WO2023007870A1 - Pressure sensor device and pressure reception element - Google Patents

Pressure sensor device and pressure reception element Download PDF

Info

Publication number
WO2023007870A1
WO2023007870A1 PCT/JP2022/016839 JP2022016839W WO2023007870A1 WO 2023007870 A1 WO2023007870 A1 WO 2023007870A1 JP 2022016839 W JP2022016839 W JP 2022016839W WO 2023007870 A1 WO2023007870 A1 WO 2023007870A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
pressure sensor
groove
receiving element
base
Prior art date
Application number
PCT/JP2022/016839
Other languages
French (fr)
Japanese (ja)
Inventor
光教 宮本
利哉 久保
哲也 饗場
智春 土屋
嘉彦 曽我
Original Assignee
シチズンファインデバイス株式会社
シチズン時計株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シチズンファインデバイス株式会社, シチズン時計株式会社 filed Critical シチズンファインデバイス株式会社
Publication of WO2023007870A1 publication Critical patent/WO2023007870A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L11/00Measuring steady or quasi-steady pressure of a fluid or a fluent solid material by means not provided for in group G01L7/00 or G01L9/00
    • G01L11/02Measuring steady or quasi-steady pressure of a fluid or a fluent solid material by means not provided for in group G01L7/00 or G01L9/00 by optical means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/14Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means involving the displacement of magnets, e.g. electromagnets

Definitions

  • the present disclosure relates to pressure sensor devices and pressure receiving elements.
  • a Fabry-Perot resonator formed by a half mirror placed at the tip of an optical fiber and a reflective layer formed on the inner surface of a diaphragm is used to measure the pressure in a narrow space such as a patient's blood vessel.
  • Sensor devices are known (see, for example, Japanese Patent Application Laid-Open No. 2005-291945 and Japanese Patent No. 5558580).
  • the pressure sensor device described in Japanese Patent Application Laid-Open No. 2005-291945 and Japanese Patent No. 5558580 has a Fabry-Perot resonator placed at the tip of an extremely thin optical fiber with a diameter of 125 ⁇ m, thereby controlling the patient's physical condition. It is possible to measure pressure such as blood pressure in a narrow part of the patient's body while reducing the burden.
  • An object of the present disclosure is to solve such problems, and to provide an optical sensor device that can detect pressure in a narrow space and that can be manufactured at low cost.
  • the pressure sensor device includes a light emitting portion that emits incident light, an optical fiber that is optically connected to the light emitting portion, and a tip of the optical fiber that receives the incident light through the optical fiber.
  • a pressure sensor that emits return light corresponding to the applied pressure is optically connected to the pressure sensor via an optical fiber, and based on the return light, the pressure applied to the pressure sensor is detected.
  • a detection signal generator for outputting a signal, wherein the pressure sensor includes a magnetic material, and is arranged in proximity to the magnetic material, and emits return light corresponding to the magnetic field when incident light is incident thereon. and a pressure-receiving element that holds the magnetic body such that the distance between the magnetic field sensor element and the magnetic body changes according to the application of pressure.
  • the pressure-receiving element has a cylindrical shape and includes a base having an opening formed on one side surface, and a base that is arranged inside the base and holds the magnetic body. It is preferable to have a supporting part and a spiral elastic part arranged on the other side surface of the base and having one end connected to the base and the other end connected to the supporting part.
  • the pressure receiving element is preferably made of silicon.
  • the elastic portion preferably has a water-repellent film formed on at least one of the first surface facing the magnetic field sensor element and the second surface opposite to the first surface.
  • the width of the elastic portion becomes narrower from one end connected to the base toward the other end connected to the support portion.
  • the groove is preferably formed so as to extend along a logarithmic spiral whose origin is the center of the bottom surface of the support.
  • the elastic portion is formed with the first groove and the second groove, and the ends of the first groove and the second groove on the base side are arranged 180 degrees apart. , ends of the first groove and the second groove on the side of the support portion are preferably spaced apart by 180 degrees.
  • the elastic portion is formed with the first groove, the second groove, and the third groove, and the ends of the first groove, the second groove, and the third groove on the base side are It is preferable that they are spaced apart by 120 degrees, and the ends of the first groove, the second groove, and the third groove on the side of the support portion are spaced apart by 120 degrees.
  • the pressure sensor further includes a second pressure receiving element that holds an end of the magnetic body opposite to the end held by the pressure receiving element.
  • the pressure receiving element includes a base having a cylindrical shape and an opening formed on one side surface, a support portion arranged inside the base and holding a magnetic body, and a base. and an elastic part disposed on the other side of the platform, one end of which is connected to the base and the other end of which is connected to the supporting part, and in which one or more spiral grooves are formed.
  • a pressure sensor device can detect pressure in a narrow space and can be manufactured at low cost.
  • FIG. 1 is a block diagram showing a pressure sensor device according to an embodiment
  • FIG. 2 is an enlarged cross-sectional view of a portion indicated by broken line A in FIG. 1
  • FIG. (a) is a perspective view (Part 1) of the pressure receiving element shown in FIG. 2
  • (b) is a perspective view (Part 2) of the pressure receiving element shown in FIG. 2
  • (c) is a B- 4 is a perspective cross-sectional view of the pressure receiving element taken along line B
  • FIG. (a) is a diagram showing the pressure sensor in a state where pressure is not applied
  • (b) is a diagram showing the pressure sensor in a state where pressure is applied.
  • 3 is a diagram showing the relationship between the distance between the Faraday rotator and the magnetic material shown in FIG.
  • FIG. (a) is a perspective view (part 1) of a pressure receiving element according to a first modification
  • (b) is a perspective view (part 2) of a pressure receiving element according to a first modification
  • (c) is a first It is a front view of the pressure-receiving element which concerns on a modification
  • (a) is a perspective view (part 1) of a pressure receiving element according to a second modification
  • (b) is a perspective view (part 2) of a pressure receiving element according to a second modification
  • (c) is a second It is a front view of the pressure-receiving element which concerns on a modification.
  • FIG. 11 is a partially enlarged cross-sectional view of a pressure sensor device according to a fourth modified example
  • FIG. 1 is a block diagram showing a pressure sensor device according to an embodiment.
  • the pressure sensor device 1 has a light emitting section 10 , a circulator 20 , a first optical element 30 , an optical path section 40 , a pressure sensor 50 and a detection signal generating section 60 .
  • An optical path between the light emitting section 10 , the circulator 20 , the first optical element 30 , the optical path section 40 , the pressure sensor 50 and the detection signal generating section 60 is formed by a PANDA (Polarization-maintaining AND absorption-reducing) fiber 80 .
  • the outer diameter of the PAND fiber 80 is 125 ⁇ m in one example.
  • the optical path between the first optical element 30, the optical path section 40, the pressure sensor 50, and the detection signal generating section 60 is a polarization-maintaining light beam such as a bow-tie fiber or an elliptical jacket fiber. It may be formed by fibers.
  • the light emitting section 10 has a light emitting element 11 , an isolator 12 and a polarizer 13 .
  • the light emitting element 11 is, for example, a semiconductor laser or a light emitting diode. Specifically, a Fabry-Perot laser, a superluminescence diode, or the like can be preferably used as the light emitting element 11 .
  • the isolator 12 protects the light emitting element 11 by transmitting the light incident from the light emitting element 11 to the circulator 20 side and not transmitting the light incident from the circulator 20 to the light emitting element 11 side.
  • the isolator 12 is, for example, a polarization dependent optical isolator, and may be a polarization independent optical isolator.
  • the polarizer 13 is an optical element for converting the light emitted by the light emitting element 11 into linearly polarized light, and its type is not particularly limited.
  • the first linearly polarized light obtained by the polarizer 13 is incident on the first optical element 30 via the circulator 20 .
  • the circulator 20 transmits the first linearly polarized light emitted from the light emitting section 10 to the first optical element 30, and branches the second linearly polarized light emitted from the first optical element 30 to the detection signal generating section 60. It is an optical branching part.
  • the circulator 20 is formed by, for example, a Faraday rotator, a half-wave plate, a polarizing beam splitter and a reflecting mirror.
  • the first optical element 30 is, for example, a half-wave plate arranged so that the azimuth angle with respect to the plane of polarization of the first linearly polarized light incident from the circulator 20 is 22.5 degrees.
  • the first optical element 30 rotates the plane of polarization of the first linearly polarized light incident from the circulator 20 by 45 degrees and outputs the first linearly polarized light to the optical path section 40 .
  • the first linearly polarized light whose plane of polarization is rotated 45 degrees by the first optical element 30 is divided into a first linearly polarized light CW1 that is P-polarized light and a second linearly polarized light CCW1 that is S-polarized light orthogonal to the first linearly polarized light CW1. have.
  • the first optical element 30 rotates the plane of polarization of the second linearly polarized light, which is the linearly polarized light incident from the optical path section 40 , by 45 degrees, and outputs the second linearly polarized light to the circulator 20 .
  • the optical path section 40 has a first beam splitter 41 , a second beam splitter 42 , a first optical path 43 , a second optical path 44 and a second optical element 45 .
  • the first beam splitter 41 emits the first linearly polarized light CW1 to the first optical path 43 and the second linearly polarized light CCW1 to the second optical path 44.
  • the first beam splitter 41 receives the third linearly polarized light CW2 from the second optical path 44 and the fourth linearly polarized light CCW2 from the first optical path 43 .
  • the third linearly polarized light CW2 and the fourth linearly polarized light CW2 are polarization components of the second linearly polarized light emitted to the first optical element 30 that are orthogonal to each other.
  • the second beam splitter 42 receives the first linearly polarized light CW1 from the first optical path 43 and the second linearly polarized light CCW1 from the second optical path 44 .
  • the second beam splitter 42 also emits the third linearly polarized light CW2 to the second optical path 44 and the fourth linearly polarized light CCW2 to the first optical path 43 .
  • the first beam splitter 41 and the second beam splitter 42 split incident light into a P-polarized component and an S-polarized component, and synthesize and emit the P-polarized component and the S-polarized component.
  • the first beam splitter 41 and the second beam splitter 42 are, for example, prism beam splitters, but they may be planar beam splitters or wedge beam splitters.
  • the first optical path 43 guides the first linearly polarized light CW1 introduced from the first beam splitter 41 to the second beam splitter 42, and directs the fourth linearly polarized light CCW2 introduced from the second beam splitter 42 to the first beam splitter 43.
  • the second optical path 44 guides the second linearly polarized light CCW2 introduced from the first beam splitter 41 to the second beam splitter 42, and directs the third linearly polarized light CW2 introduced from the second beam splitter 42 to the first beam splitter 44. 41.
  • the first optical path 43 is a PANDA fiber optically connected to the first beam splitter 41 at one end and optically connected to the second beam splitter 42 at the other end.
  • the second optical path 44 is a PANDA fiber with one end optically connected to the first beam splitter 41 and the other end optically connected to the second beam splitter 42 .
  • the first optical path 43 and the second optical path 44 may be polarization-maintaining fibers such as bow-tie fibers and elliptical jacket fibers.
  • a second optical element 45 is arranged in the second optical path 44 .
  • the second optical element 45 has a first (1/4) wavelength plate 46, a second (1/4) wavelength plate 47, and a 45-degree Faraday rotator 48.
  • the first (quarter) wave plate 46 is a quarter wave plate arranged with its optical axis inclined by 45 degrees with respect to the slow axis and fast axis of the PANDA fiber forming the second optical path 44. .
  • the first (quarter) wave plate 46 converts linearly polarized light into circularly polarized light and circularly polarized light into linearly polarized light.
  • the second (1/4) wavelength plate 47 is a quarter wavelength plate having an optical axis inclined by -45 degrees with respect to the slow axis and the fast axis of the PANDA fiber forming the second optical path 44. be.
  • a second (quarter) wave plate 47 converts the circularly polarized light from the 45 degree Faraday rotator 48 into linearly polarized light and converts the linearly polarized light into circularly polarized light.
  • the 45-degree Faraday rotator 48 is a Faraday rotator that changes the phase of circularly polarized light incident from each of the first (1/4) wavelength plate 46 and the second (1/4) wavelength plate 47 .
  • the 45-degree Faraday rotator 48 converts the phase of the second linearly polarized light CCW1 emitted from the second (1/4) wavelength plate 47 into the second linearly polarized light incident on the first (1/4) wavelength plate 46 .
  • the phase of the circularly polarized light incident from the first (quarter) wave plate 46 is changed so as to be 45° shifted from the phase of the linearly polarized light CCW1.
  • the 45-degree Faraday rotator 48 converts the phase of the third linearly polarized light CW2 emitted from the first (1/4) wavelength plate 46 into the third linearly polarized light incident on the second (1/4) wavelength plate 47.
  • the phase of the circularly polarized light is changed so that it is -45 shifted from the phase of CW2.
  • the pressure sensor 50 is placed at the tip of the PANDA fiber 80, optically connected to the second beam splitter 42 via the PANDA fiber 80, and inserted into a relatively narrow place such as a patient's blood vessel.
  • the pressure sensor 50 receives the linearly polarized light emitted from the light emitting unit 10 as incident light, and when the incident light is incident via the optical fiber 80, the pressure sensor 50 emits return light corresponding to the applied pressure. .
  • the detection signal generator 60 has a third beam splitter 61, a first light receiving element 62, a second light receiving element 63, and a signal processing circuit 70, and receives the second linearly polarized light split by the circulator 20. do.
  • the detection signal generation unit 60 separates the second linearly polarized light into an S-polarized component and a P-polarized component, receives the S-polarized component and the P-polarized component, converts them into electrical signals, and differentially amplifies them, thereby generating pressure sensor signals.
  • a detection signal Ed corresponding to the pressure applied to 50 is output.
  • the third beam splitter 61 is a polarizing beam splitter (PBS) of prism type, planar type, wedge substrate type, optical waveguide type, or the like.
  • the component 65 is separated.
  • Each of the first light receiving element 62 and the second light receiving element 63 is, for example, a PIN photodiode.
  • the first light receiving element 62 receives the S polarized light component 64 and the second light receiving element 63 receives the P polarized light component 65 .
  • Each of the first light-receiving element 62 and the second light-receiving element 63 photoelectrically converts the received light and outputs an electrical signal corresponding to the amount of received light.
  • the signal processing circuit 70 differentially amplifies the electrical signal representing the S-polarized component and the electrical signal representing the P-polarized component, thereby outputting a detection signal Ed corresponding to the pressure applied to the pressure sensor 50 .
  • FIG. 2 is an enlarged cross-sectional view of the portion indicated by broken line A in FIG.
  • the pressure sensor 50 has a quarter wave plate 51 , a Faraday rotator 52 , a mirror element 53 , a pressure receiving element 54 and a magnetic body 55 .
  • the pressure sensor 50 is arranged at the tip of the PANDA fiber 80 , and emits return light according to the pressure applied to the pressure receiving element 54 when incident light is incident through the optical path section 40 and the PANDA fiber 80 .
  • the quarter-wave plate 51 is disposed with its optical axis inclined by 45 degrees with respect to the slow axis and fast axis of the PANDA fiber 80 optically connecting the second beam splitter 42 to the second beam splitter 42 . wave plate.
  • the quarter-wave plate 51 converts the polarization state of linearly polarized incident light into circularly polarized light, and converts the polarized state of return light incident as circularly polarized light from the Faraday rotator 52 into linearly polarized light.
  • the Faraday rotator 52 is a granular film having a dielectric and nano-order magnetic particles dispersed in the dielectric while being stably phase-separated from the dielectric.
  • the Faraday rotator 52 is a magnetic field sensor element arranged on the end surface of the quarter-wave plate 51 and detecting a magnetic field.
  • the magnetic particles may have an oxide formed in a small portion such as the outermost layer, but in the entire Faraday rotator 52, the magnetic particles are Dispersed singly in the thin film.
  • the distribution of the magnetic particles in the Faraday rotator 52 may not be completely uniform, and may be slightly biased. If a highly transparent dielectric is used, the Faraday rotator 52 has optical transparency due to the presence of magnetic particles in the dielectric with a size smaller than the wavelength of light.
  • the Faraday rotator 52 is not limited to a single layer, and may be a multilayer film in which granular films and dielectric films are alternately laminated. By forming the Faraday rotator 52 by forming a multilayer film of granular films, a larger Faraday rotation angle can be obtained by multiple reflection within the granular film.
  • the dielectric of the Faraday rotator 52 is preferably a fluoride (metal fluoride) such as magnesium fluoride ( MgF2 ), aluminum fluoride ( AlF3 ), yttrium fluoride (YF3).
  • Dielectrics include tantalum oxide (Ta 2 O 5 ), silicon dioxide (SiO 2 ), titanium dioxide (TiO 2 ), niobium pentoxide (Nb 2 O 5 ), zirconium dioxide (ZrO 2 ), hafnium dioxide ( HfO 2 ), and oxides such as aluminum trioxide (Al 2 O 3 ).
  • Fluorides are preferable to oxides for good phase separation between the dielectric and the magnetic particles, and magnesium fluoride, which has a high transmittance, is particularly preferable.
  • the material of the magnetic particles is not particularly limited as long as it produces the Faraday effect.
  • Examples of the material of the magnetic particles include ferromagnetic metals such as iron (Fe), cobalt (Co) and nickel (Ni). These alloys are mentioned.
  • Examples of alloys of Fe, Co and Ni include FeNi alloys, FeCo alloys, FeNiCo alloys, and NiCo alloys.
  • the Faraday rotation angles per unit length of Fe, Co and Ni are two to three orders of magnitude larger than those of magnetic garnets applied to conventional Faraday rotators.
  • the mirror element 53 is formed on the Faraday rotator 52 and reflects the light transmitted through the Faraday rotator 52 toward the Faraday rotator 52 .
  • the mirror element 53 for example, a silver (Ag) film, a gold (Au) film, an aluminum (Al) film, a dielectric multilayer mirror, or the like can be used.
  • an Ag film with a high reflectance and an Au film with a high corrosion resistance are preferable because they are easy to form.
  • the thickness of the mirror element 53 may be any size that ensures a sufficient reflectance of 98% or more.
  • FIG. 3(a) is a perspective view (part 1) of the pressure receiving element 54
  • FIG. 3(b) is a perspective view (part 2) of the pressure receiving element 54
  • FIG. 3(c) is a perspective view of FIG. 3 is a perspective cross-sectional view of the pressure receiving element 54 taken along line BB.
  • the pressure receiving element 54 has a base 56, a support portion 57, and an elastic portion 58, and is formed by cutting silicon, which can be finely processed with high precision, by laser processing, etching processing, or the like.
  • the base 56 has a cylindrical shape with the same outer diameter as the PAND fiber 80 .
  • An opening 59 in which the magnetic body 55 is arranged is formed on one side surface of the base 56, and an elastic portion 58 is arranged on the other side surface.
  • the support part 57 has a columnar shape, one end of which is connected to the central part of the elastic part 58 and is arranged inside the base 56 .
  • a magnetic body 55 is arranged at the tip of the support portion 57 .
  • the magnetic body 55 is arranged at the tip of the cylindrical support portion, so that it is arranged close to the Faraday rotator 52, which is the magnetic field sensor element.
  • the elastic part 58 has a spiral or helical shape, is arranged on the other side surface of the base 56, and has a water-repellent film formed of a hydrophobic material such as a fluorine-based substance arranged on its outer surface. Between the elastic portions 58, a single groove 58a is formed that curves and extends spirally. The grooves formed between the elastic portions 58 are formed to extend along the Archimedean spiral with the origin at the center of the bottom surface of the support portion 57 . The grooves formed between the elastic portions 58 are formed so as to extend along the Archimedean spiral, so that the elastic portions 58 have a uniform width.
  • the elastic portion 58 curves toward the inside of the base 56 when pressed from the outside.
  • the support portion 57 arranged in the central portion of the elastic portion 58 moves toward the opening portion 59 .
  • the magnetic body 55 arranged at the tip of the support portion 57 moves toward the Faraday rotator 52 .
  • the magnetic body 55 is a thin-film permanent magnet having a circular planar shape with the same shape as the diameter of the support portion 57 .
  • the magnetic body 55 is, for example, an iron-platinum (Fe--Pt) magnet.
  • the magnetic body 55 may be a permanent magnet other than an iron-platinum magnet such as a neodymium-iron-boron (Nd--Fe--B) magnet and a samarium-cobalt (Sm--Co) magnet.
  • the magnetic body 55 is preferably an iron-platinum magnet that has little effect on the human body.
  • FIG. 4(a) is a diagram showing the pressure sensor 50 with no pressure applied
  • FIG. 4(b) is a diagram showing the pressure sensor 50 with pressure applied
  • FIG. 5 is a diagram showing the relationship between the distance between the Faraday rotator 52 and the magnetic body 55 and the magnetic field applied to the Faraday rotator 52. As shown in FIG.
  • the elastic portion 58 when pressure is applied from the outside of the elastic portion 58 , the elastic portion 58 curves toward the inside of the base 56 .
  • the magnetic body 55 moves toward the Faraday rotator 52 in accordance with the bending of the elastic portion 58 toward the inside of the base 56 .
  • the magnetic field H applied to the Faraday rotator 52 increases.
  • the magnetic field H applied to the Faraday rotator 52 increases linearly as the distance D between the Faraday rotator 52 and the magnetic body 55 decreases.
  • the circularly polarized light incident on the Faraday rotator 52 from the quarter-wave plate 51 is transmitted through the Faraday rotator 52, reflected by the mirror element 53, transmitted through the Faraday rotator 52 again, and becomes return light.
  • the return light that has passed through the Faraday rotator 52 is again incident on the quarter-wave plate 51 .
  • Circularly polarized light incident on the Faraday rotator 52 from the quarter-wave plate 51 changes its phase according to the magnetic field applied to the Faraday rotator 52 .
  • the circularly polarized light reflected by the mirror element 53 further changes its phase according to the magnetic field applied to the Faraday rotator 52 .
  • the pressure sensor device 1 detects the magnetic field applied to the Faraday rotator 52, which changes according to the distance between the Faraday rotator 52 and the magnetic body 55, without using a Fabry-Perot resonator.
  • the pressure applied to sensor 50 is detected. Since the magnetic field applied to the Faraday rotator 52 changes according to the distance between the Faraday rotator 52 and the magnetic body 55, the distance between the Faraday rotator 52 and the magnetic body 55 is made uniform. They do not have to be manufactured together.
  • the pressure sensor device 1 does not have to be manufactured with the distance between the Faraday rotator 52 and the magnetic body 55 uniform, it is easier to manufacture than the pressure sensor device using a Fabry-Perot resonator. and the manufacturing cost can be reduced.
  • the pressure sensor device 1 detects pressure using a magnetic field that linearly changes according to a change in the distance between the Faraday rotator 52 and the magnetic body 55, it uses the resonance wavelength of the Fabry-Perot resonator.
  • the pressure can be detected with higher precision than the pressure sensor device that detects the pressure by using a pressure sensor.
  • the pressure receiving element 54 is made of silicon that can be microfabricated with high precision, so miniaturization is easy.
  • the pressure receiving element 54 is formed by cutting silicon. It may be formed by processing to
  • the magnetic body 55 is arranged at the tip of the columnar support portion 57 arranged in the central portion of the elastic portion 58, but in the pressure sensor device according to the embodiment, the magnetic body is It may have a cylindrical shape and be arranged in the center of the elastic portion 58 .
  • the elastic portion 58 has a water-repellent film formed on its outer surface.
  • a water-repellent film may be formed on both the inner surface and the inner surface.
  • the elastic portion may not have a water-repellent film formed on either the outer surface or the inner surface.
  • the elastic portion 58 of the pressure receiving element 54 has a uniform width, but in the pressure sensor device according to the embodiment, the width of the elastic portion may not be uniform.
  • the elastic portion 58 has a uniform width. Therefore, when pressure is applied, stress is concentrated on the outer side of the elastic portion 58 near the base 56, and the displacement amount of the outer side of the elastic portion 58 is reduced. It becomes larger than the amount of displacement inside the elastic portion 58 . In the pressure-receiving element 54, the amount of displacement of the outer side of the elastic portion 58 is large. There is a risk of intrusion from
  • FIG. 6A is a perspective view (Part 1) of the pressure receiving element according to the first modification
  • FIG. 6B is a perspective view (Part 2) of the pressure receiving element according to the first modification
  • (c) is a front view of a pressure receiving element according to a first modified example.
  • the pressure receiving element 154 differs from the pressure receiving element 54 in that it has a base 156 and an elastic portion 158 instead of the base 56 and the elastic portion 58 .
  • the configuration and function of the constituent elements of the pressure receiving element 154 other than the base 156 and the elastic portion 158 are the same as the configuration and function of the constituent elements of the pressure receiving element 54 denoted by the same reference numerals, so detailed description thereof will be omitted here.
  • the base 156 differs from the base 56 in that its length is longer than that of the base 56 . Since the base 156 is longer than the base 56, it can be arranged so as to cover the quarter-wave plate 51, the Faraday rotator 52 and the mirror element 53, and a larger magnetic body 55 can be installed. be able to.
  • the elastic portion 158 is formed so that the width becomes narrower from one end connected to the base 156 toward the other end connected to the support portion 57 .
  • the elastic portions 158 are formed such that grooves 158a formed between the elastic portions 158 extend along a logarithmic spiral with the center of the bottom surface of the support portion 57 as the origin.
  • the groove 158a may be formed to extend along an algebraic spiral other than a logarithmic spiral such as a hyperbolic spiral and a litius spiral.
  • the pressure-receiving element 154 is formed such that the width of the elastic portion 158 becomes narrower from one end connected to the base 156 toward the other end connected to the support portion 57 , so that the pressure-receiving element 154 is formed so that the width of the elastic portion 158 decreases toward the other end connected to the support 57 .
  • the amount of displacement of the outer side of the elastic portion 58 does not increase due to concentration of stress. Since the displacement of the pressure receiving element 154 outside the elastic portion 58 is not large, there is little possibility that liquid will enter the groove 58a outside the elastic portion 58 from the outside groove 58a.
  • the elastic portion 58 of the pressure receiving element 54 is formed with a single groove, but in the pressure sensor device according to the embodiment, the elastic portion may be formed with a plurality of grooves. In the pressure-receiving element 54, the elastic portion 58 is formed with a single groove. The portion 57 may tilt. In the pressure sensor device 1, the inclination of the supporting portion 57 that supports the magnetic body 55 may reduce the detection accuracy when detecting the change in the magnetic field according to the pressure.
  • FIG. 7A is a perspective view (Part 1) of the pressure receiving element according to the second modification
  • FIG. 7B is a perspective view (Part 2) of the pressure receiving element according to the second modification
  • (c) is a front view of a pressure receiving element according to a second modification.
  • the pressure receiving element 254 differs from the pressure receiving element 154 in having an elastic portion 258 instead of the elastic portion 158 .
  • the configuration and function of the constituent elements of the pressure receiving element 254 other than the elastic portion 258 are the same as the configuration and function of the constituent elements of the pressure receiving element 154 denoted by the same reference numerals, so detailed description thereof will be omitted here.
  • the elastic portion 258 differs from the elastic portion 158 in that two grooves, a first groove 258a and a second groove 258b, are formed.
  • the first groove 258a and the second groove 258b are formed to extend along a logarithmic spiral with the center of the bottom surface of the support portion 57 as the origin.
  • the ends of the first groove 258a and the second groove 258b on the side of the base 156 are arranged around the support portion 57 with an interval of 180 degrees.
  • the ends of the first groove 258a and the second groove 258b on the side of the support portion 57 are arranged around the support portion 57 with an interval of 180 degrees.
  • the pressure receiving element 254 has two grooves, that is, the ends of the first groove 258a and the second groove 258b are arranged 180 degrees apart, and is symmetrical with respect to the center of the bottom surface of the support portion 57. , the possibility that the support portion 57 is tilted is further reduced.
  • FIG. 8A is a perspective view (part 1) of the pressure receiving element according to the third modification
  • FIG. 8B is a perspective view (part 2) of the pressure receiving element according to the third modification
  • (c) is a front view of a pressure receiving element according to a third modified example.
  • the pressure receiving element 354 differs from the pressure receiving element 154 in having an elastic portion 358 instead of the elastic portion 158 .
  • the configuration and function of the constituent elements of the pressure receiving element 354 other than the elastic portion 358 are the same as the configuration and function of the constituent elements of the pressure receiving element 154 to which the same reference numerals are assigned, so detailed description thereof will be omitted here.
  • the elastic portion 358 differs from the elastic portion 158 in that three grooves, ie, a first groove 358a, a second groove 358b and a third groove 358c are formed.
  • the first groove 358a, the second groove 358b, and the third groove 358c are formed to extend along a logarithmic spiral with the center of the bottom surface of the support portion 57 as the origin.
  • the first groove 358a, the second groove 358b, and the third groove 358c are formed, for example, so as to extend along a logarithmic spiral whose origin is the center of the bottom surface of the support portion 57 represented by the following formula.
  • Xt (0.092*exp(-0.06*t))*cos(t)
  • Yt (0.092*exp (-0.06*t))*sin(t)
  • t is a numerical value greater than or equal to 0* ⁇ and less than or equal to 5* ⁇ .
  • the ends of the first groove 358a, the second groove 358b, and the third groove 358c on the side of the base 156 are arranged around the support portion 57 at intervals of 120 degrees. Also, the ends of the first groove 358a, the second groove 358b and the third groove 358c on the side of the support portion 57 are arranged at intervals of 120 degrees around the support portion 57. As shown in FIG.
  • FIG. 9(a) is a diagram showing the pressure sensor with no pressure applied
  • FIG. 9(b) is a diagram showing the pressure sensor with pressure applied
  • a pressure sensor 50 a shown in FIGS. 9( a ) and 9 ( b ) differs from the pressure sensor 50 in that a pressure receiving element 354 is arranged instead of the pressure receiving element 54 .
  • the pressure sensor 50a is different from the pressure sensor 50 in that a magnetic body 55a is arranged instead of the magnetic body 55.
  • the magnetic body 55a has the same configuration and function as the magnetic body 55 except that the magnetic body 55a is larger than the magnetic body 55, so detailed description thereof will be omitted here.
  • the pressure-receiving element 254 has three grooves, that is, a first groove 358a, a second groove 358b, and a third groove 358c. , the support portion 57 is less likely to incline.
  • FIG. 10 is a diagram showing the results of stress simulation of the pressure receiving element 354.
  • FIG. FIG. 10(a) shows the amount of displacement of the elastic portion 358 according to the application of pressure
  • FIG. 10(b) shows the von Mises stress generated in the elastic portion 358 according to the application of pressure.
  • 10A is a cross-sectional view of the pressure receiving element 354 and the magnetic body 55a
  • FIG. 10B is a plan view of the pressure receiving element 354.
  • the elastic portion 358 causes the magnetic body 55a to move parallel to the pressure application direction without tilting the support portion 57 when pressure is applied. Moving.
  • the von Mises stress is applied to the elastic portion 358 substantially uniformly from the central portion near the support portion 57 to the outer edge portion near the base 156. , the phenomenon of stress concentration on the outside of the elastic portion 358 does not occur.
  • a single pressure receiving element 54 is arranged, but in the pressure sensor device according to the embodiment, a plurality of pressure receiving elements may be arranged.
  • FIG. 11 is a partially enlarged cross-sectional view of a pressure sensor device according to a fourth modification
  • FIG. 12 is a partially enlarged exploded cross-sectional view of the pressure sensor device shown in FIG. 11
  • FIG. 13B is a plan view of the second pressure receiving element shown in FIG. 11.
  • the pressure sensor 50b differs from the pressure sensor 50a in having a first pressure receiving element 454 and a second pressure receiving element 554 instead of the pressure receiving element 354. Further, the pressure sensor 50b differs from the pressure sensor 50a in having a yoke 55b.
  • the configuration and function of the components of the pressure sensor 50b other than the first pressure receiving element 454, the second pressure receiving element 554, and the yoke 55b are the same as the configuration and function of the components of the pressure sensor 50a denoted by the same reference numerals. Detailed description is omitted.
  • the first pressure receiving element 454 differs from the pressure receiving element 354 in that it has a base 456 and an elastic portion 158 instead of the base 156 and the elastic portion 358 .
  • the configuration and function of the first pressure receiving element 454 other than the base 456 and the elastic portion 158 are the same as the configuration and function of the pressure receiving element 354, so detailed description thereof will be omitted here. Also, since the configuration and function of the elastic portion 158 have been described with reference to FIG. 6 and the like, detailed description thereof will be omitted here.
  • the second pressure receiving element 554 differs from the pressure receiving element 354 in that it has a base 556 and an elastic portion 558 instead of the base 156 and the elastic portion 358 . Further, the second pressure receiving element 554 differs from the pressure receiving element 354 in that it does not have the support portion 57 .
  • the configuration and function of the second pressure receiving element 554 other than the base 556 and the elastic portion 558 are the same as the configuration and function of the pressure receiving element 354, so detailed description thereof will be omitted here.
  • the elastic portion 558 differs from the elastic portion 158 in that a yoke receiving hole 557 is formed in the center.
  • the yoke 557 is made of a magnetic material such as permalloy and has a substantially truncated cone shape.
  • the lower base of the yoke 557 is connected to the end face of the magnetic body 55a, and the upper base of the yoke 55b is engaged with the yoke receiving hole 557 of the elastic portion 558. As shown in FIG.
  • FIG. 14(a) is a diagram showing the pressure sensor 50b with no pressure applied
  • FIG. 14(b) is a diagram showing the pressure sensor 50b with pressure applied.
  • one end face of the magnetic body 55a is supported by the support portion 57, and the other end face of the magnetic body 55a is engaged with the second pressure receiving element 554 via the yoke 55b. Since it moves, it is unlikely that the accuracy of detecting changes in the magnetic field will be degraded.
  • the pressure sensor 50b since the pressure sensor 50b has the yoke 55b arranged between the Faraday rotator 52 and the magnetic body 55a, the magnetic field can be efficiently guided from the magnetic body 55a to the Faraday rotator 52.
  • the pressure sensor 50b has the yoke 55b, the pressure sensor according to the embodiment may not have the yoke. Also, in the pressure sensors 50 and 50a, no yoke is arranged, but in the pressure sensors 50 and 50a, a yoke may be additionally arranged.
  • the pressure sensor 50b has the first pressure receiving element 454 and the second pressure receiving element 554 each having an elastic portion formed with a spirally curved and extending groove.
  • the shape of the elastic portion of the element and the second pressure receiving element is not limited.
  • FIG. 15 is a plan view of a second pressure receiving element according to a modification.
  • the second pressure receiving element 654 differs from the second pressure receiving element 554 in having an elastic portion 658 instead of the elastic portion 558 .
  • the configuration and function of the second pressure receiving element 654 other than the elastic portion 658 are the same as the configuration and function of the pressure receiving element 354, so detailed description thereof will be omitted here.
  • the elastic portion 658 has a first elastic member 658a, a second elastic member 658b, a third elastic member 658c, and a yoke support member 658d.
  • the first elastic member 658a, the second elastic member 658b, and the third elastic member 658c are elastic members such as springs, and are arranged at intervals of 120 degrees.
  • One ends of the first elastic member 658a, the second elastic member 658b, and the third elastic member 658c are connected to the yoke support portion 658d, and the other ends of the first elastic member 658a, the second elastic member 658b, and the third elastic member 658c are connected to the base. It is connected to platform 554 .
  • the yoke support member 658d has a ring-shaped planar shape, and is formed with a yoke receiving hole 658e with which the upper base of the yoke 557 is engaged.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

This pressure sensor device comprises a light emission unit for emitting incident light, an optical fiber that is optically connected to the light emission unit, a pressure sensor that is disposed at the distal end of the optical fiber and emits return light corresponding to applied pressure when the incident light enters from the optical fiber, and a detection signal generation unit that is optically connected to the pressure sensor via the optical fiber and outputs a detection signal corresponding to the pressure applied to the pressure sensor on the basis of the return light. The pressure sensor comprises a magnetic body, a magnetic sensor element that is disposed near the magnetic body and emits return light corresponding to a magnetic field when the incident light enters, and a pressure reception element 54 that holds the magnetic body such that the distance between the magnetic sensor element and magnetic body changes according to the application of pressure.

Description

圧力センサ装置及び受圧素子Pressure sensor device and pressure receiving element
 本開示は、圧力センサ装置及び受圧素子に関する。 The present disclosure relates to pressure sensor devices and pressure receiving elements.
 光ファイバの先端に配置されたハーフミラーと、ダイヤフラムの内面に形成された反射層とにより形成されるファブリ・ペロー共振器を使用して、患者の血管内等の狭小部における圧力を測定する圧力センサ装置が知られている(例えば、特開2005-291945号公報及び特許第5558580号公報を参照)。特開2005-291945号公報及び特許第5558580号公報に記載される圧力センサ装置は、径が125μmと非常に細い光ファイバの先端にファブリ・ペロー共振器を配置することで、患者の身体的な負担を軽減とした上で、患者の体内の狭小部において血圧等の圧力を計測できる。 A Fabry-Perot resonator formed by a half mirror placed at the tip of an optical fiber and a reflective layer formed on the inner surface of a diaphragm is used to measure the pressure in a narrow space such as a patient's blood vessel. Sensor devices are known (see, for example, Japanese Patent Application Laid-Open No. 2005-291945 and Japanese Patent No. 5558580). The pressure sensor device described in Japanese Patent Application Laid-Open No. 2005-291945 and Japanese Patent No. 5558580 has a Fabry-Perot resonator placed at the tip of an extremely thin optical fiber with a diameter of 125 μm, thereby controlling the patient's physical condition. It is possible to measure pressure such as blood pressure in a narrow part of the patient's body while reducing the burden.
 しかしながら、ハーフミラーと反射層との間のギャップ長が均一の長さになるようにファブリ・ペロー共振器を製造することは、容易ではなく、特開2005-291945号公報及び特許第5558580号公報に記載される圧力センサ装置の製造コストが高くなるおそれがある。 However, it is not easy to manufacture a Fabry-Perot resonator so that the gap length between the half mirror and the reflective layer is uniform. The manufacturing cost of the pressure sensor device described in can be high.
 本開示は、このような課題を解決するものであり、狭小部における圧力を検出可能であり且つ低コストで製造可能な光学センサ装置を提供することを目的とする。 An object of the present disclosure is to solve such problems, and to provide an optical sensor device that can detect pressure in a narrow space and that can be manufactured at low cost.
 本開示に係る圧力センサ装置は、入射光を出射する発光部と、発光部に光学的に接続された光ファイバと、光ファイバの先端に配置され、光ファイバを介して入射光が入射されたときに、印加される圧力に応じた戻り光を出射する圧力センサと、圧力センサに光ファイバを介して光学的に接続され、戻り光に基づいて、圧力センサに印加される圧力に応じた検出信号を出力する検出信号発生部とを有し、圧力センサは、磁性体と、磁性体に近接して配置され、入射光が入射されたときに、磁界に応じた戻り光を出射する磁界センサ素子と、圧力が印加されることに応じて磁界センサ素子と磁性体との間の距離が変化するように磁性体を保持する受圧素子とを有する。 The pressure sensor device according to the present disclosure includes a light emitting portion that emits incident light, an optical fiber that is optically connected to the light emitting portion, and a tip of the optical fiber that receives the incident light through the optical fiber. Sometimes, a pressure sensor that emits return light corresponding to the applied pressure is optically connected to the pressure sensor via an optical fiber, and based on the return light, the pressure applied to the pressure sensor is detected. and a detection signal generator for outputting a signal, wherein the pressure sensor includes a magnetic material, and is arranged in proximity to the magnetic material, and emits return light corresponding to the magnetic field when incident light is incident thereon. and a pressure-receiving element that holds the magnetic body such that the distance between the magnetic field sensor element and the magnetic body changes according to the application of pressure.
 さらに、本開示に係る圧力センサ装置では、受圧素子は、円筒状の形状を有し、一方の側面に開口部が形成された基台と、基台の内部に配置され、磁性体を保持する支持部と、基台の他方の側面に配置され、一端が基台に接続され且つ他端が支持部に接続された螺旋状の弾性部とを有することが好ましい。 Further, in the pressure sensor device according to the present disclosure, the pressure-receiving element has a cylindrical shape and includes a base having an opening formed on one side surface, and a base that is arranged inside the base and holds the magnetic body. It is preferable to have a supporting part and a spiral elastic part arranged on the other side surface of the base and having one end connected to the base and the other end connected to the supporting part.
 さらに、本開示に係る圧力センサ装置では、受圧素子は、シリコンにより形成されることが好ましい。 Furthermore, in the pressure sensor device according to the present disclosure, the pressure receiving element is preferably made of silicon.
 さらに、本開示に係る圧力センサ装置では、弾性部は、磁界センサ素子に対向する第1面、及び第1面の反対の第2面の少なくとも一方に撥水膜が形成されることが好ましい。 Furthermore, in the pressure sensor device according to the present disclosure, the elastic portion preferably has a water-repellent film formed on at least one of the first surface facing the magnetic field sensor element and the second surface opposite to the first surface.
 さらに、本開示に係る圧力センサ装置では、弾性部の幅は、基台に接続される一端から支持部に接続される他端に向かうに従って幅が狭くなることが好ましい。 Furthermore, in the pressure sensor device according to the present disclosure, it is preferable that the width of the elastic portion becomes narrower from one end connected to the base toward the other end connected to the support portion.
 さらに、本開示に係る圧力センサ装置では、溝は、支持部の底面の中心を原点とする対数螺旋に沿って延伸するように形成されることが好ましい。 Furthermore, in the pressure sensor device according to the present disclosure, the groove is preferably formed so as to extend along a logarithmic spiral whose origin is the center of the bottom surface of the support.
 さらに、本開示に係る圧力センサ装置では、弾性部は、第1溝、及び第2溝が形成され、第1溝及び第2溝の基台側の端部は、180度離隔して配置され、第1溝及び第2溝の支持部側の端部は、180度離隔して配置されることが好ましい。 Further, in the pressure sensor device according to the present disclosure, the elastic portion is formed with the first groove and the second groove, and the ends of the first groove and the second groove on the base side are arranged 180 degrees apart. , ends of the first groove and the second groove on the side of the support portion are preferably spaced apart by 180 degrees.
 さらに、本開示に係る圧力センサ装置では、弾性部は、第1溝、第2溝及び第3溝が形成され、第1溝、第2溝及び第3溝の基台側の端部は、120度ずつ離隔して配置され、第1溝、第2溝及び第3溝の支持部側の端部は、120度ずつ離隔して配置されることが好ましい。 Furthermore, in the pressure sensor device according to the present disclosure, the elastic portion is formed with the first groove, the second groove, and the third groove, and the ends of the first groove, the second groove, and the third groove on the base side are It is preferable that they are spaced apart by 120 degrees, and the ends of the first groove, the second groove, and the third groove on the side of the support portion are spaced apart by 120 degrees.
 さらに、本開示に係る圧力センサ装置では、圧力センサは、受圧素子が保持する磁性体の端部と反対側の端部を保持する第2受圧素子をさらに有することが好ましい。 Furthermore, in the pressure sensor device according to the present disclosure, it is preferable that the pressure sensor further includes a second pressure receiving element that holds an end of the magnetic body opposite to the end held by the pressure receiving element.
 また、本開示に係る受圧素子は、円筒状の形状を有し、一方の側面に開口部が形成された基台と、基台の内部に配置され、磁性体を保持する支持部と、基台の他方の側面に配置され、一端が基台に接続され且つ他端が支持部に接続され、螺旋状の1又は複数の溝が形成される弾性部とを有する。 Further, the pressure receiving element according to the present disclosure includes a base having a cylindrical shape and an opening formed on one side surface, a support portion arranged inside the base and holding a magnetic body, and a base. and an elastic part disposed on the other side of the platform, one end of which is connected to the base and the other end of which is connected to the supporting part, and in which one or more spiral grooves are formed.
 本開示に係る圧力センサ装置は、狭小部における圧力を検出可能であり且つ低コストで製造可能である。 A pressure sensor device according to the present disclosure can detect pressure in a narrow space and can be manufactured at low cost.
実施形態に係る圧力センサ装置を示すブロック図である。1 is a block diagram showing a pressure sensor device according to an embodiment; FIG. 図1において破線Aで示される部分の拡大断面図である。2 is an enlarged cross-sectional view of a portion indicated by broken line A in FIG. 1; FIG. (a)は図2に示す受圧素子の斜視図(その1)であり、(b)は図2に示す受圧素子の斜視図(その2)であり、(c)は(a)のB-B線に沿う受圧素子の斜視断面図である。(a) is a perspective view (Part 1) of the pressure receiving element shown in FIG. 2, (b) is a perspective view (Part 2) of the pressure receiving element shown in FIG. 2, and (c) is a B- 4 is a perspective cross-sectional view of the pressure receiving element taken along line B; FIG. (a)は圧力が印加されない状態の圧力センサを示す図であり、(b)は圧力が印加された状態の圧力センサを示す図である。(a) is a diagram showing the pressure sensor in a state where pressure is not applied, and (b) is a diagram showing the pressure sensor in a state where pressure is applied. 図2に示すファラデー回転子と磁性体との間の距離とファラデー回転子に印加される磁界との関係を示す図である。3 is a diagram showing the relationship between the distance between the Faraday rotator and the magnetic material shown in FIG. 2 and the magnetic field applied to the Faraday rotator; FIG. (a)は第1変形例に係る受圧素子の斜視図(その1)であり、(b)は第1変形例に係る受圧素子の斜視図(その2)であり、(c)は第1変形例に係る受圧素子の正面図である。(a) is a perspective view (part 1) of a pressure receiving element according to a first modification, (b) is a perspective view (part 2) of a pressure receiving element according to a first modification, and (c) is a first It is a front view of the pressure-receiving element which concerns on a modification. (a)は第2変形例に係る受圧素子の斜視図(その1)であり、(b)は第2変形例に係る受圧素子の斜視図(その2)であり、(c)は第2変形例に係る受圧素子の正面図である。(a) is a perspective view (part 1) of a pressure receiving element according to a second modification, (b) is a perspective view (part 2) of a pressure receiving element according to a second modification, and (c) is a second It is a front view of the pressure-receiving element which concerns on a modification. (a)は第3変形例に係る受圧素子の斜視図(その1)であり、(b)は第3変形例に係る受圧素子の斜視図(その2)であり、(c)は第3変形例に係る受圧素子の正面図である。(a) is a perspective view (part 1) of a pressure receiving element according to a third modification; (b) is a perspective view (part 2) of a pressure receiving element according to a third modification; It is a front view of the pressure-receiving element which concerns on a modification. (a)は圧力が印加されない状態の圧力センサを示す図であり、(b)は圧力が印加された状態の圧力センサを示す図である。(a) is a diagram showing the pressure sensor in a state where pressure is not applied, and (b) is a diagram showing the pressure sensor in a state where pressure is applied. 図8に示す受圧素子の応力シミュレーションの結果を示す図であり、(a)は圧力が印加されることに応じた弾性部の変移量を示し、(b)は圧力が印加されることに応じて弾性部に発生するミーゼス応力を示す。9A and 9B show the results of stress simulation of the pressure receiving element shown in FIG. von Mises stress generated in the elastic part. 第4変形例に係る圧力センサ装置の部分拡大断面図である。FIG. 11 is a partially enlarged cross-sectional view of a pressure sensor device according to a fourth modified example; 図11に示す圧力センサ装置の部分拡大分解断面図である。FIG. 12 is a partially enlarged exploded sectional view of the pressure sensor device shown in FIG. 11; (a)は図11に示す第1受圧素子の平面図であり、(b)は図11に示す第2受圧素子の平面図である。12A is a plan view of the first pressure receiving element shown in FIG. 11, and FIG. 12B is a plan view of the second pressure receiving element shown in FIG. 11; FIG. (a)は圧力が印加されない状態の図11に示す圧力センサを示す図であり、(b)は圧力が印加された状態の図11に示す圧力センサを示す図である。12A is a diagram showing the pressure sensor shown in FIG. 11 with no pressure applied; FIG. 12B is a diagram showing the pressure sensor shown in FIG. 11 with pressure applied; FIG. 変形例に係る第2受圧素子の平面図である。FIG. 11 is a plan view of a second pressure receiving element according to a modified example;
 以下図面を参照して、本開示に係る圧力センサ装置及び受圧素子について説明する。但し、本開示の技術的範囲はそれらの実施の形態に限定されず、特許請求の範囲に記載された発明とその均等物に及ぶ点に留意されたい。 A pressure sensor device and a pressure receiving element according to the present disclosure will be described below with reference to the drawings. However, it should be noted that the technical scope of the present disclosure is not limited to those embodiments, but extends to the invention described in the claims and equivalents thereof.
 (実施形態に係る圧力センサ装置の構成及び機能)
 図1は、実施形態に係る圧力センサ装置を示すブロック図である。
(Configuration and function of pressure sensor device according to embodiment)
FIG. 1 is a block diagram showing a pressure sensor device according to an embodiment.
 圧力センサ装置1は、発光部10と、サーキュレータ20と、第1光学素子30と、光路部40と、圧力センサ50と、検出信号発生部60とを有する。発光部10、サーキュレータ20、第1光学素子30、光路部40、圧力センサ50及び検出信号発生部60の間の光路は、PANDA(Polarization-maintaining AND Absorption-reducing)ファイバ80によって形成される。PANDファイバ80の外径は、一例では125μmである。なお、第1光学素子30、光路部40、圧力センサ50及び検出信号発生部60の間の光路は、ボウタイ(Bow-tie)ファイバ及び楕円ジャケット(Elliptical Jacket)ファイバ等の偏波保持型の光ファイバによって形成されてもよい。 The pressure sensor device 1 has a light emitting section 10 , a circulator 20 , a first optical element 30 , an optical path section 40 , a pressure sensor 50 and a detection signal generating section 60 . An optical path between the light emitting section 10 , the circulator 20 , the first optical element 30 , the optical path section 40 , the pressure sensor 50 and the detection signal generating section 60 is formed by a PANDA (Polarization-maintaining AND absorption-reducing) fiber 80 . The outer diameter of the PAND fiber 80 is 125 μm in one example. The optical path between the first optical element 30, the optical path section 40, the pressure sensor 50, and the detection signal generating section 60 is a polarization-maintaining light beam such as a bow-tie fiber or an elliptical jacket fiber. It may be formed by fibers.
 発光部10は、発光素子11と、アイソレータ12と、偏光子13とを有する。発光素子11は、例えば半導体レーザ又は発光ダイオードである。具体的には、発光素子11として、ファブリペローレーザー、スーパールミネッセンスダイオード等を好ましく用いることができる。 The light emitting section 10 has a light emitting element 11 , an isolator 12 and a polarizer 13 . The light emitting element 11 is, for example, a semiconductor laser or a light emitting diode. Specifically, a Fabry-Perot laser, a superluminescence diode, or the like can be preferably used as the light emitting element 11 .
 アイソレータ12は、発光素子11から入射された光をサーキュレータ20側に透過すると共に、サーキュレータ20から入射された光を発光素子11側に透過しないことで、発光素子11を保護する。アイソレータ12は、例えば偏光依存型光アイソレータであり、偏光無依存型光アイソレータであってもよい。 The isolator 12 protects the light emitting element 11 by transmitting the light incident from the light emitting element 11 to the circulator 20 side and not transmitting the light incident from the circulator 20 to the light emitting element 11 side. The isolator 12 is, for example, a polarization dependent optical isolator, and may be a polarization independent optical isolator.
 偏光子13は、発光素子11が発した光を直線偏波光にするための光学素子であり、その種類は特に限定されない。偏光子13で得られる第1直線偏波光は、サーキュレータ20を介して第1光学素子30に入射される。 The polarizer 13 is an optical element for converting the light emitted by the light emitting element 11 into linearly polarized light, and its type is not particularly limited. The first linearly polarized light obtained by the polarizer 13 is incident on the first optical element 30 via the circulator 20 .
 サーキュレータ20は、発光部10から出射された第1直線偏波光を第1光学素子30に透過すると共に、第1光学素子30から出射された第2直線偏波光を検出信号発生部60に分岐する光分岐部である。サーキュレータ20は、例えばファラデー回転子、1/2波長板、偏光ビームスプリッタ、及び反射ミラーによって形成される。 The circulator 20 transmits the first linearly polarized light emitted from the light emitting section 10 to the first optical element 30, and branches the second linearly polarized light emitted from the first optical element 30 to the detection signal generating section 60. It is an optical branching part. The circulator 20 is formed by, for example, a Faraday rotator, a half-wave plate, a polarizing beam splitter and a reflecting mirror.
 第1光学素子30は、例えばサーキュレータ20から入射される第1直線偏波光の偏光面に対して方位角が22.5度になるように配置された1/2波長板である。第1光学素子30は、サーキュレータ20から入射される第1直線偏波光の偏光面を45度回転し、光路部40に第1直線偏波光を出射する。第1光学素子30で偏光面が45度回転した第1直線偏波光は、P偏光である第1直線偏光CW1と、第1直線偏光CW1に直交するS偏光である第2直線偏光CCW1とを有する。 The first optical element 30 is, for example, a half-wave plate arranged so that the azimuth angle with respect to the plane of polarization of the first linearly polarized light incident from the circulator 20 is 22.5 degrees. The first optical element 30 rotates the plane of polarization of the first linearly polarized light incident from the circulator 20 by 45 degrees and outputs the first linearly polarized light to the optical path section 40 . The first linearly polarized light whose plane of polarization is rotated 45 degrees by the first optical element 30 is divided into a first linearly polarized light CW1 that is P-polarized light and a second linearly polarized light CCW1 that is S-polarized light orthogonal to the first linearly polarized light CW1. have.
 また、第1光学素子30は、光路部40から入射される直線偏波光である第2直線偏波光の偏光面を45度回転し、サーキュレータ20に出射する。 Also, the first optical element 30 rotates the plane of polarization of the second linearly polarized light, which is the linearly polarized light incident from the optical path section 40 , by 45 degrees, and outputs the second linearly polarized light to the circulator 20 .
 光路部40は、第1ビームスプリッタ41と、第2ビームスプリッタ42と、第1光路43と、第2光路44と、第2光学素子45とを有する。 The optical path section 40 has a first beam splitter 41 , a second beam splitter 42 , a first optical path 43 , a second optical path 44 and a second optical element 45 .
 第1ビームスプリッタ41は、第1直線偏光CW1を第1光路43に出射すると共に、第2直線偏光CCW1を第2光路44に出射する。また、第1ビームスプリッタ41は、第3直線偏光CW2が第2光路44から入射されると共に、第4直線偏光CCW2が第1光路43から入射される。第3直線偏光CW2及び第4直線偏光CW2は、第1光学素子30に出射される第2直線偏波光の互いに直交する偏光成分である。 The first beam splitter 41 emits the first linearly polarized light CW1 to the first optical path 43 and the second linearly polarized light CCW1 to the second optical path 44. The first beam splitter 41 receives the third linearly polarized light CW2 from the second optical path 44 and the fourth linearly polarized light CCW2 from the first optical path 43 . The third linearly polarized light CW2 and the fourth linearly polarized light CW2 are polarization components of the second linearly polarized light emitted to the first optical element 30 that are orthogonal to each other.
 第2ビームスプリッタ42は、第1直線偏光CW1が第1光路43から入射されると共に、第2直線偏光CCW1が第2光路44から入射される。また、第2ビームスプリッタ42は、第3直線偏光CW2を第2光路44に出射すると共に、第4直線偏光CCW2を第1光路43に出射する。 The second beam splitter 42 receives the first linearly polarized light CW1 from the first optical path 43 and the second linearly polarized light CCW1 from the second optical path 44 . The second beam splitter 42 also emits the third linearly polarized light CW2 to the second optical path 44 and the fourth linearly polarized light CCW2 to the first optical path 43 .
 第1ビームスプリッタ41及び第2ビームスプリッタ42は、入射光をP偏光成分とS偏光成分とに分離し、且つ、P偏光成分とS偏光成分とを合成し出射する。第1ビームスプリッタ41及び第2ビームスプリッタ42は、例えばプリズム型ビームスプリッタであるが、平面型ビームスプリッタ又はウェッジ型ビームスプリッタであってもよい。 The first beam splitter 41 and the second beam splitter 42 split incident light into a P-polarized component and an S-polarized component, and synthesize and emit the P-polarized component and the S-polarized component. The first beam splitter 41 and the second beam splitter 42 are, for example, prism beam splitters, but they may be planar beam splitters or wedge beam splitters.
 第1光路43は、第1ビームスプリッタ41から導入された第1直線偏光CW1を第2ビームスプリッタ42に導出すると共に、第2ビームスプリッタ42から導入された第4直線偏光CCW2を第1ビームスプリッタ41に導出する。第2光路44は、第1ビームスプリッタ41から導入された第2直線偏光CCW2を第2ビームスプリッタ42に導出すると共に、第2ビームスプリッタ42から導入された第3直線偏光CW2を第1ビームスプリッタ41に導出する。 The first optical path 43 guides the first linearly polarized light CW1 introduced from the first beam splitter 41 to the second beam splitter 42, and directs the fourth linearly polarized light CCW2 introduced from the second beam splitter 42 to the first beam splitter 43. 41. The second optical path 44 guides the second linearly polarized light CCW2 introduced from the first beam splitter 41 to the second beam splitter 42, and directs the third linearly polarized light CW2 introduced from the second beam splitter 42 to the first beam splitter 44. 41.
 第1光路43は、一端が第1ビームスプリッタ41に光学的に接続され且つ他端が第2ビームスプリッタ42に光学的に接続されたPANDAファイバである。第2光路44は、一端が第1ビームスプリッタ41に光学的に接続され且つ他端が第2ビームスプリッタ42に光学的に接続されたPANDAファイバである。なお、第1光路43及び第2光路44は、ボウタイファイバ及び楕円ジャケットファイバ等の偏波保持ファイバであってもよい。第2光路44には、第2光学素子45が配置される。 The first optical path 43 is a PANDA fiber optically connected to the first beam splitter 41 at one end and optically connected to the second beam splitter 42 at the other end. The second optical path 44 is a PANDA fiber with one end optically connected to the first beam splitter 41 and the other end optically connected to the second beam splitter 42 . The first optical path 43 and the second optical path 44 may be polarization-maintaining fibers such as bow-tie fibers and elliptical jacket fibers. A second optical element 45 is arranged in the second optical path 44 .
 第2光学素子45は、第1(1/4)波長板46と、第2(1/4)波長板47と、45度ファラデー回転子48とを有する。 The second optical element 45 has a first (1/4) wavelength plate 46, a second (1/4) wavelength plate 47, and a 45-degree Faraday rotator 48.
 第1(1/4)波長板46は、第2光路44を形成するPANDAファイバの遅相軸及び進相軸に対して光学軸が45度傾斜して配置される1/4波長板である。第1(1/4)波長板46は、直線偏光を円偏光に変換すると共に、円偏光を直線偏光に変換する。 The first (quarter) wave plate 46 is a quarter wave plate arranged with its optical axis inclined by 45 degrees with respect to the slow axis and fast axis of the PANDA fiber forming the second optical path 44. . The first (quarter) wave plate 46 converts linearly polarized light into circularly polarized light and circularly polarized light into linearly polarized light.
 第2(1/4)波長板47は、第2光路44を形成するPANDAファイバの遅相軸及び進相軸に対して光学軸が-45度傾斜して配置される1/4波長板である。第2(1/4)波長板47は、45度ファラデー回転子48から円偏光を直線偏光に変換すると共に、直線偏光を円偏光に変換する。 The second (1/4) wavelength plate 47 is a quarter wavelength plate having an optical axis inclined by -45 degrees with respect to the slow axis and the fast axis of the PANDA fiber forming the second optical path 44. be. A second (quarter) wave plate 47 converts the circularly polarized light from the 45 degree Faraday rotator 48 into linearly polarized light and converts the linearly polarized light into circularly polarized light.
 45度ファラデー回転子48は、第1(1/4)波長板46及び第2(1/4)波長板47のそれぞれから入射される円偏光の位相を変化させるファラデー回転子である。 The 45-degree Faraday rotator 48 is a Faraday rotator that changes the phase of circularly polarized light incident from each of the first (1/4) wavelength plate 46 and the second (1/4) wavelength plate 47 .
 45度ファラデー回転子48は、第2(1/4)波長板47から出射される第2直線偏光CCW1の位相が第1(1/4)波長板46に入射される直線偏光である第2直線偏光CCW1の位相から45シフトするように、第1(1/4)波長板46から入射される円偏光の位相を変化させる。また、45度ファラデー回転子48は、第1(1/4)波長板46から出射される第3直線偏光CW2の位相が第2(1/4)波長板47に入射される第3直線偏光CW2の位相から-45シフトするように、円偏光の位相を変化させる。 The 45-degree Faraday rotator 48 converts the phase of the second linearly polarized light CCW1 emitted from the second (1/4) wavelength plate 47 into the second linearly polarized light incident on the first (1/4) wavelength plate 46 . The phase of the circularly polarized light incident from the first (quarter) wave plate 46 is changed so as to be 45° shifted from the phase of the linearly polarized light CCW1. The 45-degree Faraday rotator 48 converts the phase of the third linearly polarized light CW2 emitted from the first (1/4) wavelength plate 46 into the third linearly polarized light incident on the second (1/4) wavelength plate 47. The phase of the circularly polarized light is changed so that it is -45 shifted from the phase of CW2.
 圧力センサ50は、PANDAファイバ80の先端に配置され、PANDAファイバ80を介して第2ビームスプリッタ42に光学的に接続され、患者の血管等の比較的狭い場所に挿入される。圧力センサ50は、発光部10が出射した直線偏波光が入射光として入射されると共に、光ファイバ80を介して入射光が入射されたときに、印加される圧力に応じた戻り光を出射する。 The pressure sensor 50 is placed at the tip of the PANDA fiber 80, optically connected to the second beam splitter 42 via the PANDA fiber 80, and inserted into a relatively narrow place such as a patient's blood vessel. The pressure sensor 50 receives the linearly polarized light emitted from the light emitting unit 10 as incident light, and when the incident light is incident via the optical fiber 80, the pressure sensor 50 emits return light corresponding to the applied pressure. .
 検出信号発生部60は、第3ビームスプリッタ61と、第1受光素子62と、第2受光素子63と、信号処理回路70とを有し、サーキュレータ20で分岐された第2直線偏波光を受光する。検出信号発生部60は、第2直線偏波光をS偏光成分及びP偏光成分に分離し、S偏光成分及びP偏光成分を受光して電気信号に変換して差動増幅することで、圧力センサ50に印加される圧力に応じた検出信号Edを出力する。第3ビームスプリッタ61は、プリズム型、平面型、ウェッジ基板型及び光導波路型等の偏光ビームスプリッタ(PBS)であり、サーキュレータ20で分岐された第2直線偏波光をS偏光成分64とP偏光成分65とに分離する。 The detection signal generator 60 has a third beam splitter 61, a first light receiving element 62, a second light receiving element 63, and a signal processing circuit 70, and receives the second linearly polarized light split by the circulator 20. do. The detection signal generation unit 60 separates the second linearly polarized light into an S-polarized component and a P-polarized component, receives the S-polarized component and the P-polarized component, converts them into electrical signals, and differentially amplifies them, thereby generating pressure sensor signals. A detection signal Ed corresponding to the pressure applied to 50 is output. The third beam splitter 61 is a polarizing beam splitter (PBS) of prism type, planar type, wedge substrate type, optical waveguide type, or the like. The component 65 is separated.
 第1受光素子62及び第2受光素子63のそれぞれは、例えばPINフォトダイオードである。第1受光素子62はS偏光成分64を受光し、第2受光素子63はP偏光成分65を受光する。第1受光素子62及び第2受光素子63のそれぞれは、受光した光を光電変換して、受光した光の光量の応じた電気信号を出力する。信号処理回路70は、S偏光成分を示す電気信号及びP偏光成分を示す電気信号を差動増幅することで、圧力センサ50に印加される圧力に応じた検出信号Edを出力する。 Each of the first light receiving element 62 and the second light receiving element 63 is, for example, a PIN photodiode. The first light receiving element 62 receives the S polarized light component 64 and the second light receiving element 63 receives the P polarized light component 65 . Each of the first light-receiving element 62 and the second light-receiving element 63 photoelectrically converts the received light and outputs an electrical signal corresponding to the amount of received light. The signal processing circuit 70 differentially amplifies the electrical signal representing the S-polarized component and the electrical signal representing the P-polarized component, thereby outputting a detection signal Ed corresponding to the pressure applied to the pressure sensor 50 .
 図2は、図1において破線Aで示される部分の拡大断面図である。 FIG. 2 is an enlarged cross-sectional view of the portion indicated by broken line A in FIG.
 圧力センサ50は、1/4波長板51と、ファラデー回転子52と、ミラー素子53と、受圧素子54と、磁性体55とを有する。圧力センサ50は、PANDAファイバ80の先端に配置され、光路部40及びPANDAファイバ80を介して入射光が入射されたときに、受圧素子54に印加される圧力に応じて戻り光を出射する。 The pressure sensor 50 has a quarter wave plate 51 , a Faraday rotator 52 , a mirror element 53 , a pressure receiving element 54 and a magnetic body 55 . The pressure sensor 50 is arranged at the tip of the PANDA fiber 80 , and emits return light according to the pressure applied to the pressure receiving element 54 when incident light is incident through the optical path section 40 and the PANDA fiber 80 .
 1/4波長板51は、第2ビームスプリッタ42との間を光学的に接続するPANDAファイバ80の遅相軸及び進相軸に対して光学軸が45度傾斜して配置される1/4波長板である。1/4波長板51は、直線偏光である入射光の偏光状態を円偏光に変換すると共に、ファラデー回転子52から円偏光として入射される戻り光の偏光状態を直線偏光に変換する。 The quarter-wave plate 51 is disposed with its optical axis inclined by 45 degrees with respect to the slow axis and fast axis of the PANDA fiber 80 optically connecting the second beam splitter 42 to the second beam splitter 42 . wave plate. The quarter-wave plate 51 converts the polarization state of linearly polarized incident light into circularly polarized light, and converts the polarized state of return light incident as circularly polarized light from the Faraday rotator 52 into linearly polarized light.
 ファラデー回転子52は、誘電体と、誘電体から安定的に相分離した状態で誘電体中に分散しているナノオーダの磁性体粒子とを有するグラニュラー膜である。ファラデー回転子52は、1/4波長板51の端面に配置され、磁界を検出する磁界センサ素子である。磁性体粒子は、例えば最表層等のごく一部では酸化物が形成されていてもよいが、ファラデー回転子52の全体では、磁性体粒子が、バインダとなる誘電体と化合物を作らずに、単独で薄膜中に分散している。ファラデー回転子52内における磁性体粒子の分布は、完全に一様でなくてもよく、多少偏っていてもよい。誘電体として透明性が高いものを用いれば、誘電体中に磁性体粒子が光の波長よりも小さいサイズで存在することにより、ファラデー回転子52は光透過性を有する。 The Faraday rotator 52 is a granular film having a dielectric and nano-order magnetic particles dispersed in the dielectric while being stably phase-separated from the dielectric. The Faraday rotator 52 is a magnetic field sensor element arranged on the end surface of the quarter-wave plate 51 and detecting a magnetic field. The magnetic particles may have an oxide formed in a small portion such as the outermost layer, but in the entire Faraday rotator 52, the magnetic particles are Dispersed singly in the thin film. The distribution of the magnetic particles in the Faraday rotator 52 may not be completely uniform, and may be slightly biased. If a highly transparent dielectric is used, the Faraday rotator 52 has optical transparency due to the presence of magnetic particles in the dielectric with a size smaller than the wavelength of light.
 ファラデー回転子52は、単層のものに限らず、グラニュラー膜と誘電体膜とが交互に積層した多層膜であってもよい。グラニュラー膜を多層膜することでファラデー回転子52を形成することで、グラニュラー膜内での多重反射によって、より大きなファラデー回転角が得られる。 The Faraday rotator 52 is not limited to a single layer, and may be a multilayer film in which granular films and dielectric films are alternately laminated. By forming the Faraday rotator 52 by forming a multilayer film of granular films, a larger Faraday rotation angle can be obtained by multiple reflection within the granular film.
 ファラデー回転子52の誘電体は、フッ化マグネシウム(MgF2)、フッ化アルミニウム(AlF3)、フッ化イットリウム(YF3)等のフッ化物(金属フッ化物)が好ましい。また、誘電体は、酸化タンタル(Ta25)、二酸化ケイ素(SiO2)、二酸化チタン(TiO2)、五酸化二ニオビウム(Nb25)、二酸化ジルコニウム(ZrO2)、二酸化ハフニウム(HfO2)、及び三酸化二アルミニウム(Al23)等の酸化物であってもよい。誘電体と磁性体粒子との良好な相分離のためには、酸化物よりもフッ化物の方が好ましく、透過率が高いフッ化マグネシウムが特に好ましい。 The dielectric of the Faraday rotator 52 is preferably a fluoride (metal fluoride) such as magnesium fluoride ( MgF2 ), aluminum fluoride ( AlF3 ), yttrium fluoride (YF3). Dielectrics include tantalum oxide (Ta 2 O 5 ), silicon dioxide (SiO 2 ), titanium dioxide (TiO 2 ), niobium pentoxide (Nb 2 O 5 ), zirconium dioxide (ZrO 2 ), hafnium dioxide ( HfO 2 ), and oxides such as aluminum trioxide (Al 2 O 3 ). Fluorides are preferable to oxides for good phase separation between the dielectric and the magnetic particles, and magnesium fluoride, which has a high transmittance, is particularly preferable.
 磁性体粒子の材質は、ファラデー効果を生じるものであればよく、特に限定されないが、磁性体粒子の材質としては、強磁性金属である鉄(Fe)、コバルト(Co)及びニッケル(Ni)並びにこれらの合金が挙げられる。Fe、Co及びNiの合金としては、例えば、FeNi合金、FeCo合金、FeNiCo合金、NiCo合金が挙げられる。Fe、Co及びNiの単位長さ当たりのファラデー回転角は、従来のファラデー回転子に適用されている磁性ガーネットに比べて2~3桁近く大きい。 The material of the magnetic particles is not particularly limited as long as it produces the Faraday effect. Examples of the material of the magnetic particles include ferromagnetic metals such as iron (Fe), cobalt (Co) and nickel (Ni). These alloys are mentioned. Examples of alloys of Fe, Co and Ni include FeNi alloys, FeCo alloys, FeNiCo alloys, and NiCo alloys. The Faraday rotation angles per unit length of Fe, Co and Ni are two to three orders of magnitude larger than those of magnetic garnets applied to conventional Faraday rotators.
 ミラー素子53は、ファラデー回転子52上に形成されており、ファラデー回転子52を透過した光をファラデー回転子52に向けて反射する。ミラー素子53としては、例えば、銀(Ag)膜、金(Au)膜、アルミニウム(Al)膜又は誘電体多層膜ミラー等を用いることができる。特に、反射率の高いAg膜及び耐食性が高いAu膜が成膜上簡便で好ましい。ミラー素子53の厚さは、98%以上の十分な反射率を確保できる大きさであればよく、例えばAg膜の場合には、50nm以上かつ200nm以下であることが好ましい。ミラー素子53を用いてファラデー回転子52内で光を往復させることにより、ファラデー回転角を大きくすることができる。 The mirror element 53 is formed on the Faraday rotator 52 and reflects the light transmitted through the Faraday rotator 52 toward the Faraday rotator 52 . As the mirror element 53, for example, a silver (Ag) film, a gold (Au) film, an aluminum (Al) film, a dielectric multilayer mirror, or the like can be used. In particular, an Ag film with a high reflectance and an Au film with a high corrosion resistance are preferable because they are easy to form. The thickness of the mirror element 53 may be any size that ensures a sufficient reflectance of 98% or more. By reciprocating light in the Faraday rotator 52 using the mirror element 53, the Faraday rotation angle can be increased.
 図3(a)は受圧素子54の斜視図(その1)であり、図3(b)は受圧素子54の斜視図(その2)であり、図3(c)は図3(a)のB-B線に沿う受圧素子54の斜視断面図である。 3(a) is a perspective view (part 1) of the pressure receiving element 54, FIG. 3(b) is a perspective view (part 2) of the pressure receiving element 54, and FIG. 3(c) is a perspective view of FIG. 3 is a perspective cross-sectional view of the pressure receiving element 54 taken along line BB. FIG.
 受圧素子54は、基台56と、支持部57と、弾性部58とを有し、高精度の微細加工が可能なシリコンをレーザ加工及びエッチング加工等により切削加工することにより、形成される。 The pressure receiving element 54 has a base 56, a support portion 57, and an elastic portion 58, and is formed by cutting silicon, which can be finely processed with high precision, by laser processing, etching processing, or the like.
 基台56は、外径がPANDファイバ80の外径と同一である円筒状の形状を有する。基台56の一方の側面には、磁性体55が配置される開口部59が形成され、他方の側面には、弾性部58が配置される。 The base 56 has a cylindrical shape with the same outer diameter as the PAND fiber 80 . An opening 59 in which the magnetic body 55 is arranged is formed on one side surface of the base 56, and an elastic portion 58 is arranged on the other side surface.
 支持部57は、円柱状の形状を有し、一端が弾性部58の中心部に接続され、基台56の内部に配置される。支持部57の先端には、磁性体55が配置される。磁性体55は、円柱状の支持部の先端に配置されることで、磁界センサ素子であるファラデー回転子52に近接して配置される。 The support part 57 has a columnar shape, one end of which is connected to the central part of the elastic part 58 and is arranged inside the base 56 . A magnetic body 55 is arranged at the tip of the support portion 57 . The magnetic body 55 is arranged at the tip of the cylindrical support portion, so that it is arranged close to the Faraday rotator 52, which is the magnetic field sensor element.
 弾性部58は、渦巻き状すなわち螺旋状の形状を有し、基台56の他方の側面に配置され、フッ素系物質などの疎水性材料により形成される撥水膜が外面に配置される。弾性部58の間は、螺旋状に湾曲して延伸する単一の溝58aが形成される。弾性部58の間に形成される溝は、支持部57の底面の中心を原点とするアルキメデスの螺旋に沿って延伸するように形成される。弾性部58の間に形成される溝がアルキメデスの螺旋に沿って延伸するように形成されることで、弾性部58の幅は均一となる。 The elastic part 58 has a spiral or helical shape, is arranged on the other side surface of the base 56, and has a water-repellent film formed of a hydrophobic material such as a fluorine-based substance arranged on its outer surface. Between the elastic portions 58, a single groove 58a is formed that curves and extends spirally. The grooves formed between the elastic portions 58 are formed to extend along the Archimedean spiral with the origin at the center of the bottom surface of the support portion 57 . The grooves formed between the elastic portions 58 are formed so as to extend along the Archimedean spiral, so that the elastic portions 58 have a uniform width.
 弾性部58は、外側から押下されると、基台56の内部方向に湾曲する。弾性部58が基台56の内部方向に湾曲すると、弾性部58の中央部に配置される支持部57を開口部59の方向に移動する。支持部57が開口部59の方向に移動すると、支持部57の先端に配置される磁性体55は、ファラデー回転子52に近づく方向に移動する。 The elastic portion 58 curves toward the inside of the base 56 when pressed from the outside. When the elastic portion 58 bends toward the inside of the base 56 , the support portion 57 arranged in the central portion of the elastic portion 58 moves toward the opening portion 59 . When the support portion 57 moves toward the opening 59 , the magnetic body 55 arranged at the tip of the support portion 57 moves toward the Faraday rotator 52 .
 磁性体55は、支持部57の径と同一形状を有する円形の平面形状を有する薄膜状の永久磁石である。磁性体55は、例えば鉄-白金(Fe-Pt)磁石である。なお、磁性体55は、ネオジム-鉄-ホウ素(Nd-Fe-B)磁石及びサマリウム-コバルト(Sm-Co)磁石等の鉄-白金磁石以外の永久磁石であってもよい。しかしながら、磁性体55は、圧力センサ50を人体の内部に挿入される場合は、人体への影響が小さい鉄-白金磁石であることが好ましい。 The magnetic body 55 is a thin-film permanent magnet having a circular planar shape with the same shape as the diameter of the support portion 57 . The magnetic body 55 is, for example, an iron-platinum (Fe--Pt) magnet. The magnetic body 55 may be a permanent magnet other than an iron-platinum magnet such as a neodymium-iron-boron (Nd--Fe--B) magnet and a samarium-cobalt (Sm--Co) magnet. However, when the pressure sensor 50 is inserted into the human body, the magnetic body 55 is preferably an iron-platinum magnet that has little effect on the human body.
 図4(a)は圧力が印加されない状態の圧力センサ50を示す図であり、図4(b)は圧力が印加された状態の圧力センサ50を示す図である。図5は、ファラデー回転子52と磁性体55との間の距離とファラデー回転子52に印加される磁界との関係を示す図である。 FIG. 4(a) is a diagram showing the pressure sensor 50 with no pressure applied, and FIG. 4(b) is a diagram showing the pressure sensor 50 with pressure applied. FIG. 5 is a diagram showing the relationship between the distance between the Faraday rotator 52 and the magnetic body 55 and the magnetic field applied to the Faraday rotator 52. As shown in FIG.
 圧力センサ50では、弾性部58の外側から圧力が印加されると、弾性部58は、基台56の内側に向かって湾曲する。弾性部58が基台56の内側に向かって湾曲することに応じて、磁性体55は、ファラデー回転子52の方向に移動する。 In the pressure sensor 50 , when pressure is applied from the outside of the elastic portion 58 , the elastic portion 58 curves toward the inside of the base 56 . The magnetic body 55 moves toward the Faraday rotator 52 in accordance with the bending of the elastic portion 58 toward the inside of the base 56 .
 磁性体55がファラデー回転子52の方向に移動するに従って、ファラデー回転子52に印加させる磁界Hは、増加する。ファラデー回転子52に印加させる磁界Hは、ファラデー回転子52と磁性体55との間の距離Dの減少量に線形に増加する。 As the magnetic body 55 moves in the direction of the Faraday rotator 52, the magnetic field H applied to the Faraday rotator 52 increases. The magnetic field H applied to the Faraday rotator 52 increases linearly as the distance D between the Faraday rotator 52 and the magnetic body 55 decreases.
 1/4波長板51からファラデー回転子52に入射した円偏光は、ファラデー回転子52を透過し、ミラー素子53で反射し、再びファラデー回転子52を透過して戻り光となる。ファラデー回転子52を透過した戻り光は、1/4波長板51に再度入射される。 The circularly polarized light incident on the Faraday rotator 52 from the quarter-wave plate 51 is transmitted through the Faraday rotator 52, reflected by the mirror element 53, transmitted through the Faraday rotator 52 again, and becomes return light. The return light that has passed through the Faraday rotator 52 is again incident on the quarter-wave plate 51 .
 1/4波長板51からファラデー回転子52に入射した円偏光は、ファラデー回転子52に印加される磁界に応じて位相を変化させる。また、ミラー素子53で反射した円偏光は、ファラデー回転子52に印加される磁界に応じて位相を更に変化させる。 Circularly polarized light incident on the Faraday rotator 52 from the quarter-wave plate 51 changes its phase according to the magnetic field applied to the Faraday rotator 52 . Moreover, the circularly polarized light reflected by the mirror element 53 further changes its phase according to the magnetic field applied to the Faraday rotator 52 .
 (実施形態に係る圧力センサ装置の作用効果)
 圧力センサ装置1は、ファブリ・ペロー共振器を使用することなく、ファラデー回転子52と磁性体55との間の距離に応じて変化するファラデー回転子52に印加される磁界を検出することで圧力センサ50に印加される圧力を検出する。ファラデー回転子52に印加される磁界は、ファラデー回転子52と磁性体55との間の距離に応じて変化するので、ファラデー回転子52と磁性体55との間の距離を均一の長さに揃えて製造しなくてよい。圧力センサ装置1は、ファラデー回転子52と磁性体55との間の距離を均一の長さに揃えて製造しなくてよいので、ファブリ・ペロー共振器を使用する圧力センサ装置よりも製造が容易になり、製造コストを低減することができる。
(Action and effect of the pressure sensor device according to the embodiment)
The pressure sensor device 1 detects the magnetic field applied to the Faraday rotator 52, which changes according to the distance between the Faraday rotator 52 and the magnetic body 55, without using a Fabry-Perot resonator. The pressure applied to sensor 50 is detected. Since the magnetic field applied to the Faraday rotator 52 changes according to the distance between the Faraday rotator 52 and the magnetic body 55, the distance between the Faraday rotator 52 and the magnetic body 55 is made uniform. They do not have to be manufactured together. Since the pressure sensor device 1 does not have to be manufactured with the distance between the Faraday rotator 52 and the magnetic body 55 uniform, it is easier to manufacture than the pressure sensor device using a Fabry-Perot resonator. and the manufacturing cost can be reduced.
 また、ファラデー回転子52に印加される磁界は、ファラデー回転子52と磁性体55との間の距離に応じて変化するので、ファラデー回転子52と磁性体55との間の距離の変化に応じて線形に変化する。圧力センサ装置1は、ファラデー回転子52と磁性体55との間の距離の変化に応じて線形に変化する磁界を使用して圧力を検出するので、ファブリ・ペロー共振器の共振波長を使用して圧力を検出する圧力センサ装置よりも高精度に圧力を検出できる。 Further, since the magnetic field applied to the Faraday rotator 52 changes according to the distance between the Faraday rotator 52 and the magnetic body 55, changes linearly with Since the pressure sensor device 1 detects pressure using a magnetic field that linearly changes according to a change in the distance between the Faraday rotator 52 and the magnetic body 55, it uses the resonance wavelength of the Fabry-Perot resonator. The pressure can be detected with higher precision than the pressure sensor device that detects the pressure by using a pressure sensor.
 また、圧力センサ装置1では、受圧素子54は、高精度の微細加工が可能なシリコンにより形成されるので、小型化が容易である。 In addition, in the pressure sensor device 1, the pressure receiving element 54 is made of silicon that can be microfabricated with high precision, so miniaturization is easy.
 また、圧力センサ装置1では、螺旋状の弾性部58の外面は、撥水膜が形成されるので、弾性部58の隙間から基台56の内部に血液等の液体が侵入するおそれは低く、基台56の内部に液体が侵入することにより測定精度が低下するおそれは低い。 In addition, in the pressure sensor device 1, since a water-repellent film is formed on the outer surface of the spiral elastic portion 58, liquid such as blood is less likely to enter the inside of the base 56 through the gaps of the elastic portion 58. It is unlikely that the measurement accuracy will deteriorate due to the liquid entering the base 56 .
 (実施形態に係る圧力センサ装置の変形例)
 圧力センサ装置1では、受圧素子54は、シリコンを切削加工することにより形成されるが、実施形態に係る圧力センサ装置では、受圧素子は、ポリイミド樹脂等の可とう性を有する合成樹脂を薄膜状に加工することにより形成されてもよい。
(Modification of the pressure sensor device according to the embodiment)
In the pressure sensor device 1, the pressure receiving element 54 is formed by cutting silicon. It may be formed by processing to
 また、圧力センサ装置1では、磁性体55は、弾性部58の中央部に配置される円柱状の支持部57の先端に配置されるが、実施形態に係る圧力センサ装置では、磁性体は、円柱状の形状を有し、弾性部58の中央部に配置されてもよい。 Further, in the pressure sensor device 1, the magnetic body 55 is arranged at the tip of the columnar support portion 57 arranged in the central portion of the elastic portion 58, but in the pressure sensor device according to the embodiment, the magnetic body is It may have a cylindrical shape and be arranged in the center of the elastic portion 58 .
 また、圧力センサ装置1では、弾性部58は、外面に撥水膜が形成されるが、実施形態に係る圧力センサ装置では、弾性部は、内面に撥水膜が形成されてもよく、外面及び内面の双方に撥水膜が形成されてもよい。また、弾性部は、外面及び内面の何れにも撥水膜が形成されなくてもよい。 In the pressure sensor device 1, the elastic portion 58 has a water-repellent film formed on its outer surface. A water-repellent film may be formed on both the inner surface and the inner surface. Also, the elastic portion may not have a water-repellent film formed on either the outer surface or the inner surface.
 また、圧力センサ装置1では、受圧素子54の弾性部58は、均一な幅を有するが、実施形態に係る圧力センサ装置では、弾性部の幅は、均一でなくてもよい。受圧素子54では、弾性部58が均一な幅を有するので、圧力が印加されたときに、基台56に近い弾性部58の外側に応力が集中して、弾性部58の外側の変位量が弾性部58の内側の変位量よりも大きくなる。受圧素子54では、弾性部58の外側の変位量が大きくなるので、圧力を検出する対象物が液体であるときに、弾性部58の外側の溝58aから液体が弾性部58の外側の溝58aから侵入するおそれがある。 Further, in the pressure sensor device 1, the elastic portion 58 of the pressure receiving element 54 has a uniform width, but in the pressure sensor device according to the embodiment, the width of the elastic portion may not be uniform. In the pressure-receiving element 54, the elastic portion 58 has a uniform width. Therefore, when pressure is applied, stress is concentrated on the outer side of the elastic portion 58 near the base 56, and the displacement amount of the outer side of the elastic portion 58 is reduced. It becomes larger than the amount of displacement inside the elastic portion 58 . In the pressure-receiving element 54, the amount of displacement of the outer side of the elastic portion 58 is large. There is a risk of intrusion from
 図6(a)は第1変形例に係る受圧素子の斜視図(その1)であり、図6(b)は第1変形例に係る受圧素子の斜視図(その2)であり、図6(c)は第1変形例に係る受圧素子の正面図である。 FIG. 6A is a perspective view (Part 1) of the pressure receiving element according to the first modification, and FIG. 6B is a perspective view (Part 2) of the pressure receiving element according to the first modification. (c) is a front view of a pressure receiving element according to a first modified example.
 受圧素子154は、基台156及び弾性部158を基台56及び弾性部58の代わりに有することが受圧素子54と相違する。基台156及び弾性部158以外の受圧素子154の構成要素の構成及び機能は、同一符号が付された受圧素子54の構成要素の構成及び機能と同一なので、ここでは詳細な説明は省略する。基台156は、長さが基台56よりも長いことが基台56と相違する。基台156は、長さが基台56よりも長いので、1/4波長板51、ファラデー回転子52及びミラー素子53を覆うように配置することができると共に、より大きな磁性体55を設置することができる。 The pressure receiving element 154 differs from the pressure receiving element 54 in that it has a base 156 and an elastic portion 158 instead of the base 56 and the elastic portion 58 . The configuration and function of the constituent elements of the pressure receiving element 154 other than the base 156 and the elastic portion 158 are the same as the configuration and function of the constituent elements of the pressure receiving element 54 denoted by the same reference numerals, so detailed description thereof will be omitted here. The base 156 differs from the base 56 in that its length is longer than that of the base 56 . Since the base 156 is longer than the base 56, it can be arranged so as to cover the quarter-wave plate 51, the Faraday rotator 52 and the mirror element 53, and a larger magnetic body 55 can be installed. be able to.
 弾性部158は、幅が基台156に接続される一端から支持部57に接続される他端に向かうに従って幅が狭くなるように形成される。具体的には、弾性部158は、弾性部158の間に形成される溝158aが支持部57の底面の中心を原点とする対数螺旋に沿って延伸するように形成される。なお、溝158aは、双曲螺旋及びリチュース螺旋等の対数螺旋以外の代数螺旋に沿って延伸するように形成されてもよい。 The elastic portion 158 is formed so that the width becomes narrower from one end connected to the base 156 toward the other end connected to the support portion 57 . Specifically, the elastic portions 158 are formed such that grooves 158a formed between the elastic portions 158 extend along a logarithmic spiral with the center of the bottom surface of the support portion 57 as the origin. The groove 158a may be formed to extend along an algebraic spiral other than a logarithmic spiral such as a hyperbolic spiral and a litius spiral.
 受圧素子154は、弾性部158の幅が基台156に接続される一端から支持部57に接続される他端に向かうに従って幅が狭くなるように形成されるので、基台156に近い外側に応力が集中して弾性部58の外側の変位量が大きくなることはない。受圧素子154は、弾性部58の外側の変位量が大きくないので、弾性部58の外側の溝58aから液体が弾性部58の外側の溝58aから侵入するおそれは低い。 The pressure-receiving element 154 is formed such that the width of the elastic portion 158 becomes narrower from one end connected to the base 156 toward the other end connected to the support portion 57 , so that the pressure-receiving element 154 is formed so that the width of the elastic portion 158 decreases toward the other end connected to the support 57 . The amount of displacement of the outer side of the elastic portion 58 does not increase due to concentration of stress. Since the displacement of the pressure receiving element 154 outside the elastic portion 58 is not large, there is little possibility that liquid will enter the groove 58a outside the elastic portion 58 from the outside groove 58a.
 また、圧力センサ装置1では、受圧素子54の弾性部58は、単一の溝が形成されるが、実施形態に係る圧力センサ装置では、弾性部は、複数の溝が形成されてもよい。受圧素子54では、弾性部58は単一の溝が形成されるので、圧力が印加され、弾性部58の中央部に配置される支持部57が開口部59の方向に移動するときに、支持部57が傾くことがある。圧力センサ装置1では、磁性体55を支持する支持部57が傾くことで、圧力に応じた磁界の変化を検出するときの検出精度が低下するおそれがある。 Also, in the pressure sensor device 1, the elastic portion 58 of the pressure receiving element 54 is formed with a single groove, but in the pressure sensor device according to the embodiment, the elastic portion may be formed with a plurality of grooves. In the pressure-receiving element 54, the elastic portion 58 is formed with a single groove. The portion 57 may tilt. In the pressure sensor device 1, the inclination of the supporting portion 57 that supports the magnetic body 55 may reduce the detection accuracy when detecting the change in the magnetic field according to the pressure.
 図7(a)は第2変形例に係る受圧素子の斜視図(その1)であり、図7(b)は第2変形例に係る受圧素子の斜視図(その2)であり、図7(c)は第2変形例に係る受圧素子の正面図である。 FIG. 7A is a perspective view (Part 1) of the pressure receiving element according to the second modification, and FIG. 7B is a perspective view (Part 2) of the pressure receiving element according to the second modification. (c) is a front view of a pressure receiving element according to a second modification.
 受圧素子254は、弾性部258を弾性部158の代わりに有することが受圧素子154と相違する。弾性部258以外の受圧素子254の構成要素の構成及び機能は、同一符号が付された受圧素子154の構成要素の構成及び機能と同一なので、ここでは詳細な説明は省略する。 The pressure receiving element 254 differs from the pressure receiving element 154 in having an elastic portion 258 instead of the elastic portion 158 . The configuration and function of the constituent elements of the pressure receiving element 254 other than the elastic portion 258 are the same as the configuration and function of the constituent elements of the pressure receiving element 154 denoted by the same reference numerals, so detailed description thereof will be omitted here.
 弾性部258は、第1溝258a及び第2溝258bの2つの溝が形成されることが弾性部158と相違する。第1溝258a及び第2溝258bは、支持部57の底面の中心を原点とする対数螺旋に沿って延伸するように形成される。第1溝258a及び第2溝258bの基台156側の端部は、支持部57の周りに180度離隔して配置される。また、第1溝258a及び第2溝258bの支持部57側の端部は、支持部57の周りに180度離隔して配置される。 The elastic portion 258 differs from the elastic portion 158 in that two grooves, a first groove 258a and a second groove 258b, are formed. The first groove 258a and the second groove 258b are formed to extend along a logarithmic spiral with the center of the bottom surface of the support portion 57 as the origin. The ends of the first groove 258a and the second groove 258b on the side of the base 156 are arranged around the support portion 57 with an interval of 180 degrees. Also, the ends of the first groove 258a and the second groove 258b on the side of the support portion 57 are arranged around the support portion 57 with an interval of 180 degrees.
 受圧素子254は、弾性部258に第1溝258a及び第2溝258bが形成されるので、磁性体55を支持する支持部57が傾くことで、圧力に応じた磁界の変化を検出するときの検出精度が低下するおそれは低い。また、受圧素子254は、2つの溝である第1溝258a及び第2溝258bの端部が180度離隔して配置されて、支持部57の底面の中心を対称の中心として点対称となるように形成されるので、支持部57が傾くおそれが更に低くなる。 Since the first groove 258a and the second groove 258b are formed in the elastic portion 258 of the pressure receiving element 254, the inclination of the support portion 57 that supports the magnetic body 55 makes it difficult to detect changes in the magnetic field according to the pressure. There is little possibility that the detection accuracy will decrease. The pressure receiving element 254 has two grooves, that is, the ends of the first groove 258a and the second groove 258b are arranged 180 degrees apart, and is symmetrical with respect to the center of the bottom surface of the support portion 57. , the possibility that the support portion 57 is tilted is further reduced.
 図8(a)は第3変形例に係る受圧素子の斜視図(その1)であり、図8(b)は第3変形例に係る受圧素子の斜視図(その2)であり、図8(c)は第3変形例に係る受圧素子の正面図である。 8A is a perspective view (part 1) of the pressure receiving element according to the third modification, and FIG. 8B is a perspective view (part 2) of the pressure receiving element according to the third modification. (c) is a front view of a pressure receiving element according to a third modified example.
 受圧素子354は、弾性部358を弾性部158の代わりに有することが受圧素子154と相違する。弾性部358以外の受圧素子354の構成要素の構成及び機能は、同一符号が付された受圧素子154の構成要素の構成及び機能と同一なので、ここでは詳細な説明は省略する。 The pressure receiving element 354 differs from the pressure receiving element 154 in having an elastic portion 358 instead of the elastic portion 158 . The configuration and function of the constituent elements of the pressure receiving element 354 other than the elastic portion 358 are the same as the configuration and function of the constituent elements of the pressure receiving element 154 to which the same reference numerals are assigned, so detailed description thereof will be omitted here.
 弾性部358は、第1溝358a、第2溝358b及び第3溝358cの3つの溝が形成されることが弾性部158と相違する。第1溝358a、第2溝358b及び第3溝358cは、支持部57の底面の中心を原点とする対数螺旋に沿って延伸するように形成される。第1溝358a、第2溝358b及び第3溝358cは、例えば、以下の式で示される支持部57の底面の中心を原点とする対数螺旋に沿って延伸するように形成される。
 Xt=(0.092*exp (-0.06*t))*cos(t)
 Yt=(0.092*exp (-0.06*t))*sin(t)
 ここで、tは0*π以上であり且つ5*π以下の数値である。
The elastic portion 358 differs from the elastic portion 158 in that three grooves, ie, a first groove 358a, a second groove 358b and a third groove 358c are formed. The first groove 358a, the second groove 358b, and the third groove 358c are formed to extend along a logarithmic spiral with the center of the bottom surface of the support portion 57 as the origin. The first groove 358a, the second groove 358b, and the third groove 358c are formed, for example, so as to extend along a logarithmic spiral whose origin is the center of the bottom surface of the support portion 57 represented by the following formula.
Xt=(0.092*exp(-0.06*t))*cos(t)
Yt=(0.092*exp (-0.06*t))*sin(t)
Here, t is a numerical value greater than or equal to 0*π and less than or equal to 5*π.
 第1溝358a、第2溝358b及び第3溝358cの基台156側の端部は、支持部57の周りに120度ずつ離隔して配置される。また、第1溝358a、第2溝358b及び第3溝358cの支持部57側の端部は、支持部57の周りに120度ずつ離隔して配置される。 The ends of the first groove 358a, the second groove 358b, and the third groove 358c on the side of the base 156 are arranged around the support portion 57 at intervals of 120 degrees. Also, the ends of the first groove 358a, the second groove 358b and the third groove 358c on the side of the support portion 57 are arranged at intervals of 120 degrees around the support portion 57. As shown in FIG.
 図9(a)は圧力が印加されない状態の圧力センサを示す図であり、図9(b)は圧力が印加された状態の圧力センサを示す図である。図9(a)及び9(b)に示す圧力センサ50aは、受圧素子354が受圧素子54の代わりに配置されることが圧力センサ50と相違する。また、圧力センサ50aは、磁性体55aが磁性体55の代わりに配置されることが圧力センサ50と相違する。磁性体55aは、大きさが磁性体55よりも大きいこと以外は磁性体55と同様な構成及び機能を有するので、ここでは詳細な説明は省略する。 FIG. 9(a) is a diagram showing the pressure sensor with no pressure applied, and FIG. 9(b) is a diagram showing the pressure sensor with pressure applied. A pressure sensor 50 a shown in FIGS. 9( a ) and 9 ( b ) differs from the pressure sensor 50 in that a pressure receiving element 354 is arranged instead of the pressure receiving element 54 . Further, the pressure sensor 50a is different from the pressure sensor 50 in that a magnetic body 55a is arranged instead of the magnetic body 55. As shown in FIG. The magnetic body 55a has the same configuration and function as the magnetic body 55 except that the magnetic body 55a is larger than the magnetic body 55, so detailed description thereof will be omitted here.
 受圧素子354は、弾性部358に第1溝358a、第2溝358b及び第3溝358cが形成されるので、磁性体55を支持する支持部57が傾くことで、圧力に応じた磁界の変化を検出するときの検出精度が低下するおそれは低い。また、受圧素子254は、3つの溝である第1溝358a、第2溝358b及び第3溝358cの端部が180度離隔して配置されて、支持部57の底面の中心を対称の中心として点対称となるように形成されるので、支持部57が傾くおそれが更に低くなる。 In the pressure receiving element 354, since the first groove 358a, the second groove 358b and the third groove 358c are formed in the elastic portion 358, the inclination of the support portion 57 supporting the magnetic body 55 causes the change of the magnetic field according to the pressure. There is little risk of deterioration in detection accuracy when detecting . The pressure-receiving element 254 has three grooves, that is, a first groove 358a, a second groove 358b, and a third groove 358c. , the support portion 57 is less likely to incline.
 図10は受圧素子354の応力シミュレーションの結果を示す図である。図10(a)は圧力が印加されることに応じた弾性部358の変移量を示し、図10(b)は圧力が印加されることに応じて弾性部358に発生するミーゼス応力を示す。図10(a)は受圧素子354及び磁性体55aの断面図であり、図10(b)は受圧素子354の平面図である。 FIG. 10 is a diagram showing the results of stress simulation of the pressure receiving element 354. FIG. FIG. 10(a) shows the amount of displacement of the elastic portion 358 according to the application of pressure, and FIG. 10(b) shows the von Mises stress generated in the elastic portion 358 according to the application of pressure. 10A is a cross-sectional view of the pressure receiving element 354 and the magnetic body 55a, and FIG. 10B is a plan view of the pressure receiving element 354. FIG.
 図10(a)に示すように、受圧素子354では、弾性部358は、圧力が印加されたときに、支持部57が傾くことなく、圧力が印加される印加方向に平行に磁性体55aを移動する。 As shown in FIG. 10A, in the pressure receiving element 354, the elastic portion 358 causes the magnetic body 55a to move parallel to the pressure application direction without tilting the support portion 57 when pressure is applied. Moving.
 また、図10(a)に示すように、受圧素子354では、弾性部358は、支持部57の近傍の中心部から基台156の近傍の外縁部に亘って略均一にミーゼス応力が印加され、弾性部358の外側に応力が集中する現象は発生していない。 Further, as shown in FIG. 10A, in the pressure receiving element 354, the von Mises stress is applied to the elastic portion 358 substantially uniformly from the central portion near the support portion 57 to the outer edge portion near the base 156. , the phenomenon of stress concentration on the outside of the elastic portion 358 does not occur.
 また、圧力センサ装置1では、単一の受圧素子54が配置されるが、実施形態に係る圧力センサ装置では、複数の受圧素子が配置されてもよい。 Also, in the pressure sensor device 1, a single pressure receiving element 54 is arranged, but in the pressure sensor device according to the embodiment, a plurality of pressure receiving elements may be arranged.
 図11は第4変形例に係る圧力センサ装置の部分拡大断面図であり、図12は図11に示す圧力センサ装置の部分拡大分解断面図であり、図13(a)は図11に示す第1受圧素子の平面図であり、図13(b)は図11に示す第2受圧素子の平面図である。 11 is a partially enlarged cross-sectional view of a pressure sensor device according to a fourth modification, FIG. 12 is a partially enlarged exploded cross-sectional view of the pressure sensor device shown in FIG. 11, and FIG. 13B is a plan view of the second pressure receiving element shown in FIG. 11. FIG.
 圧力センサ50bは、第1受圧素子454及び第2受圧素子554を受圧素子354の代わりに有することが圧力センサ50aと相違する。また、圧力センサ50bは、ヨーク55bを有することが圧力センサ50aと相違する。第1受圧素子454及び第2受圧素子554並びにヨーク55b以外の圧力センサ50bの構成要素の構成及び機能は、同一符号が付された圧力センサ50aの構成要素の構成及び機能と同一なので、ここでは詳細な説明は省略する。 The pressure sensor 50b differs from the pressure sensor 50a in having a first pressure receiving element 454 and a second pressure receiving element 554 instead of the pressure receiving element 354. Further, the pressure sensor 50b differs from the pressure sensor 50a in having a yoke 55b. The configuration and function of the components of the pressure sensor 50b other than the first pressure receiving element 454, the second pressure receiving element 554, and the yoke 55b are the same as the configuration and function of the components of the pressure sensor 50a denoted by the same reference numerals. Detailed description is omitted.
 第1受圧素子454は、基台456及び弾性部158を基台156及び弾性部358の代わりに有することが受圧素子354と相違する。基台456及び弾性部158以外の第1受圧素子454の構成及び機能は、受圧素子354の構成及び機能と同一なので、ここでは詳細な説明は省略する。また、弾性部158の構成及び機能は、図6等を参照して説明したので、ここでは詳細な説明は省略する。 The first pressure receiving element 454 differs from the pressure receiving element 354 in that it has a base 456 and an elastic portion 158 instead of the base 156 and the elastic portion 358 . The configuration and function of the first pressure receiving element 454 other than the base 456 and the elastic portion 158 are the same as the configuration and function of the pressure receiving element 354, so detailed description thereof will be omitted here. Also, since the configuration and function of the elastic portion 158 have been described with reference to FIG. 6 and the like, detailed description thereof will be omitted here.
 第2受圧素子554は、基台556及び弾性部558を基台156及び弾性部358の代わりに有することが受圧素子354と相違する。また、第2受圧素子554は、支持部57を有さないことが受圧素子354と相違する。基台556及び弾性部558以外の第2受圧素子554の構成及び機能は、受圧素子354の構成及び機能と同一なので、ここでは詳細な説明は省略する。弾性部558は、ヨーク受け孔557が中央に形成されることが弾性部158と相違する。 The second pressure receiving element 554 differs from the pressure receiving element 354 in that it has a base 556 and an elastic portion 558 instead of the base 156 and the elastic portion 358 . Further, the second pressure receiving element 554 differs from the pressure receiving element 354 in that it does not have the support portion 57 . The configuration and function of the second pressure receiving element 554 other than the base 556 and the elastic portion 558 are the same as the configuration and function of the pressure receiving element 354, so detailed description thereof will be omitted here. The elastic portion 558 differs from the elastic portion 158 in that a yoke receiving hole 557 is formed in the center.
 ヨーク557は、パーマロイ等の磁性体材料により形成され、略円錐台状の形状を有する。ヨーク557の下底は磁性体55aの端面に接続され、ヨーク55bの上底は弾性部558のヨーク受け孔557に係合される。 The yoke 557 is made of a magnetic material such as permalloy and has a substantially truncated cone shape. The lower base of the yoke 557 is connected to the end face of the magnetic body 55a, and the upper base of the yoke 55b is engaged with the yoke receiving hole 557 of the elastic portion 558. As shown in FIG.
 図14(a)は圧力が印加されない状態の圧力センサ50bを示す図であり、図14(b)は圧力が印加された状態の圧力センサ50bを示す図である。 FIG. 14(a) is a diagram showing the pressure sensor 50b with no pressure applied, and FIG. 14(b) is a diagram showing the pressure sensor 50b with pressure applied.
 圧力センサ50bは、磁性体55aの一方の端面が支持部57に支持され、磁性体55aの他方の端面がヨーク55bを介して第2受圧素子554に係合され、磁性体55aは直線的に移動するので、磁界の変化を検出する精度が低下するおそれは低い。 In the pressure sensor 50b, one end face of the magnetic body 55a is supported by the support portion 57, and the other end face of the magnetic body 55a is engaged with the second pressure receiving element 554 via the yoke 55b. Since it moves, it is unlikely that the accuracy of detecting changes in the magnetic field will be degraded.
 また、圧力センサ50bは、ファラデー回転子52と磁性体55aとの間にヨーク55bが配置されるので、磁性体55aからファラデー回転子52に磁界を効率的に案内することができる。なお、圧力センサ50bは、ヨーク55bを有するが、実施形態に係る圧力センサは、ヨークを有さなくてもよい。また、圧力センサ50及び50aにおいて、ヨークは、配置されないが、圧力センサ50及び50aでは、ヨークが追加的に配置されてもよい。 In addition, since the pressure sensor 50b has the yoke 55b arranged between the Faraday rotator 52 and the magnetic body 55a, the magnetic field can be efficiently guided from the magnetic body 55a to the Faraday rotator 52. Although the pressure sensor 50b has the yoke 55b, the pressure sensor according to the embodiment may not have the yoke. Also, in the pressure sensors 50 and 50a, no yoke is arranged, but in the pressure sensors 50 and 50a, a yoke may be additionally arranged.
 また、圧力センサ50bは、螺旋状に湾曲して延伸する溝が形成される弾性部を有する第1受圧素子454及び第2受圧素子554を有するが、実施形態に係る圧力センサが有する第1受圧素子及び第2受圧素子の弾性部の形状は、限定されない。 In addition, the pressure sensor 50b has the first pressure receiving element 454 and the second pressure receiving element 554 each having an elastic portion formed with a spirally curved and extending groove. The shape of the elastic portion of the element and the second pressure receiving element is not limited.
 図15は、変形例に係る第2受圧素子の平面図である。 FIG. 15 is a plan view of a second pressure receiving element according to a modification.
 第2受圧素子654は、弾性部658を弾性部558の代わりに有することが第2受圧素子554と相違する。弾性部658以外の第2受圧素子654の構成及び機能は、受圧素子354の構成及び機能と同一なので、ここでは詳細な説明は省略する。 The second pressure receiving element 654 differs from the second pressure receiving element 554 in having an elastic portion 658 instead of the elastic portion 558 . The configuration and function of the second pressure receiving element 654 other than the elastic portion 658 are the same as the configuration and function of the pressure receiving element 354, so detailed description thereof will be omitted here.
 弾性部658は、第1弾性部材658aと、第2弾性部材658bと、第3弾性部材658cと、ヨーク支持部材658dとを有する。第1弾性部材658a、第2弾性部材658b及び第3弾性部材658cは、バネ等の弾性部材であり、120度ずつ離隔して配置される。第1弾性部材658a、第2弾性部材658b及び第3弾性部材658cの一端はヨーク支持部658dに接続され、第1弾性部材658a、第2弾性部材658b及び第3弾性部材658cの他端は基台554に接続される。ヨーク支持部材658dはリング状の平面形状を有し、ヨーク557の上底が係合されるヨーク受け孔658eが形成される。 The elastic portion 658 has a first elastic member 658a, a second elastic member 658b, a third elastic member 658c, and a yoke support member 658d. The first elastic member 658a, the second elastic member 658b, and the third elastic member 658c are elastic members such as springs, and are arranged at intervals of 120 degrees. One ends of the first elastic member 658a, the second elastic member 658b, and the third elastic member 658c are connected to the yoke support portion 658d, and the other ends of the first elastic member 658a, the second elastic member 658b, and the third elastic member 658c are connected to the base. It is connected to platform 554 . The yoke support member 658d has a ring-shaped planar shape, and is formed with a yoke receiving hole 658e with which the upper base of the yoke 557 is engaged.

Claims (10)

  1.  入射光を出射する発光部と、
     前記発光部に光学的に接続された光ファイバと、
     前記光ファイバの先端に配置され、前記光ファイバを介して前記入射光が入射されたときに、印加される圧力に応じた戻り光を出射する圧力センサと、
     前記圧力センサに前記光ファイバを介して光学的に接続され、前記戻り光に基づいて、前記圧力センサに印加される圧力に応じた検出信号を出力する検出信号発生部と、を有し、前記圧力センサは、
      磁性体と、
      前記磁性体に近接して配置され、前記入射光が入射されたときに、磁界に応じた戻り光を出射する磁界センサ素子と、
      圧力が印加されることに応じて前記磁界センサ素子と前記磁性体との間の距離が変化するように前記磁性体を保持する受圧素子と、
     を有することを特徴とする圧力センサ装置。
    a light emitting unit that emits incident light;
    an optical fiber optically connected to the light emitting unit;
    a pressure sensor disposed at the tip of the optical fiber and configured to emit return light according to the applied pressure when the incident light is incident through the optical fiber;
    a detection signal generator optically connected to the pressure sensor via the optical fiber and outputting a detection signal corresponding to the pressure applied to the pressure sensor based on the returned light; pressure sensor
    a magnetic body;
    a magnetic field sensor element that is arranged close to the magnetic body and that emits return light according to the magnetic field when the incident light is incident;
    a pressure-receiving element that holds the magnetic body such that the distance between the magnetic field sensor element and the magnetic body changes according to the application of pressure;
    A pressure sensor device comprising:
  2.  前記受圧素子は、
     円筒状の形状を有し、一方の側面に開口部が形成された基台と、
     前記基台の内部に配置され、前記磁性体を保持する支持部と、
     前記基台の他方の側面に配置され、一端が前記基台に接続され且つ他端が前記支持部に接続され、螺旋状の1又は複数の溝が形成される弾性部と、
     を有する、請求項1に記載の圧力センサ装置。
    The pressure receiving element is
    a base having a cylindrical shape and having an opening formed on one side;
    a support portion disposed inside the base and holding the magnetic body;
    an elastic part disposed on the other side of the base, having one end connected to the base and the other end connected to the support, and having one or more spiral grooves formed thereon;
    2. The pressure sensor device of claim 1, comprising:
  3.  前記受圧素子は、シリコンにより形成される、請求項2に記載の圧力センサ装置。 The pressure sensor device according to claim 2, wherein the pressure receiving element is made of silicon.
  4.  前記弾性部は、磁界センサ素子に対向する第1面、及び前記第1面の反対の第2面の少なくとも一方に撥水膜が形成される、請求項3に記載の圧力センサ装置。 4. The pressure sensor device according to claim 3, wherein the elastic portion has a water-repellent film formed on at least one of a first surface facing the magnetic field sensor element and a second surface opposite to the first surface.
  5.  前記弾性部の幅は、前記基台に接続される前記一端から前記支持部に接続される前記他端に向かうに従って幅が狭くなる、請求項2~4の何れか一項に記載の圧力センサ装置。 5. The pressure sensor according to any one of claims 2 to 4, wherein the width of the elastic portion becomes narrower from the one end connected to the base toward the other end connected to the support portion. Device.
  6.  前記溝は、前記支持部の底面の中心を原点とする対数螺旋に沿って延伸するように形成される、請求項5に記載の圧力センサ装置。 The pressure sensor device according to claim 5, wherein the groove is formed so as to extend along a logarithmic spiral whose origin is the center of the bottom surface of the support portion.
  7.  前記弾性部は、第1溝、及び第2溝が形成され、
     前記第1溝及び前記第2溝の前記基台側の端部は、180度離隔して配置され、
     前記第1溝及び前記第2溝の前記支持部側の端部は、180度離隔して配置される、請求項2~6の何れか一項に記載の圧力センサ装置。
    The elastic portion has a first groove and a second groove,
    the ends of the first groove and the second groove on the base side are spaced apart by 180 degrees,
    The pressure sensor device according to any one of claims 2 to 6, wherein the end portions of the first groove and the second groove on the side of the support portion are separated by 180 degrees.
  8.  前記弾性部は、第1溝、第2溝及び第3溝が形成され、
     前記第1溝、前記第2溝及び前記第3溝の前記基台側の端部は、120度ずつ離隔して配置され、
     前記第1溝、前記第2溝及び前記第3溝の前記支持部側の端部は、120度ずつ離隔して配置される、請求項2~6の何れか一項に記載の圧力センサ装置。
    the elastic portion has a first groove, a second groove and a third groove;
    the ends of the first groove, the second groove, and the third groove on the base side are spaced apart by 120 degrees,
    The pressure sensor device according to any one of claims 2 to 6, wherein the ends of the first groove, the second groove, and the third groove on the side of the support portion are spaced apart from each other by 120 degrees. .
  9.  前記圧力センサは、前記受圧素子が保持する前記磁性体の端部と反対側の端部を保持する第2受圧素子をさらに有する、請求項1~8の何れか一項に記載の圧力センサ装置。 The pressure sensor device according to any one of claims 1 to 8, wherein said pressure sensor further comprises a second pressure receiving element holding an end opposite to the end of said magnetic material held by said pressure receiving element. .
  10.  円筒状の形状を有し、一方の側面に開口部が形成された基台と、
     前記基台の内部に配置され、前記磁性体を保持する支持部と、
     前記基台の他方の側面に配置され、一端が前記基台に接続され且つ他端が前記支持部に接続され、螺旋状の1又は複数の溝が形成される弾性部と、
     を有することを特徴とする受圧素子。
    a base having a cylindrical shape and having an opening formed on one side;
    a support portion disposed inside the base and holding the magnetic body;
    an elastic part disposed on the other side of the base, having one end connected to the base and the other end connected to the support, and having one or more spiral grooves formed thereon;
    A pressure receiving element characterized by comprising:
PCT/JP2022/016839 2021-02-02 2022-03-31 Pressure sensor device and pressure reception element WO2023007870A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2021014906 2021-02-02
JP2021124695A JP2022118688A (en) 2021-02-02 2021-07-29 Pressure sensor device and voltage receiving element
JP2021-124695 2021-07-29

Publications (1)

Publication Number Publication Date
WO2023007870A1 true WO2023007870A1 (en) 2023-02-02

Family

ID=82840009

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/016839 WO2023007870A1 (en) 2021-02-02 2022-03-31 Pressure sensor device and pressure reception element

Country Status (2)

Country Link
JP (1) JP2022118688A (en)
WO (1) WO2023007870A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5646847U (en) * 1979-09-17 1981-04-25
JPH05501309A (en) * 1990-07-18 1993-03-11 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Method of manufacturing a pressure transmitter for detecting pressure in the combustion chamber of an internal combustion engine
JPH05272919A (en) * 1992-03-27 1993-10-22 Hoya Corp Displacement detecting apparatus
JPH0622906U (en) * 1992-02-14 1994-03-25 実 松村 Piston position detector for air cylinder
JPH0792047A (en) * 1993-09-24 1995-04-07 Nitsukooshi Kk Micro pressure difference detecting device
US20050029436A1 (en) * 2003-06-26 2005-02-10 The Regents Of The University Of California Micro-position sensor using faraday effect

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5646847U (en) * 1979-09-17 1981-04-25
JPH05501309A (en) * 1990-07-18 1993-03-11 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Method of manufacturing a pressure transmitter for detecting pressure in the combustion chamber of an internal combustion engine
JPH0622906U (en) * 1992-02-14 1994-03-25 実 松村 Piston position detector for air cylinder
JPH05272919A (en) * 1992-03-27 1993-10-22 Hoya Corp Displacement detecting apparatus
JPH0792047A (en) * 1993-09-24 1995-04-07 Nitsukooshi Kk Micro pressure difference detecting device
US20050029436A1 (en) * 2003-06-26 2005-02-10 The Regents Of The University Of California Micro-position sensor using faraday effect

Also Published As

Publication number Publication date
JP2022118688A (en) 2022-08-15

Similar Documents

Publication Publication Date Title
US9874446B2 (en) Physical unit of chip-scale NMR gyroscope
JP4669469B2 (en) Reflective optical fiber current sensor
WO2023007870A1 (en) Pressure sensor device and pressure reception element
JP7300673B2 (en) Interferometric optical magnetic field sensor device
US4998063A (en) Fiber optic coupled magneto-optic sensor having a concave reflective focusing surface
JP7222480B2 (en) Interferometric optical magnetic field sensor device
JPWO2019066050A1 (en) Magnetic sensor element and magnetic sensor device
US20220146600A1 (en) Magnetic field sensor device
JP2023008303A (en) Pressure sensor and pressure sensor device
US5373360A (en) Method and apparatus for reducing rotational bias in a ring laser
JP2019138775A (en) Magnetic field sensor element and magnetic field sensor device
RU2676835C1 (en) Optical radiation mixer with application of prisms of optical active materials
JP7472066B2 (en) Optical unit and interference type optical magnetic field sensor device
KR101235274B1 (en) Long-term stabilized heterodyne interferometer and readout sensor for biochemical fluidic channel using the interferometer
US5907402A (en) Multioscillator ring laser gyro using compensated optical wedge
WO2023282271A1 (en) Magnetic field sensor head and magnetic field sensor device
JP2023043512A (en) Magnetic field sensor device
JPH0792325A (en) Polarized light selecting element and light source module and optical fiber gyro
JP2757072B2 (en) Laser interferometer
JP7485725B2 (en) Optical Proximity System
JP2014025766A (en) Replacement detection apparatus
JP7385210B2 (en) Magnetic field sensor element and magnetic field sensor device
JP4083718B2 (en) Electro-optic sensor
JP6796840B2 (en) Magnetic field sensor element and its manufacturing method
JP2023104659A (en) Interference type optical magnetic sensor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22848953

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE