WO2023008321A1 - スプライシングペプチドの同定方法 - Google Patents
スプライシングペプチドの同定方法 Download PDFInfo
- Publication number
- WO2023008321A1 WO2023008321A1 PCT/JP2022/028431 JP2022028431W WO2023008321A1 WO 2023008321 A1 WO2023008321 A1 WO 2023008321A1 JP 2022028431 W JP2022028431 W JP 2022028431W WO 2023008321 A1 WO2023008321 A1 WO 2023008321A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- peptides
- peptide
- mass spectrometry
- splicing
- amino acid
- Prior art date
Links
- 108090000765 processed proteins & peptides Proteins 0.000 title claims abstract description 246
- 238000000034 method Methods 0.000 title claims abstract description 59
- 102000004196 processed proteins & peptides Human genes 0.000 claims abstract description 132
- 238000004949 mass spectrometry Methods 0.000 claims abstract description 74
- 239000000523 sample Substances 0.000 claims abstract description 35
- 239000012472 biological sample Substances 0.000 claims abstract description 10
- 125000003275 alpha amino acid group Chemical group 0.000 claims abstract 8
- 206010028980 Neoplasm Diseases 0.000 claims description 29
- 201000011510 cancer Diseases 0.000 claims description 29
- 238000001228 spectrum Methods 0.000 claims description 24
- 125000000539 amino acid group Chemical group 0.000 claims description 20
- 238000012217 deletion Methods 0.000 claims description 4
- 230000037430 deletion Effects 0.000 claims description 4
- 150000001413 amino acids Chemical group 0.000 description 54
- 239000000427 antigen Substances 0.000 description 26
- 108091007433 antigens Proteins 0.000 description 26
- 102000036639 antigens Human genes 0.000 description 26
- 210000004027 cell Anatomy 0.000 description 22
- 108090000623 proteins and genes Proteins 0.000 description 22
- 238000006243 chemical reaction Methods 0.000 description 21
- 235000018102 proteins Nutrition 0.000 description 20
- 102000004169 proteins and genes Human genes 0.000 description 20
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 18
- 235000001014 amino acid Nutrition 0.000 description 17
- 102000004245 Proteasome Endopeptidase Complex Human genes 0.000 description 15
- 108090000708 Proteasome Endopeptidase Complex Proteins 0.000 description 15
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 14
- 239000000126 substance Substances 0.000 description 11
- 239000000758 substrate Substances 0.000 description 11
- 239000000243 solution Substances 0.000 description 10
- 238000004458 analytical method Methods 0.000 description 9
- 229940022399 cancer vaccine Drugs 0.000 description 9
- 238000009566 cancer vaccine Methods 0.000 description 9
- 238000002552 multiple reaction monitoring Methods 0.000 description 8
- 229940023041 peptide vaccine Drugs 0.000 description 8
- 239000002904 solvent Substances 0.000 description 8
- 238000004885 tandem mass spectrometry Methods 0.000 description 8
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 7
- 235000019253 formic acid Nutrition 0.000 description 7
- 230000000269 nucleophilic effect Effects 0.000 description 7
- 238000012545 processing Methods 0.000 description 7
- 125000001424 substituent group Chemical group 0.000 description 7
- 238000011156 evaluation Methods 0.000 description 6
- 238000001294 liquid chromatography-tandem mass spectrometry Methods 0.000 description 6
- 239000002609 medium Substances 0.000 description 6
- 238000012300 Sequence Analysis Methods 0.000 description 5
- 210000001744 T-lymphocyte Anatomy 0.000 description 5
- 125000002252 acyl group Chemical group 0.000 description 5
- 230000000890 antigenic effect Effects 0.000 description 5
- 230000000875 corresponding effect Effects 0.000 description 5
- 239000000543 intermediate Substances 0.000 description 5
- 238000006467 substitution reaction Methods 0.000 description 5
- 238000002560 therapeutic procedure Methods 0.000 description 5
- QTBSBXVTEAMEQO-UHFFFAOYSA-N acetic acid Substances CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 4
- 238000007792 addition Methods 0.000 description 4
- 210000003719 b-lymphocyte Anatomy 0.000 description 4
- GLNDAGDHSLMOKX-UHFFFAOYSA-N coumarin 120 Chemical compound C1=C(N)C=CC2=C1OC(=O)C=C2C GLNDAGDHSLMOKX-UHFFFAOYSA-N 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000000132 electrospray ionisation Methods 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 230000036039 immunity Effects 0.000 description 4
- 239000003446 ligand Substances 0.000 description 4
- 238000004895 liquid chromatography mass spectrometry Methods 0.000 description 4
- 210000004698 lymphocyte Anatomy 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 4
- 239000006228 supernatant Substances 0.000 description 4
- 108700028369 Alleles Proteins 0.000 description 3
- 102100028972 HLA class I histocompatibility antigen, A alpha chain Human genes 0.000 description 3
- 102100028976 HLA class I histocompatibility antigen, B alpha chain Human genes 0.000 description 3
- 102100028971 HLA class I histocompatibility antigen, C alpha chain Human genes 0.000 description 3
- 108010075704 HLA-A Antigens Proteins 0.000 description 3
- 108010058607 HLA-B Antigens Proteins 0.000 description 3
- 108010052199 HLA-C Antigens Proteins 0.000 description 3
- 239000000872 buffer Substances 0.000 description 3
- 210000004443 dendritic cell Anatomy 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 239000003814 drug Substances 0.000 description 3
- 239000012091 fetal bovine serum Substances 0.000 description 3
- 102000054766 genetic haplotypes Human genes 0.000 description 3
- 210000004408 hybridoma Anatomy 0.000 description 3
- 230000015788 innate immune response Effects 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 230000035772 mutation Effects 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 230000007704 transition Effects 0.000 description 3
- 229960005486 vaccine Drugs 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 2
- 108010016626 Dipeptides Proteins 0.000 description 2
- 108700018351 Major Histocompatibility Complex Proteins 0.000 description 2
- 108700020796 Oncogene Proteins 0.000 description 2
- 108010026552 Proteome Proteins 0.000 description 2
- 241000700605 Viruses Species 0.000 description 2
- 210000000612 antigen-presenting cell Anatomy 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 238000002619 cancer immunotherapy Methods 0.000 description 2
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 2
- 239000012634 fragment Substances 0.000 description 2
- 230000002068 genetic effect Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 230000007062 hydrolysis Effects 0.000 description 2
- 238000006460 hydrolysis reaction Methods 0.000 description 2
- 210000000987 immune system Anatomy 0.000 description 2
- 238000000338 in vitro Methods 0.000 description 2
- 238000005040 ion trap Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000000816 matrix-assisted laser desorption--ionisation Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000006199 nebulizer Substances 0.000 description 2
- 239000002953 phosphate buffered saline Substances 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 125000006239 protecting group Chemical group 0.000 description 2
- 230000035484 reaction time Effects 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 241000894007 species Species 0.000 description 2
- 230000020382 suppression by virus of host antigen processing and presentation of peptide antigen via MHC class I Effects 0.000 description 2
- 210000001519 tissue Anatomy 0.000 description 2
- 238000011282 treatment Methods 0.000 description 2
- FOYHOBVZPWIGJM-KCHLEUMXSA-N (4s)-4-[[(2s)-4-methyl-2-[[(2s)-4-methyl-2-(phenylmethoxycarbonylamino)pentanoyl]amino]pentanoyl]amino]-5-[(4-methyl-2-oxochromen-7-yl)amino]-5-oxopentanoic acid Chemical compound N([C@@H](CC(C)C)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(O)=O)C(=O)NC=1C=C2OC(=O)C=C(C)C2=CC=1)C(=O)OCC1=CC=CC=C1 FOYHOBVZPWIGJM-KCHLEUMXSA-N 0.000 description 1
- QWZHDKGQKYEBKK-UHFFFAOYSA-N 3-aminochromen-2-one Chemical compound C1=CC=C2OC(=O)C(N)=CC2=C1 QWZHDKGQKYEBKK-UHFFFAOYSA-N 0.000 description 1
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 1
- 108090000317 Chymotrypsin Proteins 0.000 description 1
- 108020004414 DNA Proteins 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 102000003839 Human Proteins Human genes 0.000 description 1
- 108090000144 Human Proteins Proteins 0.000 description 1
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 1
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 1
- 208000032818 Microsatellite Instability Diseases 0.000 description 1
- RIYLNECMTVNMSO-GOTSBHOMSA-N N-succinyl-Leu-Tyr-7-amido-4-methylcoumarin Chemical compound C([C@H](NC(=O)[C@@H](NC(=O)CCC(O)=O)CC(C)C)C(=O)NC=1C=C2OC(=O)C=C(C)C2=CC=1)C1=CC=C(O)C=C1 RIYLNECMTVNMSO-GOTSBHOMSA-N 0.000 description 1
- 125000000729 N-terminal amino-acid group Chemical group 0.000 description 1
- 102000043276 Oncogene Human genes 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 102100031300 Proteasome activator complex subunit 1 Human genes 0.000 description 1
- 101710103872 Proteasome activator complex subunit 1 Proteins 0.000 description 1
- 239000012980 RPMI-1640 medium Substances 0.000 description 1
- 229920002684 Sepharose Polymers 0.000 description 1
- 230000006044 T cell activation Effects 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- 108090000631 Trypsin Proteins 0.000 description 1
- 102000004142 Trypsin Human genes 0.000 description 1
- 108010005705 Ubiquitinated Proteins Proteins 0.000 description 1
- 125000002777 acetyl group Chemical group [H]C([H])([H])C(*)=O 0.000 description 1
- 239000012190 activator Substances 0.000 description 1
- 210000005006 adaptive immune system Anatomy 0.000 description 1
- 230000004721 adaptive immunity Effects 0.000 description 1
- 229940031567 attenuated vaccine Drugs 0.000 description 1
- 125000003236 benzoyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C(*)=O 0.000 description 1
- 238000003236 bicinchoninic acid assay Methods 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004899 c-terminal region Anatomy 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000002659 cell therapy Methods 0.000 description 1
- 238000002512 chemotherapy Methods 0.000 description 1
- 229960002376 chymotrypsin Drugs 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 238000012258 culturing Methods 0.000 description 1
- 210000000805 cytoplasm Anatomy 0.000 description 1
- 231100000433 cytotoxic Toxicity 0.000 description 1
- 230000001472 cytotoxic effect Effects 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 229940088598 enzyme Drugs 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 210000001808 exosome Anatomy 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- HQVFCQRVQFYGRJ-UHFFFAOYSA-N formic acid;hydrate Chemical compound O.OC=O HQVFCQRVQFYGRJ-UHFFFAOYSA-N 0.000 description 1
- 238000012252 genetic analysis Methods 0.000 description 1
- 235000013922 glutamic acid Nutrition 0.000 description 1
- 239000004220 glutamic acid Substances 0.000 description 1
- 239000007973 glycine-HCl buffer Substances 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 230000004727 humoral immunity Effects 0.000 description 1
- 238000011502 immune monitoring Methods 0.000 description 1
- 230000028993 immune response Effects 0.000 description 1
- 230000002163 immunogen Effects 0.000 description 1
- 238000011081 inoculation Methods 0.000 description 1
- 230000003834 intracellular effect Effects 0.000 description 1
- 238000000752 ionisation method Methods 0.000 description 1
- 210000000265 leukocyte Anatomy 0.000 description 1
- 230000006674 lysosomal degradation Effects 0.000 description 1
- 210000003712 lysosome Anatomy 0.000 description 1
- 230000001868 lysosomic effect Effects 0.000 description 1
- 238000010801 machine learning Methods 0.000 description 1
- 210000002540 macrophage Anatomy 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 108020004999 messenger RNA Proteins 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 125000000896 monocarboxylic acid group Chemical group 0.000 description 1
- 238000000491 multivariate analysis Methods 0.000 description 1
- 238000011275 oncology therapy Methods 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 239000008363 phosphate buffer Substances 0.000 description 1
- 238000000513 principal component analysis Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000016434 protein splicing Effects 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 238000001959 radiotherapy Methods 0.000 description 1
- 238000012950 reanalysis Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- -1 so basically Proteins 0.000 description 1
- 206010041823 squamous cell carcinoma Diseases 0.000 description 1
- 125000002730 succinyl group Chemical group C(CCC(=O)*)(=O)* 0.000 description 1
- UVFAEQZFLBGVRM-MSMWPWNWSA-N succinyl-Leu-Leu-Val-Tyr-7-amino-4-methylcoumarin Chemical compound C([C@H](NC(=O)[C@H](C(C)C)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](NC(=O)CCC(O)=O)CC(C)C)C(=O)NC=1C=C2OC(=O)C=C(C)C2=CC=1)C1=CC=C(O)C=C1 UVFAEQZFLBGVRM-MSMWPWNWSA-N 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- 125000005931 tert-butyloxycarbonyl group Chemical group [H]C([H])([H])C(OC(*)=O)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 1
- 239000012588 trypsin Substances 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K5/00—Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
- C07K5/04—Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
- C07K5/06—Dipeptides
- C07K5/06008—Dipeptides with the first amino acid being neutral
- C07K5/06017—Dipeptides with the first amino acid being neutral and aliphatic
- C07K5/06034—Dipeptides with the first amino acid being neutral and aliphatic the side chain containing 2 to 4 carbon atoms
- C07K5/06043—Leu-amino acid
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/68—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
- G01N33/6803—General methods of protein analysis not limited to specific proteins or families of proteins
- G01N33/6848—Methods of protein analysis involving mass spectrometry
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K5/00—Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
- C07K5/04—Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
- C07K5/08—Tripeptides
- C07K5/0802—Tripeptides with the first amino acid being neutral
- C07K5/0804—Tripeptides with the first amino acid being neutral and aliphatic
- C07K5/0806—Tripeptides with the first amino acid being neutral and aliphatic the side chain containing 0 or 1 carbon atoms, i.e. Gly, Ala
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K5/00—Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
- C07K5/04—Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
- C07K5/08—Tripeptides
- C07K5/0802—Tripeptides with the first amino acid being neutral
- C07K5/0804—Tripeptides with the first amino acid being neutral and aliphatic
- C07K5/0808—Tripeptides with the first amino acid being neutral and aliphatic the side chain containing 2 to 4 carbon atoms, e.g. Val, Ile, Leu
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K5/00—Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
- C07K5/04—Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
- C07K5/08—Tripeptides
- C07K5/0821—Tripeptides with the first amino acid being heterocyclic, e.g. His, Pro, Trp
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K5/00—Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
- C07K5/04—Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
- C07K5/08—Tripeptides
- C07K5/0821—Tripeptides with the first amino acid being heterocyclic, e.g. His, Pro, Trp
- C07K5/0823—Tripeptides with the first amino acid being heterocyclic, e.g. His, Pro, Trp and Pro-amino acid; Derivatives thereof
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K5/00—Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
- C07K5/04—Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
- C07K5/10—Tetrapeptides
- C07K5/1002—Tetrapeptides with the first amino acid being neutral
- C07K5/1005—Tetrapeptides with the first amino acid being neutral and aliphatic
- C07K5/101—Tetrapeptides with the first amino acid being neutral and aliphatic the side chain containing 2 to 4 carbon atoms, e.g. Val, Ile, Leu
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16B—BIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
- G16B35/00—ICT specially adapted for in silico combinatorial libraries of nucleic acids, proteins or peptides
- G16B35/20—Screening of libraries
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2333/00—Assays involving biological materials from specific organisms or of a specific nature
- G01N2333/435—Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
- G01N2333/705—Assays involving receptors, cell surface antigens or cell surface determinants
- G01N2333/70503—Immunoglobulin superfamily, e.g. VCAMs, PECAM, LFA-3
- G01N2333/70539—MHC-molecules, e.g. HLA-molecules
Definitions
- the present invention relates to a method for identifying splicing peptides.
- a complex process is required for the immune system to recognize self and non-self and protect itself.
- the immune system is activated by two mechanisms, innate immunity and acquired immunity. Innate immunity primarily functions to quickly recognize and eliminate foreign foreign substances. Complementary to this innate immunity, there is a complex adaptive immune system.
- MHC major histocompatibility complex
- T cells and B cells The function of lymphocytes (T cells and B cells) consists of cytotoxic immunity (T cells) and humoral immunity (B cells). Mature T cells have the ability to target foreign substances by targeting the recognized antigen. B cells have the ability to produce antibodies that bind to recognized antigens and neutralize or inactivate foreign substances (antigens).
- cancer immunotherapy has attracted attention in order to enhance the effects of cancer treatments (surgery, chemotherapy, radiotherapy, etc.).
- cancer-specific peptides peptides present only in cancer cells but not in normal cells
- vaccines to enhance the therapeutic effects of cancer through the function of acquired immunity (peptide vaccines). therapy
- HLA has a genotype (haplotype) determined by a pair of genetic loci inherited from each parent, and it is said that there are tens of thousands of haplotypes.
- HLA has various phenotypes (HLA types) according to its various haplotypes.
- Peptides that bind to HLA as antigens presented to antigen-presenting cells are known to differ depending on the HLA type.
- Protein splicing occurs during the editing of mRNA transcribed from template DNA.
- Peptide splicing reaction is known to occur (see, for example, Patent Document 1 (European Patent Application Publication No. 2362225)). Due to this peptide splicing reaction, antigenic peptides have greater diversity, which may further increase the diversity of immune responses among individuals.
- de novo sequence analysis is performed to identify unknown antigenic peptides, including splicing peptides, using unidentified MS/MS spectra that occur in large quantities in mass spectrometry data.
- a method is known in which a cutoff value based on a predetermined identification score (ALC: average local confidence, by Peaks Studio software) is set for the amino acid sequence of to identify it as an antigenic peptide.
- AAC average local confidence, by Peaks Studio software
- splicing peptide sequences that are neoantigen candidates cannot be performed by sequence prediction or matching based on cancer-specific mutation information obtained by genetic analysis or gene templates.
- antigen peptides identified by mass spectrometry, peptides identified by de novo sequence analysis, identification information on their splicing sites, information on affinity with HLA, etc. are accumulated in a resource database (amino acid sequence database). It is also used as a prediction engine for affinity prediction between HLA and antigen peptides, structure identification, and the like.
- the present invention was made to solve the problems of the conventional identification methods described above, and aims to provide a method that can easily and efficiently identify unknown splicing peptides.
- the present invention is a method of identifying unknown splicing peptides derived from known parent peptides contained in a biological sample, comprising: (1) a first step of performing mass spectrometry on the sample to obtain mass spectrometry data of peptides contained in the sample; (2) a second step of searching a primary library, which is a database of known amino acid sequences, for an amino acid sequence that matches the mass spectrometry data to identify the parent peptide contained in the sample; (3) a third step of creating a secondary library containing candidate groups of splicing peptides that can arise from the identified parent peptide; (4) searching the secondary library for amino acid sequences that match the mass spectrometry data to identify the splicing peptides contained in the sample;
- unknown splicing peptides can be easily and efficiently identified by using, as a secondary library, a group of splicing peptide candidates that can arise from a specific parent peptide identified by the primary library.
- FIG. 2 is a flow diagram for explaining a method for identifying splicing peptides according to an embodiment
- FIG. 2 shows the types of amino acid residues at the N-terminus of splicing peptides generated from S-260.
- FIG. 2 shows the types of amino acid residues at the N-terminus of splicing peptides generated from S-280.
- FIG. 2 shows the types of amino acid residues at the N-terminus of splicing peptides generated from S-300.
- FIG. 2 shows the types of amino acid residues at the N-terminus of splicing peptides generated from S-310.
- FIG. 2 shows the types of amino acid residues at the N-terminus of splicing peptides generated from S-320.
- FIG. 2 shows the types of amino acid residues at the N-terminus of splicing peptides generated from S-330.
- the method for identifying a splicing peptide comprises A method of identifying an unknown spliced peptide derived from a known parent peptide contained in a biological sample, comprising: (1) a first step (S1) of obtaining mass spectrometry data of peptides contained in the sample by performing mass spectrometry on the sample; (2) a second step (S2) in which a primary library, which is a database of known amino acid sequences, is searched for an amino acid sequence that matches the mass spectrometry data to identify the parent peptide contained in the sample; (3) a third step (S3) of creating a secondary library containing candidate groups of splicing peptides that can arise from the identified parent peptide; (4) a fourth step (S4) of searching the secondary library for amino acid sequences that match the mass spectrometry data to identify splicing peptides contained in the sample;
- the identification method of this embodiment is a method of identifying an unknown splicing peptide derived from a known parent peptide contained in a biological sample.
- a biological sample is, for example, a sample obtained from a living organism. Samples include, for example, fluids containing cancer cells, culture samples of cancer cell lines, excised cancer tissues, xenograft tissues, blood, exosome fractions, and the like.
- a protein is ionized by an ionization method such as a matrix-assisted laser desorption ionization (MALDI) method or an electrospray ionization (ESI) method, and the protein ion is decomposed by the mass/charge ratio (m/z). Quantitative analysis is performed based on the intensity of the signal for each peak obtained.
- Mass spectrometry may also be performed by liquid chromatography-mass spectrometry (LC-MS) or liquid chromatography-tandem mass spectrometry (LC-MS/MS).
- Mass spectrometers include general single-type mass spectrometers, triple quadrupole (QqQ) mass spectrometers, quadrupole time-of-flight (Q-TOF) mass spectrometers, and tandem time-of-flight mass spectrometers.
- a tandem mass spectrometer such as a (TOF-TOF) mass spectrometer, a quadrupole ion trap (QIT) mass spectrometer, or a quadrupole ion trap time-of-flight (QIT/TOF) mass spectrometer is suitable. can be used for
- MRM multiple reaction monitoring
- LC-MS/MS multiple reaction monitoring
- LC-MS/MS multiple reaction monitoring
- SIM method LC/MS
- the mass spectrometry data may be mass spectrometry spectra (MS spectra, MS/MS spectra, etc.).
- a primary library which is a database (data set) of known amino acid sequences, is searched for amino acid sequences that match the mass spectrometry data to identify parent peptides contained in the sample.
- the parent peptide may be a known HLA binding peptide (HLA Class I binding peptide, HLA Class II binding peptide, etc.).
- Parent peptides may be known peptides derived from cancer cells (cancer antigen peptides, sets of predicted sequences of peptides containing cancer mutated regions).
- the parent peptide may be a known HLA-binding peptide derived from cancer cells.
- HLA types are mainly classified into two classes (HLA Class I and HLA Class II).
- the length of peptides that can bind to HLA is about 8 to 13 residues for HLA Class I and about 10 to 25 residues for HLA Class II.
- HLA Class I is present in almost all cells, binds to peptides produced by proteasome degradation from intracellular foreign substances (proteins), and presents the peptides as antigens.
- HLA Class II binds to peptides produced by lysosomal degradation from foreign substances and presents the peptides as antigens.
- HLA Class I-binding peptides are directly involved in T cell activation, HLA Class I-binding peptides are extremely important in cancer therapy.
- Amino acid sequence that matches mass spectrometry data is, for example, when the mass spectrometry data is a mass spectrometry spectrum (MS spectrum, MS/MS spectrum, etc.), multivariate analysis (principal component analysis etc.) is an amino acid sequence corresponding to a mass spectrometry spectrum that falls within the permissible range determined to be highly correlated.
- the "amino acid sequence that matches the mass spectrometry data” means that the mass spectrometry data of the amino acid sequence is compared to the mass spectrometry data of the sample when identifying an amino acid sequence based on mass spectrometry data in the art. It is not necessary to have a perfect correlation as long as it has a correlation within an allowable range. For example, the difference between the two mass spectrometry spectra due to a small amount of contaminants remaining (not completely removed) in the sample finally subjected to mass spectrometry measurement can be tolerated to some extent.
- the amino acid sequence that matches the mass spectrometry data has the same m/z value or a deviation within a predetermined range with respect to the m/z value (mass-to-charge ratio) of at least one peak in the mass spectrometry spectrum of the sample. It may be an amino acid sequence corresponding to a mass spectrometry spectrum having a peak at an m/z value of .
- the threshold used in comparing m/z values to determine amino acid sequences that match mass spectrometry data is an absolute deviation between two corresponding m/z values of 0.5 or less. may be set, and may be set to 0.2 or less. The m/z value is calculated based on the molecular weight m and charge state z (1, 2 or 3, 4) of the peptide in the mass spectrometry data.
- an identification engine used to identify the amino acid sequence of a peptide various known ones can be used, for example, Mascot, Peaks Studio, and the like.
- the Mascot system is protein identification software that searches protein and genome sequence databases for amino acid sequences that match peptide mass spectrometry data obtained from a mass spectrometer, and identifies proteins or peptides contained in the measurement sample. be. Employing a probabilistic scoring algorithm, statistically significant proteins or peptides can be clearly distinguished and visualized by scores.
- a secondary library is generated containing a candidate set of splicing peptides that can arise from the identified parental peptides.
- the candidate group preferably consists of splicing peptides that are highly likely to arise from the parent peptide.
- the computer processing time for identification can be shortened to a practical time, and the cost of identification can be reduced, compared to the case where all combinations of variant peptides that can be generated by splicing from the parent peptide are added as a candidate group. can do.
- the candidate group is at least one of deletion of a predetermined number or less of amino acid residues at least one of the C-terminus and N-terminus and addition of a predetermined number or less of amino acid residues to the C-terminus and N-terminus of the parent peptide. It preferably consists of a variant peptide produced by In this case, variant peptides generated by "substitution" in which the number of added and deleted amino acid residues is the same is also included in this candidate group.
- the candidate group consists of splicing peptides that are highly likely to arise from the parent peptide.
- the candidate group is obtained by deleting a predetermined number or less of at least one of the C-terminus and N-terminus of the parent peptide and adding a predetermined number or less of amino acid residues to the C-terminus and N-terminus.
- all combinations of variant peptides generated by at least one all combinations or partial combinations may be used.
- the above predetermined number is preferably 2 residues. That is, the candidate group consists of deletion of at least one of 2 or less amino acid residues at the C-terminus and N-terminus and addition of 2 or less amino acid residues to the C-terminus and N-terminus of the parent peptide. (see Table 1 below).
- the candidate group consists of splicing peptides that are more likely to arise from the parent peptide, the computer processing time for identification can be shortened, and the cost of identification can be reduced.
- MS mass spectrometry
- MS/MS tandem mass spectrometry
- Peptide splicing reaction is, as shown in FIG. (see peptide splicing pathways indicated by black arrows in Figure 2).
- nucleophilic substituents can occur more rapidly and randomly in small molecules.
- nucleophilic substituents that attack acyl intermediates in peptide splicing reactions.
- trypsin activity, chymotrypsin activity, peptidylglutamylaminopeptidase activity, etc. are locally retained within the cavity of the proteasome (enzyme complex), and considering that they have the property of actively taking up ubiquitinated proteins, Nucleophilic substituents are believed to be limited to peptides or amino acids.
- molecules that are advantageous as nucleophilic substituents that attack acyl intermediates are considered to be amino acids and peptides with a relatively small number of residues (such as dipeptides), and amino acids are considered to be the most advantageous.
- the identification method of the present embodiment is particularly useful in identifying splicing peptides (variant peptides) that are likely to be generated by substitution of one or two amino acids.
- the number of residues in the amino acid sequence that constitutes the above candidate group may be, for example, 5 to 15 residues.
- parent peptide when the parent peptide is composed of 9 amino acid residues and the predetermined number is 2 residues, an example of a preferred combination of splicing peptide candidate groups added to the primary library to obtain the secondary library. are as shown in Table 1 below. Parent peptides are not included in the candidate group. In Table 1, each of N1, N2, C1 and C2 means an amino acid selected from 20 amino acids, and the peptide sequences shown in each row have the number of combinations in the right column.
- Specific operations in the third step and the fourth step include, for example, substitution of one or two amino acid residues at both ends of the peptide list (list of parent peptides) identified by database search.
- the new sequences performed are randomly generated as FASTA files. After reconstructing the FASTA file (secondary library) on the Mascot server (Matrix Science), re-search is performed to identify splicing peptides.
- HLA major MHC
- tools for predicting affinity with HLA various known tools can be used, for example, NetMHCpan (DTU Health Tech, Center for Biological Sequence Analysis, Bioinformatic unit, Technical University of Denmark), Mascot proteome server (Matrix Sciences), PEAKS X (Bioinformatics Solutions), etc.
- a public database can be used as the protein amino acid sequence database used for identification, but it can be easily replaced with individual cancer clinical sequence information. This not only makes it possible to search for HLA-binding peptides that are directly linked to cancer patient-specific genetic information, but also enables the identification method of the present embodiment to be used for evaluation monitoring of novel cancer vaccines, virus vaccine development, drug efficacy and safety. It is considered that this method can be fully applied to new medical treatment corresponding to individualized medicine such as sex assessment and immune monitoring.
- Proteasome reaction (peptide splicing reaction) 20S immunoproteasome (15 nM, R & D Systems), PA28 ⁇ activator (150 nM, R & D Systems), a mixture of 20 amino acids (concentration of each amino acid: 25 ⁇ M, Cambridge Isotope and Sigma Aldrich), and proteasome substrate (1 ⁇ M of the following 8 substrate) in 25 mM Tris-HCl buffer at 37° C. for 5 h or overnight. The reaction is stopped by adding FA (final concentration: 1% by mass) and ACN (final concentration: 10% by mass).
- proteasome substrates peptides degraded by the proteasome reaction
- the following eight substrates S-220, S-230, S-260, S-280, S-300, S-310, S-320 and S -330: R&D Systems
- AMC (7-Amino-4-methylcoumarin) on the C-terminal side is a fluorescent chromophore of aminocoumarin, released by hydrolysis of the substrate, and has a fluorescence wavelength (Em) of 345 nm/excitation. It can be monitored at a wavelength (Ex) of 445 nm.
- Z on the N-terminal side is a benzoyl group
- Suc is a succinyl group
- Boc is a tert-butoxycarbonyl group
- Ac is an acetyl group.
- Z, Suc, Boc and Ac are protecting groups and may be abbreviated as PG hereinafter.
- Others are single-letter amino acid abbreviations (eg, L for leucine and E for glutamic acid).
- the intensity on the vertical axis represents the X (N-terminal amino acid residue) of the splicing product PG-AAs-X-COOH (X represents a random amino acid residue).
- X represents a random amino acid residue
- the black bar graph shows the value when the proteasome reaction time is 5 hours (5h), and the white bar graph shows the value when the proteasome reaction time is overnight (O/N).
- Mouse hybridoma W6/32 cells (ATCC: American Type Culture Collection) are cultured in RPMI1640 synthetic medium (Sigma Aldrich) containing 10 wt% FBS (Fetal Bovine Serum, Gibco).
- Mouse hybridoma W6/32 cells are cells that produce W6/32 antibody (IgG2a) that binds to HLA-A, HLA-B and HLA-C.
- FBS Fetal Bovine Serum, Gibco
- Mouse hybridoma W6/32 cells are cells that produce W6/32 antibody (IgG2a) that binds to HLA-A, HLA-B and HLA-C.
- the W6/32 antibody contained in the medium is purified by being adsorbed on a Protein A Sepharose (GE) column, and after washing the column, the W6/32 antibody is immediately washed with 100 mM Glycine-HCl buffer (pH 2.7). to elute.
- the solution from which the W6/32 antibody was eluted was immediately neutralized with 1M Tris-HCl buffer (pH 9.0) and replaced with 200 mM Na Phosphate buffer (pH 7.0).
- HLA antigen peptide-HLA-W6/32 complex
- TOSOH TOYOPEARL AF-rProteinA
- Mass spectrometry (first step in the above embodiment) As the mass spectrometry data of the peptide contained in the sample, the MS / MS spectrum was analyzed with a liquid chromatograph mass spectrometer system (Nexera-Mikros: Shimadzu Corporation) and a Q-TOF mass spectrometer (LCMS-9030: stock It was measured by LC-MS/MS using the company Shimadzu Corporation).
- HLA Class I binding peptides (parent peptides) known as cancer antigen peptides are identified from among the peptides contained in the sample by ordinary peptidome analysis using mzML format files of the acquired MS/MS spectra. bottom.
- peptideome analysis "Mascot Proteome Server version 2.6.2” (Matrix Science) and “Peaks Studio software version 10.0” (Bioinformatics Solutions Inc.) are used as the identification engine, and the public protein database (amino acid sequence database) " SwissProt Human protein sequence version 2019.9” was used.
- the SwissProt database is public protein sequence data, not a peptide ligand database.
- Table 2 shows the peptide identification results at this step.
- the candidate group of splicing peptides constituting the secondary library is added to the parent peptide, deleted, deleted and added, or replaced.
- the peptide identification results are shown separately for cases that can be generated by (substitution).
- the term “Identified peptides” indicates the total number of identified peptides
- the term “Identified spliced peptides” indicates the spliced peptides among the identified peptides (not in the primary library but added to the secondary library).
- the number of peptides identified as amino acid sequences) is shown (the same applies to Table 3 below).
- ⁇ Reference example 2> Using similar mass spectrometry data as in Example 1, a feasibility test was performed on the method to identify splicing peptides. First, as a known amino acid sequence database, using the primary library consisting of the sequences of ligands (1231612 entries) accumulated in IEDB (Immune Epitope Database) and the sequences of ligands (64201 entries) accumulated in HLAtlas, The situation of splicing frequency was analyzed.
- a randomized sequence (splicing peptide candidate group) is created by each of the substitutions or additions shown in the second and subsequent rows of Table 3, and the randomized sequences are A rearranged amino acid sequence database (secondary library) was created in addition to the original FASTA file. Using this secondary library, amino acid sequences matching the mass spectrometry data of each peptide contained in the proteasome reaction solution were identified from the secondary library. Table 3 shows the results. For the feasibility study, the results of "SwissProt protein seq" are also shown.
- Example 1 first, a known peptide (parent peptide) contained in a sample is identified using a primary library, and only for the identified parent peptide, a splicing peptide that can be generated from it is identified. Additional lists (candidates) were added to create a secondary library. Therefore, in Example 1, the database size of the secondary library could be compressed to approximately 300 MB, and the work time could be greatly shortened (approximately 30 minutes). It should be noted that since the work of creating the secondary library can be automated, further reduction in processing time can be expected. If it is this level, it is thought that practical use is also possible enough.
- Example 2 Affinity prediction analysis for HLA
- the identification of splicing peptides in Example 1 indicates the possibility that the mass spectrometry data matched the structure of hypothetical splicing peptides derived from HLA-binding peptides. , the affinity of the identified splicing peptides for HLA is not clear. Therefore, in this example, the list of splicing peptides identified in Example 1 was subjected to the NetMHCpan algorithm, and the HLA alleles expressed by A431 cells (HLA-A03:01, HLA-B07:02, HLA-C07: 02) were calculated.
- the ranking is scored for each of the splicing peptides identified in Example 1, and when the obtained “%Rank score” is less than 0.5, strong binding ("S” in the table) and When the “%Rank score” was 0.5 or more and less than 2, it was evaluated as weak binding ("W” in the table).
- Table 4 shows a list of evaluation results (total number of peptides with S and W evaluations).
- splicing peptides can be applied as peptide vaccines for cancer vaccine therapy by obtaining analytical data on affinity with HLA.
- affinity data for each HLA allele as described above, the splicing peptide identified by the identification method described in the above embodiment can be analyzed for each HLA type possessed by each individual. It is considered possible to select a splicing peptide (neoantigen) that has a high affinity for .
- a new candidate for a peptide vaccine used in cancer vaccine therapy is selected from splicing peptides, based on information on splicing peptides identified from cancer cells and the patient's HLA type, for each patient It is believed that an optimal peptide vaccine can be selected.
- a method of identifying a splicing peptide is a method of identifying an unknown splicing peptide derived from a known parent peptide contained in a biological sample, comprising: (1) a first step of performing mass spectrometry on the sample to obtain mass spectrometry data of peptides contained in the sample; (2) a second step of searching a primary library, which is a database of known amino acid sequences, for an amino acid sequence that matches the mass spectrometry data to identify the parent peptide contained in the sample; (3) a third step of creating a secondary library containing candidate groups of splicing peptides that can arise from the identified parent peptide; (4) searching the secondary library for amino acid sequences that match the mass spectrometry data to identify the splicing peptides contained in the sample;
- the time required for computer processing, etc. for identification can be shortened compared to the case where all combinations of variant peptides that can be generated by splicing from parent peptides are added as a candidate group, Identification can be performed efficiently.
- the candidate group consists of deletion of a predetermined number or less of at least one of the C-terminus and N-terminus of the parent peptide, and addition of a predetermined number or less of amino acid residues to the C-terminus and N-terminus. 3.
- the candidate group consists of splicing peptides that are highly likely to be generated from the parent peptides, all combinations that can be generated by splicing from the parent peptides, as in the second term.
- the time required for computer processing and the like for identification can be shortened, and identification can be performed efficiently.
- the candidate group consists of splicing peptides that are more likely to be generated from the parent peptide, so that the time for computer processing etc. related to identification can be shortened and efficient. can be identified.
- the mass spectrometry data is a mass spectrometry spectrum
- Amino acid sequences that match the mass spectrometry data have the same m/z value or m/z values within a predetermined range of deviation from the m/z value of at least one peak in the mass spectrometry spectrum. 5.
- a program for executing the above identification method and a medium (non-transitory computer-readable medium) containing the program.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Molecular Biology (AREA)
- Engineering & Computer Science (AREA)
- Biochemistry (AREA)
- Biophysics (AREA)
- General Health & Medical Sciences (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Medicinal Chemistry (AREA)
- Genetics & Genomics (AREA)
- Physics & Mathematics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Urology & Nephrology (AREA)
- Biomedical Technology (AREA)
- Hematology (AREA)
- Immunology (AREA)
- Biotechnology (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Library & Information Science (AREA)
- Food Science & Technology (AREA)
- Microbiology (AREA)
- Cell Biology (AREA)
- Analytical Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Pathology (AREA)
- Theoretical Computer Science (AREA)
- Medical Informatics (AREA)
- Evolutionary Biology (AREA)
- Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
Abstract
Description
(1) 前記サンプルに対して質量分析を実施することで、前記サンプル中に含まれるペプチドの質量分析データを得る、第1ステップと、
(2) 前記質量分析データにマッチするアミノ酸配列を既知のアミノ酸配列のデータベースである1次ライブラリから検索して、前記サンプル中に含まれる前記親ペプチドを同定する、第2ステップと、
(3) 同定された前記親ペプチドから生じ得るスプライシングペプチドの候補群を含む2次ライブラリを作成する第3ステップと、
(4) 前記質量分析データにマッチするアミノ酸配列を前記2次ライブラリから検索して、前記サンプル中に含まれる前記スプライシングペプチドを同定する、第4ステップと、を含む方法に関する。
生物学的なサンプル中に含まれる既知の親ペプチドに由来する未知のスプライシングペプチドを同定する方法であって、
(1) サンプルに対して質量分析を実施することで、サンプル中に含まれるペプチドの質量分析データを得る、第1ステップ(S1)と、
(2) 質量分析データにマッチするアミノ酸配列を既知のアミノ酸配列のデータベースである1次ライブラリから検索して、サンプル中に含まれる親ペプチドを同定する、第2ステップ(S2)と、
(3) 同定された親ペプチドから生じ得るスプライシングペプチドの候補群を含む2次ライブラリを作成する、第3ステップ(S3)と、
(4) 質量分析データにマッチするアミノ酸配列を2次ライブラリから検索して、サンプル中に含まれるスプライシングペプチドを同定する、第4ステップ(S4)と、を含む。
生物学的なサンプルは、例えば、生体から取得されたサンプルである。サンプルとしては、例えば、癌細胞を含む液、癌細胞株の培養サンプル、癌摘出組織、ゼノグラフト組織、血液、エクソソーム画分、などが挙げられる。
本実施形態において第1ステップ(S1)では、
サンプルに対して質量分析を実施することで、サンプル中に含まれるペプチドの質量分析データを得る。
本実施形態において第2ステップ(S2)では、
質量分析データにマッチするアミノ酸配列を既知のアミノ酸配列のデータベース(データセット)である1次ライブラリから検索して、サンプル中に含まれる親ペプチドを同定する。
親ペプチドは、癌細胞に由来する既知のペプチド(癌抗原ペプチド、癌変異領域を含むペプチドの予想配列のセット)であってもよい。
親ペプチドは、癌細胞に由来する既知のHLA結合ペプチドであってもよい。
本実施形態において第3ステップ(S3)では、
同定された親ペプチドから生じ得るスプライシングペプチドの候補群を含む2次ライブラリを作成する。
表1において、N1、N2、C1およびC2の各々はアミノ酸20種から選択されるアミノ酸を意味し、各行に示すペプチドの配列は、右欄の組合せ数を有している。
本実施形態において第4ステップ(S4)では、
質量分析データにマッチするアミノ酸配列を2次ライブラリから検索して、サンプル中に含まれるスプライシングペプチドを同定する。
癌ネオアンチゲンの探索において、その最終目的は、例えば、効果的な癌ワクチンや細胞治療の開発および評価である。
癌の性質を考慮すると、癌ワクチンの候補として、ウイルスのような弱毒化ワクチンは使えない。そこで、古典的癌抗原(癌で過剰発現する分子)、癌遺伝子(癌特異的な変異が蓄積しやすい遺伝子)などを、癌ワクチンの候補として用いるトライアルがなされてきたが、残念ながら成功したとは言えない。
プロテアソーム反応中に発生するスプライシングペプチドを確認するためのin vitro試験
20Sイムノプロテアソーム(15nM,R&D Systems)、PA28αアクティベーター(150nM,R&D Systems)、20種のアミノ酸の混合物(各アミノ酸の濃度:25μM,Cambridge Isotope and Sigma Aldrich)、および、プロテアソーム基質(1μMの下記8種の基質の等量混合物)を25mM Tris-HClバッファー中、37℃で、5時間または終夜反応させる。なお、反応は、FA(終濃度:1質量%)およびACN(終濃度:10%質量)を添加することにより、停止する。
S-220: Z-LLL-AMC
S-230: Z-LLE-AMC
S-260: Suc-LY-AMC
S-280: Suc-LLVY-AMC
S-300: Boc-LRR-AMC
S-310: Ac-PAL-AMC
S-320: Ac-ANW-AMC
S-330: Ac-WLA-AMC
なお、上記右側に示す表記において、C末端側のAMC(7-Amino-4-methylcoumarin)は、アミノクマリンの蛍光発色団であり、基質の加水分解によって遊離し、蛍光波長(Em)345nm/励起波長(Ex)445nmでモニターできる。
N末端側のZはベンゾイル基であり、Sucはスクシニル基であり、Bocはtert-ブトキシカルボニル基であり、Acはアセチル基である。なお、Z、Suc、BocおよびAcは、保護基(protecting group)であり、以下ではPGと略す場合がある。
それ以外は、アミノ酸の1文字略号である(例えば、Lはロイシンを示し、Eはグルタミン酸を示す。)。
上記の基質(ペプチド)の各々について、C末端のAMCが加水分解によって遊離した後、ペプチドのC末端にアミノ酸が付加する反応をMRM(multiple reaction monitoring)によってモニターした。なお、それぞれの基質についてMRMの最適な条件を設定した。
溶媒A: 0.1質量%FAを含み、残部が水である溶媒
溶媒B: 0.1質量%FAおよび100質量%のACNである溶媒
分離カラム: Shimpack GISS,2μm,2×50mm
流速: 0.4mL/min
インターフェイス: ESIインターフェイス
トランジション時間: 10msec
Collisionガス圧: 270kPa
インターフェイス温度: 300℃
DL温度: 250℃
ヒートブロック温度: 400℃
ネブライザーガス: 3L/min
ヒーティングガス: 10L/min
ドライガス: 10L/min
インターフェイス電圧: 4kV
本実施例の同定方法を実施するために、まず、以下の準備を行った。
(i) マウスハイブリドーマW6/32細胞(ATCC:American Type Culture Collection)を、10質量%のFBS(Fetal Bovine Serum、Gibco)を含むRPMI1640合成培地(Sigma Aldrich)中で培養する。なお、マウスハイブリドーマW6/32細胞は、HLA-A,HLA-BおよびHLA-Cに結合するW6/32抗体(IgG2a)を産生する細胞である。
(ii) 70%飽和状態になったときに、細胞を洗浄してFBSを除去し、血清を含まないハイブリドーマ用培地(Hybrigro、Corning)に置換する。
(iii) 72時間、培養を継続する。
(iv) 培地を回収し濾過および清浄を行う。
(v) 培地中に含まれるW6/32抗体をProtein A Sepharose(GE)カラムに吸着させることで精製し、カラムの洗浄後、速やかに100mM Glycine-HClバッファー(pH2.7)でW6/32抗体を溶出する。
(vi) W6/32抗体が溶出した溶液は、即座に1M Tris-HClバッファー(pH9.0)でpHを中性に戻し、200mM Na Phosphateバッファー(pH7.0)で置換する。
(vii) 得られた溶液中のタンパク質濃度をビシンコニン酸アッセイにより測定し、W6/32抗体を含む該溶液を4℃で保存する。
(i) 2×108個のヒト類表皮癌由来のA431細胞(ATCC)を、2質量%のOTG(Octyl-D-1-thioglucopyranoside)およびProtease inhibitor cocktail(Sigma Aldrich)を含む100mMのTris-HClバッファー(pH8.5)に懸濁し、氷上にて30分インキュベートして細胞を溶解する。
(ii) 細胞が溶解した液を遠心分離(20000g、30min)し、上清を回収する。この上清中には、A431細胞に特有のペプチドが結合したHLA(HLA-A,HLA-BおよびHLA-C)が含まれていると考えられる。
(iii) 得られた上清にW6/32抗体を200μg加え、4℃にて16時間インキュベーションし、A431細胞に特有のペプチドが結合したHLA(HLA-A,HLA-BおよびHLA-Cの各々)とW6/32抗体との免疫複合体(抗原ペプチド-HLA-W6/32複合体)を形成させる。
(iv) IgGを吸着するProtein Aが固定化された樹脂である「TOYOPEARL AF-rProteinA」(TOSOH)により、抗原ペプチド-HLA-W6/32複合体を回収する。
(v) Protein A固定化樹脂に対して、PBS(phosphate-buffered saline)1mLによる5回の洗浄、および、Trisバッファー1mLによる5回の洗浄を行う。
(vi) 洗浄後のProtein A固定化樹脂に、500μLの10%酢酸を加え、室温で10分間インキュベートした後、抗原ペプチド-HLA-W6/32複合体を含む上清を回収し、遠心乾燥機で完全に乾固する。これにより、抗原ペプチド-HLA-W6/32複合体を含む固形物が得られる。
(vii) 得られた固形物を0.1%ギ酸水に再溶解する。
このようにして得られた抗原ペプチド-HLA-W6/32複合体を含む溶液を質量分析用サンプル(生物学的なサンプル)とする。
次に、本実施例の同定方法、すなわち、上記の生物学的サンプルに含まれる既知の親ペプチドに由来する未知のスプライシングペプチド(未知の抗原ペプチド:ネオアンチゲン)を同定する方法、について説明する。
上記サンプル中に含まれるペプチドの質量分析データとして、MS/MSスペクトルを、液体クロマトグラフ質量分析計システム(Nexera-Mikros:株式会社島津製作所)およびQ-TOF型質量分析計(LCMS-9030:株式会社島津製作所)を用いたLC-MS/MSによって測定した。
溶媒A: 0.1質量%のFA(ギ酸)および5質量%のACN(アセトニトリル)を含み、残部が水である溶媒
溶媒B: 0.1質量%のFA(ギ酸)および80質量%のACN(アセトニトリル)を含み、残部が水である溶媒
トラップカラム: 「L-column2 ODS」(一般財団法人 化学物質評価研究機構),5μm,0.3×5mm
分離カラム: 「L-column2 ODS」,2μm,0.3×150mm
流速: 5μL/min
インターフェイス: ESIミクロインターフェイス
イベント数: 8-14回
イベント時間: 100msec
Collision電圧: 25±10V
Collisionガス圧: 230kPa
インターフェイス電圧: 3kV
インターフェイス温度: 100℃
DL温度: 200℃
ヒートブロック温度: 250℃
スキャン範囲: 400-700Da
価数未判定イオン: 排除
親イオン分解能: 20ppm
Exclusion時間: 5 sec
ネブライザーガス: 1L/min
ヒーティングガス: 3L/min
ドライガス: 0
データ変換: mzML format
取得されたMS/MSスペクトルのmzML形式のファイルを用い、通常のペプチドーム解析により、癌の抗原ペプチドとして既知のHLA Class I結合ペプチド(親ペプチド)を、上記サンプル中に含まれるペプチドの中から同定した。なお、ペプチドーム解析では、同定エンジンとして「Mascot Proteome Server version 2.6.2」(Matrix Science)および「Peaks Studio software version 10.0」(Bioinformatics Solutions Inc.)を用い、公共のタンパク質データベース(アミノ酸配列データベース)として「SwissProt Human protein sequence version 2019.9」を用いた。SwissProtデータベース(一次ライブラリ)を用いて検索を行い、同定エンジンの有意なペプチドスコア(P<0.05)でヒットしたペプチドが、親ペプチドとして同定された。なお、SwissProtデータベースは、ペプチドリガンドデータベースではなくタンパク質の公共配列データである。
上記のようにして同定された親ペプチドのリストをエクスポートする。その親ペプチド(631種)に対し、ランダム化配列(スプライシングペプチドの候補群)を発生させ、それらの候補群からなる2次ライブラリを作成した。
作成された2次ライブラリを用いて、上記の質量分析データ(MS/MSスペクトル)の再解析(サンプル中に含まれるスプライシングペプチドの同定)を実施した。
表中、「Identified peptides」の項は、同定されたペプチドの総数を示し、「Identified spliced peptides」の項は、同定されたペプチドのうちスプライシングペプチド(1次ライブラリになく、2次ライブラリに追加されたアミノ酸配列)として同定されたペプチドの数を示す(後述の表3も同様である)。
実施例1と同様の質量分析データを用いて、スプライシングペプチドを同定する手法について、実行可能性テストを行った。
まず、既知のアミノ酸配列データベースとして、IEDB(Immune Epitope Database)に蓄積されたリガンド(1231612エントリー)の配列、および、HLAtlasに蓄積されたリガンド(64201エントリー)の配列からなる1次ライブラリを用いて、スプライシング頻度の状況を解析した。
具体的には、これらの配列全てについて、表3の2行目以降に示される置換または付加の各々によりランダム化された配列(スプライシングペプチドの候補群)を作成し、そのランダム化された配列を元のFASTAファイルに追加して再編成されたアミノ酸配列データベース(2次ライブラリ)を作成した。この2次ライブラリを用いて、上記のプロテアソーム反応液中に含まれる各ペプチドの質量分析データにマッチするアミノ酸配列を2次ライブラリから同定した。その結果を表3に示す。
なお、フィージビリティスタディのために、「SwissProt protein seq」についての結果を併せて示す。
実施例1におけるスプライシングペプチドの同定は、も質量分析データが、HLA結合ペプチドに由来する仮想的なスプライシングペプチドの構造にマッチした可能性を示しているが、同定されたスプライシングペプチドのHLAに対する親和性は明らかではない。このため、本実施例では、実施例1で同定されたスプライシングペプチドのリストを、NetMHCpanのアルゴリズムにかけ、A431細胞が発現するHLAアレル(HLA-A03:01, HLA-B07:02, HLA-C07:02)との親和性予測を計算した。
計算結果から、実施例1で同定されたスプライシングペプチドの各々についてランキングをスコア化し、得られた「%Rank score」が0.5未満の場合に、強い結合性(表中の「S」)と評価し、「%Rank score」が0.5以上2未満である場合に、弱い結合性(表中の「W」)と評価した。表4に、評価結果(評価がSおよびWであったペプチドの総数)のリストを示す。
また、上記のような各HLAアレルに対する親和性のデータを取得することで、上記の実施形態に記載の同定方法によって同定されたスプライシングペプチドについて、各個体が有するHLA型毎に、発現するHLAアレルに親和性が高いスプライシングペプチド(ネオアンチゲン)を選定することができると考えられる。これにより、例えば、癌ワクチン療法に用いられるペプチドワクチンの新規候補をスプライシングペプチドから選定する場合に、癌細胞等から同定されたスプライシングペプチドの情報と、患者のHLA型とに基づいて、患者毎に最適なペプチドワクチンを選定することができると考えられる。
上述した複数の例示的な実施形態および実施例は、以下の態様の具体例であることが当業者により理解される。
一態様に係るスプライシングペプチドの同定方法は、生物学的なサンプル中に含まれる既知の親ペプチドに由来する未知のスプライシングペプチドを同定する方法であって、
(1) 前記サンプルに対して質量分析を実施することで、前記サンプル中に含まれるペプチドの質量分析データを得る、第1ステップと、
(2) 前記質量分析データにマッチするアミノ酸配列を既知のアミノ酸配列のデータベースである1次ライブラリから検索して、前記サンプル中に含まれる前記親ペプチドを同定する、第2ステップと、
(3) 同定された前記親ペプチドから生じ得るスプライシングペプチドの候補群を含む2次ライブラリを作成する、第3ステップと、
(4) 前記質量分析データにマッチするアミノ酸配列を前記2次ライブラリから検索して、前記サンプル中に含まれる前記スプライシングペプチドを同定する、第4ステップと、を含む方法。
前記候補群は、前記親ペプチドから生じる可能性の高いスプライシングペプチドからなる、第1項に記載の方法。
前記候補群は、前記親ペプチドに対する、C末端およびN末端の少なくともいずれかの所定数以下のアミノ酸残基の削除と、C末端およびN末端への所定数以下のアミノ酸残基の付加と、の少なくともいずれかによって生じる、バリアントペプチドからなる、第1項または第2項に記載の方法。
前記所定数は、2残基である、第3項に記載の方法。
前記質量分析データは、質量分析スペクトルであり、
前記質量分析データにマッチするアミノ酸配列は、前記質量分析スペクトルにおける少なくとも1つのピークのm/z値に対して、同じm/z値、または、偏差が所定の範囲内であるm/z値の位置にピークを有する質量分析スペクトルに相当するアミノ酸配列である、第1項~第4項のいずれか1項に記載の方法。
前記親ペプチドは、既知のHLA結合ペプチドである、第1項~第5項のいずれか1項に記載の方法。
前記親ペプチドは、既知のHLA結合ペプチドである、第1項~第6項のいずれか1項に記載の方法。
前記親ペプチドは、癌細胞に由来する既知のHLA結合ペプチドである、第7項に記載の方法。
Claims (8)
- 生物学的なサンプル中に含まれる既知の親ペプチドに由来する未知のスプライシングペプチドを同定する方法であって、
(1) 前記サンプルに対して質量分析を実施することで、前記サンプル中に含まれるペプチドの質量分析データを得る、第1ステップと、
(2) 前記質量分析データにマッチするアミノ酸配列を既知のアミノ酸配列のデータベースである1次ライブラリから検索して、前記サンプル中に含まれる前記親ペプチドを同定する、第2ステップと、
(3) 同定された前記親ペプチドから生じ得るスプライシングペプチドの候補群を含む2次ライブラリを作成する、第3ステップと、
(4) 前記質量分析データにマッチするアミノ酸配列を前記2次ライブラリから検索して、前記サンプル中に含まれる前記スプライシングペプチドを同定する、第4ステップと、を含む方法。 - 前記候補群は、前記親ペプチドから生じる可能性の高いスプライシングペプチドからなる、請求項1に記載の方法。
- 前記候補群は、前記親ペプチドに対する、C末端およびN末端の少なくともいずれかの所定数以下のアミノ酸残基の削除と、C末端およびN末端への所定数以下のアミノ酸残基の付加と、の少なくともいずれかによって生じる、バリアントペプチドからなる、請求項1に記載の方法。
- 前記所定数は、2残基である、請求項3に記載の方法。
- 前記質量分析データは、質量分析スペクトルであり、
前記質量分析データにマッチするアミノ酸配列は、前記質量分析スペクトルにおける少なくとも1つのピークのm/z値に対して、同じm/z値、または、偏差が所定の範囲内であるm/z値の位置にピークを有する質量分析スペクトルに相当するアミノ酸配列である、請求項1に記載の方法。 - 前記親ペプチドは、既知のHLA結合ペプチドである、請求項1に記載の方法。
- 前記親ペプチドは、癌細胞に由来する既知のペプチドである、請求項1に記載の方法。
- 前記親ペプチドは、癌細胞に由来する既知のHLA結合ペプチドである、請求項1に記載の方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US18/292,641 US20240345096A1 (en) | 2021-07-28 | 2022-07-22 | Method of identifying spliced peptide |
EP22849383.9A EP4378947A1 (en) | 2021-07-28 | 2022-07-22 | Method for identifying splicing peptide |
CN202280052457.XA CN117999271A (zh) | 2021-07-28 | 2022-07-22 | 剪接肽的鉴定方法 |
JP2023538484A JPWO2023008321A1 (ja) | 2021-07-28 | 2022-07-22 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US202163226406P | 2021-07-28 | 2021-07-28 | |
US63/226,406 | 2021-07-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023008321A1 true WO2023008321A1 (ja) | 2023-02-02 |
Family
ID=85086816
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/028431 WO2023008321A1 (ja) | 2021-07-28 | 2022-07-22 | スプライシングペプチドの同定方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20240345096A1 (ja) |
EP (1) | EP4378947A1 (ja) |
JP (1) | JPWO2023008321A1 (ja) |
CN (1) | CN117999271A (ja) |
WO (1) | WO2023008321A1 (ja) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2362225A1 (en) | 2010-02-25 | 2011-08-31 | Charité Universitätsmedizin Berlin | Method for indentification of proteasome generated spliced peptides |
-
2022
- 2022-07-22 CN CN202280052457.XA patent/CN117999271A/zh active Pending
- 2022-07-22 US US18/292,641 patent/US20240345096A1/en active Pending
- 2022-07-22 WO PCT/JP2022/028431 patent/WO2023008321A1/ja active Application Filing
- 2022-07-22 JP JP2023538484A patent/JPWO2023008321A1/ja active Pending
- 2022-07-22 EP EP22849383.9A patent/EP4378947A1/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2362225A1 (en) | 2010-02-25 | 2011-08-31 | Charité Universitätsmedizin Berlin | Method for indentification of proteasome generated spliced peptides |
Non-Patent Citations (5)
Title |
---|
LICHTI CHERYL F., VIGNERON NATHALIE, CLAUSER KARL R., VAN DEN EYNDE BENOIT J., BASSANI-STERNBERG MICHAL: "Navigating Critical Challenges Associated with Immunopeptidomics-Based Detection of Proteasomal Spliced Peptide Candidates", CANCER IMMUNOLOGY RESEARCH, AMERICAN ASSOCIATION FOR CANCER RESEARCH, US, vol. 10, no. 3, 1 March 2022 (2022-03-01), US , pages 275 - 284, XP093029772, ISSN: 2326-6066, DOI: 10.1158/2326-6066.CIR-21-0727 * |
MISHTO MICHELE, RODRIGUEZ-HERNANDEZ GUILLERMO, NEEFJES JACQUES, URLAUB HENNING, LIEPE JULIANE: "Response: Commentary: An In Silico–In Vitro Pipeline Identifying an HLA-A*02:01+ KRAS G12V+ Spliced Epitope Candidate for a Broad Tumor-Immune Response in Cancer Patients", FRONTIERS IN IMMUNOLOGY, vol. 12, XP093029771, DOI: 10.3389/fimmu.2021.679836 * |
VERKERK TAMARA, KOOMEN SOFIE J. I., FUCHS KYRA J., GRIFFIOEN MARIEKE, SPAAPEN ROBBERT M.: "An unexplored angle: T cell antigen discoveries reveal a marginal contribution of proteasome splicing to the immunogenic MHC class I antigen pool", PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES, NATIONAL ACADEMY OF SCIENCES, vol. 119, no. 29, 19 July 2022 (2022-07-19), XP093029775, ISSN: 0027-8424, DOI: 10.1073/pnas.2119736119 * |
VIGNERON NATHALIE; STROOBANT VINCENT; FERRARI VIOLETTE; ABI HABIB JOANNA; VAN DEN EYNDE BENOIT J.: "Production of spliced peptides by the proteasome", MOLECULAR IMMUNOLOGY, PERGAMON, GB, vol. 113, 9 April 2018 (2018-04-09), GB , pages 93 - 102, XP085827286, ISSN: 0161-5890, DOI: 10.1016/j.molimm.2018.03.030 * |
ZHANG XIAOMEI; QI YUE; ZHANG QI; LIU WEI: "Application of mass spectrometry-based MHC immunopeptidome profiling in neoantigen identification for tumor immunotherapy", BIOMEDICINE & PHARMACOTHERAPY, ELSEVIER, FR, vol. 120, 16 October 2019 (2019-10-16), FR , XP085902745, ISSN: 0753-3322, DOI: 10.1016/j.biopha.2019.109542 * |
Also Published As
Publication number | Publication date |
---|---|
US20240345096A1 (en) | 2024-10-17 |
CN117999271A (zh) | 2024-05-07 |
JPWO2023008321A1 (ja) | 2023-02-02 |
EP4378947A1 (en) | 2024-06-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Freudenmann et al. | Mapping the tumour human leukocyte antigen (HLA) ligandome by mass spectrometry | |
JP7175951B2 (ja) | 免疫原性変異体ペプチドスクリーニングプラットフォーム | |
Bassani-Sternberg et al. | Mass spectrometry of human leukocyte antigen class I peptidomes reveals strong effects of protein abundance and turnover on antigen presentation*[S] | |
Stauber et al. | Proteomics of Chlamydomonas reinhardtii light-harvesting proteins | |
Johnson et al. | Informatics for protein identification by mass spectrometry | |
Panigrahi et al. | Mitochondrial complexes in Trypanosoma brucei: a novel complex and a unique oxidoreductase complex | |
Swaney et al. | Value of using multiple proteases for large-scale mass spectrometry-based proteomics | |
Seward et al. | Peptides presented by HLA-DR molecules in synovia of patients with rheumatoid arthritis or antibiotic-refractory Lyme arthritis | |
Chen et al. | Identification of MHC peptides using mass spectrometry for neoantigen discovery and cancer vaccine development | |
Quarmby et al. | MAPPs for the identification of immunogenic hotspots of biotherapeutics; an overview of the technology and its application to the biopharmaceutical arena | |
Pritchard et al. | Exploration of peptides bound to MHC class I molecules in melanoma | |
Zhang et al. | De novo sequencing of tryptic peptides derived from deinococcus radiodurans ribosomal proteins using 157 nm photodissociation MALDI TOF/TOF mass spectrometry | |
KR20030037272A (ko) | 세포에 의해 제시되는 펩티드 | |
Halgand et al. | Defining intact protein primary structures from saliva: a step toward the human proteome project | |
Oseroff et al. | Immunoproteomic analysis of house dust mite antigens reveals distinct classes of dominant T cell antigens according to function and serological reactivity | |
AU2019321536A1 (en) | Single molecule sequencing peptides bound to the major histocompatibility complex | |
Wilson et al. | Lost in the crowd: identifying targetable MHC class I neoepitopes for cancer immunotherapy | |
CN104034791A (zh) | 一种基于cid与etd质谱谱图融合的多肽从头测序方法 | |
Downard | Contributions of mass spectrometry to structural immunology | |
Sricharoensuk et al. | Unsupervised mining of HLA-I peptidomes reveals new binding motifs and potential false positives in the community database | |
Perez et al. | Analysis of secondary structure biases in naturally presented HLA-I ligands | |
WO2023008321A1 (ja) | スプライシングペプチドの同定方法 | |
Gravel et al. | timsTOF mass spectrometry-based immunopeptidomics refines tumor antigen identification | |
Marcilla et al. | Proteasome-independent HLA-B27 ligands arise mainly from small basic proteins | |
CN113593649A (zh) | 一种利用hla-i候选肽库鉴定组织中提取的天然抗原肽的方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22849383 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023538484 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202280052457.X Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2022849383 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2022849383 Country of ref document: EP Effective date: 20240228 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18292641 Country of ref document: US |