WO2023007898A1 - Motor control device - Google Patents

Motor control device Download PDF

Info

Publication number
WO2023007898A1
WO2023007898A1 PCT/JP2022/019426 JP2022019426W WO2023007898A1 WO 2023007898 A1 WO2023007898 A1 WO 2023007898A1 JP 2022019426 W JP2022019426 W JP 2022019426W WO 2023007898 A1 WO2023007898 A1 WO 2023007898A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
rotation speed
signal
current
target
Prior art date
Application number
PCT/JP2022/019426
Other languages
French (fr)
Japanese (ja)
Inventor
賢佑 伊藤
智行 河野
泰裕 陶山
圭太郎 吉田
Original Assignee
Kyb株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyb株式会社 filed Critical Kyb株式会社
Publication of WO2023007898A1 publication Critical patent/WO2023007898A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/08Arrangements for controlling the speed or torque of a single motor

Definitions

  • the present invention relates to a motor control device.
  • Feedback control may be used to control the number of rotations of a three-phase motor so that the target number of rotations is approached while measuring the number of rotations. According to feedback control, the rotation speed converges to the target rotation speed, but overshoot and undershoot may occur in the process of convergence to the target rotation speed.
  • Patent Document 1 describes that overshoot and undershoot can be suppressed by changing the state feedback gain and observer gain for each phase and the response speed of the output of the state quantity estimator.
  • Patent document 1 describes that undershoot can be suppressed, but since complicated calculations are required for each phase, the calculation load may increase. Therefore, it is required to suppress the undershoot while suppressing the computational load.
  • the present invention has been made in view of the above, and it is an object of the present invention to provide a motor control device capable of suppressing undershoot while suppressing computational load.
  • a motor control device for controlling a motor, comprising: and a current control unit configured to control a current value to be applied to the motor based on the comparison result of the comparison unit.
  • the unit applies a current to the motor that can reach the target rotation speed when the measured rotation speed is lower than the target rotation speed, and the measured rotation speed is equal to or higher than the target rotation speed. If so, the application of current to the motor is stopped.
  • FIG. 1 is a schematic circuit diagram of the motor system according to the first embodiment.
  • FIG. 2 is a graph showing an example of the waveform of the number of revolutions of the motor.
  • FIG. 3 is a schematic circuit diagram of a motor system according to another example of the first embodiment;
  • FIG. 4 is a schematic circuit diagram of the motor system according to the second embodiment.
  • FIG. 5 is a schematic circuit diagram of the motor system according to the third embodiment.
  • FIG. 1 is a schematic circuit diagram of the motor system according to the first embodiment.
  • a motor system 1 includes a motor 10 that is a three-phase motor (three-phase alternating current motor), a power supply section 12 , an inverter 14 and a control section 16 .
  • the motor 10 is not limited to a three-phase motor, and may be any type of motor.
  • the motor system 1 converts the DC current from the power supply unit 12 into AC current by the inverter 14 and supplies the converted AC current to the motor 10 to drive the motor 10 .
  • the motor 10 is connected to a driven part P to be driven, and rotates the driven part P.
  • the driven part P is a pump that pressurizes a fluid by rotation, and more specifically an oil pump.
  • the motor 10 drives a pump that pressurizes the fluid by rotation, but the object to be driven is not limited to the pump and may be arbitrary.
  • the power supply unit 12 is a power supply that supplies current to the inverter 14 .
  • the power supply unit 12 supplies direct current to the inverter 14 .
  • the inverter 14 is a circuit that converts the DC current supplied from the power supply unit 12 into AC current and supplies the AC current to the motor 10 .
  • Inverter 14 includes transistors T1, T2, T3, T4, T5 and T6.
  • Transistors T1, T2, T3, T4, T5, and T6 are appropriately referred to as transistors T when they are not distinguished from each other.
  • the transistors T1 and T2 are connected in series with the power supply section 12 . Specifically, the drain of the transistor T1 is connected to the positive side of the power supply section 12, the source of the transistor T1 is connected to the drain of the transistor T2, and the source of the transistor T2 is connected to the negative side of the power supply section 12. connected to the side. A connection point between the source of the transistor T1 and the drain of the transistor T2 is connected to the U-phase of the motor 10 (in this example, the U-phase stator coil, not shown).
  • the transistors T3 and T4 are connected in series to the power supply section 12. Specifically, the drain of the transistor T3 is connected to the positive side of the power supply section 12, the source of the transistor T3 is connected to the drain of the transistor T4, and the source of the transistor T4 is connected to the negative side of the power supply section 12. connected to the side. A connection point between the source of the transistor T3 and the drain of the transistor T4 is connected to the V-phase of the motor 10 (in this example, the V-phase stator coil, not shown). The transistors T3 and T4 are connected to the power supply section 12 in parallel with the transistors T1 and T2.
  • the transistors T5 and T6 are connected in series with the power supply section 12 . Specifically, the drain of the transistor T5 is connected to the positive side of the power supply section 12, the source of the transistor T5 is connected to the drain of the transistor T6, and the source of the transistor T6 is connected to the negative side of the power supply section 12. connected to the side. A connection point between the source of the transistor T5 and the drain of the transistor T6 is connected to the W-phase of the motor 10 (in this example, the W-phase stator coil, not shown).
  • the transistors T5 and T6 are connected to the power supply section 12 in parallel with the transistors T1 and T2 and the transistors T3 and T4.
  • the inverter 14 can convert a direct current into an alternating current and supply the alternating current to the U-phase, V-phase, and W-phase of the motor 10 . That is, it can be said that the power supply unit 12 and the inverter 14 constitute a bipolar power supply capable of supplying current (voltage) on the plus side and the minus side. Note that the circuit configuration of the inverter 14 is not limited to the above description and may be arbitrary.
  • a control unit 16 as a motor control device is a device that controls the current supplied to the motor 10 .
  • the controller 16 is a so-called ECU (Electronic Control Unit).
  • the controller 16 includes a comparator 20 , a map converter 22 , an amplifier 24 , a current controller 26 , a map converter 28 and an amplifier 30 .
  • the comparison unit 20, the mapping converter 22, the amplifier 24, the current control unit 26, the mapping converter 28, and the amplifier 30 are configured by hardware circuits in this embodiment.
  • the present invention is not limited to this, and at least a portion of the comparison unit 20, the mapping converter 22, the amplifier 24, the current control unit 26, the mapping converter 28, and the amplifier 30 is configured such that an arithmetic circuit such as a CPU reads software (program) from the storage unit. It may be realized by executing
  • the comparison unit 20 compares the measured number of revolutions, which is the measured value of the number of revolutions of the motor 10 , with the target number of revolutions, which is the target value of the number of revolutions of the motor 10 .
  • the target rotation speed is a value that is appropriately set according to the operating conditions of the driven part P and the like.
  • a signal F ⁇ b>1 indicating the target rotation speed is input to the comparison unit 20 .
  • a position sensor (not shown) sequentially detects the rotation angle of the motor 10 (the rotation angle of the rotor of the motor 10), and a signal R indicating the rotation angle of the motor 10 is sent to the mapping converter 22.
  • the mapping converter 22 performs mapping conversion based on the signal R, that is, based on the rotation angle of the motor 10 indicated by the signal R, thereby calculating a measured rotation speed, which is a measured value of the rotation speed of the motor 10 . That is, the mapping converter 22 converts the signal R indicating the rotation angle of the motor 10 into the signal F2 indicating the measured rotation speed. The map converter 22 outputs the signal F2 to the comparison section 20 . Note that the position sensor is not an essential component.
  • the comparison unit 20 compares the target rotation speed indicated by the input signal F1 and the measured rotation speed indicated by the input signal F2, and generates a signal F indicating the comparison result between the target rotation speed and the measured rotation speed. .
  • the comparator 20 outputs the generated signal F to the amplifier 24 . Since the signal F is a signal indicating the comparison result between the target rotational speed and the measured rotational speed, it can be said that it is a signal for feedback control set based on the deviation between the target rotational speed and the measured rotational speed. Details of the signal F will be described later.
  • the amplifier 24 amplifies the signal F to generate a signal I1 indicating the target current value.
  • the target current value is the target value of the current supplied from the power supply unit 12 to the motor 10 . That is, it can be said that the amplifier 24 converts the signal F indicating the comparison result between the target rotation speed and the measured rotation speed into the signal I1 indicating the target current value. Since the rotation speed of the motor 10 is determined according to the current value supplied to the motor 10, the target current value can also be said to be the current value for reaching the target rotation speed.
  • the current control section 26 controls the current value applied to the motor 10 based on the comparison result of the comparison section 20 .
  • a signal I1 is input from the amplifier 24 to the current control unit 26 .
  • the signal R indicating the rotation angle of the motor 10 and the current supplied from the power supply section 12 to the motor 10 are input to the mapping converter 28 .
  • the mapping converter 28 calculates a measured current value, which is the current value supplied to the motor 10 at the rotation angle indicated by the signal R. That is, the mapping converter 28 generates a signal I2 indicating the measured number of revolutions at that rotation angle from the signal R indicating the rotation angle of the motor 10 and the current supplied to the motor 10 .
  • the mapping converter 28 outputs a signal I2 indicating the measured current value to the current controller 26 .
  • the mapping converter 28 is supplied with a current at a point where the lines of the transistors T1 and T2, the lines of the transistors T3 and T4, and the lines of the transistors T5 and T6 join. That is, the currents supplied to the U-phase, V-phase, and W-phase are input to the mapping converter 28, and the mapping converter 28 outputs the total value of the currents supplied to the U-phase, V-phase, and W-phase. is calculated as the measured current value.
  • the current control unit 26 compares the input signals I1 and I2 to generate a signal I indicating the current value to be supplied to the motor 10 .
  • the current control unit 26 compares the signal I1 and the signal I2 to determine whether the measured current value deviates from the target current value, and outputs a signal so that the current of the target current value is supplied to the motor 10. Generate I.
  • the current control unit 26 outputs the generated signal I to the amplifier 30 .
  • a signal I is a signal for PWM (Pulse Width Modulation) input to the gate of the transistor T. FIG. That is, it can be said that the current control unit 26 generates the signal I of the length of time during which the current of the target current value can be supplied to the motor 10 .
  • the signal I is a signal indicating the result of comparison between the target current value and the measured current value, it can be said that it is a signal for feedback control set based on the deviation between the target current value and the measured current value, and is used for torque control. It can be said that it is Details of the signal I will be described later.
  • the amplifier 30 amplifies the signal I and supplies the amplified signal I to the gate of the transistor T.
  • the transistor T operates during the period in which the signal I is input, and the motor 10 is PWM-controlled.
  • a current corresponding to the length of the period during which the signal I is input is supplied to the motor 10, and the motor 10 rotates.
  • control unit 16 feeds back the rotation speed of the motor 10 based on the rotation speed (comparison between the target rotation speed and the measured rotation speed) and the current value (comparison between the target current value and the measured current value). control.
  • the circuit configuration of the control unit 16 is not limited to the above, and may be arbitrary. For example, it may be a circuit using FPGA (Field Programmable Gate Array), ASIC (Application Specific Integrated Circuit), OPamp (Operational Amplifier), etc. . Further, any system may be used for the transistor T, and any wire connection system for the motor 10 may be used. Either ⁇ connection or Y connection may be used.
  • control unit 16 controls current supply to the motor 10 so as to suppress undershoot. The current control method will be described below.
  • the comparison unit 20 determines whether the measured rotation speed indicated by the signal F2 is lower than the target rotation speed indicated by the signal F1 (whether “measured rotation speed ⁇ target rotation speed”). When the measured rotational speed is lower than the target rotational speed, the comparator 20 generates the signal F so that the signal F indicates the difference between the measured rotational speed and the target rotational speed (target rotational speed - measured rotational speed). . That is, the signal F in this case serves as a command signal to increase the rotational speed by the difference between the measured rotational speed and the target rotational speed.
  • the comparison unit 20 outputs the signal F to the amplifier 24 , which converts the signal into a signal I ⁇ b>1 indicating the target current value and inputs the signal I ⁇ b>1 to the current control unit 26 . Since the signal F is a signal that increases the rotational speed by the difference between the measured rotational speed and the target rotational speed, the target current value indicated by the signal I1 increases the rotational speed by the difference between the measured rotational speed and the target rotational speed. It indicates the current value required for
  • the current control unit 26 compares the signal I1 and the signal I2 to determine whether the measured current value deviates from the target current value, and outputs the signal I so that the current of the target current value is supplied to the motor 10. Generate. That is, the current control unit 26 generates the signal I with a length of time that allows the rotation speed of the motor 10 to be increased by the difference between the measured rotation speed and the target rotation speed. Signal I is amplified by amplifier 30 and applied to the gate of transistor T. FIG. As a result, the transistor T is actuated to supply the motor 10 with a current value capable of increasing the rotational speed by the difference between the measured rotational speed and the target rotational speed. rise to approach
  • the comparison unit 20 outputs the signal F to the amplifier 24 , which converts the signal into a signal I ⁇ b>1 indicating the target current value and inputs the signal I ⁇ b>1 to the current control unit 26 . Since the signal F is a signal instructing not to increase the rotation speed, the target current value indicated by the signal I1 points to zero.
  • the current control unit 26 compares the signal I1 and the signal I2 to determine whether the measured current value deviates from the target current value, and outputs the signal I so that the current of the target current value is supplied to the motor 10. Generate. Since the target current value is zero here, the current control unit 26 outputs the signal I to instruct the current value to be applied to the motor 10 to be zero (to stop the current supply to the motor 10). Generate. Here, for example, the length of time for which the signal I is supplied is set to zero, and the transistor T does not operate because the signal is not supplied to the gate of the transistor T, so that the current supply from the power supply unit 12 to the motor 10 is stopped. be. When the supply of current to the motor 10 is stopped, the rotation speed of the motor 10 gradually decreases due to resistance (for example, the load of the driven part P such as the hydraulic load and the frictional force inside the pump), and reaches the target rotation speed. get closer to
  • the current supply is stopped without applying a negative current to forcibly decrease the rotation speed of the motor 10. (set to zero).
  • FIG. 2 is a graph showing an example of the waveform of the number of revolutions of the motor.
  • the horizontal axis in FIG. 2 is time, the vertical axis is the rotation speed of the motor 10, and the line L0 indicates the target rotation speed.
  • the line L1 applies a negative current to the motor 10 to forcibly reduce the rotation speed of the motor 10 when the measured rotation speed is higher than the target rotation speed.
  • a line L2 indicates an example in which application of current to the motor 10 is stopped when the measured rotation speed is higher than the target rotation speed, as in the present embodiment.
  • the motor control device (control section 16) according to this embodiment is a device that controls the motor 10, which is a three-phase motor, and includes the comparison section 20 and the current control section .
  • the comparison unit 20 compares the measured number of revolutions, which is the measured value of the number of revolutions of the motor 10 , with the target number of revolutions, which is the target value of the number of revolutions of the motor 10 .
  • a current control unit 26 controls the current value applied to the motor 10 based on the comparison result of the comparison unit 20 . When the measured rotation speed is lower than the target rotation speed, the current control unit 26 applies to the motor 10 a current that allows the motor rotation speed to reach the target rotation speed. The application of current to 10 is stopped.
  • the comparison unit 20 when the measured rotation speed is lower than the target rotation speed, the comparison unit 20 sends a signal F to the current control unit 26 to increase the rotation speed by the difference between the measured rotation speed and the target rotation speed.
  • the current control unit 26 applies to the motor 10 a current value capable of increasing the rotational speed by the difference between the measured rotational speed and the target rotational speed.
  • the comparison unit when the measured rotation speed is equal to or higher than the target rotation speed, the comparison unit outputs a signal F indicating that the rotation speed is not to be increased to the current control unit 26, and the current control unit 26 stops applying current to the motor 10. stop.
  • the application of the current to the motor 10 is stopped, so it is possible to appropriately suppress the undershoot.
  • the current control unit 26 controls the current value applied to the motor 10 also based on the measured current value, which is the measured value of the current applied to the motor 10 .
  • the feedback control based on the rotation speed and the feedback control based on the current value can be performed to appropriately control the rotation speed of the motor 10 .
  • the current control unit 26 stops applying current to the motor 10 when the measured rotation speed is equal to or higher than the target rotation speed, thereby causing the rotation speed of the motor 10 to approach the target rotation speed by inertia. . According to the present embodiment, it is possible to appropriately suppress undershoot by gradually reducing the rotational speed of the motor 10 by inertia.
  • the motor 10 is a motor that drives a pump.
  • overshoot is acceptable because if the fluid becomes excessive due to overshoot, the fluid can escape, but if the fluid is insufficient due to undershoot, Undershoot may be unacceptable due to lack of power from the fluid.
  • the current application to the motor 10 is stopped. It is particularly suitable for motors that drive pumps.
  • the motor system 1 has a motor 10 , an inverter 14 , and a control section 16 .
  • the current value to the motor 10 is set to zero when the measured rotation speed is equal to or higher than the target rotation speed. , it is possible to appropriately suppress the undershoot.
  • FIG. 3 is a schematic circuit diagram of a motor system according to another example of the first embodiment.
  • the amplifier 24 includes an integrator and a differentiator, and may generate the signal I1 by performing calculations with reference to signals input in the past.
  • a signal S that instructs the operation behavior of the amplifier 24 may be output to the amplifier 24 according to the comparison result between the measured rotation speed and the target rotation speed.
  • the comparison unit 20 when the measured rotation speed is lower than the target rotation speed, the comparison unit 20 generates a signal S for instructing calculation by referring to past signals as well, and the signal S and the signal F are output to the amplifier 24 . output to By receiving such a signal S, the amplifier 24 refers to the past signal and generates the signal I1.
  • the comparison unit 20 when the measured rotation speed is equal to or higher than the target rotation speed, the comparison unit 20 generates a signal S instructing initialization of the calculation, and outputs the signal S together with the signal F to the amplifier 24 . Furthermore, the comparison unit 20 continues to generate the signal S and output it to the amplifier 24 during the period when the measured rotation speed is equal to or higher than the target rotation speed, so that the measured rotation speed becomes equal to or higher than the target rotation speed. continue to initialize operations for as long as Initializing an operation refers to changing the value of a signal input in the past to an initialized value (zero or a value according to responsiveness) and executing the operation. The amplifier 24 receives such a signal S, initializes it, and then generates the signal I1.
  • the current will flow when the measured rotation speed reaches the target rotation speed, improving the responsiveness of the feedback control. It is possible to suppress the occurrence of undershoot while That is, by initializing the calculation during the period when the measured rotation speed is equal to or higher than the target rotation speed, it is possible to prevent undershoot from occurring due to a command to decrease the rotation speed after the measured rotation speed reaches the target rotation speed. It can be suitably suppressed.
  • the second embodiment differs from the first embodiment in that the current control unit 26 determines whether the measured rotation speed is lower than the target rotation speed.
  • the current control unit 26 determines whether the measured rotation speed is lower than the target rotation speed.
  • FIG. 4 is a schematic circuit diagram of the motor system according to the second embodiment.
  • the comparison unit 20 changes the rotation speed by the difference between the measured rotation speed indicated by the signal F2 and the target rotation speed indicated by the signal F1.
  • a signal F is generated. That is, the comparison unit 20 in the second embodiment outputs the signal F indicating that the rotation speed is changed by the difference between the measured rotation speed and the target rotation speed regardless of whether the measured rotation speed is lower or higher than the target rotation speed.
  • Generate For example, when the measured rotation speed is lower than the target rotation speed, the comparison unit 20 generates a signal to increase the rotation speed by the difference, and when the measured rotation speed is higher than the target rotation speed, rotates by the difference. Generate a signal to lower the number.
  • the comparison unit 20 outputs the signal F to the amplifier 24, where it is converted into a signal I1 indicating the target current value and input to the current control unit 26. Since the signal F is a signal that changes the rotational speed by the difference between the measured rotational speed and the target rotational speed, the target current value indicated by the signal I1 changes the rotational speed by the difference between the measured rotational speed and the target rotational speed. It indicates the current value required for
  • a signal I1 indicating the target current value and a signal I2 indicating the measured current value are input to the current control unit 26 .
  • the current control unit 26 determines whether the measured current value indicated by the signal I2 is lower than the target current value indicated by the signal I1 (whether "measured current value ⁇ target current value"). Since the current value supplied to the motor 10 corresponds to the rotation speed of the motor 10, the current control unit 26 determines whether the measured current value is lower than the target current value, thereby determining whether the measured rotation speed is lower than the target rotation speed. It can be said that it judges whether When the measured current value is lower than the target current value, the current control unit 26 generates the signal I so that the signal I indicates the difference between the measured current value and the target current value (target current value ⁇ measured current value).
  • the signal I in this case serves as a signal for instructing to increase the current supplied to the motor 10 by the difference between the measured current value and the target current value (a signal of a time length during which the current can be increased by the difference).
  • the target current value is a current value for increasing the rotation speed by the difference between the measured rotation speed and the target rotation speed. Therefore, the rotation speed of the motor 10 increases so as to approach the target rotation speed.
  • the current control unit 26 when the measured current value is equal to or greater than the target current value (measured current value ⁇ target current value), the current control unit 26 generates the signal I so as to indicate that the rotation speed is not to be increased. . Specifically, the current control unit 26 generates the signal I such that the signal I instructs the current value to be applied to the motor 10 to be zero. That is, here, the period during which the signal I is applied is set to zero. As a result, the operation of the transistor T is stopped, the supply of current to the motor 10 is stopped, and the rotation speed of the motor 10 gradually decreases due to inertia and approaches the target rotation speed.
  • the signal S that commands the operation behavior of the amplifier may be output.
  • the current control unit 26 when the measured current value is lower than the target current value, the current control unit 26 generates a signal S instructing calculation by referring to past signals as well, and outputs the signal S to the amplifier 24 and the amplifier 30.
  • the amplifier 24 By receiving such a signal S, the amplifier 24 generates the signal I1 with reference to the past signal, and the amplifier 30 amplifies the signal I with reference to the past signal.
  • the current control section 26 when the measured current value is equal to or greater than the target current value, the current control section 26 generates a signal S instructing initialization of the calculation and outputs the signal S to the amplifiers 24 and 30 .
  • the amplifier 24 initializes and generates the signal I1
  • the amplifier 30 initializes and amplifies the signal I.
  • the comparison section 20 outputs the signal F to the current control section 26 to change the rotation speed by the difference between the measured rotation speed and the target rotation speed.
  • the current control unit 26 applies a current of a current value corresponding to the target current value to the motor 10, and when the measured current value is equal to or higher than the target current value. If so, the application of current to the motor 10 is stopped. Since the target current value corresponds to the target rotation speed, feedback control similar to that of the first embodiment can be performed by determining whether or not to apply current to the motor 10 on the current control unit 26 side as in the second embodiment. Therefore, undershoot can be appropriately suppressed.
  • the third embodiment differs from the second embodiment in that an amplifier 32 is provided.
  • an amplifier 32 is provided in the third embodiment.
  • descriptions of parts that are common to the second embodiment will be omitted.
  • FIG. 5 is a schematic circuit diagram of the motor system according to the third embodiment. As shown in FIG. 5, the controller 16b according to the third embodiment includes an amplifier 32. FIG.
  • the signal I2 indicative of the measured current value generated by the map converter 28 is input to the amplifier 32 .
  • the amplifier 32 is an operational amplifier that functions as an observer, and has a function of improving the stability of the measured current value indicated by the signal I2.
  • the amplifier 32 corrects the signal I2 and inputs the corrected signal I2 to the current control section 26 .
  • the current control unit 26 compares the input signals I1 and I2 in the same manner as in the second embodiment, and generates the signal I indicating the current value to be supplied to the motor 10 .
  • Signal I is amplified by passing through amplifiers 30 and 32 and supplied to transistor T.
  • the stability of feedback control can be improved by providing the amplifier 32 that corrects the signal I2.
  • the signal S that commands the operation behavior of the amplifier may be output.
  • the current control unit 26 when the measured current value is lower than the target current value, the current control unit 26 generates a signal S instructing calculation by referring to past signals as well, and outputs the signal S to the amplifier 24 , 30 and 32.
  • amplifier 24 refers to the past signal to generate signal I1
  • amplifier 30 refers to the past signal to amplify signal I
  • amplifier 32 refers to the past signal to generate signal I1. , and corrects the signal I2.
  • the current control section 26 when the measured current value is equal to or higher than the target current value, the current control section 26 generates a signal S instructing initialization of the calculation and outputs the signal S to the amplifiers 24 , 30 , 32 .
  • amplifier 24 Upon receiving such signal S, amplifier 24 initializes and generates signal I1
  • amplifier 30 initializes and amplifies signal I
  • amplifier 32 initializes and generates Correct the signal I2.
  • transistor T may be a bipolar transistor.
  • the transistor T is a gate turn-off thyristor (GTO), an insulated gate bipolar transistor (IGBT), a metal-oxide-semiconductor field-effect transistor (MOSFET). Transitor), silicon carbide metal oxide semiconductor field effect transistor (SiC-MOSFET), gallium nitride field effect transistor (GaN-FET), power semiconductor using gallium oxide (Ga 2 O 3 ).
  • Complementary PNP transistors and P-channel FETs may be used as the transistors T1, T2, and T3.
  • the components described above include those that can be easily assumed by those skilled in the art, those that are substantially the same, and those within the so-called equivalent range. Furthermore, the components described above can be combined as appropriate. Furthermore, various omissions, replacements, or modifications of the constituent elements can be made without departing from the gist of the above-described embodiments and the like.
  • Motor System 10 Motor 12 Power Supply Section 14 Inverter 16 Control Section (Motor Control Device) 20 comparison unit 22, 28 mapping converter 24, 30 amplifier 26 current control unit

Abstract

According to the present invention, undershoot is suppressed while a computational load is restricted. This motor control device controls a motor (10), and includes: a comparing unit (20) for comparing a measured rotational speed, which is a measured value of the rotational speed of the motor (10), and a target rotational speed, which is a target value of the rotational speed of the motor (10); and a current control unit (26) for controlling a current value applied to the motor (10), on the basis of the comparison result obtained by the comparing unit (20). If the measured rotational speed is lower than the target rotational speed, the current control unit (26) causes a current having a current value with which the rotational speed of the motor (10) can reach the target rotational speed to be applied to the motor (10), and if the measured rotational speed is equal to or greater than the target rotational speed, the current control unit (26) stops the application of the current to the motor (10).

Description

モータ制御装置motor controller
 本発明は、モータ制御装置に関する。 The present invention relates to a motor control device.
 3相モータの回転数制御には、回転数を測定しながら目標回転数に近づけるフィードバック制御が用いられる場合がある。フィードバック制御によると、回転数が目標回転数に収束してゆくが、目標回転数に収束する過程で、オーバーシュート及びアンダーシュートが発生することがある。特許文献1には、各相について状態フィードバックゲイン及びオブザーバゲインと、状態量推定部の出力の応答速度を変更することで、オーバーシュートやアンダーシュートを抑制できる旨が記載されている。 Feedback control may be used to control the number of rotations of a three-phase motor so that the target number of rotations is approached while measuring the number of rotations. According to feedback control, the rotation speed converges to the target rotation speed, but overshoot and undershoot may occur in the process of convergence to the target rotation speed. Patent Document 1 describes that overshoot and undershoot can be suppressed by changing the state feedback gain and observer gain for each phase and the response speed of the output of the state quantity estimator.
特許第5365838号公報Japanese Patent No. 5365838
 ここで、モータにおいては、特にアンダーシュートを抑制することが求められる場合がある。特許文献1には、アンダーシュートが抑制できる旨が記載されているが、各相で複雑な計算が必要になるため、演算負荷が高くなるおそれがある。そのため、演算負荷を抑えつつ、アンダーシュートを抑制することが求められている。 Here, in motors, it is sometimes required to suppress undershoot. Patent document 1 describes that undershoot can be suppressed, but since complicated calculations are required for each phase, the calculation load may increase. Therefore, it is required to suppress the undershoot while suppressing the computational load.
 本発明は、上記に鑑みてなされたものであって、演算負荷を抑えつつ、アンダーシュートを抑制可能なモータ制御装置を提供することを目的とする。 The present invention has been made in view of the above, and it is an object of the present invention to provide a motor control device capable of suppressing undershoot while suppressing computational load.
 上述した課題を解決し、目的を達成するために、本開示に係るモータ制御装置は、モータを制御するモータ制御装置であって、前記モータの回転数の測定値である測定回転数と、前記モータの回転数の目標値である目標回転数とを比較する比較部と、前記比較部の比較結果に基づいて前記モータに印加する電流値を制御する電流制御部と、を含み、前記電流制御部は、前記測定回転数が前記目標回転数より低い場合、前記モータの回転数を前記目標回転数に到達可能な電流を前記モータに印加させ、前記測定回転数が前記目標回転数以上である場合、前記モータへの電流の印加を停止させる。 In order to solve the above-described problems and achieve the object, a motor control device according to the present disclosure is a motor control device for controlling a motor, comprising: and a current control unit configured to control a current value to be applied to the motor based on the comparison result of the comparison unit. The unit applies a current to the motor that can reach the target rotation speed when the measured rotation speed is lower than the target rotation speed, and the measured rotation speed is equal to or higher than the target rotation speed. If so, the application of current to the motor is stopped.
図1は、第1実施形態に係るモータシステムの模式的な回路図である。FIG. 1 is a schematic circuit diagram of the motor system according to the first embodiment. 図2は、モータの回転数の波形の一例を示すグラフである。FIG. 2 is a graph showing an example of the waveform of the number of revolutions of the motor. 図3は、第1実施形態の他の例に係るモータシステムの模式的な回路図である。FIG. 3 is a schematic circuit diagram of a motor system according to another example of the first embodiment; 図4は、第2実施形態に係るモータシステムの模式的な回路図である。FIG. 4 is a schematic circuit diagram of the motor system according to the second embodiment. 図5は、第3実施形態に係るモータシステムの模式的な回路図である。FIG. 5 is a schematic circuit diagram of the motor system according to the third embodiment.
 以下に、本発明の好適な実施形態を図面に基づいて詳細に説明する。なお、以下に説明する実施形態により本発明が限定されるものではない。 Preferred embodiments of the present invention will be described in detail below based on the drawings. In addition, this invention is not limited by embodiment described below.
 (第1実施形態)
 (モータシステム)
 図1は、第1実施形態に係るモータシステムの模式的な回路図である。図1に示すように、本実施形態に係るモータシステム1は、3相モータ(3相交流モータ)であるモータ10と、電源部12と、インバータ14と、制御部16と、を有する。なお、モータ10は、3相モータに限られず、任意の形式のモータであってよい。
(First embodiment)
(motor system)
FIG. 1 is a schematic circuit diagram of the motor system according to the first embodiment. As shown in FIG. 1 , a motor system 1 according to this embodiment includes a motor 10 that is a three-phase motor (three-phase alternating current motor), a power supply section 12 , an inverter 14 and a control section 16 . Note that the motor 10 is not limited to a three-phase motor, and may be any type of motor.
 モータシステム1は、電源部12からの直流電流をインバータ14にて交流電流に変換して、変換した交流電流をモータ10に供給して、モータ10を駆動する。モータ10は、駆動対象となる被駆動部Pに接続されており、被駆動部Pを回転させる。本実施形態では、被駆動部Pは、回転により流体を加圧するポンプであり、さらに言えばオイルポンプである。このように、モータ10は、回転により流体を加圧するポンプを駆動するものであるが、駆動対象はポンプに限られず任意であってよい。 The motor system 1 converts the DC current from the power supply unit 12 into AC current by the inverter 14 and supplies the converted AC current to the motor 10 to drive the motor 10 . The motor 10 is connected to a driven part P to be driven, and rotates the driven part P. As shown in FIG. In this embodiment, the driven part P is a pump that pressurizes a fluid by rotation, and more specifically an oil pump. In this way, the motor 10 drives a pump that pressurizes the fluid by rotation, but the object to be driven is not limited to the pump and may be arbitrary.
 電源部12は、インバータ14に電流を供給する電源である。電源部12は、直流電流をインバータ14に供給する。 The power supply unit 12 is a power supply that supplies current to the inverter 14 . The power supply unit 12 supplies direct current to the inverter 14 .
 インバータ14は、電源部12から供給された直流電流を交流電流に変換して、モータ10に供給する回路である。インバータ14は、トランジスタT1、T2、T3、T4、T5、T6を含む。トランジスタT1、T2、T3、T4、T5、T6を区別しない場合には、適宜、トランジスタTと記載する。 The inverter 14 is a circuit that converts the DC current supplied from the power supply unit 12 into AC current and supplies the AC current to the motor 10 . Inverter 14 includes transistors T1, T2, T3, T4, T5 and T6. Transistors T1, T2, T3, T4, T5, and T6 are appropriately referred to as transistors T when they are not distinguished from each other.
 トランジスタT1、T2は、電源部12に対して直列に接続されている。具体的には、トランジスタT1のドレインが、電源部12のプラス側に接続されており、トランジスタT1のソースが、トランジスタT2のドレインに接続されており、トランジスタT2のソースが、電源部12のマイナス側に接続されている。また、トランジスタT1のソースとトランジスタT2のドレインとの接続箇所が、モータ10のU相(本例では、不図示のU相のステータコイル)に接続されている。 The transistors T1 and T2 are connected in series with the power supply section 12 . Specifically, the drain of the transistor T1 is connected to the positive side of the power supply section 12, the source of the transistor T1 is connected to the drain of the transistor T2, and the source of the transistor T2 is connected to the negative side of the power supply section 12. connected to the side. A connection point between the source of the transistor T1 and the drain of the transistor T2 is connected to the U-phase of the motor 10 (in this example, the U-phase stator coil, not shown).
 トランジスタT3、T4は、電源部12に対して直列に接続されている。具体的には、トランジスタT3のドレインが、電源部12のプラス側に接続されており、トランジスタT3のソースが、トランジスタT4のドレインに接続されており、トランジスタT4のソースが、電源部12のマイナス側に接続されている。また、トランジスタT3のソースとトランジスタT4のドレインとの接続箇所が、モータ10のV相(本例では、不図示のV相のステータコイル)に接続されている。また、トランジスタT3、T4は、トランジスタT1、T2と並列に、電源部12に接続されている。 The transistors T3 and T4 are connected in series to the power supply section 12. Specifically, the drain of the transistor T3 is connected to the positive side of the power supply section 12, the source of the transistor T3 is connected to the drain of the transistor T4, and the source of the transistor T4 is connected to the negative side of the power supply section 12. connected to the side. A connection point between the source of the transistor T3 and the drain of the transistor T4 is connected to the V-phase of the motor 10 (in this example, the V-phase stator coil, not shown). The transistors T3 and T4 are connected to the power supply section 12 in parallel with the transistors T1 and T2.
 トランジスタT5、T6は、電源部12に対して直列に接続されている。具体的には、トランジスタT5のドレインが、電源部12のプラス側に接続されており、トランジスタT5のソースが、トランジスタT6のドレインに接続されており、トランジスタT6のソースが、電源部12のマイナス側に接続されている。また、トランジスタT5のソースとトランジスタT6のドレインとの接続箇所が、モータ10のW相(本例では、不図示のW相のステータコイル)に接続されている。また、トランジスタT5、T6は、トランジスタT1、T2、及びトランジスタT3、T4と並列に、電源部12に接続されている。 The transistors T5 and T6 are connected in series with the power supply section 12 . Specifically, the drain of the transistor T5 is connected to the positive side of the power supply section 12, the source of the transistor T5 is connected to the drain of the transistor T6, and the source of the transistor T6 is connected to the negative side of the power supply section 12. connected to the side. A connection point between the source of the transistor T5 and the drain of the transistor T6 is connected to the W-phase of the motor 10 (in this example, the W-phase stator coil, not shown). The transistors T5 and T6 are connected to the power supply section 12 in parallel with the transistors T1 and T2 and the transistors T3 and T4.
 インバータ14は、以上のような回路構成となることで、直流電流を交流電流に変換して、モータ10のU相、V相、W相に交流電流を供給できる。すなわち、電源部12及びインバータ14は、プラス側及びマイナス側の電流(電圧)供給が可能なバイポーラ電源を構成しているといえる。なお、インバータ14の回路構成は、以上の説明に限られず任意であってよい。 With the above circuit configuration, the inverter 14 can convert a direct current into an alternating current and supply the alternating current to the U-phase, V-phase, and W-phase of the motor 10 . That is, it can be said that the power supply unit 12 and the inverter 14 constitute a bipolar power supply capable of supplying current (voltage) on the plus side and the minus side. Note that the circuit configuration of the inverter 14 is not limited to the above description and may be arbitrary.
 (制御部)
 モータ制御装置としての制御部16は、モータ10に供給する電流を制御する装置である。本実施形態では、制御部16は、いわゆるECU(Electronic Control Unit)である。制御部16は、比較部20と、写像変換器22と、増幅器24と、電流制御部26と、写像変換器28と、増幅器30とを含む。比較部20と写像変換器22と増幅器24と電流制御部26と写像変換器28と増幅器30とは、本実施形態ではハードウェア回路で構成されている。ただしそれに限られず、比較部20と写像変換器22と増幅器24と電流制御部26と写像変換器28と増幅器30と少なくとも一部が、CPUなどの演算回路が記憶部からソフトウェア(プログラム)を読み出して実行することで実現されてもよい。
(control part)
A control unit 16 as a motor control device is a device that controls the current supplied to the motor 10 . In this embodiment, the controller 16 is a so-called ECU (Electronic Control Unit). The controller 16 includes a comparator 20 , a map converter 22 , an amplifier 24 , a current controller 26 , a map converter 28 and an amplifier 30 . The comparison unit 20, the mapping converter 22, the amplifier 24, the current control unit 26, the mapping converter 28, and the amplifier 30 are configured by hardware circuits in this embodiment. However, the present invention is not limited to this, and at least a portion of the comparison unit 20, the mapping converter 22, the amplifier 24, the current control unit 26, the mapping converter 28, and the amplifier 30 is configured such that an arithmetic circuit such as a CPU reads software (program) from the storage unit. It may be realized by executing
 比較部20は、モータ10の回転数の測定値である測定回転数と、モータ10の回転数の目標値である目標回転数とを比較する。目標回転数は、被駆動部Pの運転条件などにより適宜設定される値である。比較部20には、目標回転数を示す信号F1が入力される。また、本実施形態の例では、不図示の位置センサにより、モータ10の回転角(モータ10のロータの回転角度)が逐次検出され、モータ10の回転角を示す信号Rが、写像変換器22に入力される。写像変換器22は、信号Rに基づき、すなわち信号Rが示すモータ10の回転角に基づき、写像変換を行うことで、モータ10の回転数の測定値である測定回転数を算出する。すなわち、写像変換器22は、モータ10の回転角を示す信号Rを、測定回転数を示す信号F2に変換する。写像変換器22は、信号F2を比較部20に出力する。なお、位置センサは必須の構成ではない。 The comparison unit 20 compares the measured number of revolutions, which is the measured value of the number of revolutions of the motor 10 , with the target number of revolutions, which is the target value of the number of revolutions of the motor 10 . The target rotation speed is a value that is appropriately set according to the operating conditions of the driven part P and the like. A signal F<b>1 indicating the target rotation speed is input to the comparison unit 20 . Further, in the example of the present embodiment, a position sensor (not shown) sequentially detects the rotation angle of the motor 10 (the rotation angle of the rotor of the motor 10), and a signal R indicating the rotation angle of the motor 10 is sent to the mapping converter 22. is entered in The mapping converter 22 performs mapping conversion based on the signal R, that is, based on the rotation angle of the motor 10 indicated by the signal R, thereby calculating a measured rotation speed, which is a measured value of the rotation speed of the motor 10 . That is, the mapping converter 22 converts the signal R indicating the rotation angle of the motor 10 into the signal F2 indicating the measured rotation speed. The map converter 22 outputs the signal F2 to the comparison section 20 . Note that the position sensor is not an essential component.
 比較部20は、入力された信号F1が示す目標回転数と入力された信号F2が示す測定回転数とを比較して、目標回転数と測定回転数との比較結果を示す信号Fを生成する。比較部20は、生成した信号Fを増幅器24に出力する。信号Fは、目標回転数と測定回転数との比較結果を示す信号であるため、目標回転数と測定回転数との偏差に基づいて設定されたフィードバック制御用の信号といえる。信号Fの詳細は後述する。 The comparison unit 20 compares the target rotation speed indicated by the input signal F1 and the measured rotation speed indicated by the input signal F2, and generates a signal F indicating the comparison result between the target rotation speed and the measured rotation speed. . The comparator 20 outputs the generated signal F to the amplifier 24 . Since the signal F is a signal indicating the comparison result between the target rotational speed and the measured rotational speed, it can be said that it is a signal for feedback control set based on the deviation between the target rotational speed and the measured rotational speed. Details of the signal F will be described later.
 増幅器24は、信号Fを増幅して、目標電流値を示す信号I1を生成する。目標電流値は、電源部12からモータ10に供給される電流の目標値である。すなわち、増幅器24は、目標回転数と測定回転数との比較結果を示す信号Fを、目標電流値を示す信号I1に変換するといえる。なお、モータ10の回転数は、モータ10に供給される電流値に応じて決まるため、目標電流値は、目標回転数に到達するための電流値ともいえる。 The amplifier 24 amplifies the signal F to generate a signal I1 indicating the target current value. The target current value is the target value of the current supplied from the power supply unit 12 to the motor 10 . That is, it can be said that the amplifier 24 converts the signal F indicating the comparison result between the target rotation speed and the measured rotation speed into the signal I1 indicating the target current value. Since the rotation speed of the motor 10 is determined according to the current value supplied to the motor 10, the target current value can also be said to be the current value for reaching the target rotation speed.
 電流制御部26は、比較部20の比較結果に基づいて、モータ10に印加する電流値を制御する。電流制御部26には、増幅器24から信号I1が入力される。また、本実施形態の例では、写像変換器28に、モータ10の回転角を示す信号Rと、電源部12からモータ10に供給された電流とが入力される。写像変換器28は、信号Rと、電源部12からモータ10に供給された電流とに基づき、信号Rが示す回転角における、モータ10に供給された電流値である測定電流値を算出する。すなわち、写像変換器28は、モータ10の回転角を示す信号Rとモータ10に供給された電流とから、その回転角における測定回転数を示す信号I2を生成する。写像変換器28は、測定電流値を示す信号I2を、電流制御部26に出力する。なお、本実施形態では、写像変換器28には、トランジスタT1、T2のラインと、トランジスタT3、T4のラインと、トランジスタT5、T6のラインとが合流した箇所における電流が入力される。すなわち、写像変換器28には、U相、V相、W相のそれぞれに供給された電流が入力され、写像変換器28は、U相、V相、W相へ供給された電流の合計値を、測定電流値として算出する。 The current control section 26 controls the current value applied to the motor 10 based on the comparison result of the comparison section 20 . A signal I1 is input from the amplifier 24 to the current control unit 26 . In the example of the present embodiment, the signal R indicating the rotation angle of the motor 10 and the current supplied from the power supply section 12 to the motor 10 are input to the mapping converter 28 . Based on the signal R and the current supplied to the motor 10 from the power supply unit 12, the mapping converter 28 calculates a measured current value, which is the current value supplied to the motor 10 at the rotation angle indicated by the signal R. That is, the mapping converter 28 generates a signal I2 indicating the measured number of revolutions at that rotation angle from the signal R indicating the rotation angle of the motor 10 and the current supplied to the motor 10 . The mapping converter 28 outputs a signal I2 indicating the measured current value to the current controller 26 . In this embodiment, the mapping converter 28 is supplied with a current at a point where the lines of the transistors T1 and T2, the lines of the transistors T3 and T4, and the lines of the transistors T5 and T6 join. That is, the currents supplied to the U-phase, V-phase, and W-phase are input to the mapping converter 28, and the mapping converter 28 outputs the total value of the currents supplied to the U-phase, V-phase, and W-phase. is calculated as the measured current value.
 電流制御部26は、入力された信号I1と信号I2とを比較して、モータ10に供給する電流値を示す信号Iを生成する。電流制御部26は、信号I1と信号I2とを比較して、測定電流値が目標電流値と乖離しているかを判定して、目標電流値の電流がモータ10に供給されるように、信号Iを生成する。電流制御部26は、生成した信号Iを増幅器30に出力する。信号Iは、トランジスタTのゲートに入力されるPWM(Pulse Width Modulation)制御用の信号である。すなわち、電流制御部26は、目標電流値の電流がモータ10に供給可能な時間長さの信号Iを、生成するといえる。信号Iは、目標電流値と測定電流値との比較結果を示す信号であるため、目標電流値と測定電流値との偏差に基づいて設定されたフィードバック制御用の信号といえ、トルク制御に用いられているともいえる。信号Iの詳細は後述する。 The current control unit 26 compares the input signals I1 and I2 to generate a signal I indicating the current value to be supplied to the motor 10 . The current control unit 26 compares the signal I1 and the signal I2 to determine whether the measured current value deviates from the target current value, and outputs a signal so that the current of the target current value is supplied to the motor 10. Generate I. The current control unit 26 outputs the generated signal I to the amplifier 30 . A signal I is a signal for PWM (Pulse Width Modulation) input to the gate of the transistor T. FIG. That is, it can be said that the current control unit 26 generates the signal I of the length of time during which the current of the target current value can be supplied to the motor 10 . Since the signal I is a signal indicating the result of comparison between the target current value and the measured current value, it can be said that it is a signal for feedback control set based on the deviation between the target current value and the measured current value, and is used for torque control. It can be said that it is Details of the signal I will be described later.
 増幅器30は、信号Iを増幅して、増幅した信号Iを、トランジスタTのゲートに供給する。これにより、信号Iが入力された期間においてトランジスタTが動作して、モータ10がPWM制御される。モータ10には、信号Iが入力された期間の長さに応じた電流が供給されて、モータ10が回転する。 The amplifier 30 amplifies the signal I and supplies the amplified signal I to the gate of the transistor T. As a result, the transistor T operates during the period in which the signal I is input, and the motor 10 is PWM-controlled. A current corresponding to the length of the period during which the signal I is input is supplied to the motor 10, and the motor 10 rotates.
 このように、制御部16は、回転数(目標回転数と測定回転数との比較)と、電流値(目標電流値と測定電流値との比較)とに基づき、モータ10の回転数のフィードバック制御を行う。 In this way, the control unit 16 feeds back the rotation speed of the motor 10 based on the rotation speed (comparison between the target rotation speed and the measured rotation speed) and the current value (comparison between the target current value and the measured current value). control.
 なお、制御部16の回路構成は以上に限られず任意であってよく、例えば、FPGA(Field Programmable Gate Array)、ASIC(Application Specific Integrated Circuit)、OPamp(Operational Amplifier)などを用いた回路としてもよい。また、トランジスタTの方式も任意であってよいし、モータ10の結線方式も任意であってよく、Δ結線、Y結線のいずれを用いてもよい。 The circuit configuration of the control unit 16 is not limited to the above, and may be arbitrary. For example, it may be a circuit using FPGA (Field Programmable Gate Array), ASIC (Application Specific Integrated Circuit), OPamp (Operational Amplifier), etc. . Further, any system may be used for the transistor T, and any wire connection system for the motor 10 may be used. Either Δ connection or Y connection may be used.
 ここで、モータ10の回転数がフィードバック制御される場合、オーバーシュートは許容できるが、アンダーシュートについては抑制が求められる場合がある。それに対し、本実施形態に係る制御部16は、アンダーシュートを抑制するように、モータ10への電流の供給を制御する。以下、電流の制御方法について説明する。 Here, when the rotation speed of the motor 10 is feedback-controlled, overshoot is permissible, but suppression of undershoot may be required. In contrast, the control unit 16 according to the present embodiment controls current supply to the motor 10 so as to suppress undershoot. The current control method will be described below.
 (電流の制御方法)
 電流制御部26は、測定回転数が目標回転数より低い場合、モータ10の回転数を目標回転数に到達可能な電流をモータ10に印加させ、測定回転数が目標回転数以上である場合、モータ10への電流の印加を停止させる。以下、それぞれのケースについてより具体的に説明する。
(current control method)
When the measured rotation speed is lower than the target rotation speed, the current control unit 26 applies to the motor 10 a current that allows the rotation speed of the motor 10 to reach the target rotation speed. The application of current to the motor 10 is stopped. Each case will be described in more detail below.
 (「測定回転数<目標回転数」の場合)
 比較部20は、信号F2が示す測定回転数が、信号F1が示す目標回転数より低いかを(「測定回転数<目標回転数」であるかを)、判断する。比較部20は、測定回転数が目標回転数より低い場合には、信号Fが測定回転数と目標回転数との差分(目標回転数-測定回転数)を示すように、信号Fを生成する。すなわち、この場合の信号Fは、測定回転数と目標回転数との差分だけ回転数を上昇させる旨を指令する信号となる。比較部20は、信号Fを増幅器24に出力し、増幅器24は、目標電流値を示す信号I1に変換して、信号I1を電流制御部26に入力する。信号Fが測定回転数と目標回転数との差分だけ回転数を上昇させる信号であるため、信号I1が示す目標電流値は、測定回転数と目標回転数との差分だけ回転数を上昇させるために必要な電流値を指すことになる。
(In the case of "measured rotation speed < target rotation speed")
The comparison unit 20 determines whether the measured rotation speed indicated by the signal F2 is lower than the target rotation speed indicated by the signal F1 (whether "measured rotation speed<target rotation speed"). When the measured rotational speed is lower than the target rotational speed, the comparator 20 generates the signal F so that the signal F indicates the difference between the measured rotational speed and the target rotational speed (target rotational speed - measured rotational speed). . That is, the signal F in this case serves as a command signal to increase the rotational speed by the difference between the measured rotational speed and the target rotational speed. The comparison unit 20 outputs the signal F to the amplifier 24 , which converts the signal into a signal I<b>1 indicating the target current value and inputs the signal I<b>1 to the current control unit 26 . Since the signal F is a signal that increases the rotational speed by the difference between the measured rotational speed and the target rotational speed, the target current value indicated by the signal I1 increases the rotational speed by the difference between the measured rotational speed and the target rotational speed. It indicates the current value required for
 電流制御部26は、信号I1と信号I2とを比較して測定電流値が目標電流値と乖離しているかを判定し、目標電流値の電流がモータ10に供給されるように、信号Iを生成する。すなわち、電流制御部26は、測定回転数と目標回転数との差分だけモータ10の回転数を上昇可能な時間長さの、信号Iを生成する。信号Iは、増幅器30で増幅されて、トランジスタTのゲートに供給される。これによりトランジスタTが作動して、モータ10には、測定回転数と目標回転数との差分だけ回転数を上昇可能な電流値の電流が供給されて、モータ10の回転数は、目標回転数に近づくように上昇する。 The current control unit 26 compares the signal I1 and the signal I2 to determine whether the measured current value deviates from the target current value, and outputs the signal I so that the current of the target current value is supplied to the motor 10. Generate. That is, the current control unit 26 generates the signal I with a length of time that allows the rotation speed of the motor 10 to be increased by the difference between the measured rotation speed and the target rotation speed. Signal I is amplified by amplifier 30 and applied to the gate of transistor T. FIG. As a result, the transistor T is actuated to supply the motor 10 with a current value capable of increasing the rotational speed by the difference between the measured rotational speed and the target rotational speed. rise to approach
 (「測定回転数≧目標回転数」の場合)
 一方、測定回転数が目標回転数以上(測定回転数≧目標回転数)である場合には、すなわち測定回転数が目標回転数より高い又は同じ値の場合には、比較部20は、信号Fが回転数を上昇させない旨を指令する信号となるように、信号Fを生成する。回転数を上昇させない旨の指令とは、回転数を上昇させるためにプラス側の電流をモータ10に供給したり、回転数を低下させるためにマイナス側の電流をモータ10に供給したりせずに、モータ10への電流の印加を停止させる旨の指令であるといえる。比較部20は、信号Fを増幅器24に出力し、増幅器24は、目標電流値を示す信号I1に変換して、信号I1を電流制御部26に入力する。信号Fが回転数を上昇させない旨を指令する信号であるため、信号I1が示す目標電流値は、ゼロを指すことになる。
(In the case of "measured rotation speed ≥ target rotation speed")
On the other hand, when the measured rotational speed is equal to or higher than the target rotational speed (measured rotational speed≧target rotational speed), that is, when the measured rotational speed is higher than or equal to the target rotational speed, the comparator 20 outputs the signal F A signal F is generated so that is a signal instructing not to increase the number of revolutions. A command to the effect that the rotational speed is not to be increased means that the positive side current is not supplied to the motor 10 in order to increase the rotational speed, and the negative side current is not supplied to the motor 10 in order to decrease the rotational speed. In addition, it can be said that this is a command to the effect that the application of current to the motor 10 is to be stopped. The comparison unit 20 outputs the signal F to the amplifier 24 , which converts the signal into a signal I<b>1 indicating the target current value and inputs the signal I<b>1 to the current control unit 26 . Since the signal F is a signal instructing not to increase the rotation speed, the target current value indicated by the signal I1 points to zero.
 電流制御部26は、信号I1と信号I2とを比較して測定電流値が目標電流値と乖離しているかを判定し、目標電流値の電流がモータ10に供給されるように、信号Iを生成する。ここでは目標電流値がゼロとなるため、電流制御部26は、モータ10に印加する電流値をゼロとする旨を指令する(モータ10への電流の供給を停止する)ように、信号Iを生成する。ここでは例えば、信号Iが供給される時間長さをゼロとし、トランジスタTのゲートに信号が供給されずにトランジスタTが作動しないことで、電源部12からモータ10への電流の供給が停止される。モータ10への電流の供給が停止されると、モータ10の回転数は、抵抗(例えば油圧負荷やポンプ内部の摩擦力などの被駆動部Pの負荷)により徐々に低下して、目標回転数に近づく。 The current control unit 26 compares the signal I1 and the signal I2 to determine whether the measured current value deviates from the target current value, and outputs the signal I so that the current of the target current value is supplied to the motor 10. Generate. Since the target current value is zero here, the current control unit 26 outputs the signal I to instruct the current value to be applied to the motor 10 to be zero (to stop the current supply to the motor 10). Generate. Here, for example, the length of time for which the signal I is supplied is set to zero, and the transistor T does not operate because the signal is not supplied to the gate of the transistor T, so that the current supply from the power supply unit 12 to the motor 10 is stopped. be. When the supply of current to the motor 10 is stopped, the rotation speed of the motor 10 gradually decreases due to resistance (for example, the load of the driven part P such as the hydraulic load and the frictional force inside the pump), and reaches the target rotation speed. get closer to
 このように、本実施形態においては、測定回転数が目標回転数より高い場合でも、モータ10の回転数を強制的に低下させるためにマイナス側の電流を印加することなく、電流の供給を停止する(ゼロとする)。 As described above, in the present embodiment, even when the measured rotation speed is higher than the target rotation speed, the current supply is stopped without applying a negative current to forcibly decrease the rotation speed of the motor 10. (set to zero).
 図2は、モータの回転数の波形の一例を示すグラフである。図2の横軸は時間であり、縦軸はモータ10の回転数であり、線L0は、目標回転数を指す。線L1は、本実施形態とは異なり、測定回転数が目標回転数より高い場合には、モータ10にマイナス側の電流を印加して、モータ10の回転数を強制的に低下させるフィードバック制御した場合の例を指す。線L2は、本実施形態のように、測定回転数が目標回転数より高い場合には、モータ10への電流印加を停止する場合の例を指す。線L1に示すように、モータ10にマイナス側の電流を印加した場合には、回転数が急激に低下して、回転数が目標回転数を下回るアンダーシュートが発生してしまう。一方、線L1に示すように、測定回転数が目標回転数より高い場合に電流の印加を停止した場合には、回転数の低下が緩やかになり、アンダーシュートの発生を抑制できる。すなわち、線L1のようなフィードバック制御においては、回転数の低下が急激になるため、回転数の低下を止める前に回転数が低くなり過ぎてアンダーシュートが発生するが、線L2のようなフィードバック制御においては、回転数の低下が緩やかなので、回転数が低くなり過ぎることを抑制できる。 FIG. 2 is a graph showing an example of the waveform of the number of revolutions of the motor. The horizontal axis in FIG. 2 is time, the vertical axis is the rotation speed of the motor 10, and the line L0 indicates the target rotation speed. Different from the present embodiment, the line L1 applies a negative current to the motor 10 to forcibly reduce the rotation speed of the motor 10 when the measured rotation speed is higher than the target rotation speed. Refers to an example of a case. A line L2 indicates an example in which application of current to the motor 10 is stopped when the measured rotation speed is higher than the target rotation speed, as in the present embodiment. As indicated by the line L1, when a negative current is applied to the motor 10, the rotational speed drops sharply, causing an undershoot in which the rotational speed falls below the target rotational speed. On the other hand, as indicated by the line L1, when the current application is stopped when the measured rotation speed is higher than the target rotation speed, the rotation speed decreases gradually, and the occurrence of undershoot can be suppressed. That is, in the feedback control as shown by line L1, since the rotation speed drops rapidly, the rotation speed becomes too low before stopping the drop of the rotation speed, causing an undershoot. In the control, since the rotation speed decreases gradually, it is possible to prevent the rotation speed from becoming too low.
 (効果)
 以上説明したように、本実施形態に係るモータ制御装置(制御部16)は、3相モータであるモータ10を制御する装置であって、比較部20と、電流制御部26とを含む。比較部20は、モータ10の回転数の測定値である測定回転数と、モータ10の回転数の目標値である目標回転数とを比較する。電流制御部26は、比較部20の比較結果に基づいてモータ10に印加する電流値を制御する。電流制御部26は、測定回転数が目標回転数より低い場合、モータの回転数を目標回転数に到達可能な電流をモータ10に印加させ、測定回転数が目標回転数以上である場合、モータ10への電流の印加を停止させる。
(effect)
As described above, the motor control device (control section 16) according to this embodiment is a device that controls the motor 10, which is a three-phase motor, and includes the comparison section 20 and the current control section . The comparison unit 20 compares the measured number of revolutions, which is the measured value of the number of revolutions of the motor 10 , with the target number of revolutions, which is the target value of the number of revolutions of the motor 10 . A current control unit 26 controls the current value applied to the motor 10 based on the comparison result of the comparison unit 20 . When the measured rotation speed is lower than the target rotation speed, the current control unit 26 applies to the motor 10 a current that allows the motor rotation speed to reach the target rotation speed. The application of current to 10 is stopped.
 ここで、3相モータをフィードバック制御する場合には、オーバーシュートは許容するものの、アンダーシュートを抑制することが求められる場合がある。例えば、被駆動部Pがポンプである場合、オーバーシュートにより流体が過剰となった場合には流体を逃がすことができるため、オーバーシュートは許容できるが、アンダーシュートにより流体が足りない場合には流体によるパワーが不足してしまうため、アンダーシュートが許容できないことがある。それに対し、本実施形態においては、測定回転数が目標回転数以上である場合には、モータ10への電流の印加を停止させるため、回転数の低下を緩やかにして、アンダーシュートを適切に抑制することが可能となる。また、測定回転数が目標回転数以上であるかを判断しているだけなので、演算負荷も高くならずに、演算負荷も抑制できる。さらに言えば、回転数を低下させるために印加する電流が不要となるため、エネルギーロスも低減することができる。 Here, when feedback-controlling a three-phase motor, it may be required to suppress undershoot, although overshoot is allowed. For example, when the driven part P is a pump, if the fluid becomes excessive due to overshoot, the fluid can escape. Undershoot may be unacceptable due to lack of power due to On the other hand, in the present embodiment, when the measured rotation speed is equal to or higher than the target rotation speed, the current application to the motor 10 is stopped. It becomes possible to Further, since it is only determined whether the measured rotation speed is equal to or higher than the target rotation speed, the calculation load can be suppressed without increasing the calculation load. Furthermore, energy loss can be reduced because no current is required to reduce the rotational speed.
 また、本実施形態においては、測定回転数が目標回転数より低い場合、比較部20は、測定回転数と目標回転数との差分だけ回転数を上昇させる旨の信号Fを電流制御部26に出力し、電流制御部26は、測定回転数と目標回転数との差分だけ回転数を上昇可能な電流値の電流を、モータ10に印加させる。一方、測定回転数が目標回転数以上である場合、比較部は、回転数を上昇させない旨の信号Fを電流制御部26に出力し、電流制御部26は、モータ10への電流の印加を停止させる。本実施形態においては、測定回転数が目標回転数以上である場合には、モータ10への電流の印加を停止させるため、アンダーシュートを適切に抑制することが可能となる。 In this embodiment, when the measured rotation speed is lower than the target rotation speed, the comparison unit 20 sends a signal F to the current control unit 26 to increase the rotation speed by the difference between the measured rotation speed and the target rotation speed. The current control unit 26 applies to the motor 10 a current value capable of increasing the rotational speed by the difference between the measured rotational speed and the target rotational speed. On the other hand, when the measured rotation speed is equal to or higher than the target rotation speed, the comparison unit outputs a signal F indicating that the rotation speed is not to be increased to the current control unit 26, and the current control unit 26 stops applying current to the motor 10. stop. In this embodiment, when the measured rotation speed is equal to or higher than the target rotation speed, the application of the current to the motor 10 is stopped, so it is possible to appropriately suppress the undershoot.
 電流制御部26は、モータ10に印加された電流の測定値である測定電流値にも基づき、モータ10に印加する電流値を制御する。本実施形態によると、回転数に基づいたフィードバック制御と共に、電流値に基づいたフィードバック制御を行うことで、モータ10の回転数を適切に制御できる。 The current control unit 26 controls the current value applied to the motor 10 also based on the measured current value, which is the measured value of the current applied to the motor 10 . According to this embodiment, the feedback control based on the rotation speed and the feedback control based on the current value can be performed to appropriately control the rotation speed of the motor 10 .
 本実施形態においては、電流制御部26は、測定回転数が目標回転数以上である場合、モータ10への電流の印加を停止させることで、慣性によりモータ10の回転数を目標回転数に近づける。本実施形態によると、慣性によりモータ10の回転数を緩やかに低下させることで、アンダーシュートを適切に抑制することが可能となる。 In this embodiment, the current control unit 26 stops applying current to the motor 10 when the measured rotation speed is equal to or higher than the target rotation speed, thereby causing the rotation speed of the motor 10 to approach the target rotation speed by inertia. . According to the present embodiment, it is possible to appropriately suppress undershoot by gradually reducing the rotational speed of the motor 10 by inertia.
 本実施形態においては、モータ10は、ポンプを駆動するモータである。ポンプを駆動するモータ10を制御する際には、オーバーシュートにより流体が過剰となった場合には流体を逃がすことができるため、オーバーシュートは許容できるが、アンダーシュートにより流体が足りない場合には流体によるパワーが不足してしまうため、アンダーシュートが許容できないことがある。それに対し、本実施形態においては、測定回転数が目標回転数以上である場合には、モータ10への電流の印加を停止させるため、回転数の低下を緩やかにして、アンダーシュートを適切に抑制することが可能となるため、ポンプを駆動するモータに特に適している。 In this embodiment, the motor 10 is a motor that drives a pump. When controlling the motor 10 that drives the pump, overshoot is acceptable because if the fluid becomes excessive due to overshoot, the fluid can escape, but if the fluid is insufficient due to undershoot, Undershoot may be unacceptable due to lack of power from the fluid. On the other hand, in the present embodiment, when the measured rotation speed is equal to or higher than the target rotation speed, the current application to the motor 10 is stopped. It is particularly suitable for motors that drive pumps.
 また、本実施形態においては、モータシステム1は、モータ10と、インバータ14と、制御部16とを有する。プラス側及びマイナス側の両方の電流が供給可能なインバータ14に対して、測定回転数が目標回転数以上である場合にはモータ10への電流値をゼロとするようなアルゴリズムを適用することで、アンダーシュートを適切に抑制することが可能となる。 Also, in this embodiment, the motor system 1 has a motor 10 , an inverter 14 , and a control section 16 . By applying an algorithm to the inverter 14 that can supply both positive and negative currents, the current value to the motor 10 is set to zero when the measured rotation speed is equal to or higher than the target rotation speed. , it is possible to appropriately suppress the undershoot.
 (他の例)
 図3は、第1実施形態の他の例に係るモータシステムの模式的な回路図である。増幅器24は、積分器や微分器を含み、過去に入力された信号も参照して演算することで、信号I1を生成する場合がある。この場合、図3に示すように、測定回転数と目標回転数との比較結果に応じて、増幅器24の演算の振る舞いを指令する信号Sを、増幅器24に出力してもよい。
(another example)
FIG. 3 is a schematic circuit diagram of a motor system according to another example of the first embodiment; The amplifier 24 includes an integrator and a differentiator, and may generate the signal I1 by performing calculations with reference to signals input in the past. In this case, as shown in FIG. 3, a signal S that instructs the operation behavior of the amplifier 24 may be output to the amplifier 24 according to the comparison result between the measured rotation speed and the target rotation speed.
 具体的には、測定回転数が目標回転数より低い場合、比較部20は、過去の信号も参照して演算を行うことを指令する信号Sを生成して、信号Sを信号Fと共に増幅器24に出力する。増幅器24は、このような信号Sを受信することで、過去の信号を参照して、信号I1を生成する。 Specifically, when the measured rotation speed is lower than the target rotation speed, the comparison unit 20 generates a signal S for instructing calculation by referring to past signals as well, and the signal S and the signal F are output to the amplifier 24 . output to By receiving such a signal S, the amplifier 24 refers to the past signal and generates the signal I1.
 一方、測定回転数が目標回転数以上である場合、比較部20は、演算を初期化する旨を指令する信号Sを生成して、信号Sを信号Fと共に増幅器24に出力する。さらに言えば、比較部20は、測定回転数が目標回転数以上となっている期間中、信号Sを生成して増幅器24に出力し続けることで、測定回転数が目標回転数以上となっている期間中、演算を初期化させ続ける。演算を初期化するとは、過去に入力された信号の値を初期化した値(ゼロや、応答性に応じた値)に変更して、演算を実行することを指す。増幅器24は、このような信号Sを受信することで、初期化した上で、信号I1を生成する。このように、測定回転数が目標回転数以上である場合に演算を初期化することで、測定回転数が目標回転数に到達した時点で電流を流すことになり、フィードバック制御の応答性を向上させつつ、アンダーシュートの発生を抑制することができる。すなわち、測定回転数が目標回転数以上となっている期間において演算を初期化させることで、測定回転数が目標回転数に到達した後に回転数を下げる指令によりアンダーシュートが発生することを、より好適に抑制できる。 On the other hand, when the measured rotation speed is equal to or higher than the target rotation speed, the comparison unit 20 generates a signal S instructing initialization of the calculation, and outputs the signal S together with the signal F to the amplifier 24 . Furthermore, the comparison unit 20 continues to generate the signal S and output it to the amplifier 24 during the period when the measured rotation speed is equal to or higher than the target rotation speed, so that the measured rotation speed becomes equal to or higher than the target rotation speed. continue to initialize operations for as long as Initializing an operation refers to changing the value of a signal input in the past to an initialized value (zero or a value according to responsiveness) and executing the operation. The amplifier 24 receives such a signal S, initializes it, and then generates the signal I1. In this way, by initializing the calculation when the measured rotation speed is equal to or higher than the target rotation speed, the current will flow when the measured rotation speed reaches the target rotation speed, improving the responsiveness of the feedback control. It is possible to suppress the occurrence of undershoot while That is, by initializing the calculation during the period when the measured rotation speed is equal to or higher than the target rotation speed, it is possible to prevent undershoot from occurring due to a command to decrease the rotation speed after the measured rotation speed reaches the target rotation speed. It can be suitably suppressed.
 (第2実施形態)
 次に、第2実施形態について説明する。第2実施形態においては、電流制御部26側で測定回転数が目標回転数より低いかを判断する点で、第1実施形態と異なる。第2実施形態において第1実施形態と構成が共通する箇所は、説明を省略する。
(Second embodiment)
Next, a second embodiment will be described. The second embodiment differs from the first embodiment in that the current control unit 26 determines whether the measured rotation speed is lower than the target rotation speed. In the second embodiment, descriptions of the parts that are common to the first embodiment will be omitted.
 図4は、第2実施形態に係るモータシステムの模式的な回路図である。図4に示すように、第2実施形態に係る制御部16aにおいては、比較部20は、信号F2が示す測定回転数と信号F1が示す目標回転数との差分だけ回転数を変化させる旨の信号Fを生成する。すなわち、第2実施形態における比較部20は、測定回転数が目標回転数より低い場合にも高い場合にも、測定回転数と目標回転数との差分だけ回転数を変化させる旨の信号Fを生成する。例えば、比較部20は、測定回転数が目標回転数より低い場合には、差分だけ回転数を上昇させる旨の信号を生成し、測定回転数が目標回転数より高い場合には、差分だけ回転数を低下させる旨の信号を生成する。 FIG. 4 is a schematic circuit diagram of the motor system according to the second embodiment. As shown in FIG. 4, in the control unit 16a according to the second embodiment, the comparison unit 20 changes the rotation speed by the difference between the measured rotation speed indicated by the signal F2 and the target rotation speed indicated by the signal F1. A signal F is generated. That is, the comparison unit 20 in the second embodiment outputs the signal F indicating that the rotation speed is changed by the difference between the measured rotation speed and the target rotation speed regardless of whether the measured rotation speed is lower or higher than the target rotation speed. Generate. For example, when the measured rotation speed is lower than the target rotation speed, the comparison unit 20 generates a signal to increase the rotation speed by the difference, and when the measured rotation speed is higher than the target rotation speed, rotates by the difference. Generate a signal to lower the number.
 比較部20は、信号Fを増幅器24に出力し、増幅器24において、目標電流値を示す信号I1に変換されて、電流制御部26に入力される。信号Fが測定回転数と目標回転数との差分だけ回転数を変化させる信号であるため、信号I1が示す目標電流値は、測定回転数と目標回転数との差分だけ回転数を変化させるために必要な電流値を指すことになる。 The comparison unit 20 outputs the signal F to the amplifier 24, where it is converted into a signal I1 indicating the target current value and input to the current control unit 26. Since the signal F is a signal that changes the rotational speed by the difference between the measured rotational speed and the target rotational speed, the target current value indicated by the signal I1 changes the rotational speed by the difference between the measured rotational speed and the target rotational speed. It indicates the current value required for
 電流制御部26には、目標電流値を示す信号I1と、測定電流値を示す信号I2とが入力される。電流制御部26は、信号I2が示す測定電流値が、信号I1が示す目標電流値より低いかを(「測定電流値<目標電流値」であるかを)、判断する。モータ10に供給される電流値はモータ10の回転数と対応するため、電流制御部26は、測定電流値が目標電流値より低いかを判断することで、測定回転数が目標回転数より低いかを判断しているといえる。電流制御部26は、測定電流値が目標電流値より低い場合には、信号Iが測定電流値と目標電流値との差分(目標電流値-測定電流値)を示すように、信号Iを生成する。すなわち、この場合の信号Iは、測定電流値と目標電流値との差分だけ、モータ10に供給する電流を上昇させる旨を指令する信号(差分だけ電流を上昇可能な時間長さの信号)となる。信号Iは、増幅器30で増幅されて、トランジスタTのゲートに供給される。これにより、モータ10には、目標電流値の電流が供給される。ここでは測定回転数が目標回転数より低いため、目標電流値は、測定回転数と目標回転数との差分だけ回転数を上昇させるための電流値となる。従って、モータ10の回転数は、目標回転数に近づくように上昇する。 A signal I1 indicating the target current value and a signal I2 indicating the measured current value are input to the current control unit 26 . The current control unit 26 determines whether the measured current value indicated by the signal I2 is lower than the target current value indicated by the signal I1 (whether "measured current value<target current value"). Since the current value supplied to the motor 10 corresponds to the rotation speed of the motor 10, the current control unit 26 determines whether the measured current value is lower than the target current value, thereby determining whether the measured rotation speed is lower than the target rotation speed. It can be said that it judges whether When the measured current value is lower than the target current value, the current control unit 26 generates the signal I so that the signal I indicates the difference between the measured current value and the target current value (target current value−measured current value). do. That is, the signal I in this case serves as a signal for instructing to increase the current supplied to the motor 10 by the difference between the measured current value and the target current value (a signal of a time length during which the current can be increased by the difference). Become. Signal I is amplified by amplifier 30 and applied to the gate of transistor T. FIG. As a result, the current of the target current value is supplied to the motor 10 . Here, since the measured rotation speed is lower than the target rotation speed, the target current value is a current value for increasing the rotation speed by the difference between the measured rotation speed and the target rotation speed. Therefore, the rotation speed of the motor 10 increases so as to approach the target rotation speed.
 一方、電流制御部26は、測定電流値が目標電流値以上(測定電流値≧目標電流値)である場合には、信号Iが回転数を上昇させない旨を示すように、信号Iを生成する。具体的には、電流制御部26は、信号Iが、モータ10に印加する電流値をゼロとする旨を指令するように、信号Iを生成する。すなわちここでは、信号Iを印加する期間をゼロとする。これにより、トランジスタTの作動が停止して、モータ10への電流の供給が停止されて、モータ10の回転数は、慣性により徐々に低下して、目標回転数に近づく。 On the other hand, when the measured current value is equal to or greater than the target current value (measured current value≧target current value), the current control unit 26 generates the signal I so as to indicate that the rotation speed is not to be increased. . Specifically, the current control unit 26 generates the signal I such that the signal I instructs the current value to be applied to the motor 10 to be zero. That is, here, the period during which the signal I is applied is set to zero. As a result, the operation of the transistor T is stopped, the supply of current to the motor 10 is stopped, and the rotation speed of the motor 10 gradually decreases due to inertia and approaches the target rotation speed.
 第2実施形態においても、増幅器の演算の振る舞いを指令する信号Sを出力してもよい。第2実施形態においては、測定電流値が目標電流値より低い場合、電流制御部26は、過去の信号も参照して演算を行うことを指令する信号Sを生成して、信号Sを増幅器24と増幅器30とに出力する。このような信号Sを受信することで、増幅器24は、過去の信号を参照して信号I1を生成し、増幅器30は、過去の信号を参照して信号Iを増幅する。 Also in the second embodiment, the signal S that commands the operation behavior of the amplifier may be output. In the second embodiment, when the measured current value is lower than the target current value, the current control unit 26 generates a signal S instructing calculation by referring to past signals as well, and outputs the signal S to the amplifier 24 and the amplifier 30. By receiving such a signal S, the amplifier 24 generates the signal I1 with reference to the past signal, and the amplifier 30 amplifies the signal I with reference to the past signal.
 一方、測定電流値が目標電流値以上である場合、電流制御部26は、演算を初期化する旨を指令する信号Sを生成して、信号Sを増幅器24と増幅器30とに出力する。このような信号Sを受信することで、増幅器24は、初期化した上で信号I1を生成し、増幅器30は、初期化した上で信号Iを増幅する。 On the other hand, when the measured current value is equal to or greater than the target current value, the current control section 26 generates a signal S instructing initialization of the calculation and outputs the signal S to the amplifiers 24 and 30 . By receiving such a signal S, the amplifier 24 initializes and generates the signal I1, and the amplifier 30 initializes and amplifies the signal I.
 以上説明したように、第2実施形態においては、比較部20は、測定回転数と目標回転数との差分だけ回転数を変化させる旨の信号Fを、電流制御部26に出力する。電流制御部26は、測定電流値が信号Fの電流値(目標電流値)より低い場合、目標電流値に対応する電流値の電流をモータ10に印加させ、測定電流値が目標電流値以上である場合、モータ10への電流の印加を停止させる。目標電流値は目標回転数に対応するため、第2実施形態のように電流制御部26側で、モータ10に電流を印加させるかを判断することでも、第1実施形態と同様のフィードバック制御が可能となるため、アンダーシュートを適切に抑制することが可能となる。 As described above, in the second embodiment, the comparison section 20 outputs the signal F to the current control section 26 to change the rotation speed by the difference between the measured rotation speed and the target rotation speed. When the measured current value is lower than the current value of the signal F (target current value), the current control unit 26 applies a current of a current value corresponding to the target current value to the motor 10, and when the measured current value is equal to or higher than the target current value. If so, the application of current to the motor 10 is stopped. Since the target current value corresponds to the target rotation speed, feedback control similar to that of the first embodiment can be performed by determining whether or not to apply current to the motor 10 on the current control unit 26 side as in the second embodiment. Therefore, undershoot can be appropriately suppressed.
 (第3実施形態)
 次に、第3実施形態について説明する。第3実施形態においては、増幅器32を設けた点で、第2実施形態とは異なる。第3実施形態において、第2実施形態と構成が共通する箇所は、説明を省略する。
(Third embodiment)
Next, a third embodiment will be described. The third embodiment differs from the second embodiment in that an amplifier 32 is provided. In the third embodiment, descriptions of parts that are common to the second embodiment will be omitted.
 図5は、第3実施形態に係るモータシステムの模式的な回路図である。図5に示すように、第3実施形態に係る制御部16bは、増幅器32を含む。 FIG. 5 is a schematic circuit diagram of the motor system according to the third embodiment. As shown in FIG. 5, the controller 16b according to the third embodiment includes an amplifier 32. FIG.
 第3実施形態においては、写像変換器28が生成した測定電流値を示す信号I2は、増幅器32に入力される。増幅器32は、オブザーバとしての機能を有する演算増幅器であり、信号I2が示す測定電流値の安定性を向上させる機能を有している。増幅器32は、信号I2を補正して、補正した信号I2を、電流制御部26に入力する。電流制御部26は、第2実施形態と同様の方法で、入力された信号I1と信号I2とを比較して、モータ10に供給する電流値を示す信号Iを生成する。信号Iは、増幅器30、増幅器32を経由することで増幅されて、トランジスタTに供給される。 In the third embodiment, the signal I2 indicative of the measured current value generated by the map converter 28 is input to the amplifier 32 . The amplifier 32 is an operational amplifier that functions as an observer, and has a function of improving the stability of the measured current value indicated by the signal I2. The amplifier 32 corrects the signal I2 and inputs the corrected signal I2 to the current control section 26 . The current control unit 26 compares the input signals I1 and I2 in the same manner as in the second embodiment, and generates the signal I indicating the current value to be supplied to the motor 10 . Signal I is amplified by passing through amplifiers 30 and 32 and supplied to transistor T. FIG.
 第3実施形態においては、信号I2を補正する増幅器32を設けることで、フィードバック制御の安定性を向上させることができる。 In the third embodiment, the stability of feedback control can be improved by providing the amplifier 32 that corrects the signal I2.
 第3実施形態においても、増幅器の演算の振る舞いを指令する信号Sを出力してもよい。第3実施形態においては、測定電流値が目標電流値より低い場合、電流制御部26は、過去の信号も参照して演算を行うことを指令する信号Sを生成して、信号Sを増幅器24、30、32に出力する。このような信号Sを受信することで、増幅器24は、過去の信号を参照して信号I1を生成し、増幅器30は、過去の信号を参照して信号Iを増幅し、増幅器32は、過去の信号を参照して信号I2を補正する。 Also in the third embodiment, the signal S that commands the operation behavior of the amplifier may be output. In the third embodiment, when the measured current value is lower than the target current value, the current control unit 26 generates a signal S instructing calculation by referring to past signals as well, and outputs the signal S to the amplifier 24 , 30 and 32. Upon receiving such a signal S, amplifier 24 refers to the past signal to generate signal I1, amplifier 30 refers to the past signal to amplify signal I, and amplifier 32 refers to the past signal to generate signal I1. , and corrects the signal I2.
 一方、測定電流値が目標電流値以上である場合、電流制御部26は、演算を初期化する旨を指令する信号Sを生成して、信号Sを増幅器24、30、32に出力する。このような信号Sを受信することで、増幅器24は、初期化した上で信号I1を生成し、増幅器30は、初期化した上で信号Iを増幅し、増幅器32は、初期化した上で信号I2を補正する。 On the other hand, when the measured current value is equal to or higher than the target current value, the current control section 26 generates a signal S instructing initialization of the calculation and outputs the signal S to the amplifiers 24 , 30 , 32 . Upon receiving such signal S, amplifier 24 initializes and generates signal I1, amplifier 30 initializes and amplifies signal I, amplifier 32 initializes and generates Correct the signal I2.
 以上、本発明の実施形態及び実施例を説明したが、これら実施形態等の内容により実施形態が限定されるものではない。例えば、トランジスタTは、バイポーラトランジスタ(Bipolar Transitor)であってよい。また、トランジスタTは、ゲートターンオフサイリスタ(GTO:Gate Turn-Off thyristor)、絶縁ゲートバイポーラトランジスタ(IGBT:Insulated Gate Bipolar Transistor)、金属酸化膜半導体電界効果トランジスタ(MOSFET:Metal-Oxide-Semiconductor Field-Effect Transitor)、炭化ケイ素金属酸化膜半導体電界効果トランジスタ(SiC-MOSFET)、窒化ガリウム電界効果トランジスタ(GaN-FET)、酸化ガリウム(Ga)を用いたパワー半導体であってよい。また、トランジスタT1、T2、T3として、相補型のPNP型のトランジスタ、Pチャネル型のFETを用いてよい。また、前述した構成要素には、当業者が容易に想定できるもの、実質的に同一のもの、いわゆる均等の範囲のものが含まれる。さらに、前述した構成要素は適宜組み合わせることが可能である。さらに、前述した実施形態等の要旨を逸脱しない範囲で構成要素の種々の省略、置換又は変更を行うことができる。 Although the embodiments and examples of the present invention have been described above, the embodiments are not limited by the contents of these embodiments and the like. For example, transistor T may be a bipolar transistor. The transistor T is a gate turn-off thyristor (GTO), an insulated gate bipolar transistor (IGBT), a metal-oxide-semiconductor field-effect transistor (MOSFET). Transitor), silicon carbide metal oxide semiconductor field effect transistor (SiC-MOSFET), gallium nitride field effect transistor (GaN-FET), power semiconductor using gallium oxide (Ga 2 O 3 ). Complementary PNP transistors and P-channel FETs may be used as the transistors T1, T2, and T3. In addition, the components described above include those that can be easily assumed by those skilled in the art, those that are substantially the same, and those within the so-called equivalent range. Furthermore, the components described above can be combined as appropriate. Furthermore, various omissions, replacements, or modifications of the constituent elements can be made without departing from the gist of the above-described embodiments and the like.
 1 モータシステム
 10 モータ
 12 電源部
 14 インバータ
 16 制御部(モータ制御装置)
 20 比較部
 22、28 写像変換器
 24、30 増幅器
 26 電流制御部
1 Motor System 10 Motor 12 Power Supply Section 14 Inverter 16 Control Section (Motor Control Device)
20 comparison unit 22, 28 mapping converter 24, 30 amplifier 26 current control unit

Claims (4)

  1.  モータを制御するモータ制御装置であって、
     前記モータの回転数の測定値である測定回転数と、前記モータの回転数の目標値である目標回転数とを比較する比較部と、
     前記比較部の比較結果に基づいて前記モータに印加する電流値を制御する電流制御部と、
     を含み、
     前記電流制御部は、前記測定回転数が前記目標回転数より低い場合、前記モータの回転数を前記目標回転数に到達可能な電流を前記モータに印加させ、前記測定回転数が前記目標回転数以上である場合、前記モータへの電流の印加を停止させる、
     モータ制御装置。
    A motor control device for controlling a motor,
    a comparison unit that compares a measured number of revolutions, which is a measured value of the number of revolutions of the motor, with a target number of revolutions, which is a target value of the number of revolutions of the motor;
    a current control unit that controls a current value applied to the motor based on the comparison result of the comparison unit;
    including
    When the measured rotation speed is lower than the target rotation speed, the current control unit applies a current to the motor so that the rotation speed of the motor can reach the target rotation speed. if so, stop applying current to the motor;
    motor controller.
  2.  前記比較部又は前記電流制御部は、前記測定回転数が前記目標回転数以上である場合、前記モータ制御装置に含まれる増幅器を初期化する信号を前記増幅器に出力し続ける、請求項1に記載のモータ制御装置。 2. The comparison unit or the current control unit according to claim 1, wherein when the measured rotation speed is equal to or higher than the target rotation speed, the signal for initializing an amplifier included in the motor control device is continuously output to the amplifier. motor controller.
  3.  前記電流制御部は、前記測定回転数が前記目標回転数以上である場合、前記モータへの電流の印加を停止させることで、抵抗により前記モータの回転数を前記目標回転数に近づける、請求項1に記載のモータ制御装置。 2. The current control unit, when the measured rotation speed is equal to or higher than the target rotation speed, causes the rotation speed of the motor to approach the target rotation speed by resistance by stopping the application of current to the motor. 2. The motor control device according to 1.
  4.  前記モータは、ポンプを駆動するモータである、請求項1に記載のモータ制御装置。 The motor control device according to claim 1, wherein the motor is a motor that drives a pump.
PCT/JP2022/019426 2021-07-29 2022-04-28 Motor control device WO2023007898A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-124725 2021-07-29
JP2021124725A JP2023019761A (en) 2021-07-29 2021-07-29 motor controller

Publications (1)

Publication Number Publication Date
WO2023007898A1 true WO2023007898A1 (en) 2023-02-02

Family

ID=85086549

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/019426 WO2023007898A1 (en) 2021-07-29 2022-04-28 Motor control device

Country Status (2)

Country Link
JP (1) JP2023019761A (en)
WO (1) WO2023007898A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61221591A (en) * 1985-03-18 1986-10-01 Fujitsu Ltd Stable drive controller of motor
JPS62123981A (en) * 1985-11-21 1987-06-05 Matsushita Electric Ind Co Ltd Hall ic
JP2011259598A (en) * 2010-06-08 2011-12-22 Panasonic Electric Works Co Ltd Motor, and pump and liquid circulation apparatus using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61221591A (en) * 1985-03-18 1986-10-01 Fujitsu Ltd Stable drive controller of motor
JPS62123981A (en) * 1985-11-21 1987-06-05 Matsushita Electric Ind Co Ltd Hall ic
JP2011259598A (en) * 2010-06-08 2011-12-22 Panasonic Electric Works Co Ltd Motor, and pump and liquid circulation apparatus using the same

Also Published As

Publication number Publication date
JP2023019761A (en) 2023-02-09

Similar Documents

Publication Publication Date Title
CN109874401B (en) Control device and control method for AC motor, and AC motor drive system
US10658964B2 (en) Motor driving apparatus, vacuum cleaner, and hand dryer
WO2014162755A1 (en) Power conversion apparatus
US10389289B2 (en) Generating motor control reference signal with control voltage budget
JP6550884B2 (en) Motor drive device
JP5492826B2 (en) AC motor control device and refrigeration air conditioner using the same
JP6579195B2 (en) Power control method and power control apparatus
US11031893B2 (en) Motor control device
JPWO2015133520A1 (en) Motor equipment
JP2015165757A (en) Inverter controller and control method
JP6180578B1 (en) Control device and control method for power conversion device
WO2018155321A1 (en) Control device and electric power steering device using same
JPWO2020110315A1 (en) Motor drive
WO2023007898A1 (en) Motor control device
JP2020014326A (en) Electric power conversion device
WO2021200389A1 (en) Motor control device, motor system, and motor control method
JP2017063532A (en) Motor controller
KR20200079939A (en) Apparatus and Method for controlling power source abnormality of motor
CN111987974B (en) Rotary electric machine control device
WO2019082441A1 (en) Power conversion device and controlling method therefor
JP6816045B2 (en) Power converter controller
JP7018367B2 (en) Power converter
US11323061B2 (en) AC rotating electric machine control device
JP2017212815A (en) Drive control device for AC motor
JP2022060914A (en) Device and method for performing drive control of induction motor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22848980

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE