WO2023008002A1 - Steel sheet, member, and methods for producing said steel sheet and said member - Google Patents

Steel sheet, member, and methods for producing said steel sheet and said member Download PDF

Info

Publication number
WO2023008002A1
WO2023008002A1 PCT/JP2022/024963 JP2022024963W WO2023008002A1 WO 2023008002 A1 WO2023008002 A1 WO 2023008002A1 JP 2022024963 W JP2022024963 W JP 2022024963W WO 2023008002 A1 WO2023008002 A1 WO 2023008002A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
steel sheet
temperature
content
delayed fracture
Prior art date
Application number
PCT/JP2022/024963
Other languages
French (fr)
Japanese (ja)
Inventor
大洋 浅川
真平 吉岡
真次郎 金子
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to KR1020247002166A priority Critical patent/KR20240024946A/en
Priority to CN202280050162.9A priority patent/CN117677725A/en
Priority to JP2022559511A priority patent/JP7226673B1/en
Priority to EP22849077.7A priority patent/EP4350015A1/en
Publication of WO2023008002A1 publication Critical patent/WO2023008002A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/19Hardening; Quenching with or without subsequent tempering by interrupted quenching
    • C21D1/22Martempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/021Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular fabrication or treatment of ingot or slab
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/22Electroplating: Baths therefor from solutions of zinc
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • C25D7/0614Strips or foils

Definitions

  • the present invention relates to steel sheets such as high-strength steel sheets for cold press forming that are used in automobiles and the like through cold press forming, members using the steel sheets, and manufacturing methods thereof.
  • steel sheets with a tensile strength TS of 1310 MPa class or higher have been increasingly applied to automobile frame parts for the purpose of weight reduction and collision safety of automobiles.
  • steel sheets with a tensile strength TS of 1470 MPa class or higher are being applied to bumpers, impact beam parts, and the like.
  • delayed fracture means that when a part is placed in a hydrogen penetration environment with high stress applied to the part, hydrogen penetrates into the steel plate that constitutes the part, reducing the interatomic bonding strength. It is a phenomenon in which microcracks are generated by causing local deformation and breakage occurs as the microcracks propagate.
  • Patent Document 1 discloses mass % , C: 0.13% or more and 0.40% or less, Si: 0.02% or more and 1.5% or less, Mn: 0.4% or more and 1.7% or less, P: 0.030% or less, S : 0.0002% or more and less than 0.0010%, sol.
  • Al 0.01% or more and 0.20% or less
  • N 0.0055% or less
  • O 0.0025% or less
  • Nb 0.002% or more and 0.035% or less
  • Ti 0.002% or more and 0 .040% or less so as to satisfy the formulas (1) and (2), the balance being Fe and unavoidable impurities, and the total area ratio of martensite and bainite to the entire structure is 95% or more.
  • the balance consists of one or two types of ferrite and retained austenite, the average grain size of prior austenite grains exceeds 5 ⁇ m, the following conditions are satisfied, and the length of the major axis is 20 to 80 ⁇ m and a steel structure in which inclusion groups are present at 5/mm 2 or less, and a tensile strength of 1,320 MPa or more.
  • [% Ti] ⁇ [% Nb] 2 ⁇ 7.5 ⁇ 10 -6 (2)
  • [%Nb] and [%Ti] represent the contents (%) of Nb and Ti.
  • a high-strength cold-rolled steel sheet having an average grain size of 5 ⁇ m or less and having excellent hydrogen embrittlement resistance and workability is disclosed.
  • the conventional technology is sufficient as a technology that secures a tensile strength TS of 1470 MPa or more and has excellent delayed fracture resistance.
  • the present invention has been made to solve such problems, and provides a steel sheet, a member, and a method for producing the same having a tensile strength of 1470 MPa or more (TS ⁇ 1470 MPa) and excellent delayed fracture resistance. intended to
  • excellent delayed fracture resistance means judging to have excellent delayed fracture resistance by the following evaluation.
  • a strip test piece of 100 mm in the direction perpendicular to the rolling direction and 30 mm in the rolling direction is taken from the 1/4 position of the coil width from the end of the obtained steel plate (coil) in the width direction.
  • the test piece is fixed with bolts while maintaining the shape of the test piece at the time of bending.
  • the shearing clearance was 13% and the rake angle was 1°.
  • Bending is performed with a tip bending radius of 10 mm and an angle inside the bending apex of 90 degrees (V bending).
  • the punch has a U-shaped punch whose tip radius is the same as the tip bending radius R (the tip R is semicircular and the thickness of the punch barrel is 2R), and the die has a corner radius of 30 mm.
  • the depth to which the punch pushes the steel plate is adjusted, and the steel plate is formed so that the bending angle of the tip (the angle inside the bending apex) is 90 degrees (V shape).
  • Sandwich the test piece with a hydraulic jack so that the distance between the flange ends of the straight piece when bending is the same as when bending (to cancel out the opening of the straight piece due to springback).
  • the bolt is passed through an elliptical hole (minor axis: 10 mm, major axis: 15 mm) previously provided 10 mm inward from the short side edge of the strip test piece and fixed.
  • (3) The resulting bolted test piece was immersed in a solution prepared by mixing 0.1% by mass of ammonium thiocyanate aqueous solution and McIlvaine buffer solution at a ratio of 1:1 and adjusting the pH to 8.0.
  • a delayed fracture resistance evaluation test is carried out. At this time, the temperature of the solution shall be 20° C., and the volume of the solution per 1 cm 3 of the surface area of the test piece shall be 20 ml.
  • the inventors of the present invention conducted extensive studies to solve the above problems, and found that the delayed fracture resistance can be greatly improved by satisfying all of the following conditions.
  • the area ratio of martensite is 95% or more.
  • the average grain size (prior ⁇ grain size) of prior austenite grains is less than 11.0 ⁇ m.
  • the number density A of precipitates having an equivalent circle diameter of 500 nm or more satisfies the following conditions.
  • [B] represents the content of B (% by mass).
  • the present invention was completed through further studies based on the above findings, and the gist thereof is as follows. [1] % by mass, C: 0.15% or more and 0.45% or less, Si: 1.5% or less, Mn: 1.7% or less, P: 0.03% or less, S: less than 0.0020%, sol.
  • [B] represents the content of B (% by mass).
  • the component composition of [1] to [4] further contains one or two selected from Sb: 0.1% or less and Sn: 0.1% or less in mass%.
  • a steel slab having the chemical composition according to any one of [1] to [5] is heated at a slab surface temperature from 1000 ° C. to a heating and holding temperature of 1250 ° C. or higher at an average heating rate of 10 ° C./min or less.
  • Hot finish rolling is performed under the conditions of a residence time of 20 seconds or more and 150 seconds or less at 900 to 1000 ° C. and a finish rolling temperature of 850 ° C. or more
  • Cooling is performed at an average cooling rate of 40 ° C./sec or more in the range from the finish rolling temperature to 650 ° C., After that, it is coiled at a coiling temperature of 650 ° C.
  • a cold-rolled steel sheet is obtained by cold-rolling the hot-rolled steel sheet at a rolling reduction of 40% or more,
  • the annealing temperature is 830 to 950° C.
  • the cold-rolled steel sheet is heated from 400° C. to the annealing temperature at an average heating rate of 1.0° C./second or more, Hold at the annealing temperature for 600 seconds or less, Cooling from a cooling start temperature of 680 ° C. or higher to a cooling stop temperature of 260 ° C. or lower at an average cooling rate of 70 ° C./sec or higher,
  • a high-strength steel plate, a member, and a method for manufacturing the same are provided, which are excellent in delayed fracture resistance.
  • the steel sheet of the present invention in mass%, C: 0.15% or more and 0.45% or less, Si: 1.5% or less, Mn: 1.7% or less, P: 0.03% or less, S: 0 less than .0020%, sol. Al: 0.20% or less, N: 0.005% or less, B: 0.0015% or more and 0.0100% or less, 0.005% or more and 0.080% or less in total of one or more of Nb and Ti with the balance being Fe and unavoidable impurities, having a structure in which the area ratio of martensite to the entire structure is 95% or more and 100% or less, and prior austenite grains (hereinafter also referred to as prior ⁇ grains ) has an average grain size (prior ⁇ grain size) of less than 11.0 ⁇ m, and the number density A of precipitates having an equivalent circle diameter of 500 nm or more satisfies the following formula (1).
  • composition The reason for limiting the range of the composition of the steel sheet of the present invention will be described below.
  • % regarding component content is "mass %.”
  • C 0.15% or more and 0.45% or less C is contained in order to improve the hardenability to obtain a martensite steel structure and to increase the strength of martensite.
  • the C content is made 0.15% or more.
  • the C content is preferably 0.20% or more, more preferably 0.27% or more, from the viewpoint of reducing the weight of automobile frame parts by increasing the tensile strength.
  • excessively added C causes deterioration of delayed fracture resistance due to formation of iron carbide and segregation to grain boundaries. From these points of view, the C content is limited to a range of 0.45% or less.
  • the C content is preferably 0.40% or less, more preferably 0.37% or less.
  • Si 1.5% or less Si is used as a strengthening element by solid solution strengthening, and from the viewpoint of suppressing the formation of film-like carbides when tempering in a temperature range of 200 ° C. or higher to improve delayed fracture resistance. contains.
  • Si is contained from the viewpoint of reducing Mn segregation at the central portion of the sheet thickness and suppressing the formation of MnS.
  • Si is contained in order to suppress decarburization and deboronation due to oxidation of the surface layer during annealing in a continuous annealing line (CAL).
  • the lower limit of the Si content is not specified, it is desirable to contain 0.02% or more of Si from the viewpoint of obtaining the above effect.
  • the Si content is preferably 0.10% or more, more preferably 0.20% or more.
  • the Si content should be 1.5% or less (including 0%).
  • the Si content is preferably 1.2% or less, more preferably 1.0% or less.
  • Mn 1.7% or less Mn is contained in order to improve the hardenability of steel and obtain the desired strength, and to keep the area ratio of martensite within a predetermined range.
  • Mn should be 1.7% or less.
  • the Mn content is preferably 1.5% or less, more preferably 1.3% or less.
  • the lower limit of the Mn content is not specified, it is preferable to contain 0.2% or more of Mn in order to industrially stably secure a predetermined area ratio of martensite.
  • P 0.03% or less
  • P is an element that strengthens steel, but when its content is high, it segregates at grain boundaries and lowers grain boundary strength, resulting in significant deterioration in delayed fracture resistance and spot weldability. Invite. From the above point of view, the P content should be 0.03% or less.
  • the P content is preferably 0.02% or less, more preferably 0.01% or less.
  • the lower limit of the P content is not specified, it is set to 0.002% as the lower limit currently industrially practicable.
  • S less than 0.0020% S forms coarse MnS and acts as a starting point for delayed fracture, thereby greatly deteriorating the resistance to delayed fracture. Therefore, the S content should be at least less than 0.0020% to reduce MnS. From the viewpoint of improving delayed fracture resistance, the S content is preferably less than 0.0010%, more preferably 0.0008% or less, and even more preferably 0.0006% or less. Although the lower limit is not defined, it is set to 0.0002% as the lower limit currently industrially practicable.
  • sol. Al 0.20% or less Al is contained in order to sufficiently deoxidize and reduce inclusions in the steel. sol. Although the lower limit of Al is not specified, in order to stably deoxidize, sol. It is desirable to set the Al content to 0.005% or more. sol. The Al content is more preferably 0.01% or more, still more preferably 0.02% or more. On the other hand, sol. If the Al content exceeds 0.20%, the cementite generated during winding becomes less likely to form a solid solution during the annealing process, and the delayed fracture resistance deteriorates. Therefore, sol. Al content is 0.20% or less. sol. The Al content is preferably 0.10% or less, more preferably 0.05% or less.
  • N 0.005% or less N forms precipitates such as TiN, (Nb, Ti) (C, N) in the steel. , (Nb,Ti)C. These hinder adjustment to the steel structure required by the present invention, and adversely affect the delayed fracture resistance. In order to reduce such adverse effects, the N content is made 0.005% or less. The N content is preferably 0.0040% or less. Although the lower limit is not defined, it is set to 0.0006% as the lower limit currently industrially practicable.
  • B 0.0015% or more and 0.0100% or less B is an element that improves the hardenability of steel, and has the advantage of forming martensite with a predetermined area ratio even with a small Mn content.
  • B increases the cohesive force of the grain boundary by segregating at the grain boundary, and suppresses the segregation of P, which reduces the grain boundary strength, thereby improving the delayed fracture resistance.
  • the addition of excessive B increases Fe 23 (C, B) 6 and BN, and it becomes a starting point of delayed fracture, resulting in a decrease in the resistance to delayed fracture.
  • the B content is set to 0.0015% or more in order to obtain a sufficient grain boundary solid solution B amount.
  • the B content is preferably 0.0025% or more, more preferably 0.0040% or more.
  • the B content is set to 0.0100% or less.
  • the B content is preferably 0.0090% or less, more preferably 0.0080% or less.
  • Nb and Ti are contained in a total amount of 0.005% or more.
  • the total content of Nb and Ti is preferably 0.010% or more, more preferably 0.020% or more.
  • Nb and Ti do not completely dissolve in the slab reheating, and TiN, Ti(C,N), NbN, Nb(C, Precipitates having an equivalent circle diameter of 500 nm or more, such as N), (Nb, Ti), (C, N), increase and act as starting points for delayed fracture, rather degrading the delayed fracture resistance. Therefore, the upper limit of the total content of Nb and Ti is 0.080%.
  • the total content of Nb and Ti (Ti+Nb) is preferably 0.07% or less, more preferably 0.06% or less.
  • the chemical composition of the steel sheet in the present invention contains the above constituent elements as basic components, and the balance includes iron (Fe) and inevitable impurities.
  • the steel sheet of the present invention preferably has a chemical composition containing the above-described basic components, with the balance being iron (Fe) and unavoidable impurities.
  • one or more selected from the following (A) to (D) may be contained as the component composition.
  • Cu 1.0% or less
  • Cu improves corrosion resistance in the use environment of automobiles.
  • the inclusion of Cu has the effect of suppressing penetration of hydrogen into the steel sheet by coating the surface of the steel sheet with corrosion products.
  • Cu is an element that is mixed when scrap is used as a raw material, and by allowing Cu to be mixed, recycled materials can be used as raw materials, and manufacturing costs can be reduced.
  • the content of Cu is preferably 0.01% or more, and from the point of view of improving the delayed fracture resistance, the content of Cu is preferably 0.05% or more.
  • Cu content is more preferably 0.10% or more. However, if the Cu content is too high, surface defects may occur, so the Cu content is preferably 1.0% or less. From the above, when Cu is contained, the Cu content is set to 1.0% or less.
  • the Cu content is more preferably 0.50% or less, still more preferably 0.30% or less.
  • Ni 1.0% or less
  • Ni is also an element that acts to improve corrosion resistance.
  • Ni has the effect of reducing surface defects that tend to occur when Cu is contained. Therefore, from the above point of view, it is desirable to contain 0.01% or more of Ni.
  • the Ni content is more preferably 0.05% or more, still more preferably 0.10% or more.
  • the Ni content is set to 1.0% or less.
  • the Ni content is more preferably 0.50% or less, still more preferably 0.30% or less.
  • Cr 1.0% or less Cr can be added to obtain the effect of improving the hardenability of steel.
  • the Cr content is more preferably 0.05% or more, and still more preferably 0.10% or more.
  • the Cr content exceeds 1.0%, the cementite dissolution rate during annealing is delayed, and undissolved cementite remains, thereby deteriorating the delayed fracture resistance of the sheared end face.
  • pitting corrosion resistance is also deteriorated.
  • it also degrades chemical convertibility. Therefore, when Cr is contained, the Cr content is made 1.0% or less. Delayed fracture resistance, pitting corrosion resistance, and chemical conversion treatability all tend to start to deteriorate when the Cr content exceeds 0.2%, so from the viewpoint of preventing these, the Cr content is 0.2% or less. is more preferable.
  • Mo less than 0.3% Mo has the effect of improving the hardenability of steel, the effect of generating fine carbides containing Mo that serve as hydrogen trap sites, and the improvement of delayed fracture resistance by refining martensite. can be added for the purpose of obtaining the effect of If a large amount of Nb or Ti is added, these coarse precipitates are formed and the delayed fracture resistance deteriorates, but the solid solubility limit of Mo is larger than that of Nb and Ti. When added in combination with Nb and Ti, it forms fine precipitates in which these and Mo are combined, and has the effect of refining the structure.
  • Mo in addition to small amounts of Nb and Ti, it is possible to refine the structure without leaving coarse precipitates and disperse a large amount of fine carbides, thereby improving delayed fracture resistance. can be improved.
  • the Mo content is more preferably 0.03% or more, still more preferably 0.05% or more.
  • Mo content should be less than 0.3%.
  • the Mo content is preferably 0.2% or less.
  • V 0.5% or less
  • V has the effect of improving the hardenability of steel, the effect of forming fine carbides containing V that serve as hydrogen trap sites, and the improvement of delayed fracture resistance by refining martensite. It can be added for the purpose of obtaining an effect.
  • the V content is more preferably 0.03% or more, still more preferably 0.05% or more.
  • the V content should be 0.5% or less.
  • the V content is more preferably 0.3% or less, still more preferably 0.2% or less. Further, the V content is preferably 0.1% or less.
  • Zr 0.2% or less Zr contributes to high strength through refinement of prior ⁇ grains and the resulting refinement of the internal structure of martensite, and improves delayed fracture resistance.
  • the Zr content is desirably 0.005% or more.
  • the Zr content is more preferably 0.010% or more, preferably 0.015% or more.
  • the Zr content should be 0.2% or less.
  • the Zr content is more preferably 0.1% or less, still more preferably 0.04% or less.
  • W 0.2% or less W contributes to increasing the strength and improving the delayed fracture resistance through the formation of fine W-based carbides and carbonitrides that serve as hydrogen trap sites. From this point of view, it is desirable to contain W at 0.005% or more.
  • the W content is more preferably 0.010% or more, still more preferably 0.030% or more. However, if a large amount of W is contained, coarse precipitates remaining undissolved when the slab is heated in the hot rolling process increase, and the delayed fracture resistance of the sheared end surface deteriorates. Therefore, when W is contained, the W content should be 0.2% or less.
  • the W content is more preferably 0.1% or less.
  • Ca 0.0030% or less Ca fixes S as CaS and improves delayed fracture resistance. In order to obtain this effect, it is desirable to contain 0.0002% or more of Ca.
  • the Ca content is more preferably 0.0005% or more, still more preferably 0.0010% or more. However, since adding a large amount of Ca deteriorates the surface quality and bendability, the Ca content is preferably 0.0030% or less. As mentioned above, when containing Ca, Ca content shall be 0.0030% or less.
  • the Ca content is more preferably 0.0025% or less, still more preferably 0.0020% or less.
  • Ce 0.0030% or less Ce also fixes S and improves delayed fracture resistance. In order to obtain this effect, it is desirable to contain Ce at 0.0002% or more.
  • the Ce content is more preferably 0.0003% or more, and still more preferably 0.0005% or more.
  • the Ce content is preferably 0.0030% or less. From the above, when Ce is contained, the Ce content is set to 0.0030% or less.
  • the Ce content is more preferably 0.0020% or less, still more preferably 0.0015% or less.
  • La 0.0030% or less
  • La also fixes S and improves delayed fracture resistance.
  • the La content is more preferably 0.0005% or more, still more preferably 0.0010% or more.
  • the La content is preferably 0.0030% or less. From the above, when La is contained, the La content shall be 0.0030% or less.
  • the La content is more preferably 0.0020% or less, still more preferably 0.0015% or less.
  • REM 0.0030% or less REM also fixes S and improves delayed fracture resistance. In order to obtain this effect, it is desirable to contain 0.0002% or more of REM.
  • the REM content is more preferably 0.0003% or more, still more preferably 0.0005% or more.
  • the REM content is preferably 0.0030% or less. From the above, when REM is contained, the REM content is set to 0.0030% or less.
  • the REM content is more preferably 0.0020% or less, still more preferably 0.0015% or less.
  • REM includes scandium (Sc) with atomic number 21, yttrium (Y) with atomic number 39, and lanthanum (La) with atomic number 57 to lutetium (Lu) with atomic number 71.
  • Sc scandium
  • Y yttrium
  • La lanthanum
  • Lu lutetium
  • the REM concentration in the present invention is the total content of one or more elements selected from the above REMs.
  • Mg 0.0030% or less Mg fixes O as MgO and improves delayed fracture resistance. In order to obtain this effect, it is desirable to contain 0.0002% or more of Mg.
  • the Mg content is more preferably 0.0005% or more, still more preferably 0.0010% or more.
  • the Mg content is preferably 0.0030% or less. From the above, when Mg is contained, the Mg content should be 0.0030% or less.
  • the Mg content is more preferably 0.0020% or less, still more preferably 0.0015% or less.
  • Sb 0.1% or less Sb suppresses the oxidation and nitridation of the surface layer, thereby suppressing the reduction of C and B. Suppressing the reduction of C and B suppresses the formation of ferrite in the surface layer, contributing to higher strength and improved delayed fracture resistance.
  • the Sb content is desirably 0.002% or more.
  • the Sb content is more preferably 0.004% or more, still more preferably 0.006% or more.
  • the Sb content is desirably 0.1% or less. From the above, when Sb is contained, the Sb content is set to 0.1% or less.
  • the Sb content is more preferably 0.05% or less, still more preferably 0.02% or less.
  • Sn 0.1% or less Sn suppresses oxidation and nitridation of the surface layer, thereby suppressing a decrease in the content of C and B in the surface layer. Suppressing the reduction of C and B suppresses the formation of ferrite in the surface layer, contributing to higher strength and improved delayed fracture resistance. From this point of view, the Sn content is desirably 0.002% or more. The Sn content is preferably 0.003% or more. However, if the Sn content exceeds 0.1%, the castability deteriorates, and Sn segregates at the prior ⁇ grain boundaries, resulting in deterioration of the delayed fracture resistance of the sheared edges. Therefore, when Sn is contained, the Sn content is set to 0.1% or less. The Sn content is more preferably 0.05% or less, still more preferably 0.01% or less.
  • the arbitrary element When the content of the arbitrary element is less than the preferred lower limit, the arbitrary element is included as an unavoidable impurity.
  • the steel structure of the steel sheet of the present invention has the following structure.
  • (Configuration 1) The area ratio of martensite to the entire structure is 95% or more and 100% or less.
  • (Configuration 2) The average grain size of prior austenite grains is less than 11.0 ⁇ m.
  • (Structure 3) The number density A of precipitates having an equivalent circle diameter of 500 nm or more satisfies the following formula (1).
  • [B] represents the content of B (% by mass).
  • the area ratio of martensite to the entire structure is 95% or more and 100% or less.
  • the area ratio of martensite in the steel structure is set to 95% or more. More preferably 99% or more, still more preferably 100%.
  • the balance includes bainite, ferrite, and retained austenite (retained ⁇ ).
  • Other than these structures are trace amounts of carbides, sulfides, nitrides and oxides.
  • the residual tissue is 5% or less, preferably 1% or less.
  • martensite includes self-tempering during continuous cooling and martensite that is not tempered by staying at about 150° C. or higher for a certain period of time. Note that the area ratio of martensite may be 100% without including the remainder.
  • the average grain size of prior austenite grains is less than 11.0 ⁇ m.
  • the delayed fracture surface In steels with a martensite area ratio of 95% or more in the steel structure, the delayed fracture surface often exhibits intergranular fracture surface, and the initiation point of delayed fracture and the crack propagation path at the initial stage of delayed fracture are on the prior austenite grain boundary. Conceivable. Refinement of prior-austenite grains is effective for suppressing intergranular fracture, and refinement of prior-austenite grains significantly improves delayed fracture resistance.
  • the mechanism is thought to be that the area ratio of the prior austenite grain boundaries increases due to the refinement of the prior austenite grains, and the concentration of impurity elements such as P, which is a grain boundary embrittlement element, on the prior austenite grain boundaries decreases. Further, the refinement of the prior austenite grains also contributes to the improvement of the tensile strength. From the viewpoint of delayed fracture resistance and strength, the average grain size of prior austenite grains (prior ⁇ grain size) is less than 11.0 ⁇ m. This average particle size is preferably 10 ⁇ m or less, more preferably 7.0 ⁇ m or less, and still more preferably 5.0 ⁇ m or less.
  • the present inventors have found that by controlling the hot rolling conditions, the number density A of precipitates with an equivalent circle diameter of 500 nm or more is reduced, and by satisfying the following conditions, the delayed fracture resistance is improved by strengthening the grain boundaries of B and the origin of the precipitates It was found that it is possible to simultaneously suppress the destruction of the A (pieces/mm 2 ) ⁇ 8.5 ⁇ 10 5 ⁇ [B]
  • the area ratios of martensite, bainite, and ferrite are obtained by polishing the L section of the steel sheet (the section parallel to the rolling direction and perpendicular to the surface of the steel sheet (hereinafter also referred to as the vertical section parallel to the rolling direction)) with Nital. Corroded and observed at 1/4 thickness position from the surface of the steel plate with SEM at a magnification of 2000 times, 4 fields of view are observed, and the photographed structure photograph is image-analyzed and measured.
  • martensite and bainite indicate gray or white structures in SEM.
  • ferrite is a region exhibiting black contrast in SEM. Martensite and bainite contain trace amounts of carbides, nitrides, sulfides, and oxides, but since it is difficult to exclude them, the area ratio of the region including these is used as the area ratio.
  • bainite has the following characteristics. That is, it has an aspect ratio of 2.5 or more, exhibits a plate-like form, and is a slightly blacker structure than martensite.
  • the width of the plate is 0.3-1.7 ⁇ m.
  • the distribution density of carbides with a diameter of 10 to 200 nm inside bainite is 0 to 3 pieces/ ⁇ m 2 .
  • the retained austenite (retained ⁇ ) is measured by chemically polishing the 200 ⁇ m surface layer of the steel plate with oxalic acid, and using the X-ray diffraction intensity method for the plate surface. It is calculated from the integrated intensities of (200) ⁇ , (211) ⁇ , (220) ⁇ , (200) ⁇ , (220) ⁇ , and (311) ⁇ diffraction plane peaks measured by Mo-K ⁇ rays.
  • the average grain size of prior austenite grains is measured by polishing the L cross section (vertical cross section parallel to the rolling direction) of the steel sheet, and then applying a chemical solution that corrodes the prior ⁇ grain boundaries (such as a saturated picric acid aqueous solution or It was corroded by adding ferric chloride to this), and observed at 1/4 thickness position from the steel plate surface with an optical microscope at a magnification of 500 times. 15 lines are drawn in each direction at intervals of 10 ⁇ m or more in actual length, and the number of intersections between grain boundaries and lines is counted. Furthermore, the prior ⁇ grain size (average grain size of prior austenite grains) can be measured by multiplying the value obtained by dividing the total line length by the number of intersections by 1.13.
  • the number density A of precipitates with an equivalent circle diameter of 500 nm or more is obtained by polishing the L cross section (vertical cross section parallel to the rolling direction) of the steel sheet, and then the area from the 1/5 position to the 4/5 position of the steel plate thickness, that is, from the steel plate surface.
  • an area of 2 mm 2 was continuously photographed with an SEM, and from the photographed SEM photographs, such precipitates It was obtained by counting the number of Also, the magnification for photographing is 2000 times.
  • each inclusion particle is magnified 10000 times, and the said precipitate is analyzed.
  • the precipitate having an equivalent circle diameter of 500 nm or more is a precipitate containing B such as Fe 23 (C, B) 6 , and an elemental analysis by energy dispersive X-ray spectroscopy (EDS) at an acceleration voltage of 3 kV The presence or absence of a B peak was examined, and when there was a B peak, it was evaluated that the above precipitates were present. If the slab is not sufficiently reheated, precipitates containing Nb and Ti also increase, and these precipitates also adversely affect the delayed fracture properties.
  • the equivalent circle diameter refers to the diameter of a perfect circle having an area of each precipitate calculated from the SEM photograph.
  • One of the characteristics of the present invention is that the delayed fracture resistance is good even if the tensile strength is 1470 MPa or more. Therefore, in the present invention, the tensile strength must be 1470 MPa or more. From the viewpoint of reducing the weight of automobile frame parts, it is preferably 1700 MPa or more.
  • the tensile strength of the steel sheet of the present invention may be 2100 MPa or less.
  • the tensile strength can be measured by cutting out a JIS No. 5 tensile test piece so that the direction perpendicular to the rolling direction is the longitudinal direction at the position of 1/4 of the coil width, and conducting a tensile test based on JIS Z2241.
  • the steel sheet of the present invention described above may be a steel sheet having a plating layer on its surface.
  • the plating layer may be Zn plating or plating of other metals. Further, it may be either a hot-dip plated layer or an electroplated layer.
  • a steel slab having the above chemical composition is heated at a slab surface temperature from 1000 ° C. to a heating and holding temperature of 1250 ° C. or higher at an average heating rate of 10 ° C./min or less, and this heating and holding After holding at the temperature for 30 minutes or more, hot finish rolling is performed under the conditions of a residence time of 20 seconds or more and 150 seconds or less at 900 to 1000 ° C. and a finish rolling temperature of 850 ° C. or more, and the finish rolling temperature is 650 ° C.
  • Cooling is performed at an average cooling rate of 40 ° C./sec or more in the range of up to and then coiling at a coiling temperature of 650 ° C. or less to form a hot-rolled steel sheet, and the hot-rolled steel sheet is rolled at a reduction rate of 40% or more.
  • a cold-rolled steel sheet is obtained by cold rolling, the annealing temperature is set to 830 to 950 ° C., the cold-rolled steel plate is heated from 400 ° C. to the annealing temperature at an average heating rate of 1.0 ° C./sec or more, and the annealing is performed. Hold the temperature for 600 seconds or less, cool from the cooling start temperature of 680 ° C. or more to the cooling stop temperature of 260 ° C. or less at an average cooling rate of 70 ° C./sec or more, and then keep the temperature at 150 to 260 ° C. for 20 to 1500.
  • a steel sheet manufacturing method in which continuous annealing is performed for seconds.
  • the average heating rate is set at 10°C/min or less from 1000°C to the heating and holding temperature of 1250°C or higher to promote the dissolution of sulfides and the formation of inclusions. Reduction in size and number is achieved. Since Nb and Ti have high dissolution temperatures, the heating and holding temperature at the slab surface temperature is set to 1250° C. or higher, and the holding time is set to 30 minutes or longer to promote solid dissolution of Nb and Ti. reduction is achieved.
  • the heating and holding temperature is preferably 1300° C. or higher. More preferably, it is 1350° C. or higher.
  • the average heating rate is "(Temperature at the completion of slab heating (heating holding temperature) (°C) - Temperature at the start of slab heating (°C) (1000°C)) / Heating time from the start of heating to the completion of heating. (minutes)”.
  • the slab is held at 900-1000°C for 20 seconds or more and 150 seconds or less.
  • An increase in the residence time in the temperature range of 900 to 1000° C. produces and coarsens precipitates mainly composed of BN. Precipitates generated in these temperature ranges are difficult to form a solid solution by annealing heating, and reduce the amount of solid solution B after annealing. Therefore, if the residence time exceeds 150 seconds, it is not possible to obtain a solid solution B amount that is effective in suppressing delayed fracture. Therefore, the residence time is 150 seconds or less, preferably 120 seconds or less, and more preferably 100 seconds or less. On the other hand, if the residence time is less than 20 seconds, the tissue may become non-uniform. Therefore, the residence time is 20 seconds or longer, preferably 30 seconds or longer, and more preferably 40 seconds or longer.
  • the finish rolling temperature (FT) is set to 850°C or higher in order to suppress the precipitation of Nb, Ti, B, etc.
  • the finish rolling temperature is 930° C. or less.
  • cooling after hot finish rolling is performed at an average cooling rate of 40°C/second or more in the range from the finish rolling temperature to 650°C.
  • the average cooling rate is less than 40° C./sec, the number of carbonitrides having an equivalent circle diameter of 1.0 ⁇ m or more increases due to the coarsening of Nb carbonitrides and Ti carbonitrides, and the desired delayed fracture resistance is obtained.
  • the average cooling rate is 250° C./s or less, more preferably 200° C./s or less.
  • the average cooling rate in the hot rolling process is "(temperature at the start of cooling (finish rolling temperature) (°C) - temperature at the completion of cooling (°C) (650°C)) / from the start of cooling to the completion of cooling. cooling time (seconds).
  • the winding temperature should be 650° C. or lower.
  • the winding temperature is 500°C or higher.
  • Cold Rolling In cold rolling, if the rolling reduction (cold rolling rate) is 40% or more, recrystallization behavior and texture orientation in the subsequent continuous annealing can be stabilized. If the content is less than 40%, some of the austenite grains during annealing may become coarse and the strength may decrease. Also, the cold rolling rate is preferably 80% or less.
  • the steel sheet is subjected to annealing and, if necessary, tempering and temper rolling in a continuous annealing line (CAL).
  • CAL continuous annealing line
  • Fe 23 (C, B) 6 is generated in the ferrite region during annealing heating and coarsens, in order to reduce Fe 23 (C, B) 6 and sufficiently obtain the effect of grain boundary strengthening by B, It is very important to increase the average heating rate above 400°C. Also, from the viewpoint of refining the prior ⁇ grain size to less than 11.0 ⁇ m, it is necessary to increase the heating rate. From the above point of view, the average heating rate at 400° C. or higher is 1.0° C./second or higher. Also, the average heating rate at 400° C.
  • the average heating rate is 10° C./sec or less.
  • the average heating rate is defined as "annealing temperature (° C.) ⁇ 400 (° C.) described later)/heating time (minutes) from 400° C. to the annealing temperature".
  • annealing temperature In order to sufficiently reduce precipitates such as Fe 23 (C, B) 6 remaining undissolved after annealing, annealing is performed at a high temperature for a long time. Specifically, the annealing temperature must be 830° C. or higher.
  • the annealing temperature exceeds 950°C, the prior ⁇ grain size becomes coarse and the desired structure cannot be obtained. Moreover, since BN may precipitate at grain boundaries and the delayed fracture resistance may deteriorate when annealing is performed at a temperature exceeding 900° C., the annealing temperature is preferably 900° C. or lower. Even if the soaking time (holding time) at the annealing temperature is prolonged, the prior ⁇ grain size becomes too coarse, so the soaking time is set to 600 seconds or less. Preferably, this soaking time is 10 seconds or longer.
  • the average cooling rate is 70 ° C./sec or more from the cooling start temperature of 680 ° C. or higher to the cooling stop temperature of 260 ° C. or lower. Cool with
  • the average cooling rate is defined as "cooling start temperature of 680 ° C. or higher (° C.) - cooling stop temperature of 260 ° C. or lower (° C.) / cooling from the cooling start temperature of 680 ° C. or higher to the cooling stop temperature of 260 ° C. or lower. time (seconds)".
  • the cooling start temperature is set to 680° C. or higher.
  • this cooling start temperature is 800° C. or lower.
  • the average cooling rate is set to 70° C./second or more.
  • the average cooling rate is preferably at least 700°C/sec.
  • the cooling stop temperature exceeds 260°C, there is a problem that upper and lower bainite are generated, and retained austenite and fresh martensite increase. Therefore, the cooling stop temperature is set to 260° C. or lower.
  • the carbides distributed inside the martensite are the carbides that are generated during holding in a low temperature range after quenching.
  • the continuous annealing is carried out at a holding temperature of 150 to 260° C. for 20 to 1500 seconds.
  • the steel sheet thus obtained can be subjected to skin-pass rolling from the viewpoint of stabilizing press formability, such as adjusting the surface roughness and flattening the plate shape.
  • the skin pass elongation rate is preferably 0.1% or more.
  • the skin pass elongation rate is preferably 0.6% or less.
  • dull rolls are used as the skin pass rolls, and it is preferable to adjust the roughness Ra of the steel sheet to 0.8 ⁇ m or more from the viewpoint of flattening the shape. Further, it is preferable to adjust the roughness Ra of the steel sheet to 1.8 ⁇ m or less.
  • the obtained steel sheet may be subjected to a plating treatment. That is, after continuous annealing, the surface of the steel sheet may be plated.
  • a steel sheet having a plating layer on its surface can be obtained by plating.
  • the delayed fracture resistance of high-strength cold-rolled steel sheets is greatly improved, and the application of high-strength steel sheets contributes to the improvement of part strength and weight reduction.
  • the steel sheet of the present invention preferably has a thickness of 0.5 mm or more. Also, the plate thickness is preferably 2.0 mm or less.
  • the member of the present invention is obtained by subjecting the steel plate of the present invention to at least one of forming and joining. Further, the method for manufacturing a member of the present invention includes a step of subjecting the steel plate of the present invention to at least one of forming and joining to form a member.
  • the steel sheet of the present invention has a tensile strength of 1470 MPa or more and excellent delayed fracture resistance. Therefore, members obtained using the steel sheet of the present invention also have high strength and are superior in delayed fracture resistance to conventional high-strength members. Moreover, if the member of the present invention is used, the weight can be reduced. Therefore, the member of the present invention can be suitably used for, for example, vehicle body frame parts.
  • General processing methods such as press processing can be used without restrictions for molding.
  • general welding such as spot welding and arc welding, riveting, caulking, and the like can be used without limitation.
  • a slab having each component composition was heated at an average heating rate of 6° C./min up to the heating and holding temperature shown in Table 2 at the slab surface temperature, and held for the heating and holding time shown in Table 2. After that, the slab is retained for the residence time at 900 to 1000 ° C. shown in Table 2, and hot finish rolling is performed at a finish rolling temperature of 870 ° C.
  • the average cooling rate in the range from the finish rolling temperature to 650 ° C. is 50 ° C. / sec. After that, it was cooled and coiled at a coiling temperature of 550°C to obtain a hot-rolled steel sheet, and the hot-rolled steel sheet was cold-rolled at a reduction rate (cold rolling reduction rate) of 50% to obtain a cold-rolled steel sheet.
  • the cold-rolled steel sheet was heated from 400° C. to the annealing temperature shown in Table 2 at the average heating rate shown in Table 2, and soaked at the annealing temperature for the soaking time shown in Table 2. After that, from the cooling start temperature shown in Table 2 to the cooling stop temperature shown in Table 2, it is cooled at the average cooling rate shown in Table 2 and reheated as necessary. Continuous annealing was performed for the indicated holding times.
  • the obtained steel sheet was subjected to electroplating to obtain a steel sheet having a Zn plating layer formed thereon.
  • the metal structure of the obtained steel sheet was quantified by the method described above, and then a tensile test and a delayed fracture resistance evaluation test were performed.
  • the tissue measurement method was as follows.
  • the area ratio of martensite, bainite, and ferrite was determined by polishing the L cross section (vertical cross section parallel to the rolling direction) of the steel sheet, corroding it with nital, and examining the 1/4 thickness position from the surface of the steel sheet with an SEM at a magnification of 2000 times. Visual field observation was performed, and the photographed tissue photograph was image-analyzed and measured.
  • martensite and bainite refer to gray or white structures in SEM.
  • bainite has the following characteristics.
  • the martensite and bainite contain trace amounts of carbides, nitrides, sulfides, and oxides, but since it is difficult to exclude them, the area ratio of the region including these was used as the area ratio.
  • the retained austenite (retained ⁇ ) was measured by chemically polishing a 200 ⁇ m surface layer of the steel plate with oxalic acid and using the X-ray diffraction intensity method for the plate surface. It was calculated from the integrated intensities of (200) ⁇ , (211) ⁇ , (220) ⁇ , (200) ⁇ , (220) ⁇ , and (311) ⁇ diffraction surface peaks measured by Mo-K ⁇ radiation.
  • the average grain size of prior austenite grains is measured by polishing the L cross section (vertical cross section parallel to the rolling direction) of the steel sheet, and then applying a chemical solution that corrodes the prior ⁇ grain boundaries (such as a saturated picric acid aqueous solution or It was corroded by adding ferric chloride to this), and observed at 1/4 thickness position from the steel plate surface with an optical microscope at a magnification of 500 times. Fifteen lines in each direction were drawn at intervals of 10 ⁇ m or more in actual length, and the number of intersections between the grain boundaries and the lines was counted. The prior- ⁇ grain size was obtained by multiplying the value obtained by dividing the total line length by the number of intersections by 1.13.
  • the number density A of precipitates having an equivalent circle diameter of 500 nm or more is obtained by polishing the L cross section (vertical cross section parallel to the rolling direction) of the steel sheet, and then the area from the 1/5 position to the 4/5 position of the steel plate thickness, that is, from the steel plate surface.
  • a 2 mm 2 region was continuously photographed with an SEM, and from the photographed SEM photographs, such precipitates It was obtained by counting the number of Also, the magnification for photographing is 2000 times.
  • each inclusion particle was magnified 10000 times, and the said precipitate was analyzed.
  • the precipitate having an equivalent circle diameter of 500 nm or more is a precipitate containing B such as Fe 23 (C, B) 6 , and an elemental analysis by energy dispersive X-ray spectroscopy (EDS) at an acceleration voltage of 3 kV The presence or absence of a B peak was examined, and when there was a B peak, it was evaluated that the above precipitate was present.
  • B such as Fe 23 (C, B) 6
  • EDS energy dispersive X-ray spectroscopy
  • a JIS No. 5 tensile test piece was cut out so that the direction perpendicular to the rolling direction was the longitudinal direction at the position of 1/4 of the coil width, and a tensile test (based on JIS Z2241) was performed to evaluate YP, TS, and El.
  • Evaluation of delayed fracture resistance was performed as follows. A strip test piece of 100 mm in the direction perpendicular to the rolling direction and 30 mm in the rolling direction was taken from the 1/4 position of the coil width in the width direction of the obtained steel plate (coil). The end face of the long side with a length of 100 mm is cut out by shearing, and in the state of shearing (without machining to remove burrs), bending is performed so that the burrs are on the outer peripheral side of the bend. , the test piece was fixed with bolts while maintaining the shape of the test piece at the time of bending. The shearing clearance was 13% and the rake angle was 1°.
  • Bending was performed with a tip bending radius of 10 mm and an angle inside the bending apex of 90 degrees (V bending).
  • the punch has a U-shaped punch whose tip radius is the same as the tip bending radius R (the tip R is semicircular and the thickness of the punch barrel is 2R), and the die has a corner radius of 30 mm. was used.
  • the depth to which the punch pushes the steel plate was adjusted, and the steel plate was formed so that the bending angle of the tip (the angle inside the bending apex) was 90 degrees (V shape).
  • Sandwich the test piece with a hydraulic jack so that the distance between the flange ends of the straight piece when bending is the same as when bending (to cancel out the opening of the straight piece due to springback).
  • the bolt was passed through an elliptical hole (minor axis: 10 mm, major axis: 15 mm) previously provided 10 mm inward from the short side edge of the strip test piece and fixed.
  • the obtained test piece after bolting was mixed with 0.1% by mass of ammonium thiocyanate aqueous solution and McIlvaine buffer solution at a ratio of 1:1 and immersed in a solution adjusted to pH 8.0 for delayed fracture resistance.
  • a characterization test was performed. At this time, the temperature of the solution was set at 20° C., and the amount of the solution per 1 cm 3 of surface area of the test piece was set at 20 ml. After 24 hours had elapsed, the presence or absence of cracks at a visually recognizable level (1 mm or more in length) was confirmed, and those in which no cracks were observed were judged to have excellent delayed fracture resistance.
  • Table 3 shows the structure and properties of the obtained steel sheets.
  • the steel sheets within the scope of the present invention had high strength and excellent delayed fracture resistance.
  • No. In No. 14 (Steel N), the C content was less than the lower limit of the specified value of the present invention, and the TS was insufficient.
  • No. In No. 15 (steel O), the C content exceeded the upper limit of the specified value of the present invention, and sufficient delayed fracture resistance was not obtained.
  • No. In No. 16 (Steel P), the P content exceeded the upper limit of the specified value of the present invention, and sufficient delayed fracture resistance was not obtained.
  • No. In No. 17 (steel Q), the S content exceeded the upper limit of the specified value of the present invention, and sufficient delayed fracture resistance was not obtained.
  • No. 18 (steel R) is sol.
  • Step A the soaking time during annealing exceeded the upper limit of the specified value of the present invention, the prior ⁇ grain size was large, and sufficient delayed fracture resistance was not obtained.
  • No. 29 (Steel A) the cooling start temperature during annealing was less than the lower limit of the specified value of the present invention, martensite was not sufficiently formed, and sufficient delayed fracture resistance was not obtained.
  • No. 30 (Steel A) the average cooling rate during annealing was less than the lower limit of the value specified in the present invention, and the formation of martensite was insufficient, and sufficient delayed fracture resistance was not obtained.
  • the steel plate of the present invention example has high strength and excellent delayed fracture resistance in the members obtained by molding and the members obtained by joining processing using the steel plate of the example of the present invention. Therefore, it was found that the steel sheets have high strength and excellent delayed fracture resistance, like the steel sheets of the invention examples.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

Provided is a steel sheet which has high strength and excellent delayed fracture resistance. Also provided is a method for producing this steel sheet. The steel sheet includes, in terms of mass%, C: 0.15% to 0.45%; Si: 1.5% or less; Mn: 1.7% or less; P: 0.03% or less; S: less than 0.0020%; sol. Al: 0.20% or less; N: 0.005% or less; B: 0.0015% to 0.0100%; Nb and/or Ti: 0.005% to 0.080% in total, and the remainder being Fe and unavoidable impurities. The area ratio of martensite with respect to the entire structure is 95% to 100%; the prior γ particle size is less than 11.0 µm; and the number density A of the precipitate having an equivalent circular diameter of 500 nm or greater satisfies the mathematical expression of A (pcs./mm2) ≤ 8.5 × 105 × [B].

Description

鋼板、部材およびそれらの製造方法Steel plate, member and manufacturing method thereof
 本発明は、自動車等において冷間プレス成形を経て使用される冷間プレス成型用高強度鋼板等の鋼板、該鋼板を用いた部材およびそれらの製造方法に関する。 The present invention relates to steel sheets such as high-strength steel sheets for cold press forming that are used in automobiles and the like through cold press forming, members using the steel sheets, and manufacturing methods thereof.
 近年、自動車の軽量化や衝突安全性を目的として、自動車用骨格部品に引張強度TSが1310MPa級以上である鋼板の適用が進んでいる。また、バンパーやインパクトビーム部品等へは引張強度TSが1470MPa級以上である鋼板の適用が進んでいる。 In recent years, steel sheets with a tensile strength TS of 1310 MPa class or higher have been increasingly applied to automobile frame parts for the purpose of weight reduction and collision safety of automobiles. In addition, steel sheets with a tensile strength TS of 1470 MPa class or higher are being applied to bumpers, impact beam parts, and the like.
 引張強度TSが1470MPa級以上である高強度鋼板を冷間プレスにより成形して部品とした場合、部品内での残留応力の増加や鋼板そのものによる耐遅れ破壊特性の劣化により、遅れ破壊が生じるおそれがある。 When a high-strength steel sheet with a tensile strength TS of 1470 MPa class or higher is formed into a part by cold pressing, there is a risk of delayed fracture due to an increase in residual stress in the part and deterioration of the delayed fracture resistance due to the steel itself. There is
 ここで、遅れ破壊とは、部品に高い応力が加わった状態で部品が水素侵入環境下に置かれたとき、水素が部品を構成する鋼板内に侵入し、原子間結合力を低下させることや局所的な変形を生じさせることで微小亀裂が生じ、その微小亀裂が進展することで破壊に至る現象である。 Here, delayed fracture means that when a part is placed in a hydrogen penetration environment with high stress applied to the part, hydrogen penetrates into the steel plate that constitutes the part, reducing the interatomic bonding strength. It is a phenomenon in which microcracks are generated by causing local deformation and breakage occurs as the microcracks propagate.
 このような遅れ破壊特性を改善する技術として、例えば、遅れ破壊破壊の起点となる粗大な析出物を低減することにより耐遅れ破壊特性が改善するという知見に基づき、特許文献1には、質量%で、C:0.13%以上0.40%以下、Si:0.02%以上1.5%以下、Mn:0.4%以上1.7%以下、P:0.030%以下、S:0.0002%以上0.0010%未満、sol.Al:0.01%以上0.20%以下、N:0.0055%以下、O:0.0025%以下、Nb:0.002%以上0.035%以下およびTi:0.002%以上0.040%以下を(1)式、(2)式を満たすように含有し、残部はFeおよび不可避的不純物からなる成分組成と、マルテンサイトおよびベイナイトの組織全体に対する面積率が合計で95%以上100%以下であり、残部がフェライト及び残留オーステナイトの1種もしくは2種からなり、旧オーステナイト粒の平均粒径が5μm超えであり、下記条件を満たし、長軸の長さが20~80μmである介在物群が5個/mm以下で存在する鋼組織と、を有し、引張強度が1320MPa以上であることを特徴とする耐遅れ破壊特性に優れた高強度鋼板が開示されている。
[%Ti]+[%Nb]>0.007   (1)
[%Ti]×[%Nb]≦7.5×10-6   (2)
ここで、[%Nb]、[%Ti]はNb、Tiの含有量(%)を表す。
As a technique for improving such delayed fracture characteristics, for example, based on the knowledge that delayed fracture resistance is improved by reducing coarse precipitates that are the starting point of delayed fracture fracture, Patent Document 1 discloses mass % , C: 0.13% or more and 0.40% or less, Si: 0.02% or more and 1.5% or less, Mn: 0.4% or more and 1.7% or less, P: 0.030% or less, S : 0.0002% or more and less than 0.0010%, sol. Al: 0.01% or more and 0.20% or less, N: 0.0055% or less, O: 0.0025% or less, Nb: 0.002% or more and 0.035% or less, and Ti: 0.002% or more and 0 .040% or less so as to satisfy the formulas (1) and (2), the balance being Fe and unavoidable impurities, and the total area ratio of martensite and bainite to the entire structure is 95% or more. 100% or less, the balance consists of one or two types of ferrite and retained austenite, the average grain size of prior austenite grains exceeds 5 μm, the following conditions are satisfied, and the length of the major axis is 20 to 80 μm and a steel structure in which inclusion groups are present at 5/mm 2 or less, and a tensile strength of 1,320 MPa or more.
[% Ti] + [% Nb] > 0.007 (1)
[% Ti] × [% Nb] 2 ≤ 7.5 × 10 -6 (2)
Here, [%Nb] and [%Ti] represent the contents (%) of Nb and Ti.
 また、特許文献2には、質量%で、C:0.05%~0.30%、Si:2.0%以下(0%を含む)、Mn:0.1%超2.8%以下、P:0.1%以下、S:0.005%以下、N:0.01%以下、Al:0.01~0.50%以下を含むとともに、Nb、TiおよびZrの1種または2種以上を、合わせて0.01%以上で、かつ、[%C]-[%Nb]/92.9×12-[%Ti]/47.9×12-[%Zr]/91.2×12>0.03を満足するように含み、残部が鉄および不可避的不純物からなる成分組成を有し、焼戻しマルテンサイトが面積率で50%以上(100%を含む)を含み、残部がフェライトからなる組織を有し、焼戻しマルテンサイト中における析出物の分布状態が、円相当直径1~10nmの析出物は、焼戻しマルテンサイト1μm当たり20個以上で、円相当直径20nm以上の析出物であって、Nb、TiおよびZrの1種または2種以上を含む析出物は、焼戻しマルテンサイト1μm当たり10個以下であり、結晶方位差が15°以上の大角粒界で囲まれたフェライトの平均粒径が5μm以下であることを特徴とする耐水素脆化特性および加工性に優れた高強度冷延鋼板が開示されている。 In addition, in Patent Document 2, in mass%, C: 0.05% to 0.30%, Si: 2.0% or less (including 0%), Mn: more than 0.1% and 2.8% or less , P: 0.1% or less, S: 0.005% or less, N: 0.01% or less, Al: 0.01 to 0.50% or less, and one or two of Nb, Ti and Zr at least 0.01% in total, and [%C]-[%Nb]/92.9×12-[%Ti]/47.9×12-[%Zr]/91.2 × 12 > 0.03, the balance has a component composition consisting of iron and unavoidable impurities, tempered martensite contains 50% or more (including 100%) in terms of area ratio, and the balance is ferrite The distribution of precipitates in tempered martensite is 20 or more per 1 μm 2 of tempered martensite with an equivalent circle diameter of 1 to 10 nm, and the precipitates have an equivalent circle diameter of 20 nm or more. There are 10 or less precipitates per 1 μm 2 of tempered martensite containing one or more of Nb, Ti and Zr, and the ferrite surrounded by large-angle grain boundaries with a crystal orientation difference of 15 ° or more. A high-strength cold-rolled steel sheet having an average grain size of 5 μm or less and having excellent hydrogen embrittlement resistance and workability is disclosed.
特許第6388085号公報Japanese Patent No. 6388085 特許第4712882号公報Japanese Patent No. 4712882
 しかしながら、従来技術は、1470MPa以上の引張強度TSを確保すると共に、優れた耐遅れ破壊特性を有する技術としては十分であるとは言えなかった。 However, it could not be said that the conventional technology is sufficient as a technology that secures a tensile strength TS of 1470 MPa or more and has excellent delayed fracture resistance.
 本発明は、このような問題を解決するためになされたものであり、引張強度が1470MPa以上(TS≧1470MPa)であり、優れた耐遅れ破壊特性を有する鋼板、部材およびそれらの製造方法を提供することを目的とする。 The present invention has been made to solve such problems, and provides a steel sheet, a member, and a method for producing the same having a tensile strength of 1470 MPa or more (TS≧1470 MPa) and excellent delayed fracture resistance. intended to
 優れた耐遅れ破壊特性とは、以下の評価により優れた耐遅れ破壊特性を有すると判断することを指す。
(1)まず、得られた鋼板(コイル)の幅方向端部からコイル幅の1/4位置より圧延直角方向:100mm、圧延方向:30mmとなる短冊試験片を採取する。
(2)長さが100mmとなる長辺側の端面の切り出しはせん断加工とし、せん断加工ままの状態で(バリを除去する機械加工を施さずに)、バリが曲げ外周側となるように曲げ加工を施し、その曲げ成形時の試験片形状を維持して、ボルトで試験片を固定する。
せん断加工のクリアランスは13%とし、レーキ角は1°とした。曲げ加工は、先端曲げ半径10mmで、曲げ頂点内側の角度が90度(V曲げ)となるように行う。
ポンチは、先端半径が上記の先端曲げ半径Rと同じありU字形状(先端R部分が半円形状でポンチ胴部の厚さが2R)のものを用い、ダイは、コーナーRが30mmのものを用いる。そして、ポンチが鋼板を押し込む深さを調整し、先端の曲げ角度(曲げ頂点内側の角度)が90度(V字形状)となる様に成形する。
曲げ成形時の直片部のフランジ端部同士の距離が曲げ成形した時と同じ距離になるように(スプリングバックによる直片部の開口をキャンセルアウトするように)、油圧ジャッキで試験片を挟んで締め込み、その状態でボルト締結する。ボルトはあらかじめ短冊試験片の短辺エッジから10mm内側に設けた楕円形状(短軸10mm、長軸15mm)の穴に通して固定する。
(3)得られたボルト締め後の試験片を、0.1質量%のチオシアン酸アンモニウム水溶液と、McIlvaine緩衝液を1:1で混合し、pHを8.0に調整した溶液に浸漬して耐遅れ破壊特性評価試験を実施する。このとき、溶液の温度は20℃とし、試験片の表面積1cmあたりの液量は20mlとする。
(4)24時間経過後に目視で確認できるレベル(長さ1mm以上)の亀裂の有無を確認し、亀裂が観察されなかったものは、耐遅れ破壊特性が優れると判断する。
The term "excellent delayed fracture resistance" means judging to have excellent delayed fracture resistance by the following evaluation.
(1) First, a strip test piece of 100 mm in the direction perpendicular to the rolling direction and 30 mm in the rolling direction is taken from the 1/4 position of the coil width from the end of the obtained steel plate (coil) in the width direction.
(2) Cut out the end face of the long side with a length of 100 mm by shearing, and bend it so that the burr is on the outer peripheral side while being sheared (without machining to remove burrs). After processing, the test piece is fixed with bolts while maintaining the shape of the test piece at the time of bending.
The shearing clearance was 13% and the rake angle was 1°. Bending is performed with a tip bending radius of 10 mm and an angle inside the bending apex of 90 degrees (V bending).
The punch has a U-shaped punch whose tip radius is the same as the tip bending radius R (the tip R is semicircular and the thickness of the punch barrel is 2R), and the die has a corner radius of 30 mm. Use Then, the depth to which the punch pushes the steel plate is adjusted, and the steel plate is formed so that the bending angle of the tip (the angle inside the bending apex) is 90 degrees (V shape).
Sandwich the test piece with a hydraulic jack so that the distance between the flange ends of the straight piece when bending is the same as when bending (to cancel out the opening of the straight piece due to springback). and tighten the bolts in that state. The bolt is passed through an elliptical hole (minor axis: 10 mm, major axis: 15 mm) previously provided 10 mm inward from the short side edge of the strip test piece and fixed.
(3) The resulting bolted test piece was immersed in a solution prepared by mixing 0.1% by mass of ammonium thiocyanate aqueous solution and McIlvaine buffer solution at a ratio of 1:1 and adjusting the pH to 8.0. A delayed fracture resistance evaluation test is carried out. At this time, the temperature of the solution shall be 20° C., and the volume of the solution per 1 cm 3 of the surface area of the test piece shall be 20 ml.
(4) After 24 hours have passed, the presence or absence of cracks at a level that can be visually confirmed (1 mm or more in length) is confirmed, and if no cracks are observed, it is judged that the delayed fracture resistance is excellent.
 本発明者らは、上記の課題を解決するために鋭意検討を重ね、以下の条件を全て満たすことで耐遅れ破壊特性を大幅に向上させることができることを見出した。
i)マルテンサイトの面積率が95%以上であること。
ii)旧オーステナイト粒の平均粒径(旧γ粒径)が11.0μm未満であること。
iii)円相当径500nm以上の析出物の数密度Aが下記の条件を満たすこと。
A(個/mm)≦ 8.5×10×[B]
ここで、[B]はBの含有量(質量%)を表す。
The inventors of the present invention conducted extensive studies to solve the above problems, and found that the delayed fracture resistance can be greatly improved by satisfying all of the following conditions.
i) The area ratio of martensite is 95% or more.
ii) The average grain size (prior γ grain size) of prior austenite grains is less than 11.0 µm.
iii) The number density A of precipitates having an equivalent circle diameter of 500 nm or more satisfies the following conditions.
A (pieces/mm 2 ) ≤ 8.5 × 10 5 × [B]
Here, [B] represents the content of B (% by mass).
 本発明は、上記の知見に基づいて、更なる検討により完成されたものであり、その要旨は以下の通りである。
[1]質量%で、
C:0.15%以上0.45%以下、
Si:1.5%以下、
Mn:1.7%以下、
P:0.03%以下、
S:0.0020%未満、
sol.Al:0.20%以下、
N:0.005%以下、
B:0.0015%以上0.0100%以下、
NbとTiのうち一種以上を合計で0.005%以上0.080%以下を含有し、
残部がFeおよび不可避的不純物からなる成分組成を有し、
マルテンサイトが組織全体の面積に対して95%以上100%以下である組織を有し、
旧オーステナイト粒の平均粒径が11.0μm未満であり、
円相当径500nm以上である析出物の数密度Aが下記の式(1)を満たす鋼板。
A(個/mm)≦ 8.5×10×[B] ・・・式(1)
ここで、[B]はBの含有量(質量%)を表す。
[2]前記成分組成として、さらに質量%で、Cu:1.0%以下およびNi:1.0%以下のうちから選んだ1種または2種を含有する、[1]に記載の鋼板。
[3]前記成分組成として、さらに質量%で、Cr:1.0%以下、Mo:0.3%未満、V:0.5%以下、Zr:0.2%以下およびW:0.2%以下のうちから選んだ1種または2種以上を含有する、[1]または[2]に記載の鋼板。
[4]前記成分組成として、さらに質量%で、Ca:0.0030%以下、Ce:0.0030%以下、La:0.0030%以下、REM(Ce、Laを除く):0.0030%以下およびMg:0.0030%以下のうちから選んだ1種または2種以上を含有する、[1]~[3]のいずれかに記載の鋼板。
[5]前記成分組成として、さらに質量%で、Sb:0.1%以下およびSn:0.1%以下のうちから選んだ1種または2種を含有する、[1]~[4]のいずれかに記載の鋼板。
[6]鋼板表面にめっき層を有する、[1]~[5]のいずれかに記載の鋼板。
[7][1]~[6]のいずれかに記載の鋼板を用いてなる部材。
[8][1]~[5]のいずれかに記載の成分組成を有する鋼スラブを、スラブ表面温度で1000℃から1250℃以上の加熱保持温度までを10℃/分以下の平均加熱速度で加熱し、前記加熱保持温度で30分以上保持した後、
900~1000℃での滞留時間を20秒以上150秒以下で、仕上げ圧延温度を850℃以上とした条件で熱間仕上げ圧延を行い、
前記仕上げ圧延温度から650℃までの範囲における平均冷却速度を40℃/秒以上とする冷却を行い、
その後、650℃以下の巻取り温度で巻取ることで熱延鋼板とし、
該熱延鋼板を40%以上の圧下率で冷間圧延することで冷延鋼板とし、
焼鈍温度を830~950℃とし、前記冷延鋼板を、400℃から前記焼鈍温度まで1.0℃/秒以上の平均加熱速度で加熱し、
前記焼鈍温度で600秒以下保持し、
680℃以上の冷却開始温度から260℃以下の冷却停止温度まで70℃/秒以上の平均冷却速度で冷却し、
その後、150~260℃の保持温度で20~1500秒保持する連続焼鈍を行う、鋼板の製造方法。
[9]前記連続焼鈍の後、鋼板表面にめっき処理を行う、[8]に記載の鋼板の製造方法。
[10][1]~[6]のいずれかに記載の鋼板に、成形加工、接合加工の少なくとも一方を施して部材とする工程を含む、部材の製造方法。
The present invention was completed through further studies based on the above findings, and the gist thereof is as follows.
[1] % by mass,
C: 0.15% or more and 0.45% or less,
Si: 1.5% or less,
Mn: 1.7% or less,
P: 0.03% or less,
S: less than 0.0020%,
sol. Al: 0.20% or less,
N: 0.005% or less,
B: 0.0015% or more and 0.0100% or less,
Containing 0.005% or more and 0.080% or less in total of one or more of Nb and Ti,
Having a component composition in which the balance is Fe and unavoidable impurities,
Having a structure in which martensite accounts for 95% or more and 100% or less of the area of the entire structure,
The average grain size of the prior austenite grains is less than 11.0 μm,
A steel sheet in which the number density A of precipitates having an equivalent circle diameter of 500 nm or more satisfies the following formula (1).
A (number/mm 2 )≦8.5×10 5 ×[B] Expression (1)
Here, [B] represents the content of B (% by mass).
[2] The steel sheet according to [1], which further contains, as the chemical composition, one or two selected from Cu: 1.0% or less and Ni: 1.0% or less in mass%.
[3] As the component composition, in terms of mass %, Cr: 1.0% or less, Mo: less than 0.3%, V: 0.5% or less, Zr: 0.2% or less, and W: 0.2 The steel sheet according to [1] or [2], containing one or more selected from % or less.
[4] As the component composition, in mass%, Ca: 0.0030% or less, Ce: 0.0030% or less, La: 0.0030% or less, REM (excluding Ce and La): 0.0030% The steel sheet according to any one of [1] to [3], containing one or more selected from the following and Mg: 0.0030% or less.
[5] The component composition of [1] to [4] further contains one or two selected from Sb: 0.1% or less and Sn: 0.1% or less in mass%. The steel plate according to any one of the above.
[6] The steel sheet according to any one of [1] to [5], which has a plating layer on the surface of the steel sheet.
[7] A member using the steel plate according to any one of [1] to [6].
[8] A steel slab having the chemical composition according to any one of [1] to [5] is heated at a slab surface temperature from 1000 ° C. to a heating and holding temperature of 1250 ° C. or higher at an average heating rate of 10 ° C./min or less. After heating and holding at the heating and holding temperature for 30 minutes or more,
Hot finish rolling is performed under the conditions of a residence time of 20 seconds or more and 150 seconds or less at 900 to 1000 ° C. and a finish rolling temperature of 850 ° C. or more,
Cooling is performed at an average cooling rate of 40 ° C./sec or more in the range from the finish rolling temperature to 650 ° C.,
After that, it is coiled at a coiling temperature of 650 ° C. or less to form a hot rolled steel sheet,
A cold-rolled steel sheet is obtained by cold-rolling the hot-rolled steel sheet at a rolling reduction of 40% or more,
The annealing temperature is 830 to 950° C., and the cold-rolled steel sheet is heated from 400° C. to the annealing temperature at an average heating rate of 1.0° C./second or more,
Hold at the annealing temperature for 600 seconds or less,
Cooling from a cooling start temperature of 680 ° C. or higher to a cooling stop temperature of 260 ° C. or lower at an average cooling rate of 70 ° C./sec or higher,
A method for manufacturing a steel sheet, followed by continuous annealing at a holding temperature of 150 to 260° C. for 20 to 1500 seconds.
[9] The method for producing a steel sheet according to [8], wherein the surface of the steel sheet is plated after the continuous annealing.
[10] A method for manufacturing a member, comprising the step of subjecting the steel plate according to any one of [1] to [6] to at least one of forming and joining to form a member.
 本発明によれば、高強度であり、耐遅れ破壊特性に優れる鋼板、部材およびそれらの製造方法が提供される。  According to the present invention, a high-strength steel plate, a member, and a method for manufacturing the same are provided, which are excellent in delayed fracture resistance.
 以下、本発明の実施形態について説明する。 Embodiments of the present invention will be described below.
 本発明の鋼板は、質量%で、C:0.15%以上0.45%以下、Si:1.5%以下、Mn:1.7%以下、P:0.03%以下、S:0.0020%未満、sol.Al:0.20%以下、N:0.005%以下、B:0.0015%以上0.0100%以下、NbとTiのうち一種以上を合計で0.005%以上0.080%以下を含有し、残部がFeおよび不可避的不純物からなる成分組成を有し、マルテンサイトの組織全体に対する面積率が95%以上100%以下である組織を有し、旧オーステナイト粒(以下、旧γ粒とも記す。)の平均粒径(旧γ粒径)が11.0μm未満であり、円相当径500nm以上である析出物の数密度Aが下記の式(1)を満たす。
A(個/mm)≦ 8.5×10×[B] ・・・式(1)
ここで、[B]はBの含有量(質量%)を表す。
The steel sheet of the present invention, in mass%, C: 0.15% or more and 0.45% or less, Si: 1.5% or less, Mn: 1.7% or less, P: 0.03% or less, S: 0 less than .0020%, sol. Al: 0.20% or less, N: 0.005% or less, B: 0.0015% or more and 0.0100% or less, 0.005% or more and 0.080% or less in total of one or more of Nb and Ti with the balance being Fe and unavoidable impurities, having a structure in which the area ratio of martensite to the entire structure is 95% or more and 100% or less, and prior austenite grains (hereinafter also referred to as prior γ grains ) has an average grain size (prior γ grain size) of less than 11.0 μm, and the number density A of precipitates having an equivalent circle diameter of 500 nm or more satisfies the following formula (1).
A (pieces/mm 2 )≦8.5×10 5 ×[B] Expression (1)
Here, [B] represents the content of B (% by mass).
 成分組成
 以下に本発明の鋼板が有する成分組成の範囲の限定理由を説明する。なお、成分含有量に関する%は「質量%」である。
Composition The reason for limiting the range of the composition of the steel sheet of the present invention will be described below. In addition, % regarding component content is "mass %."
 C:0.15%以上0.45%以下
 Cは、焼入れ性を向上させてマルテンサイトである鋼組織を得るため、またマルテンサイトの強度を上昇させるために含有する。1470MPa以上である引張強度(以下、TS≧1470MPaとも記す。)を確保するために、C含有量は0.15%以上とする。引張強度の増加による自動車用骨格部品の軽量化の観点から、C含有量は好ましくは0.20%以上であり、より好ましくは0.27%以上である。一方、過剰に添加したCは鉄炭化物の生成や粒界への偏析により耐遅れ破壊特性を悪化させる要因となる。これらの観点から、C含有量は0.45%以下の範囲に限定される。C含有量は、好ましくは0.40%以下であり、より好ましくは0.37%以下である。
C: 0.15% or more and 0.45% or less C is contained in order to improve the hardenability to obtain a martensite steel structure and to increase the strength of martensite. In order to ensure a tensile strength of 1470 MPa or more (hereinafter also referred to as TS≧1470 MPa), the C content is made 0.15% or more. The C content is preferably 0.20% or more, more preferably 0.27% or more, from the viewpoint of reducing the weight of automobile frame parts by increasing the tensile strength. On the other hand, excessively added C causes deterioration of delayed fracture resistance due to formation of iron carbide and segregation to grain boundaries. From these points of view, the C content is limited to a range of 0.45% or less. The C content is preferably 0.40% or less, more preferably 0.37% or less.
 Si:1.5%以下
 Siは、固溶強化による強化元素として、また、200℃以上の温度域で焼き戻す場合のフィルム状の炭化物の生成を抑制して耐遅れ破壊特性を改善する観点から含有する。また、板厚中央部でのMn偏析を軽減してMnSの生成を抑制する観点からSiを含有する。さらに、連続焼鈍ライン(CAL)での焼鈍時の表層の酸化による脱炭、脱Bを抑制するためにSiを含有する。Si含有量の下限値は規定しないが、上記効果を得る観点からSiは0.02%以上含有することが望ましい。Si含有量は、好ましくは0.10%以上であり、より好ましくは0.20%以上である。一方、Si含有量が多くなりすぎると、熱延、冷延での圧延荷重の著しい増加や靭性の低下を招く。これらの観点から、Si含有量は1.5%以下(0%を含む)とする。Si含有量は、好ましくは1.2%以下であり、より好ましくは1.0%以下である。
Si: 1.5% or less Si is used as a strengthening element by solid solution strengthening, and from the viewpoint of suppressing the formation of film-like carbides when tempering in a temperature range of 200 ° C. or higher to improve delayed fracture resistance. contains. In addition, Si is contained from the viewpoint of reducing Mn segregation at the central portion of the sheet thickness and suppressing the formation of MnS. Furthermore, Si is contained in order to suppress decarburization and deboronation due to oxidation of the surface layer during annealing in a continuous annealing line (CAL). Although the lower limit of the Si content is not specified, it is desirable to contain 0.02% or more of Si from the viewpoint of obtaining the above effect. The Si content is preferably 0.10% or more, more preferably 0.20% or more. On the other hand, if the Si content is too high, a significant increase in rolling load during hot rolling and cold rolling and a drop in toughness are caused. From these points of view, the Si content should be 1.5% or less (including 0%). The Si content is preferably 1.2% or less, more preferably 1.0% or less.
 Mn:1.7%以下
 Mnは、鋼の焼入れ性を向上させ、所望の強度を得るべく、マルテンサイトの面積率を所定範囲にするために含有する。一方、Mn含有量が多くなりすぎると、Mnの偏析が増加し、加工性や溶接性を低下させる。したがって、Mnは1.7%以下とする。Mn含有量は、好ましくは、1.5%以下であり、より好ましくは1.3%以下である。Mn含有量の下限値は規定しないが、工業的に安定して所定のマルテンサイトの面積率を確保するためには、Mnを0.2%以上含有することが好ましい。
Mn: 1.7% or less Mn is contained in order to improve the hardenability of steel and obtain the desired strength, and to keep the area ratio of martensite within a predetermined range. On the other hand, if the Mn content is too high, the segregation of Mn increases, degrading workability and weldability. Therefore, Mn should be 1.7% or less. The Mn content is preferably 1.5% or less, more preferably 1.3% or less. Although the lower limit of the Mn content is not specified, it is preferable to contain 0.2% or more of Mn in order to industrially stably secure a predetermined area ratio of martensite.
 P:0.03%以下
 Pは、鋼を強化する元素であるが、その含有量が多いと、粒界に偏析し粒界強度を低下させ、耐遅れ破壊特性やスポット溶接性は著しい劣化を招く。上記の観点からP含有量は0.03%以下とする。P含有量は好ましくは0.02%以下であり、より好ましくは0.01%以下である。P含有量の下限は規定しないが、現在工業的に実施可能な下限として、0.002%とする。
P: 0.03% or less P is an element that strengthens steel, but when its content is high, it segregates at grain boundaries and lowers grain boundary strength, resulting in significant deterioration in delayed fracture resistance and spot weldability. Invite. From the above point of view, the P content should be 0.03% or less. The P content is preferably 0.02% or less, more preferably 0.01% or less. Although the lower limit of the P content is not specified, it is set to 0.002% as the lower limit currently industrially practicable.
 S:0.0020%未満
 Sは、粗大なMnSを形成し、遅れ破壊の起点となることで耐遅れ破壊特性を大幅に低下させる。したがって、MnSを低減するためにS含有量は少なくとも0.0020%未満とする必要がある。耐遅れ破壊特性改善の観点からS含有量は、好ましくは0.0010%未満であり、より好ましくは0.0008%以下であり、さらに好ましくは0.0006%以下である。下限は規定しないが、現在工業的に実施可能な下限として、0.0002%とする。
S: less than 0.0020% S forms coarse MnS and acts as a starting point for delayed fracture, thereby greatly deteriorating the resistance to delayed fracture. Therefore, the S content should be at least less than 0.0020% to reduce MnS. From the viewpoint of improving delayed fracture resistance, the S content is preferably less than 0.0010%, more preferably 0.0008% or less, and even more preferably 0.0006% or less. Although the lower limit is not defined, it is set to 0.0002% as the lower limit currently industrially practicable.
 sol.Al:0.20%以下
 Alは、十分な脱酸を行い、鋼中介在物を低減するために含有する。sol.Alの下限は特に規定しないが、安定して脱酸を行うためには、sol.Al含有量を0.005%以上とすることが望ましい。sol.Al含有量は、より好ましくは0.01%以上であり、更に好ましくは0.02%以上である。一方、sol.Al含有量が0.20%超となると、巻取り時に生成したセメンタイトが焼鈍過程で固溶しにくくなり、耐遅れ破壊特性が劣化する。したがって、sol.Al含有量は0.20%以下とする。sol.Al含有量は、好ましくは0.10%以下であり、より好ましくは0.05%以下である。
sol. Al: 0.20% or less Al is contained in order to sufficiently deoxidize and reduce inclusions in the steel. sol. Although the lower limit of Al is not specified, in order to stably deoxidize, sol. It is desirable to set the Al content to 0.005% or more. sol. The Al content is more preferably 0.01% or more, still more preferably 0.02% or more. On the other hand, sol. If the Al content exceeds 0.20%, the cementite generated during winding becomes less likely to form a solid solution during the annealing process, and the delayed fracture resistance deteriorates. Therefore, sol. Al content is 0.20% or less. sol. The Al content is preferably 0.10% or less, more preferably 0.05% or less.
 N:0.005%以下
 Nは、鋼中でTiN、(Nb,Ti)(C,N)等の析出物を形成し、これらの生成を通じて旧オーステナイト粒径の微細化に有効なNbC、TiC、(Nb,Ti)Cを減少させる。これらは、本発明で求める鋼組織に調整されるのを妨げ、耐遅れ破壊特性に悪影響を与える。このような悪影響を小さくするため、N含有量は0.005%以下とする。N含有量は、好ましくは0.0040%以下である。下限は規定しないが、現在工業的に実施可能な下限として、0.0006%とする。
N: 0.005% or less N forms precipitates such as TiN, (Nb, Ti) (C, N) in the steel. , (Nb,Ti)C. These hinder adjustment to the steel structure required by the present invention, and adversely affect the delayed fracture resistance. In order to reduce such adverse effects, the N content is made 0.005% or less. The N content is preferably 0.0040% or less. Although the lower limit is not defined, it is set to 0.0006% as the lower limit currently industrially practicable.
 B:0.0015%以上0.0100%以下
 Bは、鋼の焼入れ性を向上させる元素であり、少ないMn含有量でも所定の面積率のマルテンサイトを生成させる利点を有する。また、Bは、粒界に偏析することで粒界の結合力を増加させることや、粒界強度を低下させるPの偏析を抑制することで、耐遅れ破壊特性を向上させる。一方で、過剰なBの添加は、Fe23(C,B)やBNを増加させ、遅れ破壊の起点となることで耐遅れ破壊特性をむしろ低下させるという結果が得られた。したがって、Bの添加による耐遅れ破壊特性の向上の効果を得るためには、粒界固溶Bの増加とB系析出物の抑制を両立することが必要である。旧γ粒径が10μm以下の鋼において、十分な粒界固溶B量を得るために、B含有量は0.0015%以上とする。B含有量は、好ましくは0.0025%以上であり、より好ましくは0.0040%以上である。一方、0.0100%超のBを含有する場合には、熱延条件および焼鈍条件の制御によってもB系析出物の低減が困難となる。そのため、B含有量は0.0100%以下とする。B含有量は、好ましくは0.0090%以下であり、より好ましくは0.0080%以下である。
B: 0.0015% or more and 0.0100% or less B is an element that improves the hardenability of steel, and has the advantage of forming martensite with a predetermined area ratio even with a small Mn content. In addition, B increases the cohesive force of the grain boundary by segregating at the grain boundary, and suppresses the segregation of P, which reduces the grain boundary strength, thereby improving the delayed fracture resistance. On the other hand, the addition of excessive B increases Fe 23 (C, B) 6 and BN, and it becomes a starting point of delayed fracture, resulting in a decrease in the resistance to delayed fracture. Therefore, in order to obtain the effect of improving the delayed fracture resistance by adding B, it is necessary to achieve both an increase in grain boundary solid solution B and a suppression of B-based precipitates. In steel with a prior γ grain size of 10 µm or less, the B content is set to 0.0015% or more in order to obtain a sufficient grain boundary solid solution B amount. The B content is preferably 0.0025% or more, more preferably 0.0040% or more. On the other hand, when the content of B exceeds 0.0100%, it becomes difficult to reduce B-based precipitates even by controlling the hot rolling conditions and annealing conditions. Therefore, the B content is set to 0.0100% or less. The B content is preferably 0.0090% or less, more preferably 0.0080% or less.
 NbとTiのうち一種以上を合計で0.005%以上0.080%以下
 NbおよびTiは、マルテンサイトの内部構造の微細化を通じて高強度化に寄与するとともに、旧γ粒径の微細化により耐遅れ破壊特性を改善する。このような観点からNbおよびTiのうち一種以上を合計で0.005%以上含有する。NbとTiの合計の含有量は、好ましくは0.010%以上であり、より好ましくは0.020%以上である。一方、NbとTiのうち一種以上が合計で0.080%超えとなると、スラブ再加熱でNbとTiが完全に固溶せず、TiN、Ti(C,N)、NbN、Nb(C,N)、(Nb,Ti)(C,N)等の円相当径500nm以上の析出物が増加し、遅れ破壊の起点となるため、むしろ耐遅れ破壊特性は劣化する。したがって、NbとTiの合計の含有量の上限は0.080%である。NbとTiの合計の含有量(Ti+Nb)は、好ましくは0.07%以下であり、より好ましくは0.06%以下である。
0.005% or more and 0.080% or less in total of one or more of Nb and Ti Improves delayed fracture resistance. From this point of view, one or more of Nb and Ti are contained in a total amount of 0.005% or more. The total content of Nb and Ti is preferably 0.010% or more, more preferably 0.020% or more. On the other hand, if the total content of one or more of Nb and Ti exceeds 0.080%, Nb and Ti do not completely dissolve in the slab reheating, and TiN, Ti(C,N), NbN, Nb(C, Precipitates having an equivalent circle diameter of 500 nm or more, such as N), (Nb, Ti), (C, N), increase and act as starting points for delayed fracture, rather degrading the delayed fracture resistance. Therefore, the upper limit of the total content of Nb and Ti is 0.080%. The total content of Nb and Ti (Ti+Nb) is preferably 0.07% or less, more preferably 0.06% or less.
 本発明における鋼板の成分組成は、上記の成分元素を基本成分として含有し、残部は鉄(Fe)及び不可避的不純物を含む。ここで、本発明の鋼板は上記の基本成分を含有し、残部は鉄(Fe)及び不可避的不純物からなる成分組成を有することが好ましい。 The chemical composition of the steel sheet in the present invention contains the above constituent elements as basic components, and the balance includes iron (Fe) and inevitable impurities. Here, the steel sheet of the present invention preferably has a chemical composition containing the above-described basic components, with the balance being iron (Fe) and unavoidable impurities.
 本発明では、成分組成として、以下の(A)~(D)から選んだ1つまたは2つ以上を含有してもよい。
(A)質量%で、Cu:1.0%以下およびNi:1.0%以下のうちから選んだ1種または2種、
(B)質量%で、Cr:1.0%以下、Mo:0.3%未満、V:0.5%以下、Zr:0.2%以下およびW:0.2%以下のうちから選んだ1種または2種以上、
(C)質量%で、Ca:0.0030%以下、Ce:0.0030%以下、La:0.0030%以下、REM(Ce、Laを除く):0.0030%以下およびMg:0.0030%以下のうちから選んだ1種または2種以上、
(D)質量%で、Sb:0.1%以下およびSn:0.1%以下のうちから選んだ1種または2種
In the present invention, one or more selected from the following (A) to (D) may be contained as the component composition.
(A) in mass%, one or two selected from Cu: 1.0% or less and Ni: 1.0% or less,
(B) in mass%, selected from Cr: 1.0% or less, Mo: less than 0.3%, V: 0.5% or less, Zr: 0.2% or less, and W: 0.2% or less 1 or 2 or more
(C) In mass %, Ca: 0.0030% or less, Ce: 0.0030% or less, La: 0.0030% or less, REM (excluding Ce and La): 0.0030% or less, and Mg: 0.0030% or less. 1 or 2 or more selected from 0030% or less,
(D) In mass%, one or two selected from Sb: 0.1% or less and Sn: 0.1% or less
 Cu:1.0%以下
 Cuは、自動車の使用環境での耐食性を向上させる。また、Cuの含有により、腐食生成物が鋼板表面を被覆して鋼板への水素侵入を抑制する効果がある。また、Cuは、スクラップを原料として活用するときに混入する元素であり、Cuの混入を許容することでリサイクル資材を原料資材として活用でき、製造コストを削減することができる。Cuは上記の観点から0.01%以上含有することが好ましく、さらに耐遅れ破壊特性向上の観点からはCuは0.05%以上含有することが望ましい。Cu含有量は、より好ましくは0.10%以上である。しかしながら、その含有量が多くなりすぎると表面欠陥の原因となるので、Cu含有量は1.0%以下とすることが望ましい。以上より、Cuを含有する場合、Cu含有量は1.0%以下とする。Cu含有量は、より好ましくは0.50%以下であり、さらに好ましくは0.30%以下である。
Cu: 1.0% or less Cu improves corrosion resistance in the use environment of automobiles. In addition, the inclusion of Cu has the effect of suppressing penetration of hydrogen into the steel sheet by coating the surface of the steel sheet with corrosion products. Moreover, Cu is an element that is mixed when scrap is used as a raw material, and by allowing Cu to be mixed, recycled materials can be used as raw materials, and manufacturing costs can be reduced. From the above point of view, the content of Cu is preferably 0.01% or more, and from the point of view of improving the delayed fracture resistance, the content of Cu is preferably 0.05% or more. Cu content is more preferably 0.10% or more. However, if the Cu content is too high, surface defects may occur, so the Cu content is preferably 1.0% or less. From the above, when Cu is contained, the Cu content is set to 1.0% or less. The Cu content is more preferably 0.50% or less, still more preferably 0.30% or less.
 Ni:1.0%以下
 Niも耐食性を向上させる作用のある元素である。また、Niは、Cuを含有させる場合に生じやすい表面欠陥を低減する作用がある。したがって、Niは上記の観点から0.01%以上含有することが望ましい。Ni含有量は、より好ましくは0.05%以上であり、さらに好ましくは0.10%以上である。しかし、Ni含有量が多くなりすぎると加熱炉内でのスケール生成が不均一になり表面欠陥の原因になるとともに、著しいコスト増となる。したがって、Niを含有する場合、Ni含有量は1.0%以下とする。Ni含有量は、より好ましくは0.50%以下であり、さらに好ましくは0.30%以下である。
Ni: 1.0% or less Ni is also an element that acts to improve corrosion resistance. In addition, Ni has the effect of reducing surface defects that tend to occur when Cu is contained. Therefore, from the above point of view, it is desirable to contain 0.01% or more of Ni. The Ni content is more preferably 0.05% or more, still more preferably 0.10% or more. However, if the Ni content is too high, scale formation in the heating furnace becomes non-uniform, causing surface defects and a significant increase in cost. Therefore, when Ni is contained, the Ni content is set to 1.0% or less. The Ni content is more preferably 0.50% or less, still more preferably 0.30% or less.
 Cr:1.0%以下
 Crは、鋼の焼入れ性を向上させる効果を得るために添加することができる。その効果を得るにはCrを0.01%以上含有することが好ましい。Cr含有量は、より好ましくは0.05%以上であり、さらに好ましくは0.10%以上である。しかしながら、Cr含有量が1.0%を超えると、焼鈍時のセメンタイトの固溶速度を遅延させ、未固溶のセメンタイトを残存させることでせん断端面の耐遅れ破壊特性を劣化させる。また、耐孔食性も劣化させる。さらに化成処理性も劣化させる。そのため、Crを含有する場合、Cr含有量は1.0%以下とする。耐遅れ破壊特性、耐孔食性、化成処理性は、いずれもCr含有量が0.2%超で劣化し始める傾向にあるので、これらを防止する観点からCr含有量は、0.2%以下とすることがより好ましい。
Cr: 1.0% or less Cr can be added to obtain the effect of improving the hardenability of steel. In order to obtain the effect, it is preferable to contain 0.01% or more of Cr. The Cr content is more preferably 0.05% or more, and still more preferably 0.10% or more. However, when the Cr content exceeds 1.0%, the cementite dissolution rate during annealing is delayed, and undissolved cementite remains, thereby deteriorating the delayed fracture resistance of the sheared end face. Moreover, pitting corrosion resistance is also deteriorated. Furthermore, it also degrades chemical convertibility. Therefore, when Cr is contained, the Cr content is made 1.0% or less. Delayed fracture resistance, pitting corrosion resistance, and chemical conversion treatability all tend to start to deteriorate when the Cr content exceeds 0.2%, so from the viewpoint of preventing these, the Cr content is 0.2% or less. is more preferable.
 Mo:0.3%未満
 Moは、鋼の焼入れ性を向上させる効果、水素トラップサイトとなるMoを含む微細な炭化物を生成させる効果、およびマルテンサイトを微細化することによる耐遅れ破壊特性の改善の効果を得る目的で添加することができる。Nb、Tiを多量に添加するとこれらの粗大析出物が生成し、かえって耐遅れ破壊特性は劣化するが、Moの固溶限界量はNb、Tiと比べると大きい。Nb、Tiと複合で添加するとこれらとMoが複合した微細析出物を形成し、組織を微細化する作用がある。したがって、少量のNb、Ti添加に加えてMoを複合添加することで粗大な析出物を残存させずに組織を微細化しつつ微細炭化物を多量に分散させることが可能になり、耐遅れ破壊特性を向上させることが可能となる。その効果を得るにはMoは0.01%以上含有することが望ましい。Mo含有量は、より好ましくは0.03%以上であり、さらに好ましくは0.05%以上である。しかしながら、Moを0.3%以上含有すると化成処理性が劣化する。そのため、Moを含有する場合、Mo含有量は0.3%未満とする。Mo含有量は、好ましくは0.2%以下である。
Mo: less than 0.3% Mo has the effect of improving the hardenability of steel, the effect of generating fine carbides containing Mo that serve as hydrogen trap sites, and the improvement of delayed fracture resistance by refining martensite. can be added for the purpose of obtaining the effect of If a large amount of Nb or Ti is added, these coarse precipitates are formed and the delayed fracture resistance deteriorates, but the solid solubility limit of Mo is larger than that of Nb and Ti. When added in combination with Nb and Ti, it forms fine precipitates in which these and Mo are combined, and has the effect of refining the structure. Therefore, by adding Mo in addition to small amounts of Nb and Ti, it is possible to refine the structure without leaving coarse precipitates and disperse a large amount of fine carbides, thereby improving delayed fracture resistance. can be improved. In order to obtain the effect, it is desirable to contain Mo at 0.01% or more. The Mo content is more preferably 0.03% or more, still more preferably 0.05% or more. However, when Mo is contained in an amount of 0.3% or more, the chemical conversion treatability deteriorates. Therefore, when Mo is contained, the Mo content should be less than 0.3%. The Mo content is preferably 0.2% or less.
 V:0.5%以下
 Vは、鋼の焼入れ性を向上させる効果、水素トラップサイトとなるVを含む微細な炭化物を生成させる効果、およびマルテンサイトを微細化することによる耐遅れ破壊特性の改善効果を得る目的で添加することが出来る。その効果を得るにはV含有量を0.003%以上とすることが望ましい。V含有量は、より好ましくは0.03%以上であり、さらに好ましくは0.05%以上である。しかしながら、Vを0.5%を超えて含有すると鋳造性が著しく劣化する。そのため、Vを含有する場合、V含有量は0.5%以下とする。V含有量は、より好ましくは0.3%以下であり、さらに好ましくは0.2%以下である。V含有量は、さらには0.1%以下であることが好ましい。
V: 0.5% or less V has the effect of improving the hardenability of steel, the effect of forming fine carbides containing V that serve as hydrogen trap sites, and the improvement of delayed fracture resistance by refining martensite. It can be added for the purpose of obtaining an effect. In order to obtain the effect, it is desirable to set the V content to 0.003% or more. The V content is more preferably 0.03% or more, still more preferably 0.05% or more. However, if the V content exceeds 0.5%, the castability is remarkably deteriorated. Therefore, when V is contained, the V content should be 0.5% or less. The V content is more preferably 0.3% or less, still more preferably 0.2% or less. Further, the V content is preferably 0.1% or less.
 Zr:0.2%以下
 Zrは、旧γ粒の微細化やそれによるマルテンサイトの内部構造の微細化を通じて高強度化に寄与するとともに耐遅れ破壊特性を改善する。また、水素トラップサイトとなる微細なZr系炭化物・炭窒化物の形成を通じて高強度化とともに耐遅れ破壊特性を改善する。また、Zrは鋳造性を改善する。このような観点から、Zr含有量は0.005%以上とすることが望ましい。Zr含有量は、より好ましくは0.010%以上であり、好ましくは0.015%以上である。ただし、Zrを多量に添加すると熱間圧延工程のスラブ加熱時に未固溶で残存するZrN、ZrS系の粗大な析出物が増加し、せん断端面の耐遅れ破壊特性を劣化させる。そのため、Zrを含有する場合、Zr含有量は0.2%以下とする。Zr含有量は、より好ましくは0.1%以下であり、さらに好ましくは0.04%以下である。
Zr: 0.2% or less Zr contributes to high strength through refinement of prior γ grains and the resulting refinement of the internal structure of martensite, and improves delayed fracture resistance. In addition, through the formation of fine Zr-based carbides/carbonitrides that serve as hydrogen trapping sites, the strength is increased and the delayed fracture resistance is improved. Zr also improves castability. From this point of view, the Zr content is desirably 0.005% or more. The Zr content is more preferably 0.010% or more, preferably 0.015% or more. However, if a large amount of Zr is added, coarse precipitates of ZrN and ZrS that remain undissolved when the slab is heated in the hot rolling process increase, degrading the delayed fracture resistance of the sheared edge. Therefore, when Zr is contained, the Zr content should be 0.2% or less. The Zr content is more preferably 0.1% or less, still more preferably 0.04% or less.
 W:0.2%以下
 Wは、水素のトラップサイトとなる微細なW系炭化物や炭窒化物の形成を通じて、高強度化とともに耐遅れ破壊特性の改善に寄与する。このような観点から、Wは0.005%以上含有することが望ましい。W含有量は、より好ましくは0.010%以上であり、さらに好ましくは0.030%以上である。ただし、Wを多量に含有させると、熱間圧延工程のスラブ加熱時に未固溶で残存する粗大な析出物が増加し、せん断端面の耐遅れ破壊特性が劣化する。そのため、Wを含有する場合、W含有量は0.2%以下とする。W含有量は、より好ましくは0.1%以下である。
W: 0.2% or less W contributes to increasing the strength and improving the delayed fracture resistance through the formation of fine W-based carbides and carbonitrides that serve as hydrogen trap sites. From this point of view, it is desirable to contain W at 0.005% or more. The W content is more preferably 0.010% or more, still more preferably 0.030% or more. However, if a large amount of W is contained, coarse precipitates remaining undissolved when the slab is heated in the hot rolling process increase, and the delayed fracture resistance of the sheared end surface deteriorates. Therefore, when W is contained, the W content should be 0.2% or less. The W content is more preferably 0.1% or less.
 Ca:0.0030%以下
 Caは、SをCaSとして固定し、耐遅れ破壊特性を改善する。この効果を得るために、Caを0.0002%以上含有することが望ましい。Ca含有量は、より好ましくは0.0005%以上であり、さらに好ましくは0.0010%以上である。ただし、Caを多量に添加すると表面品質や曲げ性を劣化させるので、Ca含有量は0.0030%以下であることが望ましい。以上より、Caを含有する場合、Ca含有量は0.0030%以下とする。Ca含有量は、より好ましくは0.0025%以下であり、さらに好ましくは0.0020%以下である。
Ca: 0.0030% or less Ca fixes S as CaS and improves delayed fracture resistance. In order to obtain this effect, it is desirable to contain 0.0002% or more of Ca. The Ca content is more preferably 0.0005% or more, still more preferably 0.0010% or more. However, since adding a large amount of Ca deteriorates the surface quality and bendability, the Ca content is preferably 0.0030% or less. As mentioned above, when containing Ca, Ca content shall be 0.0030% or less. The Ca content is more preferably 0.0025% or less, still more preferably 0.0020% or less.
 Ce:0.0030%以下
 CeもSを固定し、耐遅れ破壊特性を改善する。この効果を得るためにCeを0.0002%以上含有することが望ましい。Ce含有量は、より好ましくは0.0003%以上であり、さらに好ましくは0.0005%以上である。ただし、Ceを多量に添加すると表面品質や曲げ性を劣化させるので、Ce含有量は0.0030%以下であることが望ましい。以上より、Ceを含有する場合、Ce含有量は0.0030%以下とする。Ce含有量は、より好ましくは0.0020%以下であり、さらに好ましくは0.0015%以下である。
Ce: 0.0030% or less Ce also fixes S and improves delayed fracture resistance. In order to obtain this effect, it is desirable to contain Ce at 0.0002% or more. The Ce content is more preferably 0.0003% or more, and still more preferably 0.0005% or more. However, since adding a large amount of Ce deteriorates the surface quality and bendability, the Ce content is preferably 0.0030% or less. From the above, when Ce is contained, the Ce content is set to 0.0030% or less. The Ce content is more preferably 0.0020% or less, still more preferably 0.0015% or less.
 La:0.0030%以下
 LaもSを固定し、耐遅れ破壊特性を改善する。この効果を得るためにLaを0.0002%以上含有することが望ましい。La含有量は、より好ましくは0.0005%以上であり、さらに好ましくは0.0010%以上である。ただし、Laを多量に添加すると表面品質や曲げ性を劣化させるので、La含有量は0.0030%以下であることが望ましい。以上より、Laを含有する場合、La含有量は、0.0030%以下とする。La含有量は、より好ましくは0.0020%以下であり、さらに好ましくは0.0015%以下である。
La: 0.0030% or less La also fixes S and improves delayed fracture resistance. In order to obtain this effect, it is desirable to contain 0.0002% or more of La. The La content is more preferably 0.0005% or more, still more preferably 0.0010% or more. However, since adding a large amount of La deteriorates the surface quality and bendability, the La content is preferably 0.0030% or less. From the above, when La is contained, the La content shall be 0.0030% or less. The La content is more preferably 0.0020% or less, still more preferably 0.0015% or less.
 REM:0.0030%以下
 REMもSを固定し、耐遅れ破壊特性を改善する。この効果を得るためにREMを0.0002%以上含有することが望ましい。REM含有量は、より好ましくは0.0003%以上であり、さらに好ましくは0.0005%以上である。ただし、REMを多量に添加すると表面品質や曲げ性を劣化させるので、REM含有量は0.0030%以下であることが望ましい。以上より、REMを含有する場合、REM含有量は、0.0030%以下とする。REM含有量は、より好ましくは0.0020%以下であり、さらに好ましくは0.0015%以下である。
なお、本発明でいうREMとは、原子番号21番のスカンジウム(Sc)と原子番号39番のイットリウム(Y)及び、原子番号57番のランタン(La)から71番のルテチウム(Lu)までのランタノイドのうち、CeとLaを除いた元素のことを指す。本発明におけるREM濃度とは、上述のREMから選択された1種または2種以上の元素の総含有量である。
REM: 0.0030% or less REM also fixes S and improves delayed fracture resistance. In order to obtain this effect, it is desirable to contain 0.0002% or more of REM. The REM content is more preferably 0.0003% or more, still more preferably 0.0005% or more. However, since addition of a large amount of REM degrades the surface quality and bendability, the REM content is preferably 0.0030% or less. From the above, when REM is contained, the REM content is set to 0.0030% or less. The REM content is more preferably 0.0020% or less, still more preferably 0.0015% or less.
In the present invention, REM includes scandium (Sc) with atomic number 21, yttrium (Y) with atomic number 39, and lanthanum (La) with atomic number 57 to lutetium (Lu) with atomic number 71. Among the lanthanoids, it refers to elements other than Ce and La. The REM concentration in the present invention is the total content of one or more elements selected from the above REMs.
 Mg:0.0030%以下
 Mgは、MgOとしてOを固定し、耐遅れ破壊特性を改善する。この効果を得るためにMgを0.0002%以上含有することが望ましい。Mg含有量は、より好ましくは0.0005%以上であり、さらに好ましくは0.0010%以上である。ただし、Mgを多量に添加すると表面品質や曲げ性を劣化させるので、Mg含有量は0.0030%以下であることが望ましい。以上より、Mgを含有する場合、Mg含有量は、0.0030%以下とする。Mg含有量は、より好ましくは0.0020%以下であり、さらに好ましくは0.0015%以下である。
Mg: 0.0030% or less Mg fixes O as MgO and improves delayed fracture resistance. In order to obtain this effect, it is desirable to contain 0.0002% or more of Mg. The Mg content is more preferably 0.0005% or more, still more preferably 0.0010% or more. However, since adding a large amount of Mg deteriorates the surface quality and bendability, the Mg content is preferably 0.0030% or less. From the above, when Mg is contained, the Mg content should be 0.0030% or less. The Mg content is more preferably 0.0020% or less, still more preferably 0.0015% or less.
 Sb:0.1%以下
 Sbは、表層の酸化や窒化を抑制し、それによるCやBの低減を抑制する。CやBの低減が抑制されることで表層のフェライト生成を抑制し、高強度化と耐遅れ破壊特性の改善に寄与する。このような観点からSb含有量は0.002%以上とすることが望ましい。Sb含有量は、より好ましくは0.004%以上であり、さらに好ましくは0.006%以上である。ただし、Sb含有量が0.1%を超えると鋳造性が劣化し、また、旧γ粒界にSbが偏析してせん断端面の耐遅れ破壊特性を劣化させる。このため、Sb含有量は0.1%以下であることが望ましい。以上より、Sbを含有する場合、Sb含有量は、0.1%以下とする。Sb含有量は、より好ましくは0.05%以下であり、さらに好ましくは0.02%以下である。
Sb: 0.1% or less Sb suppresses the oxidation and nitridation of the surface layer, thereby suppressing the reduction of C and B. Suppressing the reduction of C and B suppresses the formation of ferrite in the surface layer, contributing to higher strength and improved delayed fracture resistance. From this point of view, the Sb content is desirably 0.002% or more. The Sb content is more preferably 0.004% or more, still more preferably 0.006% or more. However, if the Sb content exceeds 0.1%, the castability deteriorates, and Sb segregates at the prior γ grain boundaries to deteriorate the delayed fracture resistance of the sheared edge. Therefore, the Sb content is desirably 0.1% or less. From the above, when Sb is contained, the Sb content is set to 0.1% or less. The Sb content is more preferably 0.05% or less, still more preferably 0.02% or less.
 Sn:0.1%以下
 Snは、表層の酸化や窒化を抑制し、それによるCやBの表層における含有量の低減を抑制する。CやBの低減が抑制されることで表層のフェライト生成を抑制し、高強度化と耐遅れ破壊特性の改善に寄与する。このような観点からSn含有量は0.002%以上とすることが望ましい。Sn含有量は、好ましくは0.003%以上である。ただし、Sn含有量が0.1%を超えると鋳造性が劣化し、また、旧γ粒界にSnが偏析してせん断端面の耐遅れ破壊特性が劣化する。このため、Snを含有する場合、Sn含有量は、0.1%以下とする。Sn含有量は、より好ましくは0.05%以下であり、さらに好ましくは0.01%以下である。
Sn: 0.1% or less Sn suppresses oxidation and nitridation of the surface layer, thereby suppressing a decrease in the content of C and B in the surface layer. Suppressing the reduction of C and B suppresses the formation of ferrite in the surface layer, contributing to higher strength and improved delayed fracture resistance. From this point of view, the Sn content is desirably 0.002% or more. The Sn content is preferably 0.003% or more. However, if the Sn content exceeds 0.1%, the castability deteriorates, and Sn segregates at the prior γ grain boundaries, resulting in deterioration of the delayed fracture resistance of the sheared edges. Therefore, when Sn is contained, the Sn content is set to 0.1% or less. The Sn content is more preferably 0.05% or less, still more preferably 0.01% or less.
 なお、上記任意元素を好適下限値未満で含む場合、上記任意元素を不可避的不純物として含むものとする。 When the content of the arbitrary element is less than the preferred lower limit, the arbitrary element is included as an unavoidable impurity.
 鋼組織
本発明の鋼板の鋼組織は、以下の構成を備える。
(構成1)マルテンサイトの組織全体に対する面積率が95%以上100%以下である。
(構成2)旧オーステナイト粒の平均粒径が11.0μm未満である。
(構成3)円相当径500nm以上である析出物の数密度Aが下記の式(1)を満たす。
A(個/mm)≦ 8.5×10×[B] ・・・式(1)
ここで、[B]はBの含有量(質量%)を表す。
Steel Structure The steel structure of the steel sheet of the present invention has the following structure.
(Configuration 1) The area ratio of martensite to the entire structure is 95% or more and 100% or less.
(Configuration 2) The average grain size of prior austenite grains is less than 11.0 μm.
(Structure 3) The number density A of precipitates having an equivalent circle diameter of 500 nm or more satisfies the following formula (1).
A (number/mm 2 )≦8.5×10 5 ×[B] Expression (1)
Here, [B] represents the content of B (% by mass).
 以下、各構成について説明する。 Each configuration will be described below.
 (構成1)マルテンサイトの組織全体に対する面積率が95%以上100%以下である。
TS≧1470MPaの高い強度と優れた耐遅れ破壊特性を両立するために、鋼組織におけるマルテンサイトの面積率を95%以上とする。より好ましくは99%以上、さらに好ましくは100%である。なお、マルテンサイト以外を含む場合、残部はベイナイト、フェライト、残留オーステナイト(残留γ)が挙げられる。これらの組織以外は、微量の炭化物、硫化物、窒化物、酸化物である。残部組織は、5%以下であり、好ましくは1%以下である。また、マルテンサイトには連続冷却中の自己焼き戻しも含めておよそ150℃以上で一定時間滞留することによる焼き戻しが生じていないマルテンサイトも含む。なお、残部を含まず、マルテンサイトの面積率が100%でもよい。
(Configuration 1) The area ratio of martensite to the entire structure is 95% or more and 100% or less.
In order to achieve both high strength of TS≧1470 MPa and excellent delayed fracture resistance, the area ratio of martensite in the steel structure is set to 95% or more. More preferably 99% or more, still more preferably 100%. In addition, when other than martensite is included, the balance includes bainite, ferrite, and retained austenite (retained γ). Other than these structures are trace amounts of carbides, sulfides, nitrides and oxides. The residual tissue is 5% or less, preferably 1% or less. In addition, martensite includes self-tempering during continuous cooling and martensite that is not tempered by staying at about 150° C. or higher for a certain period of time. Note that the area ratio of martensite may be 100% without including the remainder.
 (構成2)旧オーステナイト粒の平均粒径が11.0μm未満である。
鋼組織におけるマルテンサイトの面積率が95%以上の鋼では、遅れ破壊破面は粒界破面を呈することが多く、遅れ破壊の起点および遅れ破壊初期の亀裂進展経路は旧オーステナイト粒界上と考えられる。粒界破壊の抑制には旧オーステナイト粒の微細化が有効であり、旧オーステナイト粒の微細化により耐遅れ破壊特性は顕著に改善する。メカニズムとしては旧オーステナイト粒の微細化により旧オーステナイト粒界の面積率が増加し、粒界脆化元素であるP等の不純物元素の旧オーステナイト粒界上での濃度が低下することが考えられる。また、旧オーステナイト粒の微細化は、引張強度の向上にも寄与する。耐遅れ破壊特性および強度の観点から、旧オーステナイト粒の平均粒径(旧γ粒径)は、11.0μm未満である。この平均粒径は、好ましくは10μm以下であり、より好ましくは7.0μm以下であり、さらに好ましくは5.0μm以下である。
(Configuration 2) The average grain size of prior austenite grains is less than 11.0 μm.
In steels with a martensite area ratio of 95% or more in the steel structure, the delayed fracture surface often exhibits intergranular fracture surface, and the initiation point of delayed fracture and the crack propagation path at the initial stage of delayed fracture are on the prior austenite grain boundary. Conceivable. Refinement of prior-austenite grains is effective for suppressing intergranular fracture, and refinement of prior-austenite grains significantly improves delayed fracture resistance. The mechanism is thought to be that the area ratio of the prior austenite grain boundaries increases due to the refinement of the prior austenite grains, and the concentration of impurity elements such as P, which is a grain boundary embrittlement element, on the prior austenite grain boundaries decreases. Further, the refinement of the prior austenite grains also contributes to the improvement of the tensile strength. From the viewpoint of delayed fracture resistance and strength, the average grain size of prior austenite grains (prior γ grain size) is less than 11.0 μm. This average particle size is preferably 10 μm or less, more preferably 7.0 μm or less, and still more preferably 5.0 μm or less.
 (構成3)円相当径500nm以上である析出物の数密度Aが下記の式を満たす。
A(個/mm)≦ 8.5×10×[B] ・・・式(1)
ここで、[B]はBの含有量(質量%)を表す。
TS≧1470MPaの高い強度を有する鋼において粒界破壊を抑制するためには、旧オーステナイト粒の微細化に加えて、Bを粒界に偏析させて粒界を強化することが有効である。ただし、単なるB添加量の増加は、粒界偏析Bだけでなく遅れ破壊の起点となるFe23(C,B)を主体としたB系析出物も増加させるため、耐遅れ破壊特性をむしろ低下させる。本発明者らは、熱間圧延条件の制御により円相当径500nm以上の析出物の数密度Aを低減し、下記の条件を満たすことでBの粒界強化による耐遅れ破壊特性の向上と析出物起点の破壊の抑制を両立することが可能であることを見出した。
A(個/mm)≦ 8.5×10×[B]
好ましくは、A(個/mm)≦ 5.0×10×[B]であり、より好ましくは、A(個/mm)≦ 2.0×10×[B]である。
(Structure 3) The number density A of precipitates having an equivalent circle diameter of 500 nm or more satisfies the following formula.
A (pieces/mm 2 )≦8.5×10 5 ×[B] Expression (1)
Here, [B] represents the content of B (% by mass).
In order to suppress intergranular fracture in steel having a high strength of TS≧1470 MPa, in addition to refining prior austenite grains, it is effective to segregate B at the grain boundaries to strengthen the grain boundaries. However, a mere increase in the amount of B added increases not only the grain boundary segregation B but also the B-based precipitates mainly composed of Fe 23 (C, B) 6 which is the starting point of delayed fracture, so the delayed fracture resistance is rather improved. Lower. The present inventors have found that by controlling the hot rolling conditions, the number density A of precipitates with an equivalent circle diameter of 500 nm or more is reduced, and by satisfying the following conditions, the delayed fracture resistance is improved by strengthening the grain boundaries of B and the origin of the precipitates It was found that it is possible to simultaneously suppress the destruction of the
A (pieces/mm 2 ) ≤ 8.5 × 10 5 × [B]
Preferably, A (number/mm 2 )≦5.0×10 5 ×[B], more preferably A (number/mm 2 )≦2.0×10 5 ×[B].
 以上の鋼組織における各構成の測定方法を説明する。
マルテンサイト、ベイナイト、フェライトの面積率は、鋼板のL断面(圧延方向に平行であり、鋼板表面に垂直である断面(以下、圧延方向に平行な垂直断面とも記す。))を研磨後ナイタールで腐食し、鋼板表面から1/4厚み位置においてSEMで2000倍の倍率にて4視野観察し、撮影した組織写真を画像解析して測定する。ここで、マルテンサイト、ベイナイトはSEMでは灰色もしくは白色を呈した組織を指す。一方、フェライトはSEMで黒色のコントラストを呈する領域である。なお、マルテンサイトやベイナイトの内部には微量の炭化物、窒化物、硫化物、酸化物を含むが、これらを除外することは困難なので、これらを含めた領域の面積率をその面積率とする。
A method of measuring each component in the above steel structure will be described.
The area ratios of martensite, bainite, and ferrite are obtained by polishing the L section of the steel sheet (the section parallel to the rolling direction and perpendicular to the surface of the steel sheet (hereinafter also referred to as the vertical section parallel to the rolling direction)) with Nital. Corroded and observed at 1/4 thickness position from the surface of the steel plate with SEM at a magnification of 2000 times, 4 fields of view are observed, and the photographed structure photograph is image-analyzed and measured. Here, martensite and bainite indicate gray or white structures in SEM. On the other hand, ferrite is a region exhibiting black contrast in SEM. Martensite and bainite contain trace amounts of carbides, nitrides, sulfides, and oxides, but since it is difficult to exclude them, the area ratio of the region including these is used as the area ratio.
 ここで、ベイナイトは以下の特徴を有する。すなわち、アスペクト比が2.5以上でプレート状の形態を呈しており、マルテンサイトとくらべるとやや黒色の組織である。上記のプレートの幅は0.3~1.7μmである。ベイナイトの内部の直径10~200nmの炭化物の分布密度は0~3個/μmである。 Here, bainite has the following characteristics. That is, it has an aspect ratio of 2.5 or more, exhibits a plate-like form, and is a slightly blacker structure than martensite. The width of the plate is 0.3-1.7 μm. The distribution density of carbides with a diameter of 10 to 200 nm inside bainite is 0 to 3 pieces/μm 2 .
 残留オーステナイト(残留γ)の測定は、鋼板の表層200μmをシュウ酸で化学研磨し、板面を対象に、X線回折強度法により求める。Mo-Kα線によって測定した(200)α、(211)α、(220)α、(200)γ、(220)γ、(311)γ回折面ピークの積分強度より計算する。  The retained austenite (retained γ) is measured by chemically polishing the 200 μm surface layer of the steel plate with oxalic acid, and using the X-ray diffraction intensity method for the plate surface. It is calculated from the integrated intensities of (200)α, (211)α, (220)α, (200)γ, (220)γ, and (311)γ diffraction plane peaks measured by Mo-Kα rays.
 旧オーステナイト粒の平均粒径(旧γ粒径)の測定は、鋼板のL断面(圧延方向に平行な垂直断面)を研磨後、旧γ粒界を腐食する薬液(例えば、飽和ピクリン酸水溶液やこれに塩化第2鉄を添加したもの)で腐食し、鋼板表面から1/4厚み位置において光学顕微鏡で500倍の倍率にて4視野観察し、得られた写真中に、板厚方向、圧延方向にそれぞれ15本の線を実際の長さで10μm以上の間隔で引き、粒界と線との交点の数を数える。さらに、全線長を交点の数で除した値に1.13を乗じることで旧γ粒径(旧オーステナイト粒の平均粒径)を測定できる。 The average grain size of prior austenite grains (prior γ grain size) is measured by polishing the L cross section (vertical cross section parallel to the rolling direction) of the steel sheet, and then applying a chemical solution that corrodes the prior γ grain boundaries (such as a saturated picric acid aqueous solution or It was corroded by adding ferric chloride to this), and observed at 1/4 thickness position from the steel plate surface with an optical microscope at a magnification of 500 times. 15 lines are drawn in each direction at intervals of 10 μm or more in actual length, and the number of intersections between grain boundaries and lines is counted. Furthermore, the prior γ grain size (average grain size of prior austenite grains) can be measured by multiplying the value obtained by dividing the total line length by the number of intersections by 1.13.
 円相当径500nm以上である析出物の数密度Aは、鋼板のL断面(圧延方向に平行な垂直断面)を研磨後、鋼板の板厚1/5位置~4/5位置の領域、すなわち鋼板表面より板厚に対して1/5位置から、板厚中央を挟み、4/5位置までの領域において、2mmの領域を連続してSEMで撮影し、撮影したSEM写真から、このような析出物の個数を計測することで求めた。また、撮影する倍率は2000倍である。また、個々の介在物粒子の成分分析を行う場合は、個々の介在物粒子を10000倍に拡大して、上記の析出物を分析する。ここで、円相当径500nm以上である析出物はFe23(C,B)等のBを含む析出物であり、加速電圧が3kVのエネルギー分散型X線分光法(EDS)による元素分析でBのピークの有無を調べ、Bのピークがあるときは、上記の析出物が存在していると評価した。
なお、スラブ再加熱が十分でない場合、NbやTiを含有する析出物も増加し、これらの析出物も遅れ破壊特性に対して悪影響を及ぼす。
なお、円相当径とは、SEM写真から算出される各析出物の面積を有する真円の直径のことを指す。
The number density A of precipitates with an equivalent circle diameter of 500 nm or more is obtained by polishing the L cross section (vertical cross section parallel to the rolling direction) of the steel sheet, and then the area from the 1/5 position to the 4/5 position of the steel plate thickness, that is, from the steel plate surface. In the region from the 1/5th position to the 4/5th position across the center of the plate thickness, an area of 2 mm 2 was continuously photographed with an SEM, and from the photographed SEM photographs, such precipitates It was obtained by counting the number of Also, the magnification for photographing is 2000 times. Moreover, when performing the component analysis of each inclusion particle, each inclusion particle is magnified 10000 times, and the said precipitate is analyzed. Here, the precipitate having an equivalent circle diameter of 500 nm or more is a precipitate containing B such as Fe 23 (C, B) 6 , and an elemental analysis by energy dispersive X-ray spectroscopy (EDS) at an acceleration voltage of 3 kV The presence or absence of a B peak was examined, and when there was a B peak, it was evaluated that the above precipitates were present.
If the slab is not sufficiently reheated, precipitates containing Nb and Ti also increase, and these precipitates also adversely affect the delayed fracture properties.
The equivalent circle diameter refers to the diameter of a perfect circle having an area of each precipitate calculated from the SEM photograph.
 引張強度(TS):1470MPa以上
 耐遅れ破壊特性の劣化は、鋼板の引張強度が1470MPa以上であると著しく顕在化する。引張強度が1470MPa以上であっても、耐遅れ破壊特性が良好な点が本発明の特徴の一つである。したがって、本発明において引張強度は1470MPa以上であることが必要である。自動車用骨格部品の軽量化の観点から、1700MPa以上であることが好ましい。本発明の鋼板の引張強度は2100MPa以下としてよい。
Tensile strength (TS): 1470 MPa or more Deterioration of delayed fracture resistance becomes conspicuous when the steel sheet has a tensile strength of 1470 MPa or more. One of the characteristics of the present invention is that the delayed fracture resistance is good even if the tensile strength is 1470 MPa or more. Therefore, in the present invention, the tensile strength must be 1470 MPa or more. From the viewpoint of reducing the weight of automobile frame parts, it is preferably 1700 MPa or more. The tensile strength of the steel sheet of the present invention may be 2100 MPa or less.
 引張強度は、コイル幅1/4位置において圧延直角方向が長手方向となるようにJIS5号引張試験片を切り出し、JIS Z2241に準拠した引張試験により測定できる。 The tensile strength can be measured by cutting out a JIS No. 5 tensile test piece so that the direction perpendicular to the rolling direction is the longitudinal direction at the position of 1/4 of the coil width, and conducting a tensile test based on JIS Z2241.
 以上の本発明の鋼板は、表面にめっき層を有する鋼板であってもよい。めっき層はZnめっきでも他の金属のめっきでもよい。また、溶融めっき層、電気めっき層のいずれでもよい。 The steel sheet of the present invention described above may be a steel sheet having a plating layer on its surface. The plating layer may be Zn plating or plating of other metals. Further, it may be either a hot-dip plated layer or an electroplated layer.
 次いで、本発明の鋼板の製造方法について説明する。
本発明の鋼板の製造方法は、上記成分組成を有する鋼スラブを、スラブ表面温度で1000℃から1250℃以上の加熱保持温度までを10℃/分以下の平均加熱速度で加熱し、この加熱保持温度で30分以上保持した後、900~1000℃での滞留時間を20秒以上150秒以下とし、仕上げ圧延温度を850℃以上とする条件で熱間仕上げ圧延を行い、仕上げ圧延温度から650℃までの範囲における平均冷却速度を40℃/秒以上とする冷却を行い、その後、650℃以下の巻取り温度で巻取ることで熱延鋼板とし、該熱延鋼板を40%以上の圧下率で冷間圧延することで冷延鋼板とし、焼鈍温度を830~950℃とし、上記冷延鋼板を、400℃から上記焼鈍温度まで1.0℃/秒以上の平均加熱速度で加熱し、上記焼鈍温度で600秒以下保持し、680℃以上の冷却開始温度から260℃以下の冷却停止温度まで70℃/秒以上の平均冷却速度で冷却し、その後、150~260℃の保持温度で20~1500秒保持する連続焼鈍を行う、鋼板の製造方法である。
Next, the method for manufacturing the steel sheet of the present invention will be described.
In the method for producing a steel plate of the present invention, a steel slab having the above chemical composition is heated at a slab surface temperature from 1000 ° C. to a heating and holding temperature of 1250 ° C. or higher at an average heating rate of 10 ° C./min or less, and this heating and holding After holding at the temperature for 30 minutes or more, hot finish rolling is performed under the conditions of a residence time of 20 seconds or more and 150 seconds or less at 900 to 1000 ° C. and a finish rolling temperature of 850 ° C. or more, and the finish rolling temperature is 650 ° C. Cooling is performed at an average cooling rate of 40 ° C./sec or more in the range of up to and then coiling at a coiling temperature of 650 ° C. or less to form a hot-rolled steel sheet, and the hot-rolled steel sheet is rolled at a reduction rate of 40% or more. A cold-rolled steel sheet is obtained by cold rolling, the annealing temperature is set to 830 to 950 ° C., the cold-rolled steel plate is heated from 400 ° C. to the annealing temperature at an average heating rate of 1.0 ° C./sec or more, and the annealing is performed. Hold the temperature for 600 seconds or less, cool from the cooling start temperature of 680 ° C. or more to the cooling stop temperature of 260 ° C. or less at an average cooling rate of 70 ° C./sec or more, and then keep the temperature at 150 to 260 ° C. for 20 to 1500. A steel sheet manufacturing method in which continuous annealing is performed for seconds.
 熱間圧延
 熱間圧延前のスラブ加熱では、1000℃から1250℃以上の加熱保持温度まで、平均加熱速度を10℃/分以下とすることで、硫化物の固溶促進が図られ介在物の大きさや個数低減が図られる。Nb、Tiは溶解温度が高いため、スラブ表面温度で加熱保持温度を1250℃以上とし、保持時間を30分以上とすることでNb、Tiの固溶促進が図られ、析出物の大きさや個数低減が図られる。上記加熱保持温度は1300℃以上とすることが好ましい。より好ましくは1350℃以上である。
ここで、平均加熱速度とは、「(スラブ加熱完了時の温度(加熱保持温度)(℃)-スラブ加熱開始時の温度(℃)(1000℃))/加熱開始から加熱完了までの加熱時間(分)」である。
Hot rolling In the slab heating before hot rolling, the average heating rate is set at 10°C/min or less from 1000°C to the heating and holding temperature of 1250°C or higher to promote the dissolution of sulfides and the formation of inclusions. Reduction in size and number is achieved. Since Nb and Ti have high dissolution temperatures, the heating and holding temperature at the slab surface temperature is set to 1250° C. or higher, and the holding time is set to 30 minutes or longer to promote solid dissolution of Nb and Ti. reduction is achieved. The heating and holding temperature is preferably 1300° C. or higher. More preferably, it is 1350° C. or higher.
Here, the average heating rate is "(Temperature at the completion of slab heating (heating holding temperature) (°C) - Temperature at the start of slab heating (°C) (1000°C)) / Heating time from the start of heating to the completion of heating. (minutes)”.
 その後、スラブを900~1000℃で20秒以上150秒以下滞留させる。900~1000℃の温度域における滞留時間の増加は、BNを主体とした析出物を生成・粗大化させる。これらの温度域で生成する析出物は焼鈍加熱によって固溶しにくく、焼鈍後の固溶B量を低下させる。したがって、滞留時間が150秒超えでは、遅れ破壊の抑制に有効な固溶B量を得ることができない。そのため、滞留時間150秒以下であり、好ましくは120秒以下、より好ましくは、100秒以下である。一方、滞留時間が20秒未満では、組織が不均一となる可能性がある。そのため、滞留時間は20秒以上であり、好ましくは、30秒以上であり、より好ましくは、40秒以上である。 After that, the slab is held at 900-1000°C for 20 seconds or more and 150 seconds or less. An increase in the residence time in the temperature range of 900 to 1000° C. produces and coarsens precipitates mainly composed of BN. Precipitates generated in these temperature ranges are difficult to form a solid solution by annealing heating, and reduce the amount of solid solution B after annealing. Therefore, if the residence time exceeds 150 seconds, it is not possible to obtain a solid solution B amount that is effective in suppressing delayed fracture. Therefore, the residence time is 150 seconds or less, preferably 120 seconds or less, and more preferably 100 seconds or less. On the other hand, if the residence time is less than 20 seconds, the tissue may become non-uniform. Therefore, the residence time is 20 seconds or longer, preferably 30 seconds or longer, and more preferably 40 seconds or longer.
 熱間仕上げ圧延において、仕上げ圧延温度(FT)はNb、Ti、B等の析出を抑制するため、850℃以上とする。好ましくは、仕上げ圧延温度は930℃以下である。  In the hot finish rolling, the finish rolling temperature (FT) is set to 850°C or higher in order to suppress the precipitation of Nb, Ti, B, etc. Preferably, the finish rolling temperature is 930° C. or less.
 また、熱間仕上げ圧延後の冷却において、仕上げ圧延温度から650℃の範囲における平均冷却速度を40℃/秒以上とする冷却を行う。平均冷却速度が40℃/秒未満であると、Nb炭窒化物、Ti炭窒化物の粗大化により、円相当径1.0μm以上の炭窒化物が増加し、所望の耐遅れ破壊特性が得られない。好ましくは、平均冷却速度は、250℃/秒以下であり、より好ましくは、200℃/秒以下である。
なお、熱間圧延工程での平均冷却速度とは、「(冷却開始時の温度(仕上げ圧延温度)(℃)-冷却完了時の温度(℃)(650℃))/冷却開始から冷却完了までの冷却時間(秒)」である。
Further, cooling after hot finish rolling is performed at an average cooling rate of 40°C/second or more in the range from the finish rolling temperature to 650°C. When the average cooling rate is less than 40° C./sec, the number of carbonitrides having an equivalent circle diameter of 1.0 μm or more increases due to the coarsening of Nb carbonitrides and Ti carbonitrides, and the desired delayed fracture resistance is obtained. can't Preferably, the average cooling rate is 250° C./s or less, more preferably 200° C./s or less.
The average cooling rate in the hot rolling process is "(temperature at the start of cooling (finish rolling temperature) (°C) - temperature at the completion of cooling (°C) (650°C)) / from the start of cooling to the completion of cooling. cooling time (seconds).
 上記の650℃までの冷却後、必要に応じて冷却して巻取りを行う。このとき、巻取り温度が650℃超えでは微細なオーステナイト域で析出したNb、Ti系析出物の粗大化のみが進行するため、粗大な析出物が増加し、遅れ破壊特性は低下する。したがって、巻取り温度は650℃以下とする。好ましくは、巻取り温度は500℃以上である。 After cooling to 650°C, it is cooled and wound as necessary. At this time, if the coiling temperature exceeds 650° C., only the Nb and Ti precipitates precipitated in the fine austenite region are coarsened, so the coarse precipitates increase and the delayed fracture characteristics deteriorate. Therefore, the winding temperature should be 650° C. or lower. Preferably, the winding temperature is 500°C or higher.
 冷間圧延
 冷間圧延で、圧下率(冷間圧延率)を40%以上とすれば、その後の連続焼鈍における再結晶挙動、集合組織配向を安定化させることができる。40%に満たない場合、焼鈍時のオーステナイト粒が一部粗大となり、強度が低下するおそれがある。また、冷間圧延率は、80%以下であることが好ましい。
Cold Rolling In cold rolling, if the rolling reduction (cold rolling rate) is 40% or more, recrystallization behavior and texture orientation in the subsequent continuous annealing can be stabilized. If the content is less than 40%, some of the austenite grains during annealing may become coarse and the strength may decrease. Also, the cold rolling rate is preferably 80% or less.
 連続焼鈍
 冷間圧延後の鋼板には、連続焼鈍ライン(CAL)で焼鈍と必要に応じて焼き戻し処理、調質圧延が施される。
Fe23(C,B)は焼鈍加熱中のフェライト域で生成し、粗大化するため、Fe23(C,B)を低減させ、Bによる粒界強化の効果を十分に得るためには400℃以上での平均加熱速度を増加させることが極めて重要である。また、旧γ粒径を11.0μm未満に微細化する観点からも加熱速度の増加が必要である。以上の観点から、400℃以上での平均加熱速度は1.0℃/秒以上である。また、好ましくは、400℃以上での平均加熱速度は1.5℃/秒以上であり、より好ましくは、3.0℃/秒以上である。
また、好ましくは、この平均加熱速度は10℃/秒以下である。
なお、ここでの平均加熱速度とは、「後述の焼鈍温度(℃)-400(℃))/400℃から焼鈍温度までの加熱時間(分)」である。
焼鈍後に未固溶で残存するFe23(C,B)などの析出物を十分に低減するため、焼鈍は高温で長時間行う。具体的には、焼鈍温度を830℃以上とする必要がある。
一方、950℃超えの焼鈍では旧γ粒径が粗大になり狙いの組織が得られないため、焼鈍温度は950℃以下とする。また、900℃超えの焼鈍ではBNが粒界に析出し、耐遅れ破壊特性が劣化することがあるため、より好ましくは900℃以下である。焼鈍温度での均熱時間(保持時間)の長時間化でも旧γ粒径が粗大になりすぎるため、600秒以下の均熱とする。好ましくは、この均熱時間は10秒以上である。
Continuous Annealing After cold rolling, the steel sheet is subjected to annealing and, if necessary, tempering and temper rolling in a continuous annealing line (CAL).
Since Fe 23 (C, B) 6 is generated in the ferrite region during annealing heating and coarsens, in order to reduce Fe 23 (C, B) 6 and sufficiently obtain the effect of grain boundary strengthening by B, It is very important to increase the average heating rate above 400°C. Also, from the viewpoint of refining the prior γ grain size to less than 11.0 μm, it is necessary to increase the heating rate. From the above point of view, the average heating rate at 400° C. or higher is 1.0° C./second or higher. Also, the average heating rate at 400° C. or higher is preferably 1.5° C./second or higher, more preferably 3.0° C./second or higher.
Also, preferably, the average heating rate is 10° C./sec or less.
Here, the average heating rate is defined as "annealing temperature (° C.)−400 (° C.) described later)/heating time (minutes) from 400° C. to the annealing temperature".
In order to sufficiently reduce precipitates such as Fe 23 (C, B) 6 remaining undissolved after annealing, annealing is performed at a high temperature for a long time. Specifically, the annealing temperature must be 830° C. or higher.
On the other hand, if the annealing temperature exceeds 950°C, the prior γ grain size becomes coarse and the desired structure cannot be obtained. Moreover, since BN may precipitate at grain boundaries and the delayed fracture resistance may deteriorate when annealing is performed at a temperature exceeding 900° C., the annealing temperature is preferably 900° C. or lower. Even if the soaking time (holding time) at the annealing temperature is prolonged, the prior γ grain size becomes too coarse, so the soaking time is set to 600 seconds or less. Preferably, this soaking time is 10 seconds or longer.
 その後、フェライト、残留オーステナイトを低減し、マルテンサイトの面積率を95%以上にするために、680℃以上の冷却開始温度から260℃以下の冷却停止温度までを70℃/秒以上の平均冷却速度で冷却する。 After that, in order to reduce ferrite and retained austenite and increase the area ratio of martensite to 95% or more, the average cooling rate is 70 ° C./sec or more from the cooling start temperature of 680 ° C. or higher to the cooling stop temperature of 260 ° C. or lower. Cool with
 ここで平均冷却速度とは、「680℃以上の冷却開始温度(℃)-260℃以下の冷却停止温度(℃))/680℃以上の冷却開始温度から260℃以下の冷却停止温度までの冷却時間(秒)」である。 Here, the average cooling rate is defined as "cooling start temperature of 680 ° C. or higher (° C.) - cooling stop temperature of 260 ° C. or lower (° C.) / cooling from the cooling start temperature of 680 ° C. or higher to the cooling stop temperature of 260 ° C. or lower. time (seconds)".
 冷却開始温度が680℃未満であると、マルテンサイトの面積率を95%以上にすることができない。そのため、冷却開始温度が680℃以上とする。好ましくは、この冷却開始温度は、800℃以下である。 If the cooling start temperature is less than 680°C, the area ratio of martensite cannot be increased to 95% or more. Therefore, the cooling start temperature is set to 680° C. or higher. Preferably, this cooling start temperature is 800° C. or lower.
 平均冷却速度が70℃/秒未満であると、フェライトやベイナイトが多量に生成し十分な強度が得られない。そのため、平均冷却速度は70℃/秒以上とする。平均冷却速度は、好ましくは、700℃/秒以上である。 If the average cooling rate is less than 70°C/sec, a large amount of ferrite and bainite will be generated and sufficient strength cannot be obtained. Therefore, the average cooling rate is set to 70° C./second or more. The average cooling rate is preferably at least 700°C/sec.
 また、冷却停止温度が260℃を超えると上部・下部ベイナイトが生成し、残留オーステナイト、フレッシュマルテンサイトが増加するという問題がある。そのため、冷却停止温度は260℃以下とする。 In addition, when the cooling stop temperature exceeds 260°C, there is a problem that upper and lower bainite are generated, and retained austenite and fresh martensite increase. Therefore, the cooling stop temperature is set to 260° C. or lower.
 マルテンサイト内部に分布する炭化物は、焼き入れ後の低温域保持中に生成する炭化物である。優れた耐遅れ破壊特性と、引張強度1470MPa以上(TS≧1470MPa)を確保できるように、上記炭化物の生成を適正に制御する必要がある。
そのためには、150~260℃の保持温度で、保持時間を20~1500秒に制御する必要がある。
この保持温度が下限の150℃よりも低温であったり、保持時間が短時間であったりすると、変態相内部の炭化物分布密度が不十分となり、耐遅れ破壊特性が劣化する。一方、この保持温度が上限の260℃よりも高温では、粒内およびブロック粒界での炭化物の粗大化が顕著になって、耐遅れ破壊特性が劣化するおそれがある。また、保持時間が1500秒を超えると、粒内およびブロック粒界での炭化物の粗大化が顕著になって、耐遅れ破壊特性が劣化するおそれがある。したがって、本発明では、連続焼鈍において、150~260℃の保持温度で、20~1500秒保持する。
The carbides distributed inside the martensite are the carbides that are generated during holding in a low temperature range after quenching. In order to ensure excellent delayed fracture resistance and tensile strength of 1470 MPa or more (TS≧1470 MPa), it is necessary to appropriately control the formation of the carbides.
For this purpose, it is necessary to control the holding temperature to 150 to 260° C. and the holding time to 20 to 1500 seconds.
If the holding temperature is lower than the lower limit of 150° C. or if the holding time is short, the distribution density of carbides inside the transformation phase becomes insufficient and the delayed fracture resistance deteriorates. On the other hand, if the holding temperature is higher than the upper limit of 260° C., coarsening of carbides in grains and block grain boundaries becomes significant, possibly deteriorating the delayed fracture resistance. On the other hand, when the holding time exceeds 1500 seconds, coarsening of carbides in grains and block grain boundaries becomes significant, and there is a possibility that delayed fracture resistance deteriorates. Therefore, in the present invention, the continuous annealing is carried out at a holding temperature of 150 to 260° C. for 20 to 1500 seconds.
 このようにして得られた鋼板に、表面粗度の調整、板形状の平坦化などプレス成形性を安定化させる観点からスキンパス圧延を施すことができる。その場合は、スキンパス伸長率は0.1%以上とするのが好ましい。また、スキンパス伸長率は0.6%以下とするのが好ましい。この場合、スキンパスロールはダルロールとし、鋼板の粗さRaを0.8μm以上に調整することが形状平坦化の観点からは好ましい。また、鋼板の粗さRaは1.8μm以下に調整することが好ましい。 The steel sheet thus obtained can be subjected to skin-pass rolling from the viewpoint of stabilizing press formability, such as adjusting the surface roughness and flattening the plate shape. In that case, the skin pass elongation rate is preferably 0.1% or more. Also, the skin pass elongation rate is preferably 0.6% or less. In this case, dull rolls are used as the skin pass rolls, and it is preferable to adjust the roughness Ra of the steel sheet to 0.8 μm or more from the viewpoint of flattening the shape. Further, it is preferable to adjust the roughness Ra of the steel sheet to 1.8 μm or less.
 また、得られた鋼板に、めっき処理を施してもよい。すなわち、連続焼鈍の後、鋼板表面にめっき処理を行ってもよい。めっき処理を施すことで表面にめっき層を有する鋼板が得られる。 Also, the obtained steel sheet may be subjected to a plating treatment. That is, after continuous annealing, the surface of the steel sheet may be plated. A steel sheet having a plating layer on its surface can be obtained by plating.
 以上、本発明によれば、高強度冷延鋼板の耐遅れ破壊特性を大幅に向上させ、高強度鋼板の適用による部品強度の向上や軽量化に貢献する。本発明の鋼板は、板厚は0.5mm以上とすることが好ましい。また、板厚は2.0mm以下とすることが好ましい。 As described above, according to the present invention, the delayed fracture resistance of high-strength cold-rolled steel sheets is greatly improved, and the application of high-strength steel sheets contributes to the improvement of part strength and weight reduction. The steel sheet of the present invention preferably has a thickness of 0.5 mm or more. Also, the plate thickness is preferably 2.0 mm or less.
 次に、本発明の部材およびその製造方法について説明する。 Next, the member of the present invention and its manufacturing method will be described.
 本発明の部材は、本発明の鋼板に対して、成形加工、接合加工の少なくとも一方を施してなるものである。また、本発明の部材の製造方法は、本発明の鋼板に対して、成形加工、接合加工の少なくとも一方を施して部材とする工程を含む。 The member of the present invention is obtained by subjecting the steel plate of the present invention to at least one of forming and joining. Further, the method for manufacturing a member of the present invention includes a step of subjecting the steel plate of the present invention to at least one of forming and joining to form a member.
 本発明の鋼板は、引張強さが1470MPa以上であり、優れた耐遅れ破壊特性を有している。そのため、本発明の鋼板を用いて得た部材も高強度であり、従来の高強度部材に比べて耐遅れ破壊特性に優れる。また、本発明の部材を用いれば、軽量化可能である。したがって、本発明の部材は、例えば、車体骨格部品に好適に用いることができる。 The steel sheet of the present invention has a tensile strength of 1470 MPa or more and excellent delayed fracture resistance. Therefore, members obtained using the steel sheet of the present invention also have high strength and are superior in delayed fracture resistance to conventional high-strength members. Moreover, if the member of the present invention is used, the weight can be reduced. Therefore, the member of the present invention can be suitably used for, for example, vehicle body frame parts.
 成形加工は、プレス加工等の一般的な加工方法を制限なく用いることができる。また、接合加工は、スポット溶接、アーク溶接等の一般的な溶接や、リベット接合、かしめ接合等を制限なく用いることができる。 General processing methods such as press processing can be used without restrictions for molding. In addition, as the joining process, general welding such as spot welding and arc welding, riveting, caulking, and the like can be used without limitation.
 以下、本発明の実施例を説明する。
表1に示す成分組成の鋼を溶製後、スラブに鋳造した。
このスラブに、表2に示す熱処理および圧延を施し板厚1.4mmの鋼板を得た。
Examples of the present invention will be described below.
Steels having chemical compositions shown in Table 1 were melted and then cast into slabs.
This slab was subjected to the heat treatment and rolling shown in Table 2 to obtain a steel plate having a thickness of 1.4 mm.
 具体的には、各成分組成を有するスラブを、スラブ表面温度で表2に示す加熱保持温度までを6℃/分の平均加熱速度で加熱し、表2に示す加熱保持時間、保持をした。その後、表2に示す900~1000℃での滞留時間、スラブを滞留させ、仕上げ圧延温度を870℃とする熱間仕上げ圧延を行い、仕上げ圧延温度から650℃の範囲における平均冷却速度を50℃/秒とする冷却を行った。
その後、冷却して巻取り温度:550℃で巻き取ることで熱延鋼板とし、該熱延鋼板を圧下率(冷間圧延圧下率):50%で冷間圧延することで冷延鋼板とした。
その後、冷延鋼板を、400℃から表2に示す焼鈍温度までを表2に示す平均加熱速度で加熱し、上記焼鈍温度で表2に示す均熱時間均熱した。
その後、表2に示す冷却開始温度から表2に示す冷却停止温度までを表2に示す平均冷却速度で冷却し必要に応じて再加熱を行い、その後、表2に示す保持温度で表2に示す保持時間保持する連続焼鈍を行った。
Specifically, a slab having each component composition was heated at an average heating rate of 6° C./min up to the heating and holding temperature shown in Table 2 at the slab surface temperature, and held for the heating and holding time shown in Table 2. After that, the slab is retained for the residence time at 900 to 1000 ° C. shown in Table 2, and hot finish rolling is performed at a finish rolling temperature of 870 ° C. The average cooling rate in the range from the finish rolling temperature to 650 ° C. is 50 ° C. / sec.
After that, it was cooled and coiled at a coiling temperature of 550°C to obtain a hot-rolled steel sheet, and the hot-rolled steel sheet was cold-rolled at a reduction rate (cold rolling reduction rate) of 50% to obtain a cold-rolled steel sheet. .
After that, the cold-rolled steel sheet was heated from 400° C. to the annealing temperature shown in Table 2 at the average heating rate shown in Table 2, and soaked at the annealing temperature for the soaking time shown in Table 2.
After that, from the cooling start temperature shown in Table 2 to the cooling stop temperature shown in Table 2, it is cooled at the average cooling rate shown in Table 2 and reheated as necessary. Continuous annealing was performed for the indicated holding times.
 また、No.13については、得られた鋼板に対して、電気めっきを施し、Znめっき層が形成された鋼板を得た。 Also, No. For No. 13, the obtained steel sheet was subjected to electroplating to obtain a steel sheet having a Zn plating layer formed thereon.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000002
 
 得られた鋼板について、先に記した手法にて金属組織の定量化を行い、さらに引張試験、耐遅れ破壊特性評価試験を行った。
具体的には、組織の測定方法は以下の通りに行った。
マルテンサイト、ベイナイト、フェライトの面積率は、鋼板のL断面(圧延方向に平行な垂直断面)を研磨後ナイタールで腐食し、鋼板表面から1/4厚み位置においてSEMで2000倍の倍率にて4視野観察し、撮影した組織写真を画像解析して測定した。ここで、マルテンサイト、ベイナイトはSEMでは灰色もしくは白色を呈した組織を指す。ここで、ベイナイトは以下の特徴を有する。すなわち、アスペクト比が2.5以上でプレート状の形態を呈しており、マルテンサイトとくらべるとやや黒色の組織である。上記のプレートの幅は0.3~1.7μmである。ベイナイトの内部の直径10~200nmの炭化物の分布密度は0~3個/μmである。一方、フェライトはSEMで黒色のコントラストを呈する領域である。なお、マルテンサイトやベイナイトの内部には微量の炭化物、窒化物、硫化物、酸化物を含むが、これらを除外することは困難なので、これらを含めた領域の面積率をその面積率とした。
The metal structure of the obtained steel sheet was quantified by the method described above, and then a tensile test and a delayed fracture resistance evaluation test were performed.
Specifically, the tissue measurement method was as follows.
The area ratio of martensite, bainite, and ferrite was determined by polishing the L cross section (vertical cross section parallel to the rolling direction) of the steel sheet, corroding it with nital, and examining the 1/4 thickness position from the surface of the steel sheet with an SEM at a magnification of 2000 times. Visual field observation was performed, and the photographed tissue photograph was image-analyzed and measured. Here, martensite and bainite refer to gray or white structures in SEM. Here, bainite has the following characteristics. That is, it has an aspect ratio of 2.5 or more, exhibits a plate-like form, and is a slightly blacker structure than martensite. The width of the plate is 0.3-1.7 μm. The distribution density of carbides with a diameter of 10 to 200 nm inside the bainite is 0 to 3 pieces/μm 2 . On the other hand, ferrite is a region exhibiting black contrast in SEM. Note that the martensite and bainite contain trace amounts of carbides, nitrides, sulfides, and oxides, but since it is difficult to exclude them, the area ratio of the region including these was used as the area ratio.
 残留オーステナイト(残留γ)の測定は鋼板の表層200μmをシュウ酸で化学研磨し、板面を対象に、X線回折強度法により求めた。Mo-Kα線によって測定した(200)α、(211)α、(220)α、(200)γ、(220)γ、(311)γ回折面ピークの積分強度より計算した。  The retained austenite (retained γ) was measured by chemically polishing a 200 μm surface layer of the steel plate with oxalic acid and using the X-ray diffraction intensity method for the plate surface. It was calculated from the integrated intensities of (200)α, (211)α, (220)α, (200)γ, (220)γ, and (311)γ diffraction surface peaks measured by Mo-Kα radiation.
 旧オーステナイト粒の平均粒径(旧γ粒径)の測定は、鋼板のL断面(圧延方向に平行な垂直断面)を研磨後、旧γ粒界を腐食する薬液(例えば、飽和ピクリン酸水溶液やこれに塩化第2鉄を添加したもの)で腐食し、鋼板表面から1/4厚み位置において光学顕微鏡で500倍の倍率にて4視野観察し、得られた写真中に、板厚方向、圧延方向にそれぞれ15本の線を実際の長さで10μm以上の間隔で引き、粒界と線との交点の数を数えた。全線長を交点の数で除した値に1.13を乗じて旧γ粒径を求めた。 The average grain size of prior austenite grains (prior γ grain size) is measured by polishing the L cross section (vertical cross section parallel to the rolling direction) of the steel sheet, and then applying a chemical solution that corrodes the prior γ grain boundaries (such as a saturated picric acid aqueous solution or It was corroded by adding ferric chloride to this), and observed at 1/4 thickness position from the steel plate surface with an optical microscope at a magnification of 500 times. Fifteen lines in each direction were drawn at intervals of 10 μm or more in actual length, and the number of intersections between the grain boundaries and the lines was counted. The prior-γ grain size was obtained by multiplying the value obtained by dividing the total line length by the number of intersections by 1.13.
 円相当径500nm以上である析出物の数密度Aは、鋼板のL断面(圧延方向に平行な垂直断面)を研磨後、鋼板の板厚1/5位置~4/5位置の領域、すなわち鋼板表面より板厚に対して1/5位置から、板厚中央を挟み、4/5位置までの領域において、2mmの領域を連続してSEMで撮影し、撮影したSEM写真から、このような析出物の個数を計測することで求めた。また、撮影する倍率は2000倍である。また、個々の介在物粒子の成分分析を行う場合は、個々の介在物粒子を10000倍に拡大して、上記の析出物を分析した。ここで、円相当径500nm以上である析出物はFe23(C,B)等のBを含む析出物であり、加速電圧が3kVのエネルギー分散型X線分光法(EDS)による元素分析でBのピークの有無を調べ、Bのピークがあるときは、上記析出物が存在していると評価した。 The number density A of precipitates having an equivalent circle diameter of 500 nm or more is obtained by polishing the L cross section (vertical cross section parallel to the rolling direction) of the steel sheet, and then the area from the 1/5 position to the 4/5 position of the steel plate thickness, that is, from the steel plate surface. In the region from the 1/5th position to the 4/5th position across the center of the plate thickness, a 2 mm 2 region was continuously photographed with an SEM, and from the photographed SEM photographs, such precipitates It was obtained by counting the number of Also, the magnification for photographing is 2000 times. Moreover, when performing the component analysis of each inclusion particle, each inclusion particle was magnified 10000 times, and the said precipitate was analyzed. Here, the precipitate having an equivalent circle diameter of 500 nm or more is a precipitate containing B such as Fe 23 (C, B) 6 , and an elemental analysis by energy dispersive X-ray spectroscopy (EDS) at an acceleration voltage of 3 kV The presence or absence of a B peak was examined, and when there was a B peak, it was evaluated that the above precipitate was present.
 引張試験はコイル幅1/4位置において圧延直角方向が長手方向となるようにJIS5号引張試験片を切り出し、引張試験(JIS Z2241に準拠)を実施してYP、TS、Elを評価した。 For the tensile test, a JIS No. 5 tensile test piece was cut out so that the direction perpendicular to the rolling direction was the longitudinal direction at the position of 1/4 of the coil width, and a tensile test (based on JIS Z2241) was performed to evaluate YP, TS, and El.
 耐遅れ破壊特性の評価は次のようにして行った。
 得られた鋼板(コイル)の幅方向にコイル幅の1/4位置より圧延直角方向:100mm、圧延方向:30mmとなる短冊試験片を採取して実施した。長さが100mmとなる長辺側の端面の切り出しはせん断加工とし、せん断加工ままの状態で(バリを除去する機械加工を施さずに)、バリが曲げ外周側となるように曲げ加工を施し、その曲げ成形時の試験片形状を維持して、ボルトで試験片を固定した。せん断加工のクリアランスは13%とし、レーキ角は1°とした。曲げ加工は、先端曲げ半径10mmで、曲げ頂点内側の角度が90度(V曲げ)とした。ポンチは、先端半径が上記の先端曲げ半径Rと同じありU字形状(先端R部分が半円形状でポンチ胴部の厚さが2R)のものを用い、ダイは、コーナーRが30mmのものを用いた。ポンチが鋼板を押し込む深さを調整し、先端の曲げ角度(曲げ頂点内側の角度)が90度(V字形状)となる様に成形した。曲げ成形時の直片部のフランジ端部同士の距離が曲げ成形した時と同じ距離になるように(スプリングバックによる直片部の開口をキャンセルアウトするように)、油圧ジャッキで試験片を挟んで締め込み、その状態でボルト締結した。ボルトはあらかじめ短冊試験片の短辺エッジから10mm内側に設けた楕円形状(短軸10mm、長軸15mm)の穴に通して固定した。得られたボルト締め後の試験片を、0.1質量%のチオシアン酸アンモニウム水溶液と、McIlvaine緩衝液を1:1で混合し、pHを8.0に調整した溶液に浸漬して耐遅れ破壊特性評価試験を実施した。このとき、溶液の温度は20℃とし、試験片の表面積1cmあたりの液量は20mlとした。24時間経過後に目視で確認できるレベル(長さ1mm以上)の亀裂の有無を確認し、亀裂が観察されなかったものは、耐遅れ破壊特性が優れると判断した。
Evaluation of delayed fracture resistance was performed as follows.
A strip test piece of 100 mm in the direction perpendicular to the rolling direction and 30 mm in the rolling direction was taken from the 1/4 position of the coil width in the width direction of the obtained steel plate (coil). The end face of the long side with a length of 100 mm is cut out by shearing, and in the state of shearing (without machining to remove burrs), bending is performed so that the burrs are on the outer peripheral side of the bend. , the test piece was fixed with bolts while maintaining the shape of the test piece at the time of bending. The shearing clearance was 13% and the rake angle was 1°. Bending was performed with a tip bending radius of 10 mm and an angle inside the bending apex of 90 degrees (V bending). The punch has a U-shaped punch whose tip radius is the same as the tip bending radius R (the tip R is semicircular and the thickness of the punch barrel is 2R), and the die has a corner radius of 30 mm. was used. The depth to which the punch pushes the steel plate was adjusted, and the steel plate was formed so that the bending angle of the tip (the angle inside the bending apex) was 90 degrees (V shape). Sandwich the test piece with a hydraulic jack so that the distance between the flange ends of the straight piece when bending is the same as when bending (to cancel out the opening of the straight piece due to springback). and bolted in that state. The bolt was passed through an elliptical hole (minor axis: 10 mm, major axis: 15 mm) previously provided 10 mm inward from the short side edge of the strip test piece and fixed. The obtained test piece after bolting was mixed with 0.1% by mass of ammonium thiocyanate aqueous solution and McIlvaine buffer solution at a ratio of 1:1 and immersed in a solution adjusted to pH 8.0 for delayed fracture resistance. A characterization test was performed. At this time, the temperature of the solution was set at 20° C., and the amount of the solution per 1 cm 3 of surface area of the test piece was set at 20 ml. After 24 hours had elapsed, the presence or absence of cracks at a visually recognizable level (1 mm or more in length) was confirmed, and those in which no cracks were observed were judged to have excellent delayed fracture resistance.
 得られた鋼板の組織、特性について表3に示す。 Table 3 shows the structure and properties of the obtained steel sheets.
Figure JPOXMLDOC01-appb-T000003
 
Figure JPOXMLDOC01-appb-T000003
 
 本発明の範囲内の鋼板は、高強度であり、耐遅れ破壊特性に優れていた。
一方、No.14(鋼N)はC含有量が本発明規定値の下限未満であり、TSが不足していた。
No.15(鋼O)はC含有量が本発明規定値の上限超えであり、十分な耐遅れ破壊特性が得られなかった。
No.16(鋼P)はP含有量が本発明規定値の上限超えであり、十分な耐遅れ破壊特性が得られなかった。
No.17(鋼Q)はS含有量が本発明規定値の上限超えであり、十分な耐遅れ破壊特性が得られなかった。
No.18(鋼R)はsоl.Al含有量が本発明規定値の上限超えであり、十分な耐遅れ破壊特性が得られなかった。
No.19(鋼S)はN含有量が本発明規定値の上限超えであり、十分な耐遅れ破壊特性が得られなかった。
No.20(鋼T)はNb、Ti含有量が本発明規定値の下限未満であり、旧γ粒径が大きく、十分な耐遅れ破壊特性が得られなかった。
No.21(鋼U)はNb、Ti含有量が本発明規定値の上限超えであり、十分な耐遅れ破壊特性が得られなかった。
No.22(鋼V)はB含有量が本発明規定値の上限超えであり、粗大な析出物が多く、十分な耐遅れ破壊特性が得られなかった。
No.23(鋼W)はB含有量が本発明規定値の下限未満であり、十分な耐遅れ破壊特性が得られなかった。
No.24(鋼A)は加熱温度(スラブ表面温度(SRT))が本発明規定値の下限未満であり、旧γ粒径が大きく、析出物の数密度Aが過剰で、十分な耐遅れ破壊特性が得られなかった。
No.25(鋼A)はスラブ加熱保持時間が本発明規定値の下限未満であり、旧γ粒径が大きく、析出物の数密度Aが過剰で、十分な耐遅れ破壊特性が得られなかった。
No.26(鋼A)は900~1000℃での滞留時間が本発明規定値の上限超えであり、析出物の数密度Aが過剰で、十分な耐遅れ破壊特性が得られなかった。
No.27(鋼A)は焼鈍時の平均加熱速度が本発明規定値の下限未満であり、旧γ粒径が大きく、析出物の数密度Aが過剰で、十分な耐遅れ破壊特性が得られなかった。
No.28(鋼A)は焼鈍時の均熱時間が本発明規定値の上限超えであり、旧γ粒径が大きく、十分な耐遅れ破壊特性が得られなかった。
No.29(鋼A)は焼鈍時の冷却開始温度が本発明規定値の下限未満であり、マルテンサイトの生成が十分でなく、十分な耐遅れ破壊特性が得られなかった。
No.30(鋼A)は焼鈍時の平均冷却速度が本発明規定値の下限未満であり、マルテンサイトの生成が十分でなく、十分な耐遅れ破壊特性が得られなかった。
The steel sheets within the scope of the present invention had high strength and excellent delayed fracture resistance.
On the other hand, No. In No. 14 (Steel N), the C content was less than the lower limit of the specified value of the present invention, and the TS was insufficient.
No. In No. 15 (steel O), the C content exceeded the upper limit of the specified value of the present invention, and sufficient delayed fracture resistance was not obtained.
No. In No. 16 (Steel P), the P content exceeded the upper limit of the specified value of the present invention, and sufficient delayed fracture resistance was not obtained.
No. In No. 17 (steel Q), the S content exceeded the upper limit of the specified value of the present invention, and sufficient delayed fracture resistance was not obtained.
No. 18 (steel R) is sol. The Al content exceeded the upper limit of the value specified in the present invention, and sufficient delayed fracture resistance was not obtained.
No. In No. 19 (steel S), the N content exceeded the upper limit of the specified value of the present invention, and sufficient delayed fracture resistance was not obtained.
No. In No. 20 (Steel T), the Nb and Ti contents were less than the lower limits of the specified values of the present invention, the prior γ grain size was large, and sufficient delayed fracture resistance was not obtained.
No. In No. 21 (steel U), the Nb and Ti contents exceeded the upper limits of the values specified in the present invention, and sufficient delayed fracture resistance was not obtained.
No. In No. 22 (steel V), the B content exceeded the upper limit of the value specified in the present invention, and there were many coarse precipitates, and sufficient delayed fracture resistance was not obtained.
No. In No. 23 (steel W), the B content was less than the lower limit of the value specified in the present invention, and sufficient delayed fracture resistance was not obtained.
No. In No. 24 (Steel A), the heating temperature (slab surface temperature (SRT)) is less than the lower limit of the specified value of the present invention, the prior γ grain size is large, the number density A of precipitates is excessive, and sufficient delayed fracture resistance is obtained. I couldn't.
No. In No. 25 (steel A), the slab heating and holding time was less than the lower limit of the value specified in the present invention, the prior γ grain size was large, the number density A of precipitates was excessive, and sufficient delayed fracture resistance was not obtained.
No. In No. 26 (steel A), the residence time at 900 to 1000° C. exceeded the upper limit of the specified value of the present invention, the number density A of precipitates was excessive, and sufficient delayed fracture resistance was not obtained.
No. In No. 27 (Steel A), the average heating rate during annealing was less than the lower limit of the specified value of the present invention, the prior γ grain size was large, the number density A of precipitates was excessive, and sufficient delayed fracture resistance was not obtained.
No. In No. 28 (Steel A), the soaking time during annealing exceeded the upper limit of the specified value of the present invention, the prior γ grain size was large, and sufficient delayed fracture resistance was not obtained.
No. In No. 29 (Steel A), the cooling start temperature during annealing was less than the lower limit of the specified value of the present invention, martensite was not sufficiently formed, and sufficient delayed fracture resistance was not obtained.
No. In No. 30 (Steel A), the average cooling rate during annealing was less than the lower limit of the value specified in the present invention, and the formation of martensite was insufficient, and sufficient delayed fracture resistance was not obtained.
 また、本発明例の鋼板を用いて、成形加工を施して得た部材、接合加工を施して得た部材は、本発明例の鋼板が高強度であり、優れた耐遅れ破壊特性を有していることから、本発明例の鋼板と同様に、高強度であり、優れた耐遅れ破壊特性を有することがわかった。
 
 

 
In addition, the steel plate of the present invention example has high strength and excellent delayed fracture resistance in the members obtained by molding and the members obtained by joining processing using the steel plate of the example of the present invention. Therefore, it was found that the steel sheets have high strength and excellent delayed fracture resistance, like the steel sheets of the invention examples.



Claims (10)

  1.  質量%で、
    C:0.15%以上0.45%以下、
    Si:1.5%以下、
    Mn:1.7%以下、
    P:0.03%以下、
    S:0.0020%未満、
    sol.Al:0.20%以下、
    N:0.005%以下、
    B:0.0015%以上0.0100%以下、
    NbとTiのうち一種以上を合計で0.005%以上0.080%以下を含有し、
    残部がFeおよび不可避的不純物からなる成分組成を有し、
    マルテンサイトの組織全体に対する面積率が95%以上100%以下である組織を有し、
    旧オーステナイト粒の平均粒径が11.0μm未満であり、
    円相当径500nm以上である析出物の数密度Aが下記の式(1)を満たす鋼板。
    A(個/mm)≦ 8.5×10×[B] ・・・式(1)
    ここで、[B]はBの含有量(質量%)を表す。
    in % by mass,
    C: 0.15% or more and 0.45% or less,
    Si: 1.5% or less,
    Mn: 1.7% or less,
    P: 0.03% or less,
    S: less than 0.0020%,
    sol. Al: 0.20% or less,
    N: 0.005% or less,
    B: 0.0015% or more and 0.0100% or less,
    Containing 0.005% or more and 0.080% or less in total of one or more of Nb and Ti,
    Having a component composition in which the balance is Fe and unavoidable impurities,
    Having a structure in which the area ratio of martensite to the entire structure is 95% or more and 100% or less,
    The average grain size of the prior austenite grains is less than 11.0 μm,
    A steel sheet in which the number density A of precipitates having an equivalent circle diameter of 500 nm or more satisfies the following formula (1).
    A (number/mm 2 )≦8.5×10 5 ×[B] Expression (1)
    Here, [B] represents the content of B (% by mass).
  2.  前記成分組成として、さらに質量%で、Cu:1.0%以下およびNi:1.0%以下のうちから選んだ1種または2種を含有する、請求項1に記載の鋼板。 The steel sheet according to claim 1, further comprising, as the chemical composition, one or two selected from Cu: 1.0% or less and Ni: 1.0% or less in mass%.
  3.  前記成分組成として、さらに質量%で、Cr:1.0%以下、Mo:0.3%未満、V:0.5%以下、Zr:0.2%以下およびW:0.2%以下のうちから選んだ1種または2種以上を含有する、請求項1または2に記載の鋼板。 As the component composition, in mass%, Cr: 1.0% or less, Mo: less than 0.3%, V: 0.5% or less, Zr: 0.2% or less and W: 0.2% or less The steel sheet according to claim 1 or 2, containing one or more selected from among them.
  4.  前記成分組成として、さらに質量%で、Ca:0.0030%以下、Ce:0.0030%以下、La:0.0030%以下、REM(Ce、Laを除く):0.0030%以下およびMg:0.0030%以下のうちから選んだ1種または2種以上を含有する、請求項1~3のいずれかに記載の鋼板。 As the component composition, in mass%, Ca: 0.0030% or less, Ce: 0.0030% or less, La: 0.0030% or less, REM (excluding Ce and La): 0.0030% or less and Mg The steel sheet according to any one of claims 1 to 3, containing one or more selected from: 0.0030% or less.
  5.  前記成分組成として、さらに質量%で、Sb:0.1%以下およびSn:0.1%以下のうちから選んだ1種または2種を含有する、請求項1~4のいずれかに記載の鋼板。 The composition according to any one of claims 1 to 4, further comprising one or two selected from Sb: 0.1% or less and Sn: 0.1% or less in mass%. steel plate.
  6.  鋼板表面にめっき層を有する、請求項1~5のいずれかに記載の鋼板。 The steel sheet according to any one of claims 1 to 5, which has a plating layer on the surface of the steel sheet.
  7.  請求項1~6のいずれかに記載の鋼板を用いてなる部材。 A member using the steel plate according to any one of claims 1 to 6.
  8.  請求項1~5のいずれかに記載の成分組成を有する鋼スラブを、スラブ表面温度で1000℃から1250℃以上の加熱保持温度までを10℃/分以下の平均加熱速度で加熱し、前記加熱保持温度で30分以上保持した後、
    900~1000℃での滞留時間を20秒以上150秒以下で、仕上げ圧延温度を850℃以上とした条件で熱間仕上げ圧延を行い、
    前記仕上げ圧延温度から650℃までの範囲における平均冷却速度を40℃/秒以上とする冷却を行い、
    その後、650℃以下の巻取り温度で巻取ることで熱延鋼板とし、
    該熱延鋼板を40%以上の圧下率で冷間圧延することで冷延鋼板とし、
    焼鈍温度を830~950℃とし、前記冷延鋼板を、400℃から前記焼鈍温度まで1.0℃/秒以上の平均加熱速度で加熱し、
    前記焼鈍温度で600秒以下保持し、
    680℃以上の冷却開始温度から260℃以下の冷却停止温度まで70℃/秒以上の平均冷却速度で冷却し、
    その後、150~260℃の保持温度で20~1500秒保持する連続焼鈍を行う、鋼板の製造方法。
    A steel slab having the chemical composition according to any one of claims 1 to 5 is heated at a slab surface temperature of 1000 ° C. to a heating and holding temperature of 1250 ° C. or higher at an average heating rate of 10 ° C./min or less, and the heating After holding at the holding temperature for 30 minutes or more,
    Hot finish rolling is performed under the conditions of a residence time of 20 seconds or more and 150 seconds or less at 900 to 1000 ° C. and a finish rolling temperature of 850 ° C. or more,
    Cooling is performed at an average cooling rate of 40 ° C./sec or more in the range from the finish rolling temperature to 650 ° C.,
    After that, it is coiled at a coiling temperature of 650 ° C. or less to form a hot rolled steel sheet,
    A cold-rolled steel sheet is obtained by cold-rolling the hot-rolled steel sheet at a rolling reduction of 40% or more,
    The annealing temperature is 830 to 950° C., and the cold-rolled steel sheet is heated from 400° C. to the annealing temperature at an average heating rate of 1.0° C./second or more,
    Hold at the annealing temperature for 600 seconds or less,
    Cooling from a cooling start temperature of 680 ° C. or higher to a cooling stop temperature of 260 ° C. or lower at an average cooling rate of 70 ° C./sec or higher,
    A method for manufacturing a steel sheet, followed by continuous annealing at a holding temperature of 150 to 260° C. for 20 to 1500 seconds.
  9.  前記連続焼鈍の後、鋼板表面にめっき処理を行う、請求項8に記載の鋼板の製造方法。 The steel sheet manufacturing method according to claim 8, wherein the surface of the steel sheet is plated after the continuous annealing.
  10.  請求項1~6のいずれかに記載の鋼板に、成形加工、接合加工の少なくとも一方を施して部材とする工程を含む、部材の製造方法。

     
    A method of manufacturing a member, comprising the step of subjecting the steel plate according to any one of claims 1 to 6 to at least one of forming and joining to form a member.

PCT/JP2022/024963 2021-07-28 2022-06-22 Steel sheet, member, and methods for producing said steel sheet and said member WO2023008002A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020247002166A KR20240024946A (en) 2021-07-28 2022-06-22 Steel plates, members and their manufacturing methods
CN202280050162.9A CN117677725A (en) 2021-07-28 2022-06-22 Steel sheet, member, and method for producing same
JP2022559511A JP7226673B1 (en) 2021-07-28 2022-06-22 Steel plate, member and manufacturing method thereof
EP22849077.7A EP4350015A1 (en) 2021-07-28 2022-06-22 Steel sheet, member, and methods for producing said steel sheet and said member

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-123189 2021-07-28
JP2021123189 2021-07-28

Publications (1)

Publication Number Publication Date
WO2023008002A1 true WO2023008002A1 (en) 2023-02-02

Family

ID=85086676

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/024963 WO2023008002A1 (en) 2021-07-28 2022-06-22 Steel sheet, member, and methods for producing said steel sheet and said member

Country Status (5)

Country Link
EP (1) EP4350015A1 (en)
JP (1) JP7226673B1 (en)
KR (1) KR20240024946A (en)
CN (1) CN117677725A (en)
WO (1) WO2023008002A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4712882B2 (en) 2008-07-11 2011-06-29 株式会社神戸製鋼所 High strength cold-rolled steel sheet with excellent hydrogen embrittlement resistance and workability
WO2018062381A1 (en) * 2016-09-28 2018-04-05 Jfeスチール株式会社 Steel sheet and production method therefor
WO2020170667A1 (en) * 2019-02-21 2020-08-27 Jfeスチール株式会社 Hot-pressed member, cold-rolled steel sheet for hot press use, and methods respectively manufacturing these products

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4712882Y1 (en) 1968-08-13 1972-05-12

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4712882B2 (en) 2008-07-11 2011-06-29 株式会社神戸製鋼所 High strength cold-rolled steel sheet with excellent hydrogen embrittlement resistance and workability
WO2018062381A1 (en) * 2016-09-28 2018-04-05 Jfeスチール株式会社 Steel sheet and production method therefor
JP6388085B2 (en) 2016-09-28 2018-09-12 Jfeスチール株式会社 Steel sheet and manufacturing method thereof
WO2020170667A1 (en) * 2019-02-21 2020-08-27 Jfeスチール株式会社 Hot-pressed member, cold-rolled steel sheet for hot press use, and methods respectively manufacturing these products

Also Published As

Publication number Publication date
JPWO2023008002A1 (en) 2023-02-02
EP4350015A1 (en) 2024-04-10
KR20240024946A (en) 2024-02-26
CN117677725A (en) 2024-03-08
JP7226673B1 (en) 2023-02-21

Similar Documents

Publication Publication Date Title
JP6388085B2 (en) Steel sheet and manufacturing method thereof
KR102226643B1 (en) Steel plate and its manufacturing method
US20220056549A1 (en) Steel sheet, member, and methods for producing them
WO2022185804A1 (en) Steel sheet, member, method for producing said steel sheet, and method for producing said member
US20220090247A1 (en) Steel sheet, member, and methods for producing them
JP7140302B1 (en) Steel plate, member and manufacturing method thereof
JP7136335B2 (en) High-strength steel plate and its manufacturing method
EP4043593B1 (en) High strength steel sheet, impact absorbing member, and method for manufacturing high strength steel sheet
JP7226673B1 (en) Steel plate, member and manufacturing method thereof
JP7226672B1 (en) Steel plate, member and manufacturing method thereof
JP7140301B1 (en) Steel plate, member and manufacturing method thereof
JP7111280B1 (en) Steel plate, member and manufacturing method thereof
EP4043594B1 (en) High-strength steel sheet, shock-absorbing member, and method for producing high-strength steel sheet
CN116897217A (en) Steel sheet, member, and method for producing same
US20240132986A1 (en) Steel sheet, member, and methods for manufacturing the same
KR20240025615A (en) Steel plate and its manufacturing method

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022559511

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22849077

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022849077

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022849077

Country of ref document: EP

Effective date: 20240104

WWE Wipo information: entry into national phase

Ref document number: 202280050162.9

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2401000369

Country of ref document: TH

ENP Entry into the national phase

Ref document number: 20247002166

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: MX/A/2024/001025

Country of ref document: MX

Ref document number: 1020247002166

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE