WO2023007665A1 - Detector state categorization device, detector state categorization method, and program - Google Patents

Detector state categorization device, detector state categorization method, and program Download PDF

Info

Publication number
WO2023007665A1
WO2023007665A1 PCT/JP2021/028172 JP2021028172W WO2023007665A1 WO 2023007665 A1 WO2023007665 A1 WO 2023007665A1 JP 2021028172 W JP2021028172 W JP 2021028172W WO 2023007665 A1 WO2023007665 A1 WO 2023007665A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
oxygen concentration
value
gas
state
Prior art date
Application number
PCT/JP2021/028172
Other languages
French (fr)
Japanese (ja)
Inventor
航 伊藤
潤一郎 玉松
聡 篠崎
一清 涌井
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2021/028172 priority Critical patent/WO2023007665A1/en
Priority to JP2023537855A priority patent/JPWO2023007665A1/ja
Publication of WO2023007665A1 publication Critical patent/WO2023007665A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • G01N27/41Oxygen pumping cells

Definitions

  • the present invention relates to a sensor state classification device, a sensor state classification method, and a program for classifying the quality state of an oxygen concentration sensor having a sensor.
  • FIG. 11 shows the reaction characteristics (VI characteristics).
  • the oximeter has a threshold of oxygen concentration that causes oxygen deficiency (18% for the currently used one), and it is a mechanism to issue an alarm when the output value falls below that value.
  • Non-Patent Document 1 describes the structure, principle, characteristics, etc. of a limiting current type zirconia oxygen sensor that uses a zirconia solid electrolyte to achieve small size, low-temperature operation, and long life.
  • Non-Patent Document 2 describes the characteristics of a limiting current type zirconia oxygen sensor as an exhaust gas sensor for a lean-burn gasoline engine aimed at improving the fuel efficiency of automobiles.
  • the zirconia oxygen concentration sensor makes it possible to measure oxygen concentration based on the above principle, but with continued normal use, the sensor will deteriorate due to various factors and will no longer indicate the true oxygen concentration.
  • the deterioration patterns can be classified into the following three types.
  • Deterioration pattern 1 is aging deterioration of the zirconia sensor.
  • the measuring device measures the oxygen concentration by the reaction of the zirconia sensor, but the oxygen ion conductivity of the sensor decreases with long-term use, making it difficult to react normally.
  • the minimum voltage value at which the limit current value occurs hereinafter referred to as the flat region start voltage
  • VI The characteristic graph changes.
  • the flat region start voltage shift progresses and exceeds the monitoring voltage value as shown in the graph of (3) in FIG. (defined as the occurrence of For example, in (4) of FIG. 12, the flat region start voltage and the monitoring voltage match in the graph for the oxygen concentration of 18%.
  • the monitored voltage never crosses the flat region where the oxygen concentration is 18% or more, and is always (4) and the sensor output value at the start of the flat region where the oxygen concentration is 18% (limit current when the oxygen concentration is 18% value). Therefore, in this situation, when the actual oxygen concentration is 18% or higher, the sensor outputs 18% oxygen concentration regardless of the true oxygen concentration.
  • Deterioration pattern 2 is deterioration caused by thermal shock or mechanical shock applied to the zirconia sensor.
  • a large amount of oxygen flows into the sensor, and the amount cannot be controlled, so the limit current value increases as shown in FIG.
  • the sensor outputs an oxygen concentration of 30% when the actual oxygen concentration is 18%.
  • an oxygen concentration higher than the true oxygen concentration is output, and even if the oxygen concentration in the environment where the equipment is installed is in a situation where it adversely affects the human body, there is a dangerous situation in which no alarm is issued. I am afraid of being invited.
  • Deterioration pattern 3 is deterioration caused by impurities clogging the gas diffusion holes of the sensor.
  • the zirconia sensor reacts to the oxygen sucked through this gas diffusion hole and measures the oxygen concentration, but if this part is clogged with adhering impurities, it becomes difficult to suck in oxygen, so the oxygen concentration is output low. put away.
  • the sensor outputs an oxygen concentration of 15% even if the actual oxygen concentration is 20%. Therefore, in the case of this deterioration pattern, a value lower than the true oxygen concentration is output, and in the actual environment, an alarm is issued even though there is no decrease in oxygen concentration that would affect the human body (hereinafter referred to as false alarm). called ) may occur.
  • the measuring device issues a warning, it is assumed that the installation environment is in a dangerous state, so it is necessary to improve the oxygen concentration by implementing ventilation, etc. However, if this deterioration pattern has occurred , the improvement of the oxygen concentration is unnecessary, which leads to unnecessary costs.
  • the object of the present disclosure which has been made in view of such circumstances, is to provide a sensor state classification method that determines and classifies the presence or absence of various deterioration patterns in a simple process in order to reduce waste during operation of oxygen concentration sensors.
  • An object of the present invention is to provide an apparatus, a sensor state classification method, and a program.
  • a sensor state classification device for classifying the quality state of an oxygen concentration sensor having a sensor, the oxygen concentration sensor to be inspected.
  • a field measurement result input unit for inputting inspection result information including whether or not an alarm is issued when a gas with a different oxygen concentration designed to a predetermined value is sprayed on the sensor of and the measurement environment information of the sensor, and the measurement
  • a gas concentration correction unit that corrects the design value of the oxygen concentration using environmental information to the oxygen concentration when the gas blows on the sensor, and based on the inspection result information and the correction value of the oxygen concentration, the a sensor state classification unit for classifying the quality state of the oxygen concentration sensor.
  • a sensor state classification method for classifying the quality state of an oxygen concentration sensor having a sensor. a step of inputting inspection result information including whether or not an alarm is issued when a gas with a different oxygen concentration designed to a predetermined value is sprayed on the sensor of the target oxygen concentration sensor, and information on the measurement environment of the sensor; a step of correcting the design value of the oxygen concentration using the measurement environment information to the oxygen concentration when the gas blows onto the sensor; and based on the inspection result information and the correction value of the oxygen concentration in the gas. and classifying the quality status of the oxygen concentration sensor by using a method.
  • a program causes a computer to function as the sensor state classification device.
  • the presence or absence of occurrence of various deterioration patterns can be determined and classified in a simple process without incurring wasteful ventilation costs.
  • FIG. 1 is a block diagram showing a configuration example of a sensor state classification device according to an embodiment
  • FIG. 4 is a flow chart showing an example of a sensor state classification method performed by a sensor state classification device according to an embodiment
  • It is a flowchart which shows the procedure by which an operator manually implements inspection of a sensor.
  • 4 is a table showing an example of a format in which an operator records inspection results
  • Fig. 10 is a flow chart detailing the procedure for classifying the quality state of a sensor
  • Fig. 3 is a table detailing the quality status of the sensors
  • 1 is a schematic diagram illustrating the quality state of a sensor less than 5 years old
  • FIG. It is a schematic diagram explaining the quality state of a sensor whose usage period is 5 years or more and less than X years.
  • FIG. 1 is a block diagram showing a schematic configuration of a computer functioning as a sensor state classifying device;
  • FIG. 5 is a graph showing reaction characteristics (VI characteristics) of a zirconia sensor;
  • 10 is a graph showing deterioration pattern 1 (decrease in output value due to aged deterioration of the sensor).
  • 10 is a graph showing deterioration pattern 2 (increase in output value due to application of thermal shock or mechanical shock to the sensor);
  • 10 is a graph showing deterioration pattern 3 (decrease in output value due to impurities clogging the gas diffusion holes of the sensor).
  • the sensor state classification device according to one embodiment will be described in detail below.
  • the present invention is not limited to the following embodiments, and various modifications can be made within the scope of the gist of the present invention.
  • the sensor state classification device 1 includes a field measurement result input unit 11, a storage unit 12, a gas concentration correction unit 13, a sensor state classification unit 14, and a result display. a part 15;
  • a sensor status classifier 1 classifies the quality status of an oxygen concentration sensor having a sensor.
  • the sensor status classification device 1 may classify the quality status of an oxygen concentration sensor having a sensor using a zirconia element.
  • oxygen concentration sensor is simply referred to as "sensor”.
  • the on-site measurement result input unit 11 displays the results when gases with different oxygen concentrations designed to have predetermined values are sprayed on the sensor of the sensor i to be inspected (hereafter, i indicates a number that identifies each sensor).
  • Check result information including presence/absence of an alarm and measurement environment information of the sensor is input.
  • the inspection result information is obtained by spraying a gas with an oxygen concentration designed to be less than the threshold value at which the sensor i issues an alarm for a predetermined time, and spraying a gas with an oxygen concentration greater than the threshold value for a predetermined time. This information includes the result of checking whether or not the sensor i issues an alarm for each of the following cases.
  • the inspection result information includes the measured values of temperature, humidity, and air pressure in the installation environment, and whether or not an alarm is issued when the gas of two oxygen concentrations (values ⁇ and ⁇ ) is sprayed on the sensor of the detector. , the oxygen concentration values ⁇ and ⁇ in the gas used for inspection, the service period x_i of the sensor, and the service life limit X of the sensor.
  • the on-site measurement result input unit 11 transmits the acquired inspection result information to the storage unit 12 .
  • the input record of whether or not an alarm has been issued is entered in check 1 in the case of gas with oxygen concentration value ⁇ , and in check 2 in the case of gas with oxygen concentration value ⁇ . In check 1, a check mark is recorded when there is no alarm, and no check mark is recorded when there is an alarm. In check 2, a check mark is recorded when there is an alarm, and no check mark is recorded when there is no alarm.
  • the storage unit 12 stores the inspection result information transmitted from the on-site measurement result input unit 11. In addition, the storage unit 12 stores the measured values of temperature, humidity, and atmospheric pressure, and the design values ⁇ and ⁇ of the oxygen concentration in the gas used for inspection, for each sensor i to be inspected. Send to The storage unit 12 also stores the oxygen concentration correction values ⁇ _i and ⁇ _i transmitted from the gas concentration correction unit 13 . After that, the storage unit 12 supplies the sensor state classification unit 14 with the oxygen concentration correction values ⁇ _i and ⁇ _i for each sensor i to be inspected, the result of check 1, the result of check 2, the usage period x_i of the sensor, Transmit the maximum number of years of use X. After that, the storage unit 12 receives the sensor state n_i for each sensor i from the sensor state classification unit 14 and stores it. The storage unit 12 also transmits the number of the sensor i and the sensor state n_i to the result display unit 15 .
  • the gas concentration correction unit 13 corrects the design values ⁇ and ⁇ of the oxygen concentration to the oxygen concentrations ⁇ _i and ⁇ _i when the gas blows onto the sensor using the measurement environment information described above. Specifically, the gas concentration correction unit 13 calculates the measured values of temperature, humidity, and atmospheric pressure for each sensor i to be inspected, which are transmitted from the storage unit 12, and the oxygen concentration in the gas used for inspection. are used to calculate correction values ⁇ _i and ⁇ _i of the oxygen concentration for each sensor i to be inspected. The gas concentration correction unit 13 also transmits the calculated oxygen concentration correction values ⁇ _i and ⁇ _i for each sensor i to the storage unit 12 .
  • the sensor state classification unit 14 classifies the quality state of the sensor i to be inspected based on the inspection result information transmitted from the storage unit 12 and the oxygen concentration correction values ⁇ _i and ⁇ _i corrected by the gas concentration correction unit. Classify n_i. Also, the sensor state classification unit 14 transmits the quality state n_i of the sensor i to the storage unit 12 .
  • the quality state n_i of the sensor i classified by the sensor state classification unit 14 is, as classified in FIG. 6, the normal state of the sensor i; ), occurrence of deterioration pattern 2 (increase in output value due to application of thermal or mechanical impact to the sensor), and deterioration pattern 3 (decrease in output value due to impurities clogging the gas diffusion holes of the sensor). Occurrence, or a combination of these conditions; refers to the condition in which sensor i is at its limit of use.
  • the “quality state of the oxygen concentration sensor (sensor)” will be referred to as the "sensor state”.
  • the sensor state classification unit 14 classifies the output value as a decrease due to aging deterioration of the sensor when the minimum voltage value at which the limit current value is generated exceeds the threshold value.
  • the minimum voltage value at which the limiting current value occurs shifts to the high voltage side, and (1 ) ⁇ (2) ⁇ (3).
  • the output value of the sensor decreases.
  • the flat region start voltage and the monitoring voltage match in the graph for the oxygen concentration of 18%.
  • the monitored voltage never crosses the flat region where the oxygen concentration is 18% or more, and is always (4) and the sensor output value at the start of the flat region where the oxygen concentration is 18% (limit current when the oxygen concentration is 18% value). Therefore, the sensor outputs an oxygen concentration of 18% even though the actual oxygen concentration is 18% or more.
  • the sensor state classification unit 14 classifies such a decrease in the output value as a decrease in the output value due to aged deterioration of the sensor.
  • the sensor state classification unit 14 classifies the increase in the output value due to the application of thermal shock or mechanical shock to the sensor when the increase in the limit current value exceeds the threshold. As shown in FIG. 13, when a large amount of oxygen flows into the sensor and the amount cannot be controlled, the limiting current value increases. For example, in the example of FIG. 13, the sensor outputs an oxygen concentration of 30% even though the actual oxygen concentration is 18%. In such a case, an oxygen concentration higher than the true oxygen concentration is output, so even if the oxygen concentration in the environment where the equipment is installed is in a situation that adversely affects the human body, there is a danger that an alarm will not be issued. There is a fear that it will lead to a situation. The sensor state classification unit 14 classifies such an increase in output value as an increase in output value due to the application of thermal shock or mechanical shock to the sensor.
  • the sensor state classification unit 14 classifies it as a decrease in the output value due to impurities clogging the gas diffusion holes of the sensor.
  • the sensor reacts to the oxygen sucked through this gas diffusion hole and measures the oxygen concentration, but if this part is clogged with adhering impurities, it becomes difficult to suck in oxygen, so the oxygen concentration is output low. put away. For example, as shown in FIG. 14, the sensor outputs an oxygen concentration of 15% even if the actual oxygen concentration is 20%. Therefore, in the case of this deterioration pattern, a value lower than the true oxygen concentration is output, and an alarm is issued even though the actual environment does not have a decrease in oxygen concentration that affects the human body. there is a possibility.
  • the sensor state classification unit 14 classifies such a decrease in the output value as a decrease in the output value due to impurities clogging the gas diffusion holes of the sensor.
  • the result display unit 15 displays the information transmitted from the storage unit 12.
  • FIG. 2 is a flowchart showing an example of a sensor state classification method executed by the sensor state classification device 1 according to one embodiment.
  • step S10 the operator manually inspects the sensor and records the inspection result information.
  • step S20 the on-site measurement result input unit 11 inputs inspection result information.
  • the gas concentration correction unit 13 corrects the oxygen concentration.
  • step S40 the sensor state classification unit 14 classifies the state of the sensor.
  • step S101 the worker measures and records the temperature, humidity, and atmospheric pressure in the sensor installation environment.
  • step S102 the operator records the value of the oxygen concentration in the gas used for inspection, the usage period of the sensor, and the usage limit of the sensor.
  • step S103 the operator blows gas with an oxygen concentration value ⁇ onto the sensor of the sensor for t seconds.
  • the oxygen concentration value ⁇ is set to be less than 18%, but assuming that the threshold value at which the sensor issues an alarm is A, in step 104 below, the oxygen concentration correction value ⁇ _i obtained using the oxygen concentration value ⁇ Any gas having an oxygen concentration value ⁇ that satisfies A> ⁇ _i may be used. Also, by setting the duration to t seconds, it is possible to change the time for which the gas is blown according to the individual difference of each sensor.
  • step S104 the operator determines whether or not an alarm will be issued.
  • step S105 the operator places a check mark in check 1 and finishes the inspection.
  • step S106 the operator sprays gas with an oxygen concentration value ⁇ onto the sensor for t seconds.
  • a gas having an oxygen concentration value ⁇ that satisfies A ⁇ _i for ⁇ _i obtained by using ⁇ in step 30 below may be used.
  • step S107 the operator determines whether or not an alarm will be issued.
  • step S108 the operator places a check mark in check 2 and finishes the inspection. On the other hand, if no alarm is issued, the inspection is terminated without adding a check mark.
  • the field measurement result input unit 11 records the inspection results (temperature, humidity, air pressure, check 1 result, check 2 result for each target sensor No. i) performed in step S10 (steps S101 to S108) and Enter the oxygen concentration values ⁇ and ⁇ in the gas used for inspection, the usage period x_i of the sensor, and the usage limit years X.
  • the service life limit X is defined as the number of years until deterioration pattern 1 shown in FIG. 12 progresses to the state of (4).
  • the classification of the state of the sensor in step S40 will be described in detail.
  • the results input in step S20 and output in step S30 are used to determine the state n_i of the sensor according to the flow chart shown in FIG. H ⁇ .
  • the sensor status classification method of the present invention may classify the status of an oxygen concentration sensor comprising a sensor using a zirconia element. Details of each state are shown in the table of FIG.
  • step S402 the sensor state classification unit 14 determines whether x_i>5 years for the usage period x_i of the sensor to be inspected.
  • the period of time when the VI characteristic of the current oxygen deficiency sensor is in the state of (2) in FIG. 12 is five years, so the number of years is set to five years. It is necessary to design the number of years according to the vessel. If the period of use is less than 5 years, it can be determined that the VI characteristic has not reached the state of (2) in FIG. 2, so it can be determined that deterioration pattern 1 has not occurred. (As a supplement, the state after (2) in FIG. 12 is defined as occurrence of deterioration pattern 1). If x_i>5 years is not satisfied, the process proceeds to step S403. On the other hand, if x_i>5 years is satisfied, the process proceeds to step S406.
  • step S403 the sensor state classification unit 14 determines whether or not the correction value ⁇ _i>18+ ⁇ of the oxygen concentration value ⁇ is satisfied.
  • the judgment when the check 2 is checked changes depending on whether ⁇ _i>18+ ⁇ (region i) or ⁇ _i ⁇ 18+ ⁇ (region ii). If ⁇ _i>18+ ⁇ (region of i) is satisfied, the process proceeds to step S404. If ⁇ _i ⁇ 18+ ⁇ (area of ii), the process proceeds to step S405.
  • step S407 the sensor state classification unit 14 determines whether ⁇ _i>18+ ⁇ . If this condition is satisfied, the process proceeds to step S408. On the other hand, if this condition is not satisfied, the process proceeds to step S411.
  • step S408 in order to classify the state of the sensor, cases (i, ii, iii regions) as shown in FIG. 8 are performed.
  • y_i 18 because the oxygen concentration of 18% or more is indicated as 18%.
  • 18( A) ⁇ y_i ⁇ 21.
  • y_i is calculated
  • y_i can be expressed in this way. Better to If ⁇ _i>18+ ⁇ is satisfied, y_i exists in any one of regions i, ii, and iii in FIG.
  • step S408 the sensor state classification unit 14 determines whether y_i>18+ ⁇ (the region where y_i exists is i or ii in FIG. 8). If this condition is satisfied, the process proceeds to step S409. If this condition is not satisfied, that is, if y_i ⁇ 18+ ⁇ (the region where y_i exists is iii in FIG. 8), the process proceeds to step S410.
  • step S409 the sensor state classification unit 14 determines whether or not there is a check in check 2 for the case where the region where y_i exists is i (1) and the region where y_i exists (2) in FIG. and classify the state of the detector.
  • the sensor output when the gas with the oxygen concentration correction value ⁇ _i is sprayed is ⁇ _i.
  • the sensor output when the gas with the oxygen concentration correction value ⁇ _i is sprayed is y_i.
  • step S411 when classifying the state of the sensor, cases (i, ii, iii areas) as shown in FIG. 9 are performed. If the sensor has not been used for more than 5 years and does not satisfy ⁇ _i>18+ ⁇ , y_i is in any of regions i, ii, and iii in FIG.
  • step S411 the sensor state classification unit 14 checks whether the region in which y_i exists is i (1), ii (2), and iii (3) in FIG. Determine if there is a 2 check mark to classify the state of the sensor.
  • the sensor output when the gas with the oxygen concentration correction value ⁇ _i is sprayed is ⁇ _i.
  • the sensor output when the gas with the oxygen concentration correction value ⁇ _i is sprayed is ⁇ _i.
  • the sensor output when the gas with the oxygen concentration correction value ⁇ _i is sprayed is y_i.
  • the presence or absence of various deterioration patterns can be determined in a simple process without spending unnecessary ventilation costs.
  • FIG. 10 is a block diagram showing a schematic configuration of a computer that functions as the sensor state classification device 1.
  • the computer 100 may be a general-purpose computer, a dedicated computer, a workstation, a PC (Personal Computer), an electronic notepad, or the like.
  • Program instructions may be program code, code segments, etc. for performing the required tasks.
  • the computer 100 includes a processor 110, a ROM (Read Only Memory) 120, a RAM (Random Access Memory) 130, and a storage 140 as storage units, an input unit 150, an output unit 160, and communication An interface (I/F) 170 is provided.
  • a processor 110 a ROM (Read Only Memory) 120, a RAM (Random Access Memory) 130, and a storage 140 as storage units, an input unit 150, an output unit 160, and communication An interface (I/F) 170 is provided.
  • Each component is communicatively connected to each other via a bus 180 .
  • the on-site measurement result input unit 11 in the sensor state classification device 1 described above may be constructed as the input unit 150 .
  • the ROM 120 stores various programs and various data.
  • the RAM 130 temporarily stores programs or data as a work area.
  • the storage 140 is configured by an HDD (hard disk drive) or SSD (solid state drive) and stores various programs including an operating system and various data. In the present disclosure, the ROM 120 or the storage 140 stores programs according to the present disclosure.
  • the processor 110 is specifically a CPU (Central Processing Unit), MPU (Micro Processing Unit), GPU (Graphics Processing Unit), DSP (Digital Signal Processor), SoC (System on a Chip), etc. may be configured by a plurality of processors of The processor 110 reads a program from the ROM 120 or the storage 140 and executes the program using the RAM 130 as a work area to control each of the above components and perform various arithmetic processing. Note that at least part of these processing contents may be realized by hardware.
  • CPU Central Processing Unit
  • MPU Micro Processing Unit
  • GPU Graphics Processing Unit
  • DSP Digital Signal Processor
  • SoC System on a Chip
  • the program may be recorded on a recording medium readable by the computer 100.
  • a program can be installed in the computer 100 by using such a recording medium.
  • the recording medium on which the program is recorded may be a non-transitory recording medium.
  • the non-transitory recording medium is not particularly limited, but may be, for example, a CD-ROM, a DVD-ROM, a USB (Universal Serial Bus) memory, or the like.
  • this program may be downloaded from an external device via a network.
  • a sensor status classifier for classifying the quality status of an oxygen concentration sensor having a sensor comprising: Input inspection result information including whether or not an alarm is issued when a gas with a different oxygen concentration designed to a predetermined value is sprayed on the sensor of the oxygen concentration sensor to be inspected, and information on the measurement environment of the sensor. correcting the design value of the oxygen concentration to the oxygen concentration when the gas blows onto the sensor using the measurement environment information, and calculating the oxygen concentration based on the inspection result information and the correction value of the oxygen concentration
  • a sensor status classifier comprising a control for classifying the quality status of a sensor.
  • the inspection result information is When a gas with an oxygen concentration designed to be less than the threshold at which the oxygen concentration sensor issues an alarm is sprayed to the sensor for a predetermined time, and when a gas with an oxygen concentration designed to be greater than or equal to the threshold is sprayed for a predetermined time. , the information including a result of checking whether the oxygen concentration sensor issues an alarm.
  • the control unit 3 The sensor state classification device according to item 1 or 2, wherein when the minimum voltage value at which the limit current value is generated exceeds a threshold value, it is classified as a decrease in the output value due to aged deterioration of the sensor. (Appendix 4) The control unit 4.
  • Device. (Appendix 5) The control unit 5.
  • Vessel state classifier. (Appendix 6) The control unit 6.
  • the sensor state classification device according to any one of additional items 1 to 5, which classifies the quality state of an oxygen concentration sensor having a sensor using a zirconia element.
  • a sensor status classification method for classifying the quality status of an oxygen concentration sensor having a sensor comprising: The sensor state classification device determines whether or not an alarm is issued when a gas with a different oxygen concentration designed to a predetermined value is sprayed on the sensor of the oxygen concentration sensor to be inspected, and the measurement environment information of the sensor. correcting the design value of the oxygen concentration using the measurement environment information to the oxygen concentration when the gas is blown onto the sensor; the inspection result information and the gas classifying the quality status of the oxygen concentration sensor based on the oxygen concentration correction value in the sensor status classification method.
  • Appendix 8 A non-temporary storage medium storing a computer-executable program, the non-temporary storage storing the program for causing the computer to function as the sensor state classification device according to any one of appendices 1 to 6. medium.
  • sensor state classification device 11 on-site measurement result input unit 12 storage unit 13 gas concentration correction unit 14 sensor state classification unit 15 result display unit 100 computer 110 processor 120 ROM 130 RM 140 storage 150 input unit 160 output unit 170 communication interface (I/F) 180 bus
  • I/F communication interface

Abstract

The detector state categorization device (1) according to the present invention comprises: an on-site measurement result input unit (11) that receives, as input, inspection result information including whether or not an alert is issued when gases containing oxygen at different concentrations designed to predetermined values are blown to a sensor of an oxygen concentration detector being inspected, and measurement environment information of the sensor; a gas concentration correction unit (13) that corrects the design values of the oxygen concentrations to oxygen concentrations used when the gases are blown to the sensor, using the measurement environment information; and a detector state categorization unit (14) that categorizes a quality state of the oxygen concentration detector on the basis of the inspection result information and the corrected oxygen concentration value.

Description

感知器状態分類装置、感知器状態分類方法、及びプログラムSensor state classification device, sensor state classification method, and program
 本発明は、センサを有する酸素濃度感知器の品質状態を分類する、感知器状態分類装置、感知器状態分類方法、及びプログラムに関する。 The present invention relates to a sensor state classification device, a sensor state classification method, and a program for classifying the quality state of an oxygen concentration sensor having a sensor.
 従来、対象環境の酸素濃度を常時測定する機器には、ジルコニア式酸素濃度計がある。ジルコニア式酸素濃度計では、ジルコニア素子を挟んだ電極に電圧を印加すると素子中を酸素イオンが移動し、その反応によって電流が生じる。その反応特性(V-I特性)を、図11に示す。電圧を0から増加させていくと初期段階では出力値が増加するが、ある一定の電圧値まで増加させるとその後電圧を増加させても電流値が一定になる限界電流領域が存在する。この限界電流値がセンサに接している空気の酸素濃度ごとに異なるため、出力値をモニタすることでセンサの設置環境の酸素濃度が測定可能となる。また、酸素濃度計は酸素欠乏状態に陥る酸素濃度(現採用中のものは18%)を閾値として設定しており、出力値がその値を下回った際にアラームを発報する機構となっている。 Conventionally, there is a zirconia oxygen concentration meter as a device that constantly measures the oxygen concentration of the target environment. In a zirconia oxygen concentration meter, when a voltage is applied to electrodes sandwiching a zirconia element, oxygen ions move in the element and the reaction generates an electric current. FIG. 11 shows the reaction characteristics (VI characteristics). When the voltage is increased from 0, the output value increases in the initial stage, but when the voltage is increased to a certain constant voltage value, there is a limit current region where the current value remains constant even if the voltage is increased thereafter. Since this limit current value differs depending on the oxygen concentration of the air in contact with the sensor, the oxygen concentration in the installation environment of the sensor can be measured by monitoring the output value. In addition, the oximeter has a threshold of oxygen concentration that causes oxygen deficiency (18% for the currently used one), and it is a mechanism to issue an alarm when the output value falls below that value. there is
 非特許文献1には、ジルコニア固体電解質を使用して小型、低温作動、長寿命化を実現した限界電流式ジルコニア酸素センサの構造、原理、特性などが記載されている。非特許文献2には、自動車の燃費効率向上を目指した希薄燃焼ガソリンエンジン用の排気ガスセンサとして、限界電流式ジルコニア酸素センサの特性が記載されている。 Non-Patent Document 1 describes the structure, principle, characteristics, etc. of a limiting current type zirconia oxygen sensor that uses a zirconia solid electrolyte to achieve small size, low-temperature operation, and long life. Non-Patent Document 2 describes the characteristics of a limiting current type zirconia oxygen sensor as an exhaust gas sensor for a lean-burn gasoline engine aimed at improving the fuel efficiency of automobiles.
 ジルコニア式酸素濃度感知器は上述の原理で酸素濃度測定を可能としているが、通常使用を続けるとセンサは様々な要因によって劣化が進行し、真の酸素濃度を示さなくなる。その劣化パターンは下記のように3つに分類できる。 The zirconia oxygen concentration sensor makes it possible to measure oxygen concentration based on the above principle, but with continued normal use, the sensor will deteriorate due to various factors and will no longer indicate the true oxygen concentration. The deterioration patterns can be classified into the following three types.
 劣化パターン1は、ジルコニアセンサの経年的な劣化である。測定器はジルコニアセンサの反応によって酸素濃度を測定しているが、経年使用によってセンサの酸素イオン伝導性が低下し、正常に反応することが困難になる。その際、限界電流値が発生する最小の電圧値(以降フラット域開始電圧と呼ぶ)が高電圧側にシフトし、図12の(1)→(2)→(3)のようにV-I特性のグラフが変化していく。このフラット域開始電圧のシフトが進行し、図12の(3)のグラフのように監視電圧値を超えてしまった場合、出力値が低下する(以降、(2)以降の状態を劣化パターン1の発生と定義する)。例えば図12の(4)では、酸素濃度18%のグラフにおいてフラット域開始電圧と監視電圧が一致している。この場合、監視電圧が酸素濃度18%以上のフラット域と交点を持つことはなく、常に(4)と酸素濃度18%のフラット域開始時のセンサ出力値(酸素濃度18%の際の限界電流値)と接点を持つ。よって、この状況では実際の酸素濃度が18%以上の時、真の酸素濃度にかかわらずセンサは酸素濃度18%と出力する。 Deterioration pattern 1 is aging deterioration of the zirconia sensor. The measuring device measures the oxygen concentration by the reaction of the zirconia sensor, but the oxygen ion conductivity of the sensor decreases with long-term use, making it difficult to react normally. At that time, the minimum voltage value at which the limit current value occurs (hereinafter referred to as the flat region start voltage) shifts to the high voltage side, and VI The characteristic graph changes. When the flat region start voltage shift progresses and exceeds the monitoring voltage value as shown in the graph of (3) in FIG. (defined as the occurrence of For example, in (4) of FIG. 12, the flat region start voltage and the monitoring voltage match in the graph for the oxygen concentration of 18%. In this case, the monitored voltage never crosses the flat region where the oxygen concentration is 18% or more, and is always (4) and the sensor output value at the start of the flat region where the oxygen concentration is 18% (limit current when the oxygen concentration is 18% value). Therefore, in this situation, when the actual oxygen concentration is 18% or higher, the sensor outputs 18% oxygen concentration regardless of the true oxygen concentration.
 劣化パターン2は、ジルコニアセンサに熱衝撃又は機械的衝撃が加わることによって起こる劣化である。この場合、センサに大量の酸素が流れ込み、その量をコントロールできなくなるため、図13のように限界電流値が大きくなる。例えば、図13のような状況であれば、実際の酸素濃度が18%の場合、センサは酸素濃度30%を出力する。かかる場合、真の酸素濃度よりも高い酸素濃度が出力してしまい、仮に機器設置環境の酸素濃度が人体に悪影響を及ぼすような状況になっていたとしても発報しないというような危険な状態を招いてしまうことが危惧される。 Deterioration pattern 2 is deterioration caused by thermal shock or mechanical shock applied to the zirconia sensor. In this case, a large amount of oxygen flows into the sensor, and the amount cannot be controlled, so the limit current value increases as shown in FIG. For example, in the situation shown in FIG. 13, the sensor outputs an oxygen concentration of 30% when the actual oxygen concentration is 18%. In such a case, an oxygen concentration higher than the true oxygen concentration is output, and even if the oxygen concentration in the environment where the equipment is installed is in a situation where it adversely affects the human body, there is a dangerous situation in which no alarm is issued. I am afraid of being invited.
 劣化パターン3は、センサの気体拡散孔を不純物等が塞いでしまうことによって起こる劣化である。ジルコニアセンサはこの気体拡散孔より吸入した酸素に反応して酸素濃度を測定するが、この部分を付着した不純物が塞いでしまうと、酸素の吸入が困難となるため、酸素濃度が低く出力されてしまう。例えば、図14のような場合、実際の酸素濃度が20%であってもセンサは酸素濃度を15%と出力する。よって、この劣化パターンの場合、真の酸素濃度よりも低い値が出力されてしまい、実際の環境は人体に影響を与えるような酸素濃度の低下がないにも関わらずアラームを出す現象(以下誤報と呼ぶ)が発生してしまう可能性がある。測定器が発報した場合、設置環境が危険な状態であると推測されるため、換気等を実施し酸素濃度を向上させる必要性があるが、もしこの劣化パターンが発生してしまっていた場合、酸素濃度の改善は不必要であるため無駄なコストがかかってしまう。 Deterioration pattern 3 is deterioration caused by impurities clogging the gas diffusion holes of the sensor. The zirconia sensor reacts to the oxygen sucked through this gas diffusion hole and measures the oxygen concentration, but if this part is clogged with adhering impurities, it becomes difficult to suck in oxygen, so the oxygen concentration is output low. put away. For example, in the case shown in FIG. 14, the sensor outputs an oxygen concentration of 15% even if the actual oxygen concentration is 20%. Therefore, in the case of this deterioration pattern, a value lower than the true oxygen concentration is output, and in the actual environment, an alarm is issued even though there is no decrease in oxygen concentration that would affect the human body (hereinafter referred to as false alarm). called ) may occur. If the measuring device issues a warning, it is assumed that the installation environment is in a dangerous state, so it is necessary to improve the oxygen concentration by implementing ventilation, etc. However, if this deterioration pattern has occurred , the improvement of the oxygen concentration is unnecessary, which leads to unnecessary costs.
 これらの劣化パターンの発生有無を見極めることができない場合には、(1)測定環境が酸素欠乏時でもアラームが鳴らないため、作業者に危険をもたらす(劣化パターン2によるもの)という問題と、(2)アラームは鳴るが、実際は酸素欠乏状態でないため、無駄な換気コストがかかるという問題と、が発生する。 If the presence or absence of these deterioration patterns cannot be determined, (1) the alarm does not sound even when the measurement environment is oxygen-deficient, which poses a danger to the operator (due to deterioration pattern 2); 2) Although the alarm sounds, there is actually no oxygen-deficient state, so there is a problem that ventilation costs are wasted.
 現状では、酸素濃度18%未満のガスを吹きかける点検を実施しているが、かかる点検手法によると、劣化パターン2が発生していることを判定することは可能であるが、それ以外の劣化パターンの発生を判定することができない。また、劣化パターンを見極める方法として、図11から図14に示したようなV-I特性のグラフを各感知器それぞれにおいて測定する方法が考えられるが、多くの手間がかかる。上記の背景から、換気コストに着目し酸素濃度感知器の運用時の無駄を削減するためには多様な劣化パターンの発生有無を簡易な工程で判定することが求められる。 Currently, inspections are carried out by blowing gas with an oxygen concentration of less than 18%. According to this inspection method, it is possible to determine that deterioration pattern 2 has occurred, but other deterioration patterns occurrence cannot be determined. Also, as a method of ascertaining the deterioration pattern, it is conceivable to measure the VI characteristic graphs as shown in FIG. 11 to FIG. From the above background, in order to reduce waste during operation of oxygen concentration sensors, focusing on ventilation costs, it is required to judge the occurrence of various deterioration patterns in a simple process.
 かかる事情に鑑みてなされた本開示の目的は、酸素濃度感知器の運用時の無駄を削減するために、多様な劣化パターンの発生有無を簡易な工程で判定して分類する、感知器状態分類装置、感知器状態分類方法、及びプログラムを提供することにある。 The object of the present disclosure, which has been made in view of such circumstances, is to provide a sensor state classification method that determines and classifies the presence or absence of various deterioration patterns in a simple process in order to reduce waste during operation of oxygen concentration sensors. An object of the present invention is to provide an apparatus, a sensor state classification method, and a program.
 上記課題を解決するため、一実施形態に係る感知器状態分類装置は、センサを有する酸素濃度感知器の品質状態を分類する感知器状態分類装置であって、点検の対象となる酸素濃度感知器の前記センサに所定値に設計された異なる酸素濃度のガスを吹きかけた際のアラーム発報の有無、及び前記センサの測定環境情報を含む点検結果情報を入力する現地測定結果入力部と、前記測定環境情報を用いて前記酸素濃度の設計値を前記ガスが前記センサに吹きかかった際の酸素濃度に補正するガス濃度補正部と、前記点検結果情報及び前記酸素濃度の補正値に基づいて、前記酸素濃度感知器の品質状態を分類する感知器状態分類部と、を備える。 In order to solve the above problems, a sensor state classification device according to one embodiment is a sensor state classification device for classifying the quality state of an oxygen concentration sensor having a sensor, the oxygen concentration sensor to be inspected. A field measurement result input unit for inputting inspection result information including whether or not an alarm is issued when a gas with a different oxygen concentration designed to a predetermined value is sprayed on the sensor of and the measurement environment information of the sensor, and the measurement A gas concentration correction unit that corrects the design value of the oxygen concentration using environmental information to the oxygen concentration when the gas blows on the sensor, and based on the inspection result information and the correction value of the oxygen concentration, the a sensor state classification unit for classifying the quality state of the oxygen concentration sensor.
 上記課題を解決するため、一実施形態に係る感知器状態分類方法は、センサを有する酸素濃度感知器の品質状態を分類する感知器状態分類方法であって、感知器状態分類装置により、点検の対象となる酸素濃度感知器の前記センサに所定値に設計された異なる酸素濃度のガスを吹きかけた際のアラーム発報の有無、及び前記センサの測定環境情報を含む点検結果情報を入力するステップと、前記測定環境情報を用いて前記酸素濃度の設計値を前記ガスが前記センサに吹きかかった際の酸素濃度に補正するステップと、前記点検結果情報及び前記ガス中の酸素濃度の補正値に基づいて、前記酸素濃度感知器の品質状態を分類するステップと、を含む感知器状態分類方法。 In order to solve the above problems, a sensor state classification method according to one embodiment is a sensor state classification method for classifying the quality state of an oxygen concentration sensor having a sensor. a step of inputting inspection result information including whether or not an alarm is issued when a gas with a different oxygen concentration designed to a predetermined value is sprayed on the sensor of the target oxygen concentration sensor, and information on the measurement environment of the sensor; a step of correcting the design value of the oxygen concentration using the measurement environment information to the oxygen concentration when the gas blows onto the sensor; and based on the inspection result information and the correction value of the oxygen concentration in the gas. and classifying the quality status of the oxygen concentration sensor by using a method.
 上記課題を解決するため、一実施形態に係るプログラムは、コンピュータを、上記感知器状態分類装置として機能させる。 In order to solve the above problems, a program according to one embodiment causes a computer to function as the sensor state classification device.
 本開示によれば、無駄な換気コストをかけることなく、多様な劣化パターンの発生有無を簡易な工程で判定して分類することができる。 According to the present disclosure, the presence or absence of occurrence of various deterioration patterns can be determined and classified in a simple process without incurring wasteful ventilation costs.
一実施形態に係る感知器状態分類装置の構成例を示すブロック図である。1 is a block diagram showing a configuration example of a sensor state classification device according to an embodiment; FIG. 一実施形態に係る感知器状態分類装置が実行する感知器状態分類方法の一例を示すフローチャートである。4 is a flow chart showing an example of a sensor state classification method performed by a sensor state classification device according to an embodiment; 作業者が手動で感知器の点検を実施する手順を示すフローチャートである。It is a flowchart which shows the procedure by which an operator manually implements inspection of a sensor. 作業者が点検結果を記録する書式の一例を示す表である。4 is a table showing an example of a format in which an operator records inspection results; 感知器の品質状態を分類する手順の詳細を示すフローチャートである。Fig. 10 is a flow chart detailing the procedure for classifying the quality state of a sensor; 感知器の品質状態の詳細を示す表である。Fig. 3 is a table detailing the quality status of the sensors; 使用期間が5年未満の感知器の品質状態を説明する概略図である。1 is a schematic diagram illustrating the quality state of a sensor less than 5 years old; FIG. 使用期間が5年以上X年未満の感知器の品質状態を説明する概略図である。It is a schematic diagram explaining the quality state of a sensor whose usage period is 5 years or more and less than X years. 使用期間が5年以上X年未満の感知器の品質状態を説明する概略図である。It is a schematic diagram explaining the quality state of a sensor whose usage period is 5 years or more and less than X years. 感知器状態分類装置として機能するコンピュータの概略構成を示すブロック図である。1 is a block diagram showing a schematic configuration of a computer functioning as a sensor state classifying device; FIG. ジルコニアセンサの反応特性(V-I特性)を示すグラフである。5 is a graph showing reaction characteristics (VI characteristics) of a zirconia sensor; 劣化パターン1(センサの経年劣化による出力値の低下)を示すグラフである。10 is a graph showing deterioration pattern 1 (decrease in output value due to aged deterioration of the sensor). 劣化パターン2(センサへの熱衝撃又は機械的衝撃の印加による出力値の上昇)を示すグラフである。10 is a graph showing deterioration pattern 2 (increase in output value due to application of thermal shock or mechanical shock to the sensor); 劣化パターン3(センサの気体拡散孔を不純物等が塞ぐことによる出力値の低下)を示すグラフである。10 is a graph showing deterioration pattern 3 (decrease in output value due to impurities clogging the gas diffusion holes of the sensor).
 以下、一実施形態に係る感知器状態分類装置を、詳細に説明する。本発明は、以下の実施形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。 The sensor state classification device according to one embodiment will be described in detail below. The present invention is not limited to the following embodiments, and various modifications can be made within the scope of the gist of the present invention.
 図1に示すように、一実施形態に係る感知器状態分類装置1は、現地測定結果入力部11と、記憶部12と、ガス濃度補正部13と、感知器状態分類部14と、結果表示部15と、を備える。感知器状態分類装置1は、センサを有する酸素濃度感知器の品質状態を分類する。感知器状態分類装置1は、ジルコニア素子を用いたセンサを有する酸素濃度感知器の品質状態を分類してもよい。以下、「酸素濃度感知器」を単に「感知器」と称する。 As shown in FIG. 1, the sensor state classification device 1 according to one embodiment includes a field measurement result input unit 11, a storage unit 12, a gas concentration correction unit 13, a sensor state classification unit 14, and a result display. a part 15; A sensor status classifier 1 classifies the quality status of an oxygen concentration sensor having a sensor. The sensor status classification device 1 may classify the quality status of an oxygen concentration sensor having a sensor using a zirconia element. Hereinafter, the "oxygen concentration sensor" is simply referred to as "sensor".
 現地測定結果入力部11は、点検の対象となる感知器i(以下、iは感知器個々を識別する番号を示す)のセンサに所定値に設計された異なる酸素濃度のガスを吹きかけた際のアラーム発報の有無、及び前記センサの測定環境情報を含む点検結果情報を入力する。  点検結果情報は、センサに対して、感知器iがアラームを発する閾値未満に設計された酸素濃度のガスを所定時間吹きかけた場合と、該閾値以上に設計された酸素濃度のガスを所定時間吹きかけた場合、のそれぞれについて、感知器iがアラームを発するか否かを検査した結果を含む情報である。具体的には、点検結果情報は、設置環境中の温度、湿度、気圧の測定値、2つの酸素濃度(値α、β)のガスを感知器のセンサに吹きかけた際のアラーム発報の有無、点検に使用されたガス中の酸素濃度の値α、β、感知器の使用期間x_i、感知器の使用限界年数X、である。現地測定結果入力部11は、取得した点検結果情報を記憶部12へ送信する。尚、入力されるアラーム発報の有無の記録は、酸素濃度の値αのガスの場合にはチェック1に、酸素濃度の値βのガスの場合にはチェック2に記載される。チェック1では、アラーム無の場合に、チェックマークが記録され、アラーム有の場合には、チェックマークが記録されない。チェック2では、アラーム有の場合に、チェックマークが記録され、アラーム無の場合には、チェックマークが記録されない。 The on-site measurement result input unit 11 displays the results when gases with different oxygen concentrations designed to have predetermined values are sprayed on the sensor of the sensor i to be inspected (hereafter, i indicates a number that identifies each sensor). Check result information including presence/absence of an alarm and measurement environment information of the sensor is input. The inspection result information is obtained by spraying a gas with an oxygen concentration designed to be less than the threshold value at which the sensor i issues an alarm for a predetermined time, and spraying a gas with an oxygen concentration greater than the threshold value for a predetermined time. This information includes the result of checking whether or not the sensor i issues an alarm for each of the following cases. Specifically, the inspection result information includes the measured values of temperature, humidity, and air pressure in the installation environment, and whether or not an alarm is issued when the gas of two oxygen concentrations (values α and β) is sprayed on the sensor of the detector. , the oxygen concentration values α and β in the gas used for inspection, the service period x_i of the sensor, and the service life limit X of the sensor. The on-site measurement result input unit 11 transmits the acquired inspection result information to the storage unit 12 . The input record of whether or not an alarm has been issued is entered in check 1 in the case of gas with oxygen concentration value α, and in check 2 in the case of gas with oxygen concentration value β. In check 1, a check mark is recorded when there is no alarm, and no check mark is recorded when there is an alarm. In check 2, a check mark is recorded when there is an alarm, and no check mark is recorded when there is no alarm.
 記憶部12は、現地測定結果入力部11より送信された点検結果情報を記憶する。また、記憶部12は、点検の対象となる感知器iごとの、温度、湿度、気圧の測定値、及び点検に使用されたガス中の酸素濃度の設計値α、βをガス濃度補正部13へ送信する。また、記憶部12は、ガス濃度補正部13より送信された酸素濃度の補正値α_i、β_iを記憶する。その後、記憶部12は、感知器状態分類部14へ点検の対象となる感知器iごとの酸素濃度の補正値α_i、β_i、チェック1の結果、チェック2の結果、感知器の使用期間x_i、使用限界年数Xを送信する。その後、記憶部12は、感知器状態分類部14より感知器iごとの感知器状態n_iを受け取り、記憶する。また、記憶部12は、結果表示部15に感知器iの番号及び感知器状態n_iを送信する。 The storage unit 12 stores the inspection result information transmitted from the on-site measurement result input unit 11. In addition, the storage unit 12 stores the measured values of temperature, humidity, and atmospheric pressure, and the design values α and β of the oxygen concentration in the gas used for inspection, for each sensor i to be inspected. Send to The storage unit 12 also stores the oxygen concentration correction values α_i and β_i transmitted from the gas concentration correction unit 13 . After that, the storage unit 12 supplies the sensor state classification unit 14 with the oxygen concentration correction values α_i and β_i for each sensor i to be inspected, the result of check 1, the result of check 2, the usage period x_i of the sensor, Transmit the maximum number of years of use X. After that, the storage unit 12 receives the sensor state n_i for each sensor i from the sensor state classification unit 14 and stores it. The storage unit 12 also transmits the number of the sensor i and the sensor state n_i to the result display unit 15 .
 ガス濃度補正部13は、上述の測定環境情報を用いて酸素濃度の設計値α、βをガスがセンサに吹きかかった際の酸素濃度α_i、β_iに補正する。具体的には、ガス濃度補正部13は、記憶部12より送信された点検の対象となる感知器iごとの、温度、湿度、気圧の測定値、及び点検に使用されたガス中の酸素濃度の値α、βを用い、点検の対象となる個々の感知器iごとの酸素濃度の補正値α_i、β_iを算出する。また、ガス濃度補正部13は、算出された感知器iごとの酸素濃度の補正値α_i、β_iを記憶部12へ送信する。 The gas concentration correction unit 13 corrects the design values α and β of the oxygen concentration to the oxygen concentrations α_i and β_i when the gas blows onto the sensor using the measurement environment information described above. Specifically, the gas concentration correction unit 13 calculates the measured values of temperature, humidity, and atmospheric pressure for each sensor i to be inspected, which are transmitted from the storage unit 12, and the oxygen concentration in the gas used for inspection. are used to calculate correction values α_i and β_i of the oxygen concentration for each sensor i to be inspected. The gas concentration correction unit 13 also transmits the calculated oxygen concentration correction values α_i and β_i for each sensor i to the storage unit 12 .
 感知器状態分類部14は、記憶部12より送信された点検結果情報及びガス濃度補正部により補正された酸素濃度の補正値α_i、β_iに基づいて、点検の対象となる感知器iの品質状態n_iを分類する。また、感知器状態分類部14は、感知器iの品質状態n_iを記憶部12に送信する。 The sensor state classification unit 14 classifies the quality state of the sensor i to be inspected based on the inspection result information transmitted from the storage unit 12 and the oxygen concentration correction values α_i and β_i corrected by the gas concentration correction unit. Classify n_i. Also, the sensor state classification unit 14 transmits the quality state n_i of the sensor i to the storage unit 12 .
 感知器状態分類部14が分類する感知器iの品質状態n_iとは、図6に分類されているように、感知器iが正常な状態;劣化パターン1(センサの経年劣化による出力値の低下)の発生、劣化パターン2(センサへの熱衝撃又は機械的衝撃の印加による出力値の上昇)の発生、劣化パターン3(センサの気体拡散孔を不純物等が塞ぐことによる出力値の低下)の発生、又はこれら複数の状態の併存する状態;感知器iが使用限界に達している状態をいう。以下、「酸素濃度感知器(感知器)の品質状態」を「感知器の状態」と称する。 The quality state n_i of the sensor i classified by the sensor state classification unit 14 is, as classified in FIG. 6, the normal state of the sensor i; ), occurrence of deterioration pattern 2 (increase in output value due to application of thermal or mechanical impact to the sensor), and deterioration pattern 3 (decrease in output value due to impurities clogging the gas diffusion holes of the sensor). Occurrence, or a combination of these conditions; refers to the condition in which sensor i is at its limit of use. Hereinafter, the "quality state of the oxygen concentration sensor (sensor)" will be referred to as the "sensor state".
 感知器状態分類部14は、限界電流値が発生する最小の電圧値が閾値を超える場合に、センサの経年劣化による出力値の低下と分類する。図12に示すように、経年使用によってセンサの酸素イオン伝導性が低下し、正常に反応することが困難になると、限界電流値が発生する最小の電圧値が高電圧側にシフトし、(1)→(2)→(3)のようにV-I特性のグラフが変化する。このフラット域開始電圧のシフトが、(3)のグラフのように監視電圧値を超えると、センサの出力値が低下する。例えば、(4)では、酸素濃度18%のグラフにおいてフラット域開始電圧と監視電圧が一致している。この場合、監視電圧が酸素濃度18%以上のフラット域と交点を持つことはなく、常に(4)と酸素濃度18%のフラット域開始時のセンサ出力値(酸素濃度18%の際の限界電流値)と接点を持つ。このため、実際の酸素濃度が18%以上であるにも関わらず、センサは酸素濃度18%と出力する。感知器状態分類部14は、かかる出力値の低下をセンサの経年劣化による出力値の低下と分類する。 The sensor state classification unit 14 classifies the output value as a decrease due to aging deterioration of the sensor when the minimum voltage value at which the limit current value is generated exceeds the threshold value. As shown in FIG. 12, when the oxygen ion conductivity of the sensor decreases due to long-term use and it becomes difficult to respond normally, the minimum voltage value at which the limiting current value occurs shifts to the high voltage side, and (1 )→(2)→(3). When the shift of the flat region start voltage exceeds the monitoring voltage value as shown in graph (3), the output value of the sensor decreases. For example, in (4), the flat region start voltage and the monitoring voltage match in the graph for the oxygen concentration of 18%. In this case, the monitored voltage never crosses the flat region where the oxygen concentration is 18% or more, and is always (4) and the sensor output value at the start of the flat region where the oxygen concentration is 18% (limit current when the oxygen concentration is 18% value). Therefore, the sensor outputs an oxygen concentration of 18% even though the actual oxygen concentration is 18% or more. The sensor state classification unit 14 classifies such a decrease in the output value as a decrease in the output value due to aged deterioration of the sensor.
 感知器状態分類部14は、限界電流値が上昇が閾値を超える場合に、センサへの熱衝撃又は機械的衝撃の印加による出力値の上昇と分類する。図13に示すように、センサに大量の酸素が流れ込み、その量をコントロールできなくなると、限界電流値が上昇する。例えば、図13の例でいうと、実際の酸素濃度が18%であるにも関わらず、センサは酸素濃度30%を出力する。かかる場合、真の酸素濃度よりも高い酸素濃度を出力してしまうため、仮に機器設置環境の酸素濃度が人体に悪影響を及ぼすような状況になっていたとしても、アラームが発報されないという危険な状態を招いてしまうことが危惧される。感知器状態分類部14は、かかる出力値の上昇をセンサへの熱衝撃又は機械的衝撃の印加による出力値の上昇と分類する。 The sensor state classification unit 14 classifies the increase in the output value due to the application of thermal shock or mechanical shock to the sensor when the increase in the limit current value exceeds the threshold. As shown in FIG. 13, when a large amount of oxygen flows into the sensor and the amount cannot be controlled, the limiting current value increases. For example, in the example of FIG. 13, the sensor outputs an oxygen concentration of 30% even though the actual oxygen concentration is 18%. In such a case, an oxygen concentration higher than the true oxygen concentration is output, so even if the oxygen concentration in the environment where the equipment is installed is in a situation that adversely affects the human body, there is a danger that an alarm will not be issued. There is a fear that it will lead to a situation. The sensor state classification unit 14 classifies such an increase in output value as an increase in output value due to the application of thermal shock or mechanical shock to the sensor.
 感知器状態分類部14は、センサが出力する酸素濃度の低下が閾値を超える場合に、センサの気体拡散孔を不純物等が塞ぐことによる出力値の低下と分類する。センサはこの気体拡散孔より吸入した酸素に反応して酸素濃度を測定するが、この部分を付着した不純物が塞いでしまった場合、酸素の吸入が困難となるため、酸素濃度が低く出力されてしまう。例えば、図14に示すように、実際の酸素濃度が20%であってもセンサは酸素濃度を15%と出力する。よって、この劣化パターンの場合、真の酸素濃度よりも低い値が出力されてしまい、実際の環境は人体に影響を与えるような酸素濃度の低下がないにも関わらず、アラームが発報される可能性がある。測定器がアラームを発報した場合、設置環境が危険な状態であると推測されるため、換気等を実施し酸素濃度を向上させる必要性があるが、もしこの劣化パターンが発生してしまうと、酸素濃度の改善は本来不要であるため無駄なコストがかかってしまう。感知器状態分類部14は、かかる出力値の低下をセンサの気体拡散孔を不純物等が塞ぐことによる出力値の低下と分類する。 When the decrease in oxygen concentration output by the sensor exceeds the threshold, the sensor state classification unit 14 classifies it as a decrease in the output value due to impurities clogging the gas diffusion holes of the sensor. The sensor reacts to the oxygen sucked through this gas diffusion hole and measures the oxygen concentration, but if this part is clogged with adhering impurities, it becomes difficult to suck in oxygen, so the oxygen concentration is output low. put away. For example, as shown in FIG. 14, the sensor outputs an oxygen concentration of 15% even if the actual oxygen concentration is 20%. Therefore, in the case of this deterioration pattern, a value lower than the true oxygen concentration is output, and an alarm is issued even though the actual environment does not have a decrease in oxygen concentration that affects the human body. there is a possibility. If the measuring instrument issues an alarm, it is presumed that the installation environment is in a dangerous state, so it is necessary to improve the oxygen concentration by performing ventilation, etc. , the improvement of the oxygen concentration is essentially unnecessary, resulting in unnecessary costs. The sensor state classification unit 14 classifies such a decrease in the output value as a decrease in the output value due to impurities clogging the gas diffusion holes of the sensor.
 結果表示部15は、記憶部12より送信された情報を表示する。 The result display unit 15 displays the information transmitted from the storage unit 12.
 図2は、一実施形態に係る感知器状態分類装置1が実行する感知器状態分類方法の一例を示すフローチャートである。 FIG. 2 is a flowchart showing an example of a sensor state classification method executed by the sensor state classification device 1 according to one embodiment.
 ステップS10では、作業者が、感知器の点検を手動で実施し、点検結果情報を記録する。 In step S10, the operator manually inspects the sensor and records the inspection result information.
 ステップS20では、現地測定結果入力部11が、点検結果情報を入力する。 In step S20, the on-site measurement result input unit 11 inputs inspection result information.
 ステップS30では、ガス濃度補正部13が、酸素濃度を補正する。 At step S30, the gas concentration correction unit 13 corrects the oxygen concentration.
 ステップS40では、感知器状態分類部14が、感知器の状態を分類する。 In step S40, the sensor state classification unit 14 classifies the state of the sensor.
 以下に感知器状態分類方法の各ステップの詳細を図3~図9を参照して説明する。 Details of each step of the sensor state classification method will be described below with reference to FIGS.
 (感知器の点検の実施)
 ステップS10における感知器の点検の実施の詳細を説明する。点検の対象となる感知器の設置年度を明らかにする。また、図3に示すフローチャートに基づいて、現地点検が行われる。
(Implementation of detector inspection)
The details of performing the inspection of the sensors in step S10 will now be described. Clarify the installation year of the detectors to be inspected. Further, on-site inspection is performed based on the flow chart shown in FIG.
 ステップS101では、作業者が、感知器設置環境中の温度、湿度、気圧を測定して記録する。 In step S101, the worker measures and records the temperature, humidity, and atmospheric pressure in the sensor installation environment.
 ステップS102では、作業者が、点検に使用されたガス中の酸素濃度の値、感知器の使用期間、及び感知器の使用限界年数を記録する。 In step S102, the operator records the value of the oxygen concentration in the gas used for inspection, the usage period of the sensor, and the usage limit of the sensor.
 ステップS103では、作業者が、酸素濃度の値αのガスを感知器のセンサにt秒間吹きかける。酸素濃度の値αは18%未満と設定したが、感知器がアラームを発報する閾値をAとすると、下記のステップ104で、酸素濃度の値αを使用し求める酸素濃度の補正値α_iについてA>α_iを満たす酸素濃度の値αのガスであればよい。また、t秒間とすることで感知器ごとの個体差に応じてガスを吹きかける時間を変更することが可能となる。 In step S103, the operator blows gas with an oxygen concentration value α onto the sensor of the sensor for t seconds. The oxygen concentration value α is set to be less than 18%, but assuming that the threshold value at which the sensor issues an alarm is A, in step 104 below, the oxygen concentration correction value α_i obtained using the oxygen concentration value α Any gas having an oxygen concentration value α that satisfies A>α_i may be used. Also, by setting the duration to t seconds, it is possible to change the time for which the gas is blown according to the individual difference of each sensor.
 ステップS104では、作業者が、アラームが出るか否かを判定する。 In step S104, the operator determines whether or not an alarm will be issued.
 ステップS104でアラームが出なかった場合には、ステップS105では、作業者がチェック1にチェックマークを記録をして点検を終了する。 If no alarm is issued in step S104, in step S105, the operator places a check mark in check 1 and finishes the inspection.
 ステップS104でアラームが出た場合には、ステップS106では、作業者が酸素濃度の値βのガスをセンサにt秒間吹きかける。下記のステップ30でβを使用し求めるβ_iについてA<β_iを満たす酸素濃度の値βのガスであればよい。 If an alarm is issued in step S104, in step S106, the operator sprays gas with an oxygen concentration value β onto the sensor for t seconds. A gas having an oxygen concentration value β that satisfies A<β_i for β_i obtained by using β in step 30 below may be used.
 ステップS107では、作業者が、アラームが出るか否かを判定する。 In step S107, the operator determines whether or not an alarm will be issued.
 ステップS107でアラームが出た場合には、ステップS108では、作業者がチェック2にチェックマークを記録をして点検を終了する。一方で、アラームが出なかった場合、チェックマークをつけずに点検を終了する。 If an alarm is issued in step S107, in step S108, the operator places a check mark in check 2 and finishes the inspection. On the other hand, if no alarm is issued, the inspection is terminated without adding a check mark.
 ステップS101~ステップS108で実施した点検の結果は図4の表のようにまとめるとよい。 The results of the inspections performed in steps S101 to S108 should be summarized as shown in the table in FIG.
(点検結果情報の入力)
 ステップS20における点検結果情報の入力について詳細を説明する。現地測定結果入力部11は、ステップS10(ステップS101~S108)で実施した点検結果(対象感知器No.iごとの、温度、湿度、気圧、チェック1の結果、チェック2の結果)の記録と点検に使用したガス中の酸素濃度の値α、β、感知器の使用期間x_i、使用限界年数Xを入力する。ここで、使用限界年数Xとは、図12の劣化パターン1が進行し、(4)の状態になるまでの年数と定義する。これ以上劣化が進行すると、すべての酸素濃度18%以上の数値を酸素濃度18%未満の数値として出力してしまうため、常時アラームの発報が続く状態となる。以下、チェック1にチェックマークがついていた場合をm_1=1、ついていない場合をm_1=0、チェック2にチェックマークがついていた場合をm_2=1、ついていない場合をm_2=0、とする。
(Input of inspection result information)
Details of the input of inspection result information in step S20 will be described. The field measurement result input unit 11 records the inspection results (temperature, humidity, air pressure, check 1 result, check 2 result for each target sensor No. i) performed in step S10 (steps S101 to S108) and Enter the oxygen concentration values α and β in the gas used for inspection, the usage period x_i of the sensor, and the usage limit years X. Here, the service life limit X is defined as the number of years until deterioration pattern 1 shown in FIG. 12 progresses to the state of (4). If the deterioration progresses any further, all values of oxygen concentration of 18% or more will be output as values of oxygen concentration of less than 18%, and the alarm will continue to be issued. In the following, m_1=1 if the check mark is attached to the check 1, m_1=0 if the check mark is not attached, m_2=1 if the check mark is attached to the check 2, and m_2=0 if the check mark is not attached.
(酸素濃度の補正)
 ステップS30における酸素濃度の補正について詳細を説明する。酸素濃度がα%およびβ%となるように設計されたガスであっても、センサの測定環境の影響により、実際にセンサに吹きかけた際、ガスの酸素濃度が大小する。ガス中の酸素濃度は、通常、乾燥状態で示されている。センサに触れたガス中には湿度に対する水蒸気が含まれている。そこで、センサに実際に吹きかかったガスの酸素濃度の補正値α_i、β_iを下記の式(1)~(3)から算出する。
Figure JPOXMLDOC01-appb-M000001
 ここで、P_iは気圧(kPa)、P_iは飽和水蒸気圧(kPa)、S_iは相対湿度(%)、T_iは温度(°C)を表す。
(Correction of oxygen concentration)
Details of the correction of the oxygen concentration in step S30 will be described. Even if the gas is designed to have oxygen concentrations of α% and β%, the oxygen concentration of the gas will vary when it is actually sprayed onto the sensor due to the influence of the measurement environment of the sensor. Oxygen concentrations in gases are usually given on a dry basis. The gas that touches the sensor contains water vapor relative to humidity. Therefore, correction values α_i and β_i of the oxygen concentration of the gas actually blown onto the sensor are calculated from the following equations (1) to (3).
Figure JPOXMLDOC01-appb-M000001
Here, P_i represents atmospheric pressure (kPa), P_i * represents saturated water vapor pressure (kPa), S_i represents relative humidity (%), and T_i represents temperature (°C).
(感知器の状態の分類)
 ステップS40における感知器の状態の分類について詳細を説明する。ここでは、ステップS20で入力され、ステップS30で出力された結果を用い、図5に示すフローチャートで感知器の状態n_iを判定して、{A,B,C,D,E,F,G,H}に分類するする。本発明の感知器状態分類方法は、ジルコニア素子を用いたセンサを備える酸素濃度感知器の状態を分類してもよい。各状態の詳細は図6の表に示す。
(Classification of sensor status)
The classification of the state of the sensor in step S40 will be described in detail. Here, the results input in step S20 and output in step S30 are used to determine the state n_i of the sensor according to the flow chart shown in FIG. H}. The sensor status classification method of the present invention may classify the status of an oxygen concentration sensor comprising a sensor using a zirconia element. Details of each state are shown in the table of FIG.
 ステップS401では、感知器状態分類部14が、点検結果のチェック1にチェックマークがあるかどうかを判定する。チェックマークがある場合(m_1=1)、酸素濃度α%(補正後α_i%)のガスでアラームが出ていないため、感知器状態分類部14は、感知器が図13のグラフに示す劣化パターン2の状態にあると判定して、感知器の状態は、n_i=Gであると分類する。一方で、チェックマークがついていない場合(m_1=0)、ステップS402ヘ進む。 In step S401, the sensor state classification unit 14 determines whether there is a check mark in check 1 of the inspection result. If there is a checkmark (m_1=1), no alarm is issued for the gas with the oxygen concentration α% (α_i% after correction), so the sensor state classification unit 14 determines that the sensor has the deterioration pattern shown in the graph of FIG. Having determined to be in state 2, the state of the sensor is classified as n_i=G. On the other hand, if there is no checkmark (m_1=0), the process proceeds to step S402.
 ステップS402では、感知器状態分類部14が、点検の対象となる感知器の使用期間x_iについて、x_i>5年かどうかを判定する。ここでは現用の酸欠感知器のV-I特性が図12の(2)の状態になる期間が5年のため、5年という年数を設定しているが、これは使用中の個々の感知器に合わせて年数を設計する必要がある。使用期間が5年以上でなかった場合、V-I特性は図2の(2)の状態に達してしていないと判定できるため、劣化パターン1は発生していないと判定することが可能である(補足として、図12の(2)以降の状態を劣化パターン1の発生と定義する)。x_i>5年を満たさない場合、ステップS403へ進む。一方、x_i>5年を満たす場合、ステップS406へ進む。 In step S402, the sensor state classification unit 14 determines whether x_i>5 years for the usage period x_i of the sensor to be inspected. Here, the period of time when the VI characteristic of the current oxygen deficiency sensor is in the state of (2) in FIG. 12 is five years, so the number of years is set to five years. It is necessary to design the number of years according to the vessel. If the period of use is less than 5 years, it can be determined that the VI characteristic has not reached the state of (2) in FIG. 2, so it can be determined that deterioration pattern 1 has not occurred. (As a supplement, the state after (2) in FIG. 12 is defined as occurrence of deterioration pattern 1). If x_i>5 years is not satisfied, the process proceeds to step S403. On the other hand, if x_i>5 years is satisfied, the process proceeds to step S406.
 ステップS403では、感知器状態分類部14が、酸素濃度の値βの補正値β_i>18+γを満たすかどうかを判定する。ここでγは、劣化パターン3による酸素濃度出力の低下許容値を表す。例えば、酸素濃度の低下が0.5まで許容できる場合、γ=0.5となる。尚、図7に示すように、β_i>18+γ(iの領域)か、β_i≦18+γ(iiの領域)かによって、チェック2にチェックがついた際の判定が変わる。β_i>18+γ(iの領域)を満たす場合、ステップS404へ進む。β_i≦18+γ(iiの領域)である場合、ステップS405へ進む。 In step S403, the sensor state classification unit 14 determines whether or not the correction value β_i>18+γ of the oxygen concentration value β is satisfied. Here, γ represents an allowable decrease in oxygen concentration output due to deterioration pattern 3. For example, if a decrease in oxygen concentration of up to 0.5 is permissible, then γ=0.5. Incidentally, as shown in FIG. 7, the judgment when the check 2 is checked changes depending on whether β_i>18+γ (region i) or β_i≦18+γ (region ii). If β_i>18+γ (region of i) is satisfied, the process proceeds to step S404. If β_i≦18+γ (area of ii), the process proceeds to step S405.
 ステップS404では、チェック2にチェックマークがついていた場合(m_2=1)、酸欠感知器は図14の劣化パターン3により、γ以上の出力低下が見込まれるため、感知器状態分類部14が、感知器の状態はn_i=C(劣化パターン3のみ)であると分類する。一方、チェック2にチェックマークがついていなかった場合(m_2=0)、γ以上の出力低下があるかどうかを判定できないため、感知器状態分類部14は、感知器の状態はn_i=E(正常、又は劣化パターン3のみ)であると分類する。 In step S404, if there is a checkmark in check 2 (m_2=1), the output of the oxygen deficiency sensor is expected to decrease by γ or more due to deterioration pattern 3 in FIG. The sensor state is classified as n_i=C (degradation pattern 3 only). On the other hand, if there is no check mark in check 2 (m_2=0), it cannot be determined whether or not there is an output decrease of γ or more, so the sensor state classification unit 14 determines that the state of the sensor is n_i=E ( classified as normal or deterioration pattern 3 only).
 ステップS405では、チェック2にチェックマークがついていた場合(m_2=1)、γ以上の出力低下があるかどうかを判定できないため、感知器状態分類部14が、感知器の状態はn_i=E(正常、又は劣化パターン3のみ)であると分類する。一方、チェック2にチェックがついていなかった場合(m_2=0)、γ以上の出力低下がないため、感知器状態分類部14は、感知器の状態はn_i=A(正常)であると分類する。  In step S405, if there is a checkmark in check 2 (m_2=1), it cannot be determined whether or not there is an output decrease of γ or more. classified as normal or deterioration pattern 3 only). On the other hand, if the check 2 is unchecked (m_2=0), the sensor state classifier 14 classifies the sensor state as n_i=A (normal) because there is no output drop of γ or more. do. 
 ステップS406では、感知器状態分類部14が、使用期間が5年以上である場合、図12の(3)に示す劣化パターン1が発生していると判定する。その後、感知器状態分類部14は、感知器の使用期間x_i、使用限界年数Xに関してx_i>Xを満たすか否かを判定する。使用限界年数Xは実験値等より得るのがよい。この条件を満たしていた場合、グラフは図12の(5)に示すようになり、感知器は酸素濃度18%以上をすべて18%未満と判定してしまっており、常時アラームの発報が続く状態となる。よって、感知器状態分類部14は、感知器の状態はn_i=H(使用限界に達しているため使用不可)と分類する。一方、使用期間が5年以上でなかった場合、ステップS407へ進む。 In step S406, the sensor state classification unit 14 determines that deterioration pattern 1 shown in (3) of FIG. 12 occurs when the period of use is five years or more. After that, the sensor state classification unit 14 determines whether x_i>X is satisfied for the usage period x_i and the usage limit years X of the sensor. It is preferable to obtain the service life limit X from an experimental value or the like. If this condition is satisfied, the graph will be shown in (5) of FIG. 12, and the sensor will have determined that the oxygen concentration of 18% or more is all less than 18%, and the alarm will continue to be issued at all times. state. Therefore, the sensor state classification unit 14 classifies the state of the sensor as n_i=H (cannot be used because the usage limit has been reached). On the other hand, if the usage period is not five years or more, the process proceeds to step S407.
 ステップS407では、感知器状態分類部14が、β_i>18+γかどうかを判定する。この条件を満たす場合、ステップS408へ進む。一方、この条件を満たさない場合、ステップS411へ進む。 In step S407, the sensor state classification unit 14 determines whether β_i>18+γ. If this condition is satisfied, the process proceeds to step S408. On the other hand, if this condition is not satisfied, the process proceeds to step S411.
 ステップS408では、感知器の状態を分類するにあたり、図8に示すような場合分け(i,ii,iii領域)を行う。ここでy_iは図12で示すような劣化((2)→・・・(4))の進行度を表し、例えば、(2)の状態であれば、酸素濃度21%以上を酸素濃度21%と示す状態のためy_i=21である。また、(4)の状態であれば酸素濃度18%以上を酸素濃度18%と示す状態のため、y_i=18である。また、18(=A)≦y_i≦21である。また、y_iは例えば以下の式(4)により求められる。
Figure JPOXMLDOC01-appb-M000002
In step S408, in order to classify the state of the sensor, cases (i, ii, iii regions) as shown in FIG. 8 are performed. Here, y_i represents the progress of deterioration ((2)→(4)) as shown in FIG. , y_i=21. In the state (4), y_i=18 because the oxygen concentration of 18% or more is indicated as 18%. Also, 18(=A)≤y_i≤21. Moreover, y_i is calculated|required by the following formulas (4), for example.
Figure JPOXMLDOC01-appb-M000002
 図12の(2)から(4)までの進行が等速度であると仮定した際、このような形でy_iを表現可能であるが、実験値等を用いて、y_iを正確に導出し使用するのがよい。β_i>18+γを満たす場合、y_iは図8のi、ii、iiiのいずれかの領域に存在する。 Assuming that the progress from (2) to (4) in FIG. 12 is constant, y_i can be expressed in this way. Better to If β_i>18+γ is satisfied, y_i exists in any one of regions i, ii, and iii in FIG.
 ステップS408では、感知器状態分類部14が、y_i>18+γ(y_iが存在する領域が図8のi又はii)を満たすかどうかを判定する。本条件を満たす場合、ステップS409へ進む。本条件を満たさない場合、すなわち、y_i≦18+γ(y_iが存在する領域が図8のiii)である場合、ステップS410へ進む。 In step S408, the sensor state classification unit 14 determines whether y_i>18+γ (the region where y_i exists is i or ii in FIG. 8). If this condition is satisfied, the process proceeds to step S409. If this condition is not satisfied, that is, if y_i≦18+γ (the region where y_i exists is iii in FIG. 8), the process proceeds to step S410.
 ステップS409では、感知器状態分類部14が、図8において、y_iが存在する領域がiである場合(1)と、iiである場合(2)とについて、チェック2のチェックがあるか否かを判定し、感知器の状態を分類する。 In step S409, the sensor state classification unit 14 determines whether or not there is a check in check 2 for the case where the region where y_i exists is i (1) and the region where y_i exists (2) in FIG. and classify the state of the detector.
 (1)y_iが存在する領域が図8のiである場合、酸素濃度の補正値β_iのガスを吹きかけた時のセンサ出力はβ_iとなる。このとき、感知器状態分類部14は、チェック2のチェックマークがある場合(m_2=1)、間違いなくγ以上の出力低下があるため、パターン3の劣化が発生していると判定できる。したがって、感知器状態分類部14は、チェック2のチェックマークがある場合(m_2=1)、感知器の状態はn_i=D(劣化パターン1と3の併発)であると分類する。一方、チェック2のチェックマークがない場合(m_2=0)、感知器状態分類部14は、パターン3により劣化許容値γ以上の出力低下があるかどうかを判定することはできない。例えば、β_i=18.6、γ=0.5、y=18.7の時、β_iのガスをかけるとセンサは18.6と認識する。このため、感知器状態分類部14は、アラームが鳴らなかったとしてもγ以上の出力低下があるのか、γ以上0.6未満の出力低下があるのかは判定できない。よって、感知器状態分類部14は、感知器の状態はn_i=F(劣化パターン1のみ、又は劣化パターン1と3の併発)であると分類する。 (1) When the region where y_i exists is i in FIG. 8, the sensor output when the gas with the oxygen concentration correction value β_i is sprayed is β_i. At this time, if there is a checkmark of check 2 (m_2=1), the sensor state classification unit 14 can determine that deterioration of pattern 3 has occurred because there is definitely an output decrease of γ or more. Therefore, when there is a checkmark of check 2 (m_2=1), the sensor state classification unit 14 classifies the sensor state as n_i=D ( deterioration patterns 1 and 3 occur simultaneously). On the other hand, if there is no checkmark for check 2 (m_2=0), the sensor state classification unit 14 cannot determine whether or not there is an output decrease equal to or greater than the allowable deterioration value γ from pattern 3. For example, when β_i=18.6, γ=0.5, and y=18.7, the sensor recognizes 18.6 when the gas of β_i is applied. Therefore, even if the alarm does not sound, the sensor state classifying unit 14 cannot determine whether there is an output decrease of γ or more or an output decrease of γ or more and less than 0.6. Therefore, the sensor state classification unit 14 classifies the sensor state as n_i=F (only deterioration pattern 1 or both deterioration patterns 1 and 3).
 (2)y_iが存在する領域が図8のiiである場合、酸素濃度の補正値β_iのガスを吹きかけた時のセンサ出力はy_iとなる。この時、チェック2のチェックマークがある場合(m_2=1)、間違いなくγ以上の出力低下があるため、感知器状態分類部14は、パターン3の劣化が発生していると判定できる。したがって、感知器状態分類部14は、チェック2のチェックマークがある場合(m_2=1)、感知器の状態はn_i=D(劣化パターン1と3の併発)であると分類する。一方、チェック2のチェックがない場合(m_2=0)、感知器状態分類部14は、パターン3により劣化許容値γ以上の出力低下があるかどうかを判定することはできない。例えば、β_i=18.7、γ=0.5、y=18.6の時、酸素濃度の補正値β_iのガスをかけるとセンサは18.6と認識する。このため、感知器状態分類部14は、アラームが鳴らなかったとしてもγ以上の出力低下があるのか、γ以上0.6未満の出力低下があるのかを判定できない。よって、感知器状態分類部14は、感知器の状態はn_i=F(劣化パターン1のみ、又は劣化パターン1と3の併発)であると分類する。 (2) When the region where y_i exists is ii in FIG. 8, the sensor output when the gas with the oxygen concentration correction value β_i is sprayed is y_i. At this time, if there is a check mark for check 2 (m_2=1), the sensor state classification unit 14 can determine that deterioration of pattern 3 has occurred because there is definitely an output decrease of γ or more. Therefore, when there is a checkmark of check 2 (m_2=1), the sensor state classification unit 14 classifies the sensor state as n_i=D ( deterioration patterns 1 and 3 occur simultaneously). On the other hand, if there is no check in check 2 (m_2=0), the sensor state classification unit 14 cannot determine whether or not there is an output decrease equal to or greater than the allowable deterioration value γ according to pattern 3. For example, when β_i=18.7, γ=0.5, and y=18.6, the sensor recognizes 18.6 when the oxygen concentration correction value β_i is applied. Therefore, even if the alarm does not sound, the sensor state classifying unit 14 cannot determine whether there is an output decrease of γ or more or an output decrease of γ or more and less than 0.6. Therefore, the sensor state classification unit 14 classifies the sensor state as n_i=F (only deterioration pattern 1 or both deterioration patterns 1 and 3).
 ステップS410では、感知器状態分類部14が、図8において、y_iが存在する領域がiiiである場合について、チェック2のチェックマークがあるか否かを判定し、感知器の状態を分類する。y_iの存在する領域が図8のiiiである場合、酸素濃度の補正値β_iのガスを吹きかけた時のセンサ出力はy_iとなる。この場合、チェック2のチェックがついていたとしても、感知器状態分類部14は、パターン3により劣化許容値γ以上の出力低下があるかどうかを判定することはできない。例えば、β_i=18.6、γ=0.5、y=18.3の時、酸素濃度の補正値β_iのガスを吹きかけるとセンサは18.3と認識する。このため、感知器状態分類部14は、アラームが鳴ったとしてもγ以上の出力低下があるのか、0.3以上0.5未満の出力低下がありアラームが鳴っていたのかを判定できない。よって、感知器状態分類部14は、チェック2のチェックマークがある場合(m_2=1)、感知器の状態はn_i=F(劣化パターン1のみ、又は劣化パターン1と3の併発)であると分類する。一方で、チェック2にチェックマークがついていなかった場合(m_2=0)、感知器状態分類部14は、出力低下は間違いなくγ未満であると判定できるため、劣化はパターン1のみであり、感知器の状態はn_i=B(劣化パターン1のみ発生)であると分類する In step S410, the sensor state classification unit 14 determines whether or not there is a checkmark of check 2 for the case where the region where y_i exists is iii in FIG. 8, and classifies the state of the sensor. If the region where y_i exists is iii in FIG. 8, the sensor output when the gas with the oxygen concentration correction value β_i is sprayed is y_i. In this case, even if the check 2 is checked, the sensor state classification unit 14 cannot determine whether or not there is an output decrease equal to or greater than the deterioration allowable value γ from the pattern 3. For example, when β_i=18.6, γ=0.5, and y=18.3, the sensor recognizes 18.3 when the oxygen concentration correction value β_i is blown. Therefore, even if the alarm sounds, the sensor state classification unit 14 cannot determine whether the output has decreased by γ or more, or whether the alarm has sounded due to the output decrease of 0.3 or more and less than 0.5. Therefore, when there is a check mark of check 2 (m_2=1), the sensor state classification unit 14 determines that the sensor state is n_i=F (only deterioration pattern 1 or both deterioration patterns 1 and 3). Classify. On the other hand, if there is no check mark in check 2 (m_2=0), the sensor state classifying unit 14 can determine that the output decrease is definitely less than γ, so the deterioration is only pattern 1. Classify the state of the sensor as n_i=B (only degradation pattern 1 occurs)
 ステップS411では、感知器の状態を分類するにあたり、図9に示すような場合分け(i,ii,iii領域)を行う。感知器の使用期間が5年以上でなく、β_i>18+γを満たさない場合、y_iは図9のi、ii、iiiのいずれかの領域に存在する。 In step S411, when classifying the state of the sensor, cases (i, ii, iii areas) as shown in FIG. 9 are performed. If the sensor has not been used for more than 5 years and does not satisfy β_i>18+γ, y_i is in any of regions i, ii, and iii in FIG.
 ステップS411では、感知器状態分類部14が、図9において、y_iが存在する領域がiである場合(1)と、iiである場合(2)と、iiiである場合(3)について、チェック2のチェックマークがあるか否かを判定し、感知器の状態を分類する。 In step S411, the sensor state classification unit 14 checks whether the region in which y_i exists is i (1), ii (2), and iii (3) in FIG. Determine if there is a 2 check mark to classify the state of the sensor.
 (1)y_iが存在する領域が図9のiの場合、酸素濃度の補正値β_iのガスを吹きかけた時のセンサ出力はβ_iとなる。この時、感知器状態分類部14は、チェック2のチェックマークがある場合(m_2=1)、パターン3により劣化許容値γ以上の出力低下があるかどうかを判定することはできない。例えば、β_i=18.4、γ=0.5、y=18.7の時、β_iのガスを吹きかけるとセンサは18.4と認識する。このため、アラームが鳴ったとしてもγ以上の出力低下があるのか、0.4以上0.5未満の出力低下があるのかは判定できない。よって、感知器状態分類部14は、感知器の状態はn_i=F(劣化パターン1のみ、又は劣化パターン1と3の併発)であると分類する。一方、チェック2のチェックマークがない場合(m_2=0)、間違いなくγ以上の出力低下がないため、感知器状態分類部14は、パターン3の劣化が発生していないと判定することが可能であり、感知器の状態はn_i=Β(劣化パターン1のみ発生)であると分類する。 (1) When the region where y_i exists is i in FIG. 9, the sensor output when the gas with the oxygen concentration correction value β_i is sprayed is β_i. At this time, if there is a check mark for check 2 (m_2=1), the sensor state classifying unit 14 cannot determine whether or not there is an output decrease equal to or greater than the allowable deterioration value γ according to pattern 3. For example, when β_i=18.4, γ=0.5, and y=18.7, the sensor recognizes 18.4 when the gas of β_i is blown. Therefore, even if the alarm sounds, it cannot be determined whether there is an output decrease of γ or more, or whether there is an output decrease of 0.4 or more and less than 0.5. Therefore, the sensor state classification unit 14 classifies the sensor state as n_i=F (only deterioration pattern 1 or both deterioration patterns 1 and 3). On the other hand, if there is no checkmark for check 2 (m_2=0), there is definitely no output decrease of γ or more, so the sensor state classification unit 14 can determine that deterioration of pattern 3 has not occurred. , and the state of the sensor is classified as n_i=B (only degradation pattern 1 occurs).
(2)y_iが存在する領域が図9のiiの場合、酸素濃度の補正値β_iのガスを吹きかけた時のセンサ出力はβ_iとなる。この時、感知器状態分類部14は、チェック2のチェックマークがある場合(m_2=1)、パターン3により劣化許容値γ以上の出力低下があるかどうかを判定することはできない。例えば、β_i=18.3、γ=0.5、y=18.4の時、β_iのガスを吹きかけるとセンサは18.3と認識する。このため、アラームが鳴ったとしてもγ以上の出力低下があるのか、0.3以上0.5未満の出力低下があるのかは判定できない。よって、感知器状態分類部14は、感知器の状態はn_i=F(劣化パターン1のみ、又は劣化パターン1と3の併発)であると分類する。一方、チェック2のチェックマークがない場合(m_2=0)、間違いなくγ以上の出力低下がないため、感知器状態分類部14は、パターン3の劣化が発生していないと判定可能であり、感知器の状態はn_i=Β(劣化パターン1のみ発生)であると分類する。 (2) When the region where y_i exists is ii in FIG. 9, the sensor output when the gas with the oxygen concentration correction value β_i is sprayed is β_i. At this time, if there is a check mark for check 2 (m_2=1), the sensor state classifying unit 14 cannot determine whether or not there is an output decrease equal to or greater than the allowable deterioration value γ according to pattern 3. For example, when β_i=18.3, γ=0.5, and y=18.4, the sensor recognizes 18.3 when the gas of β_i is blown. Therefore, even if the alarm sounds, it cannot be determined whether there is an output decrease of γ or more, or whether there is an output decrease of 0.3 or more and less than 0.5. Therefore, the sensor state classification unit 14 classifies the sensor state as n_i=F (only deterioration pattern 1 or both deterioration patterns 1 and 3). On the other hand, if there is no check mark for check 2 (m_2=0), there is definitely no output drop of γ or more, so the sensor state classification unit 14 can determine that deterioration of pattern 3 has not occurred. The state of the sensor is classified as n_i=B (only degradation pattern 1 occurs).
(3)y_iが存在する領域が図9のiiiの場合、酸素濃度の補正値β_iのガスを吹きかけた時のセンサ出力はy_iとなる。この時、感知器状態分類部14は、チェック2のチェックマークがある場合(m_2=1)、パターン3により劣化許容値γ以上の出力低下があるかどうかを判定することはできない。例えば、β_i=18.4、γ=0.5、y=18.3の時、β_iのガスを吹きかけるとセンサは18.3と認識する。よって、アラームが鳴ったとしてもγ以上の出力低下があったのか、0.3以上0.5未満の出力低下があるのかは判定できない。よって、感知器状態分類部14は、感知器の状態はn_i=F(劣化パターン1のみ、又は劣化パターン1と3の併発)であると分類する。一方、チェック2のチェックマークがない場合(m_2=0)、間違いなくγ以上の出力低下がないため、感知器状態分類部14は、パターン3の劣化が発生していないと判定することが可能であり、感知器の状態はn_i=B(劣化パターン1のみ発生)であると分類する。つまり、β_i>18+γを満たさない場合は、y_i>18+γか否かを判定せずとも感知器の状態の分類が可能である。 (3) When the region where y_i exists is iii in FIG. 9, the sensor output when the gas with the oxygen concentration correction value β_i is sprayed is y_i. At this time, if there is a check mark for check 2 (m_2=1), the sensor state classifying unit 14 cannot determine whether or not there is an output decrease equal to or greater than the allowable deterioration value γ according to pattern 3. For example, when β_i=18.4, γ=0.5, and y=18.3, the sensor recognizes 18.3 when the gas of β_i is blown. Therefore, even if the alarm sounds, it cannot be determined whether the output has decreased by γ or more, or whether the output has decreased by 0.3 or more and less than 0.5. Therefore, the sensor state classification unit 14 classifies the sensor state as n_i=F (only deterioration pattern 1 or both deterioration patterns 1 and 3). On the other hand, if there is no checkmark for check 2 (m_2=0), there is definitely no output decrease of γ or more, so the sensor state classification unit 14 can determine that deterioration of pattern 3 has not occurred. , and the state of the sensor is classified as n_i=B (only degradation pattern 1 occurs). In other words, if β_i>18+γ is not satisfied, the state of the sensor can be classified without determining whether y_i>18+γ.
 感知器状態分類装置1によれば、無駄な換気コストをかけることなく、多様な劣化パターンの発生有無を簡易な工程で判定することができる。 According to the sensor state classification device 1, the presence or absence of various deterioration patterns can be determined in a simple process without spending unnecessary ventilation costs.
 また、上記の感知器状態分類装置1を機能させるために、プログラム命令を実行可能なコンピュータを用いることも可能である。図10は、感知器状態分類装置1として機能するコンピュータの概略構成を示すブロック図である。ここで、コンピュータ100は、汎用コンピュータ、専用コンピュータ、ワークステーション、PC(Personal Computer)、電子ノートパッドなどであってもよい。プログラム命令は、必要なタスクを実行するためのプログラムコード、コードセグメントなどであってもよい。 It is also possible to use a computer capable of executing program instructions in order to function the sensor state classification device 1 described above. FIG. 10 is a block diagram showing a schematic configuration of a computer that functions as the sensor state classification device 1. As shown in FIG. Here, the computer 100 may be a general-purpose computer, a dedicated computer, a workstation, a PC (Personal Computer), an electronic notepad, or the like. Program instructions may be program code, code segments, etc. for performing the required tasks.
 図10に示すように、コンピュータ100は、プロセッサ110と、記憶部としてROM(Read Only Memory)120、RΑM(Random Αccess Memory)130、及びストレージ140と、入力部150と、出力部160と、通信インターフェース(I/F)170と、を備える。各構成は、バス180を介して相互に通信可能に接続されている。上記の感知器状態分類装置1における現地測定結果入力部11は入力部150として構築されてもよい。 As shown in FIG. 10, the computer 100 includes a processor 110, a ROM (Read Only Memory) 120, a RAM (Random Access Memory) 130, and a storage 140 as storage units, an input unit 150, an output unit 160, and communication An interface (I/F) 170 is provided. Each component is communicatively connected to each other via a bus 180 . The on-site measurement result input unit 11 in the sensor state classification device 1 described above may be constructed as the input unit 150 .
 ROM120は、各種プログラム及び各種データを保存する。RΑM130は、作業領域として一時的にプログラム又はデータを記憶する。ストレージ140は、HDD(ard Disk Drive)又はSSD(Solid State Drive)により構成され、オペレーティングシステムを含む各種プログラム及び各種データを保存する。本開示では、ROM120又はストレージ140に、本開示に係るプログラムが保存されている。 The ROM 120 stores various programs and various data. The RAM 130 temporarily stores programs or data as a work area. The storage 140 is configured by an HDD (hard disk drive) or SSD (solid state drive) and stores various programs including an operating system and various data. In the present disclosure, the ROM 120 or the storage 140 stores programs according to the present disclosure.
 プロセッサ110は、具体的にはCPU(Central Processing Unit)、MPU(Micro Processing Unit)、GPU(Graphics Processing Unit)、DSP(Digital Signal Processor)、SoC(System on a Chip)などであり、同種又は異種の複数のプロセッサにより構成されてもよい。プロセッサ110は、ROM120又はストレージ140からプログラムを読み出し、RΑM130を作業領域としてプログラムを実行することで、上記各構成の制御及び各種の演算処理を行う。なお、これらの処理内容の少なくとも一部をハードウェアで実現することとしてもよい。 The processor 110 is specifically a CPU (Central Processing Unit), MPU (Micro Processing Unit), GPU (Graphics Processing Unit), DSP (Digital Signal Processor), SoC (System on a Chip), etc. may be configured by a plurality of processors of The processor 110 reads a program from the ROM 120 or the storage 140 and executes the program using the RAM 130 as a work area to control each of the above components and perform various arithmetic processing. Note that at least part of these processing contents may be realized by hardware.
 プログラムは、コンピュータ100が読み取り可能な記録媒体に記録されていてもよい。このような記録媒体を用いれば、プログラムをコンピュータ100にインストールすることが可能である。ここで、プログラムが記録された記録媒体は、非一過性(non-transitory)の記録媒体であってもよい。非一過性の記録媒体は、特に限定されるものではないが、例えば、CD-ROM、DVD-ROM、USB(Universal Serial Bus)メモリなどであってもよい。また、このプログラムは、ネットワークを介して外部装置からダウンロードされる形態としてもよい。 The program may be recorded on a recording medium readable by the computer 100. A program can be installed in the computer 100 by using such a recording medium. Here, the recording medium on which the program is recorded may be a non-transitory recording medium. The non-transitory recording medium is not particularly limited, but may be, for example, a CD-ROM, a DVD-ROM, a USB (Universal Serial Bus) memory, or the like. Also, this program may be downloaded from an external device via a network.
 以上の実施形態に関し、更に以下の付記を開示する。 Regarding the above embodiments, the following additional remarks are disclosed.
 (付記項1)
 センサを有する酸素濃度感知器の品質状態を分類する感知器状態分類装置であって、
 点検の対象となる酸素濃度感知器の前記センサに所定値に設計された異なる酸素濃度のガスを吹きかけた際のアラーム発報の有無、及び前記センサの測定環境情報を含む点検結果情報を入力し、前記測定環境情報を用いて前記酸素濃度の設計値を前記ガスが前記センサに吹きかかった際の酸素濃度に補正し、前記点検結果情報及び前記酸素濃度の補正値に基づいて、前記酸素濃度感知器の品質状態を分類する制御部
を備える感知器状態分類装置。
 (付記項2)
 前記点検結果情報は、
 前記センサに対して、前記酸素濃度感知器がアラームを発する閾値未満に設計された酸素濃度のガスを所定時間吹きかけた場合と、該閾値以上に設計された酸素濃度のガスを所定時間吹きかけた場合、のそれぞれについて、前記酸素濃度感知器がアラームを発するか否かを検査した結果を含む情報である、付記項1に記載の感知器状態分類装置。
 (付記項3)
 前記制御部は、
 限界電流値が発生する最小の電圧値が閾値を超える場合に、前記センサの経年劣化による出力値の低下と分類する、付記項1又は2に記載の感知器状態分類装置。
 (付記項4)
 前記制御部は、
 限界電流値の上昇が閾値を超える場合に、前記センサへの熱衝撃又は機械的衝撃の印加による出力値の上昇と分類する、付記項1から3のいずれか一項に記載の感知器状態分類装置。
 (付記項5)
 前記制御部は、
 前記センサが出力する酸素濃度の低下が閾値を超える場合に、前記センサの気体拡散孔を不純物が塞ぐことによる出力値の低下と分類する、付記項1から4のいずれか一項に記載の感知器状態分類装置。
 (付記項6)
 前記制御部は、
 ジルコニア素子を用いたセンサを有する酸素濃度感知器の品質状態を分類する、付記項1から5のいずれか一項に記載の感知器状態分類装置。
 (付記項7)
 センサを有する酸素濃度感知器の品質状態を分類する感知器状態分類方法であって、
 感知器状態分類装置により、点検の対象となる酸素濃度感知器の前記センサに所定値に設計された異なる酸素濃度のガスを吹きかけた際のアラーム発報の有無、及び前記センサの測定環境情報を含む点検結果情報を入力するステップと、前記測定環境情報を用いて前記酸素濃度の設計値を前記ガスが前記センサに吹きかかった際の酸素濃度に補正するステップと、前記点検結果情報及び前記ガス中の酸素濃度の補正値に基づいて、前記酸素濃度感知器の品質状態を分類するステップと、を含む感知器状態分類方法。
 (付記項8)
 コンピュータによって実行可能なプログラムを記憶した非一時的記憶媒体であって、前記コンピュータを付記項1から6のいずれか一項に記載の感知器状態分類装置として機能させるプログラムを記憶した非一時的記憶媒体。
(Appendix 1)
A sensor status classifier for classifying the quality status of an oxygen concentration sensor having a sensor, comprising:
Input inspection result information including whether or not an alarm is issued when a gas with a different oxygen concentration designed to a predetermined value is sprayed on the sensor of the oxygen concentration sensor to be inspected, and information on the measurement environment of the sensor. correcting the design value of the oxygen concentration to the oxygen concentration when the gas blows onto the sensor using the measurement environment information, and calculating the oxygen concentration based on the inspection result information and the correction value of the oxygen concentration A sensor status classifier comprising a control for classifying the quality status of a sensor.
(Appendix 2)
The inspection result information is
When a gas with an oxygen concentration designed to be less than the threshold at which the oxygen concentration sensor issues an alarm is sprayed to the sensor for a predetermined time, and when a gas with an oxygen concentration designed to be greater than or equal to the threshold is sprayed for a predetermined time. , the information including a result of checking whether the oxygen concentration sensor issues an alarm.
(Appendix 3)
The control unit
3. The sensor state classification device according to item 1 or 2, wherein when the minimum voltage value at which the limit current value is generated exceeds a threshold value, it is classified as a decrease in the output value due to aged deterioration of the sensor.
(Appendix 4)
The control unit
4. The sensor state classification according to any one of additional items 1 to 3, wherein when the increase in the limit current value exceeds a threshold, it is classified as an increase in the output value due to the application of thermal shock or mechanical shock to the sensor. Device.
(Appendix 5)
The control unit
5. The sensing according to any one of items 1 to 4, wherein when the decrease in oxygen concentration output by the sensor exceeds a threshold value, it is classified as a decrease in output value due to impurities clogging gas diffusion holes of the sensor. Vessel state classifier.
(Appendix 6)
The control unit
6. The sensor state classification device according to any one of additional items 1 to 5, which classifies the quality state of an oxygen concentration sensor having a sensor using a zirconia element.
(Appendix 7)
A sensor status classification method for classifying the quality status of an oxygen concentration sensor having a sensor, comprising:
The sensor state classification device determines whether or not an alarm is issued when a gas with a different oxygen concentration designed to a predetermined value is sprayed on the sensor of the oxygen concentration sensor to be inspected, and the measurement environment information of the sensor. correcting the design value of the oxygen concentration using the measurement environment information to the oxygen concentration when the gas is blown onto the sensor; the inspection result information and the gas classifying the quality status of the oxygen concentration sensor based on the oxygen concentration correction value in the sensor status classification method.
(Appendix 8)
A non-temporary storage medium storing a computer-executable program, the non-temporary storage storing the program for causing the computer to function as the sensor state classification device according to any one of appendices 1 to 6. medium.
 上述の実施形態は代表的な例として説明したが、本開示の趣旨及び範囲内で、多くの変更及び置換ができることは当業者に明らかである。したがって、本発明は、上述の実施形態によって制限するものと解するべきではなく、特許請求の範囲から逸脱することなく、種々の変形又は変更が可能である。たとえば、実施形態の構成図に記載の複数の構成ブロックを1つに組み合わせたり、あるいは1つの構成ブロックを分割したりすることが可能である。 Although the above-described embodiments have been described as representative examples, it will be apparent to those skilled in the art that many modifications and substitutions can be made within the spirit and scope of the present disclosure. Therefore, the present invention should not be construed as limited by the embodiments described above, and various modifications and changes are possible without departing from the scope of the claims. For example, it is possible to combine a plurality of configuration blocks described in the configuration diagrams of the embodiments into one, or divide one configuration block.
  1        感知器状態分類装置
 11        現地測定結果入力部
 12        記憶部
 13        ガス濃度補正部
 14        感知器状態分類部
 15        結果表示部
 100      コンピュータ
 110      プロセッサ
 120      ROM
 130      RΑM
 140      ストレージ
 150      入力部
 160      出力部
 170      通信インターフェース(I/F)
 180      バス
1 sensor state classification device 11 on-site measurement result input unit 12 storage unit 13 gas concentration correction unit 14 sensor state classification unit 15 result display unit 100 computer 110 processor 120 ROM
130 RM
140 storage 150 input unit 160 output unit 170 communication interface (I/F)
180 bus

Claims (8)

  1.  センサを有する酸素濃度感知器の品質状態を分類する感知器状態分類装置であって、
     点検の対象となる酸素濃度感知器の前記センサに所定値に設計された異なる酸素濃度のガスを吹きかけた際のアラーム発報の有無、及び前記センサの測定環境情報を含む点検結果情報を入力する現地測定結果入力部と、
     前記測定環境情報を用いて前記酸素濃度の設計値を前記ガスが前記センサに吹きかかった際の酸素濃度に補正するガス濃度補正部と、
     前記点検結果情報及び前記酸素濃度の補正値に基づいて、前記酸素濃度感知器の品質状態を分類する感知器状態分類部と、
    を備える感知器状態分類装置。
    A sensor status classifier for classifying the quality status of an oxygen concentration sensor having a sensor, comprising:
    Input inspection result information including whether or not an alarm is issued when a gas with a different oxygen concentration designed to a predetermined value is sprayed on the sensor of the oxygen concentration sensor to be inspected, and information on the measurement environment of the sensor. a field measurement result input unit;
    a gas concentration correction unit that corrects the design value of the oxygen concentration to the oxygen concentration when the gas blows onto the sensor using the measurement environment information;
    a sensor state classification unit that classifies the quality state of the oxygen concentration sensor based on the inspection result information and the oxygen concentration correction value;
    a sensor status classifier comprising:
  2.  前記点検結果情報は、前記センサに対して、前記酸素濃度感知器がアラームを発する閾値未満に設計された酸素濃度のガスを所定時間吹きかけた場合と、該閾値以上に設計された酸素濃度のガスを所定時間吹きかけた場合、のそれぞれについて、前記酸素濃度感知器がアラームを発するか否かを検査した結果を含む情報である、請求項1に記載の感知器状態分類装置。 The inspection result information includes the case where a gas with an oxygen concentration designed to be less than the threshold at which the oxygen concentration sensor issues an alarm is sprayed to the sensor for a predetermined time, and the gas with an oxygen concentration designed to be greater than or equal to the threshold. 2. The sensor state classification device according to claim 1, wherein the information includes a result of checking whether the oxygen concentration sensor issues an alarm for each of the following cases:
  3.  前記感知器状態分類部は、限界電流値が発生する最小の電圧値が閾値を超える場合に、前記センサの経年劣化による出力値の低下と分類する、請求項1又は2に記載の感知器状態分類装置。 3. The sensor state according to claim 1 or 2, wherein the sensor state classification unit classifies the sensor as a decrease in the output value due to aged deterioration when the minimum voltage value at which the limit current value occurs exceeds a threshold value. Classifier.
  4.  前記感知器状態分類部は、限界電流値が上昇が閾値を超える場合に、前記センサへの熱衝撃又は機械的衝撃の印加による出力値の上昇と分類する、請求項1から3のいずれか一項に記載の感知器状態分類装置。 4. The sensor state classifier according to any one of claims 1 to 3, wherein when the limit current value rise exceeds a threshold value, the sensor state classification unit classifies the rise as an output value rise due to the application of thermal shock or mechanical shock to the sensor. 10. A sensor status classifier according to claim 1.
  5.  前記感知器状態分類部は、前記センサが出力する酸素濃度の低下が閾値を超える場合に、前記センサの気体拡散孔を不純物が塞ぐことによる出力値の低下と分類する、請求項1から4のいずれか一項に記載の感知器状態分類装置。 5. The sensor state classification unit according to claim 1, wherein when the decrease in oxygen concentration output by the sensor exceeds a threshold value, the sensor state classification unit classifies the decrease in the output value as a result of impurities clogging the gas diffusion holes of the sensor. A sensor status classifier according to any one of the preceding claims.
  6.  前記感知器状態分類部は、ジルコニア素子を用いたセンサを有する酸素濃度感知器の品質状態を分類する、請求項1から5のいずれか一項に記載の感知器状態分類装置。 The sensor state classification device according to any one of claims 1 to 5, wherein the sensor state classification unit classifies the quality state of an oxygen concentration sensor having a sensor using a zirconia element.
  7.  センサを有する酸素濃度感知器の品質状態を分類する感知器状態分類方法であって、
     感知器状態分類装置により、
     点検の対象となる酸素濃度感知器の前記センサに所定値に設計された異なる酸素濃度のガスを吹きかけた際のアラーム発報の有無、及び前記センサの測定環境情報を含む点検結果情報を入力するステップと、
     前記測定環境情報を用いて前記酸素濃度の設計値を前記ガスが前記センサに吹きかかった際の酸素濃度に補正するステップと、
     前記点検結果情報及び前記ガス中の酸素濃度の補正値に基づいて、前記酸素濃度感知器の品質状態を分類するステップと、
    を含む感知器状態分類方法。
    A sensor status classification method for classifying the quality status of an oxygen concentration sensor having a sensor, comprising:
    With the sensor state classifier,
    Input inspection result information including whether or not an alarm is issued when a gas with a different oxygen concentration designed to a predetermined value is sprayed on the sensor of the oxygen concentration sensor to be inspected, and information on the measurement environment of the sensor. a step;
    a step of correcting the design value of the oxygen concentration to the oxygen concentration when the gas is blown onto the sensor using the measurement environment information;
    classifying the quality status of the oxygen concentration sensor based on the inspection result information and the correction value of the oxygen concentration in the gas;
    A sensor status classification method comprising:
  8.  コンピュータを、請求項1から6のいずれか一項に記載の感知器状態分類装置として機能させるためのプログラム。 A program for causing a computer to function as the sensor state classification device according to any one of claims 1 to 6.
PCT/JP2021/028172 2021-07-29 2021-07-29 Detector state categorization device, detector state categorization method, and program WO2023007665A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2021/028172 WO2023007665A1 (en) 2021-07-29 2021-07-29 Detector state categorization device, detector state categorization method, and program
JP2023537855A JPWO2023007665A1 (en) 2021-07-29 2021-07-29

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/028172 WO2023007665A1 (en) 2021-07-29 2021-07-29 Detector state categorization device, detector state categorization method, and program

Publications (1)

Publication Number Publication Date
WO2023007665A1 true WO2023007665A1 (en) 2023-02-02

Family

ID=85087698

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/028172 WO2023007665A1 (en) 2021-07-29 2021-07-29 Detector state categorization device, detector state categorization method, and program

Country Status (2)

Country Link
JP (1) JPWO2023007665A1 (en)
WO (1) WO2023007665A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09159648A (en) * 1995-12-04 1997-06-20 Matsushita Electric Ind Co Ltd Output circuit for critical current type oxygen sensor
JPH10104190A (en) * 1996-09-26 1998-04-24 Nippon Rufuto Kk Oxygen concentration detection method using oxygen sensor, abnormality judging method of oxygen sensor, abnormality judging method of oxygen concentrator and oxygen concentrator
JP2001165899A (en) * 1999-12-14 2001-06-22 Yazaki Corp Self-diagnostic method of oxygen sensor and device therefor
JP2003254939A (en) * 2001-12-27 2003-09-10 Nippon Soken Inc Gas concentration detection device
JP2005106494A (en) * 2003-09-29 2005-04-21 Yokogawa Electric Corp Zirconia oxygen analyzer
JP2006017695A (en) * 2004-05-31 2006-01-19 Yokogawa Electric Corp Calibration method, and zirconia type oxygen concentration analyzer using the same
JP2007263933A (en) * 2006-03-30 2007-10-11 Yokogawa Electric Corp Zirconia type oxygen meter
JP2016194288A (en) * 2015-04-02 2016-11-17 トヨタ自動車株式会社 Abnormality diagnosis system for gas sensor

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09159648A (en) * 1995-12-04 1997-06-20 Matsushita Electric Ind Co Ltd Output circuit for critical current type oxygen sensor
JPH10104190A (en) * 1996-09-26 1998-04-24 Nippon Rufuto Kk Oxygen concentration detection method using oxygen sensor, abnormality judging method of oxygen sensor, abnormality judging method of oxygen concentrator and oxygen concentrator
JP2001165899A (en) * 1999-12-14 2001-06-22 Yazaki Corp Self-diagnostic method of oxygen sensor and device therefor
JP2003254939A (en) * 2001-12-27 2003-09-10 Nippon Soken Inc Gas concentration detection device
JP2005106494A (en) * 2003-09-29 2005-04-21 Yokogawa Electric Corp Zirconia oxygen analyzer
JP2006017695A (en) * 2004-05-31 2006-01-19 Yokogawa Electric Corp Calibration method, and zirconia type oxygen concentration analyzer using the same
JP2007263933A (en) * 2006-03-30 2007-10-11 Yokogawa Electric Corp Zirconia type oxygen meter
JP2016194288A (en) * 2015-04-02 2016-11-17 トヨタ自動車株式会社 Abnormality diagnosis system for gas sensor

Also Published As

Publication number Publication date
JPWO2023007665A1 (en) 2023-02-02

Similar Documents

Publication Publication Date Title
JP5975883B2 (en) Method and apparatus for detecting a faulty instrument
CN110044407B (en) Method for detecting an electrical fault, device for carrying out said method and electrical enclosure
US11131639B2 (en) Analyzer, analysis system, analysis method and program
EP3430319B1 (en) Air purifier and air purification method
US9709544B2 (en) Solid state gas detection sensor diagnostic
JPWO2014188594A1 (en) Environmental measuring apparatus and environmental measuring method
US11584540B2 (en) Air quality sensors and methods of monitoring air quality
CN103890341A (en) Measurement of diesel engine emissions
CN116735804A (en) Intelligent sensor precision monitoring system based on Internet of things
AU2015261602B2 (en) A multi-sense environmental monitoring device and method
JP2007248090A (en) Precision management system of clinical examination
WO2023007665A1 (en) Detector state categorization device, detector state categorization method, and program
CN116992243B (en) AIOT-based industrial solid waste treatment material management method and system
CN102116760B (en) Device and method for detecting consumption level of oxygen concentration sensor
CN116666785A (en) Energy storage battery system safety early warning method and device, electronic equipment and medium
CN116562712A (en) System and method for predicting air quality
US20220243948A1 (en) Odor detection device, odor analysis system, and odor analysis method
CN107917686B (en) Method and device for detecting abnormality of printed wiring board
CN114001887B (en) Bridge damage assessment method based on deflection monitoring
CN108603434A (en) Method and apparatus for the error for correcting particulate matter detection sensor
CN107884319B (en) System and method for calibrating dust sensor
CN111274098A (en) IoT-based storage device alarm method and device
JP6361035B2 (en) Gas detection method and gas detection apparatus
CN113887044A (en) Data quality monitoring method, device, equipment and readable storage medium
JP2023059642A (en) Inspection device, inspection method and program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21951865

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023537855

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE