル分率を得ることができる。物質吸着膜のゲル分率は、詳細には、下記の方法によって測定できる。
 物質吸着膜の重量w(A)を測定する。その後、その物質吸着膜を溶媒(1,3-ジメチル-2-イミダゾリジノン、テトラリン及び安息香酸メチルからなる群より選ばれる少なくとも1種の溶媒)に常温(23℃)で24時間浸漬する。浸漬により、物質吸着膜は、通常、溶解又は膨潤する。浸漬した物質吸着膜を吸引ろ過し、更に溶媒で洗浄し、その後、アセトンで洗浄して、不溶物(ゲル成分)を得る。この不溶物の重量w(B)を秤量し、下記式(M2)によってゲル分率を計算する。
  [ゲル分率](%) = w(B)/w(A) × 100   (M2)
The gel fraction of the substance adsorption film is the portion that becomes insoluble when the substance adsorption film is immersed in at least one solvent selected from the group consisting of 1,3-dimethyl-2-imidazolidinone, tetralin and methyl benzoate. represents the ratio of That is, when the substance adsorption film is immersed in at least one solvent selected from the group consisting of 1,3-dimethyl-2-imidazolidinone, tetralin and methyl benzoate, the specific A range of gel fractions can be obtained. Specifically, the gel fraction of the substance adsorption film can be measured by the following method.
A weight w (A) of the substance adsorption film is measured. After that, the substance adsorption film is immersed in a solvent (at least one solvent selected from the group consisting of 1,3-dimethyl-2-imidazolidinone, tetralin and methyl benzoate) at room temperature (23° C.) for 24 hours. Immersion usually dissolves or swells the substance adsorption film. The immersed substance-adsorbing membrane is subjected to suction filtration, washed with a solvent, and then washed with acetone to obtain an insoluble matter (gel component). The weight w(B) of this insoluble matter is weighed, and the gel fraction is calculated by the following formula (M2).
[Gel fraction] (%) = w(B)/w(A) x 100 (M2)
 ゲル分率は、物質吸着膜が含む架橋構造の架橋密度と相関を有する。一般に、ゲル分率が大きいほど、架橋密度が大きく、よって、熱による物質吸着膜の流動化を架橋構造によって効果的に抑制できることを表す。さらに、本発明者が発見したところによれば、前記のように架橋構造を形成させた場合でも、当該架橋構造による物質吸着膜の物質吸着特性の変化は、小さい。したがって、前記の特定の範囲のゲル分率を有する物質吸着膜によれば、架橋構造の形成による物質吸着特性の変化を抑制しながら物質吸着膜の耐熱性を改善することができる。 The gel fraction has a correlation with the crosslink density of the crosslinked structure contained in the substance adsorption film. In general, the higher the gel fraction, the higher the crosslink density, which means that the fluidization of the substance adsorption film due to heat can be effectively suppressed by the crosslink structure. Furthermore, according to the findings of the present inventors, even when the crosslinked structure is formed as described above, the change in the substance adsorption characteristics of the substance adsorption film due to the crosslinked structure is small. Therefore, according to the substance adsorption film having the gel fraction within the specific range, it is possible to improve the heat resistance of the substance adsorption film while suppressing the change in the substance adsorption characteristics due to the formation of the crosslinked structure.
 物質吸着膜のゲル分率は、高分子化合物の種類及び濃度、架橋剤の種類及び濃度、高分子化合物に対する架橋剤の量、などの要素を適切に調整することによって、調整できる。また、高分子化合物の物質吸着特性に影響のない範囲で高分子組成物が触媒を含むことにより、架橋反応を所望の程度促進して、ゲル分率を調整してもよい。 The gel fraction of the substance adsorption film can be adjusted by appropriately adjusting factors such as the type and concentration of the polymer compound, the type and concentration of the cross-linking agent, and the amount of the cross-linking agent relative to the polymer compound. Further, the polymer composition may contain a catalyst within a range that does not affect the substance adsorption properties of the polymer compound, thereby promoting the cross-linking reaction to a desired degree and adjusting the gel fraction.
 物質吸着膜は、上述した高分子組成物が乾燥又は反応によって硬化した高分子組成物の硬化物によって形成されうる。よって、物質吸着膜は、高分子組成物の固形分、並びに、高分子組成物の固形分の反応生成物からなる群より選ばれる少なくともいずれかの成分を含みうる。したがって、高分子化合物としては、高分子組成物の項において説明したのと同じものを用いうる。また、架橋されていてもよい高分子化合物としては、高分子組成物の項において説明した架橋剤によって架橋されていてもよい高分子化合物を用いうる。さらに、架橋重合体としては、高分子組成物の項において説明した架橋剤同士の重合体を用いうる。 The substance adsorption film can be formed by a cured polymer composition obtained by drying or curing the above polymer composition by reaction. Therefore, the substance adsorption film can contain at least one component selected from the group consisting of the solid content of the polymer composition and the reaction product of the solid content of the polymer composition. Therefore, as the polymer compound, the same one as explained in the section of the polymer composition can be used. As the polymer compound which may be crosslinked, a polymer compound which may be crosslinked by the crosslinking agent described in the section of the polymer composition can be used. Furthermore, as the crosslinked polymer, a polymer of the crosslinkers described in the section of the polymer composition can be used.
 物質吸着膜のサイズは、特に制限は無い。物質吸着膜は、厚み方向から見て円形の膜として形成されうる。この場合、物質吸着膜の径は、好ましくは0.1μm~1000μm、より好ましくは0.1μm~800μm、特に好ましくは0.1μm~500μmである。このように物質吸着膜の径が小さい場合、センサー素子の小型化を達成できる。 There are no particular restrictions on the size of the substance adsorption film. The substance adsorption film can be formed as a circular film when viewed from the thickness direction. In this case, the diameter of the substance adsorption film is preferably 0.1 μm to 1000 μm, more preferably 0.1 μm to 800 μm, particularly preferably 0.1 μm to 500 μm. When the diameter of the substance adsorption film is small in this way, it is possible to achieve miniaturization of the sensor element.
 物質吸着膜の厚みは、目的物質の特性に応じて適切に設定できる。物質吸着膜の具体的な厚みは、好ましくは1nm~10μm、より好ましくは50nm~800nmである。物質吸着膜が前記範囲の厚みを有する場合には、通常、目的物質の検出感度を高くできる。 The thickness of the substance adsorption film can be set appropriately according to the characteristics of the target substance. A specific thickness of the substance adsorption film is preferably 1 nm to 10 μm, more preferably 50 nm to 800 nm. When the substance-adsorbing film has a thickness within the above range, the detection sensitivity of the target substance can generally be increased.
 物質吸着膜の単位面積当たりの質量は、目的物質の特性に応じて適切に設定できる。物質吸着膜の単位面積当たりの質量は、具体的には、好ましくは5μg/cm~50000μg/cm、より好ましくは10μg/cm~10000μg/cmである。物質吸着膜が前記範囲の単位面積当たりの質量を有する場合には、通常、目的物質の検出感度を高くできる。 The mass per unit area of the substance adsorption film can be appropriately set according to the properties of the target substance. Specifically, the mass per unit area of the substance adsorption film is preferably 5 μg/cm 2 to 50000 μg/cm 2 , more preferably 10 μg/cm 2 to 10000 μg/cm 2 . When the substance adsorption film has a mass per unit area within the above range, the detection sensitivity of the target substance can generally be increased.
[9.物質吸着膜の製造方法]
 本実施形態に係る物質吸着膜は、上述した高分子組成物を用いて製造できる。例えば、物質吸着膜は、支持面に高分子組成物の層を形成する工程(I)と、高分子組成物の層に含まれる架橋剤に架橋反応をさせる工程(II)と、を含む製造方法によって、製造できる。
[9. Manufacturing method of substance adsorption film]
The substance adsorption film according to this embodiment can be produced using the polymer composition described above. For example, a substance adsorption film is manufactured including a step (I) of forming a polymer composition layer on a support surface and a step (II) of causing a cross-linking reaction with a cross-linking agent contained in the polymer composition layer. can be manufactured by the method.
 工程(I)で高分子組成物の層を形成される支持面は、物質吸着膜を形成される面である。通常、この支持面としては、トランスデューサ部の表面を用いる。工程(I)では、通常、この支持面に高分子組成物を塗布して、高分子組成物の層を形成する。 The support surface on which the polymer composition layer is formed in step (I) is the surface on which the substance adsorption film is formed. Usually, the surface of the transducer portion is used as this support surface. In step (I), the support surface is typically coated with a polymeric composition to form a layer of the polymeric composition.
 高分子組成物の塗布方法は、特に制限されないが、ディスペンサを用いて行うことが好ましい。ディスペンサを用いた高分子組成物の塗布では、通常、シリンジ内に収納された高分子組成物をニードルを通して吐出させ、その吐出した高分子組成物を支持面に付着させることで、塗布が行われる。ディスペンサを用いる塗布方法は、高分子組成物の無駄を抑制でき、更にマスクが不要であることから、コスト及び生産性に優れる。 The method of applying the polymer composition is not particularly limited, but it is preferable to use a dispenser. In the application of a polymer composition using a dispenser, the polymer composition contained in a syringe is usually discharged through a needle, and the discharged polymer composition is adhered to a support surface. . The coating method using a dispenser can suppress the waste of the polymer composition and does not require a mask, so it is excellent in cost and productivity.
 高分子組成物の塗布は、通常は常温常圧の環境下において行うが、所望の物質吸着膜が得られる範囲で塗布環境を調整してもよい。高い再現性及び安定性で物質吸着膜の形成を行う観点では、塗布環境の温度は0℃~30℃が好ましく、塗布環境の圧力は950hPa~1080hPaが好ましく、塗布環境の相対湿度は10%~99%が好ましい。 The application of the polymer composition is usually carried out in an environment of normal temperature and normal pressure, but the application environment may be adjusted within the range in which the desired substance adsorption film can be obtained. From the viewpoint of forming a substance adsorption film with high reproducibility and stability, the temperature of the coating environment is preferably 0° C. to 30° C., the pressure of the coating environment is preferably 950 hPa to 1080 hPa, and the relative humidity of the coating environment is 10% to 10%. 99% is preferred.
 工程(I)で高分子組成物の層を形成した後で、その高分子組成物の層に含まれる架橋剤に架橋反応をさせる工程(II)を行う。この工程(II)において、架橋剤による架橋反応が進行して架橋構造が形成されて、物質吸着膜を形成できる。また、この工程(II)においては、通常、高分子組成物に含まれる溶媒等の揮発成分が乾燥により除去される。 After the layer of the polymer composition is formed in step (I), step (II) is performed in which the cross-linking agent contained in the layer of the polymer composition undergoes a cross-linking reaction. In this step (II), the cross-linking reaction by the cross-linking agent proceeds to form a cross-linked structure, thereby forming a substance adsorption film. Moreover, in this step (II), volatile components such as solvent contained in the polymer composition are usually removed by drying.
 工程(II)では、通常、高分子組成物の層を加熱することにより、架橋剤に架橋反応をさせる。加熱温度は、通常、架橋剤の架橋反応が進行しうる温度に設定される。具体的な加熱温度は、好ましくは60℃以上、より好ましくは80℃以上、特に好ましくは100℃以上であり、好ましくは250℃以下、より好ましくは200℃以下、特に好ましくは180℃以下である。 In step (II), the layer of the polymer composition is generally heated to cause the cross-linking agent to undergo a cross-linking reaction. The heating temperature is usually set to a temperature at which the cross-linking reaction of the cross-linking agent can proceed. A specific heating temperature is preferably 60° C. or higher, more preferably 80° C. or higher, particularly preferably 100° C. or higher, preferably 250° C. or lower, more preferably 200° C. or lower, and particularly preferably 180° C. or lower. .
 加熱時間は、架橋剤の架橋反応を充分に進行させられるように設定することが好ましい。具体的な加熱時間は、好ましくは1分~5時間、より好ましくは10分~3時間、更に好ましくは20分~2時間である。 The heating time is preferably set so that the cross-linking reaction of the cross-linking agent can proceed sufficiently. A specific heating time is preferably 1 minute to 5 hours, more preferably 10 minutes to 3 hours, still more preferably 20 minutes to 2 hours.
[10.物質吸着膜の主な利点]
 上述した物質吸着膜は、高い耐熱性を有することができる。具体的には、高温環境において、物質吸着膜の流動を抑制できるので、当該物質吸着膜の平面形状を常温環境での平面形状に維持できる。ここで、物質吸着膜の平面形状とは、物質吸着膜を厚み方向から見た形状を表す。さらに、通常は、高温環境における物質吸着膜の寸法を、常温環境での寸法に維持できる。
[10. Main Advantages of Substance Adsorption Membrane]
The substance adsorption film described above can have high heat resistance. Specifically, since the flow of the substance adsorption film can be suppressed in a high temperature environment, the planar shape of the substance adsorption film can be maintained in a planar shape in a room temperature environment. Here, the planar shape of the substance adsorption film represents the shape of the substance adsorption film viewed from the thickness direction. Furthermore, the dimensions of the substance adsorption film in a high temperature environment can usually be maintained to the dimensions in a room temperature environment.
 前記の耐熱性は、流動性評価試験によって評価できる。例えば、ある面(例えば、アルミニウム面)に物質吸着膜を付着させ、その面を鉛直方向に平行にして、当該物質吸着膜を100℃に30分間加熱する流動性評価試験を行う。この流動性評価試験を行った場合、流動性評価試験後の物質吸着膜は、通常、流動性評価試験の前と同じ平面形状を維持することができる。さらに、流動性評価試験後の物質吸着膜は、好ましくは、流動性評価試験の前と同じ寸法を維持することができる。 The above heat resistance can be evaluated by a fluidity evaluation test. For example, a fluidity evaluation test is performed by attaching a substance adsorption film to a certain surface (for example, an aluminum surface), placing the surface parallel to the vertical direction, and heating the substance adsorption film at 100° C. for 30 minutes. When this fluidity evaluation test is performed, the substance adsorption film after the fluidity evaluation test can usually maintain the same planar shape as before the fluidity evaluation test. Furthermore, the substance adsorption film after the fluidity evaluation test can preferably maintain the same dimensions as before the fluidity evaluation test.
 上述した物質吸着膜は、架橋構造を形成したことによる物質吸着特性の変化を抑制できるので、架橋構造を有さない従来の物質吸着膜と同程度の物質吸着特性を有することができる。また、上述した物質吸着膜は、好ましくは、加熱(例えば、80℃60分)の後であっても、加熱の前と同程度の物質吸着特性を有することができる。 Since the above-described substance adsorption film can suppress changes in substance adsorption characteristics due to the formation of a crosslinked structure, it can have substance adsorption characteristics comparable to those of conventional substance adsorption films that do not have a crosslinked structure. Moreover, the substance adsorption film described above can preferably have the same level of substance adsorption properties as before heating even after heating (for example, at 80° C. for 60 minutes).
 前記の物質吸着特性は、物質吸着膜を備えたセンサ素子によって匂い物質又はガス分子の検出を行うことによって評価できる。例えば、物質吸着膜を備えたセンサ素子を用いて、匂い物質又はガス分子の検出を行う。具体的には、物質吸着膜への物質(匂い物質又はガス分子)の吸着による物理パラメータの変化を検出する。また、この検出を、本実施形態に係る物質吸着膜と、架橋構造を有さないこと以外は前記の本実施形態に係る物質吸着膜と同じに形成された従来の物質吸着膜との、それぞれで行う。前記の従来の物質吸着膜とは、すなわち、本実施形態に係る物質吸着膜の形成に用いた高分子組成物が含むものと同じ高分子化合物を含むが、架橋構造を含まない従来の物質吸着膜を表す。この検出を行った場合、本実施形態に係る物質吸着膜を備えるセンサ素子で検出されるパラメータの変化量と、従来の物質吸着膜を備えるセンサ素子で検出されるパラメータの変化量とが、通常は近いことができ、好ましくは同じであることができる。 The above substance adsorption characteristics can be evaluated by detecting odorants or gas molecules with a sensor element equipped with a substance adsorption film. For example, a sensor element having a substance adsorption film is used to detect odorants or gas molecules. Specifically, changes in physical parameters due to adsorption of substances (odor substances or gas molecules) to the substance adsorption film are detected. Further, this detection is performed for the substance adsorption film according to the present embodiment and the conventional substance adsorption film formed in the same manner as the substance adsorption film according to the present embodiment except that it does not have a crosslinked structure. do in The aforementioned conventional substance adsorption film includes the same polymer compound as that contained in the polymer composition used to form the substance adsorption film according to the present embodiment, but does not contain a crosslinked structure. represents the membrane. When this detection is performed, the amount of change in the parameter detected by the sensor element equipped with the substance adsorption film according to the present embodiment and the amount of change in the parameter detected by the sensor element equipped with the conventional substance adsorption film are usually different. can be close and preferably the same.
 上述した物質吸着膜は、通常、その製造過程における寸法保持性に優れる。具体的には、支持面に高分子組成物の層を形成し、その高分子組成物の層に含まれる架橋剤に架橋反応させて物質吸着膜を得る製造方法において、高分子組成物の層のサイズと、物質吸着膜のサイズとが、好ましくは近いことができ、特に好ましくは同じであることができる。 The above-mentioned substance adsorption film usually has excellent dimensional retention during the manufacturing process. Specifically, in the manufacturing method for obtaining a substance adsorption film by forming a polymer composition layer on a support surface and causing a cross-linking reaction with a cross-linking agent contained in the polymer composition layer, the polymer composition layer and the size of the substance-adsorbing membrane are preferably close, and particularly preferably the same.
 前記の寸法保持性は、高分子組成物の層の厚み方向から見た最長の長さLAと、その高分子組成物の層に含まれる架橋剤に架橋反応させて得られる物質吸着膜の厚み方向から見た最長の長さLBとから、下記式(M3)によって得られる寸法保持率によって評価できる。上述した物質吸着膜は、この寸法保持率を、好ましくは60%以上、より好ましくは70%以上、更に好ましくは80%以上、特に好ましくは90%以上にできる。上限は、通常、100%である。
  寸法保持率 = LB/LA×100(%)   (M3)
The above-mentioned dimensional retention is determined by the longest length LA seen from the thickness direction of the layer of the polymer composition and the thickness of the substance adsorption film obtained by cross-linking with the cross-linking agent contained in the layer of the polymer composition. It can be evaluated by the dimensional retention rate obtained by the following formula (M3) from the longest length LB as viewed from the direction. The above-described substance adsorption film can have a dimensional retention rate of preferably 60% or more, more preferably 70% or more, even more preferably 80% or more, and particularly preferably 90% or more. The upper limit is usually 100%.
Dimension retention rate = LB/LA x 100 (%) (M3)
[11.センサー素子]
 図1は、本発明の一実施形態に係るセンサー素子100を模式的に示す側面図である。図1に示すように、本発明の一実施形態に係るセンサー素子100は、上述した物質吸着膜120と;物質吸着膜120を表面110Uに備え、物質吸着膜120への物質の吸着によって生じる物理パラメータの変化を検出できるトランスデューサ部110と;を備える。
[11. sensor element]
FIG. 1 is a side view schematically showing a sensor element 100 according to one embodiment of the invention. As shown in FIG. 1, the sensor element 100 according to one embodiment of the present invention includes the above-described substance adsorption film 120 and the substance adsorption film 120 on the surface 110U. a transducer portion 110 capable of detecting changes in parameters;
 トランスデューサ部110として、通常は、当該トランスデューサ部110の表面110Uに形成された物質吸着膜120への物質の吸着によってその物質吸着膜120が生じる物理パラメータの変化を検出できる素子を用いる。前記の物理パラメータは、特に制限は無く、例えば、表面応力、応力、表面張力、圧力、質量、弾性、ヤング率、ポアソン比、共振周波数、周波数、体積、厚み、粘度、密度、磁力、磁気量、磁場、磁束、磁束密度、電気抵抗、電気量、誘電率、電力、電界、電荷、電流、電圧、電位、移動度、静電エネルギー、キャパシタンス、インダクタンス、リアクタンス、サセプタンス、アドミッタンス、インピーダンス、コンダクタンス、プラズモン、屈折率、吸収波長、吸光度、光度、温度などが挙げられる。 As the transducer section 110, an element capable of detecting a physical parameter change caused by the substance adsorption film 120 formed on the surface 110U of the transducer section 110 by adsorption of a substance to the substance adsorption film 120 is usually used. The physical parameters are not particularly limited, for example, surface stress, stress, surface tension, pressure, mass, elasticity, Young's modulus, Poisson's ratio, resonance frequency, frequency, volume, thickness, viscosity, density, magnetic force, magnetic quantity , magnetic field, magnetic flux, magnetic flux density, electrical resistance, electrical quantity, permittivity, power, electric field, charge, current, voltage, potential, mobility, electrostatic energy, capacitance, inductance, reactance, susceptance, admittance, impedance, conductance, Plasmon, refractive index, absorption wavelength, absorbance, luminous intensity, temperature and the like.
 トランスデューサ部110は、前記の物理パラメータの変化を検出できる任意の素子でありうる。よって、トランスデューサ部110の構造及び動作は、任意である。好ましいトランスデューサ部110としては、例えば、圧電素子、表面プラズモン共鳴素子(SPR素子)、電界効果トランジスタ素子(FET素子)、表面弾性波素子、電荷結合素子、金属酸化物半導体素子、有機導電性ポリマー素子、電気化学素子などが挙げられる。前記の圧電素子には、水晶振動子(QCM)が含まれうる。 The transducer section 110 can be any element capable of detecting changes in the physical parameters described above. Thus, the structure and operation of transducer portion 110 is arbitrary. Preferred transducers 110 include, for example, piezoelectric elements, surface plasmon resonance elements (SPR elements), field effect transistor elements (FET elements), surface acoustic wave elements, charge-coupled elements, metal oxide semiconductor elements, and organic conductive polymer elements. , electrochemical devices, and the like. The piezoelectric element may include a crystal oscillator (QCM).
 圧電素子は、通常、圧電材料で形成された圧電体と、この圧電体上に設けられた電極とを備える。圧電材料としては、例えば、水晶、ニオブ酸リチウム等の、圧電単結晶;チタン酸ジルコン酸鉛、チタン酸バリウム、チタン酸鉛等の、圧電セラミックス;フッ化ビニリデン、三フッ化エチレン共重合体等の、圧電高分子膜;などが挙げられる。物質吸着膜120は、圧電素子の圧電体の表面に設けてもよく、電極の表面に設けてもよい。 A piezoelectric element usually includes a piezoelectric body made of a piezoelectric material and electrodes provided on the piezoelectric body. Piezoelectric materials include, for example, quartz crystals, piezoelectric single crystals such as lithium niobate; piezoelectric ceramics such as lead zirconate titanate, barium titanate, and lead titanate; vinylidene fluoride, ethylene trifluoride copolymers, and the like. , a piezoelectric polymer film; and the like. The substance adsorption film 120 may be provided on the surface of the piezoelectric body of the piezoelectric element, or may be provided on the surface of the electrode.
 表面プラズモン共鳴素子は、通常、プリズムと、このプリズム上に形成された金属層とを備える。金属層の材料としては、例えば、金、銀等が挙げられる。物質吸着膜120は、通常、表面プラズモン共鳴素子の金属層の表面に設けられる。 A surface plasmon resonance element usually includes a prism and a metal layer formed on the prism. Examples of materials for the metal layer include gold and silver. The substance adsorption film 120 is usually provided on the surface of the metal layer of the surface plasmon resonance element.
 物質吸着膜120は、1つのトランスデューサ部110当たり、1枚だけ形成されていてもよく、複数枚形成されていてもよい。 Only one substance adsorption film 120 may be formed for each transducer unit 110, or a plurality of films may be formed.
 センサー素子100は、通常、目的物質の物質吸着膜120への吸着によって生じた物質吸着膜120の物質パラメータの変化を、高い感度で検出できる。よって、センサー素子100は、目的物質に対し、高い応答性を有することができる。したがって、このセンサー素子100を用いることにより、高い検出感度を有するセンサー装置を実現できる。また、本実施形態に係る物質吸着膜120は、物質吸着特性を維持しながら耐熱性が改善されているので、このセンサー素子100は、低温に維持された環境だけでなく、高温になりうる環境においても、目的物質を適切に検出できる。よって、センサー素子100は、車載用、工場用等のように、高温となりうる環境での使用が想定されるセンサー装置に設けて用いることができる。 The sensor element 100 can normally detect, with high sensitivity, changes in substance parameters of the substance adsorption film 120 caused by adsorption of the target substance onto the substance adsorption film 120 . Therefore, the sensor element 100 can have high responsiveness to the target substance. Therefore, by using this sensor element 100, a sensor device having high detection sensitivity can be realized. In addition, since the substance adsorption film 120 according to the present embodiment has improved heat resistance while maintaining substance adsorption characteristics, the sensor element 100 can be used not only in an environment maintained at a low temperature but also in an environment that can reach a high temperature. Also, the target substance can be detected appropriately. Therefore, the sensor element 100 can be provided and used in sensor devices that are assumed to be used in environments that can reach high temperatures, such as for vehicles and factories.
 このセンサー素子100は、例えば、トランスデューサ部110の表面110Uに、上述した高分子組成物の層を形成する工程と;高分子組成物の層に含まれる架橋剤に架橋反応をさせる工程と;を含む製造方法によって製造できる。トランスデューサ部110の表面110Uへの高分子組成物の層の形成方法は、物質吸着膜の製造方法の項で説明した方法を採用しうる。また、高分子組成物の層に含まれる架橋剤の架橋反応は、物質吸着膜の製造方法の項で説明したように、高分子組成物の層を加熱することによって進行させられる。 For example, the sensor element 100 includes a step of forming a layer of the polymer composition described above on the surface 110U of the transducer section 110; It can be manufactured by a manufacturing method including: As a method for forming the polymer composition layer on the surface 110U of the transducer section 110, the method described in the section on the method for manufacturing the substance adsorption film can be adopted. Further, the cross-linking reaction of the cross-linking agent contained in the layer of the polymer composition proceeds by heating the layer of the polymer composition as described in the section on the method for producing the substance adsorption film.
 複数枚の物質吸着膜を備えるセンサー素子を製造する場合、通常は、高分子組成物の層の形成を複数回行う。そして、それら高分子組成物の複数の層に含まれる架橋剤に架橋反応させて、複数の物質吸着膜を得る。この際、架橋反応は、高分子組成物の層を複数形成した後で、一括して行ってもよい。また、架橋反応は、高分子組成物の層を1つ形成する都度行ってもよい。 When manufacturing a sensor element with a plurality of substance adsorption films, layers of the polymer composition are usually formed a plurality of times. Then, the cross-linking agents contained in the multiple layers of the polymer composition are subjected to a cross-linking reaction to obtain a plurality of substance adsorption films. At this time, the cross-linking reaction may be performed collectively after forming a plurality of layers of the polymer composition. Moreover, the cross-linking reaction may be performed each time one layer of the polymer composition is formed.
[12.センサー装置]
 上述した物質吸着膜を備えたセンサー素子は、物質吸着膜に吸着できる目的物質を検出するためのセンサー素子として用いうる。具体的には、物理吸着膜への目的物質の吸着によって生じる物理パラメータの変化を検出することにより、当該目的物質を検出するためのセンサー素子として用いうる。そこで、このような利点を活用して、センサー素子は、匂い物質又はガス分子の検出用のセンサー素子として用いることが好ましい。
[12. sensor device]
The sensor element having the substance-adsorbing film described above can be used as a sensor element for detecting a target substance that can be adsorbed to the substance-adsorbing film. Specifically, it can be used as a sensor element for detecting the target substance by detecting changes in physical parameters caused by the adsorption of the target substance to the physisorption film. Therefore, it is preferable to utilize such advantages and use the sensor element as a sensor element for detecting odorants or gas molecules.
 ここで、用語「匂い」とは、人間あるいはそれを含む生物が嗅覚情報として取得することができる、特定の分子単体もしくは異なる分子からなる分子群がそれぞれの濃度を持って集合したものを含む。 Here, the term "smell" includes a specific single molecule or a collection of molecules consisting of different molecules with different concentrations that can be acquired as olfactory information by humans or living organisms including them.
 また、用語「匂い物質」とは、広義において物質吸着膜に吸着可能な物質を含む。したがって、一般的には匂いの原因物質とされていない物質も、用語「匂い物質」に含まれうる。「匂い」には原因となる匂い物質が複数含まれることが多く、また、匂い物質として認知されていない物質又は未知の匂い物質も存在しうる。以下、単に「匂い物質」と記載した場合であっても、個々の匂い物質ではなく、複数の匂い物質が含まれうる「匂い物質の集合体」を意味する場合がある。 In addition, the term "odorant" in a broad sense includes substances that can be adsorbed by substance adsorption membranes. Therefore, substances that are not generally regarded as odor-causing substances can also be included in the term "odorant". "Odor" often includes multiple odorants, and may also include unrecognized odorants or unknown odorants. Hereinafter, even when the term "odorant" is simply described, it may mean not an individual odorant but an "aggregate of odorants" that may contain a plurality of odorants.
 さらに、用語「ガス分子」とは、任意の気体状の分子を含む。よって、上述したセンサー素子は、匂いとは関係の無い分子を目的物質として検出するために用いてもよい。 Furthermore, the term "gas molecule" includes any gaseous molecule. Therefore, the sensor element described above may be used to detect molecules unrelated to odor as target substances.
 以下、目的物質として気体状の匂い物質を検出するためのセンサー素子を備えたセンサー装置の一例を、図面を示して説明する。図2は、一例としてのセンサー装置200を模式的に示す概略図である。図2に示すように、センサー装置200は、センサー素子100を備える素子装着部210と、センサー素子100で検出された物理パラメータの変化の情報を出力できる出力部220とを備える。 An example of a sensor device having a sensor element for detecting a gaseous odorant as a target substance will be described below with reference to the drawings. FIG. 2 is a schematic diagram schematically showing a sensor device 200 as an example. As shown in FIG. 2 , the sensor device 200 includes an element mounting section 210 having the sensor element 100 and an output section 220 capable of outputting information on changes in physical parameters detected by the sensor element 100 .
 素子装着部210には、センサー素子100で検出された物質吸着膜(図2では図示せず)の物理パラメータの変化の情報を取り出すための装置が設けられていてもよい。
 例えば、トランスデューサ部(図2では図示せず。)が圧電素子である場合、その圧電素子は、通常、物質吸着膜の物理パラメータの変化を、当該圧電素子の振動周波数の変化として検出できる。よって、素子装着部210は、この周波数の変化を取り出すために、圧電素子を振動させるために交流電圧を印加するための配線、圧電素子の振動周波数を測定するための周波数計、などを備えていてもよい。
 また、例えば、トランスデューサ部が表面プラズモン共鳴素子である場合、表面プラズモン共鳴素子は、通常、物質吸着膜の物理パラメータの変化を、共鳴角の変化として検出できる。よって、素子装着部210は、この共鳴角の変化を取り出すために、表面プラズモン共鳴素子に光を照射するための光源、表面プラズモン共鳴素子での反射光を検出するための光検出器、などを備えていてもよい。
The element mounting section 210 may be provided with a device for extracting information on changes in physical parameters of the substance adsorption film (not shown in FIG. 2) detected by the sensor element 100 .
For example, if the transducer section (not shown in FIG. 2) is a piezoelectric element, the piezoelectric element can usually detect changes in physical parameters of the substance adsorption film as changes in vibration frequency of the piezoelectric element. Therefore, in order to extract this change in frequency, the element mounting section 210 includes wiring for applying an AC voltage to vibrate the piezoelectric element, a frequency meter for measuring the vibration frequency of the piezoelectric element, and the like. may
Further, for example, when the transducer section is a surface plasmon resonance element, the surface plasmon resonance element can usually detect changes in physical parameters of the substance adsorption film as changes in the resonance angle. Therefore, in order to extract this change in resonance angle, the element mounting section 210 includes a light source for irradiating the surface plasmon resonance element with light, a photodetector for detecting reflected light from the surface plasmon resonance element, and the like. may be provided.
 出力部220は、素子装着部210に設けられたセンサー素子100から送られた情報を出力できるように設けられている。出力部220としては、例えば、情報を画面に表示可能なディスプレイ装置、情報をコンピュータ装置に出力できるインターフェース、情報を印刷できるプリンタ装置、等が挙げられる。 The output section 220 is provided so as to output information sent from the sensor element 100 provided in the element mounting section 210 . Examples of the output unit 220 include a display device capable of displaying information on a screen, an interface capable of outputting information to a computer device, and a printer device capable of printing information.
 前記の装置を用いた匂い物質の検出方法では、素子装着部210に匂い物質を含むサンプルガス10を導入する。導入されたサンプルガス10中の匂い物質がセンサー素子100に接触すると、その匂い物質はセンサー素子100の物質吸着膜に吸着する。この吸着により、物質吸着膜の物理パラメータの変化が生じる。この物理パラメータの変化が、センサー素子100のトランスデューサ部によって検出される。例えば、トランスデューサ部が圧電素子である場合、物質吸着膜の物理パラメータの変化は、圧電素子により、振動周波数の変化として検出されうる。また、例えば、トランスデューサ部が表面プラズモン共鳴素子である場合、物質吸着膜の物理パラメータの変化は、表面プラズモン共鳴素子により、共鳴角の変化として検出されうる。こうして検出された情報は、通常、電気信号へと変換され、出力部220に送られる。 In the method of detecting an odorant using the above device, the sample gas 10 containing the odorant is introduced into the element mounting portion 210 . When an odorant in the introduced sample gas 10 contacts the sensor element 100 , the odorant is adsorbed on the substance adsorption film of the sensor element 100 . This adsorption causes changes in the physical parameters of the substance-adsorbed membrane. Changes in this physical parameter are detected by the transducer portion of the sensor element 100 . For example, if the transducer section is a piezoelectric element, changes in physical parameters of the substance adsorption film can be detected as changes in vibration frequency by the piezoelectric element. Further, for example, if the transducer section is a surface plasmon resonance element, a change in physical parameter of the substance adsorption film can be detected as a change in resonance angle by the surface plasmon resonance element. The information thus detected is typically converted into an electrical signal and sent to the output section 220 .
 出力部220は、送られてきた情報を出力する。出力された情報は、匂い物質の吸着によって生じた物質吸着膜の物理パラメータの変化の情報を含んでいる。よって、物理パラメータの変化が生じた場合、そのサンプルガス10に匂い物質が含まれていたことが分かるので、匂い物質の検出が可能である。また、出力装置から出力された情報が、物理パラメータの変化量の情報を含む場合、当該変化量の情報に基づいて、サンプルガス10中の匂い物質の量を測定してもよい。本実施形態では、センサー素子100が備える物質吸着膜が、物質吸着特性を維持しながら耐熱性が改善されているので、そのセンサー素子100を備えるセンサー装置200によれば、低温に維持された環境だけでなく、高温になりうる環境においても、匂い物質を適切に検出できる。 The output unit 220 outputs the sent information. The output information includes information on changes in physical parameters of the substance-adsorbing film caused by the adsorption of the odorant. Therefore, when the physical parameter changes, it is known that the sample gas 10 contains an odorant, and the odorant can be detected. Further, when the information output from the output device includes information on the amount of change in physical parameters, the amount of odorants in the sample gas 10 may be measured based on the information on the amount of change. In this embodiment, the substance adsorption film provided in the sensor element 100 has improved heat resistance while maintaining the substance adsorption properties. In addition, odorants can be appropriately detected even in environments that can reach high temperatures.
 一般に、気体中には匂いの源となる複数種類の匂い物質が含まれている。そして、それらの匂い物質の集合体を含む当該匂い物質の組み合わせパターンにより、人が知覚する匂いが異なりうる。そこで、それら複数種類の匂い物質を検出するため、素子装着部210には、同一又は異なる種類の目的物質を吸着できる物質吸着膜を備えた複数のセンサー素子100が設けられていてもよい。または、素子装着部210に設けられたセンサー素子100が、同一又は異なる種類の目的物質を吸着できる複数の物質吸着膜を備えていてもよい。このような構成によれば、複数の匂い物質の組み合わせを検出できるので、サンプルガスの匂いを適切に分析することが可能である。 In general, gas contains multiple types of odorants that are the source of odors. The odors perceived by humans may vary depending on the combination pattern of the odorants including the aggregation of these odorants. Therefore, in order to detect these multiple types of odorants, the element mounting portion 210 may be provided with a plurality of sensor elements 100 having substance adsorption films capable of adsorbing the same or different types of target substances. Alternatively, the sensor element 100 provided in the element mounting portion 210 may include a plurality of substance adsorption films capable of adsorbing the same or different types of target substances. With such a configuration, a combination of a plurality of odorants can be detected, so it is possible to appropriately analyze the odor of the sample gas.
 前記のセンサー装置200は、更に任意の構成要素を含んでいてもよい。例えば、センサー装置200は、センサー素子100が検出した情報を解析できる解析部(図示せず。)を備えていてもよい。このような解析部は、例えば、センサー素子100から送られる情報を解析するための解析アプリケーションがインストールされたコンピュータ装置を用いてよい。このような解析部を活用することにより、サンプルガスの匂いの定量的及び定性的な分析が容易になる。 The sensor device 200 may further include optional components. For example, the sensor device 200 may include an analysis section (not shown) capable of analyzing information detected by the sensor element 100 . Such an analysis unit may use, for example, a computer device in which an analysis application for analyzing information sent from the sensor element 100 is installed. By utilizing such an analysis unit, it becomes easy to quantitatively and qualitatively analyze the odor of the sample gas.
[13.キット]
 上述した高分子組成物は、通常、適切な容器に収納された状態で保存及び運搬される。ディスペンサへの高分子組成物の供給を容易に行うためには、前記の容器としてディスペンサに装着可能なシリンジを採用することが好ましい。この場合、シリンジと、このシリンジに収納された高分子組成物とを備えるキットを提供できる。キットにおいて、高分子組成物は、好ましくは品質維持等の観点から、密封されたシリンジ内部に封入される。この際、シリンジには、高分子化合物の種類及び量、溶媒の種類及び量、高分子組成物によって形成される物質吸着膜の適切な径及び厚み、その物質吸着膜が吸着可能な目的物質の種類、等の情報が記載されたラベルが設けられていてもよい。
[13. kit]
The polymeric compositions described above are generally stored and transported in suitable containers. In order to easily supply the polymer composition to the dispenser, it is preferable to employ a syringe attachable to the dispenser as the container. In this case, a kit can be provided that includes a syringe and the polymer composition housed in the syringe. In the kit, the polymer composition is preferably enclosed inside a sealed syringe from the viewpoint of quality maintenance and the like. At this time, the syringe contains the type and amount of the polymer compound, the type and amount of the solvent, the appropriate diameter and thickness of the substance adsorption film formed by the polymer composition, and the target substance that the substance adsorption film can adsorb. A label on which information such as type, etc. is described may be provided.
 以下、本発明を実施例により具体的に説明する。ただし、本発明は、以下に示す実施例に限定されるものではない。なお、以下の記載において、量を表す「部」及び「%」は、別途明示のない限り、それぞれ「質量部」及び「質量%」を意味する。
 また、別途明示のない限り、以下に説明する操作は、常温常圧(23℃1気圧)大気中で行った。
EXAMPLES Hereinafter, the present invention will be specifically described with reference to Examples. However, the present invention is not limited to the examples shown below. In the following description, "parts" and "%" representing amounts mean "parts by mass" and "% by mass", respectively, unless otherwise specified.
In addition, unless otherwise specified, the operations described below were performed in the atmosphere at normal temperature and normal pressure (23° C., 1 atm).
[ゲル分率の測定方法]
 アルミニウムパンの重量を測定した。このアルミニウムパン中で、後述する実施例及び比較例で製造した高分子組成物を150℃で60分間静置して、固体状の評価試料を作製した。得られた評価試料をアルミニウムパンごと秤量し、この秤量された重量から予め測定したアルミパンの重量を差し引いて、評価試料の重量W(A)を得た。
 前記の評価試料の入ったアルミパンに、各実施例及び比較例で用いた溶媒を加えて24時間静置して、評価試料を溶解または膨潤させた。溶解又は膨潤した評価試料を吸引ろ過し、更に前記の溶媒で洗浄し、その後、アセトンで洗浄して、不溶物(ゲル成分)を得た。この不溶物の重量W(B)を秤量し、下記式(M1)にてゲル分率を求めた。後述する実施例及び比較例において、得られたゲル分率は、高分子組成物の評価試料のゲル分率を表すとともに、その高分子組成物から得られた物質吸着膜のゲル分率を表す。
  [ゲル分率](%) = W(B)/W(A) × 100   (M1)
[Method for measuring gel fraction]
An aluminum pan was weighed. In this aluminum pan, the polymer compositions produced in Examples and Comparative Examples described later were allowed to stand at 150° C. for 60 minutes to prepare solid evaluation samples. The obtained evaluation sample was weighed together with the aluminum pan, and the weight W (A) of the evaluation sample was obtained by subtracting the previously measured weight of the aluminum pan from the weighed weight.
The solvent used in each example and comparative example was added to the aluminum pan containing the evaluation sample, and left to stand for 24 hours to dissolve or swell the evaluation sample. The dissolved or swollen evaluation sample was subjected to suction filtration, washed with the solvent, and then washed with acetone to obtain an insoluble matter (gel component). The weight W(B) of this insoluble matter was weighed, and the gel fraction was determined by the following formula (M1). In the examples and comparative examples described later, the obtained gel fraction represents the gel fraction of the evaluation sample of the polymer composition and the gel fraction of the substance adsorption film obtained from the polymer composition. .
[Gel fraction] (%) = W (B) / W (A) x 100 (M1)
[実験群I:流動性の評価実験群]
 以下、物質吸着膜の流動性の評価に係る実施例及び比較例を説明する。
[Experimental Group I: Fluidity Evaluation Experimental Group]
Examples and comparative examples relating to the evaluation of the fluidity of the substance adsorption film will be described below.
[実施例I-1]
 (高分子組成物の製造)
 水酸基及びアミノ基を有する高分子化合物としてのポリアリルアミン-ポリカプロラクトン共重合体(アミン価9mgKOH/g,酸価17mgKOH/g;水酸基当量1450g/eq.)と、架橋剤としてのブロックイソシアネート(旭化成社製「SBN-70D」;固形分割合0.7;NCO率10.1%)とを質量比6:0.36で混合し、溶媒としての1,3-ジメチル-2-イミダゾリジノンに溶解させて、表1に示す固形分濃度を有する液状の高分子組成物を得た。この高分子組成物の一部を採り、上述した方法によってゲル分率の測定を行った。
[Example I-1]
(Manufacture of polymer composition)
Polyallylamine-polycaprolactone copolymer (amine value 9 mgKOH/g, acid value 17 mgKOH/g; hydroxyl group equivalent 1450 g/eq.) as a polymer compound having a hydroxyl group and an amino group, and blocked isocyanate (Asahi Kasei Co., Ltd.) as a cross-linking agent "SBN-70D" manufactured by Ajinomoto Co.; solid content ratio 0.7; NCO rate 10.1%) at a mass ratio of 6: 0.36, and dissolved in 1,3-dimethyl-2-imidazolidinone as a solvent. to obtain a liquid polymer composition having a solid content concentration shown in Table 1. A portion of this polymer composition was taken and the gel fraction was measured by the method described above.
 (物質吸着膜の製造)
 アルミニウムパンを用意し、その底面が水平となるように置いた。アルミニウムパンの底面に、高分子組成物25μlを滴下し、底面を水平に保ちながら150℃のオーブン内に30分間静置した。その後、アルミニウムパンをオーブンから取り出し、室温にて30分間静置した。アルミニウムパンの底面には、物質吸着膜が形成されていた。この物質吸着膜を撮影した。
(Manufacturing of substance adsorption film)
An aluminum pan was prepared and placed so that its bottom surface was horizontal. 25 μl of the polymer composition was dropped on the bottom surface of the aluminum pan, and the pan was placed in an oven at 150° C. for 30 minutes while keeping the bottom surface horizontal. After that, the aluminum pan was taken out of the oven and allowed to stand at room temperature for 30 minutes. A substance adsorption film was formed on the bottom surface of the aluminum pan. This substance adsorption film was photographed.
 (流動性の評価)
 アルミニウムパンの底面を90°傾けて鉛直方向に平行にし、150℃のオーブン内に30分間静置する流動性評価試験を行った。その後、アルミニウムパンをオーブンから取り出し、室温にて30分間静置した。アルミニウムパンの底面の物質吸着膜を撮影した。
(Evaluation of liquidity)
A fluidity evaluation test was performed by tilting the bottom surface of the aluminum pan by 90° to make it parallel to the vertical direction and placing it in an oven at 150°C for 30 minutes. After that, the aluminum pan was taken out of the oven and allowed to stand at room temperature for 30 minutes. A photograph of the substance adsorption film on the bottom of the aluminum pan was taken.
 流動性評価試験の前に撮影された物質吸着膜の画像と、流動性評価試験の後に撮影された物質吸着膜の画像とを比較して、流動性評価試験における150℃での加熱によって物質吸着膜が流動したか否かを確認した。その結果、流動は確認されず、物質吸着膜の平面形状及び寸法を維持できていた。 By comparing the image of the substance adsorption film taken before the fluidity evaluation test and the image of the substance adsorption film taken after the fluidity evaluation test, the substance adsorption by heating at 150 ° C in the fluidity evaluation test It was checked whether the membrane had flowed. As a result, no flow was confirmed, and the planar shape and dimensions of the substance adsorption film could be maintained.
[比較例I-1]
 ブロックイソシアネートを用いなかったこと以外は、実施例I-1と同じ方法により、高分子組成物の製造、物質吸着膜の製造及び評価を行った。比較例I-1の物質吸着膜の写真を、実施例I-1の物質吸着膜の写真と共に、図3に示す。図3から分かるように、比較例I-1では、流動性評価試験による物質吸着膜の流動が確認され、物質吸着膜の平面形状及び寸法を維持できなかった。
[Comparative Example I-1]
A polymer composition and a substance adsorption film were produced and evaluated in the same manner as in Example I-1, except that no blocked isocyanate was used. A photograph of the substance adsorption film of Comparative Example I-1 is shown in FIG. 3 together with a photograph of the substance adsorption film of Example I-1. As can be seen from FIG. 3, in Comparative Example I-1, fluidity of the substance adsorption film was confirmed by the fluidity evaluation test, and the planar shape and dimensions of the substance adsorption film could not be maintained.
[実施例I-2]
 水酸基及びアミノ基を有する高分子化合物としてのポリアリルアミン-ポリカプロラクトン共重合体(アミン価17mgKOH/g,酸価14mgKOH/g;水酸基当量1550g/eq.)と、架橋剤としてのブロックイソシアネート(旭化成社製「SBN-70D」;固形分割合0.7)とを質量比6:0.55で混合し、溶媒としての1,3-ジメチル-2-イミダゾリジノンに溶解させて、表1に示す固形分濃度を有する液状の高分子組成物を得た。こうして得られた高分子組成物を用いて、実施例I-1と同じ方法により、物質吸着膜の製造及び評価を行った。その結果、物質吸着膜の流動は確認されず、物質吸着膜の平面形状及び寸法を維持できていた。
[Example I-2]
Polyallylamine-polycaprolactone copolymer (amine value 17 mgKOH/g, acid value 14 mgKOH/g; hydroxyl group equivalent 1550 g/eq.) as a polymer compound having a hydroxyl group and an amino group, and blocked isocyanate (Asahi Kasei Co., Ltd.) as a cross-linking agent "SBN-70D" manufactured by the company; solid content ratio 0.7) at a mass ratio of 6:0.55, dissolved in 1,3-dimethyl-2-imidazolidinone as a solvent, and shown in Table 1. A liquid polymer composition having a solid concentration was obtained. Using the polymer composition thus obtained, a substance adsorption film was produced and evaluated in the same manner as in Example I-1. As a result, no flow of the substance adsorption film was confirmed, and the planar shape and dimensions of the substance adsorption film could be maintained.
[比較例I-2]
 ブロックイソシアネートを用いなかったこと以外は、実施例I-2と同じ方法により、高分子組成物の製造、物質吸着膜の製造及び評価を行った。比較例I-2の物質吸着膜の写真を、実施例I-2の物質吸着膜の写真と共に、図4に示す。図4から分かるように、比較例I-2では、物質吸着膜の流動が確認され、物質吸着膜の平面形状及び寸法を維持できなかった。
[Comparative Example I-2]
A polymer composition and a substance adsorption film were produced and evaluated in the same manner as in Example I-2, except that no blocked isocyanate was used. A photograph of the substance adsorption film of Comparative Example I-2 is shown in FIG. 4 together with a photograph of the substance adsorption film of Example I-2. As can be seen from FIG. 4, in Comparative Example I-2, flow of the substance adsorption film was confirmed, and the planar shape and dimensions of the substance adsorption film could not be maintained.
[実施例I-3]
 水酸基及びアミノ基を有する高分子化合物としてのポリアリルアミン-ポリカプロラクトン共重合体(アミン価17mgKOH/g,酸価20mgKOH/g;水酸基当量1550g/eq.)と、架橋剤としてのブロックイソシアネート(旭化成社製「SBN-70D」;固形分割合0.7)とを質量比6:0.54で混合し、溶媒としての1,3-ジメチル-2-イミダゾリジノンに溶解させて、表1に示す固形分濃度を有する液状の高分子組成物を得た。こうして得られた高分子組成物を用いて、実施例I-1と同じ方法により、物質吸着膜の製造及び評価を行った。その結果、物質吸着膜の流動は確認されず、物質吸着膜の平面形状及び寸法を維持できていた。
[Example I-3]
Polyallylamine-polycaprolactone copolymer (amine value 17 mgKOH/g, acid value 20 mgKOH/g; hydroxyl group equivalent 1550 g/eq.) as a polymer compound having a hydroxyl group and an amino group, and blocked isocyanate (Asahi Kasei Co., Ltd.) as a cross-linking agent "SBN-70D" manufactured by Ajinomoto Co.; solid content ratio 0.7) at a mass ratio of 6:0.54, dissolved in 1,3-dimethyl-2-imidazolidinone as a solvent, and shown in Table 1. A liquid polymer composition having a solid concentration was obtained. Using the polymer composition thus obtained, a substance adsorption film was produced and evaluated in the same manner as in Example I-1. As a result, no flow of the substance adsorption film was confirmed, and the planar shape and dimensions of the substance adsorption film could be maintained.
[比較例I-3]
 ブロックイソシアネートを用いなかったこと以外は、実施例I-3と同じ方法により、高分子組成物の製造、物質吸着膜の製造及び評価を行った。比較例I-3の物質吸着膜の写真を、実施例I-3の物質吸着膜の写真と共に、図5に示す。図5から分かるように、比較例I-3では、物質吸着膜の流動が確認され、物質吸着膜の平面形状及び寸法を維持できなかった。
[Comparative Example I-3]
A polymer composition and a substance adsorption film were produced and evaluated in the same manner as in Example I-3, except that no blocked isocyanate was used. A photograph of the substance adsorption film of Comparative Example I-3 is shown in FIG. 5 together with a photograph of the substance adsorption film of Example I-3. As can be seen from FIG. 5, in Comparative Example I-3, flow of the substance adsorption film was confirmed, and the planar shape and dimensions of the substance adsorption film could not be maintained.
[実施例I-4]
 水酸基及びアミノ基を有する高分子化合物としてのポリアリルアミン-ポリカプロラクトン共重合体(アミン価17mgKOH/g,酸価16mgKOH/g;水酸基当量770g/eq.)と、架橋剤としてのブロックイソシアネート(旭化成社製「SBN-70D」;固形分割合0.7)とを質量比6:0.36で混合し、溶媒としての1,3-ジメチル-2-イミダゾリジノンに溶解させて、表1に示す固形分濃度を有する液状の高分子組成物を得た。こうして得られた高分子組成物を用いて、実施例I-1と同じ方法により、物質吸着膜の製造及び評価を行った。その結果、物質吸着膜の流動は確認されず、物質吸着膜の平面形状及び寸法を維持できていた。
[Example I-4]
Polyallylamine-polycaprolactone copolymer (amine value 17 mg KOH/g, acid value 16 mg KOH/g; hydroxyl equivalent 770 g/eq.) as a polymer compound having a hydroxyl group and an amino group, and blocked isocyanate (Asahi Kasei Co., Ltd.) as a cross-linking agent "SBN-70D" manufactured by the company; solid content ratio 0.7) at a mass ratio of 6:0.36, dissolved in 1,3-dimethyl-2-imidazolidinone as a solvent, and shown in Table 1. A liquid polymer composition having a solid concentration was obtained. Using the polymer composition thus obtained, a substance adsorption film was produced and evaluated in the same manner as in Example I-1. As a result, no flow of the substance adsorption film was confirmed, and the planar shape and dimensions of the substance adsorption film could be maintained.
[比較例I-4]
 ブロックイソシアネートを用いなかったこと以外は、実施例I-4と同じ方法により、高分子組成物の製造、物質吸着膜の製造及び評価を行った。比較例I-4の物質吸着膜の写真を、実施例I-4の物質吸着膜の写真と共に、図6に示す。図6から分かるように、比較例I-4では、物質吸着膜の流動が確認され、物質吸着膜の平面形状及び寸法を維持できなかった。
[Comparative Example I-4]
A polymer composition and a substance adsorption film were produced and evaluated in the same manner as in Example I-4, except that no blocked isocyanate was used. A photograph of the substance adsorption film of Comparative Example I-4 is shown in FIG. 6 together with a photograph of the substance adsorption film of Example I-4. As can be seen from FIG. 6, in Comparative Example I-4, flow of the substance adsorption film was confirmed, and the planar shape and dimensions of the substance adsorption film could not be maintained.
[実施例I-1~I-4及び比較例I-1~I-4の結果のまとめ]
 実施例I-1~I-4及び比較例I-1~I-4の結果を、下記表1にまとめた。実施例I-1~I-4のように150℃で物質吸着膜が流動しなかったことから、それら実施例I-1~I-4の物質吸着膜は、より低温の100℃で流動しないと認められる。
 下記の表において、略称の意味は、下記の通りである。
 AA-CL共重合体:ポリアリルアミン-ポリカプロラクトン共重合体。
[Summary of results of Examples I-1 to I-4 and Comparative Examples I-1 to I-4]
The results of Examples I-1 to I-4 and Comparative Examples I-1 to I-4 are summarized in Table 1 below. Since the substance adsorption films did not flow at 150°C as in Examples I-1 to I-4, the substance adsorption films of Examples I-1 to I-4 do not flow at the lower temperature of 100°C. is recognized.
In the table below, the abbreviations have the following meanings.
AA-CL copolymer: Polyallylamine-polycaprolactone copolymer.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
[実施例I-5]
 水酸基及びアミノ基を有する高分子化合物としてのポリアリルアミン-ポリカプロラクトン共重合体(アミン価9mgKOH/g,酸価17mgKOH/g;水酸基当量1450g/eq.)と、架橋剤としてのブロックイソシアネート(旭化成社製「SBN-70D」;固形分割合0.7)とを質量比40:3で混合し、溶媒としての1,3-ジメチル-2-イミダゾリジノンに溶解させて、表2に示す固形分濃度を有する液状の高分子組成物を得た。こうして得られた高分子組成物を用いて、実施例I-1と同じ方法により、物質吸着膜の製造及び評価を行った。その結果、物質吸着膜の流動は確認されず、物質吸着膜の平面形状及び寸法を維持できていた。
[Example I-5]
Polyallylamine-polycaprolactone copolymer (amine value 9 mgKOH/g, acid value 17 mgKOH/g; hydroxyl group equivalent 1450 g/eq.) as a polymer compound having a hydroxyl group and an amino group, and blocked isocyanate (Asahi Kasei Co., Ltd.) as a cross-linking agent "SBN-70D" manufactured by the company; solid content ratio 0.7) at a mass ratio of 40: 3, dissolved in 1,3-dimethyl-2-imidazolidinone as a solvent, and the solid content shown in Table 2 A liquid polymer composition having a concentration was obtained. Using the polymer composition thus obtained, a substance adsorption film was produced and evaluated in the same manner as in Example I-1. As a result, no flow of the substance adsorption film was confirmed, and the planar shape and dimensions of the substance adsorption film could be maintained.
[実施例I-6]
 水酸基及びアミノ基を有する高分子化合物としてのポリアリルアミン-ポリカプロラクトン共重合体(アミン価9mgKOH/g,酸価17mgKOH/g;水酸基当量1450g/eq.)と、架橋剤としてのブロックイソシアネート(旭化成社製「SBN-70D」;固形分割合0.7)とを質量比40:1.45で混合し、溶媒としての1,3-ジメチル-2-イミダゾリジノンに溶解させて、表2に示す固形分濃度を有する液状の高分子組成物を得た。こうして得られた高分子組成物を用いて、実施例I-1と同じ方法により、物質吸着膜の製造及び評価を行った。その結果、物質吸着膜の流動は確認されず、物質吸着膜の平面形状及び寸法を維持できていた。
[Example I-6]
Polyallylamine-polycaprolactone copolymer (amine value 9 mgKOH/g, acid value 17 mgKOH/g; hydroxyl group equivalent 1450 g/eq.) as a polymer compound having a hydroxyl group and an amino group, and blocked isocyanate (Asahi Kasei Co., Ltd.) as a cross-linking agent manufactured by "SBN-70D"; solid content ratio 0.7) at a mass ratio of 40: 1.45, dissolved in 1,3-dimethyl-2-imidazolidinone as a solvent, and shown in Table 2. A liquid polymer composition having a solid concentration was obtained. Using the polymer composition thus obtained, a substance adsorption film was produced and evaluated in the same manner as in Example I-1. As a result, no flow of the substance adsorption film was confirmed, and the planar shape and dimensions of the substance adsorption film could be maintained.
[実施例I-7]
 水酸基及びアミノ基を有する高分子化合物としてのポリアリルアミン-ポリカプロラクトン共重合体(アミン価17mgKOH/g,酸価16mgKOH/g;水酸基当量770g/eq.)と、架橋剤としてのブロックイソシアネート(旭化成社製「SBN-70D」;固形分割合0.7)とを質量比40:6.5で混合し、溶媒としての1,3-ジメチル-2-イミダゾリジノンに溶解させて、表2に示す固形分濃度を有する液状の高分子組成物を得た。こうして得られた高分子組成物を用いて、実施例I-1と同じ方法により、物質吸着膜の製造及び評価を行った。その結果、物質吸着膜の流動は確認されず、物質吸着膜の平面形状及び寸法を維持できていた。
[Example I-7]
Polyallylamine-polycaprolactone copolymer (amine value 17 mg KOH/g, acid value 16 mg KOH/g; hydroxyl equivalent 770 g/eq.) as a polymer compound having a hydroxyl group and an amino group, and blocked isocyanate (Asahi Kasei Co., Ltd.) as a cross-linking agent manufactured by "SBN-70D"; solid content ratio 0.7) at a mass ratio of 40: 6.5, dissolved in 1,3-dimethyl-2-imidazolidinone as a solvent, and shown in Table 2. A liquid polymer composition having a solid concentration was obtained. Using the polymer composition thus obtained, a substance adsorption film was produced and evaluated in the same manner as in Example I-1. As a result, no flow of the substance adsorption film was confirmed, and the planar shape and dimensions of the substance adsorption film could be maintained.
[実施例I-8]
 水酸基及びアミノ基を有する高分子化合物としてのポリアリルアミン-ポリカプロラクトン共重合体(アミン価17mgKOH/g,酸価16mgKOH/g;水酸基当量770g/eq.)と、架橋剤としてのブロックイソシアネート(旭化成社製「SBN-70D」;固形分割合0.7)とを質量比20:0.9で混合し、溶媒としての1,3-ジメチル-2-イミダゾリジノンに溶解させて、表2に示す固形分濃度を有する液状の高分子組成物を得た。こうして得られた高分子組成物を用いて、実施例I-1と同じ方法により、物質吸着膜の製造及び評価を行った。その結果、物質吸着膜の流動は確認されず、物質吸着膜の平面形状及び寸法を維持できていた。
[Example I-8]
Polyallylamine-polycaprolactone copolymer (amine value 17 mg KOH/g, acid value 16 mg KOH/g; hydroxyl equivalent 770 g/eq.) as a polymer compound having a hydroxyl group and an amino group, and blocked isocyanate (Asahi Kasei Co., Ltd.) as a cross-linking agent "SBN-70D" manufactured by the company; solid content ratio 0.7) at a mass ratio of 20: 0.9, dissolved in 1,3-dimethyl-2-imidazolidinone as a solvent, and shown in Table 2. A liquid polymer composition having a solid concentration was obtained. Using the polymer composition thus obtained, a substance adsorption film was produced and evaluated in the same manner as in Example I-1. As a result, no flow of the substance adsorption film was confirmed, and the planar shape and dimensions of the substance adsorption film could be maintained.
[実施例I-5~I-8の結果のまとめ]
 実施例I-5~I-8の結果を、下記表2にまとめた。実施例I-5~I-8のように150℃で物質吸着膜が流動しなかったことから、それら実施例I-5~I-8の物質吸着膜は、より低温の100℃で流動しないと認められる。
 下記の表において、略称の意味は、下記の通りである。
 AA-CL共重合体:ポリアリルアミン-ポリカプロラクトン共重合体。
[Summary of results of Examples I-5 to I-8]
The results of Examples I-5 to I-8 are summarized in Table 2 below. Since the substance adsorption films did not flow at 150°C as in Examples I-5 to I-8, the substance adsorption films of Examples I-5 to I-8 do not flow at the lower temperature of 100°C. is recognized.
In the table below, the abbreviations have the following meanings.
AA-CL copolymer: Polyallylamine-polycaprolactone copolymer.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
[実施例I-9]
 (高分子組成物の製造)
 水酸基を有する高分子化合物としてのポリウレタン(大成ファインケミカル社製「PU―1020」;水酸基当量23000g/eq.)、及び、架橋剤としてのブロックイソシアネート(旭化成社製「TPA-B80E」;固形分割合0.8;NCO率12.5%)を質量比1.06:0.228で混合し、溶媒としてのテトラリンに溶解させて、表3に示す固形分濃度を有する液状の高分子組成物を得た。この高分子組成物の一部を採り、上述した方法によってゲル分率の測定を行った。
[Example I-9]
(Manufacture of polymer composition)
Polyurethane (“PU-1020” manufactured by Taisei Fine Chemical Co., Ltd.; hydroxyl equivalent weight 23000 g/eq.) as a polymer compound having a hydroxyl group, and blocked isocyanate (“TPA-B80E” manufactured by Asahi Kasei Corporation; solid content ratio 0) as a cross-linking agent .8; NCO rate 12.5%) were mixed at a mass ratio of 1.06:0.228 and dissolved in tetralin as a solvent to obtain a liquid polymer composition having a solid content concentration shown in Table 3. rice field. A portion of this polymer composition was taken and the gel fraction was measured by the method described above.
 (物質吸着膜の製造)
 アルミニウムパンを用意し、その底面が水平となるように置いた。アルミニウムパンの底面に、高分子組成物25μlを滴下し、底面を水平に保ちながら150℃のオーブン内に30分間静置した。その後、アルミニウムパンをオーブンから取り出し、室温にて30分間静置した。アルミニウムパンの底面には、物質吸着膜が形成されていた。この物質吸着膜を撮影した。
(Manufacturing of substance adsorption film)
An aluminum pan was prepared and placed so that its bottom surface was horizontal. 25 μl of the polymer composition was dropped on the bottom surface of the aluminum pan, and the pan was placed in an oven at 150° C. for 30 minutes while keeping the bottom surface horizontal. After that, the aluminum pan was taken out of the oven and allowed to stand at room temperature for 30 minutes. A substance adsorption film was formed on the bottom surface of the aluminum pan. This substance adsorption film was photographed.
 (流動性評価試験)
 アルミニウムパンの底面を90°傾けて鉛直方向に平行にし、100℃のオーブン内に30分間静置する流動性評価試験を行った。その後、アルミニウムパンをオーブンから取り出し、室温にて30分間静置した。アルミニウムパンの底面の物質吸着膜を撮影した。
(Fluidity evaluation test)
A fluidity evaluation test was performed by tilting the bottom surface of the aluminum pan by 90° to make it parallel to the vertical direction and placing it in an oven at 100°C for 30 minutes. After that, the aluminum pan was taken out of the oven and allowed to stand at room temperature for 30 minutes. A photograph of the substance adsorption film on the bottom of the aluminum pan was taken.
 流動性評価試験の前に撮影された物質吸着膜の画像と、流動性評価試験の後に撮影された物質吸着膜の画像とを比較して、流動性評価試験における100℃での加熱によって物質吸着膜が流動したか否かを確認した。その結果、流動は確認されず、物質吸着膜の平面形状及び寸法を維持できていた。 By comparing the image of the substance adsorption film taken before the fluidity evaluation test and the image of the substance adsorption film taken after the fluidity evaluation test, the substance adsorption by heating at 100 ° C. in the fluidity evaluation test It was checked whether the membrane had flowed. As a result, no flow was confirmed, and the planar shape and dimensions of the substance adsorption film could be maintained.
[実施例I-10]
 水酸基を有する高分子化合物としてのポリウレタン(大成ファインケミカル社製「PU―1020」)、及び、架橋剤としてのブロックイソシアネート(旭化成社製「SBN-70D」;固形分割合0.7)を質量比1.06:0.152で混合し、溶媒としてのテトラリンに溶解させて、表3に示す固形分濃度を有する液状の高分子組成物を得た。こうして得られた高分子組成物を用いて、実施例I-9と同じ方法により、物質吸着膜の製造及び評価を行った。その結果、物質吸着膜の流動は確認されず、物質吸着膜の平面形状及び寸法を維持できていた。
[Example I-10]
Polyurethane ("PU-1020" manufactured by Taisei Fine Chemical Co., Ltd.) as a polymer compound having a hydroxyl group, and blocked isocyanate ("SBN-70D" manufactured by Asahi Kasei Co., Ltd.; solid content ratio 0.7) as a cross-linking agent, at a mass ratio of 1 .06:0.152 and dissolved in tetralin as a solvent to obtain a liquid polymer composition having a solid concentration shown in Table 3. Using the polymer composition thus obtained, a substance adsorption film was produced and evaluated in the same manner as in Example I-9. As a result, no flow of the substance adsorption film was confirmed, and the planar shape and dimensions of the substance adsorption film could be maintained.
[実施例I-11]
 水酸基を有する高分子化合物としてのポリウレタン(大成ファインケミカル社製「PU―1020」)、及び、架橋剤としてのブロックイソシアネート(旭化成社製「SBB-70P」;NCO率10.1%)を質量比1.06:0.134で混合し、溶媒としてのテトラリンに溶解させて、表3に示す固形分濃度を有する液状の高分子組成物を得た。こうして得られた高分子組成物を用いて、実施例I-9と同じ方法により、物質吸着膜の製造及び評価を行った。その結果、物質吸着膜の流動は確認されず、物質吸着膜の平面形状及び寸法を維持できていた。
[Example I-11]
Polyurethane (“PU-1020” manufactured by Taisei Fine Chemical Co., Ltd.) as a polymer compound having a hydroxyl group, and blocked isocyanate (“SBB-70P” manufactured by Asahi Kasei Co., Ltd.; NCO rate 10.1%) as a cross-linking agent, at a mass ratio of 1 The mixture was mixed at a ratio of 0.06:0.134 and dissolved in tetralin as a solvent to obtain a liquid polymer composition having a solid content concentration shown in Table 3. Using the polymer composition thus obtained, a substance adsorption film was produced and evaluated in the same manner as in Example I-9. As a result, no flow of the substance adsorption film was confirmed, and the planar shape and dimensions of the substance adsorption film could be maintained.
[比較例I-5]
 ブロックイソシアネートを用いなかったこと以外は、実施例I-9と同じ方法により、高分子組成物の製造、物質吸着膜の製造及び評価を行った。その結果、物質吸着膜の流動が確認され、物質吸着膜の平面形状及び寸法を維持できなかった。
[Comparative Example I-5]
A polymer composition and a substance adsorption film were produced and evaluated in the same manner as in Example I-9, except that no blocked isocyanate was used. As a result, flow of the substance adsorption film was confirmed, and the planar shape and dimensions of the substance adsorption film could not be maintained.
[実施例I-9~I-11及び比較例I-5の結果のまとめ]
 実施例I-9~I-11及び比較例I-5の結果を、下記表3にまとめた。
[Summary of results of Examples I-9 to I-11 and Comparative Example I-5]
The results of Examples I-9 to I-11 and Comparative Example I-5 are summarized in Table 3 below.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
[実施例I-12]
 水酸基及びアミノ基を有する高分子化合物としてのポリアリルアミン-ポリカプロラクトン共重合体(アミン価9mgKOH/g,酸価17mgKOH/g;水酸基当量1450g/eq.)、架橋剤としてのエポキシ樹脂(日鉄ケミカル&マテリアル社製「ZX-1059」;エポキシ基当量165g/eq.;重量平均分子量330)、架橋剤としてのスチレン無水マレイン酸共重合体(EF80, Cray Valley;無水物基当量105-135g/eq.;重量平均分子量14400)、及び、触媒としてのイミダゾール(四国化成社製「2E4MZ」)を質量比3.0:0.15:0.4:0.11で混合し、1,3-ジメチル-2-イミダゾリジノンに溶解させて、表4に示す固形分濃度を有する液状の高分子組成物を得た。こうして得られた高分子組成物を用いて、実施例I-9と同じ方法により、物質吸着膜の製造及び評価を行った。その結果、物質吸着膜の流動は確認されず、物質吸着膜の平面形状及び寸法を維持できていた。
[Example I-12]
Polyallylamine-polycaprolactone copolymer (amine value 9 mg KOH / g, acid value 17 mg KOH / g; hydroxyl equivalent 1450 g / eq.) as a polymer compound having a hydroxyl group and an amino group, epoxy resin (Nippon Steel Chemical & Materials Co., Ltd. "ZX-1059"; epoxy group equivalent 165 g / eq.; weight average molecular weight 330), styrene maleic anhydride copolymer as a cross-linking agent (EF80, Cray Valley; anhydride group equivalent 105-135 g / eq. .; weight average molecular weight 14400), and imidazole ("2E4MZ" manufactured by Shikoku Kasei Co., Ltd.) as a catalyst were mixed at a mass ratio of 3.0: 0.15: 0.4: 0.11, and 1,3-dimethyl -2-imidazolidinone to obtain a liquid polymer composition having a solid concentration shown in Table 4. Using the polymer composition thus obtained, a substance adsorption film was produced and evaluated in the same manner as in Example I-9. As a result, no flow of the substance adsorption film was confirmed, and the planar shape and dimensions of the substance adsorption film could be maintained.
[実施例I-13]
 水酸基及びアミノ基を有する高分子化合物としてのポリアリルアミン-ポリカプロラクトン共重合体(アミン価9mgKOH/g,酸価17mgKOH/g;水酸基当量1450g/eq.)、架橋剤としてのアクリル樹脂(新中村化学工業社製「A-DCP」;分子量304)、及び、重合開始剤としての過酸化物(日油社製「パーヘキサHC」)を質量比2.0:0.48:0.64で混合し、溶媒としての1,3-ジメチル-2-イミダゾリジノンに溶解させて、表4に示す固形分濃度を有する液状の高分子組成物を得た。こうして得られた高分子組成物を用いて、実施例I-9と同じ方法により、物質吸着膜の製造及び評価を行った。その結果、物質吸着膜の流動は確認されず、物質吸着膜の平面形状及び寸法を維持できていた。
[Example I-13]
Polyallylamine-polycaprolactone copolymer (amine value 9 mg KOH / g, acid value 17 mg KOH / g; hydroxyl equivalent 1450 g / eq.) as a polymer compound having a hydroxyl group and an amino group, acrylic resin as a cross-linking agent (Shin Nakamura Chemical "A-DCP" manufactured by Kogyo Co., Ltd.; molecular weight 304) and a peroxide ("Perhexa HC" manufactured by NOF Corporation) as a polymerization initiator were mixed at a mass ratio of 2.0: 0.48: 0.64. , and dissolved in 1,3-dimethyl-2-imidazolidinone as a solvent to obtain a liquid polymer composition having a solid concentration shown in Table 4. Using the polymer composition thus obtained, a substance adsorption film was produced and evaluated in the same manner as in Example I-9. As a result, no flow of the substance adsorption film was confirmed, and the planar shape and dimensions of the substance adsorption film could be maintained.
[実施例I-14]
 水酸基を有する高分子化合物としてのポリウレタン(大成ファインケミカル社製「PU―1020」)、架橋剤としてのエポキシ樹脂(日鉄ケミカル&マテリアル社製「ZX-1059」)、架橋剤としてのスチレン無水マレイン酸共重合体(EF80, Cray Valley)、及び、触媒としてのイミダゾール(四国化成社製「2E4MZ」)を質量比1.3:0.15:0.4:0.11で混合し、溶媒としてのテトラリンに溶解させて、表4に示す固形分濃度を有する液状の高分子組成物を得た。こうして得られた高分子組成物を用いて、実施例I-9と同じ方法により、物質吸着膜の製造及び評価を行った。その結果、物質吸着膜の流動は確認されず、物質吸着膜の平面形状及び寸法を維持できていた。
[Example I-14]
Polyurethane (“PU-1020” manufactured by Taisei Fine Chemical Co., Ltd.) as a polymer compound having a hydroxyl group, epoxy resin (“ZX-1059” manufactured by Nippon Steel Chemical & Materials Co., Ltd.) as a cross-linking agent, styrene maleic anhydride as a cross-linking agent A copolymer (EF80, Cray Valley) and imidazole (manufactured by Shikoku Kasei Co., Ltd. "2E4MZ") as a catalyst were mixed at a mass ratio of 1.3: 0.15: 0.4: 0.11, and By dissolving in tetralin, a liquid polymer composition having a solid concentration shown in Table 4 was obtained. Using the polymer composition thus obtained, a substance adsorption film was produced and evaluated in the same manner as in Example I-9. As a result, no flow of the substance adsorption film was confirmed, and the planar shape and dimensions of the substance adsorption film could be maintained.
[実施例I-12~I-14の結果のまとめ]
 実施例I-12~I-14の結果を、下記表4にまとめた。下記の表において、略称の意味は、下記の通りである。
 AA-CL共重合体:ポリアリルアミン-ポリカプロラクトン共重合体。
[Summary of the results of Examples I-12 to I-14]
The results of Examples I-12 to I-14 are summarized in Table 4 below. In the table below, the abbreviations have the following meanings.
AA-CL copolymer: Polyallylamine-polycaprolactone copolymer.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
[実験群II:物質吸着特性の評価実験群]
 以下、物質吸着膜の物質吸着特性の評価に係る実施例及び比較例を説明する。
[Experimental Group II: Experimental Group for Evaluation of Substance Adsorption Properties]
Examples and comparative examples relating to evaluation of substance adsorption characteristics of substance adsorption films will be described below.
[実施例II-1]
 水酸基及びアミノ基を有する高分子化合物としてのポリアリルアミン-ポリカプロラクトン共重合体(アミン価9mgKOH/g,酸価17mgKOH/g;水酸基当量1450g/eq.)と、架橋剤としてのブロックイソシアネート(旭化成社製「デュラネートSBN-70D」)とを、固形分質量比25:1の比率で混合し、1,3-ジメチル-2-イミダゾリジノンに溶解させて、高分子組成物を製造した。この高分子組成物の一部を採り、上述した方法によってゲル分率を測定したところ、1.31質量%であった。
[Example II-1]
Polyallylamine-polycaprolactone copolymer (amine value 9 mgKOH/g, acid value 17 mgKOH/g; hydroxyl group equivalent 1450 g/eq.) as a polymer compound having a hydroxyl group and an amino group, and blocked isocyanate (Asahi Kasei Co., Ltd.) as a cross-linking agent ("Duranate SBN-70D" manufactured by Sanken Co., Ltd.) at a solid content mass ratio of 25:1 and dissolved in 1,3-dimethyl-2-imidazolidinone to produce a polymer composition. A portion of this polymer composition was sampled and the gel fraction was measured by the method described above and found to be 1.31% by mass.
[比較例II-1]
 ブロックイソシアネートを用いなかったこと以外は、実施例II-1と同じ方法により、高分子組成物を製造した。この高分子組成物の一部を採り、上述した方法によってゲル分率を測定したところ、0.00質量%であった。
[Comparative Example II-1]
A polymer composition was produced in the same manner as in Example II-1, except that no blocked isocyanate was used. A portion of this polymer composition was sampled and the gel fraction was measured by the method described above and found to be 0.00% by mass.
[実施例II-2]
 水酸基及びアミノ基を有する高分子化合物としてのポリアリルアミン-ポリカプロラクトン共重合体(アミン価17mgKOH/g,酸価14mgKOH/g;水酸基当量1550g/eq.)と、架橋剤としてのブロックイソシアネート(旭化成社製「デュラネートSBN-70D」)とを、固形分質量比25:1の比率で混合し、1,3-ジメチル-2-イミダゾリジノンに溶解させて、高分子組成物を製造した。この高分子組成物の一部を採り、上述した方法によってゲル分率を測定したところ、0.73質量%であった。
[Example II-2]
Polyallylamine-polycaprolactone copolymer (amine value 17 mgKOH/g, acid value 14 mgKOH/g; hydroxyl group equivalent 1550 g/eq.) as a polymer compound having a hydroxyl group and an amino group, and blocked isocyanate (Asahi Kasei Co., Ltd.) as a cross-linking agent ("Duranate SBN-70D" manufactured by Sanken Co., Ltd.) at a solid content mass ratio of 25:1 and dissolved in 1,3-dimethyl-2-imidazolidinone to produce a polymer composition. A portion of this polymer composition was sampled and the gel fraction was measured by the method described above and found to be 0.73% by mass.
[比較例II-2]
 ブロックイソシアネートを用いなかったこと以外は、実施例II-2と同じ方法により、高分子組成物を製造した。この高分子組成物の一部を採り、上述した方法によってゲル分率を測定したところ、0.00質量%であった。
[Comparative Example II-2]
A polymer composition was produced in the same manner as in Example II-2, except that no blocked isocyanate was used. A portion of this polymer composition was sampled and the gel fraction was measured by the method described above and found to be 0.00% by mass.
[実施例II-3]
 水酸基及びアミノ基を有する高分子化合物としてのポリアリルアミン-ポリカプロラクトン共重合体(アミン価17mgKOH/g,酸価20mgKOH/g;水酸基当量1550g/eq.)と、架橋剤としてのブロックイソシアネート(旭化成社製「デュラネートSBN-70D」)とを、固形分質量比25:1の比率で混合し、1,3-ジメチル-2-イミダゾリジノンに溶解させて、高分子組成物を製造した。この高分子組成物の一部を採り、上述した方法によってゲル分率を測定したところ、0.13質量%であった。
[Example II-3]
Polyallylamine-polycaprolactone copolymer (amine value 17 mgKOH/g, acid value 20 mgKOH/g; hydroxyl group equivalent 1550 g/eq.) as a polymer compound having a hydroxyl group and an amino group, and blocked isocyanate (Asahi Kasei Co., Ltd.) as a cross-linking agent ("Duranate SBN-70D" manufactured by Sanken Co., Ltd.) at a solid content mass ratio of 25:1 and dissolved in 1,3-dimethyl-2-imidazolidinone to produce a polymer composition. A portion of this polymer composition was taken and the gel fraction was measured by the method described above, and found to be 0.13% by mass.
[比較例II-3]
 ブロックイソシアネートを用いなかったこと以外は、実施例II-3と同じ方法により、高分子組成物を製造した。この高分子組成物の一部を採り、上述した方法によってゲル分率を測定したところ、0.00質量%であった。
[Comparative Example II-3]
A polymer composition was produced in the same manner as in Example II-3, except that no blocked isocyanate was used. A portion of this polymer composition was sampled and the gel fraction was measured by the method described above and found to be 0.00% by mass.
[実施例II-4]
 水酸基及びアミノ基を有する高分子化合物としてのポリアリルアミン-ポリカプロラクトン共重合体(アミン価17mgKOH/g,酸価16mgKOH/g;水酸基当量770g/eq.)と、架橋剤としてのブロックイソシアネート(旭化成社製「デュラネートSBN-70D」)とを、固形分質量比25:1の比率で混合し、1,3-ジメチル-2-イミダゾリジノンに溶解させて、高分子組成物を製造した。この高分子組成物の一部を採り、上述した方法によってゲル分率を測定したところ、2.65質量%であった。
[Example II-4]
Polyallylamine-polycaprolactone copolymer (amine value 17 mg KOH/g, acid value 16 mg KOH/g; hydroxyl equivalent 770 g/eq.) as a polymer compound having a hydroxyl group and an amino group, and blocked isocyanate (Asahi Kasei Co., Ltd.) as a cross-linking agent ("Duranate SBN-70D" manufactured by Sanken Co., Ltd.) at a solid content mass ratio of 25:1 and dissolved in 1,3-dimethyl-2-imidazolidinone to produce a polymer composition. A portion of this polymer composition was sampled and the gel fraction was measured by the method described above and found to be 2.65% by mass.
[比較例II-4]
 ブロックイソシアネートを用いなかったこと以外は、実施例II-4と同じ方法により、高分子組成物を製造した。この高分子組成物の一部を採り、上述した方法によってゲル分率を測定したところ、0.00質量%であった。
[Comparative Example II-4]
A polymer composition was produced in the same manner as in Example II-4, except that no blocked isocyanate was used. A portion of this polymer composition was sampled and the gel fraction was measured by the method described above and found to be 0.00% by mass.
[比較例II-5]
 高分子化合物としてのポリウレタン(大成ファインケミカル社製「PU―1020」)を溶媒としての1,2,3,4-テトラヒドロナフタレンに溶解させて、高分子組成物を製造した。この高分子組成物の一部を採り、上述した方法によってゲル分率を測定したところ、0.00質量%であった。
[Comparative Example II-5]
Polyurethane (“PU-1020” manufactured by Taisei Fine Chemical Co., Ltd.) as a polymer compound was dissolved in 1,2,3,4-tetrahydronaphthalene as a solvent to produce a polymer composition. A portion of this polymer composition was sampled and the gel fraction was measured by the method described above and found to be 0.00% by mass.
[比較例II-6]
 高分子化合物としての変性セルロース(信越化学工業社製「HP-50」)を溶媒としての1,3-ジメチル-2-イミダゾリジノンに溶解させて、高分子組成物を製造した。この高分子組成物の一部を採り、上述した方法によってゲル分率を測定したところ、0.00質量%であった。
[Comparative Example II-6]
A polymer composition was produced by dissolving modified cellulose (“HP-50” manufactured by Shin-Etsu Chemical Co., Ltd.) as a polymer compound in 1,3-dimethyl-2-imidazolidinone as a solvent. A portion of this polymer composition was sampled and the gel fraction was measured by the method described above and found to be 0.00% by mass.
[比較例II-7]
 高分子化合物としてのポリアクリル酸(シグマアルドリッチジャパン社製、製品番号;181285)を溶媒としての1,3-ジメチル-2-イミダゾリジノンに溶解させて、高分子組成物を調整した。この高分子組成物の一部を採り、上述した方法によってゲル分率を測定したところ、0.00質量%であった。
[Comparative Example II-7]
A polymer composition was prepared by dissolving polyacrylic acid (manufactured by Sigma-Aldrich Japan, product number: 181285) as a polymer compound in 1,3-dimethyl-2-imidazolidinone as a solvent. A portion of this polymer composition was sampled and the gel fraction was measured by the method described above and found to be 0.00% by mass.
[物質吸着特性の評価]
 (1-1.匂いセンサー素子上への物質吸着膜の形成)
 シリンジ(武蔵エンジニアリング社製、型番PSY-3E-M、容量3ml)及びニードル(武蔵エンジニアリング社製、型番SNA-32GB、内径0.1mm、針長13mm)を備えるニードル付シリンジを用意した。シリンジに高分子組成物を充填し、ニードル付シリンジをエアパルス式ディスペンサ(武蔵エンジニアリング社製の高精度ディスペンサ「SuperΣxIII」)に取り付けた。このディスペンサを用いて、匂いセンサーチップとしての圧電素子上に、高分子組成物を吐出することにより、高分子組成物の塗布を行った。その後、乾燥炉で150℃30分間の乾燥を行うことにより、物質吸着膜が形成された匂いセンサー素子を得た。
[Evaluation of substance adsorption properties]
(1-1. Formation of substance adsorption film on odor sensor element)
A syringe with a needle (manufactured by Musashi Engineering Co., model number PSY-3E-M, volume 3 ml) and a needle (manufactured by Musashi Engineering Co., model number SNA-32GB, inner diameter 0.1 mm, needle length 13 mm) was prepared. A syringe was filled with the polymer composition, and the needle-equipped syringe was attached to an air pulse dispenser (a high-precision dispenser "Super ΣxIII" manufactured by Musashi Engineering Co., Ltd.). Using this dispenser, the polymer composition was applied by discharging the polymer composition onto the piezoelectric element as the odor sensor chip. Then, it was dried in a drying oven at 150° C. for 30 minutes to obtain an odor sensor element having a substance adsorption film formed thereon.
 (1-2.匂い測定)
 前記匂いセンサー素子を匂いセンサー(I-PEX社製)に取り付け、下記の手順により、匂い測定を行った。
 匂い物質サンプル(水:超純水、エタノール:純正化学社製、1-プロパノール:純正化学社製、1-ヘキサノール:純正化学社製、トルエン:純正化学社製)を注いだガラスシャーレを、匂いセンサーシステムに取り付けた。匂いセンサーシステムにおいて、前記ガラスシャーレは、交換位置に取り付けられた。ガラスシャーレを匂いセンサーの下部に移動させて、ガラスシャーレ内のヘッドスペースガスを匂いセンサーへと放出し、匂いセンサー素子による匂い測定を開始した。具体的には、匂い物質サンプルが物質吸着膜に吸着されることによって生じる応答量(圧電素子の周波数変化量)を測定した。応答量が時間の経過によって変化する場合、その応答量の最大値を測定値として得た。匂い測定を一定時間行った後で、ガラスシャーレを再び交換位置に戻して、匂い測定を完了させた。
(1-2. Odor measurement)
The odor sensor element was attached to an odor sensor (manufactured by I-PEX), and the odor was measured according to the following procedure.
A glass petri dish into which an odorant sample (water: ultrapure water, ethanol: manufactured by Junsei Chemical Co., Ltd., 1-propanol: manufactured by Junsei Chemical Co., Ltd., 1-hexanol: manufactured by Junsei Chemical Co., Ltd., toluene: manufactured by Junsei Chemical Co., Ltd.) was attached to the sensor system. In the odor sensor system, the glass petri dish was attached to the exchange position. The glass petri dish was moved to the lower part of the odor sensor, the head space gas in the glass petri dish was released to the odor sensor, and the odor measurement by the odor sensor element was started. Specifically, the amount of response (the amount of change in frequency of the piezoelectric element) caused by the adsorption of the odorant sample to the substance adsorption film was measured. When the amount of response changed over time, the maximum value of the amount of response was obtained as the measured value. After the odor measurement was performed for a certain period of time, the glass petri dish was returned to the replacement position to complete the odor measurement.
 各物質吸着膜を用いて検出される各匂い物質サンプルの応答量を比較した。図7に、匂いセンサー素子を用いて匂い物質サンプルとして水を検出したときの応答量を示す。図7において実施例II-1と比較例II-1との対比、実施例II-2と比較例II-2との対比、実施例II-3と比較例II-3との対比、並びに、実施例II-4と比較例II-4との対比を行えばわかるように、耐熱性を向上させた実施例II-1~II-4の応答量は、耐熱性を向上させていない比較例II-1~II-4の応答量と、同程度である。よって、架橋構造によって耐熱性を向上させても応答量の変化は小さく、よって物質吸着特性を同程度に維持できていることが分かる。 We compared the response amount of each odorant sample detected using each substance adsorption film. FIG. 7 shows the amount of response when water was detected as an odorant sample using the odor sensor element. In FIG. 7, comparison between Example II-1 and Comparative Example II-1, comparison between Example II-2 and Comparative Example II-2, comparison between Example II-3 and Comparative Example II-3, and As can be seen by comparing Example II-4 and Comparative Example II-4, the response amounts of Examples II-1 to II-4 with improved heat resistance are lower than those of Comparative Examples without improved heat resistance. It is comparable to the response amount of II-1 to II-4. Therefore, it can be seen that even if the heat resistance is improved by the crosslinked structure, the change in the response amount is small, and therefore the substance adsorption properties can be maintained at the same level.
 次に、前記の匂い測定の完了後、匂いセンサーから匂いセンサー素子を取り出し、センサー素子を80℃60minで加熱した。その後、匂いセンサー素子を放冷し、常温に戻した。その匂いセンサー素子を再度匂いセンサーに取り付け、加熱前と同じ方法で匂い測定を行って、各物質吸着膜を用いて検出される各匂い物質サンプルの応答量を測定した。 Next, after the odor measurement was completed, the odor sensor element was taken out from the odor sensor, and the sensor element was heated at 80°C for 60 minutes. After that, the odor sensor element was allowed to cool and returned to normal temperature. The odor sensor element was attached to the odor sensor again, and the odor was measured in the same manner as before heating, and the amount of response of each odorant sample detected using each substance adsorption film was measured.
 加熱後に各物質吸着膜を用いて検出される各匂い物質サンプルの応答量を比較した。図8に、加熱後の匂いセンサー素子を用いて匂い物質サンプルとして水を検出したときの応答量を示す。図8において実施例II-1と比較例II-1との対比、実施例II-2と比較例II-2との対比、実施例II-3と比較例II-3との対比、並びに、実施例II-4と比較例II-4との対比を行えばわかるように、耐熱性を向上させた実施例II-1~II-4の応答量は、耐熱性を向上させていない比較例II-1~II-4の応答量と、同程度である。よって、物質吸着膜の加熱前だけでなく、加熱後においても、架橋構造によって耐熱性を向上させても応答量の変化は小さく、よって物質吸着特性を同程度に維持できていることが分かる。 We compared the response amount of each odorant sample detected using each substance adsorption film after heating. FIG. 8 shows the amount of response when water was detected as an odorant sample using the heated odor sensor element. In FIG. 8, comparison between Example II-1 and Comparative Example II-1, comparison between Example II-2 and Comparative Example II-2, comparison between Example II-3 and Comparative Example II-3, and As can be seen by comparing Example II-4 and Comparative Example II-4, the response amounts of Examples II-1 to II-4 with improved heat resistance are lower than those of Comparative Examples without improved heat resistance. It is comparable to the response amount of II-1 to II-4. Therefore, not only before heating of the substance adsorption film, but also after heating, even if the heat resistance is improved by the crosslinked structure, the change in the response amount is small, and it can be seen that the substance adsorption properties can be maintained at the same level.
 さらに、各実施例及び比較例で製造した高分子組成物を用いて物質吸着膜を2つ又は3つずつ作成し、前記の匂い測定を6回行った。そして、測定された応答量を変数として主成分分析(PCA)を実施した。具体的には、実施例及び比較例それぞれの応答量の散布図を作成した。各実施例及び比較例では、2つ又は3つの物質吸着膜を用いて、6回の測定を5種類の匂い物質サンプルについて行った。よって、実施例及び比較例それぞれにおいて、6×5=30次元の座標値を有するプロットが2つ又は3つずつ得られた。各物質吸着膜の座標の重心及び散布図の中心を通る直線Z1を引き、さらに、直線Z1に垂直かつ各物質吸着膜の座標の重心を通る直線Z2を引いた。直線Z1を第一成分、直線Z2を第二成分として2次元のグラフで表したものを、主成分分析結果として得た。 Furthermore, two or three substance adsorption films were prepared using the polymer compositions produced in each example and comparative example, and the above odor measurement was performed six times. Then, principal component analysis (PCA) was performed using the measured response amount as a variable. Specifically, a scatter diagram of the response amount of each of the examples and the comparative examples was created. In each example and comparative example, 2 or 3 substance adsorption membranes were used, and 6 measurements were performed on 5 types of odorant samples. Therefore, two or three plots having coordinate values of 6×5=30 dimensions were obtained in each of the example and the comparative example. A straight line Z1 passing through the center of the coordinates of each substance adsorption film and the center of the scatter diagram was drawn, and a straight line Z2 perpendicular to the straight line Z1 and passing through the center of gravity of the coordinates of each substance adsorption film was drawn. A two-dimensional graph with the straight line Z1 as the first component and the straight line Z2 as the second component was obtained as the principal component analysis result.
 主成分分析によって得られた第一成分(成分1:寄与率59.7%)及び第二成分(成分2:寄与率15%)を、図9のグラフに示す。また、各実施例及び比較例で得られた第一成分及び第二成分の具体的な値を、表5に示す。この主成分分析の結果から、対応する実施例の座標と比較例の座標とが近い位置にあること、及び、物質吸着膜の応答パターンの類似性が確認できた。よって、この結果からも、架橋構造によって物耐熱性を向上させても応答量の変化は小さく、よって物質吸着特性を同程度に維持できていることが裏付けられた。 The first component (component 1: contribution rate 59.7%) and the second component (component 2: contribution rate 15%) obtained by principal component analysis are shown in the graph in FIG. Table 5 shows specific values of the first component and the second component obtained in each example and comparative example. From the results of this principal component analysis, it was confirmed that the coordinates of the corresponding examples and the coordinates of the comparative examples are located close to each other, and that the response patterns of the substance adsorption films are similar. Therefore, this result also confirms that even if the heat resistance is improved by the crosslinked structure, the change in the response amount is small, and therefore the substance adsorption property can be maintained at the same level.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
[実験群III:寸法保持率の評価実験群]
 以下、物質吸着膜の寸法保持率の評価に係る実施例及び比較例を説明する。
[Experimental Group III: Evaluation Experimental Group for Dimensional Retention Rate]
Examples and comparative examples relating to the evaluation of the dimensional retention rate of the substance adsorption film will be described below.
[実施例III-1]
 (高分子組成物の製造)
 水酸基を有する高分子化合物としてのウレタン樹脂(大成ファインケミカル社製「PU―1020」)、水酸基を有する高分子化合物としてのポリ酢酸ビニル(日本酢ビポバール社製「JMR-8LO」;けん化度9.9mol%;重量平均分子量17000~25500)、及び、架橋剤としてのブロックイソシアネート(旭化成社製「デュラネートSBN-70D」)を固形分質量比47.5:47.5:5で混合し、溶媒として安息香酸メチルに溶解して、液状の高分子組成物を得た。この高分子組成物の一部を採り、上述した方法によってゲル分率の測定を行った。
[Example III-1]
(Manufacture of polymer composition)
Urethane resin (“PU-1020” manufactured by Taisei Fine Chemical Co., Ltd.) as a polymer compound having a hydroxyl group, polyvinyl acetate (“JMR-8LO” manufactured by Nippon Acetate Vipoval Co., Ltd.; saponification degree 9.9 mol) as a polymer compound having a hydroxyl group %; weight average molecular weight 17000 to 25500), and blocked isocyanate (“Duranate SBN-70D” manufactured by Asahi Kasei Co., Ltd.) as a cross-linking agent are mixed at a solid content mass ratio of 47.5: 47.5: 5, and benzoin is used as a solvent. It was dissolved in methyl acid to obtain a liquid polymer composition. A portion of this polymer composition was taken and the gel fraction was measured by the method described above.
 (物質吸着膜の製造)
 高分子組成物を、ディスペンサー(武蔵エンジニアリング)を用いて、匂いセンサーチップに塗布して、高分子組成物の層を形成した。この高分子組成物の層の最長の長さLAを測定した。
(Manufacturing of substance adsorption film)
The polymer composition was applied to the odor sensor chip using a dispenser (Musashi Engineering) to form a layer of the polymer composition. The longest length LA of the layer of this polymeric composition was measured.
 (寸法保持率の評価)
 その後、匂いセンサーチップを150℃30分のオーブンで加熱して、高分子組成物の層から溶媒としての安息香酸メチルを乾燥させて、物質吸着膜を得た。乾燥後の物質吸着膜の最長の長さLBを計測した。
 測定された長さLA及びLBを下記の式(M3)に代入して、寸法保持率を算出した。
  寸法保持率 = LB/LA×100(%)   (M3)
(Evaluation of dimensional retention rate)
Thereafter, the odor sensor chip was heated in an oven at 150° C. for 30 minutes to dry methyl benzoate as a solvent from the layer of the polymer composition, thereby obtaining a substance adsorption film. The longest length LB of the substance adsorption film after drying was measured.
The measured lengths LA and LB were substituted into the following formula (M3) to calculate the dimensional retention.
Dimension retention rate = LB/LA x 100 (%) (M3)
[実施例III-2]
 水酸基を有する高分子化合物としてのウレタン樹脂(大成ファインケミカル社製「PU―1020」)、水酸基を有する高分子化合物としてのポリ酢酸ビニル(日本酢ビポバール社製「JMR-8LO」)、架橋剤としてのブロックイソシアネート(旭化成社製「デュラネートSBN-70D」)、及び、触媒としての2-エチル-4-イミダゾルを固形分質量比47:47:5:1で混合し、溶媒として安息香酸メチルに溶解して、液状の高分子組成物を得た。こうして得られた高分子組成物を用いて、実施例III-1と同じ方法により、物質吸着膜の製造及び評価を行った。
[Example III-2]
Urethane resin ("PU-1020" manufactured by Taisei Fine Chemical Co., Ltd.) as a polymer compound having a hydroxyl group, polyvinyl acetate ("JMR-8LO" manufactured by Nippon Acetate Vipoval Co., Ltd.) as a polymer compound having a hydroxyl group, and a cross-linking agent Block isocyanate (“Duranate SBN-70D” manufactured by Asahi Kasei Co., Ltd.) and 2-ethyl-4-imidazole as a catalyst were mixed at a solid content mass ratio of 47:47:5:1, and dissolved in methyl benzoate as a solvent. to obtain a liquid polymer composition. Using the polymer composition thus obtained, a substance adsorption film was produced and evaluated in the same manner as in Example III-1.
[比較例III-1]
 ブロックイソシアネートを用いなかったこと以外は、実施例III-1と同じ方法により、高分子組成物の製造、物質吸着膜の製造及び評価を行った。
[Comparative Example III-1]
Production of a polymer composition and production and evaluation of a substance adsorption film were carried out in the same manner as in Example III-1, except that no blocked isocyanate was used.
[実施例III-1~III-2及び比較例III-1の結果]
 実施例III-1において、乾燥前に撮影された高分子組成物の層の像と、その高分子組成物の層を乾燥して得られた物質吸着膜の像とを、図10に示す。実施例III-2において、乾燥前に撮影された高分子組成物の層の像と、その高分子組成物の層を乾燥して得られた物質吸着膜の像とを、図11に示す。比較例III-1において、乾燥前に撮影された高分子組成物の層の像と、その高分子組成物の層を乾燥して得られた物質吸着膜の像とを、図12に示す。また、実施例III-1~III-2及び比較例III-1の結果を、下記の表6に示す。
[Results of Examples III-1 to III-2 and Comparative Example III-1]
FIG. 10 shows an image of the polymer composition layer taken before drying and an image of the substance adsorption film obtained by drying the polymer composition layer in Example III-1. FIG. 11 shows an image of the polymer composition layer taken before drying and an image of the substance adsorption film obtained by drying the polymer composition layer in Example III-2. FIG. 12 shows an image of the polymer composition layer taken before drying and an image of the substance adsorption film obtained by drying the polymer composition layer in Comparative Example III-1. The results of Examples III-1 to III-2 and Comparative Example III-1 are shown in Table 6 below.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表6から分かるように、実施例III-1及びIII-2に係る高分子組成物を用いた物質吸着膜の製造過程では、収縮を抑制できるので、高分子組成物の層のサイズと、物質吸着膜のサイズとを同じにできることが確認された。 As can be seen from Table 6, shrinkage can be suppressed in the manufacturing process of the substance adsorption films using the polymer compositions according to Examples III-1 and III-2. It was confirmed that the size of the adsorption film can be made the same.
 10 サンプルガス
 100 センサ素子
 110 トランスデューサ部
 110U 表面
 120 物質吸着膜
 200 センサ装置
 210 素子装着部
 220 出力部 
REFERENCE SIGNS LIST 10 sample gas 100 sensor element 110 transducer section 110U surface 120 substance adsorption film 200 sensor device 210 element mounting section 220 output section

Claims (9)

  1.  物質吸着膜と、前記物質吸着膜を表面に備え前記物質吸着膜への物質の吸着によって生じる物理パラメータの変化を検出できるトランスデューサ部と、を備えるセンサー素子の、前記物質吸着膜の形成用の高分子組成物であって;
     前記高分子組成物が、高分子化合物と、架橋剤と、溶媒と、を含み;
     前記架橋剤は、前記高分子化合物と反応するか、又は、前記架橋剤同士で反応して、架橋構造を形成でき;
     前記高分子組成物を150℃で60分静置して得られる評価試料を、前記溶媒に浸漬して不溶となる部分の割合が、0.10%以上である、高分子組成物。
    A sensor element comprising: a substance adsorption film; and a transducer unit having the substance adsorption film on its surface and capable of detecting a change in a physical parameter caused by adsorption of a substance to the substance adsorption film. a molecular composition;
    the polymer composition comprises a polymer compound, a cross-linking agent, and a solvent;
    The cross-linking agent can react with the polymer compound or react with each other to form a cross-linked structure;
    A polymer composition, wherein a proportion of a portion that becomes insoluble when an evaluation sample obtained by standing the polymer composition at 150° C. for 60 minutes is immersed in the solvent is 0.10% or more.
  2.  前記架橋剤が、ブロックされていてもよいイソシアネート基を有する、請求項1に記載の高分子組成物。 The polymer composition according to claim 1, wherein the cross-linking agent has an isocyanate group that may be blocked.
  3.  前記高分子化合物が、水酸基を有する、請求項1に記載の高分子組成物。 The polymer composition according to claim 1, wherein the polymer compound has a hydroxyl group.
  4.  前記高分子化合物が、アミノ基を有する、請求項1に記載の高分子組成物。 The polymer composition according to claim 1, wherein the polymer compound has an amino group.
  5.  物質吸着膜と、前記物質吸着膜を表面に備え前記物質吸着膜への物質の吸着によって生じる物理パラメータの変化を検出できるトランスデューサ部と、を備えるセンサー素子用の、物質吸着膜であって;
     前記物質吸着膜が、架橋されていてもよい高分子化合物を含み;
     前記物質吸着膜を1,3-ジメチル-2-イミダゾリジノン、テトラリン及び安息香酸メチルからなる群より選ばれる少なくとも1種の溶媒に浸漬して不溶となる部分の割合が、0.10%以上である、物質吸着膜。
    A substance adsorption film for a sensor element comprising: a substance adsorption film;
    the substance adsorption film contains a polymer compound that may be crosslinked;
    The proportion of the portion that becomes insoluble when the substance adsorption film is immersed in at least one solvent selected from the group consisting of 1,3-dimethyl-2-imidazolidinone, tetralin and methyl benzoate is 0.10% or more. is a substance adsorption film.
  6.  前記物質吸着膜が、架橋された前記高分子化合物を含む、請求項5に記載の物質吸着膜。 The substance adsorption film according to claim 5, wherein the substance adsorption film contains the crosslinked polymer compound.
  7.  前記物質吸着膜が、架橋構造を有する重合体を更に含む、請求項5に記載の物質吸着膜。 The substance adsorption film according to claim 5, further comprising a polymer having a crosslinked structure.
  8.  アルミニウム面に前記物質吸着膜を付着させ、前記アルミニウム面を鉛直方向に平行にして100℃で30分静置した場合に、前記物質吸着膜が平面形状を維持する、請求項5に記載の物質吸着膜。 6. The substance according to claim 5, wherein the substance adsorption film maintains a planar shape when the substance adsorption film is adhered to an aluminum surface and left at rest at 100° C. for 30 minutes with the aluminum surface parallel to the vertical direction. adsorption membrane.
  9.  物理パラメータの変化を検出できるトランスデューサ部の表面に、請求項1~4のいずれか一項に記載の高分子組成物の層を形成する工程と、
     前記高分子組成物の層に含まれる架橋剤に架橋反応をさせる工程と、を含む、センサー素子の製造方法。
    forming a layer of the polymer composition according to any one of claims 1 to 4 on the surface of the transducer part capable of detecting changes in physical parameters;
    and a step of causing a cross-linking reaction with a cross-linking agent contained in the polymer composition layer.
PCT/JP2022/029010 2021-07-28 2022-07-27 Polymer composition, substance adsorption film, and method for manufacturing sensor element WO2023008496A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023538606A JPWO2023008496A1 (en) 2021-07-28 2022-07-27

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-123416 2021-07-28
JP2021123416 2021-07-28

Publications (1)

Publication Number Publication Date
WO2023008496A1 true WO2023008496A1 (en) 2023-02-02

Family

ID=85086938

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/029010 WO2023008496A1 (en) 2021-07-28 2022-07-27 Polymer composition, substance adsorption film, and method for manufacturing sensor element

Country Status (2)

Country Link
JP (1) JPWO2023008496A1 (en)
WO (1) WO2023008496A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11228905A (en) * 1998-02-13 1999-08-24 Natoko Kk Paint composition
US20170184531A1 (en) * 2014-06-30 2017-06-29 Nederlandse Organisatie Voor Toegepast- Natuurwetenschappelijk Onderzoek Tno Gas sensor array and method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11228905A (en) * 1998-02-13 1999-08-24 Natoko Kk Paint composition
US20170184531A1 (en) * 2014-06-30 2017-06-29 Nederlandse Organisatie Voor Toegepast- Natuurwetenschappelijk Onderzoek Tno Gas sensor array and method

Also Published As

Publication number Publication date
JPWO2023008496A1 (en) 2023-02-02

Similar Documents

Publication Publication Date Title
Wilder et al. Measuring the modulus of soft polymer networks via a buckling-based metrology
Chung et al. Enhanced adhesion of dopamine methacrylamide elastomers via viscoelasticity tuning
Chen et al. Surface restructuring behavior of various types of poly (dimethylsiloxane) in water detected by SFG
US10808150B2 (en) Resin composition, method for manufacturing semiconductor device using resin composition, and solid-state imaging element
Han et al. Cross-linked random copolymer mats as ultrathin nonpreferential layers for block copolymer self-assembly
JP6477504B2 (en) Adhesive composition, method for manufacturing semiconductor device using adhesive composition, and solid-state imaging device
TW201518410A (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
TW201041916A (en) Electrically isolating polymer composition
TW201039056A (en) Photosensitive resin composition
WO2023008496A1 (en) Polymer composition, substance adsorption film, and method for manufacturing sensor element
TW201133144A (en) Negative photo sensitive resin composition, interlayer insulating film and forming method thereof
JP5077526B2 (en) Positive photosensitive resin composition containing a compound having an unsaturated group at the terminal
Van der Mee et al. Synthesis, structure, and properties of ionic thermoplastic elastomers based on maleated ethylene/propylene copolymers
Pavli et al. Protein-resistant cross-linked poly (vinyl alcohol) micropatterns via photolithography using removable polyoxometalate photocatalyst
TWI488845B (en) Composition for insulation layer of organic thin film transistor and organic thin film transistor
US10358580B2 (en) Adhesive composition, resin cured product obtained from adhesive composition, method for manufacturing semiconductor device using adhesive composition, and solid-state imaging element
TW201732426A (en) Photosensitive composition for biochip for fluorescence analysis, method for manufacturing biochip for fluorescence analysis, and biochip for fluorescence analysis
KR101411294B1 (en) Resin Composition for Forming Highly Flattening Films
Fujimori et al. Polarized near edge X-ray absorption fine structure spectroscopic study on organized molecular films of fluorinated comb polymers with various chain lengths
JP5375961B2 (en) Crosslinked polymer particles, production method thereof, and conductive particles
JP2015223698A (en) Transparent substrate
TW201422654A (en) Curable film-forming composition
JP2004177772A (en) Photosetting composition and its use
JPWO2007043431A1 (en) Active energy ray-curable composition
JP6690367B2 (en) Photosensitive resin composition, photosensitive resin film, method for producing cured product, laminate, and electronic component

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22849557

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023538606

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE