WO2023007901A1 - Fe基非晶質合金粉末、磁性部品、および圧粉磁芯 - Google Patents

Fe基非晶質合金粉末、磁性部品、および圧粉磁芯 Download PDF

Info

Publication number
WO2023007901A1
WO2023007901A1 PCT/JP2022/019719 JP2022019719W WO2023007901A1 WO 2023007901 A1 WO2023007901 A1 WO 2023007901A1 JP 2022019719 W JP2022019719 W JP 2022019719W WO 2023007901 A1 WO2023007901 A1 WO 2023007901A1
Authority
WO
WIPO (PCT)
Prior art keywords
amorphous alloy
based amorphous
alloy powder
less
powder
Prior art date
Application number
PCT/JP2022/019719
Other languages
English (en)
French (fr)
Inventor
尚貴 山本
拓也 高下
誠 中世古
繁 宇波
顕理 浦田
美帆 千葉
Original Assignee
Jfeスチール株式会社
株式会社トーキン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社, 株式会社トーキン filed Critical Jfeスチール株式会社
Priority to JP2022555900A priority Critical patent/JPWO2023007901A1/ja
Publication of WO2023007901A1 publication Critical patent/WO2023007901A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/16Metallic particles coated with a non-metal
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/255Magnetic cores made from particles

Definitions

  • the present invention relates to Fe-based amorphous alloy powders, magnetic parts, and dust cores.
  • the powder metallurgy method has high dimensional accuracy even in the production of parts with complicated shapes compared to the ingot method, and it is used for the production of various parts because it wastes little raw material. Especially in recent years, powder metallurgy methods have been applied to the manufacture of magnetic components.
  • Magnetic parts manufactured by powder metallurgy include, for example, dust cores.
  • a powder magnetic core is a magnetic core manufactured by press-molding powder, and is used for iron cores of reactors and the like.
  • reactors that are compact and have excellent magnetic properties in order to improve cruising range. ing.
  • dust cores made by coating ferromagnetic metal powder with a high magnetic flux density and low core loss with an insulating film and press-molding have been put to practical use.
  • Patent Document 1 by setting the particle diameter D50 of the Fe-based alloy powder to 3.5 ⁇ m or more and 35.0 ⁇ m or less, the space factor of the Fe-based alloy particles in the magnetic core is improved, and as a result, the magnetic core It has been proposed to improve the magnetic properties of In addition, in Patent Document 1, it is reported that in Fe-based alloy particles with a relatively small particle size, the volume ratio of the oxide film on the surface layer is large, leading to an increase in coercive force, and that the ratio of particles with a particle size of 2 ⁇ m or less is 8. It is also disclosed that the coercive force is reduced by reducing the volume % or less.
  • Patent Document 2 proposes improving the magnetic properties of the powder magnetic core by setting the D50 of the amorphous alloy powder to 5 ⁇ m or more and 20 ⁇ m or less and the oxygen content of 3000 ppm or less.
  • the present invention has been made in view of the above circumstances, and provides a Fe-based amorphous alloy powder with reduced coercive force, and a magnetic part having excellent magnetic properties, more specifically, low core loss. intended to
  • the inventors of the present invention have obtained the following findings as a result of investigations to solve the above problems.
  • Fe-based amorphous alloy powder is compacted and then heat treated to nanocrystallize the powder. At that time, there is a strong correlation between the coercive force of the Fe-based amorphous alloy powder before nanocrystallization and the hysteresis loss of the magnetic component after nanocrystallization.
  • the Fe-based amorphous alloy powder can be obtained by It is possible to effectively reduce coercive force and manufacture magnetic parts with low core loss.
  • the present invention has been completed based on the above findings.
  • the gist of the present invention is as follows.
  • An Fe-based amorphous alloy powder, Crystallinity V cry (% by volume) is 0% by volume or more and 10% by volume or less, Median value D50 in volume-based particle size distribution is 15.0 ⁇ m or more and 100 ⁇ m or less, An Fe-based amorphous alloy powder having a maximum particle size of 20.0 ⁇ m or more and 150 ⁇ m or less, and an oxygen concentration R O (% by mass) of 0% by mass or more and R1 or less defined by the following formula (1).
  • R1 (301 ⁇ 11.65 ⁇ V cry ⁇ 4169/D 50 )/122 (1)
  • M in the composition formula is selected from the group consisting of Nb, Mo, Ni, Co, Sn, Zr, Ta, W, Hf, Ti, V, Cr,
  • Fe-based amorphous alloy powder with reduced coercive force can be provided. Further, by using the Fe-based amorphous alloy powder, it is possible to provide a magnetic component having low iron loss.
  • Fe-based amorphous alloy powder The Fe-based amorphous alloy powder in one embodiment of the present invention satisfies the following conditions (A) to (D).
  • Oxygen concentration R O (% by mass) is 0% by mass or more, R1 or less defined by the following formula (1)
  • R1 (301-11.65 x V cry -4169/D 50 )/122 (1)
  • Fe-based amorphous alloy powder refers to amorphous alloy powder containing 50% by mass or more of Fe.
  • % as a unit of crystallinity Vcry represents “% by volume”
  • % as a unit of oxygen concentration RO represents “% by mass”. do.
  • heat treatment when the term “heat treatment” is simply used, it refers to the heat treatment for nanocrystallization.
  • Crystallinity V cry 0 to 10%
  • the degree of crystallinity is set to 10% or less, preferably 5% or less.
  • the lower the crystallinity the better, so the lower limit of the crystallinity is set to 0%.
  • the crystallinity is calculated by the following method.
  • the X-ray diffraction spectrum of the Fe-based amorphous alloy powder is measured by powder X-ray diffraction using the characteristic X-ray of Cu-K ⁇ .
  • a diffraction pattern (broad peak) derived from an amorphous phase and a peak derived from a crystalline phase are observed in the obtained X-ray diffraction spectrum. Therefore, from the total area of peaks derived from the crystalline phase (Cry.P) and the area of the diffraction pattern derived from the amorphous phase (Amo.P), the crystallization in the Fe-based amorphous alloy powder is calculated by the following formula. Calculate the degree (Vcry). More specifically, the crystallinity can be measured by the method described in the Examples.
  • V cry (% by volume) Cry. P/(Amo.P+Cry.P) ⁇ 100
  • D50 15.0 to 100 ⁇ m If the D50 is too small, the specific surface area of the grains will be too high to impede the domain wall motion and thus increase the coercivity. Therefore, in order to reduce hysteresis loss, D50 is set to 15.0 ⁇ m or more, preferably 25.0 ⁇ m or more. On the other hand, if the D50 is extremely large, although the hysteresis loss decreases, the eddy current increases, so the core loss increases. Therefore, in order to reduce eddy current loss, D50 is set to 100 ⁇ m or less, preferably 80 ⁇ m or less.
  • D 50 refers to the median value in volume-based particle size distribution, the so-called median diameter.
  • D50 can be measured by the following method. First, the target Fe-based amorphous alloy powder is put into a solvent (eg, ethanol) and dispersed by ultrasonic vibration for 30 seconds or longer to obtain a dispersion. Next, the volume-based particle size distribution of the particles in the dispersion is measured with a laser diffraction particle size distribution analyzer using a laser diffraction/scattering method. A cumulative particle size distribution is calculated from the obtained particle size distribution, and D50, which is the particle size at which the cumulative frequency is 50 %, is obtained. D50 can be measured more specifically by the method described in the Examples.
  • a solvent eg, ethanol
  • the maximum particle size of the Fe-based amorphous alloy powder is set to 150 ⁇ m or less, preferably 120 ⁇ m or less.
  • the Fe-based amorphous alloy powder has a maximum particle size of less than 20.0 ⁇ m, it becomes difficult to form a uniform insulating coating on the surfaces of the particles that constitute the powder. Therefore, the maximum particle size is set to 20.0 ⁇ m or more, preferably 25.0 ⁇ m or more.
  • the maximum particle size is the maximum value of the particle size measured by a laser diffraction particle size distribution analyzer, and the measurement conditions are the same as those for the above D50 measurement.
  • Oxygen concentration RO : 0 to R1 Oxygen can be present as an oxide in the particles or as an oxide coating on the surface of the particles. Oxides interfere with domain wall motion as pinning sites for the domain walls, and thus cause an increase in coercive force and a decrease in saturation magnetic flux density. In addition, the oxide film is less magnetic than the Fe-based alloy or is non-magnetic, so it also causes an increase in coercive force and a decrease in saturation magnetic flux density. As described above, in order to reduce iron loss, particularly hysteresis loss, of magnetic parts, it is necessary to reduce the coercive force of the Fe-based amorphous alloy powder used as a raw material.
  • the coercive force can be significantly reduced if the oxygen concentration is R1 or less defined by the following formula (1) as a function of crystallinity and D50 . Therefore, in order to reduce the coercive force and improve the saturation magnetic flux density, the oxygen concentration is set to R1 (mass %) or less defined by the following formula (1).
  • the oxygen concentration is preferably less than or equal to R2 (% by mass) defined by the following formula (2).
  • the lower the oxygen concentration the better, so the lower limit of the oxygen concentration is set to 0%.
  • R1 (301 ⁇ 11.65 ⁇ V cry ⁇ 4169/D 50 )/122 (1)
  • R2 (211 ⁇ 11.65 ⁇ V cry ⁇ 4169/D 50 )/122 (2)
  • the unit of the degree of crystallinity V cry in the above formulas (1) and (2) is % by volume, and the unit of D 50 is ⁇ m.
  • the above oxygen concentration can be measured by the infrared absorption method specified in JIS Z 2613. More specifically, the oxygen concentration can be measured by the method described in the Examples.
  • the Fe-based amorphous alloy powder is preferably made of a soft magnetic powder having a composition represented by a composition formula : FeaSibBcPdCueMf , excluding inevitable impurities .
  • M in the composition formula is selected from the group consisting of Nb, Mo, Ni, Co, Sn, Zr, Ta, W, Hf, Ti, V, Cr, Mn, C, Al, S, O, and N At least one element.
  • the degree of crystallinity of the powder can be suppressed to 10% or less, and by heat treatment, nanocrystals of ⁇ Fe(-Si) can be precipitated to further improve the magnetic properties.
  • the soft magnetic powder may contain unavoidable impurities mixed in from the manufacturing process, etc., but the above composition formula represents the composition excluding unavoidable impurities.
  • Fe is an essential element responsible for magnetism, and the proportion of Fe should be 79% or more, preferably 79.5% or more. On the other hand, the proportion of Fe should be 84.5% or less, preferably 84.0% or less.
  • 0% ⁇ b ⁇ 6% Si is an element responsible for amorphous phase formation.
  • the proportion of Si should be less than 6% (including zero), preferably 5.5% or less.
  • the lower limit of the proportion of Si may be 0%, but preferably 0.5% or more.
  • B is an element responsible for amorphous phase formation.
  • the proportion of B is 4% or more, preferably 4.5% or more.
  • the proportion of B is 10% or less, preferably 9.5% or less.
  • P is an element responsible for amorphous phase formation.
  • the proportion of P should be above 4%, preferably above 4.5%.
  • the proportion of P is 11% or less, preferably 10.5% or less.
  • Cu is an element that contributes to nanocrystallization.
  • the proportion of Cu is 0.2% or more, preferably 0.25% or more.
  • the proportion of Cu is 1.5% or less, preferably 1.2% or less.
  • the above composition formula is selected from the group consisting of Nb, Mo, Ni, Co, Sn, Zr, Ta, W, Hf, Ti, V, Cr, Mn, C, Al, S, O, and N in addition to the above elements. At least one selected element may be included. The total proportion of these elements is 4% or less, preferably 1% or less. On the other hand, the ratio of the elements is set to 0% or more.
  • the Fe-based amorphous alloy powder of the present invention can be produced by any method without particular limitation, but in one embodiment, it can be produced by an atomization method.
  • the atomization method is a method of obtaining metal powder by blowing gas or water onto a molten metal to form a spray and cooling and solidifying the molten metal.
  • a gas atomization method and a water atomization method can be used.
  • the Fe-based amorphous alloy powder of the present invention may be atomized powder, and may be one or both of gas atomized powder and water atomized powder.
  • the Fe-based amorphous alloy powder may be produced by processing the powder obtained by the pulverization method or the oxide reduction method. Furthermore, the produced powder can be classified by various methods to adjust the particle size to a predetermined value.
  • the Fe-based amorphous alloy powder of the present invention is composed of a soft magnetic powder having a composition represented by the above composition formula, it can be produced by adjusting raw materials so as to have the composition. For example, when powder is produced by the atomization method, raw materials are weighed so as to obtain a desired composition, and the raw materials are melted to prepare a molten alloy to be used in the atomization method.
  • the degree of crystallinity, D 50 , maximum particle size, and oxygen concentration are not particularly limited and may be adjusted by any method.
  • the degree of crystallinity can be lowered by lowering the temperature of molten steel used in the atomization method. Further, when the water atomization method is used, the degree of crystallinity can also be lowered by increasing the amount of water that collides with the molten steel.
  • the D50 and maximum particle size can be controlled, for example, by adjusting the pressure of the water impinging on the molten steel.
  • the oxygen concentration can be reduced by reducing the oxygen concentration in the atmosphere of the spray tank, which is the space where the water collides with the molten steel. In order to reduce the oxygen concentration in the atmosphere, for example, the inside of the spray bath may be replaced with an inert gas such as nitrogen or argon.
  • the Fe-based amorphous alloy powder of the present invention can be provided with an insulating coating on the surfaces of particles constituting the Fe-based amorphous alloy powder.
  • an insulating coating a coating made of any insulating material can be used without any particular limitation.
  • one or both of an inorganic insulating coating and an organic insulating coating can be used as the insulating coating.
  • the inorganic insulating coating is preferably a coating containing an aluminum compound, more preferably a coating containing aluminum phosphate.
  • the inorganic insulating coating may be a chemical conversion coating. Any compound containing aluminum can be used as the aluminum compound, and for example, at least one selected from the group consisting of aluminum phosphates, nitrates, acetates, and hydroxides can be used.
  • a coating containing an aluminum compound may be a coating mainly composed of an aluminum compound, or may be a coating composed of an aluminum compound.
  • the coating may further contain a metal compound containing a metal other than aluminum.
  • metals other than aluminum include at least one selected from the group consisting of Mg, Mn, Zn, Co, Ti, Sn, Ni, Fe, Zr, Sr, Y, Cu, Ca, V, and Ba. can be used.
  • At least one compound selected from the group consisting of phosphates, carbonates, nitrates, acetates, and hydroxides can be used as the metal compound containing a metal other than aluminum, for example.
  • the metal compound is preferably soluble in a solvent such as water, and more preferably a water-soluble metal salt.
  • the phosphorus content in the insulating coating is P (mol), and the total content of all metal elements in the coating is M (mol).
  • the P ratio (P/M) is preferably 1 or more and less than 10.
  • P/M is 1 or more, the chemical reaction on the surface of the Fe-based amorphous alloy powder during coating formation proceeds sufficiently, and the adhesion of the coating improves, thereby improving the strength and insulation of the dust core. It is possible to further improve the property.
  • P/M is less than 10, free phosphoric acid does not remain after the coating is formed, and corrosion of the Fe-based amorphous alloy powder can be sufficiently prevented.
  • P/M is more preferably 1 to 5, and more preferably 2 to 3 from the viewpoint of effectively preventing variation and destabilization of resistivity.
  • A/M is preferably more than 0.3 and 1 or less. Within this range, a sufficient amount of aluminum, which is highly reactive with phosphoric acid, is present, and residual unreacted free phosphoric acid can be suppressed.
  • A/M is more preferably 0.4 to 1.0, more preferably 0.8 to 1.0.
  • the organic insulating coating is preferably an organic resin coating.
  • a coating containing any one or two or more resins can be used.
  • the resin for example, at least one selected from the group consisting of silicone resins, phenol resins, epoxy resins, polyamide resins, and polyimide resins can be used, and silicone resins are preferably used.
  • silicone resins examples include SH805, SH806A, SH840, SH997, SR620, SR2306, SR2309, SR2310, SR2316, DC12577, SR2400, SR2402, SR2404, SR2405, SR2406, SR2410, SR2410, manufactured by Dow Corning Toray Co., Ltd.
  • the insulating coating may be a single-layer coating or a multi-layer coating consisting of two or more layers.
  • the multilayer coating may be a multilayer coating composed of the same kind of coating or a multilayer coating composed of different kinds of coatings.
  • the amount of the insulating coating is not particularly limited, it is preferably 0.01 to 10% by mass. If the amount of coating is within the above range, a more uniform coating can be formed and high insulation can be ensured. In addition, it is possible to secure the proportion of the Fe-based amorphous alloy powder in the powder magnetic core, and obtain sufficient compact strength and magnetic flux density.
  • Coating amount (% by mass) (mass of insulating coating) / (mass of portion of Fe-based amorphous alloy powder excluding insulating coating) x 100
  • the Fe-based amorphous alloy powder of the present invention may contain a substance different from the insulating coating in at least one of the insulating coating, under the insulating coating, and above the insulating coating.
  • the different substances include surfactants for improving wettability, binders for binding between particles, additives for pH control, and the like.
  • the total amount of the different substances with respect to the entire insulating coating is preferably 10% by mass or less.
  • the method of forming the insulating coating is not particularly limited, but it is preferably formed by wet processing.
  • the wet treatment for example, there is a method of mixing a treatment liquid for forming an insulating coating and Fe-based amorphous alloy powder.
  • the mixing method is not particularly limited, but a method of stirring and mixing the Fe-based amorphous alloy powder and the treatment solution in a tank such as an attritor or a Henschel mixer, a method of mixing the Fe-based amorphous alloy with a tumbling flow type coating device, etc.
  • a method of supplying a processing solution to the powder in a fluid state and mixing the powder is preferable.
  • the supply of the solution to the Fe-based amorphous alloy powder may be performed before or immediately after the start of mixing, or may be divided into several portions during mixing.
  • the treatment liquid may be supplied continuously during mixing using a droplet supply device, spray, or the like.
  • the supply of the treatment liquid is not particularly limited, it is preferable to use a spray.
  • a sprayer By using a sprayer, the treatment solution can be uniformly dispersed over the entire Fe-based amorphous alloy powder, and the spraying conditions can be adjusted to reduce the diameter of the sprayed droplets to about 10 ⁇ m or less. This is because the coating can be prevented from becoming excessively thick, and a uniform and thin insulating coating can be easily formed on the Fe-based amorphous alloy powder.
  • stirring and mixing can also be performed by a fluidized bed such as a fluid bed granulator or a tumbling granulator, or a stirring mixer such as a Henschel mixer, which has the advantage of suppressing cohesion of powders. have.
  • the Fe-based amorphous alloy powder can be used as a raw material for manufacturing magnetic parts.
  • a magnetic part in one embodiment of the present invention is a magnetic part using the Fe-based amorphous alloy powder, and has excellent magnetic properties.
  • the magnetic component is not particularly limited and may be any magnetic component, but is preferably a dust core.
  • Magnetic parts including dust cores can be manufactured by any method without any particular limitation.
  • a magnetic part can be obtained by charging the Fe-based amorphous alloy powder of the present invention into a mold and subjecting it to pressure molding so as to obtain desired dimensions and shape. It is preferable that the Fe-based amorphous alloy powder used for manufacturing the magnetic parts is provided with an insulating coating.
  • the pressure molding is not particularly limited, and any method can be used, for example, cold molding method, mold lubrication molding method, and the like.
  • the molding pressure can be appropriately determined depending on the application, but if the molding pressure is increased, the green density increases and the iron loss is improved, so it is preferably 490 MPa or more, more preferably 686 MPa or more .
  • a lubricant can be used during pressure molding.
  • the lubricant may be applied to the mold wall or added to the Fe-based powder.
  • any lubricant can be used without particular limitation as the lubricant.
  • the lubricant for example, it is preferable to use at least one selected from the group consisting of metal soaps and waxes.
  • the metal soap include lithium stearate, zinc stearate, and calcium stearate.
  • the wax include fatty acid amides.
  • a heat treatment may be applied to the obtained magnetic component.
  • effects such as improvement in saturation magnetic flux density due to precipitation of nanocrystals, reduction in hysteresis loss due to strain relief, and increase in strength of the compact can be expected.
  • the heat treatment is not particularly limited and can be performed under any conditions, but the heating rate should be 0.1 to 100° C./min, the holding temperature should be 300 to 600° C., and the time should be 5 to 180 minutes. is preferred.
  • the heat treatment can be performed in any atmosphere such as air, an inert atmosphere, a reducing atmosphere, or a vacuum. There may also be a step of holding at a constant temperature as the temperature rises or falls during the heat treatment.
  • an Fe-based amorphous alloy powder was produced according to the procedure described below, and its properties were evaluated.
  • an Fe-based amorphous alloy powder having the following compositions (a) to (c) was produced by rapid solidification by water atomization.
  • the crystallinity, oxygen concentration, D 50 , maximum particle size, and coercive force of the obtained Fe-based amorphous alloy powder were measured by the following procedures.
  • Crystallinity was measured using an X-ray diffractometer with a Cu—K ⁇ ray source (SmartLab manufactured by Rigaku Corporation). Measurements were taken at a scanning speed of 4°/min, at intervals of 0.02° and 2 ⁇ in the range of 5 to 70°.
  • oxygen concentration The oxygen concentration was measured by a non-dispersive infrared absorption method according to JIS Z 2613.
  • An oxygen analyzer (Model ON736 manufactured by LECO) was used for the measurement.
  • D50 and maximum particle size were measured using a laser diffraction particle size distribution analyzer (LA-950V2, manufactured by Horiba, Ltd.). The measurement was performed after putting the powder into ethanol as a solvent and dispersing it by ultrasonic vibration for 1 minute.
  • the measured coercive force was evaluated according to the following criteria. ⁇ 110 A/m or less: ⁇ ⁇ 200 A / m or less, over 110 A / m: ⁇ ⁇ Over 200 A / m: ⁇
  • a powder magnetic core was produced according to the following procedure.
  • an insulating coating was formed on the surfaces of the particles constituting the Fe-based amorphous alloy powder to obtain a coated powder.
  • the insulating coating solution was added to and mixed with the Fe-based amorphous alloy powder, and then the mixture was allowed to stand in an air atmosphere for 10 hours for drying. After drying, heat treatment was performed at 150° C. for 60 minutes to harden the resin.
  • the insulating coating solution a solution obtained by diluting silicone resin (resin content: 60% by mass) with xylene was used. The amount of the insulating coating solution added was adjusted so that the coating amount was 3% by mass.
  • the obtained coated powder was filled in a mold coated with lithium stearate as a lubricant, and pressure-molded into a powder magnetic core (outer diameter 38 mm ⁇ inner diameter 25 mm ⁇ height 6 mm).
  • the molding pressure was 1470 MPa, and molding was performed in one step.
  • the temperature was raised from room temperature at a rate of 3°C/min in a furnace under an N2 atmosphere, and heat treatment was performed at 400°C for 20 minutes. After the heat treatment, the compact was taken out from the furnace under N2 atmosphere, and then air-cooled to room temperature at 8°C/min to obtain a dust core.
  • the density, hysteresis loss, and eddy current loss were measured by the following procedure.
  • the mass of the dust core obtained was measured, and the density of the dust core was calculated by dividing the mass by the volume calculated from the dimensions of the dust core.
  • hysteresis loss A sample for measurement was prepared by winding a copper wire around the prepared dust core. The number of turns was 100 turns on the primary side and 20 turns on the secondary side. Next, the hysteresis loss of the measurement sample was measured using a direct current magnetization property tester (manufactured by Metron Giken Co., Ltd., Model SK-110). The measurement was performed under conditions of a maximum magnetic flux density of 0.1 T and 50 Hz, and the area of the obtained hysteresis loop was taken as the hysteresis loss. Then, the measured hysteresis loss was multiplied by 400 to calculate the hysteresis loss at a magnetic flux density of 0.1 T and a frequency of 20 kHz.
  • iron loss (eddy current loss) Using a high-frequency iron loss measuring device (manufactured by Metron Giken Co., Ltd.), the iron loss at 0.1 T and 20 kHz of the sample used for measuring the hysteresis loss was measured. The difference between the measured iron loss and the hysteresis loss was defined as the eddy current loss. Also, iron loss was evaluated according to the following criteria. ⁇ 200 kW/m 3 or less: ⁇ ⁇ 300 kW/m 3 or less, over 200 kW/m 3 : ⁇ ⁇ Over 300 kW/m 3 : ⁇
  • Tables 1 to 3 show the results of examples using the Fe-based amorphous alloy powders having the compositions (a) to (c) above, respectively.
  • the Fe-based amorphous alloy powders of the invention examples satisfying the conditions of the present invention had a low coercive force, specifically a coercive force of 200 A/m or less.
  • a powder having a crystallinity of 5% or less, a D50 of 20.0 ⁇ m or more and 80 ⁇ m or less, and an oxygen concentration of R2 or less has a further reduced coercive force, specifically 110 A / m or less. rice field.
  • the dust cores produced using the powders of the invention examples have an iron loss of 300 kW/m 3 or less, which is lower than that of the dust cores produced using the powders of the comparative examples.
  • a dust core using a powder having a degree of crystallinity of 5% or less, a D50 of 20.0 ⁇ m or more and 80 ⁇ m or less, and an oxygen concentration of R2 or less has an iron loss of 200 kW/m 3 or less. was excellent.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Dispersion Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

保磁力が低減されたFe基非晶質合金粉末および低い鉄損を有する磁性部品を提供する。Fe基非晶質合金粉末であって、結晶化度Vcry(体積%)が0体積%以上、10体積%以下、体積基準の粒径分布における中央値D50が15.0μm以上、100μm以下、最大粒径が20.0μm以上150μm以下、かつ酸素濃度RO(質量%)が0質量%以上、下記(1)式で定義されるR1以下である、Fe基非晶質合金粉末。 R1=(301-11.65×Vcry-4169/D50)/122…(1)

Description

Fe基非晶質合金粉末、磁性部品、および圧粉磁芯
 本発明は、Fe基非晶質合金粉末、磁性部品、および圧粉磁芯に関する。
 粉末冶金法は、溶製法に比べ、複雑な形状の部品の製造においても寸法精度が高く、また、原料の無駄が少ないため、各種部品の製造に適用されている。特に近年、粉末冶金法は、磁性部品の製造に適用されている。
 粉末冶金法によって製造される磁性部品としては、例えば、圧粉磁芯が挙げられる。圧粉磁芯は、粉末を加圧成形して製造される磁芯であり、リアクトル等の鉄芯などに用いられる。近年、特にハイブリッド自動車や電気自動車において小型かつ航続距離向上のため磁気特性に優れたリアクトル等が必要とされており、使用する圧粉磁芯にも、より優れた磁気特性を有することが要求されている。そのため、高磁束密度かつ低鉄損である強磁性金属粉末を絶縁被膜で被覆し、加圧成形した圧粉磁芯が実用化されている。
 圧粉磁芯を低鉄損とするためには、特に金属粉末粒子の保磁力を低減する必要がある。従来、保磁力を低減するための方法としては、金属粉末粒子の粒径や酸素含有率を制御する方法が提案されている。
 例えば、特許文献1では、Fe基合金粉末の粒子径D50を3.5μm以上35.0μm以下とすることにより、磁芯におけるFe基合金粒子の占積率を向上させ、その結果、磁芯の磁気特性を向上させることが提案されている。また、特許文献1には、粒子径が比較的小さいFe基合金粒子では表層部の酸化被膜が占める体積割合が大きいため保磁力の増加につながること、および粒子径2μm以下の粒子の割合を8体積%以下とすることによって保磁力を低減することも開示されている。
 また、特許文献2では、非晶質合金粉末のD50を5μm以上20μm以下、かつ酸素含有率を3000ppm以下とすることにより、圧粉磁芯の磁気特性を向上させることが提案されている。
国際公開第2019/031464号 特開2016-015357号公報
 しかし、特許文献1、2で提案されているような従来の技術においては、保磁力の低減が依然として十分とはいえず、さらに磁気特性に優れた磁性部品を製造するためには一層の保磁力の低減が求められる。
 本発明は、上記実状に鑑みてなされたものであり、保磁力が低減されたFe基非晶質合金粉末と、優れた磁気特性、より具体的には低い鉄損を有する磁性部品とを提供することを目的とする。
 本発明者らは、前記課題を解決するために検討を行った結果、以下の知見を得た。
(1)圧粉磁芯などの磁性部品の製造においては、Fe基非晶質合金粉末を圧粉成形し、次いで、熱処理を行って粉末をナノ結晶化させる。その際、ナノ結晶化前のFe基非晶質合金粉末の保磁力と、ナノ結晶化後の磁性部品のヒステリシス損との間には強い相関がある。
(2)ナノ結晶化前のFe基非晶質合金粉末の結晶化度、D50、最大粒径、および酸素濃度が特定の条件を満たすよう制御することにより、Fe基非晶質合金粉末の保磁力を効果的に低減し、鉄損が低い磁性部品を製造することが可能となる。
 本発明は、以上の知見に基づいて完成されたものである。本発明の要旨は次のとおりである。
1.Fe基非晶質合金粉末であって、
  結晶化度Vcry(体積%)が0体積%以上、10体積%以下、
  体積基準の粒径分布における中央値D50が15.0μm以上、100μm以下、
  最大粒径が20.0μm以上150μm以下、かつ
  酸素濃度R(質量%)が0質量%以上、下記(1)式で定義されるR1以下である、Fe基非晶質合金粉末。
 R1=(301-11.65×Vcry-4169/D50)/122…(1)
2.前記酸素濃度R(質量%)が0質量%以上、下記(2)式で定義されるR2以下である、上記1に記載のFe基非晶質合金粉末。
 R2=(211-11.65×Vcry-4169/D50)/122…(2)
3.上記1または2に記載のFe基非晶質合金粉末であって、
 不可避不純物を除き組成式:FeSiCuで表される組成を有する軟磁性粉末からなり、
 前記組成式中のMは、Nb、Mo、Ni、Co、Sn、Zr、Ta、W、Hf、Ti、V、Cr、Mn、C、Al、S、O、およびNからなる群から選ばれる少なくとも1つの元素であり、
 79at%≦a≦84.5at%、
 0at%≦b<6at%、
 0at%<c≦10at%、
 4at%<d≦11at%、
 0.2at%≦e≦1.5at%、
 0at%≦f≦4at%、かつ
 a+b+c+d+e+f=100at%である、Fe基非晶質合金粉末。
4.前記Fe基非晶質合金粉末を構成する粒子の表面に絶縁被覆を有する、上記1~3のいずれか1つに記載のFe基非晶質合金粉末。
5.上記1~4のいずれか1つに記載のFe基非晶質合金粉末を用いた磁性部品。
6.上記1~4のいずれか1つに記載のFe基非晶質合金粉末を用いた圧粉磁芯。
 本発明によれば、保磁力が低減されたFe基非晶質合金粉末を提供することができる。また、前記Fe基非晶質合金粉末を用いることにより、低い鉄損を有する磁性部品を提供することができる。
 以下、本発明を実施する方法について具体的に説明する。なお、以下の説明は、本発明の好適な実施形態の例を示すものであって、本発明はこれに限定されない。
[Fe基非晶質合金粉末]
 本発明の一実施形態におけるFe基非晶質合金粉末は、下記(A)~(D)の条件を満たす。
(A)結晶化度Vcry(体積%)が0体積%以上、10体積%以下
(B)体積基準の粒径分布における中央値D50が15.0μm以上、100μm以下
(C)最大粒径が20.0μm以上150μm以下
(D)酸素濃度R(質量%)が0質量%以上、下記(1)式で定義されるR1以下
 R1=(301-11.65×Vcry-4169/D50)/122…(1)
 以下、上記条件について説明する。なお、本発明において「Fe基非晶質合金粉末」とは、50質量%以上のFeを含む非晶質合金粉末を指すものとする。以下の説明ではとくに断らない限り、結晶化度Vcryの単位としての「%」は「体積%」を、酸素濃度Rの単位としての「%」は「質量%」を、それぞれ表すものとする。また、単に「熱処理」と言った場合、ナノ結晶化のための熱処理を指すものとする。
結晶化度Vcry:0~10%
 Fe基非晶質合金粉末の結晶化度が極端に高い場合、粒子中に粗大なαFe(-Si)結晶が存在し、前記結晶はその後の熱処理によってさらに粗大化する。保磁力は、αFe(-Si)結晶の結晶子径が増大するほど増加し、この傾向は結晶子径が約100nm以下のαFe(-Si)結晶が存在する粒子において顕著である。そこで、保磁力を低減するために、結晶化度を10%以下、好ましくは5%以下とする。一方、結晶化度は低ければ低いほどよいため、結晶化度の下限は0%とする。
 前記結晶化度は、以下の方法で算出する。まず、Cu-Kαの特性X線を使用した粉末X線回折により、Fe基非晶質合金粉末のX線回折スペクトルを測定する。得られたX線回折スペクトルには、非晶質相に由来する回折パターン(ブロードなピーク)と、結晶相に由来するピークとが観察される。そこで、結晶相に由来するピークの合計面積(Cry.P)と、非晶質相に由来する回折パターンの面積(Amo.P)とから、下記式によってFe基非晶質合金粉末における結晶化度(Vcry)を算出する。前記結晶化度は、より具体的には実施例に記載した方法で測定することができる。
cry(体積%)=Cry.P/(Amo.P+Cry.P)×100
50:15.0~100μm
 D50が極端に小さいと、粒子の比表面積が極めて高くなるため磁壁移動が妨げられ、その結果、保磁力が増加する。そこで、ヒステリシス損を低減するために、D50を15.0μm以上、好ましくは25.0μm以上とする。一方、D50が極端に大きいと、ヒステリシス損は低下するものの、渦電流が増加するため、かえって鉄損が増加する。そこで、渦電流損を低減するために、D50を100μm以下、好ましくは80μm以下とする。
 なお、ここで「D50」とは、体積基準の粒径分布における中央値、いわゆるメジアン径を指す。D50は、次の方法で測定することができる。まず、対象となるFe基非晶質合金粉末を、溶媒(例えば、エタノール)中に投入し、30秒以上の超音波振動により分散させて分散液を得る。次いで、レーザー回折・散乱法を用いたレーザー回折式粒度分布測定機により、前記分散液中の粒子の体積基準の粒度分布を測定する。得られた粒度分布から累積粒度分布を算出し、頻度の累積が50%となる粒径であるD50を求める。D50は、より具体的には実施例に記載した方法で測定することができる。
最大粒径:20.0~150μm
 Fe基非晶質合金粉末に過度に粗大な粒子が含まれていると、粒子間の空隙のサイズが大きくなる。粒子間の空隙が大きいと、小さい粒子が前記空隙をすり抜けるため、偏析が生じやすくなる。また、粒子間の空隙のサイズが大きいと、Fe基非晶質合金粉末を加圧成形して得られる圧粉磁芯の密度が低下する結果、強度が低下することに加え、鉄損が増大する。そこで、本発明では上記Fe基非晶質合金粉末の最大粒径を150μm以下、好ましくは120μm以下とする。一方、Fe基非晶質合金粉末の最大粒径が20.0μm未満であると、当該粉末を構成する粒子の表面に均一に絶縁被覆を形成することが困難となる。そのため、前記最大粒径を20.0μm以上、好ましくは25.0μm以上とする。
 前記最大粒径は、レーザー回折式粒度分布測定機により測定した粒径の最大値であり、測定条件は、上記のD50の測定と同様とする。
酸素濃度R:0~R1
 酸素は、粒子中の酸化物や粒子表面の酸化被膜として存在し得る。酸化物は、磁壁のピニングサイトとして磁壁移動を妨げるため、保磁力増加および飽和磁束密度低下の要因となる。また、酸化被膜は、磁性がFe基合金より劣るか、または非磁性であるため、やはり保磁力増加および飽和磁束密度低下の要因となる。上述したように、磁性部品の鉄損、特にヒステリシス損を低減するためには、原料として使用するFe基非晶質合金粉末の保磁力を低減する必要がある。そこで、様々な条件で実験を行い、Fe基非晶質合金粉末の各種パラメータと保磁力との相間を重回帰分析により解析した。その結果、酸素濃度が、結晶化度とD50の関数として下記(1)式で定義されるR1以下であれば、保磁力を顕著に低減できることが分かった。そのため、保磁力の低減および飽和磁束密度の向上のために、酸素濃度を下記(1)式で定義されるR1(質量%)以下とする。酸素濃度は、下記(2)式で定義されるR2(質量%)以下とすることが好ましい。一方、酸素濃度は低ければ低いほどよいため、酸素濃度の下限は0%とする。
 R1=(301-11.65×Vcry-4169/D50)/122…(1)
 R2=(211-11.65×Vcry-4169/D50)/122…(2)
なお、上記(1)、(2)式における結晶化度Vcryの単位は体積%、D50の単位はμmである。
 上記酸素濃度は、JIS Z 2613で規定されている赤外線吸収法により測定することができる。前記酸素濃度は、より具体的には実施例に記載した方法で測定することができる。
[成分組成]
 上記Fe基非晶質合金粉末は、不可避不純物を除き組成式:FeSiCuで表される組成を有する軟磁性粉末からなることが好ましい。前記組成式中のMは、Nb、Mo、Ni、Co、Sn、Zr、Ta、W、Hf、Ti、V、Cr、Mn、C、Al、S、O、およびNからなる群から選ばれる少なくとも1つの元素である。
 また、上記組成式中の添え字a~fは以下の条件を満たす。なお、上記組成式に関する説明における「%」は、とくに断らない限り「原子%(at%)」を指すものとする。
 79%≦a≦84.5%
 0%≦b<6%
 0%<c≦10%
 4%<d≦11%
 0.2%≦e≦1.5%
 0%≦f≦4%
 a+b+c+d+e+f=100%
 上記組成とすることにより、粉末の結晶化度を10%以下に抑えることができ、熱処理をすることによって、αFe(-Si)のナノ結晶を析出させて磁性特性を一層改善することができる。
 なお、軟磁性粉末には、製造工程等から混入する不可避不純物が含まれ得るが、上記組成式は、不可避不純物を除いた組成を表す。
 以下、本実施形態における各成分の作用と、好適な含有量について説明する。
79%≦a≦84.5%
 Feは、磁性を担う必須元素であり、Feの割合は79%以上、好ましくは79.5%以上とする。一方、Feの割合は84.5%以下、好ましくは84.0%以下とする。
0%≦b<6%
 Siは、非晶質相形成を担う元素である。Siの割合は、6%未満(ゼロを含む)、好ましくは5.5%以下とする。一方、Siの割合の下限は0%であってよいが、好ましくは0.5%以上とする。
0%<c≦10%
 Bは、非晶質相形成を担う元素である。Bの割合は、4%以上、好ましくは4.5%以上とする。一方、Bの割合は、10%以下、好ましくは9.5%以下とする。
4%<d≦11%
 Pは、非晶質相形成を担う元素である。Pの割合は、4%超、好ましくは4.5%超とする。一方、Pの割合は、11%以下、好ましくは10.5%以下とする。
0.2%≦e≦1.5%
 Cuは、ナノ結晶化に寄与する元素である。Cuの割合は、0.2%以上、好ましくは0.25%以上とする。一方、Cuの割合は、1.5%以下、好ましくは1.2%以下とする。
0%≦f≦4%
 上記組成式は、上記元素以外に、Nb、Mo、Ni、Co、Sn、Zr、Ta、W、Hf、Ti、V、Cr、Mn、C、Al、S、O、およびNからなる群から選ばれる少なくとも1つの元素を含んでもよい。これらの元素の割合は、合計で4%以下、好ましくは1%以下とする。一方、前記元素の割合は、0%以上とする。
[Fe基非晶質合金粉末の製造]
 次に、本発明のFe基非晶質合金粉末の製造方法について説明する。本発明のFe基非晶質合金粉末は、特に限定されることなく任意の方法で製造することができるが、一実施形態においては、アトマイズ法で製造することができる。アトマイズ法とは、金属溶湯にガスまたは水を吹き付けてスプレー状にして冷却凝固させることで金属粉末を得る方法である。前記アトマイズ法としては、ガスアトマイズ法および水アトマイズ法のいずれも用いることができる。言い換えると、本発明のFe基非晶質合金粉末は、アトマイズ粉であってよく、ガスアトマイズ粉および水アトマイズ粉の一方または両方であってよい。また、他の実施形態においては、粉砕法や酸化物還元法で得られた粉末を加工することによってFe基非晶質合金粉末を製造してもよい。さらに、作製した粉末を様々な方法で分級して所定の粒子径に調整することもできる。
 本発明のFe基非晶質合金粉末が上記組成式で表される組成を有する軟磁性粉末からなる場合、当該組成となるように原料を調整して製造することができる。例えば、アトマイズ法により粉末を製造する場合、所望の組成となるように原料を秤量し、前記原料を溶解してアトマイズ法に使用する合金溶湯を作製すればよい。
 なお、結晶化度、D50、最大粒径、および酸素濃度については、特に限定されず任意の方法で調整すればよい。例えば、アトマイズ法で使用する溶鋼の温度を低くすることによって結晶化度を低下させることができる。また、水アトマイズ法を用いる場合には、溶鋼に衝突させる水の量を増加させることによっても結晶化度を低下させることができる。D50と最大粒径は、例えば、溶鋼に衝突させる水の圧力を調整することによって制御できる。酸素濃度は、溶鋼へ水を衝突させる空間である噴霧槽の雰囲気中の酸素濃度を低減することによって低減できる。雰囲気中の酸素濃度を低減するためには、例えば、噴霧槽内を窒素またはアルゴンなどの不活性ガスで置換すればよい。
[絶縁被覆]
 本発明のFe基非晶質合金粉末は、該Fe基非晶質合金粉末を構成する粒子の表面に絶縁被覆を備えることができる。前記絶縁被覆としては、特に限定されることなく任意の絶縁材料からなる被覆を用いることができる。例えば、前記絶縁被覆としては、無機絶縁被覆および有機絶縁被覆の一方または両方を用いることができる。
 前記無機絶縁被覆は、アルミニウム化合物を含有する被膜であることが好ましく、リン酸アルミニウムを含有する被膜であることがより好ましい。前記無機絶縁被覆は、化成皮膜であってもよい。前記アルミニウム化合物としては、アルミニウムを含む任意の化合物を使用でき、例えば、アルミニウムのリン酸塩、硝酸塩、酢酸塩、および水酸化物からなる群より選択される少なくとも1つを用いることができる。
 アルミニウム化合物を含有する被覆は、アルミニウム化合物を主体とする被膜であってよく、アルミニウム化合物からなる被膜であってもよい。前記被膜は、さらにアルミニウム以外の金属を含む金属化合物を含有してもよい。アルミニウム以外の金属としては、例えば、Mg、Mn、Zn、Co、Ti、Sn、Ni、Fe、Zr、Sr、Y、Cu、Ca、V、およびBaからなる群より選択される少なくとも1つを用いることができる。アルミニウム以外の金属を含む金属化合物としては、例えば、リン酸塩、炭酸塩、硝酸塩、酢酸塩、および水酸化物からなる群より選択される少なくとも1つを用いることができる。前記金属化合物は、水などの溶媒に可溶であることが好ましく、水溶性金属塩であることがより好ましい。
 前記絶縁被覆がリン酸塩またはリン酸化合物を含有する場合、該絶縁被覆におけるリン含有量をP(mol)、被覆中の全金属元素の合計含有量をM(mol)としたとき、Mに対するPの比(P/M)が1以上10未満であることが好ましい。P/Mが1以上であれば、被覆形成時におけるFe基非晶質合金粉末表面での化学反応が十分に進行し、被覆の密着性が向上することを通じて、圧粉磁芯の強度や絶縁性を一層向上させることができる。一方、P/Mが10未満であれば、被覆形成後に遊離リン酸が残存せず、Fe基非晶質合金粉末の腐食を十分防止できる。P/Mは、より好ましくは1~5であり、比抵抗のばらつきや不安定化を効果的に防止する点から、P/Mは、さらに好ましくは2~3である。
 アルミニウムを含有するリン酸塩またはリン酸化合物を含有する被覆においては、アルミニウムの含有量をA(mol)としたときに、被覆中の全金属元素の合計含有量であるM(mol)に対するAの比(A/M)が0.3超、1以下であることが好ましい。この範囲であれば、リン酸との反応性が高いアルミニウムが十分に存在し、未反応の遊離リン酸の残存を抑制することができる。A/Mは、より好ましくは0.4~1.0であり、さらに好ましくは0.8~1.0である。
 また、前記有機絶縁被覆は、有機樹脂被膜であることが好ましい。前記有機樹脂被膜としては、任意の1または2以上の樹脂を含む被膜を用いることができる。前記樹脂としては、例えば、シリコーン樹脂、フェノール樹脂、エポキシ樹脂、ポリアミド樹脂、およびポリイミド樹脂からなる群より選択される少なくとも1つを用いることができ、中でもシリコーン樹脂を用いることが好ましい。
 シリコーン樹脂としては、例えば、東レ・ダウコーニング株式会社製の、SH805、SH806A、SH840、SH997、SR620、SR2306、SR2309、SR2310、SR2316、DC12577、SR2400、SR2402、SR2404、SR2405、SR2406、SR2410、SR2411、SR2416、SR2420、SR2107、SR2115、SR2145、SH6018、DC-2230、DC3037、QP8-5314や、信越化学工業株式会社製の、KR-251、KR-255、KR-114A、KR-112、KR-2610B、KR-2621-1、KR-230B、KR-220、KR-285、K295、KR-2019、KR-2706、KR-165、KR-166、KR-169、KR-2038、KR-221、KR-155、KR-240、KR-101-10、KR-120、KR-105、KR-271、KR-282、KR-311、KR-211、KR-212、KR-216、KR-213、KR-217、KR-9218、SA-4、KR-206、ES-1001N、ES-1002T、ES1004、KR-9706、KR-5203、KR-5221などの銘柄が挙げられるが、これらに限定されない。これらは単独で用いてもよく、2種以上を任意の比率で用いてもよい。
 前記絶縁被覆は、1層の被膜であっても、2層以上からなる多層被膜であってもよい。また、前記多層被膜は、同種の被膜からなる多層被膜であっても、異なる種類の被膜からなる多層被膜であってもよい。
 前記絶縁被覆の被覆量は、特に限定されないが、0.01~10質量%とすることが好ましい。被覆量が上記の範囲であれば、より均一な被覆を形成することができ、高い絶縁性を確保することができる。また、圧粉磁芯中のFe基非晶質合金粉末の占める割合を確保して、十分な成形体強度と磁束密度を得ることができる。
 なお、ここで、前記被覆量は以下の式で定義される。
被覆量(質量%)=(絶縁被覆の質量)/(Fe基非晶質合金粉末のうち、絶縁被覆を除く部分の質量)×100
 本発明のFe基非晶質合金粉末は、絶縁被覆中、絶縁被覆の下および絶縁被覆の上の少なくとも1つに、上記絶縁被膜とは異なる物質を含有していてもよい。前記異なる物質としては、濡れ性を改善するための界面活性剤、粒子間結着のための結合剤、pH調整のための添加剤などが挙げられる。前記異なる物質の絶縁被覆全体に対する総量は、10質量%以下とすることが好ましい。
 絶縁被覆の形成方法は、特に限定されないが、湿式処理により形成することが好ましい。湿式処理としては、例えば、絶縁被覆形成用処理液とFe基非晶質合金粉末とを混合する方法が挙げられる。
 混合方法は、特に限定されないが、アトライターまたはヘンシェルミキサーなどの槽内でFe基非晶質合金粉末と処理溶液とを撹拌混合する方法、転動流動型被覆装置等によりFe基非晶質合金粉末を流動状態として処理溶液を供給して混合する方法などが好ましい。
 Fe基非晶質合金粉末への溶液の供給は、混合開始前または開始直後に全量を供給してもよく、混合中に数回に分けて供給してもよい。あるいは、液滴供給装置、スプレーなどを用いて、混合中に継続して処理液を供給してもよい。
 処理液の供給は、特に限定されないが、スプレーを用いて行うことが好ましい。スプレーを用いることにより、処理溶液をFe基非晶質合金粉末全体に均一に散布でき、また、噴霧条件を調整して、噴霧液滴の直径を10μm程度以下まで小さくすることができ、その結果、被覆が過剰に厚くなることを防止でき、均一かつ薄い絶縁被覆をFe基非晶質合金粉末に容易に形成できるからである。一方、流動造粒機、転動造粒機などの流動槽、またはヘンシェルミキサーのような撹拌型混合機によって撹拌混合を行うこともでき、これらは粉体同士の凝集が抑制されるという利点を有する。Fe基非晶質合金粉末へのより均一な絶縁被覆の形成の点からは、流動槽や撹拌型混合機と、スプレーによる処理溶液の供給とを組み合わせることが好ましい。混合器中または混合後に加熱処理を施すことが、溶媒の乾燥促進や、反応の促進の点から有利である。
[磁性部品]
 上記Fe基非晶質合金粉末は、磁性部品を製造するための原料として用いることができる。本発明の一実施形態における磁性部品は、上記Fe基非晶質合金粉末を用いた磁性部品であり、優れた磁気特性を有する。前記磁性部品は、とくに限定されることなく任意の磁性部品であってよいが、中でも圧粉磁芯であることが好ましい。
 圧粉磁芯を初めとする磁性部品は、特に限定されることなく任意の方法で製造することができる。例えば、本発明のFe基非晶質合金粉末を金型に装入し、所望の寸法および形状となるように加圧成形することによって磁性部品を得ることができる。磁性部品の製造に用いるFe基非晶質合金粉末は絶縁被膜を備えたものであることが好ましい。
 加圧成形は、特に限定されず、任意の方法を用いることができ、例えば、常温成形法、金型潤滑成形法などが挙げられる。成形圧力は、用途に応じて適宜決定することができるが、成形圧力を増加すれば、圧粉密度が高くなり、鉄損が改善する点から、490MPa以上が好ましく、より好ましくは686MPa以上である。
 加圧成形に際しては、潤滑剤を用いることができる。潤滑剤は、金型壁面に塗布しても、Fe基粉末に添加してもよい。潤滑剤を使用することにより、加圧成形時に金型と粉末との間の摩擦を低減することができ、成形体密度の低下の一層の抑制が可能であるとともに、金型から抜き出す際の摩擦も低減することができ、取り出し時の成形体(磁性部品)の割れを防止できる。
 前記潤滑剤としては、特に限定されず任意の潤滑剤を用いることができる。前記潤滑剤としては、例えば、金属石鹸およびワックスからなる群より選択される少なくとも1つを用いることが好ましい。前記金属石鹸としては、例えば、ステアリン酸リチウム、ステアリン酸亜鉛、ステアリン酸カルシウムが挙げられる。また、前記ワックスとしては、例えば、脂肪酸アミドが挙げられる。
 得られた磁性部品に対して熱処理を施してもよい。熱処理を行うことにより、ナノ結晶の析出による飽和磁束密度の向上や歪取りによるヒステリシス損失の低減や成形体強度の増加といった効果を見込むことができる。前記熱処理は、とくに限定されることなく任意の条件で行うことができるが、昇温速度は0.1~100℃/分、保持温度は300~600℃、時間は5~180分とすることが好ましい。前記熱処理は、大気中、不活性雰囲気中、還元雰囲気中、真空中など、任意の雰囲気で行うことができる。熱処理中の昇温または降温時に一定の温度で保持する段階を設けることもできる。
 本発明の効果を確認するために、以下に述べる手順でFe基非晶質合金粉末を製造し、その特性を評価した。
 まず、水アトマイズ法による急冷凝固より、下記(a)~(c)の組成を有するFe基非晶質合金粉末を作製した。
(a)Fe84.5Si1.210Cu0.2
(b)Fe79Si11Cu1.5Mo1.5
(c)Fe81.65Si5.55.56.8Cu0.25Sn0.2Mn0.1
 得られたFe基非晶質合金粉末の結晶化度、酸素濃度、D50、最大粒径、および保磁力を、それぞれ以下の手順で測定した。
(結晶化度)
 Cu-Kα線源のX線回折装置(株式会社リガク製SmartLab)を用いて、結晶化度を測定した。測定は、スキャニングスピード4°/分、0.02°の間隔で、2θが5~70°の範囲で行った。結晶相に由来するピークの合計面積(Cry.P)と、非晶質相に由来する回折パターンの面積(Amo.P)とから、下記式によって結晶化度(Vcry)を算出した。
Vcry(体積%)=Cry.P/(Amo.P+Cry.P)×100
(酸素濃度)
 JIS Z 2613に準拠して、非分散型赤外線吸収法により酸素濃度を測定した。測定には、酸素分析装置(LECO社製ON736型)を使用した。
(D50、最大粒径)
 レーザー回折式粒度分布測定機(株式会社堀場製作所製 LA-950V2)を用いてD50および最大粒径を測定した。測定は、粉末を溶媒としてのエタノール中に投入し、1分間の超音波振動によって分散させた後に実施した。
(保磁力)
 粉末を測定用セルに20mg装入し、樹脂で固定した。次いで、前記測定用セルを振動試料型磁力計(Lake Shore Cryotronics社製 7404)に設置し、最大磁場17kGの印加により粉末の保磁力を測定した。
 測定された保磁力を、以下の判定基準で評価した。
・110A/m以下:◎
・200A/m以下、110A/m超:〇
・200A/m超:×
 次に、上記Fe基非晶質合金粉末を使用し、以下の手順で圧粉磁芯を作製した。
 まず、Fe基非晶質合金粉末を構成する粒子の表面に絶縁被覆を形成して、被覆粉末とした。具体的には、Fe基非晶質合金粉末に絶縁被覆用溶液を添加、混合し、次いで、乾燥のため10時間大気雰囲気下で静置した。乾燥後、樹脂硬化のため150℃で60分間の熱処理を行った。前記絶縁被覆用溶液としては、シリコーンレジン(樹脂分60質量%)をキシレンにより希釈した溶液を使用した。また、前記絶縁被覆用溶液の添加量は、被覆量が3質量%となるように調整した。
 次に、得られた被覆粉末を、潤滑剤としてのステアリン酸リチウムを塗布した金型に充填し、加圧成形して圧粉磁芯(外径38mmφ×内径25mmφ×高さ6mm)とした。成形圧力は1470MPaとし、1回で成形した。その後、成形体の強度向上のため、N雰囲気下の炉で室温から3℃/分で昇温後に400℃で20分間熱処理した。前記熱処理の後、成形体をN雰囲気下で炉から取り出し、次いで室温まで8℃/分で空冷して圧粉磁芯とした。
 得られた圧粉磁芯のそれぞれについて、密度、ヒステリシス損、および渦電流損を以下の手順で測定した。
(密度)
 得られた圧粉磁芯の質量を測定し、該質量を圧粉磁芯の寸法から算出した体積で割ることにより圧粉磁芯の密度を算出した。
(ヒステリシス損)
 作製した圧粉磁芯に銅線を巻いて測定用試料を作製した。巻数は、一次側:100ターン、二次側:20ターンとした。次いで、直流磁化特性試験装置(メトロン技研株式会社製、SK-110型)を用いて、前記測定用試料のヒステリシス損を測定した。前記測定は、最大磁束密度0.1T、50Hzの条件で行い、得られたヒステリシスループの面積をヒステリシス損とした。そして、測定されたヒステリシス損を400倍して、磁束密度0.1T、周波数20kHzにおけるヒステリシス損を算出した。
(渦電流損)
 高周波鉄損測定装置(メトロン技研株式会社製)を用いて、上記ヒステリシス損の測定に用いた試料の0.1T、20kHzでの鉄損を測定した。測定した鉄損と上記ヒステリシス損の差を渦電流損とした。また、以下の判断基準で鉄損を評価した。
・200kW/m以下:◎
・300kW/m以下、200kW/m超:〇
・300kW/m超:×
 上記(a)~(c)の組成を有するFe基非晶質合金粉末を用いた実施例の結果を、それぞれ表1~3に示す。表1~3に示した結果から分かるように、本発明の条件を満たす発明例のFe基非晶質合金粉末は、保磁力が低く、具体的には保磁力が200A/m以下であった。中でも、結晶化度が5%以下、D50が20.0μm以上80μm以下、かつ酸素濃度がR2以下である粉末では、保磁力が一層低減されており、具体的には110A/m以下であった。
 また、発明例の粉末を使用して作製した圧粉磁芯は、鉄損が300kW/m以下であり、比較例の粉末を使用して作製した圧粉磁芯よりも鉄損が低減されていた。中でも、結晶化度が5%以下、D50が20.0μm以上80μm以下、かつ酸素濃度がR2以下である粉末を使用した圧粉磁芯では、鉄損が200kW/m以下であり、一層優れていた。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003

Claims (6)

  1.  Fe基非晶質合金粉末であって、
      結晶化度Vcry(体積%)が0体積%以上、10体積%以下、
      体積基準の粒径分布における中央値D50が15.0μm以上、100μm以下、
      最大粒径が20.0μm以上150μm以下、かつ
      酸素濃度R(質量%)が0質量%以上、下記(1)式で定義されるR1以下である、Fe基非晶質合金粉末。
     R1=(301-11.65×Vcry-4169/D50)/122…(1)
  2.  前記酸素濃度R(質量%)が0質量%以上、下記(2)式で定義されるR2以下である、請求項1に記載のFe基非晶質合金粉末。
     R2=(211-11.65×Vcry-4169/D50)/122…(2)
  3.  請求項1または2に記載のFe基非晶質合金粉末であって、
     不可避不純物を除き組成式:FeSiCuで表される組成を有する軟磁性粉末からなり、
     前記組成式中のMは、Nb、Mo、Ni、Co、Sn、Zr、Ta、W、Hf、Ti、V、Cr、Mn、C、Al、S、O、およびNからなる群から選ばれる少なくとも1つの元素であり、
     79at%≦a≦84.5at%、
     0at%≦b<6at%、
     0at%<c≦10at%、
     4at%<d≦11at%、
     0.2at%≦e≦1.5at%、
     0at%≦f≦4at%、かつ
     a+b+c+d+e+f=100at%である、Fe基非晶質合金粉末。
  4.  前記Fe基非晶質合金粉末を構成する粒子の表面に絶縁被覆を有する、請求項1~3のいずれか一項に記載のFe基非晶質合金粉末。
  5.  請求項1~4のいずれか一項に記載のFe基非晶質合金粉末を用いた磁性部品。
  6.  請求項1~4のいずれか一項に記載のFe基非晶質合金粉末を用いた圧粉磁芯。
     
PCT/JP2022/019719 2021-07-26 2022-05-09 Fe基非晶質合金粉末、磁性部品、および圧粉磁芯 WO2023007901A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022555900A JPWO2023007901A1 (ja) 2021-07-26 2022-05-09

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-122028 2021-07-26
JP2021122028 2021-07-26

Publications (1)

Publication Number Publication Date
WO2023007901A1 true WO2023007901A1 (ja) 2023-02-02

Family

ID=85086600

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/019719 WO2023007901A1 (ja) 2021-07-26 2022-05-09 Fe基非晶質合金粉末、磁性部品、および圧粉磁芯

Country Status (2)

Country Link
JP (1) JPWO2023007901A1 (ja)
WO (1) WO2023007901A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017034091A (ja) * 2015-07-31 2017-02-09 Jfeスチール株式会社 軟磁性圧粉磁芯の製造方法および軟磁性圧粉磁芯
JP2019203150A (ja) * 2018-05-21 2019-11-28 Tdk株式会社 軟磁性粉末、圧粉体および磁性部品

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017034091A (ja) * 2015-07-31 2017-02-09 Jfeスチール株式会社 軟磁性圧粉磁芯の製造方法および軟磁性圧粉磁芯
JP2019203150A (ja) * 2018-05-21 2019-11-28 Tdk株式会社 軟磁性粉末、圧粉体および磁性部品

Also Published As

Publication number Publication date
JPWO2023007901A1 (ja) 2023-02-02

Similar Documents

Publication Publication Date Title
US20210031268A1 (en) Method of manufacturing soft magnetic dust core
CN110225801B (zh) 软磁性粉末、Fe基纳米晶合金粉末、磁性部件及压粉磁芯
KR101932422B1 (ko) 연자성 분말, 압분자심, 자성부품 및 압분자심의 제조방법
JP5912349B2 (ja) 軟磁性合金粉末、ナノ結晶軟磁性合金粉末、その製造方法、および圧粉磁心
JP6669304B2 (ja) 結晶質Fe基合金粉末及びその製造方法
EP2153921B1 (en) Process for producing metallic powder and a powder magnetic core
WO2020026949A1 (ja) 軟磁性粉末、Fe基ナノ結晶合金粉末、磁性部品、および圧粉磁芯
WO2008093430A1 (ja) 高圧縮性鉄粉、およびそれを用いた圧粉磁芯用鉄粉と圧粉磁芯
WO2019208766A1 (ja) 合金粉末、Fe基ナノ結晶合金粉末及び磁心
JP2007231330A (ja) 圧粉磁心用金属粉末および圧粉磁心の製造方法
JP4539585B2 (ja) 圧粉磁心用金属粉末および圧粉磁心の製造方法
US11854725B2 (en) Soft magnetic metal powder, method for producing the same, and soft magnetic metal dust core
CN112309666A (zh) 软磁性金属粉末和电子部件
WO2023007901A1 (ja) Fe基非晶質合金粉末、磁性部品、および圧粉磁芯
WO2023007900A1 (ja) Fe基非晶質合金粉末、磁性部品、および圧粉磁芯
KR102528358B1 (ko) 압분 자심용 철기 분말 및 압분 자심
JP7207551B2 (ja) 圧粉磁芯用鉄基粉末、圧粉磁芯および圧粉磁芯の製造方法
CN112309667A (zh) 软磁性金属粉末和电子部件
JP7304498B2 (ja) 鉄基軟磁性粉末、それを用いた磁性部品及び圧粉磁芯
JP7419127B2 (ja) 圧粉磁心及びその製造方法
WO2022209497A1 (ja) 軟磁性粉末および磁性体コア
WO2019235574A1 (ja) 磁心用の粉末、それを用いた磁心及びコイル部品
JP2022001659A (ja) 圧粉磁芯用鉄基粉末およびそれを用いた圧粉磁芯
JP2004172469A (ja) 軟磁性粉末とその製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022555900

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22848983

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE